
Beowulf Cluster Computing with Linux, Second Edition
by William Gropp, Ewing Lusk and Thomas
Sterling (eds)

ISBN:0262692929

The MIT Press © 2003 (618 pages)

This how-to guide provides step-by-step instructions for
building a Beowulf-type computer, including the physical
elements that make up a clustered PC, the software
required, and insights on how to organize the code to exploit
parallelism.

Table of Contents

Beowulf Cluster Computing with Linux, Second Edition
Series Foreword
Foreword
Preface to - the Second Edition
Preface to - the First Edition
Chapter 1 - So You Want to Use a Cluster
Part I - Enabling Technologies
Chapter 2 - Node Hardware
Chapter 3 - Linux
Chapter 4 - System Area Networks
Chapter 5 - Configuring and Tuning Cluster Networks
Chapter 6 - Setting up Clusters
Part II - Parallel Programming
Chapter 7 - An Introduction to Writing Parallel Programs for Clusters
Chapter 8 - Parallel Programming with MPI
Chapter 9 - Advanced Topics in MPI Programming
Chapter 10 - Parallel Virtual Machine
Chapter 11 - Fault-Tolerant and Adaptive Programs with PVM
Chapter 12 - Numerical and Scientific Software for Clusters
Part III - Managing Clusters
Chapter 13 - Cluster Management
Chapter 14 - Cluster Workload Management
Chapter 15 - Condor: A Distributed Job Scheduler
Chapter 16 - Maui Scheduler: A High Performance Cluster Scheduler
Chapter 17 - PBS: Portable Batch System
Chapter 18 - Scyld Beowulf
Chapter 19 - Parallel I/O and the Parallel Virtual File System
Chapter 20 - A Tale of Two Clusters: Chiba City and Jazz
Chapter 21 - Conclusions
Appendix A - Glossary of Terms
Appendix B - Annotated Reading List
Appendix C - Annotated URLs
References
Index
List of Figures
List of Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
Use of Beowulf clusters (collections of off-the-shelf commodity computers programmed to act in concert
resulting in super-computer performance at a fraction of the cost) has spread far and wide in the
computational science community. Many application groups are assembling and operating their own private
supercomputers rather than relying on centralized computing centers. Such clusters are used in climate
modeling, computational biology, astrophysics, and materials science, as well as non-traditional areas such
as financial modeling and entertainment. Much of this new popularity can be attributed to the growth of the
open-source movement.

The second edition of Beowulf Cluster Computing with Linux has been completely updated; all three stand-
alone sections have important new material. The introductory material in the first part now includes a new
chapter giving an overview of the book and background on cluster-specific issues, including why and how
to choose a cluster, as well as new chapters on cluster initialization systems (including ROCKS and OSCAR)
and on network setup and tuning. The information on parallel programming in the second part now
includes chapters on basic parallel programming and available libraries and programs for clusters. The third
and largest part of the book, which describes software infrastructure and tools for managing cluster
resources, has new material on cluster management and on the Scyld system.

About the Editors

William Groop is an Associate Division Director and Senior Computer Scientist and Ewing Lusk is Senior
Computer Scientist, MCS Division, both at Argonne National Laboratory. Thom Sterling is Senior Staff
Scientist in the High Performance Computing Systems Group at he Jet Propulsion Laboratory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beowulf Cluster Computing with Linux, Second Edition
Edited by William Gropp,
Ewing Lusk, and
Thomas Sterling
The MIT Press
Cambridge , Massachusetts London, England

Copyright © 2002, 2003 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including
photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Beowulf Cluster Computing with Linux / edited by William Gropp, Ewing Lusk, and
 Thomas Sterling.—2nd ed.
 p. cm.—(Scientific and engineering computation)
 Includes bibliographical references and index.

ISBN 0-262-69292-9 (pbk. : alk. paper)

1. Parallel computers. 2. Beowulf clusters (Computer systems) 3. Linux. I. Gropp, William. II. Lusk, Ewing. III. Sterling, Thomas
Lawrence. IV. Series.

QA76.58.B46 2003

004'.35-dc22 2003059364

Dedicated with respect and appreciation to the memory of Seymour R. Cray

1925–1996

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Series Foreword
Computing is one of the fastest changing areas of technology. Keeping up with these changes is hard, making the practical use of
the most advanced algorithms, technology, and methods difficult. The Scientific and Engineering Computation series focuses on
rapid advances in computing technologies, with the aim of facilitating transfer of these technologies to applications in science and
engineering. It includes books on theories, methods, and original applications in such areas as parallel computing, large-scale
simulations, and scientific software.

The series is intended to help scientists and engineers understand the current world of advanced computation and to anticipate
future developments that will affect their computing environments and open up new capabilities and modes of computation.

This volume in the series describes the highly successful distributed/parallel system called Beowulf. A Beowulf is a cluster of PCs
interconnected by network technology and employing the message-passing model for parallel computation. Key advantages of
this approach are high performance for low price, system scalability, and rapid adjustment to new technological advances.

This book covers how to build, program, and operate a Beowulf system based on the Linux operating system. The second edition
is a complete update of the book, with new material in every chapter and several new chapters on cluster setup, management,
and programming.

Beowulf hardware, operating system software, programming approaches and libraries, and machine management software are all
covered here. The book can be used as a textbook as well as a practical guide for designing, implementing, and operating a
Beowulf for those in science and industry who need a powerful system but are reluctant to purchase an expensive massively
parallel processor or vector computer.

William Gropp and Ewing Lusk, Editors

Janusz Kowalik, Founding Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foreword
Supercomputers! What computer scientist would not want one? After all, when I was growing up (in the dark ages), everything
good was "Super." Superman, Supergirl, Superdog, Supersize ... everyone and everything wanted to be "Super." And so, with the
work of a lot of very intelligent people, the Supercomputer was born. People like Seymour Cray, who expended much money, time
and effort in creating machines that could solve problems very quickly.

Unfortunately these Supercomputers were also Supercostly. Often built by hand, they would cost millions of dollars (and that was
when a million dollars was a lot of money) to design and build, then a relatively few systems were produced. In addition, these
systems tended to be handmade, or at least produced in relatively small qualities, which also drove the production costs up.
Finally, each style of supercomputer (whether it be a Cray, a CDC Cyber, an ECL or others) would have a different instruction set,
and run a different operating system, which caused the people writing software for them to learn this new operating system, and
write their applications to it. Likewise a lot of the software tools for writing applications (compilers, debuggers, profilers, etc.) had to
be created for each line, if not each model, of supercomputer. This made these software tools and operating systems costly to
develop and maintain.

As general-purpose computers started getting more and more prevalent, the ability to manufacture machines of increasing speed
and size at lower and lower prices made the lifetime of supercomputers shorter and shorter. After all, the purpose of purchasing
and using a supercomputer was to be able to run your application in the shortest possible time. When this speed transitioned from
the previously purchased supercomputer to the latest mass-produced "mainframe" or "super-mini," the justification for running a
supercomputer became more difficult.

Because of these and other financial issues, a lot of the supercomputing companies started to go out of business. This was bad
for a lot of reasons. First of all, we need supercomputers, or at least we need to have the ability to solve large problems quickly.
Whether it is trying to prospect for natural resources, or trying to protect the environment; whether it is analyzing aerial
photographs for weapons of mass destruction or trying to predict the weather precisely for a shuttle launch; whether it is
generating real time computer graphics or analyzing a mammogram to determine if a woman has cancer or not, the time needed
to analyze the problem can mean the difference between success or failure, life or death. Too long in analysis, and you miss the
window for the answer to do you any good. For iterative processes, you may find that your competitor, who is using a faster
computer, comes up with a better answer or a better product faster than you do.

A good example of this is the computer industry itself. In designing a CPU, a lot of simulation of the new chip is done by already
existing computers. The faster the simulation can be done, or the faster a checkout of the finished design can be accomplished,
the faster the next iteration of the design can be started. This is why, for years, many chips were designed by supercomputers,
even if those supercomputers were from rival chip manufacturers.

As the fortune of supercomputer companies declined, the need for high-speed computing still continued to grow. Two people in
NASA, Dr. Thomas Sterling and Dr. Donald Becker, realized that something had to be done. They hypothesized that using
inexpensive, off the shelf computer systems (COTS) hooked together with high-speed networking (even with speeds as low as 10
Mbit/sec Ethernet) could duplicate the power of supercomputers, particularly applications that could be converted into highly
parallelized threads of execution. They theorized that the price/performance of these COTS systems would more than make up for
the overhead of having to send data between the different nodes to have that additional computing done, and sooner or later this
concept became known as "Beowulf clusters," or just "Beowulfs."

At first these systems were built from individual PCs built from individual boxes, mounted on commodity racks (and sometimes just
stacked on the floor), but as time went on various small companies started to sell pre-packaged, pre-built units in ever-smaller
packages with more and more CPUs in them. Boxes kept getting smaller and smaller so you could put more boxes in each rack,
and customers were able to order pre-built and pre-wired systems. And because these Beowulfs were made with high-volume
manufactured chips, the cost was often one-fortieth that of a conventional supercomputer. Over time even the larger
manufacturers such as HP and IBM began building rack-mounted Beowulf systems to order.

Of course there were a few other problems to think about, such as the time it took to send the data back and forth (usually called
"latency"), sizing the system, or coordination of the flow of data and instructions to the many, many nodes that might be required.
And these were just the beginning of the issues. As the number of COTS nodes increased, so did the amount of power needed,
the amount of air conditioning, and even the amount of floor space and floor loading needed to support that many individual units.

These systems were made up of what we call "commodity architectures." While some of these "commodity architectures" were
made up of relatively low volume Alpha chips, or SPARC chips, the majority of the Beowulfs were 32-bit Intel chips. And finally,
the bulk of the systems used a newly developed operating system called "Linux." The combination of a commodity architecture
with a free and high-volume operating system allowed supercomputing to have a volume binary interface for the first time.
Applications that worked on a single CPU Intel system running Linux would also work on a Beowulf.

Linux was royalty free, and came with all the source code needed to create it, which allowed people to change the kernel to help
make it work better on a Beowulf cluster. People wrote new libraries, and contributed to changing existing libraries to make them
work better in the new environment. Compilers were made more efficient, and newer interconnects were developed that had
higher throughput, lower latency, and lower overhead than the original ones. New algorithms allowed applications that could not
utilize Beowulfs before to utilize the new technique. However, the open source nature of Linux and these compilers and libraries
allowed a pseudo-standard for Beowulf systems to emerge. For the first time we could think about mass-produced
supercomputers ... units that could duplicate the power of a supercomputer for less than one-fortieth of the price.

Still, a lot of people did not foresee how Beowulf systems would change the face of computing. It was only when certain projects
happened that people began to realize the excitement generated by affordable supercomputers.

The first project came from Oak Ridge National Labs, where a "mistake in planning" left a project without budgeted money for
computing. By going to their colleagues who had recently had upgrades to their desktop systems, the project managers were able
to collect forty-eight cast-off units and make the Beowulf needed to do their calculations. They called it the "Soupercomputer" after
the old story of "Stone Soup" and the man who fed a village by making a soup only out of water, fire and a white stone. After all,
they had made their soupercomputer at "no cost" to the facility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second success was a CD-ROM made by Red Hat Software in conjunction with NASA, more as a marketing gimmick than
anything else. Declaring the Beowulf software on the CD-ROM as "rocket science," the CD-ROM that was expected to sell as a
sleeper flew off the shelves of Red Hat, and became one of their largest sellers. Whether the CD-ROM was ever installed or not
made no difference, everyone wanted to have supercomputing software on their bookshelf, particularly for the low, low price of a
Linux CD.

Another success started happening in high schools and small colleges. These schools never dreamed of owning a traditional
supercomputer before, but with the concept of Beowulf systems, either with donated "Stone Soup" computers or new ones bought
through a small grant, the schools were able to create that computing power. This was important to not only the computer science
department, but to areas such as chemistry, biology, animation, music, physics, and other areas needing high performance
computations for real-time visualizations and simulations.

As the use of Beowulf systems grew into other areas such as bio-informatics and genome research, new uses for supercomputers
were derived that had never been considered before. A major financial company had to maintain a certain amount of monetary
reserve as required by the SEC. Since this company was so large, the amount of money that it had in this reserve at any one time
took over twelve hours to calculate. Since it took so long to come up with a correct answer (which by definition was no longer
correct), they had to keep a significant buffer to meet a potential audit. By purchasing a Beowulf system, they were able to
calculate the amount of reserve accurately in fifteen minutes, and therefore calculated it every fifteen minutes of the day. This
allowed them to reduce their reserve, and with the reclaimed money re-invested, they were able to make fifteen million dollars in
profits the first year. This (of course) paid for their Beowulf system many times over.

There are other points to programming these Beowulf systems. The techniques used in programming them (message passing,
parallel threads of execution, memory locks, and latency speeds) are all considerations of programming what are known as
"workstation farms," which these days are simply desktop PCs hooked together with Ethernet. One moment these machines could
be used as a high school or college computing laboratory. But within a few moments and with the right operating system software
you could have a "horizontal Beowulf" capable of solving anything that a dedicated, rack-mounted Beowulf could solve.

A hospital, for instance, could use the nurses and doctors stations standing idle between accesses to do the analysis of a
mammogram, something that was modeled using a Beowulf, and which reduced the analysis time from twenty hours on a single
SPARCstation 20 to ten minutes on a 160 unit Intel Beowulf. By utilizing the excess cycles of idle PCs throughout the hospital, the
hospital was not required to buy a Beowulf system for this speedup in mammogram analysis. They simply utilized the idle CPU
cycles that they already had.

We are entering into a new age of computing. Sixty-four bit computers made out of commodity chips will allow us to more easily
solve problems of almost any size. Pulling together hundreds, if not thousands, of CPUs in various configurations (SMP, Beowulf,
and NUMA) will allow us to tackle problems where we could not have afforded the solutions ten years ago. Use of the Grid will use
a lot, if not all, of the same programming and systems administration techniques that are used in the classic Beowulf system.

Finally, I believe that all of the programming techniques used in Beowulf systems are relevant to even single-CPU desktop
machines today. Multi-threaded, distributed programming should be the normal way of thinking about programming, not the
exception. Therefore I think that every high school and college computer science student should at one time or another learn how
to program a Beowulf system, and the sooner the better.

This book is an excellent place to start.

Carpe Diem.

Jon "maddog" Hall, President
Linux International
Amherst, NH, USA
July 4th, 2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface to the Second Edition
The purpose of this book is to help you understand the Beowulf approach to parallel computing. We describe here how to select
the hardware components of computers and networks, how to configure and install the necessary system software, how to write
parallel programs to take advantage of your new machine, and how to manage it for use by others.

This book concentrates on the concepts of Beowulf computing, since computing changes too fast for any detailed "Beowulf
manual" to stay up to date for long. Many concepts are common to multiple generations of systems, and provide the basic for
understanding the changing details of assembling, configuring, using, and managing a cluster.

We don't take a purely abstract approach, however. We give detailed examples drawn from current systems, which will be
immediately useful. This book can thus serve as a practical guide to the current state of Beowulf computing as well as a map to
the central issues, an understanding of which will have long-lasting value.

Since the first edition appeared, Beowulf computing has expanded rapidly, at all ranges of cluster sizes. The continuing drop in
prices of both computers and networks has meant that more and more users are acquiring small and medium-sized systems for
departmental and even personal use. At the high end, clusters are now amply represented in the Top500 list of the most capable
machines in the world. Clusters available from cluster hardware vendors such as Dell and Linux Networx are even in the top 25.

Another development contributing to the expansion of the Beowulf community has been the emergence of effective automated
cluster setup software. We survey some current systems in Chapter 6.

The fact that both pre-packaged cluster hardware and cluster software are available greatly simplifies the effort required to get a
cluster up and running. Of course it is also possible (and common) for clusters to be assembled "by hand." This book will help you
build your Beowulf yourself if that is your choice, and to understand both its hardware and software structure well even if you let
others attend to the hardware construction and systems software installation.

About the Second Edition
Many additions and updates to the first edition make this second edition timely and more complete.

1. A new introductory chapter explains what sorts of applications Beowulf clusters are good for and provides a
"road map" for reading the book.

2. The chapter on PVFS has been entirely rewritten to cover parallel file systems for clusters, including the three
systems that are hot in the Beowulf community: GPFS, Lustre, and PVFS.

3. A new chapter on managing clusters covers the issues faced by systems administrators.

4. A new chapter on tuning networks for clusters includes information on network security. As Linux has matured,
the typical Linux distribution has been optimized for interacting with the Internet, which requires strict security
policies. This new chapter discusses how to configure your cluster for performance while retaining a secure
system.

5. A new chapter describes the Scyld environment, which provides an illusion of a single system image to the user
and the administrator.

6. A new chapter describes library and application software for numerical applications. Using a Beowulf no longer
requires writing programs; there are already many available applications. Even if it is necessary to write
software, existing powerful parallel libraries make it relatively easy to write many kinds of parallel applications. A
new section in Chapter 8 shows how libraries written in MPI may be used to write programs that have no explicit
use of MPI. Two sample programs that solve a linear and a nonlinear system of equations in parallel illustrate
this approach.

7. A new chapter on parallel programming covers both the basic terms and ideas and presents some simple
programming methods based on the manager/worker approach and using powerful scripting languages such as
perl and python.

8. The MPI chapters now emphasize the new version of MPICH2 that supports all of MPI-1 and MPI-2, including
the use of mpiexec (recommended in the MPI-2 standard) over mpirun.

9. As the software for Beowulfs matures, changes are inevitable. Each chapter has been updated to cover the
current state of the software. Cluster hardware changes even faster than the software, and hence the hardware
chapters have been rewritten, covering new processors and networks.

The high-level structure of the book breaks the huge topic of cluster computing into three parts.
Part I, Enabling Technologies describes the components, both hardware and software, that go into a Beowulf.

Part II, Parallel Programming shows how to write application programs for clusters, either by using functions built
into Linux or by using any of a number of both general and special-purpose libraries.

Part III. Managing Clusters covers administration of clusters large and small, and includes a case study of a
specific large cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments for the Second Edition
We thank first the authors of the chapters contributed to this book:

Peter H. Beckman, Argonne National Laboratory

Ralph Butler, Middle Tennessee State University

Narayan Desai, Argonne National Laboratory

Jack Dongarra, University of Tennessee

Victor Eijkhout, University of Tennessee

Remy Evard, Argonne National Laboratory

Al Geist, Oak Ridge National Laboratory

David B. Jackson, University of Utah

James Patton Jones, Altair Engineering

Jim Kohl, Oak Ridge National Laboratory

David Lifka, Cornell Theory Center

Walt Ligon, Clemson University

Miron Livny, University of Wisconsin

Karen Miller, University of Wisconsin

John-Paul Navarro, Argonne National Laboratory

Bill Nitzberg, Altair Engineering

Daniel Nurmi, University of California, Santa Barbara

Philip Papadopoulos, University of California, San Diego

Erik Paulson, University of Wisconsin

Rob Ross, Argonne National Laboratory

Dan Stanzione, Jr., Clemson University

Brian Toonen, Argonne National Laboratory

Todd Tannenbaum, University of Wisconsin

Derek Wright, University of Wisconsin

Many other people helped in various ways to put this book together. Thanks are due to Philip Carns, Anthony Chan, Andreas
Dilger, Michele Evard, Tramm Hudson, Rob Latham, Andrew Lusk, Richard Lusk, Neill Miller, Bill Nickless, Craig Stacey, Rick
Stevens, and Edward Thornton.

Don Becker, Tom Quinn, and the people of Scyld Computing Corporation provided particular help with Chapter 18 on the Scyld
approach to Beowulf.

Special thanks go to Karen Toonen for her tremendous help in making the network tuning chapter more understandable. Gail
Pieper, technical writer in the Mathematics and Computer Science Division at Argonne, once again improved every chapter's style
and readability.

William Gropp

Ewing Lusk

Thomas Sterling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface to the First Edition
Within the past three years, there has been a rapid increase in the deployment and application of computer clusters to expand the
range of available system capabilities beyond those of conventional desktop and server platforms. By leveraging the development
of hardware and software for these widely marketed and heavily used mainstream computer systems, clusters deliver order of
magnitude or more scaling of computational performance and storage capacity without incurring significant additional R&D costs.
Beowulf-class systems, which exploit mass-market PC hardware and software in conjunction with cost-effective commercial
network technology, provide users with the dual advantages of unprecedented price/performance and configuration flexibility for
parallel computing. Beowulf-class systems may be implemented by the end users themselves from available components. But
with their growth in popularity, so has evolved industry support for commercial Beowulf systems. Today, depending on source and
services, Beowulf systems can be installed at a cost of between one and three dollars per peak megaflops and of a scale from a
few gigaflops to half a teraflops. Equally important is the rapid growth in diversity of application. Originally targeted to the scientific
and technical community, Beowulf-class systems have expanded in scope to the broad commercial domain for transaction
processing and Web services as well as to the entertainment industry for computer-generated special effects. Right now, the
largest computer under development in the United States is a commodity cluster that upon completion will be at a scale of 30
teraflops peak performance. It is quite possible that, by the middle of this decade, commodity clusters in general and Beowulf-
class systems in particular may dominate middle and high-end computing for a wide range of technical and business workloads. It
also appears that for many students, their first exposure to parallel computing is through hands-on experience with Beowulf
clusters.

The publication of How to Build a Beowulf by MIT Press marked an important milestone in commodity computing. For the first
time, there was an entry-level comprehensive book showing how to implement and apply a PC cluster. The initial goal of that
book, which was released almost two years ago, was to capture the style and content of the highly successful tutorial series that
had been presented at a number of conferences by the authors and their colleagues. The timeliness of this book and the almost
explosive interest in Beowulf clusters around the world made it the most successful book of the MIT Press Scientific and
Engineering Computation series last year. While other books have since emerged on the topic of assembling clusters, it still
remains the most comprehensive work teaching hardware, software, and programming methods. Nonetheless, in spite of its
success, How to Build a Beowulf addressed the needs of only a part of the rapidly growing commodity cluster community. And
because of the rapid evolution in hardware and software, aspects of its contents have grown stale in a very short period of time.
How to Build a Beowulf is still a very useful introduction to commodity clusters and has been widely praised for its accessibility to
first-time users. It has even found its way into a number of high schools across the country. But the community requires a much
more extensive treatment of a topic that has changed dramatically since that book was introduced.

In addition to the obvious improvements in hardware, over the past two years there have been significant advances in software
tools and middleware for managing cluster resources. The early Beowulf systems ordinarily were employed by one or a few
closely associated workers and applied to a small easily controlled workload, sometimes even dedicated to a single application.
This permitted adequate supervision through direct and manual intervention, often by the users themselves. But as the user base
has grown and the nature of the responsibilities for the clusters has rapidly diversified, this simple "mom-and-pop" approach to
system operations has proven inadequate in many commercial and industrial-grade contexts. As one reviewer somewhat unkindly
put it, How to Build a Beowulf did not address the hard problems. This was, to be frank, at least in part true, but it reflected the
state of the community at the time of publication. Fortunately, the state of the art has progressed to the point that a new snapshot
of the principles and practices is not only justified but sorely needed.

The book you are holding is far more than a second addition of the original How to Build a Beowulf; it marks a major transition
from the early modest experimental Beowulf clusters to the current medium- to large-scale, industrial-grade PC-based clusters in
wide use today. Instead of describing a single depth-first minimalist path to getting a Beowulf system up and running, this new
reference work reflects a range of choices that system users and administrators have in programming and managing what may be
a larger user base for a large Beowulf clustered system. Indeed, to support the need for a potentially diverse readership, this new
book comprises three major parts. The first part, much like the original How to Build a Beowulf, provides the introductory material,
underlying hardware technology, and assembly and configuration instructions to implement and initially use a cluster. But even
this part extends the utility of this basic-level description to include discussion and tutorial on how to use existing benchmark
codes to test and evaluate new clusters. The second part focuses on programming methodology. Here we have given equal
treatment to the two most widely used programming frameworks: MPI and PVM. This part stands alone (as do the other two) and
provides detailed presentation of parallel programming principles and practices, including some of the most widely used libraries
of parallel algorithms. The largest and third part of the new book describes software infrastructure and tools for managing cluster
resources. This includes some of the most popular of the readily available software packages for distributed task scheduling, as
well as tools for monitoring and administering system resources and user accounts.

To provide the necessary diversity and depth across a range of concepts, topics, and techniques, I have developed a
collaboration among some of the world's experts in cluster computing. I am grateful to the many contributors who have added their
expertise to the body of this work to bring you the very best presentation on so many subjects. In many cases, the contributors are
the original developers of the software component being described. Many of the contributors have published earlier works on
these or other technical subjects and have experience conveying sometimes difficult issues in readable form. All are active
participants in the cluster community. As a result, this new book is a direct channel to some of the most influential drivers of this
rapidly moving field.

One of the important changes that has taken place is in the area of node operating system. When Don Becker and I developed
the first Beowulf-class systems in 1994, we adopted the then-inchoate Linux kernel because it was consistent with other Unix-like
operating systems employed on a wide range of scientific compute platforms from workstations to supercomputers and because it
provided a full open source code base that could be modified as necessary, while at the same time providing a vehicle for
technology transfer to other potential users. Partly because of these efforts, Linux is the operating system of choice for many
users of Beowulf-class systems and the single most widely used operating system for technical computing with clusters. However,
during the intervening period, the single widest source of PC operating systems, Microsoft, has provided the basis for many
commercial clusters used for data transaction processing and other business-oriented workloads. Microsoft Windows 2000
reflects years of development and has emerged as a mature and robust software environment with the single largest base of
targeted independent software vendor products. Important path-finding work at NCSA and more recently at the Cornell Theory
Center has demonstrated that scientific and technical application workloads can be performed on Windows-based systems. While
heated debate continues as to the relative merit of the two environments, the market has already spoken: both Linux and
Windows have their own large respective user base for Beowulf clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a result of attempting to represent the PC cluster community that clearly embodies two distinct camps related to the node
operating system, my colleagues and I decided to simultaneously develop two versions of the same book. Beowulf Cluster
Computing with Linux and Beowulf Cluster Computing with Windows are essentially the same book except that, as the names
imply, the first assumes and discusses the use of Linux as the basis of a PC cluster while the second describes similar clusters
using Microsoft Windows. In spite of this marked difference, the two versions are conceptually identical. The hardware
technologies do not differ. The programming methodologies vary in certain specific details of the software packages used but are
formally the same. Many but not all of the resource management tools run on both classes of system. This convergence is
progressing even as the books are in writing. But even where this is not true, an alternative and complementary package exists
and is discussed for the other system type. Approximately 80 percent of the actual text is identical between the two books.
Between them, they should cover the vast majority of PC clusters in use today.

On behalf of my colleagues and myself, I welcome you to the world of low-cost Beowulf cluster computing. This book is intended
to facilitate, motivate, and drive forward this rapidly emerging field. Our fervent hope is that you are able to benefit from our efforts
and this work.

Acknowledgments
I thank first the authors of the chapters contributed to this book:

Peter H. Beckman, Turbolinux

Remy Evard, Argonne National Laboratory

Al Geist, Oak Ridge National Laboratory

William Gropp, Argonne National Laboratory

David B. Jackson, University of Utah

James Patton Jones, Altair Grid Technologies

Jim Kohl, Oak Ridge National Laboratory

Walt Ligon, Clemson University

Miron Livny, University of Wisconsin

Ewing Lusk, Argonne National Laboratory

Karen Miller, University of Wisconsin

Bill Nitzberg, Altair Grid Technologies

Rob Ross, Argonne National Laboratory

Daniel Savarese, University of Maryland

Todd Tannenbaum, University of Wisconsin

Derek Wright, University of Wisconsin

Many other people helped in various ways to put this book together. Thanks are due to Michael Brim, Philip Carns, Anthony Chan,
Andreas Dilger, Michele Evard, Tramm Hudson, Andrew Lusk, Richard Lusk, John Mugler, Thomas Naughton, John-Paul
Navarro, Daniel Savarese, Rick Stevens, and Edward Thornton.

Jan Lindheim of Caltech provided substantial information related to networking hardware. Narayan Desai of Argonne provided
invaluable help with both the node and network hardware chapters. Special thanks go to Rob Ross and Dan Nurmi of Argonne for
their advice and help with the cluster setup chapter.

Paul Angelino of Caltech contributed the assembly instructions for the Beowulf nodes. Susan Powell of Caltech performed the
initial editing of several chapters of the book.

The authors would like to respectfully acknowledge the important initiative and support provided by George Spix, Svetlana
Verthein, and Todd Needham of Microsoft that were critical to the development of this book. Dr. Sterling would like to thank
Gordon Bell and Jim Gray for their advice and guidance in its formulation.

Gail Pieper, technical writer in the Mathematics and Computer Science Division at Argonne, was an indispensable guide in
matters of style and usage and vastly improved the readability of the prose.

Thomas Sterling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: So You Want to Use a Cluster

Overview
William Gropp

What is a "Beowulf Cluster" and what is it good for? Simply put, a Beowulf Cluster is a supercomputer that anyone can build and
use. More specifically, a Beowulf Cluster is a parallel computer built from commodity components. This approach takes advantage
of the astounding performance now available in commodity personal computers. By many measures, including computational
speed, size of main memory, available disk space and bandwidth, a single PC of today is more powerful than the supercomputers
of the past. By harnessing the power of tens to thousands of such low-cost but powerful processing elements, you can create a
powerful supercomputer. In fact, the number 5 machine on the "Top500" list of the world's most powerful supercomputers is a
Beowulf Cluster.

A Beowulf cluster is a form of parallel computer, which is nothing more than a computer that uses more than one processor. There
are many different kinds of parallel computer, distinguished by the kinds of processors they use and the way in which those
processors exchange data. A Beowulf cluster takes advantage of two commodity components: fast CPUs designed primarily for
the personal computer market and networks designed to connect personal computers together (in what is called a local area
network or LAN). Because these are commodity components, their cost is relatively low. As we will see later in this chapter, there
are some performance consequences, and Beowulf clusters are not suitable for all problems. However, for the many problems for
which they do work well, Beowulf clusters provide an effective and low-cost solution for delivering enormous computational power
to applications and are now used virtually everywhere. This raises the following question: If Beowulf clusters are so great, why
didn't they appear earlier?

Many early efforts used clusters of smaller machines, typically workstations, as building blocks in creating low-cost parallel
computers. In addition, many software projects developed the basic software for programming parallel machines. Some of these
made their software available for all users, and emphasized portability of the code, making these tools easily portable to new
machines. But the project that truly launched clusters was the Beowulf project at the NASA Goddard Space Flight center. In 1994,
Thomas Sterling, Donald Becker, and others took an early version of the Linux operating system, developed Ethernet driver
software for Linux, and installed PVM (a software package for programming parallel computers) on 16 100MHz Intel 80486-based
PCs. This cluster used dual 10-Mbit Ethernet to provide improved bandwidth in communications between processors, but was
otherwise very simple—and very low cost.

Why did the Beowulf project succeed? Part of the answer is that it was the right solution at the right time. PCs were beginning to
become competent computational platforms (a 100MHz 80486 has a faster clock than the original Cray 1, a machine considered
one of the most important early supercomputers). The explosion in the size of the PC market was reducing the cost of the
hardware through economies of scale. Equally important, however, was a commitment by the Beowulf project to deliver a working
solution, not just a research testbed. The Beowulf project worked hard to "dot the i's and cross the t's," addressing many of the
real issues standing in the way of widespread adoption of cluster technology for commodity components. This was a critical
contribution; making a cluster solid and reliable often requires solving new and even harder problems; it isn't just hacking. The
contribution of the community to this effort, through contributions of software and general help to others building clusters, made
Beowulf clustering exciting.

Since the early Beowulf clusters, the use of commodity-off-the-shelf (COTS) components for building clusters has mushroomed.
Clusters are found everywhere, from schools to dorm rooms to the largest machine rooms. Large clusters are an increasing
percentage of the Top500 list. You can still build your own cluster by buying individual components, but you can also buy a
preassembled and tested cluster from many vendors, including both large and well-established computer companies and
companies formed just to sell clusters.

This book will give you an understanding of what Beowulfs are, where they can be used (and where they can't), and how they
work. To illustrate the issues, specific operations, such as installation of a software package are described. However, this book is
not a cookbook; software and even hardware change too fast for that to be practical. The best use of this book is to read it for
understanding; to build a cluster, then go out and find the most up-to-date information on the web about the hardware and
software.

Each of the areas discussed in this book could have its own book. In fact, many do, including books in the same MIT Press series.
What this book does is give you the basic background so that you can understand Beowulf Clusters. For those areas that are
central to your interest in Beowulf computing, we recommend that you read the relevant books. Some of these are described in
Appendix B. For the others, this book provides a solid background for understanding how to specify, build, program, and manage
a Beowulf cluster.

We begin by defining what a cluster is and why a cluster can be a good computing platform. Since not all applications are
appropriate for clusters, Section 1.3 introduces techniques for estimating the performance of an application on a cluster, with an
illustration drawn from technical computing. With this background, the next two sections provide two different ways to read this
book. Section 1.4 provides a procedural approach, from choosing which components will constitute the cluster to determining how
applications can be tuned on the cluster. Section 1.5 provides a topical approach, such as how to program it, run jobs on it, or
specify a cluster's components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 What Is a Cluster?
Before we talk about cluster computing, we need to define our terms. For the purposes of this book, a cluster is a parallel
computer that is constructed of commodity components and runs (as its system software) commodity software. A cluster is made
up of nodes, each containing one or more processors, memory that is shared by all of the processors in (and only in) the node,
and additional peripheral devices (such as disks), connected by a network that allows data to move between the nodes.

Nodes come in many flavors but are usually built from processors designed for the PC or desktop market. Chapter 2 describes
processor choices in detail. If a node contains more than one processor, it is called an SMP (symmetric multiprocessor) node.

Networks also come in many flavors. These range from very simple (and relatively low-performance) networks based on Ethernet
to high-performance networks designed for clusters. Chapter 4 describes network choices in detail.

Clusters can also be divided into two types: do-it-yourself and prepackaged. A do-it-yourself cluster is assembled by the user out
of commodity parts that are purchased separately. A prepackaged cluster (sometimes called a turnkey system) is assembled by a
cluster vendor, either before or after shipping it to the customer's location. Which you choose depends on your budget, need for
outside help, and facility with computer hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Why Use a Cluster?
Why use a cluster instead of a single computer? There are really two reasons: performance and fault tolerance. The original
reason for the development of Beowulf clusters was to provide cost-effective computing power for scientific applications, that is, to
address the needs of applications that required greater performance than was available from single (commodity) processors or
affordable multiprocessors. An application may desire more computational power for many reasons, but the following three are the
most common:

Real-time constraints, that is, a requirement that the computation finish within a certain period of time. Weather
forecasting is an example. Another is processing data produced by an experiment; the data must be processed (or
stored) at least as fast as it is produced.

Throughput. A scientific or engineering simulation may require many computations. A cluster can provide the
resources to process many related simulations. On the other hand, some single simulations require so much
computing power that a single processor would require days or even years to complete the calculation. An example
of using a Linux Beowulf cluster for throughput is Google [13], which uses over 15,000 commodity PCs with fault-
tolerant software to provide a high-performance Web search service.

Memory. Some of the most challenging applications require huge amounts of data as part of the simulation. A
cluster provides an effective way to provide even terabytes (1012 bytes) of program memory for an application.

Clusters provide the computational power through the use of parallel programming, a technique for coordinating the use of many
processors for a single problem. Part II (Parallel Programming) discusses this approach in detail. What clusters are not good for is
accelerating calculations that are neither memory intensive nor processing-power intensive or (in a way that will be made precise
below) that require frequent communication between the processors in the cluster.

Another reason for using clusters is to provide fault tolerance, that is, to ensure that computational power is always available.
Because clusters are assembled from many copies of the same or similar components, the failure of a single part only reduces
the cluster's power. Thus, clusters are particularly good choices for environments that require guarantees of available processing
power, such as Web servers and systems used for data collection.

We note that fault tolerance can be interpreted in several ways. For a Web server or data handling, the cluster can be considered
up as long as enough processors and network capacity are available to meet the demand. A well-designed cluster can provide a
virtual guarantee of availabilty, short of a disaster such as a fire that strikes the whole cluster. Such a cluster will have virtually
100% uptime. For scientific applications, the interpretation of uptime is often different. For clusters used for scientific applications,
however, particularly ones used to provide adequate memory, uptime is measured relative to the minimum size of cluster (e.g.,
number of nodes) that allows the applications to run. In many cases, all or nearly all of the nodes in the cluster must be available
to run these applications.

Of course, many uses of clusters are a blend of these two approaches. Part III describes tools for sharing a cluster among users
and, in many cases, providing support for both performance-oriented and fault-tolerant computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 Understanding Application Requirements
In order to know what applications are suitable for cluster computing and what tradeoffs are involved in designing a cluster, one
needs to understand the requirements of applications.

1.3.1 Computational Requirements

The most obvious requirement (at least in scientific and technical applications) is the number of floating-point operations needed
to perform the calculation. For simple calculations, estimating this number is relatively easy; even in more complex cases, a rough
estimate is usually possible. Most communities have a large body of literature on the floating-point requirements of applications,
and these results should be consulted first. Most textbooks on numerical analysis will give formulas for the number of floating-
point operations required for many common operations. For example, the solution of a system of n linear equations; solved with
the most common algorithms, takes 2n3/3 floating-point operations. Similar formulas hold for many common problems.

You might expect that by comparing the number of floating-point operations with the performance of the processor (in terms of
peak operations per second), you can make a good estimate of the time to perform a computation. For example, on a 2 GHz
processor, capable of 2 × 109 floating-point operations per second (2 GFLOPS), a computation that required 1 billion floating-point
operations would take only half a second. However, this estimate ignores the large role that the performance of the memory
system plays in the performance of the overall system. In many cases, the rate at which data can be delivered to the processor is
a better measure of the achievable performance of an application (see [45, 60] for examples).

Thus, when considering the computational requirements, it is imperative to know what the expected achievable performance will
be. In some cases this may be estimated by using standard benchmarks such as LINPACK [34] and STREAM [71], but it is often
best to run a representative sample of the application (or application mix) on a candidate processor. After all, one of the
advantages of cluster computing is that the individual components, such as the processor nodes, are relatively inexpensive.

1.3.2 Memory

The memory needs of an application strongly affect both the performance of the application and the cost of the cluster. As
described in Section 2.1, the memory on a compute node is divided into several major types. Main memory holds the entire
problem and should be chosen to be large enough to contain all of the data needed by an application (distributed, of course,
across all the nodes in the cluster). Cache memory is smaller but faster memory that is used to improve the performance of
applications. Some applications will benefit more from cache memory than others; in some cases, application performance can be
very sensitive to the size of cache memory. Virtual memory is memory that appears to be available to the application but is
actually mapped so that some of it can be stored on disk; this greatly enlarges the available memory for an application for low
monetary cost (disk space is cheap). Because disks are electromechanical devices, access to memory that is stored on disk is
very slow. Hence, some high-performance clusters do not use virtual memory.

1.3.3 I/O

Results of computations must be placed into nonvolatile storage, such as a disk file. Parallel computing makes it possible to
perform computations very quickly, leading to commensurate demands on the I/O system. Other applications, such as Web
servers or data analysis clusters, need to serve up data previously stored on a file system.

Section 5.3.4 describes the use of the network file system (NFS) to allow any node in a cluster to access any file. However, NFS
provides neither high performance nor correct semantics for concurrent access to the same file (see Section 19.3.2 for details).
Fortunately, a number of high-performance parallel file systems exist for Linux; the most mature is described in Chapter 19. Some
of the issues in choosing I/O components are covered in Chapter 2.

1.3.4 Other Requirements

A cluster may need other resources. For example, a cluster used as a highly-available and scalable Web server requires good
external networking. A cluster used for visualization on a tiled display requires graphics cards and connections to the projectors. A
cluster that is used as the primary computing resource requires access to an archival storage system to support backups and
user-directed data archiving.

1.3.5 Parallelism

Parallel applications can be categorized in two major classes. One class is called embarassingly (or sometimes pleasingly)
parallel. These applications are easily divided into smaller tasks that can be executed independently. One common example of
this kind of parallel application is a parameter study, where a single program is presented with different initial inputs. Another
example is a Web server, where each request is an independent request for information stored on the web server. These
applications are easily ported to a cluster; a cluster provides an easily administered and fault-tolerant platform for executing such
codes.

The other major class of parallel applications comprise those that cannot be broken down into independent subtasks. Such
applications must usually be written with explicit (programmer-specified) parallelism; in addition, their performance depends both
on the performance of the individual compute nodes and on the network that allows those nodes to communicate. To understand
whether an application can be run effectively on a cluster (or on any parallel machine), we must first quantify the node and
communication performance of typical cluster components. The key terms are as follows:

latency: The minimum time to send a message from one process to another.

overhead: The time that the CPU must spend to perform the communication. (Often included as part of the
latency.)

bandwidth: The rate at which data can be moved between processes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contention: The performance consequence of communication between different processes sharing some
resource, such as network wires.

With these terms, we can discuss the performance of an application on a cluster. We begin with the simplest model, which
includes only latency and bandwith terms. In this model, the time to send n bytes of data between two processes can be
approximated by

(1.1)

where s is the latency and r is the inverse of the bandwidth. Typical numbers for Beowulf clusters range from 5 to 100
microseconds for s and from 0.01 to 0.1 microseconds/byte for r. Note that a 2 GHz processor can begin a new floating-point
computation every 0.0005 microseconds.

One way to think about the time to communicate data is to make the latency and bandwidth terms nondimensional in terms of the
floating-point rate. For example, if we take a 2 GHz processor and typical choices of network for a Beowulf cluster, the ratio of
latency to floating-point rate ranges from 10,000 to 200,000! What this tells us is that parallel programs for clusters must involve a
significant amount of work between communication operatoins. Fortunately, many applications have this property.

The simple model is adequate for many uses. A slightly more sophisticated model, called logP [31], separates the overhead from
the latency.

Chapter 7 contains more discussion on complexity models. Additional examples appear throughout this book. For example,
Section 8.2 discusses the performance of a master/worker example that uses the Message-Passing Interface (MPI) as the
programming model.

1.3.6 Estimating Application Requirements

What does all of the above mean for choosing a cluster? Let's look at a simple partial differential equation (PDE) calculation,
typical of many scientific simulations.

Consider a PDE in a three-dimensional cube, discretized with a regular mesh with N points along a side, for a total of N3 points.
(An example of a 2-D PDE approximation is presented in Section 8.3.) We will assume that the solution algorithm uses a simple
time-marching scheme involving only six floating-point operations per mesh point. We also assume that each mesh point has only
four values (either three coordinate values and an unknown or four unknowns). This problem seems simple until we put in the
numbers. Let N = 1024, which provides adequate (though not exceptional) resolution for many problems. For our simple 3-D
problem, this then gives us

Data size = 2 × 4 × (1024)3 = 8 GWords = 64 GBytes

Work per step = 6 × (1024)3 = 6 GFlop

This assumes that two time steps must be in memory at the same time (previous and current) and that each floating-point value is
8 bytes.

From this simple computation, we can see the need for parallel computing:
1. The total memory size exceeds that available on most single nodes. In addition, since only 4 GBytes of memory

are directly addressable by 32-bit processors, solving this problem on a single node requires either a 64-bit
processor or specialized out-of-core techniques.

2. The amount of work seems reasonable for a single processor, many of which are approaching 6 GFlops (giga
floating-point operations per second). However, as we will see below, the actual rate of computation for this
problem will be much smaller.

Processors are advertised with their clock rate, with the implication that the processor can perform useful work at this rate. For
example, a 2 GHz processor suggests that it can perform 2 billion operations per second. What this ignores is whether the
processor can access data fast enough to keep the processor busy. For example, consider the following code, where the
processor is multiplying two vectors of floating-point numbers together and storing the result:
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];

This requires two loads of a double and a store for each element. To perform 2 billion of these per second requires that the
memory system move 3 × 8 × 109 = 24 GBytes/sec. However, no commodity nodes possess this kind of memory system
performance. Typical memory system rates are in the range of 0.2 to 1 GBytes/second (see Section 2.3). As a result, for
computations that must access data from main memory, the achieved (or observed) performance is often a small fraction of the
peak performance. In this example, the most common nodes could achieve only 1–4% of the peak performance.

Depending on the application, the memory system performance may be a better indicator of the likely achievable performance. A
good measure of the memory-bandwidth performance of a node is the STREAM [71] benchmark. This measures the achieved
performance of the memory system, using a simple program, and thus is more likely to measures the performance available to the
user than any number based on the basic hardware.

For our example PDE application, the achieved performance will be dominated by the memory bandwidth rather than the raw CPU
performance. Thus, when selecting nodes, particularly for a low-cost cluster, the price per MByte/sec, rather than the price per
MFlop/sec, can be a better guide.

We can parallelize this application by breaking the mesh into smaller pieces, with each node processing a single piece as shown
in Figure 1.1. This process is called domain decomposition. However, the pieces are not independent; to compute the values for
the next time step, values from the neighboring pieces are needed (see Section 8.3 for details). As a result, we must now consider
the cost to communicate the data between nodes as well as the computational cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.1: Sample decomposition of a 3-D mesh. The upper right corner box has been pulled out to show that the mesh
has been subdivided along the x, y, and z axes.

For this simple problem, using the communication model above, we can estimate the time for a single step, using p nodes, as

(1.2)

The first term is the floating-point work, which decreases proportionally with an increase in the number of processors p. The
second term gives the cost of communicating each of the six faces to the neighboring processors, and includes both a term
independent of the number of processors, and a term that scales as p2/3, which comes from dividing the original domain into p
cubes, each with N/p1/3 along a side. Note that even for an infinite number of nodes, the time for a step is at least 6s (the
minimum time or latency to communicate with each of the six neighbors). Thus it makes no sense to use an unlimited number of
processors. The actual choice depends on the goal of the cluster:

Minimize cost: In this case, you should choose nodes so that each subdomain fits on a node. In our example, if
each node had 2 GBytes of memory, we would need at least 32 nodes (probably more, to leave room for the
operating system and other parts of the application).

Achieve a real-time constraint such as steps per second: In this case, T is specified and Equation 1.2 is solved for
p, the number of nodes. Beware of setting T very small; as a rule of thumb, the floating-point work (the N3 f/p term)
should be large compared to the communication terms. In this case, as p becomes large, and since

in order to make the communication a smaller part of the overall time than that computation, we must have

For the typical values of s/f and for N = 1024, this bound is not very strong and limits p to a only few thousand
nodes. For smaller N, however, this limit can be severe. For example, if N = 128 instead and if fast Ethernet is used
for the network, this formula implies that p < 10.

Some notes on this example:

We chose a three-dimensional calculation. Many two-dimensional calculations are best carried out on a single
processor (consider this an exercise for the reader!).

The total memory space exceeds that addressable by a 32-bit processor. But because we are using a cluster, we
can still use 32-bit processors, as long as we use enough of them.

The expected performance is likely to be a small fraction of the "peak" performance. We don't care; the cost of the
cluster is low.

If there are enough nodes, the problem may fit within the much faster cache memory (though this would require
thousands of nodes for this example). In that case, the computing rate can be as much as an order of magnitude
higher—even before factoring in the benefits of parallelism! This is an example of superlinear speedup: speedup
that is greater than p on p processors. This is a result of the nonlinear behavior of performance on memory size and
is not paradoxical.

Latency here has played a key role in determining performance. In other computations, however, including ones for
PDEs that use different decompositions, the bandwidth term may be the dominant communication term.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since each time step generates 64 GBytes of data, a high-performance I/O system is required to keep the I/O times
from dominating everything else. Fortunately, Beowulf clusters can provide high I/O performance through the use of
parallel file systems, such as PVFS, discussed in Chapter 19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Building and Using a Cluster
In this section we review the issues in configuring, building, and using a cluster and provide references to the corresponding
sections of this book. Section 1.5 provides an alternate view of this book, organized around particular tasks, such as programming
or managing a cluster.

1.4.1 Choosing a Cluster

When choosing the components for a cluster, or selecting from a prebuilt cluster, you must focus on the applications that will be
run on the cluster. The following list covers some of the issues to consider.

1. Understanding the needs of your application. Some of this has been covered above; you will find more on
understanding the performance of applications in Part II.

2. Decide the number and type of nodes. Based on the application needs, select a node type (e.g., uni-processor
or SMP), processor type, and memory system. Chapter 2 covers node hardware. As described above, raw CPU
clock rate is not always a good guide to performance, so make sure that you have a good understanding of the
applications. Other issues to consider when choosing the processor type include whether you will run prebuilt
applications that require a particular type of processor, whether you need 64-bit or 32-bit addressing, or whether
your codes are integer or floating-point intensive.

3. Decide on the network. Determine whether your applications require low latency and/or high bandwidth in the
network. If not, for example, running a throughput cluster with embarassingly parallel applications, then simple
fast Ethernet with low-cost switches may be adequate. Otherwise, you may need to invest in a high-performance
cluster network. These network choices are covered in more detail in Chapter 4. Note that the cost of a fast
Ethernet network is very low while a high performance network can double the cost of a cluster.

4. Determine the physical infrastructure needs. How much floor space, power, and cooling will you need. Is noise a
factor?

5. Determine the operating system (OS) that you will use. Since you bought this book, you have probably selected
Linux. Chapter 3 will help you select a particular distribution of Linux as well as understand how to tune Linux for
your cluster. The choice of cluster setup software may also influence which distribution of Linux you can use;
this is covered in Chapter 6. In choosing the operating system, consider the following:

Do your applications run on the chosen system? Many applications and programming models
(Part II) run under many operating systems, including Windows, Linux, and other forms of Unix.

Do you have expertise with a particular operating system?

Are there license issues (cost of acquiring or leasing) software, including the operating system
and compilers?

6. Cost tradeoffs. The cost of a node is not linearly related to the performance of that node. The fastest nodes are
more expensive per flop (and usually per MByte/sec of memory bandwidth) than are lower-cost nodes. The
question is then: Should a cluster use the fastest available nodes regardless of cost, or should it use mid-range
or even low-range nodes? The answer depends, as always, on your needs:

If price is no object, go with the fastest nodes. This approach will reduce the number of nodes
needed for any given amount of computing power, and thus the amount of parallel overhead.

If total computing power over time is the goal, then go with mid- or low-end nodes, but replace
them frequently (say, every 18 months to two years) with newer nodes. This strategy exploits the
rapid advances in node performance; buying two low-end nodes every two years will often give
you a greater amount of computing power (integrated over time) than spending the same amount
every four years on a high-end node.

If a targeted amount of computing power (e.g., for a specific application) is the goal, then analyze
the tradeoffs between a greater number of slower (but possibly much cheaper) nodes and a
smaller number of faster but individually less cost-efficient nodes.

1.4.2 Setting Up a Cluster

Once you have specified your cluster, you need to assemble the components and set up the initial software. Chapters 2 and 4
cover some of the issues in assembling the hardware for both the nodes and the network. Chapter 20 discusses cluster setup in
the context of two generations of clusters used at Argonne National Laboratory.

In the past few years, great strides have been made in simplifying the process of initializing the software environment on a cluster.
Chapter 6 covers the most popular packages and provides advice on setting up your new cluster.

At this point, you may wish to benchmark your cluster. Since such benchmarking will require running a parallel program,
information on this topic is provided in Part II, Sections 9.10 and 9.10.3. Alternatively, you may prefer to run a prepackaged
performance suite, such as the Beowulf Performance Suite (BPS), available at www.plogic.com/bps. BPS contains both single
node and parallel performance tests, including the following:

bonnie++: I/O (disk) performance; www.coker.com.au/bonnie++

Stream: Memory system performance; www.cs.virginia.edu/stream

netperf: General network performance; www.netperf.org/netperf/NetperfPage.html

netpipe: A more detailed network performance benchmark;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

netpipe: A more detailed network performance benchmark;
www.scl.ameslab.gov/Projects/ClusterCookbook/nprun.html

unixbench: General Unix benchmarks; www.linuxdoc.org/HOWTO/Benchmarking-HOWTO.html

LMbench: Low-level benchmarks; www.bitmover.com/lmbench

NAS parallel benchmarks: A suite of parallel benchmarks derived from some important applications;
www.nas.nasa.gov/Software/NPB

1.4.3 Developing New Applications

Before deciding to develop new applications, check out what is already available for clusters. Chapter 12 provides a guide to
software that is already available, either as full programs or as libraries that can be used to build new applications with little or no
explicitly parallel programming. New applications are constantly being developed, so check the web and the Beowulf mailing lists
before starting to develop your own application. If what you need is not yet available, then Part II provides an introduction to
parallel programming, covering both the most popular tools for building embarrassingly parallel applications as well as the two
most popular libraries for parallel programming, MPI (Chapters 8 and 9) and PVM (Chapters 10 and 11). These chapters also
contain information on tuning and testing applications. Section 9.10 covers the most common cluster performance benchmarks,
including High Performance LINPACK (Section 9.10.3).

1.4.4 Operating a Cluster

Once your cluster is up and running, you (or someone) will need to operate it. Chapter 13 covers the basics of system
management for clusters, including account administration, security, monitoring, and file system backups. Chapter 19 discusses
parallel I/O in general and the systems administration issues for the Parallel Virtual File System (PVFS) in particular.

One of the biggest decisions is whether the cluster will allow provide interactive use, batch use, or a mixture of both. Since batch
use is a common way to use clusters, Chapter 14 provides an overview of the issues and many of the available batch systems.
This chapter is followed by chapters on individual batch systems.

1.4.5 Getting Help

Many resources are available to which you can turn for help. One of the best is the Beowulf mailing list. To subscribe, visit
www.beowulf.org/mailman/listinfo/beowulf. The Beowulf Web site, www.beowulf.org, also provides much valuable information.

A major strength of Linux is the community. The Beowulf mailing list (<beowulf@beowulf.org>) is a good place to go for answers
to all kinds of questions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Another Way to Read This Book
This book may also be used as an introduction to the various areas of Beowulf computing. Each part, and to some extent, each
chapter may be read independently of the others. This section makes recommendations based on how you intend to use your
cluster, providing a different persective on the book than that presented in the preceding section. Additional information on all of
these topics may be found in the reading list in Appendix B and the URLs in Appendix C.

1.5.1 Using a Cluster Operated by Someone Else

If you are using a cluster that someone else is operating, you need only learn how to program and run applications.

Part II covers programming clusters. Even if you do not intend to develop your own parallel applications, we recommend reading
Chapter 7, which provides an overview of the technologies. For a deeper understanding of the parallel programming technologies,
read the chapters on MPI (Chapters 8 and 9) and PVM (Chapters 10 and 11). Even if you plan to write your own parallel software,
you should read Chapter 12 on parallel software and libraries. You may find that what you need has already been written!

Once you have your application, you will need to run your program. Part III covers tools for managing and using a cluster. Many
clusters will use some kind of workload management system to mediate use of the cluster among the user community. Chapter 14
provides an overview of the concepts and capabilities of these systems. You should also read the chapter that corresponds to the
workload system that is used on your cluster: Condor (Chapter 15), Maui (Chapter 16), PBS (Chapter 17), or Scyld (Chapter 18). If
your application requires a high-performance, parallel I/O system, read Chapter 19 on the Parallel Virtual File System. These
chapters cover information of interest to both the system administrator and the cluster user, so skip over material that doesn't
apply to you.

1.5.2 Choosing Cluster Components

First, re-read this chapter and pay close attention to the discussion of application requirements. These requirements will guide you
in your choice of cluster components. Chapters 2 and 4 describe the choices of processor, network, and other hardware. Even if
you plan to buy a preassembled cluster, these chapters will help you understand the various choices of components and aid you
in understanding the specifications of a cluster. Chapter 2 also covers some of the issues of assembling your own cluster.

1.5.3 Operating a Cluster

Operating a cluster requires an understanding of the operating system. Chapter 3 provides a brief introduction along with a
discussion of cluster-specific issues. Chapter 6 describes tools for setting up a cluster. An introduction to managing a cluster from
the point of view of the system administrator is presented in Chapter 13. Chapter 14 provides an overview of the concepts and
capabilities of these systems. The chapters on the individual systems provide information on both the use and management of
workload management systems: Condor (Chapter 15), Maui (Chapter 16), PBS (Chapter 17), or Scyld (Chapter 18). Once the
cluster is up and running, you may need to tune the network and operating system. Chapter 3 provides some information on
tuning the OS; Chapter 5 discusses techniques for tuning the network and communication systems. Finally, Chapter 20 provides a
case study of two generations of a major cluster system, illustrating particular choices and best practices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Enabling Technologies
Chapter List

Chapter 2: Node Hardware

Chapter 3: Linux

Chapter 4: System Area Networks

Chapter 5: Configuring and Tuning Cluster Networks

Chapter 6: Setting up Clusters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Node Hardware

Highlights
Narayan Desai and Thomas Sterling

Few technologies in human civilization have experienced such a rate of growth as that of the digital computer and its culmination
in the PC. Its low cost, ubiquity, and sometimes trivial application often obscure its complexity and precision as one of the most
sophisticated products derived from science and engineering. In a single human lifetime over the fifty-year history of computer
development, performance and memory capacity have grown by a factor of almost a million. Where once computers were
reserved for the special environments of carefully structured machine rooms, now they are found in almost every office and home.
A personal computer today outperforms the world's greatest supercomputers of two decades ago at less than one ten-thousandth
the cost. It is the product of this extraordinary legacy that Beowulf harnesses to open new vistas in computation.

A Beowulf cluster is a network of nodes, with each node a low-cost personal computer. Its power and simplicity are derived from
exploiting the capabilities of the mass-market systems that provide both the processing and the communication. This chapter
explores the hardware elements related to computation and storage. The choice of node hardware, along with the choice of a
system area network, will determine the basic performance properties of the Beowulf for its entire operational lifetime. Neither of
these choices should be taken lightly; tremendous variation exists among instances of all components involved. This chapter
discusses the components included in a cluster node, their function in a system, and their effects on node performance.
Communication hardware is discussed in detail in Chapter 4.

The purpose of a Beowulf cluster is to perform parallel computations. This is accomplished by running applications across a
number of nodes simultaneously. These applications may perform in parallel; that is, they may need to coordinate during
execution. On the other hand, they may be performing an embarrassingly parallel task, or a large group of serial tasks. One key
factor in application performance in all cases is local node performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Node Hardware Overview
A cluster node is responsible for all activities and capabilities associated with executing an application program and supporting a
sophisticated software environment. The process of application involves a large number of components. An application is actually
executed on the main CPU. The CPU loads data from its cache and main memory into registers. All applications use peripherals,
such as persistent storage or network transmission, for noncomputational tasks. All peripherals load data into or process data
from main memory, where it can be accessed by the system CPU. Applications can be characterized in terms of these three basic
operations:

Instruction execution: operating on data in registers, storing the results in term in registers. This operation is
implemented entirely by the CPU.

Register loading: loading data from main memory or processor cache into processor registers to facilitate instruction
execution. This operation involves the CPU, front-side bus, and system memory.

Peripheral usage: copying data across an I/O bus into or out of main memory to allow for a noncomputational task
to occur. This operation involves the peripheral, the I/O bus, and the interface from the I/O bus into system memory,
and system memory itself.

The system CPU is the main processor, on which most code is executed. A node may have more than one of these, operating in
SMP (symmetric multiprocessing) mode. This processor will have some amount of cache. Cache is used for fast access to data in
main memory. Cache is typically ten times faster than main memory, so it is advantageous to load data into cache before using it.
Main memory is the location where running programs, including the operating system, store all data. It is not persistent; data that
should survive beyond a reboot is copied to some persistent medium, such as a hard disk. An I/O bus connects main memory with
all peripherals. The peripherals (disk controllers, network controllers, video cards, etc.) operate by manipulating data from main
memory. For example, a disk write will occur by copying data across the I/O bus to the disk controller. The disk controller will then
actually write the data to disk.

In detail, when an application is executed, it is loaded from disk or some other persistent storage into main memory. When
execution actually begins, parts of the application are copied into processor cache. From here, the data is written into on-
processor registers, where the processor can directly access it. When the processor is done with this data, it is copied back out to
main memory. When the application is dependent on data from a peripheral (e.g., data read from hard disk, or data received on a
network interface) loading data into registers becomes much more complex. For example, a kernel call will result in a disk
controller's reading of data from hard disk into local storage on the controller. The controller will copy the data across the I/O bus
to system main memory, from which it can be loaded into registers for the processor to operate on. Each of these steps is faster
than the proceeding step; indeed, there are several orders of magnitude difference between the speeds of the first step and the
last step. All applications can be characterized in terms of these basic three types of activities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Microprocessor
A microprocessor (also referred to as the CPU or processor) is at the heart of any computer. It is the single component that
implements instruction execution. Processors vary in a number of ways; we focus on the more important characteristics. The
lowest-level binary encoding of the instructions and the actions they perform are dictated by the microprocessor instruction set
architecture (ISA). The most common ISA used for cluster node CPU is IA32, or X86. This family of processors includes all
generations of the Pentium processor and the Athlon family. A shared ISA doesn't imply an identical instruction set; newer
processors have extra features that old processors do not. For example, SSE and SSE2 are numerical instruction sets that were
added in Pentium III and Pentium 4 processors, respectively. The earliest clusters were composed of 486 processors, which
implement this ISA.

A processor runs at a particular clock rate. That is, it can execute instructions at a particular frequency, measured in terms of
megahertz or gigahertz. For example, a 2.4 GHz processor can execute a rate of 2.4 billion instructions per second. Note that a
processor's clock rate is not a direct measure of performance. Frequently, processors with different clock rates can perform
equivalently for some tasks; likewise, two processors with the same clock rate can perform quite differently for some tasks.
Current clock rates range from 1 GHz to slightly over 3 GHz.

Any processor has a theoretical peak speed. Theoretical peak is the maximum rate of instruction execution a processor can
achieve. This is determined by the clock rate, ISA, and components included in the processor itself. This rate is measured in
floating-point operations per second, or flops. A current generation processor will have a theoretical peak of 3–5 gigaflops. As one
might guess from the name, theoretical peak is just that, theoretical. A processor rarely, if ever, runs at that rate while executing a
real user application.

Both the instructions and the data upon which they act are stored in and loaded from the node's random access memory (RAM).
The speed of a processor is often measured in megahertz, indicating that its clock ticks so many million times per second. RAM
runs at a much slower clock rate, usually measured in hundreds of megahertz. Thus, the processor often waits for memory, and
the overall rate at which programs run is usually governed as much by the memory system as by the processor's clock speed.

The slow rate at which data can be copied from RAM is mitigated by a processor's cache. The cache is a small amount of fast
memory usually co-located on the CPU. When data is copied from main memory, it is also stored in cache. If the same data is
accessed again, it can be read from cache. This is highly advantageous: applications can be optimized to access memory in
patterns that take the best possible advantage of cache speed. The quicker access to memory in cache leads to better processor
utilization; the processor spends less time waiting for data from memory. Processor caches vary in size from kilobytes on some
processors to upwards of four to eight megabytes on processors specified to provide good floating point performance. Obviously,
the larger the cache is, the easier it is to reuse entries stored in it.

2.2.1 IA32

IA32 is the most common ISA used in clusters today, and for the foreseeable future. This is caused by the enormous economies
of scale at work. Processors implementing this ISA are used in the majority of desktop PCs sold. IA32 is a 32-bit instruction set. It
is treated as a binary compatibility specification. Multiple processors, implemented in vastly different ways, all implement the same
instruction set to allow for application portability. The three most common processors used in clusters today are the Pentium III
and 4 processors, manufactured by Intel, and AMD's Athlon processor. Recent additions to the IA32 ISA include SSE and its
successor SSE2. (Streaming SIMD Extensions) SSE and SSE2 are instruction set extensions that define instructions that can be
performed in parallel on multiple data elements; these are not necessarily implemented in all instances of IA32 processors. These
features can yield substantially improved performance, so care should be taken when choosing the processor for a new system.
Hyperthreading is another feature recently added to the IA32 ISA. It allows multiple threads of execution per physical CPU. This
feature typically impacts application performance negatively and can be disabled, so it really isn't a decision point when choosing
a CPU, as SSE and SSE2 are.

Pentium 4. The Pentium 4 implements the IA32 instruction set but uses an internal architecture that diverges substantially from
the old P6 architecture. The internal architecture is geared for high clock speeds; it produces less computing power per clock
cycle but is capable of extremely high frequencies. This architecture is also the only IA32 processor family that implements the
SSE2 instruction set, providing a substantial performance benefit for some applications. This is also the only architecture that
implements hyperthreading, but (as was mentioned previously) this feature is not terribly important for computational applications
typically run on clusters.

Pentium III. The Pentium III is based on the older Pentium Pro architecture. It is a minor upgrade from the Pentium II; it includes
SSE for three-dimensional instructions and has moved the L2 cache onto the chip, making it synchronized with the processor's
clock. The Pentium III can be used within an SMP node with two processors; a more expensive variant, the Pentium III Xeon, can
be used in four-processor SMP nodes.

Athlon. The AMD Athlon platform is similar to the Pentium III in its processor architecture but similar to the Compaq Alpha in its
bus architecture. It has two large 64 KByte L1 caches and a 256 KByte L2 cache that run at the processor's clock speed. The
performance is a little better than that of the Pentium III and Pentium 4 in general at similar clock rates, but either can be faster
depending on the application. The Athlon supports dual-processor SMP nodes. Newer Athlon processors support SSE, but not
SSE2.

2.2.2 Other Processor Types

HP Alpha 21264. The Compaq (now HP and originally DEC) Alpha processor is a true 64-bit architecture. For many years, the
Alpha held the lead in many benchmarks, including the SPEC benchmarks, and was used in many of the fastest supercomputers,
including the Cray T3D and T3E, as well as the Compaq SC family. Alpha are still popular with some users, but since the Alpha
processor line is no longer being developed and the current Alpha processor will be the last, Alphas are rarely chosen for new
systems. However, a few large clusters make use of Alphas, including the ASCI Q system at Los Alamos National Laboratory;
ASCI Q is one of the fastest systems in the world, according to the Top500 list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Alpha uses a Reduced Instruction Set Computer (RISC) architecture, distinguishing it from Intel's Pentium processors. RISC
designs, which have dominated the workstation market of the past decade, eschew complex instructions and addressing modes,
resulting in simpler processors running at higher clock rates, but executing somewhat more instructions to complete the same
task.

PowerPC G5. The IBM PowerPC is an processor architecture used in products from IBM and from Apple. The newest processor
is the G5, a sophisticated 64-bit processor capable of running at speeds of up to 2GHz. Other features include a 1GHz frontside
bus and multiple functional units, allowing the G5 to perform multiple operations in each clock cycle. Apple sells Macs with the G5
processor, and a number of groups have built clusters using Macs, running Mac OS X (a Unix-like operating system).

IA64. The IA64 is Intel's first 64-bit architecture. This is an all-new design, with a new instruction set, new cache design, and new
floating-point processor design. With clock rates approaching 1 GHz and multiway floating-point instruction issue, Itanium should
be the first implementation to provide between 1 and 2 Gflops peak performance. The first systems with the Itanium processor
were released in the middle of 2001 and have delivered impressive results. For example, the HP Server rx4610, using a single
800 MHz Itanium, delivered a SPECfp2000 of 701, comparable to recent Alpha-based systems. More recent results with a 1.5
GHz Itanium 2 in an HP rx2600 server gave a SPECfp2000 of 2119. The IA64 architecture does, however, require significant help
from the compiler to exploit what Intel calls EPIC (explicitly parallel instruction computing).

Opteron. Another 64-bit architecture is AMD's Opteron. Unlike the Intel IA64 architecture, the Opteron supports both the IA32
instruction set as well as a new 64-bit extension, allowing users to continue to use their existing 32-bit applications while taking
advantage of a 64-bit instruction set for applications that require easy access to more than 4 GB of memory. The Opteron includes
an integrated DDR memory controller and a high-performance interconnect called "HyperTransport" that provides up to 6.4
GB/sec bandwidth per link; each Opteron may have three HyperTransport links. Early Opterons have delivered a SPECfp2000 of
1154. The AMD Opteron is used in the Cray "Red Storm," that will use over 10,000 processors and have a peak performance of
over 40 Teraflops.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Memory
A system's random access memory (RAM, or memory) is a temporary storage location used to store instructions and data.
Instructions are the actual operations a processor executes. The data comes from a variety of sources. It may be data supplied by
some peripheral, such as a hard disk or network controller. It may be intermediary results generated during program execution.
Instructions and data are both required for the processor to compute a meaningful result. Hence, the processor constantly is
issuing commands to load or store data from memory across the memory bus. Memory buses operate at rates between 100 MHz
and 800 MHz. This bus is also referred to as the front side bus, or FSB.

Because of the constant usage of system RAM and the large gap between processor clock rate and memory bus rate, the
memory bus is one of the largest impediments to achieving theoretical peak. Memory bus performance is measured in terms of
two characteristics. The first is peak memory bandwidth, the burst rate that data can be copied between the DRAM chips in main
memory and the CPU. The FSB must be fast enough to support this high burst rate. In the case of some proprietary systems,
memory accesses are pipelined to improve aggregate memory bandwidth. In this case, data is bursted from multiple groups of
DRAM chips. However, this technique is not used in PC systems. The second characteristic is memory latency, the amount of
time it takes to move data between RAM and the CPU. RAM bandwidth ranges from one to four gigabytes per second. RAM
latency has fallen to under 6 nanoseconds.

Except for very carefully designed applications, a program's entire dataset must reside in RAM. The alternative is to use disk
storage either explicitly (out-of-core calculations) or implicitly (virtual memory swapping), but this usually entails a severe
performance penalty. Thus, the size of a node's memory is important in parameter in system design. It determines the size of
problem that can practically be run on the node. Engineering and scientific applications often obey a rule of thumb that says that
for every floating-point operation per second, one byte of RAM is necessary. This is a gross approximation at best, and actual
requirements can vary by many orders of magnitude, but it provides some guidance; for example, a 1 GHz processor capable of
sustaining 200 Mflops should be equipped with approximately 200 MBytes of RAM.

Two main types of RAM are used in current commodity systems. SDRAM has been in use for several years. RDRAM is a newer
standard used only in Pentium 4-based systems. RDRAM tends to be faster and more expensive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 I/O Channels
I/O channels are buses that connect peripherals with main memory. These peripherals will range from disk and network
controllers to video controllers, and USB and firewire. Machines will have several of these buses, each connected by a bridge
(also referred to as the PCI chipset) into main memory. Because I/O is one of the most common tasks on computers, this
subsystem is an integral part of any system.

2.4.1 PCI and PCI-X

The most common I/O channel in commodity hardware is the PCI bus. Every machine sold today has at least one; many have
multiples of these buses. Many flavors of PCI exist; these buses have been included in commodity hardware since 1994. Earlier
versions of the PCI bus were 32-bit, 33 MHz buses. The theoretical maximum rate of data transmission on these buses is 132
MB/s. Good implementations of the PCI chipset are able to provide nearly this rate; maximum observed bus rates greater than
125 MB/s are not uncommon.

Newer revisions of PCI buses are 64-bit buses, running at 66 MHz or higher. These buses have become quite common over the
last three to four years. The theoretical maximum rate for these is upwards of 500 MB/s. Good implementations of this PCI chipset
provide between 400 and 500 MB/s of read and write bandwidth. Good PCI-X implementations, running at 133 MHz, provide
upwards on 900 MB/s of read and write bandwidth.

2.4.2 AGP

AGP is a port used for high-speed graphics adapters. It is connected closely with main memory, providing better peak bandwidth
than that offered by PCI or PCI-X. AGP devices are able to directly use data out of main memory. AGP is not a bus, like PCI. It is
only able to support one device, and systems only have one port. AGP 2.0 provided a peak bandwidth over 1 GB/s to main
memory. The successor to this, AGP 3.0, provides upwards of 2.1 GB/s to main memory.

2.4.3 Legacy Buses

Older machines will also have other buses. The ISA bus is an 8 or 16-bit bus, commonly used in older machines. Vesa local bus is
a 24-bit bus, common in some generations of 486 machines. EISA is an extension to ISA that was common in older servers. All of
these buses should be avoided if possible: They are slow, and peripheral choice is non-existent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 Motherboard
The motherboard is a printed circuit board that contains most of the active electronic components of the PC node and their
interconnection. The motherboard provides the logical and physical infrastructure for integrating the subsystems of a cluster node
and determines the set of components that may be used. The motherboard defines the functionality of the node, the range of
performance that can be exploited, the maximum capacities of its storage, and the number of subsystems that can be
interconnected. With the exception of the microprocessor itself, the selection of the motherboard is the most important decision in
determining the qualities of the PC node to be used as the building block of the system. It is certainly the most obvious piece of a
node other than the case or packaging in which it is enclosed.

The motherboard integrates all of the electronics of the node in a robust and configurable package. Sockets and connectors on
the motherboard include the following:

Microprocessor(s)

Memory

Peripheral controllers on the PCI-X bus

AGP port

Floppy disk cables

ATA or SCSI cables for hard disk and CD-ROM

Power

Front panel LEDs, speakers, switches, and so forth.

External I/O for mouse, keyboard, joystick, serial line, sound, USB, and so forth.

Other chips on the motherboard provide

the system bus that links the processor(s) to memory,

the interface between the peripheral buses and the system bus, and

programmable read-only memory (PROM) containing the BIOS software.

As the preceding lists show, motherboards are an amalgamation of all of the buses and many peripherals in a cluster node. The
memory bus is contained within the motherboard. All I/O buses a system supports are also included here. As data movement is
the most serious impediment to achieving peak processor performance, the motherboard is one of the single most important
components in a system.

We note that the motherboard restricts as well as enables functionality. In selecting a motherboard as the basis for a cluster node,
one should consider several requirements including

processor family,

processor clock speed,

number of processors,

memory capacity,

memory type,

disk interface,

required I/O slots

number and types of I/O buses

2.5.1 Chipsets

Chipsets are a combination of all of the logic on a motherboard. Typically included are the memory bus, PCI, PCI-X and AGP
bridges. In many cases, integrated peripherals are also part of the chipset. This may include disk controllers and USB controllers.
Because the chipset combines all of these components, performance properties of single components are often attributed to the
chipset itself.

The chipset is split into two logical portions. The north bridge connects the front side bus, which connects the processor, the
memory bus, and AGP. AGP is located on the north bridge so as to have special access to main memory. The south bridge
contains I/O bus bridges and any integrated peripherals that may be included, like disk and USB controllers. This provides
controllers for all of the simple devices mentioned later in the peripherals section.

2.5.2 BIOS

The BIOS is the software that initializes all system hardware into a state such that the operating system can boot. BIOSes are not
universal; that is, the BIOS included with a motherboard is specifically tailored to that motherboard. The BIOS is the first software
that runs after the system is powered up. The BIOS will start by running a power on self test (POST) that includes this ubiquitous
memory test. POST also checks other major systems. The BIOS runs initialization code present on peripherals, including
controller-specific code that initializes SCSI or IDE buses. Once these steps are completed, the BIOS locates a drive to boot from,
and does so.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.1: Block diagram of a motherboard chipset. The chipset consists of the entire diagram excluding the processor and
memory.

PXE (Pre-execution environment) is a system by which nodes can boot based on a network-provided configuration and boot
image. The system is implemented as a combination of two common network services. First, a node will DHCP for an address.
The DHCP server will return an offer and lease with extra PXE data. This extra data contains an IP address of a tftp server, a
boot image filename (that is served from the server), and an extra configuration string that is passed to the boot image. Most new
machines support this, and accordingly many cluster management software systems use this feature for installations. This feature
is implemented by the BIOS in motherboards with integrated ethernet controllers, and in the on-card device initialization code on
add-on ethernet controllers.

LinuxBIOS is a BIOS implementation based on the Linux kernel. It can perform all important tasks needed for an operating
system to boot. These tasks are largely the same as proprietary BIOSes, but some of these steps have been streamlined in such
a way that all operating systems do not function properly when booted from LinuxBIOS. At this point, Linux and Windows 2000 are
supported. Work is under way to supply all BIOS features necessary to run other operating systems as well. This approach offers
several benefits. Since source code is available for LinuxBIOS, the potential exists for users to fix BIOS bugs. LinuxBIOS is also
performs far better than proprietary BIOSes in terms of boot time. This reduction has yielded boot times under five seconds. This
speed is far better than times in the ten to ninety second range seen with proprietary BIOSes. This performance increase doesn't
affect user applications, as most user applications don't require node reboots.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 Persistent Storage
With the exception of BIOS code and configuration, all data stored in memory is lost when power cycles occur. In order to store
data persistently, non-volatile storage medium is required. Specifically, data from a system's main memory is usually stored on
some sort of disk when applications are not using it. It is then loaded when the application needs it again.

2.6.1 Local Hard Disks

Most clusters have a hard disk on each node for some storage. This is usually used in addition to a central data storage facility.
Hard disks are magnetic storage media that interface with some sort of storage bus. A hard drive will contain several platters. Data
is read off of these platters as they rotate. Logic in the drive optimizes read and write requests based on the geometry of the disk
to provide better collective performance. This logic also contains memory cache, which is used to prevent the need for multiple
reads of the same data.

Disks also have an interface to any of a number of disk buses. The three most common buses currently in use for commodity
disks are IDE (or EIDE or ATA), SCSI, and Serial ATA. IDE disks are the most common. Controllers are integrated into nearly
every motherboard sold today. These controllers support two devices per bus and typically include two buses, for a total of four
devices. The fastest of these buses, UDMA133 (Ultra DMA 133), run at rates up to 133 MB/s. IDE devices are typically
implemented with less logic on each drive, leading to higher host CPU utilization during I/O when compared with SCSI.

SCSI disks are typically used in servers. Everything but the bus interface logic is nearly identical in many disks, regardless of disk
interface bus. Many vendors sell multiple versions of many of their drives, one for each bus type. That said, the major difference
between IDE and SCSI disks is the obvious one: the data bus. SCSI buses support many more devices and run at higher speeds.
Current SCSI buses support up to fifteen devices and the controller, which functions as a SCSI device as well. Current-generation
SCSI buses operate at rates up to 320 MB/s. This higher data rate is needed because of the larger quantities of devices sharing a
single bus. The largest differentiating characteristic between IDE and SCSI disks is the cost at this point; SCSI disks are more
expensive.

Serial ATA, or SATA, is the newest commodity disk standard. New, high-end motherboards are beginning to incorporate
controllers. Nominally, Serial ATA is similar to IDE/ATA. Those older standards are now referred to collectively as Parallel ATA, or
PATA. SATA is poised to take over the market segment of PATA; drives are not quite price competitive at this time, but their
prices are close enough that in the next few months, they should drop to PATA levels. Serial ATA, as the name suggests, is a
serial bus as opposed to the parallel buses used PATA and SCSI. Hence, the cables attached to drives are smaller and run faster:

current SATA connections function at . Because SATA buses are only used by two devices, the aggregate data
rate doesn't need to be as high as those on parallel buses to perform comparably. Because of the serial nature of SATA, bus
speeds will increase rapidly, when compared with parallel buses like PATA and SCSI. SATA is natively hot-pluggable, and its
cables are far smaller than the ribbon cables used by PATA and SCSI. The increased speed of SATA buses doesn't provide a
real benefit at this point; most drives don't function at speeds high enough to congest a high-speed PATA controller.

The same basic disk technology is used in disks using any of the three previously mentioned buses. Hence, the basic measures
of performance are the same as well. The platters in disks spin at a variety of rates. The faster the platters spin, the faster data
can be read off of the disk, and data on the far end of the platters will become available sooner. Rotational speeds range from
5,400 RPM to 15,000 RPM. The faster the platters rotate, the lower latency and higher bandwidth are. The other main indicator of
performance of a disk is the amount of cache included in the on-disk controller. As was mentioned previously, this cache is used
to avoid disk reads when particular blocks on the disk are requested multiple times.

2.6.2 RAID

RAID, or Redundant Array of Inexpensive Disks, is a mechanism by which the performance and storage properties of individual
disks can be aggregated. Aggregation may be done for a variety of reasons. Simplification of disk layout is the most common.
Basically, the group of disks appear to be a single larger disk. This approach is commonly used when disks are in use that are not
as large as the data that will be stored. Performance is another common reason. Multiple disks will perform better than single
disks. The last reason RAID is used is to guard against hardware failure. When multiple disks are used in a RAID set, data can be
stored in multiple places. This approach allows the system to continue functioning with no loss of data after disk faults. These
solutions can be implemented in software, usually as an operating system driver, or in hardware, typically consisting of disk
controllers, a processor that handles RAID functions, and a host connection. Hardware solutions tend to be more expensive but
also tend to perform better without impacting host CPU utilization. Software solutions typically allow more flexibility, but the
computational overhead of some RAID levels can consume large amounts of computational resources.

A variety of allocation schemes are used in RAID systems. With RAID0, or striping, data is striped across multiple disks. The
result of this striping is a logical storage device that has the capacity of each of the disks times the number of disks present in the
array. This array performs differently from a single larger disk. Reads are accelerated; each byte of data can be read from multiple
locations, so interleaving reads between disks can double read performance. Write performance is similarly accelerated, as
actually disk write performance is improved compared with that of a single disk.

With RAID1, or mirroring, complete copies of the data are stored in multiple locations. The capacity of one of these RAID sets will
be half of its raw capacity. In this configuration, reads are accelerated in a similar manner to RAID0, but writes are slowed, as new
data needs to be transmitted multiple times, to both parts of the mirror.

The third common RAID level is RAID5. It works similarly to RAID0, in that data is spread across multiple disks, with one addition.
One disk is used to store parity information. This means for any block of data stored across the N-1 drives in an array, a parity
checksum is computed and stored on the last disk. This allows the array to continue functioning in case of drive failure, as the
parity checksum can be used in the place of a block off of any one of the data disks. Read performance on RAID5 volumes tend
to be quite good, but write performance lags behind mirrors because of the overhead of checksum computation. This overhead
can cause performance problems when using software RAID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RAID is typically used on storage nodes in clusters. The reasons for this are the performance and capacity differences when
compared to standalone disks. These disk I/O characteristics are not of prime import on compute nodes, so RAID is not typically
configured there.

2.6.3 Nonlocal Storage

Nonlocal storage is used in similar ways to local storage. Data that needs to survive system power cycles is stored there. The
physical medium on which data is stored is similar, if not identical, to the hard disk technology described in the preceding sections:
the difference lies in the data transport layer. In the case of nonlocal storage, the storage device bus traffic is transmitted across a
network to a central depot of storage. This network may or may not be dedicated to storage; standards exist for protocols of both
types.

ISCSI is a protocol that encapsulates SCSI commands and data inside IP packets. These are typically transmitted over ethernet.
It allows a single network to be used for disk I/O and regular network traffic, however, this can form a serious performance
bottleneck. Fiberchannel is similar to ISCSI in character, but uses a dedicated network and data protocol.

Network filesystems are most common in clusters. Examples of this include NFS and PVFS. (PVFS is discussed in detail in
Section 19) Network filesystems transmit persistent data across a network, but differ from the previous two storage types in the
nature of the data being transmitted. Network filesystems transmit data with filesystem semantics across the network; the previous
two protocols transmit block-based data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 Video
Video devices are the part of computers that users are most familiar with. A computer's video card renders the current state of the
computer into a user interface displayed on a monitor. Because users don't interact with clusters in the same way, video cards on
clusters are typically used for visualization. That is, a graphical representation is developed for the purposes of user interaction.
Most video or graphics devices are currently connected with AGP (see Section 2.4.2). Previous generations of graphics adapters
were connected with PCI (see Section 2.4.1), but the PCI bus did not adequately provide bandwidth for video-intensive
applications.

The main usage scenario for graphics adapters in clusters is the driving of tiled displays. Tiled displays are large installations
wherein the output of multiple video cards are used in parallel to provide higher resolution than would be possible with a single
device. These displays are generally used for displaying regions of 3D visualizations, so a graphics adapter's performance in this
area is important. Many gaming web sites post reviews of current video adapters. As this is an area where new hardware is
released from week to week, these sites are the sources of the best, up to date information. In most clusters, where visualizations
are not displayed on local hardware, the particular graphics adapter present in a system is not important; it is most likely used to
debug hardware problems and update BIOS settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8 Peripherals
In this section, we discuss most of the miscellaneous ports that haven't been discussed in preceding sections. We give only a
cursory description because these components aren't generally used in cluster configurations.

USB and Firewire are peripheral buses. Devices can be connected into these buses. The bus controller bridges the devices onto
the primary I/O bus (in most cases, some flavor of PCI) so that the devices can be used. USB keyboards and mice are common;
other than these two cases, it is unlikely that any USB or firewire devices will be used in these systems. Generally, devices of
these types are consumer electronics, such as cameras, printers, and handheld devices.

The other major group of peripherals is quite old; all have been included in all PCs sold in the last 15 years. Included in this group
are dedicated keyboard and mouse ports. These are typically used to debug problems, as setting up a keyboard and mouse for
every node in a cluster isn't a particularly space-efficient decision to make. Also, all machines have serial (RS232) and parallel
ports. These were historically used for peripherals, much like USB and firewire; however, in modern clusters, RS232 is used for a
hard-wired system console, and parallel ports aren't used at all.

Since these devices have little to no bearing on cluster manageability or performance, they don't enter into any decisions in the
node hardware specification process. If a choice is offered between nodes with 2 or 6 USB ports it doesn't matter which is chosen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.9 Packaging
"Packaging" refers to the container into which a computer is installed. Packaging ranges from cases that sit vertically beside a
desk to high-density rack-mounted units. As space is frequently a key design constraint, choice of packaging is instrumental in
determining a maximum cluster size. The decision can affect both the type of storage a cluster will use and the overall cluster
storage density.

Desktop cases are the most common example of packaging. Also referred to as pizza box cases, they are typically twelve to
sixteen inches wide, four to six inches tall and twelve to sixteen inches deep. The earliest clusters were build out of these. Another
common type of packaging are the tower cases that many consumer-level computers and built from. They typically stand one to
three feet tall, six inches wide, and one to two feet deep. Because of the large size, cooling is usually not a serious problem with
this type of machine. On the other hand, shape and design of desktops make rack mounting relatively difficult, and leads to a
lower density than can be achieved with other designs. Laptops are occasionally used to construct low-profile clusters. These lead
to small clusters, but are typically low-performance as well.

Rack-mounted cases are low-profile cases usually marketed to businesses for use in locations with large numbers of machines.
These cases are designed to be mounted into a rack unit about six feet tall, and are almost universally nineteen inches wide. The
machines are typically mounted on sliding rails, making service on an individual node a matter of sliding it out of the rack. These
cases range in size from one to four rack units tall. One rack unit is 1.75 inches. Some manufacturers have even managed to fit
complete machines with commodity parts into cases less than one rack unit in volume. Rack-mounted machines provide high
machine density and good serviceability. However, because of the high density, care must be taken to provide adequate cooling.

The final option in node packaging is blade servers. These are machines that have been packed into cases as tightly as feasible.
In many cases, common parts such as power supplies are shared between machines. This configuration provides extremely high
machine density. The disadvantage is that blade server hardware is still somewhat specialized, and nodes, similarly, are not
necessarily expandable.

Packaging is clearly an important decision point when choosing a cluster. Typically, this decision involves considering space
constraints, along with cost and serviceability concerns. Generally, desktop machines are the least expensive, followed by rack
mount machines, and then blade servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.10 Node Choice and Cluster Construction
When building a cluster, a variety of issues must be considered. A choice of hardware suitable to the goal must be chosen. A
vendor must be chosen. Environmental issues, such as availability of space, cooling, and power must be considered. Extra
services, like hardware and software maintenance can be opted for. See Chapter 6 for a discussion of post-purchase cluster
setup. A variety of paths to this goal can be taken, each with pros and cons.

2.10.1 Cluster Vendors

A common approach to building clusters is to find a vendor that provides integrated solutions. Many large system vendors now
have products in the cluster space. They are experienced with the problems that customers will have in the initial stages of cluster
setup, and know the questions that should be asked initially. These vendors are able to ship integrated solutions. In many cases,
the cluster can be powered on when delivered, and be running applications in hours. Experienced cluster vendors optionally offer
on-site hardware and software support. This approach is certainly the simplest, but can be more expensive than the following
options; all of the extra services provided by the vendors cost money to provide. However, in many cases, the extra cost is well
worth it.

2.10.2 White Boxes

Another common approach to building clusters is to find a vendor that builds custom computers, but has no cluster expertise. The
vendor builds machines to the customer's specifications. This allows the customer to specify the exact parts the cluster should be
assembled from. While on-site hardware maintenance may be available, software maintenance isn't. Experienced cluster builders
may choose to take this route, as the difference between white box vendors and cluster vendors largely consists of help with
cluster specific issues.

2.10.3 DIY

The final approach taken to building clusters is to do everything yourself. Every detail of system configuration is controllable; from
the type of power supply to cables, and fans used for cooling. Hundreds of boxes will be delivered containing each of the parts
required for each cluster node. Nodes must be assembled, and software can then be installed. This approach provides the most
flexibility, but also has the highest potential for pitfalls.

2.10.4 Pitfalls

Many problems can manifest themselves during the construction and operation of a cluster. Some can be avoided by making
proper decisions during the specification process. These problems can make clusters virtually unusable, so they should be taken
seriously. Problems mentioned here could be treated as a laundry list of issues to be checked before a cluster is setup.

It should be verified that enough power and cooling exist to properly operate the cluster. Underpowered or overheating clusters
rarely perform well, and in many cases exhibit strange problems that can consume days, weeks, or months of administrator time
to properly debug.

The use of some sort of console solution should be employed. Many hardware errors are displayed during the BIOS boot
sequence. Whether the BIOS supports a serial console or not, the hardware needed to see these errors should be available. The
simplest solution for this problem is a crash cart. This consists of a single keyboard, monitor and mouse on a cart that can be
connected to machines in case of problems. More elaborate solutions can be constructed using serial concentrators to provide
usable consoles on each machine, or KVM switches.

Real profiling of target applications should be performed. Performance on artificial benchmarks is better information than no
information at all, however, these results aren't important unless the primary application run on a cluster will be benchmarks.

Finally, remember that everything is harder when it needs to be done multiple times. While it is an easy process to assemble a
single new machine, assembling 32, 64, 96, or 128 machines is a much harder process. Remember that time has value. Cutting
corners for the sake of small amounts of money almost always causes problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Linux
Peter H. Beckman

Since the original AT&T and Berkeley Unix operating systems of the early 1970s, many variants of the operating system have
been launched. Some have prospered, while others have fallen into obscurity. Have you ever heard of Concentrix or nX? Many
customized Unix derivatives are no doubt still occupying obsolete Winchester drives and 8-inch floppies in the dusty storage
rooms of businesses and laboratories, right there next to the paper tape readers and acoustic modem couplers. Even Microsoft
tried its hand and sold a Unix back in 1980, when it released XENIX.

3.1 What Is Linux?
Simply put, Linux™ is a flavor (clone) of the original Unix™ operating systems. While Linux is relatively new on the operating
system scene, arriving about two decades after Ken Thompson and Dennis Ritchie of AT&T presented the first Unix paper at a
Purdue University symposium in 1973, it has rapidly become one of the most widely known and used Unix derivatives. Ever since
Linus Torvalds, the creator of Linux, released it in October 1991, developers from all over the world have been improving,
extending, and modifying the source code. Linus has remained the godfather of the Linux source code, ensuring that it does not
get overwhelmed with useless features, code bloat, and bad programming. As a result, Linux has become one of the most popular
operating systems in world.

3.1.1 Why Use Linux for a Beowulf?

Linux users tend to be some of the most fervent, inspired, and loyal computer users in the world—probably in the same league as
Apple Macintosh users. Both groups of users are likely to rebut any criticism with a prolonged, sharp-tongued defense of the
capabilities of their system. For scientific computational clusters, however, a cute penguin named Tux and lots of enthusiasm are
insufficient; some pragmatism is required.

Linux is the most popular open source operating system in the world. Its success is the result of many factors, but its stability,
maturity, and straightforward design have certainly been keys to its growth and market share. The stability and availability of Linux
have also created a booming commercial marketplace for products, unmatched by any other open source operating system.
Companies such as IBM, Fujitsu, NEC, HP, and Dell have all incorporated Linux into their business model, creating a marketplace
around a distribution of kernel source code that is free. Other companies are simply using Linux because it makes practical
business sense.

The enthusiastic backing of multibillion dollar companies is certainly a vote of confidence for Linux, but it is by no means sufficient
for deciding to choose Linux. Probably the most important reason for using Linux to build a Beowulf is its flexibility. Because Linux
is open source, it can easily be modified, rearranged, and tweaked for whatever the task. Some individuals may grow pale at the
idea of modifying the operating system, but never fear: Linux is actually very friendly. Because of the distributed development
environment that has helped it become so successful, it is also easily modified and tweaked. Later in this chapter, some simple
instructions will show just how easy modifying Linux can be.

Does Linux really need to be modified before you can use it to build a Beowulf? Well, no. However, scientists are generally by
their very nature extremely curious, and even though a wonderfully fast and easy-to-use Beowulf can be constructed with "stock"
kernels, most cluster builders will soon give in to the nearly irresistible urge to roll up their sleeves and pop the hood to see what is
really inside their Linux system. Be warned: many a plasma physicist or molecular biologist, fully intending to spend all of her time
solving the mysteries of the universe and writing technical papers, has instead become completely drawn into the wonderful and
creative release that comes from modifying the source code. You can often see these expatriates roaming the HPC and Beowulf
mailing lists answering questions about the latest kernel and support for new chip sets or features.

Another reason to choose Linux is that you will not be alone. The available talent pool for knowledgeable system administrators
that have Linux experience and actually enjoy working with Linux is large. System administrators are scrambling to find excuses
for building a Beowulf with Linux. The same cannot often be said for other operating systems. Furthermore, remote administration
has been a part of all Unix derivatives for decades. Many simple interfaces are available for updating the configuration of remote
machines and organizing a room full of servers. The talent pool of Beowulf builders is enourmous. Linux clusters are popping up in
every nook and cranny, from small departments on campus to the world's most prestigious laboratories. A quick look at the
Top500 list (www.top500.org) shows that Linux is extremely popular. In fact, about one out of every 6 teraflop computers in the
world are running Linux.

Google (www.google.com), one of the most popular and acclaimed search engines, is using thousands and thousands of servers
running Linux to index and provide advanced searching capabilities for the web. While Google is not a scientific computing cluster,
its size demonstrates the flexibility and adaptability of Linux. From an embedded palm-sized computer to running on clusters with
thousands of nodes, Linux has demonstrated its utility and stability for nearly any task. There are even real-time versions of the
Linux operating system. No legacy operating system can even come close to such flexibility and dominance among the largest
clusters in the world.

Another reason to choose Linux is its support for many types of processors. Alpha, PowerPC, IA32, IA64, Opteron, and many
others are all supported in Linux. You can choose to build your Beowulf from the fastest Apple Macintosh servers or IBM pSeries
servers, or you can buy the biggest and hottest (literally) chip on the market, the Intel IA64. As an example of the flexibility and
speed with which the Linux community ports to new hardware, take a quick look at the Intel IA64 or the AMD Opeteron. Both are
already available in many places, and the operating system of choice is Linux. Several distributions have already been released,
and for many users, removing Linux and installing a legacy 32-bit OS for their 64-bit system is certainly not in their plans.

Finally, many people choose Linux for what it does not have, or what can be removed. Linux is a sophisticated multitasking virtual
memory kernel. However, it can be trimmed down to a very small set of functions representing the bare necessities. In fact, Linux
can easily be compiled to use as little as 600 KBytes of compressed disk space on a floppy. Linux can be made small. It can fit on
embedded devices. Although counterintuitive to some legacy PC operating system software companies, where adding a new
feature and urging all the users to upgrade are the status quo, smaller and simpler is better when it comes to operating system
kernels for a Beowulf. The first reason that smaller is better comes from decades of experience with source code development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kernels for a Beowulf. The first reason that smaller is better comes from decades of experience with source code development
and stability. Whenever a line of code is added to a source tree, the probability increases that a hidden bug has been introduced.
For a kernel that controls the memory system and precious data on disk, robustness is vital. Having fewer functions running in
privileged mode makes for a more stable environment. A small kernel is a kernel that is more likely to be stable. Although it did not
run Linux, the NASA Sojourner that traveled to Mars was also designed with the "smaller and simpler is better" mantra. The
Sojourner sported a 2 MHz CPU and less than 1 MByte of combined RAM and nonvolatile data storage. While NASA certainly
could have afforded a larger computer, as well as a large commercial operating system, simpler was better. Making a service call
to Mars to press Ctrl-Alt-Del was not an option.

More down to earth, although nearly as cold, the NSF-funded Anubis project used Linux machines to monitor seismic conditions at
unmanned monitoring stations on Antartica [3]. The stations upload their data via ARGOS satellite transmitters. The average
annual temperature for the stations is -28 degrees Celsius to -54 degrees Celsius. Linux was chosen for its stability, robustness,
and the ease with which it could be modified for the task. Traveling hundreds of miles across an ice sheet to repair a blue screen
of death was not seriously considered.

The second reason for a small kernel is that the most stable code path is the most used code path. Bugs (and programmers) tend
to congregate in poorly lit out-of-the-way locations, away from the well-worn code paths. The smaller the kernel, the fewer the
hidden and rarely tested code paths. Finally, smaller is better when it comes to kernel memory and CPU cycles on a Beowulf. For
scientific computing, nearly every instruction not being performed by the scientific application, usually in the form of a floating-point
operation, is overhead. Every unnecessary kernel data structure that is walked by the kernel pollutes the precious cache values
intended for the scientific application. Because kernel operations such as task switching are run extremely often, even a small
amount of additional kernel overhead can noticeably impact application performance. Linux's heritage of development on small
machines forced developers to pay extremely close attention to performance issues. For Beowulfs, a small kernel is
advantageous.

With its modular and easy-to-modify code base, support for a wide variety of the hottest CPUs on the planet, and incredibly
enthusiastic talent pool, Linux is a winner for building Beowulfs.

3.1.2 A Kernel and a Distribution

The term "Linux" is most correctly applied to the name for the Unix-like kernel, the heart of an operating system that directly
controls the hardware and provides true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write
executables, TCP/IP networking, and file systems. The kernel is lean and mean. It contains neither an integrated Web browser
nor a graphic windowing system. Linux, in keeping with its Unix heritage, follows the rule that smaller and simpler should be
applied to every component in the system and that components should be easily replaceable and composable. However, the term
"Linux" has also been applied in a very general way to mean the entire system, the Linux kernel combined with all of the other
programs that make the system easy to use, such as the graphic interface, the compiler tools, the e-mail programs, and the
utilities for copying and naming files. Strictly speaking, Linux is the kernel. Nevertheless, most users refer to a "Linux system" or
"Linux CD-ROM" or "Linux machine" when they really mean the Linux kernel packaged up with all of the free software tools and
components that work with the kernel—a distribution.

A Linux distribution packages up all the common programs and interfaces that most users think of when they imagine Linux, such
as the desktop icons or the Apache Web server or, more important, for scientific users, compilers, performance monitoring tools,
and the like. Many Linux distribution companies exist. They take the freely available Linux kernel and add an "installer" and all the
other goodies just described. In fact, those companies (Red Hat, Mandrake, SuSE, and a host of smaller companies) have the
freedom to customize, optimize, support, and extend their Linux distribution to satisfy the needs of their users. There are also
companies that supply integrated hardware and software Beowulf solutions. They deliver their Beowulfs with Linux installed. They
derive the Linux used on their systems from a standard distribution, such as Red Hat, then add their own utilities, reconfigure
many of the basic software packages for scientific computing, and preinstall it on the cluster. Since these companies are adding
value via integration, their customized Linux distribution is generally not available without purchasing their cluster.

There are also several volunteer efforts to bundle up all the software packages with the kernel and release a distribution.
Understanding how the Linux kernel and Linux distributions are developed and maintained is key to understanding how to get
support and how to get a Beowulf cluster up and running on the network as quickly as possible.

3.1.3 Open Source and Free Software

Of course, before getting very far in any discussion about the Linux kernel or Linux CD-ROM distributions, some time must be
spent on the topic of open source and free software. Several well-written books on the topic have already been published. The
book Open Sources [33] details the many intertwined and fascinating stories of how the code bases that began as research
projects or simply hobby tinkering become the fundamental standards that are the lifeblood of the Internet. It is important,
however, to understand some of the basic concepts of freely distributable software for building a Beowulf with Linux. Of course,
the most important reason for understanding some of the fundamental licensing issues surrounding the Linux kernel is so that
they can be adhered to. Even though the term "free" is cavalierly used within the community, there can often be strict rules and
practices that must be followed. Another reason why it is important to understand these basic issues is so that you can understand
how the code base came to exist in the form it is today and how you can contribute back to the community that provided the
software for your use.

The open source software movement has gathered both publicity and credibility over the past couple of years. Richard Stallman
began work in 1984 on creating a free, publicly available set of Unix-compatible tools. He uses the term "free software" to describe
the freedom users have to modify it, not the price. Several years later, the GNU General Public License (GPL) was released. The
GPL (sometimes called the "copyleft") became the license for all of the GNU products, such as gcc (a C compiler) and emacs (a
text editor). The GPL strives to ensure that nobody can restrict access to the original source code of GPL licensed software or can
limit other rights to using the software. Anyone may sell a copy of GPL software for as much as people are willing to pay (without
any obligation to give money back to the original author), but nothing prevents the person who bought the software from doing the
same. Moreover, all users must be given a copy of the source code so that those users are able to fix and enhance the software
to suit their needs. However, probably the most important aspect of the GPL is that any modifications to GPLed source code must
also be GPLed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For most Beowulf users, the strict rules for how free software may be distributed will never come up. However, if code licensed
under the GPL is modified, its binary-only distribution is forbidden under the license. For example, if a Beowulf user extends or
patches one of Donald Becker's Ethernet drivers or uses it as the basis for writing a new driver, that driver cannot be redistributed
in binary-only form. The Linux kernel also uses a clarified GPL license. Therefore, modifying the Linux kernel for private use is
fine, but users may not modify the kernel and then make binary-only versions of the kernel for distribution. Instead, they must
make the source code available if they intend to share their changes with the rest of the world.

More recently, Eric Raymond and others coined the term "open source" to refer to freely distributable software
(www.opensource.org). There are, however, differences between the two monikers associated with freely distributable software.
GPLed source code cannot be the basis for a privately developed set of enhancements that are then sold in binary-only shrink-
wrapped form. Derived software must remain essentially free. On the other hand, licenses that follow the open source definition
but are not the GPL are not so restricted. An open source-compliant license that is not using the GPL permits programmers and
users greater flexibility in what they do with the code. They are free to use the source code however they wish. They may develop
private, "closed" code repositories and then sell products that may be distributed in binary-only form.

Many licenses conform to the open source definition: Mozilla Public License (Netscape), MIT License (used for the X-Windows
Consortium), and the amended BSD License. A company can enhance an open source-licensed program that is not using the
GPL and then sell a binary-only version. In fact, software developed by the X-Windows Consortium and the BSD project was
commercialized and used as the basis for a wide range of products. For the Beowulf user, this means that code licensed with a
BSD or X-Windows-style license give the users the freedom to use the software in whatever manner they see fit. Specifically, the
MPICH version of MPI, available from Argonne National Laboratory and explained in greater detail in Chapter 8 of this book, is
licensed using a non-GPL open source license. Beowulf users may make changes to the source code and distribute binary-only
versions, or even create products based on the work done by the original authors. Many people believe the careful choice of
license for the MPICH project helped make the MPI standard as successful as it is today.

Of course "giving back" to the community that has worked collectively to provide the sophisticated toolset that makes Beowulf
computation possible is part of the scientific process and is highly encouraged by the authors of this book regardless of what kind
of license a particular piece of software uses. The scientific process demands repeatability, and the freely distributable nature of
most Beowulf software provides an ideal environment for extending and corroborating other scientists results. Whenever possible,
changes to the source code should be sent back to the authors or maintainers, so the code can continue to grow and improve.

3.1.4 A Linux Distribution

A Linux distribution generally arrives on several CD-ROMs or a DVD, with the Linux kernel actually using a very small portion of
that CD-ROM. Since a distribution can be fashioned around a Linux kernel in practically any manner, Linux distributions can vary
quite widely in form and function. Since the Linux kernel is probably the most portable kernel on the planet, it is running on an
amazing array of CPUs and devices, everything from handheld devices such as the HP iPAQ and the IBM Linux wrist watch to the
IBM S390, a large corporate enterprise server getting a new lease on life with Linux. With such an incredible range of users and
hardware devices that can run Linux comes a plethora of distributions built around those kernels and their target users. It can be
quite daunting to choose among the dozens of popular (and hundreds of specialized) Linux distributions. Linux Web sites list
dozens of distributions created with the Linux kernel. Of course, not all such distributions are suitable for use in a Beowulf. Many
are designed for the embedded market, while others are built for a single-purpose appliance server, such as a firewall or a
file/print server.

One of the first steps to using Linux to build your Beowulf Linux cluster is to pick a distribution and get comfortable with it. While it
is beyond the scope of this book to help you become a rabid Linux user, there are plenty of books on the topic that can help guide
you through the different installers and different graphic desktops optimized for each distribution. Table 3.1 shows some of the
most popular Linux distribution companies or groups and where to find more information about them.

Table 3.1: Some companies or groups that release Linux distributions.

Company URL

Red hat www.redhat.com

Turbolinux www.turbolinux.com

Mandrake www.mandrake.com

Debian www.debian.org

SuSE www.suse.com

Slackware www.slackware.com

Which distribution is best for building a Beowulf? Unfortunately, there is no easy answer. Usually, the choice comes down to three
factors: support, language, and ease of use. While the core of all Linux distributions are, by nature of the GPL, available for free
and may downloaded from the Internet, the question of support is very important, especially to the new user. Most commercial
distributions include access to either phone or e-mail support. Some include the option of purchasing additional support. Some
integrate software that is not freely distributable.

Local familiarity and popularity can be a factor in your choice. If everyone else in your office or on your campus or at your
laboratory is using the same Linux distribution, getting their help when things go awry may be easiest if you share a common
distribution. Another consideration is support for your native language and e-mail support in that language. The SuSE distribution
is very popular in Germany, and naturally has very good support for the German language. Certainly, you can e-mail your
questions in German to their support staff. Likewise, the Turbolinux distribution is very popular in Japan and China and supports
double-byte characters and special input methods for typing in Japanese or Chinese. Your choice of distribution may also be
influenced by what the hardware company can preload on your Beowulf nodes if you are not building them from scratch. Having
your nodes arrive preloaded with a Linux distribution can save a lot of time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are also several rebundled distributions designed especially for cluster use. These systems start with a basic Linux
distribution, usually from Red Hat, and then add a cluster installer and cluster-specific software packages. The cluster installer
makes remote, network-based installation easier. Essentially, these cluster distribtions, such as NPACI ROCKS
(rocks.npaci.edu) and OSCAR (www.openclustergroup.org are sets of "diffs" to a basic installation, replacing some of the
packages and adding new ones. For the beginner, they can be an excellent place to start with a standard configuration.

Another key detail for building a Beowulf with Linux is the licensing of the distribution. Almost every commercial vendor, has, at
times, included software that could not be freely distributed. In some cases, a portion of the purchase price is used to pay royalties
for the software that is not freely distributable. Using such a distribution to install 16 nodes would violate the licensing unless you
actually purchased 16 copies. Luckily, most distribution companies try to make it very clear whether their distribution can be freely
distributed and, in many cases, offer a freely distributable version of the distribution on the Web site.

3.1.5 Version Numbers and Development Methods

The Linux kernel, Linux applications, and even the Linux distributions have different development models, different version
numbers, and different schedules. While picking a Linux distribution for your Beowulf, a basic understanding of version numbers
and distribution versions is required. A relatively small team of core developers develops the Linux kernel. Yes, many many
people from around the world, representing more than fifty different countries, have contributed to the Linux kernel, but its stability
and the organized introduction of new features are made possible by a well-coordinated band of core programmers. With Linus
Torvalds sometimes called the "benevolent dictator," core developers such as Donald Becker, Alan Cox, Stephen Tweedie, and
David Miller maintain and extend sections of the kernel with the help of hundreds of programmers who send in contributions to the
kernel. This hierarchical model is clearly more efficient than everyone sending Linus their patches and new ideas for how the
kernel can be extended (not that they don't try). Of course, not all patches and extensions are included in the main line, or "stock"
kernel, no matter who sent them. Significant restraint and conservatism are used for most sections of the code. Some
programmers must lobby Linus or other code developers for extended periods of time before their improvements are incorporated.
In some cases, the suggestions are never accepted and are therefore made available only as a patch and not part of the "official"
kernel tree.

Your Linux distribution will, of course, arrive with a Linux kernel, but upgrading the kernel is one of the most common ways to
update a Beowulf node, and will be discussed later. It is important to understand that the version number of the kernel and the
version number of the distribution are in no way related. At any point in time the Linux kernel has two most-up-to-date kernels: the
"stable" release and the "development" release. Stable kernels use an even minor kernel number, such as 2.2 or 2.4. Similarly,
development kernels use odd minor kernel numbers, such as 2.1, 2.3, or 2.5. As work on a development kernel becomes more
stable, the rate of change begins to slow, and finally the core kernel developers stop adding new features. There exists no
definitive set of tests that indicate when a development kernel is ready for general use, but at some point, Linus will "release" a
new stable kernel. After that, patches and updates take the form of incremental versions, such as 2.4.9 or 2.4.11. With few
exceptions, a kernel that is part of a popular CD-ROM distribution comes from the "stable" kernel releases. Of course, nothing
prevents a would-be Beowulf builder from using the latest, most unstable versions of the development kernel. However, the main
kernel developers take the stability of the Linux kernel very seriously, and it would be wise to be conservative in choosing a kernel.

Linux distributions, on the other hand, can create version numbers for their distribution however they please. Red Hat 9.0 simply
means that it is newer than Red Hat 8.0. Since distribution companies are separate, they use completely different versioning
schemes. Red Hat 9.0 is not necessarily any newer, or better, than SuSE 8.2. In fact, because it is clearly to their advertising
advantage, don't be surprised to find out that the distribution on the shelf with the highest version number is in fact not the most
recent release. Furthermore, distributions are free to use whatever basic version of the Linux kernel they believe will make their
end-users most satisfied. Then, they often add in a couple more changes to the kernel that may not be in the mainline kernel. For
example, a hardware company working with a distribution company may ask for some special drivers or special options be added
to the kernel, so their hardware can work well with Linux. While certainly common practice, it can lead to some confusion in
infrequent cases because upgrading the kernel for such a distribution may not always work unless the upgraded kernel came from
the distribution's Web site and therefore contained the special additions, or the special additions are added to the basic main-line
kernel that can be downloaded from www.kernel.org.

For the Beowulf user, this situation means that getting help with kernel issues may involve some investigation. Generally, the
distribution companies support their product. However, that does not mean they wrote the code or are on a first-name basis with
the person who did. The commercial support company can certainly provide front-line support, but what the industry often calls
level-3 support requires some extra work. Generally, open source programmers such as Donald Becker make a portion of their
time available to answer questions about the code they authored. However, the author of the code could also have moved on to
other endeavors, leaving the source code behind. Kernel and Beowulf mailing lists help, but the burden can often be on you to find
the problem or find the person who can help you. When trying to track down what you believe to be a kernel or driver issue,
please follow these guidelines:

1. Read the documentation. Because Linux support has traditionally been ad hoc in nature, a large number of
HOWTO documents have been written, ranging from ones that are probably very important to you like the
'Kernel-HOWTO', the 'Beowulf-HOWTO', and the 'Parallel-Processing-HOWTO', to more specific ones like
the 'Slovenian-HOWTO', the 'Kodak-Digitalcam-HOWTO', the 'Quake-HOWTO', and the 'Coffee-mini-
HOWTO'. These documents are located in the directory '/usr/doc/HOWTO' on most distributions.

2. Second, search the Web. Modern search engines such as Google www.google.com are amazing. Many a
perplexing, nasty bug or software incompatibility has been easily solved with fifteen or twenty minutes of Web
surfing.

3. Get some help from local Linux users. Often, there is a very simple answer or widely known work-around for a
problem. Talking to someone can also help you better understand the problem, so Google can once again be
queried or intelligent e-mail sent.

4. Read the relevant mailing lists, and search for your topic of interest on the mailing list. Several archives of Linux-
specific mailing lists exist, such as can be found at marc.theaimsgroup.com.

5. After the difficulty has been narrowed down to a very clear, reproducible example, mail the appropriate mailing
list, and ask for help. To make your bug report useful to the readers (and get you a fix much faster), follow the
guidelines given in the kernel sources as 'REPORTING-BUGS', 'Documentation/BUG-HUNTING', and
'Documentation/oops-tracing'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'Documentation/oops-tracing'.

6. If you don't make any progress, try looking at the source code and mailing the author directly. Naturally, this
should be used as a last resort. Authors of key portions can often get dozens or hundreds of e-mail messages a
day about their code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 The Linux Kernel
As mentioned earlier, for the Beowulf user, a smaller, faster, and leaner kernel is a better kernel. This section describes the
important features of the Linux kernel for Beowulf users and shows how a little knowledge about the Linux kernel can make the
cluster run faster and more smoothly.

What exactly does the kernel do? Its first responsibility is to be an interface to the hardware and provide a basic environment for
processes and memory management. When user code opens a file, requests 30 megabytes of memory for user data, or sends a
TCP/IP message, the kernel does the resource management. If the Linux server is a firewall, special kernel code can be used to
filter network traffic. In general, there are no additives to the Linux kernel to make it better for scientific clusters—usually, making
the kernel smaller and tighter is the goal. However, sometimes a virtual memory management algorithm can be twiddled to
improve cache locality, since the memory access patterns of scientific applications are often much different from the patterns
common Web servers and desktop workstations, the applications for which Linux kernel parameters and algorithms are generally
tuned. Likewise, occasionally someone creates a TCP/IP patch that makes message passing for Linux clusters work a little better.
Before going that deep into Linux kernel tuning, however, the kernel must first simply be compiled.

3.2.1 Compiling a Kernel

Almost all Linux distributions ship with a kernel build environment that is ready for action. The transcript below shows how you can
learn a bit about the kernel running on the system.
% ls -l /proc/version
-r--r--r-- 1 root root 0 Jun 19 13:49 /proc/version
% cat /proc/version
Linux version 2.5.67 (root@terra.mcs.anl.gov) (gcc version 2.96 20000731
(Red Hat Linux 7.3 2.96-110)) #4 SMP Fri Apr 18 09:36:21 CDT 2003

% cd /usr/src
% ls -ld linux
lrwxrwxrwx 1 root root 21 Apr 22 07:19 linux -> /usr/src/linux-2.5.67

The '/proc' file system is not really a file system in the traditional meaning. It is not used to store files on the disk or some other
secondary storage; rather, it is a pseudo-file system that is used as an interface to kernel data structures—a window into the
running kernel. Linus likes the file system metaphor for gaining access to the heart of the kernel. Therefore, the '/proc' file
system does not really have disk filenames but the names of parts of the system that can be accessed. In the example above, we
read from the handle '/proc/version' using the Unix cat command. Notice that the file size is meaningless, since it is not really
a file with bytes on a disk but a way to ask the kernel "What version are you currently running?" We can see the version of the
kernel and some information about how it was built.

The source code for the kernel is often kept in '/usr/src'. Usually, a symbolic link from '/usr/src/linux' points to the kernel
currently being built. Generally, if you want to download a different kernel and recompile it, it is put in '/usr/src', and the symlink
'/usr/src/linux' is changed to point to the new directory while you work on compiling the kernel. If there is no kernel source in
'/usr/src/linux', you probably did not select "kernel source" when you installed the system for the first time, so in an effort to
save space, the source code was not installed on the machine. The remedy is to get the software from the company's Web site or
the original installation CD-ROM.

The kernel source code often looks something like the following:
% cd /usr/src/linux
% ls
COPYING Makefile crypto init mm sound
CREDITS README drivers ipc net usr
Documentation REPORTING-BUGS fs kernel scripts
MAINTAINERS arch include lib security

If your Linux distribution has provided the kernel source in its friendliest form, you can recompile the kernel, as it currently is
configured, simply by typing
% make clean ; make bzImage

The server will then spend anywhere from a few minutes to twenty or more minutes depending on the speed of the server and the
size of the kernel. When it is finished, you will have a kernel.
% ls -l /usr/src/linux-2.2.14/arch/i386/boot/bzImage
-rw-r--r-- 1 root root 906584 Jun 19 00:13
 /usr/src/linux-2.5.67/arch/i386/boot/bzImage

3.2.2 Loadable Kernel Modules

For most kernels shipped with Linux distributions, the kernel is built to be modular. Linux has a special interface for loadable
kernel modules, which provides a convenient way to extend the functionality of the kernel in a dynamic way, without retaining the
code in memory all the time, and without requiring the kernel be recompiled every time a new or updated module arrives. Modules
are most often used for device drivers, file systems, and special kernel features. For example, Linux can read and write MSDOS
file systems. However, that functionality is usually not required at all times. Most often, it is required when reading or writing from
an MSDOS floppy disk. The Linux kernel can dynamically load the MSDOS file system kernel module when it detects a request to
mount an MSDOS file system. The resident size of the kernel remains small until it needs to dynamically add more functionality.
By moving as many features out of the kernel core and into dynamically loadable modules, the legendary stability of Linux
compared with legacy operating systems is achieved.

Linux distributions, in an attempt to support as many different hardware configurations and uses as possible, ship with as many
precompiled kernel modules as possible. It is not uncommon to receive five hundred or more precompiled kernel modules with the
distribution. In the example above, the core kernel was recompiled. This does not automatically recompile the dynamically
loadable modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.3 The Beowulf Kernel Diet

It is beyond the scope of this book to delve into the inner workings of the Linux kernel. However, for the Beowulf builder, slimming
down the kernel into an even leaner and smaller image can be beneficial and, with a little help, is not too difficult.

In the example above, the kernel was simply recompiled, not configured. In order to slim down the kernel, the configuration step is
required. There are several interfaces to configuring the kernel. The 'README' file in the kernel source outlines the steps required
to configure and compile a kernel. Most people like the graphic interface and use make xconfig to edit the kernel configuration
for the next compilation.

Removing and Optimizing
The first rule is to start slow and read the documentation. Plenty of documentation is available on the Internet that discusses the
Linux kernel and all of the modules. However, probably the best advice is to start slow and simply remove a couple unneeded
features, recompile, install the kernel, and try it. Since each kernel version can have different configuration options and module
names, it is not possible simply to provide the Beowulf user a list of kernel configuration options in this book. Some basic
principles can be outlined, however.

Think compute server: Most compute servers don't need support for amateur radio networking. Nor do most
compute servers need sound support, unless of course your Beowulf will be used to provide a new type of parallel
sonification. The list for what is really needed for a compute server is actually quite small. IrDA (infrared), quality of
service, ISDN, ARCnet, Appletalk, Token ring, WAN, AX.25, USB support, mouse support, joysticks, and telephony
are probably all useless for a Beowulf.

Optimize for your CPU: By default, many distributions ship their kernels compiled for the first-generation Pentium
CPUs, so they will work on the widest range of machines. For your high-performance Beowulf, however, compiling
the kernel to use the most advanced CPU instruction set available for your CPU can be an important optimization.

Optimize for the number of processors: If the target server has only one CPU, don't compile a symmetric
multiprocessing kernel, because this adds unneeded locking overhead to the kernel.

Remove firewall or denial-of-service protections: Since Linux is usually optimized for Web serving or the
desktop, kernel features to prevent or reduce the severity of denial-of-services attacks are often compiled into the
kernel. Unfortunately, an extremely intense parallel program that is messaging bound can flood the interface with
traffic, often resembling a denial-of-service attack. Indeed, some people have said that many a physicist's MPI
program is actually a denial-of-service attack on the Beowulf cluster. Removing the special checks and detection
algorithms can make the Beowulf more vulnerable, but the hardware is generally purchased with the intent to
provide the most compute cycles per dollar possible, and putting it behind a firewall is relatively easy compared with
securing and hampering every node's computation to perform some additional security checks. Section 5.6.2
discusses the use of firewalls with Beowulf clusters in more detail.

Other Considerations
Many Beowulf users slim down their kernel and even remove loadable module support. Since most hardware for a Beowulf is
known, and scientific applications are very unlikely to require dynamic modules be loaded and unloaded while they are running,
many administrators simply compile the required kernel code into the core. Particularly careful selection of kernel features can trim
the kernel from a 1.5-megabyte compressed file with 10 megabytes of possible loadable modules to a 600-kilobyte compressed
kernel image with no loadable modules. Some of the kernel features that should be considered for Beowulfs include the following:

NFS: While NFS does not scale to hundreds of node, it is very convenient for small clusters.

Serial console: Rather than using KVM (Keyboard, Video, Mouse) switches or plugging a VGA (video graphics
array) cable directly into a node, it is often very convenient to use a serial concentrator to aggregate 32 serial
consoles into one device that the system administrator can control.

Kernel IP configuration: This lets the kernel get its IP address from BOOTP or DHCP, often convenient for initial
deployment of servers.

NFS root: Diskless booting is an important configuration for some Beowulfs. NFS root permits the node to mount
the basic distribution files such as '/etc/passwd' from an NFS server.

Special high-performance network drivers: Often, an extreme performance Beowulf will use high-speed networking,
such as Gigabit Ethernet or Myrinet. Naturally, those specialized drivers as well as the more common 100BT
Ethernet driver can be compiled into the kernel.

A file system: Later in this chapter a more thorough discussion of file systems for Linux will be presented. It is
important the kernel is compiled to support the file system chosen for the compute nodes

Network Booting
Because of the flexibility of Linux, many options are available to the cluster builder. While certainly most clusters are built using a
local hard drive for booting the operating system, it is certainly not required. Network booting permits the kernel to be loaded from
a network-attached server. Generally, a specialized network adapters or system BIOS is required. Until recently, there were no
good standards in place for networking booting commodity hardware. Now, however, most companies are offering network boot-
capable machines in their high-end servers. The most common standard is the Intel PXE 2.0 net booting mechanism. On such
machines, the firmware boot code will request a network address and kernel from a network attached server, and then receive the
kernel using TFTP (Trivial File Transfer Protocol). Unfortunately, the protocol is not very scalable, and attempting to boot more
than a dozen or so nodes simultaneously will yield very poor results. Large Beowulfs attempting to use network boot protocols
must carefully consider the number of simultaneously booting nodes or provide multiple TFTP servers and separate Ethernet
collision domains. For a Linux cluster, performing a network boot and then mounting the local hard drive for the remainder of the
operating system does not seem advantageous; it probably would have been much simpler to store the kernel on hard drive.
However, network booting can be important for some clusters if it is used in conjunction with diskless nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.4 Diskless Operation

Some applications and environments can work quite well without the cost or management overhead of a hard drive. For example,
in secure or classified computing environments, secondary storage can require special, labor-intensive procedures. In some
environments, operating system kernels and distributions may need to be switched frequently, or even between runs of an
application program. Reinstalling the operating system on each compute node to switch over the system is generally difficult, as
would maintaining multiple hard disk partitions with different operating systems or configurations. In such cases, building the
Beowulf without the operating system on the local hard drive, if it even exists, can be a good solution. Diskless operation also has
the added benefit of making it possible to maintain only one operating system image, rather than having to propagate changes
across the system to all of the Beowulf nodes.

For diskless operations, naturally, Linux can accommodate where other systems may not be so flexible. A complete explanation of
network booting and NFS-root mechanisms is beyond the scope of this book (but they are documented in the 'Diskless-HOWTO'
and 'Diskless-root-NFS-HOWTO') and certainly is a specialty area for Beowulf machines. However, a quick explanation of the
technology will help provide the necessary insight to guide your decision in this regard.

In addition to hardware that is capable of performing a network boot and a server to dole out kernels to requesting nodes, a
method for accessing the rest of the operating system is required. The kernel is only part of a running machine. Files such as
'/etc/passwd' and '/etc/resolv.conf' also need to be available to the diskless server. In Linux, NFS root provides this
capability. A kernel built with NFS root capability can mount the root file system from a remote machine using NFS. Operating
system files such as dynamic libraries, configuration files, and other important parts of the complete operating system can be
accessed transparently from the remote machine via NFS. As with network booting, there are certain limitations to the scalability
of NFS root for a large Beowulf. In Section 3.2.6, a more detailed discussion of NFS scalability is presented. In summary, diskless
operation is certainly an important option for a Beowulf builder but remains technically challenging.

3.2.5 Downloading and Compiling a New Kernel

For most users, the kernel shipped with their Linux distribution will be adequate for their Beowulf. Sometimes, however, there are
advantages to downloading a newer kernel. Occasionally a security weakness has been solved, or some portion of TCP/IP has
been improved, or a better, faster, more stable device driver arrives with the new kernel. Downloading and compiling a new kernel
may seem difficult but is really not much harder than compiling the kernel that came with the distribution.

The first step is to download a new kernel from www.kernel.org. The importance of reading the online documents, readme files,
and instructions cannot be overstated. As mentioned earlier, sticking with a "stable" (even minor version) kernel is recommended
over the "development" (odd minor version) kernel for most Beowulf users. It is also important to understand how far forward you
can move your system simply by adding a new kernel. The kernel is not an isolated piece of software. It interfaces with a myriad of
program and libraries. For example, the Linux mount command file system interfaces to the kernel; should significant changes to
the kernel occur, a newer, compatible mount command may also need to be upgraded. Usually, however, the most significant link
between the kernel and the rest of the operating system programs occurs with what most people call libc. This is a library of
procedures that must be linked with nearly every single Linux program. It contains everything from the printf function to routines
to generate random numbers. The library libc is tied very closely to the kernel version, and since almost every program on the
system is tied closely to libc, the kernel and LibC must be in proper version synchronization. Of course, all of the details can be
found at www.kernel.org, or as a link from that site.

The next step is to determine whether you can use a "stock" kernel. While every major distribution company uses as a starting
point a stock kernel downloaded from kernel.org, companies often apply patches or fixes to the kernel they ship on the CD-
ROM. These minor tweaks and fixes are done to support the market for which the distribution is targeted or to add some special
functionality required for their user base or to distinguish their product. For example, one distribution company may have a special
relationship with a RAID device manufacturer and include a special device driver with their kernel that is not found in the stock
kernel. Or a distribution company may add support for a high-performance network adapter or even modify a tuning parameter
deep in the kernel to achieve higher performance over the stock kernels. Since the distribution company often modifies the stock
kernel, several options are available for upgrading the kernel:

Download the kernel from the distribution company's Web site instead of kernel.org. In most cases, the
distribution company will make available free, upgraded versions of the kernel with all of their distribution-specific
modifications already added.

Download the kernel from kernel.org, and simply ignore the distribution-dependent modifications to the kernel.
Unless you have a special piece of hardware not otherwise supported by the stock kernel, it is usually safe to use
the stock kernel. However, any performance tuning performed by the distribution company would not have been
applied to the newly download kernel.

Port the kernel modification to the newer kernel yourself. Generally, distribution companies try to make it very clear
where changes have been made. Normally, for example, you could take a device driver from the kernel that
shipped with your distribution and add it to the newer stock kernel if that particular device driver was required.

Of course, all of this may sound a little complicated to the first-time Beowulf user. However, none of these improvements or
upgrades are required. They are by the very nature of Linux freely available to users to take or leave as they need or see fit.
Unless you know that a new kernel will solve some existing problem or security issue, it is probably good advice to simply trim the
kernel down, as described earlier, and use what was shipped with your distribution.

3.2.6 Linux File Systems

Linux supports an amazing number of file systems. Because of its modular kernel and the virtual file system interface used within
the kernel, dynamically loaded modules can be loaded and unloaded on the fly to support whatever file system is being mounted.
For Beowulf, however, simplicity is usually a good rule of thumb. Even through there are a large number of potential file systems
to compile into the kernel, most Beowulf users will require only one or two.

The de facto standard file system on Linux is the second extended file system, commonly called EXT2. EXT2 has been
performing well as the standard file system for years. It is fast and extremely stable. Every Beowulf should compile the EXT2 file
system into the kernel. It does, unfortunately, have one drawback, which can open the door to including support for (and ultimately
choosing) another file system. EXT2 is not a "journaling" file system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Journaling File Systems
The idea behind a journaling file system is quite simple: Make sure that all of the disk writes are performed in such a way as to
ensure the disk always remains in a consistent state or can easily be put in a consistent state. That is usually not the case with
nonjournaling file systems like EXT2. Flipping off the power while Linux is writing to an EXT2 file system can often leave it in an
inconsistent state. When the machine reboots, a file system check, or fsck, must be run to put the disk file system back into a
consistent state. Performing such a check is not a trivial matter. It is often very time consuming. One rule of thumb is that it
requires one hour for every 100 gigabytes of used disk space. If a server has a large RAID array, it is almost always a good idea
to use a journaling file system, to avoid the painful delays that can occur when rebooting from a crash or power outage. However,
for a Beowulf compute node, the choice of a file system is not so clear.

Journaling file systems are slightly slower than nonjournaling file systems for writing to the disk. Since the journaling file system
must keep the disk in a consistent state even if the machine were to suddenly crash (although not likely with Linux), the file system
must write a little bit of extra accounting information, the "journal," to the disk first. This information enables the exact state of the
file system to be tracked and easily restored should the node fail. That little bit of extra writing to the disk is what makes journaling
file systems so stable, but it also slows them down a little bit.

If a Beowulf user expects many of the programs to be disk-write bound, it may be worth considering simply using EXT2, the
standard nonjournaling file system. Using EXT2 will eke out the last bit of disk performance for a compute node's local file writes.
However, as described earlier, should a node fail during a disk write, there is a chance that the file system will be corrupt or
require an fsck that could take several minutes or several hours depending on the size of the file system. Many parallel programs
use the local disk simply as a scratch disk to stage output files that then must be copied off the local node and onto the
centralized, shared file system. In those cases, the limiting factor is the network I/O to move the partial results from the compute
nodes to the central, shared store. Improving disk-write performance by using a nonjournaling file system would have little
advantage in such cases, while the improved reliability and ease of use of a journaling file system would be well worth the effort.

Which Journaling File System?
Once again, unlike other legacy PC operating systems, Linux is blessed with a wide range of journaling file systems from which to
choose. The most common are EXT3, ReiserFS, IBM's JFS, and SGI's XFS. EXT3 is probably the most convenient file system for
existing Linux to tinker with. EXT3 uses the well-known EXT2 file formatting but adds journaling capabilities; it does not improve
upon EXT2, however. ReiserFS, which was designed and implemented using more sophisticated algorithms than EXT2, is being
used in the SuSE distribution. It generally has better performance characteristics for some operations, especially systems that
have many, many small files or large directories. IBM's Journaling File System (JFS) and SGI's XFS files systems had widespread
use with AIX and IRIX before being ported to Linux. Both file systems not only do journaling but were designed for the highest
performance achievable when writing out large blocks of data from virtual memory to disk. For the user not highly experienced
with file systems and recompiling the kernel, the final choice of journaling file system should be based not on the performance
characteristics but on the support provided by the Linux distribution, local Linux users, and the completeness of Linux
documentation for the software.

Networked and Distributed File Systems
While most Linux clusters use a local file system for scratch data, it is often convenient to use network-based or distributed file
systems to share data. A network-based file system allows the node to access a remote machine for file reads and writes. Most
common and most popular is the network file system, NFS, which has been around for about two decades. An NFS client can
mount a remote file system over an IP (Internet Protocol) network. The NFS server can accept file access requests from many
remote clients and store the data locally. NFS is also standardized across platforms, making it convenient for a Linux client to
mount and read and write files from a remote server, which could be anything from a Sun desktop to a Cray supercomputer.

Unfortunately, NFS does have two shortcomings for the Beowulf user: scalability and synchronization. Most Linux clusters find it
convenient to have each compute node mount the user's home directory from a central server. In this way, a user in the typical
edit, compile, and run development loop can recompile the parallel program and then spawn the program onto the Beowulf, often
with the use of an mpiexec or PBS command, which are covered in Chapters 8 and 17, respectively. While using NFS does
indeed make this operation convenient, the result can be a B3 (big Beowulf bottleneck). Imagine for a moment that the user's
executable was 5 megabytes, and the user was launching the program onto a 256-node Linux cluster. Since essentially every
single server node would NFS mount and read the single executable from the central file server, 1,280 megabytes would need to
be sent across the network via NFS from the file server. At 50 percent efficiency with 100-baseT Ethernet links, it would take
approximately 3.4 minutes simply to transfer the executable to the compute nodes for execution. To make matters worse, NFS
servers generally have difficulty scaling to that level of performance for simultaneous connections. For most Linux servers, NFS
performance begins to seriously degrade if the cluster is larger than 64 nodes. Thus, while NFS is extremely convenient for
smaller clusters, it can become a serious bottleneck for larger machines. Synchronization is also an issue with NFS. Beowulf
users should not expect to use NFS as a means of communicating between the computational nodes. In other words, compute
nodes should not write or modify small data files on the NFS server with the expectation that the files can be quickly disseminated
to other nodes. This is discussed more fully in Section 19.3.2.

The best technical solution would be a file system or storage system that could use a tree-based distribution mechanism and
possibly use available high-performance network adapters such as Myrinet or Gigabit Ethernet to transfer files to and from the
compute nodes. Unfortunately, while several such systems exist, they are research projects and do not have a pervasive user
base. Other solutions such as shared global file systems, often using expensive fiber channel solutions, may increase disk
bandwidth but are usually even less scalable. For generic file server access from the compute nodes to a shared server, NFS is
currently the most common option.

Experimental parallel file systems are available, however, that address many of the shortcomings described earlier. Chapter 19
discusses PVFS, the Parallel Virtual File System. PVFS is different from NFS because it can distribute parts of the operating
system to possibly hundreds of Beowulf nodes. When done properly, the bottleneck is no longer an Ethernet adapter or hard disk.
Furthermore, PVFS provides parallel access, so many readers or writers can access file data concurrently. You are encouraged to
explore PVFS as an option for distributed, parallel access to files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Pruning Your Beowulf Node
Even if recompiling your kernel, downloading a new one, or choosing a journaling file system seems too adventuresome at this
point, you can some very simple things to your Beowulf node that can increase performance and manageability. Remember that
just as the kernel, with its nearly five hundred dynamically loadable modules, provides drivers and capabilities you probably will
never need, so too your Linux distribution probably looks more like a kitchen sink than a lean and mean computing machine.
While you may now be tired of the Linux Beowulf adage "a smaller operating system is a better operating system," it must be once
again applied to the auxiliary programs often run with a conventional Linux distribution. If we look at the issue from another
perspective, every single CPU instruction performed by the kernel or operating system daemon not directly contributed to the
scientific calculation is a wasted CPU instruction.

The starting point for pruning your Beowulf node will be what the Linux distribution installer set up. Many distributions have options
during installation for "workstation" or "server" or "development" configurations. As a general rule of thumb, "server" installations
make a good starting point. Workstation configurations often have windowing systems running by default, and a myriad of
background tasks to make Linux as user-friendly as possible to the desktop user. Fortunately, with Linux you can understand and
modify any daemon or process as you convert your kitchen sink of useful utilities and programs into a designed-for-computation
roadster. For a Beowulf, eliminating useless tasks delivers more megaflop per dollar to the end user.

The first step to pruning the operating system daemons and auxiliary programs is to find out what is running on the system. For
most Linux systems there are at least two standard ways to start daemons and other processes, which may waste CPU resources
as well as memory bandwidth (often the most precious commodity on a cluster).

inetd: This is the "Internet superserver". Many Linux distributions use a newer version of the program, which has
essentially the same functionality called xinetd. Both programs basic function is to wait for connections on a set
of ports and then spawn and hand off the network connection to the appropriate program when an incoming
connection is made. The configuration for what ports inetd or xinetd listening to, as well as what will get
spawned can been determined by looking at '/etc/inetd.conf' and '/etc/services' or '/etc/xinetd.
conf' and '/etc/xinetd.d' respectively.

/etc/rc.d/init.d: This special directory represents the scripts that are run during the booting sequence and that often
launch daemons that will run until the machine is shut down.

3.3.1 inetd.conf
The file 'inetd.conf' is a simple configuration file. Each line in the file represents a single service, including the port associated
with that service and the program to launch when a connection to the port is made. Below are some simple examples:
ftp stream tcp nowait root /usr/sbin/tcpd in.proftpd
finger stream tcp nowait root /usr/sbin/tcpd in.fingerd
talk dgram udp wait root /usr/sbin/tcpd in.talkd

The first column provides the name of the service. The file '/etc/services' maps the port name to the port number, for
example,
% grep ^talk /etc/services
talk 517/udp # BSD talkd(8)

To slim down your Beowulf node, get rid of the extra services in 'inetd.conf'; you probably will not require the /usr/bin/talk
program on each of the compute nodes. Of course, what is required will depend on the computing environment. In many very
secure environments, where ssh is run as a daemon and not launched from 'inetd.conf' for every new connection,
'inetd.conf' has no entries. In such extreme examples, the inetd process that normally reads 'inetd.conf' and listens on
ports, ready to launch services, can even be eliminated.

3.3.2 /etc/rc.d/init.d
The next step is to eliminate any daemons or processes that are normally started at boot. While occasionally Linux distributions
differ in style, the organization of the files that launch daemons or run scripts during the first phases of booting up a system are
very similar. For most distributions, the directory '/etc/rc.d/init.d' contains scripts that are run when entering or leaving a
run level. Below is an example:
% cd /etc/rc.d/init.d
% ls
anacron functions kdcrotate nfslock sendmail wine
apachectl gpm keytable nscd single xfs
apmd halt killall ntpd snmpd xinetd
arpwatch http_sanity kudzu portmap snmptrapd ypbind
atd http_sanity~ lpd radvd sshd yppasswdd
autofs identd netfs random syslog ypserv
crond ipchains network rawdevices vncserver ypxfrd
cups iptables nfs rhnsd winbind

However, the presence of the script does not indicate it will be run. Other directories and symlinks control which scripts will be run.
Most systems now use the convenient chkconfig interface for managing all the scripts and symlinks that control when they get
turned on or off. Not every script spawns a daemon. Some scripts just initialize hardware or modify some setting.

A convenient way to see all the scripts that will be run when entering run level 3 is the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% chkconfig --list | grep '3:on'
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
lpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off
httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sshd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
named 0:off 1:off 2:off 3:on 4:on 5:on 6:off
dhcpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
inet 0:off 1:off 2:off 3:on 4:on 5:on 6:off
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfsfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
random 0:off 1:off 2:on 3:on 4:on 5:on 6:off
keytable 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off
ntpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off
serial 0:off 1:off 2:on 3:on 4:on 5:on 6:off
squid 0:off 1:off 2:off 3:on 4:on 5:on 6:off
tltime 0:off 1:off 2:off 3:on 4:off 5:on 6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Remember that not all of these spawn cycle-stealing daemons that are not required for Beowulf nodes. The "serial" script, for
example, simply initializes the serial ports at boot time; its removal is not likely to reduce overall performance. However, in this
example many things could be trimmed. For example, there is probably no need for lpd, mysql, httpd, named, dhcpd,
sendmail, or squid on a compute node. It would be a good idea to become familiar with the scripts and use the chkconfig
command to turn off unneeded scripts. With only a few exceptions, an X-Windows server should not be run on a compute node.
Starting an X session takes ever-increasing amounts of memory and spawns a large set of processes. Except for special
circumstances, run level 3 will be the highest run level for a compute node.

3.3.3 Other Processes and Daemons

In addition to 'inetd.conf' and the scripts in '/etc/rc.d/init.d', there are other common ways for a Beowulf node to waste
CPU or memory resources. The cron program is often used to execute programs at scheduled times. For example, cron is
commonly used to schedule a nightly backup or an hourly cleanup of system files. Many distributions come with some cron
scripts scheduled for execution. The program slocate is often run as a nightly cron to create an index permitting the file system
to be searched quickly. Beowulf users may be unhappy to learn that their computation and file I/O are being hampered by a
system utility that is probably not useful for a Beowulf. A careful examination of cron and other ways that tasks can be started will
help trim a Beowulf compute node.

The ps command can be invaluable during your search-and-destroy mission.
% ps -eo pid,pcpu,sz,vsize,user,fname --sort=vsize

This example command demonstrates sorting the processes by virtual memory size.

The small excerpt below illustrates how large server processes can use memory. The example is taken from a Web server, not a
well-tuned Beowulf node.
 PID %CPU SZ VSZ USER COMMAND
26593 0.0 804 3216 web httpd
26595 0.0 804 3216 web httpd
 3574 0.0 804 3216 web httpd
 506 0.0 819 3276 root squid
 637 0.0 930 3720 root AgentMon
 552 0.0 1158 4632 dbenl postmast
13207 0.0 1213 4852 root named
13209 0.0 1213 4852 root named
13210 0.0 1213 4852 root named
13211 0.0 1213 4852 root named
13212 0.0 1213 4852 root named
 556 0.0 1275 5100 dbenl postmast
 657 0.0 1280 5120 dbenl postmast
 557 0.0 1347 5388 dbenl postmast
 475 0.0 2814 11256 mysql mysqld
 523 0.0 2814 11256 mysql mysqld
 524 0.0 2814 11256 mysql mysqld
 507 0.0 3375 13500 squid squid

In this example the proxy cache program squid is using a lot of memory (and probably some cache), even though the CPU
usage is negligible. Similarly, the ps command can be used to locate CPU hogs. Becoming familiar with ps will help quickly find
runaway processes or extra daemons competing for cycles with the scientific applications intended for your Beowulf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Scalable Services
Modern operating systems take network connectivity for granted, and are almost always configured by default to rely on basic
network services for everything from the correct time of day to DNS name resolution. This can cause performance bottlenecks for
large clusters. Consider a 1024 node cluster launching a job yet configured to use the campus-wide DNS server for resolving
names. Often, as TCP connections are made nodes are configured to do a reverse lookup. This could result in thousands of near-
simultaneous requests to a server that could scale poorly. As mentioned earlier, NFS can also fall in to this category, usually
scaling only to about 64 nodes. NIS can be another potential bottleneck. NIS, the Network Information System is often used to
provide network-shared configuration data, such as password files. Every time a user logs into a node, the computer consults the
remote NIS server. Naturally, spending a few moments to examine the remote services the operating system uses can be
important. Many Beowulf builders simply eliminate, wherever possible, the use of remote services such as NIS for synchronizing
accounts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 Other Considerations
You can explore several other basic areas in seeking to understand the performance and behavior of your Beowulf node running
the Linux operating system. Many scientific applications need just four things from a node: CPU cycles, memory, networking
(message passing), and disk I/O. Trimming down the kernel and removing unnecessary processes can free up resources from
each of those four areas.

Because the capacity and behavior of the memory system are vital to many scientific applications, it is important that memory be
well understood. One of the most common ways an application can get into trouble with the Linux operating system is by using too
much memory. Demand-paged virtual memory, where memory pages are swapped to and from disk on demand, is one of the
most important achievements in modern operating system design. It permits programmers to transparently write applications that
allocate and use more virtual memory than physical memory available on the system. The performance cost for declaring
enormous blocks of virtual memory and letting the clever operating system sort out which virtual memory pages in fact get
mapped to physical pages, and when, is usually very small. Most Beowulf applications will cause memory pages to be swapped in
and out at very predictable points in the application. Occasionally, however, the worst can happen. The memory access patterns
of the scientific application can cause a pathological behavior for the operating system.

The crude program in Figure 3.1 demonstrates this behavior.

#include <stdlib.h>
#include <stdio.h>
#define MEGABYTES 300
main() {
 int *x, *p, t=1, i, numints = MEGABYTES*1024*1024/sizeof(int);
 x = (int *) malloc(numints*sizeof(int));
 if (!x) { printf("insufficient memory, aborting\n"); exit(1); }
 for (i=1; i<=5; i++) {
 printf("Loop %d\n",i);
 for (p=x; p<x+numints-1; p+=1024) {
 *p = *p + t;
 }
 }
}

Figure 3.1: A simple program to touch many pages of memory.

On a Linux server with 256 megabytes of memory, this program—which walks through 300 megabytes of memory, causing
massive amounts of demand-paged swapping—can take about 5 minutes to complete and can generate 377,093 page faults. If,
however, you change the size of the array to 150 megabytes, which fits nicely on a 256-megabyte machine, the program takes
only a half a second to run and generates only 105 page faults.

While this behavior is normal for demand-paged virtual memory operating systems such as Linux, it can lead to sometimes
mystifying performance anomalies. A couple of extra processes on a node using memory can push the scientific application into
swapping. Since many parallel applications have regular synchronization points, causing the application to run as slow as the
slowest node, a few extra daemons or processes on just one Beowulf node can cause an entire application to halt. To achieve
predictable performance, you must prune the kernel and system processes of your Beowulf.

3.5.1 TCP Messaging

Another area of improvement for a Beowulf can be standard TCP messaging. As mentioned earlier, most Linux distributions come
tuned for general-purpose networking. For high-performance compute clusters, short low-latency messages and very long
messages are common, and their performance can greatly affect the overall speed of many parallel applications. Linux is not
generally tuned for messages at the extremes. However, once again, Linux provides you the tools to tune it for nearly any
purpose.

The older 2.2 kernels benefited from a set of patches to the TCP stack. A series of in-depth performance studies from NASA
ICASE [68] detail the improvements that can be made to the 2.2 kernel for Beowulf-style messaging. In their results, significant
and marked improvement could be achieved with some simple tweaks to the kernel. However, most people report that the 2.4
series kernels work well without modification to the TCP stack.

Other kernel modifications that improve performance of large messages over highspeed adapters such as Myrinet have also been
made available on the Web. Since modifications and tweaks of that nature are very dependent on the kernel version and network
drivers and adapters, they are not outlined here. You are encouraged to browse the Beowulf mailing lists and Web sites and use
the power of the Linux source code to improve the performance of your Beowulf.

3.5.2 Hardware Performance Counters

Most modern CPUs have built-in performance counters. Each CPU design measures and counts metrics corresponding to its
architecture. Several research groups have attempted to make portable interfaces for the hardware performance counters across
the wide range of CPU architectures. One of the best known is PAPI: A Portable Interface to Hardware Performance Counters
[75]. Another interface, Rabbit [53], is available for Intel or AMD CPUs. Both provide access to performance counter data from the
CPU. Such low-level packages require interaction with the kernel; they are extensions to its basic functionality. In order to use any
of the C library interfaces, either support must be compiled directly into the kernel, or a special hardware performance counter
module must be built and loaded. Beowulf builders are encouraged to immediately extend their operating system with support for
hardware performance counters. Users find this low-level CPU information, especially with respect to cache behavior, invaluable
in their quest for better node-OS utilization. Three components will be required: the kernel extensions (either compiled in or built
as a module), a compatible version of the Linux kernel, and the library interfaces that connect the user's code to the kernel
interfaces for the performance counters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Final Tuning with /proc
As mentioned earlier, the '/proc' file system is not really a file system at all, but a window on the running kernel. It contains
handles that can be used to extract information from the kernel or, in some cases, change parameters deep inside the kernel. In
this section, we discuss several of the most important parameters for Beowulfs. A multitude of Linux Web pages are dedicated to
tuning the kernel and important daemons, with the goal of serving a few more Web pages per second. A good place to get started
is linuxperf.nl.linux.org. Many Linux users take it as a personal challenge to tune the kernel sufficiently so their machine
is faster than every other operating system in the world.

However, before diving in, some perspective is in order. Remember that in a properly configured Beowulf node, nearly all of the
available CPU cycles and memory are devoted to the scientific application. As mentioned earlier, the Linux operating system will
perform admirably with absolutely no changes. Trimming down the kernel and removing unneeded daemons and processes
provides slightly more room for the host application. Tuning up the remaining very small kernel can further refine the results.
Occasionally, a performance bottleneck can be dislodged with some simple kernel tuning. However, unless performance is awry,
tinkering with parameters in '/proc' will more likely yield a little extra performance and a fascinating look at the interaction
between Linux and the scientific application than incredible speed increases.

Now for a look at the Ethernet device:
% cat /proc/net/dev
Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes
packets errs drop fifo colls carrier compressed
lo:363880104 559348 0 0 0 0 0 0 363880104 559348 0 0 0 0 0 0
eth0:1709724751 195793854 0 0 357 0 0 0 4105118568 202431445
0 0 0 0 481 0
brg0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It is a bit hard to read, but the output is raw columnar data. A better formatting can be seen with '/sbin/ifconfig'. One set of
important values is the total bytes and the total packets sent or received on an interface. Sometimes a little basic scientific
observation and data gathering can go a long way. Are the numbers reasonable? Is application traffic using the correct interface?
You may need to tune the default route to use a high-speed interface in favor of a 10-baseT Ethernet. Is something flooding your
network? What is the size of the average packet? Another key set of values is for the collisions (colls), errs, drop, and frame. All of
those values represent some degree of inefficiency in the Ethernet. Ideally, they will all be zero. A couple of dropped packets is
usually nothing to fret about. But should those values grow at the rate of several per second, some serious problems are likely.
The "collisions" count will naturally be nonzero if traffic goes through an Ethernet hub rather than an Ethernet switch. High collision
rates for hubs are expected; that's why they are less expensive.

Tunable kernel parameters are in '/proc/sys'. Network parameters are generally in '/proc/sys/net'. Many parameters can be
changed. Some administrators tweak a Beowulf kernel by modifying parameters such as tcp_sack, tcp_-timestamps,
tcp_window_scaling, rmem_default, rmem_max, wmem_default, or wmem_max. The exact changes and values depend on
the kernel version and networking configuration, such as private network, protected from denial of service attacks or a public
network where each node must guard against SYN flooding and the like. You are encouraged to peruse the documentation
available at www.linuxhq.com and other places where kernel documentation or source is freely distributed, to learn all the details
pertaining to their system. Section 5.5 discusses some of these networking parameters in more detail.

With regard to memory, the meminfo handle provides many useful data points:
% cat /proc/meminfo
MemTotal: 1032828 kB
MemFree: 24916 kB
Buffers: 114836 kB
Cached: 436588 kB
SwapCached: 58796 kB
Active: 720008 kB
Inactive: 210888 kB
HighTotal: 130496 kB
HighFree: 2016 kB
LowTotal: 902332 kB
LowFree: 22900 kB
SwapTotal: 530136 kB
SwapFree: 389816 kB
Dirty: 64 kB
Writeback: 0 kB
Mapped: 390116 kB
Slab: 57136 kB
Committed_AS: 761696 kB
PageTables: 7636 kB
ReverseMaps: 202527

In the example output, the system has 1 gigabyte of RAM, about 114 megabytes allocated for buffers and 25 megabytes of free
memory. The handles in '/proc/sys/ vm' can be used to tune the memory system, but their use depends on the kernel, since
handles change frequently.

Like networking and virtual memory, there are many '/proc' handles for tuning or probing the file system. A node spawning many
tasks can use many file handles. A standard ssh to a remote machine, where the connection is maintained, and not dropped,
requires four file handles. The number of file handles permitted can be displayed with the command
% cat /proc/sys/fs/file-max
4096

The command for a quick look at the current system is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat /proc/sys/fs/file-nr
1157 728 4096

This shows the high-water mark (in this case, we have nothing to worry about), the current number of handles in use, and the
max.

Once again, a simple echo command can increase the limit:
% echo 8192 > /proc/sys/fs/file-max

The utility '/sbin/hdparm' is especially handy at querying, testing, and even setting hard disk parameters:
% /sbin/hdparm -I /dev/hda

/dev/hda:

 Model=DW CDW01A0 A , FwRev=500.B550, SerialNo=DWW-AMC1211431 9
 Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq }
 RawCHS=16383/16/63, TrkSize=57600, SectSize=600, ECCbytes=40
 BuffType=3(DualPortCache), BuffSize=2048kB, MaxMultSect=16, MultSect=8
 DblWordIO=no, maxPIO=2(fast), DMA=yes, maxDMA=0(slow)
 CurCHS=17475/15/63, CurSects=16513875, LBA=yes
 LBA CHS=512/511/63 Remapping, LBA=yes, LBAsects=19541088
 tDMA={min:120,rec:120}, DMA modes: mword0 mword1 mword2
 IORDY=on/off, tPIO={min:120,w/IORDY:120}, PIO modes: mode3 mode4
 UDMA modes: mode0 model *mode2 }

Using a Beowulf builder and a simple disk test,
% /sbin/hdparm -t /dev/hdal

/dev/hdal:
Timing buffered disk reads: 64 MB in 20.05 seconds = 3.19 MB/sec

you can understand whether your disk is performing as it should, and as you expect.

Finally, some basic parameters of that kernel can be displayed or modified. '/proc/sys/kernel' contains structures. For some
message-passing codes, the key may be '/proc/sys/kernel/shmmax'. It can be used to get or set the maximum size of
shared-memory segments. For example,
% cat /proc/sys/kernel/shmmax
33554432

shows that the largest shared-memory segment available is 32 megabytes. Especially on an SMP, some messaging layers may
use shared-memory segments to pass messages within a node, and for some systems and applications 32 megabytes may be
too small.

All of these examples are merely quick forays into the world of '/proc'. Naturally, there are many, many more statistics and
handles in '/proc' than can be viewed in this quick overview. You are encouraged to look on the Web for more complete
documentation and to explore the Linux source—the definitive answer to the question "What will happen if I change this?" A
caveat is warranted: You can make your Beowulf node perform worse as a result of tampering with kernel parameters. Good
science demands data collection and repeatability. Both will go a long way toward ensuring that kernel performance increases,
rather than decreases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 Conclusions
Linux is a flexible, robust node operating system for Beowulf computational clusters. Stability and adaptability set it apart from the
legacy operating systems that dominate desktop environments. While not a "cancer" like some detractors have labeled Linux, it
has spread quickly from its humble beginnings as a student's hobby project to a full-featured server operating system with
advanced features and legendary stability. And while almost any Linux distribution will perform adequately as a Beowulf node
operating system, a little tuning and trimming will skinny down the already lean Linux kernel, leaving more compute resources for
scientific applications. If this chapter seems a little overwhelming, we note that there are companies that will completely configure
and deliver Beowulf systems, including all the aforementioned tweaks and modifications to the kernel. There are also revolutionary
systems such as the Beowulf software from Scyld Computing Corporation (www.sycld.com). The software from Scyld combines a
custom Linux kernel and distribution with a complete environment for submitting jobs and administering the cluster. With its
extremely simple single-system image approach to management, the Scyld software can make Beowulfs very easy indeed.
Chapter 18 is devoted to a discussion of the Scyld approach.

One final reminder is in order. Many Beowulf builders became acquainted with Linux purely out of necessity. They started
constructing their Beowulf saying, "Every OS is pretty much like every other, and Linux is free... free is good, right?". On the back
of restaurant napkins, they sketched out their improved price/performance ratios. After the hardware arrived, the obligatory
LINPACK report was sent to the Top500 list, and the real scientific application ran endlessly on the new Beowulf. Then it
happened. Scientists using Linux purely as a tool stopped and peered inquisitively at the tool. They read the source code for the
kernel. Suddenly, the simulation of the impending collision of the Andromeda galaxy with our own Milky Way seemed less
interesting. Even though the two galaxies are closing at a rate of 300,000 miles per hour and we have only 5 billion years to wait,
the simulation simply seemed less exciting than improving the virtual memory paging algorithm in the kernel source, sending Linus
Torvalds the patch, and reading all the kernel mailing list traffic. Beware. Even the shortest of peeks down the rabbit's hole can
sometimes lead to a wonderland much more interesting than your own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: System Area Networks

Overview
Narayan Desai and Thomas Sterling

Clusters are groups of machines, meant to be harnessed to perform a task or tasks in parallel. In order for a group to coordinate
itself and efficiently perform a task, the individual nodes in the cluster must be able to communicate with one another. As these
messages are used for synchronization in many cases, the pace of the continued progress of the computation is dependent on
the performance of the communication network.

Networks are among the most important components of clusters. A network is a group of peers that share an interconnection
fabric. These peers are able to use this fabric to communicate with one another. The peers are usually hosts with network
interfaces, and the fabric consists of devices that help to deliver network traffic to the intended receiver.

System area networks vary with respect to bandwidth, latency, scalability, and cost. Network performance determines cluster
performance for many applications. Therefore, the initial choice of a network will affect the usability of a cluster for its entire
operational lifespan.

Another type of network, a storage area network, might also be connected to nodes in a cluster. These networks carry I/O traffic to
remote storage resources. Unfortunately, these networks carry the same acronym as system area networks, leading to some
confusion. Storage area networks are discussed in Chapter 19; we concern ourselves only with system area networks, although
these networks share many characteristics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Network Hardware
Networks are composed of a several types of components. First, there are the nodes (or peers) on the network. Each of these will
have one or more network interface card on its I/O buses. The term "card" is figurative in some cases; network interfaces have
been integrated into many motherboards in recent years. Every interface will be connected to the network fabric by a network link.
The network fabric is composed of some number of network devices, interconnected into some topology. The functionality and
performance of networks are composites of particular components used.

4.1.1 Host Interfaces

All peers in a network must have an interface into the network itself. These interfaces usually take the form of add-on network
peripherals. These network interface cards (NICs) are usually I/O boards that plug into the system. On PC hardware, the most
common bus type is PCI (or its newer replacement, PCI-X).

The function of these NICs is to allow nodes on the network to send and receive messages on the network. In order to support
these operations, NICs have several parts. One component is hardware that interfaces with the physical layer of the network, the
wires that carry data in a network. This hardware will work with either copper or fiber physical layers. It can convert messages from
data used on the NIC and in the host stack to wire format messages for transmission, and provides the reverse functionality for
message receipt.

Another portion of the NIC performs a similar task for the I/O bus. For the purpose of simplicity, we will assume the NIC in
question is PCI based. In order for applications running under the host operating system to transmit a message, the message data
needs to be copied to the NIC from the application so that the actual message can be prepared for transmission. This copy is
done over the PCI bus from the system's main memory. So this second part of the NIC is responsible for collecting data from the
PCI bus for network transmission and transmitting data received off the network over the PCI bus to the system main memory.

All network access on a peer will go through a NIC. This means the rate at which data can be transmitted is limited by the rate at
which data can be copied into and out of the NIC via the I/O bus, and it is also limited by the rate at which the NIC can transmit
and receive data from the network. In the days of 100 Mbps Ethernet, the link speed of links connecting nodes to the network
were typically the limiting factor in hardware performance. At this point, high-end network vendors are able to nearly saturate even
the fastest of I/O buses available.

4.1.2 Network Links

Network links are the channels connecting interfaces to devices and interconnecting devices. The link medium affects several
other properties. Fiber and copper are typical link media. Link speeds vary widely; 10 and 100 Mb (Megabit, not to be confused
with MB, or MegaByte) Ethernet is still in common use, running at 10 and 100 Mb/s, respectively. Current-generation high-end
interconnect links function at rates in excess of 2–3 Gb/s. Emerging technologies, like 10Gb Ethernet and 4X Infiniband feature
link speeds near 10 Gb/s.

Some network links are full duplex. If a link is full duplex, no action of two devices on the network segment can cause a collision
on the link. If a link is half-duplex, or not full duplex, multiple hosts' simultaneous transmission can cause a collision. Collisions
cause a few types of performance degradation. First, the average latency of messages varies with the overall usage of the
network, since messages will frequently need to be retransmitted, or will have to wait before transmission can occur. Second, the
aggregate bandwidth available to the entire network is lower because of the cost of collision detection and retransmission. Also, in
a network featuring half-duplex links there will typically exist a single collision domain. This means that the amount of bandwidth
available to all hosts is that of a single link. This is undesirable when compared with switched, full-duplex network that provide up
to full bandwidth of all links.

We note that the ability to operate in either full or half duplex mode for any link in a network is governed by the devices at either
end. Some devices are limited in terms of supported operational modes. Hubs are unable to function in full-duplex environments
due their basic design. Some Ethernet interfaces are unable to run in full-duplex mode. All Ethernet devices, by specification are
able to run in half-duplex mode.

4.1.3 Network Devices

A network device is hardware that interconnects some number of network links. The network device uses one of a number of
algorithms to process and forward the traffic between hosts. The style of traffic forwarding affects the properties of the whole
network greatly; different algorithms yield different behavior of the network under load. These devices also vary widely in terms of
media, performance, and price.

The two main classifications of network devices are hubs and switches. Hubs implicitly contain a single broadcast domain. That is,
any traffic received on any port is transmitted to all other ports on the switch. All links connected to these devices are half-duplex.
These are typically among the least expensive network devices. They were most common in the days of 10 and 100 Mbps
Ethernet. Gigabit hubs are unheard of. Hubs will only function with network link types that allow for contention. Ethernet does this,
though many other networks currently in use do not. This sort of contention detection and correction come at some cost. When all
of the links connected to a hub are suffering from contention simultaneously, the aggregate bandwidth available to clients drops to
about 35%. As we mentioned previously, hubs cannot use full-duplex links, due to their basic design. For this reason, hubs are
less desirable in the cluster environment.

Switches have become the standard network device in the last few years. This has occurred because of their plummeting cost and
performance benefit. Ethernet switches maintain network state information that maps known Ethernet hardware addresses to the
port they were last seen on. This means that when a packet is processed by the switch, the switch will have only have to flood
(broadcast on all links) the first packet; the client's response will cause an entry to be created in the MAC address table of the
switch and all subsequent packets will be directly forwarded to the proper port. This approach is extremely effective in small
environments. A relatively small number of packets are flooded allowing all links to be used efficiently. The switch is able to cache
near complete network state and the network can be near-optimally used. In more complex networks, the simplicity of this
approach makes it difficult to get as good performance as one might want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many switches have limitations in terms of the quantity of traffic they can process. This limit is described in one of two ways. The
term backplane bandwidth is used to describe the aggregate amount of bandwidth a switch can handle at once. For example, a
switch that has a backplane bandwidth of 16 Gbps is able to process the load generated by 16 clients each with a 1Gbps NIC.
The other way this capacity is described in specifications is in packets per second, or PPS. Also, a switch may be said to be non-
blocking. This means that any configuration of clients that can be connected can be supported by the switch without packet loss
because of internal bandwidth limitations. The backplane bandwidth in these cases is higher than the sum of the individual
bandwidths of all links in the network.

In complex networks, many network switches will be interconnected. This is required because of the bandwidth and port counts of
single switches. In large configurations, multiple switches must be used in conjunction to provide enough capacity. All clients on
one switch will be limited to the link speed of the connecting link when communicating with clients on another switch. For this
reason, switches are typically connected with multiple links. This allows for more packets to be exchanged by clients on different
switches. This is referred to as trunking, or link aggregation.

The algorithm used to forward packets in Ethernet switches has been modified to allow for multiple link channels. These channels
are treated like normal links. A variety of hashing algorithms are used to distribute the network traffic across the underlying links.
Many of these algorithms use peer configuration information, like IP address or NIC hardware address. Many of these hashing
algorithms do not work very well in cluster environments because of the uniformity in hardware and software. In most clusters,
hosts are configured with sequential IP addresses. Also, most clusters also have homogeneous hardware. It is not uncommon for
cluster nodes to have sequential, or at least very similar NIC hardware addresses. Both of these facts make many hashing
algorithms suboptimal in clusters. Round-robin hashing algorithms distribute traffic well, but tend to cause packet reordering to
occur. This causes problems in higher layers of the network software. Because of these problems, Ethernet switch complexes
tend to be reserved for network-intensive tasks in smaller environments. In small environments, clients will have good connectivity
to a large fraction of the system because of a shared switch. In larger configurations, inter-client connectivity is diminished
because inter-switch connectivity is typically poor.

In order to address these sorts of problems in large switch complexes, some vendors, such as Myricom, use source routing. This
means that each packet handled by the network will contain a complete route to its destination. If packets contain this information,
the switch needs to simply use the stored route to forward the packet to the next hop in the stored route. This is a more scalable
approach, because the switches process traffic identically whether there are 2 or 1024 nodes in the network. On the other hand,
the clients need to do a lot more work. Each client needs to maintain a set of routes to all other clients in the network. This can be
a complicated task; it involves complete knowledge of the whole network topology. However, it allows more flexibility for the clients
of the system. This leads to better network performance overall, especially on large systems.

4.1.4 Topology

Many small cluster networks are extremely simple, consisting of a single network device and a number of clients. This
configuration is advantageous in the following way. A single network device, by definition, needs to connect to other devices in the
network. This means that all hosts are equally well connected to all other hosts in the system. There are no issues of traffic
distribution as discussed previously. The MAC address-based forwarding scheme described previously for Ethernet switches
works beautifully. Hardware performance in these configurations is typically governed by the performance of the single switch.

Once multiple switches become involved, things become more complicated. Hosts on the same switch enjoy lower latency to one
another than hosts on different switches do. All of the switches need to be inter-connected. Depending on the network topology,
packets may be handled by multiple switches during delivery. Depending on the particular case, packets may even by handled by
all switches.

Multiple network links may be aggregated in order to improve connectivity between switches. Traffic needs to be distributed across
these links. If these switches are multiply-interconnected, the path from any given host on the network may not be fixed any more.

The topology of the system will impact the overall performance of the network for clients. The primary metric of this is bisection
bandwidth. Bisection bandwidth is the maximum amount of bandwidth that an arbitrary half of nodes on the network can use to
communicate with the other half. In simpler networks, this is usually determined by finding the limiting factor in communication
between two regions in the network. In a single switch case, this is usually the backplane bandwidth of the switch. In a multiple
Ethernet switch case, this is usually the set of uplinks between switches.

Complex networks are usually built in order to provide full bisection bandwidth to cluster nodes. This means that any half of the
network can communicate with its conjugate at line rate; i.e., the network itself doesn't limit communication between any set of
nodes in the system. In small configurations, this task can be achieved with a single switch. Once the network outgrows a single
switch, topology becomes more complicated. These configurations are composed of two types of switches. Some switches
connect clients to switches. Others only connect switches to other switches. On any switch connected directly to clients, one port
must be connected to another switch for each port connected to a client. This is required to allow data to flow between clients
connected to different switches. Switches connected only to switches are used to distribute traffic between the switches connected
to clients. As these configurations get larger, the second category of switches grows in size quickly. In larger configurations, half or
more of the ports available on switches are used as inter-switch links, not as client ports.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Example Networks
The networks used in clusters vary greatly based on the users' particular needs. The following are example networks (from a
hardware perspective). The first example is an inexpensive Ethernet network for use in a small cluster (< 32 nodes). The second
example is an Ethernet network with moderate bisection bandwidth.

4.2.1 Single Switch Ethernet Network

In Figure 4.1, we show a simple cluster network, consisting of a single switch and 8 cluster nodes. This is probably the most
common network configuration for clusters. The performance is generally governed by a combination of network link speed, and
aggregate backplane bandwidth of the switch.

Figure 4.1: A simple cluster network.

4.2.2 Multiple Switch Ethernet Network

In Figure 4.2, we show a slightly more complicated cluster network, consisting of two switches and 16 cluster nodes evenly
distributed across the switches. The performance of this configuration is dependent on more factors than the previous example. In
this case, it is limited by a combination of link speeds, backplane bandwidth of both switches, and the effectiveness of the hashing
algorithm used to aggregate the 4 uplinks between switches. This may seem like a similar performance limit to the previous
example, but in these multi-stage switch networks, single switch limitation are aggregated non-linearly based on system usage.

Figure 4.2: A complex cluster network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Network Software
In order for applications to use the network, applications need to access the network via a set of software. This software stack will
provide a range of functionality, and will exist in a number of forms. At the highest level, there are communication libraries, for
example, MPI implementations. These are typically used by applications because they provide a transport and platform
independent interface to communication. (These libraries won't be discussed in detail in this chapter; see Chapters 8–11 for
details.) At a slightly lower level, protocol stacks are used. These protocol stacks provide transport properties like reliable
message delivery, ordered message delivery, message framing, and flow control. The lowest level of network software is the
driver layer. Network drivers interact directly with network interfaces to control transmission and receipt of packets on the network.

4.3.1 Network Protocols

Network protocols are a series of procedures used to setup and conduct data transmissions between a group of machines. Such
protocols abstract the physical transmission medium to provide some portability to applications. Protocols are used to provide
various properties to network communications sessions. Note that not all protocols provide all of these properties, and the
following list is by no means exhaustive.

Media contention: work around collisions and other physical errors.

Addressing: A station addressing scheme that is network layer independent.

Fragmentation: A means to break down messages into smaller pieces (called datagrams) for transmission, and
reassemble them at the receiver.

Reliable delivery: A means for the client to determine if transmission completed properly or an error has occurred.

Ordered delivery: Messages are delivered in order to the application from end to end.

Flow control: Transmission can be slowed to improve performance or prevent the exhaustion of resources at the
destination or along the route to the destination.

Most applications will actually use a combination of network protocols in the course of communications. This means that all
protocols do not need to provide all of the above properties. For example, the IP protocol only provides an addressing scheme
and message fragmentation: the IP protocol provides an addressing scheme that allows a message to be delivered to another end
station and that it is fragmented and reassembled if necessary. Most IP applications also use either TCP or UDP. TCP is used
when reliability and ordered delivery are desired. The following are descriptions of a number of common network protocols and the
properties they implement.

Ethernet provides media collision detection and avoidance. The Ethernet protocol also provides an addressing scheme. Each
client uses a 48-bit address, assigned by the vendor of its network interface.

IP is a protocol that provides the features of addressing and fragmentation. Addressing is implemented in the following way. Each
client address has a 32 bit address, broken into a network address and a host address. Network addresses are used to route
packages from one network segment to another. Fragmentation is implemented using a identification field in the header. IP also
includes a header field that specifies the transport layer protocol as well. This will in most cases be either TCP or UDP, but other
protocols can be used as well.

The IP protocol must be adapted to the underlying physical network type. IP addresses must be able to be mapped to physical
network addresses. In the case where IP is used on top of Ethernet, the address resolution protocol (ARP) is used to determine
the Ethernet address of the intended recipient. This process consists of a broadcasted query for the MAC address of an IP
address. The owner of that IP address will respond with the MAC address. This value is cached. At this point, IP can be used on
top of Ethernet transparently. See Section 5.2 for a more detailed discussion of IP, TCP and UDP.

TCP specifies a set of steps required to establish a communication session. Once this is established, it provides reliable, in-order
delivery of messages.

UDP provides about the same functionality as IP. It is generally used so that an application can implement its own network
protocol for reliable delivery of messages. UDP is also used in cases where reliable message delivery is not as important as low
latency or jitter. UDP is frequently used for streaming audio and video.

GM is the driver, firmware, and user-space library used to access Myrinet interfaces. It provides all of the properties necessary to
use the network for reliable communications. Addressing is implemented in GM using interface hardware addresses and a routing
table that exists on each node. This routing table has a set of source routes for all nodes on the network. Fragmentation is not
necessary, as GM messages are not limited in size. GM also implements reliable, in-order message delivery. Because of the
switched nature of myrinet switch complexes, media contention is not an issue.

The kernel driver providing support for GM on Myrinet interfaces also provides Ethernet emulation. This means that protocols like
Ethernet and IP (TCP and UDP) can be run over Myrinet hardware.

4.3.2 Network Protocol Stacks

Network protocol stacks are the software implementations of the network protocols mentioned in the previous subsection. These
implementations are typically operating system specific. Many of these are implemented inside of the kernel, but this is not
universally the case. These stacks provide a syscall interface for user-space programs. The most common example of this
interface is the socket interface used by all IP-based protocols. An application will set up a socket, and then send and receive data
using this socket. All of these function calls are implemented as system calls. The network stack uses network drivers to actually
send and receive data. The purpose of the syscall layer is to provide portability between different implementations of facilities
provided by the kernel. This layer is tightly coupled with network drivers, as it is the sole consumer of their functions.

4.3.3 Network Drivers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network drivers are the software that allows network interface hardware to be used by the kernel, network protocol stacks, and
ultimately user applications. Network drivers have a few responsibilities. First, the driver will initialize the network card, so that it
can be enabled. This setup consists of internal setup like on-card register initialization, but also includes external setup like link
auto-negotiation. After these steps are complete, the network hardware should be initialized. This does not mean the interface is
completely configured, as some configuration processes like DHCP use the network interface itself to configure settings like IP
addresses.

The driver also provides functions necessary to send and receive packets via the network. The send functions are typically called
from a protocol stack. The set of transmission steps is as follows: an application makes a system call, providing data to be sent.
This data is processed by the network protocol stack. The protocol stack calls functions provided by the driver to copy the data
across the I/O bus and actually transmit the data.

When receiving data, the network interface will receive data from the network. It will then do some amount of processing of the
data. This processing varies from card to card. Some cards implement parts of the protocol stack in hardware in order to improve
performance. When the card is finished processing the packets received from the network, it causes an interrupt. This causes the
kernel to call functions defined in the network interface driver. These functions are called interrupt handlers. An interrupt handler
will copy the data from the network interface to system main memory, via the I/O bus. At this point, the network protocol stack
finishes processing the packets, and copies the data out to the application.

The process of servicing interrupts is very invasive; it typically causes other operations to be preempted. Under high network
receive load, this causes the primary computational task of the system to be frequently stopped. As context switches are not free,
this constant switch comes at a high performance price. In order to address this issue, most high-end (gigabit and custom
network) NIC manufacturers have implemented interrupt mitigation, or coalescing strategies. This means that the NIC will buffer
some number of processed packets before issuing an interrupt. This means that instead of interrupting after every packet is
processed, the NIC may only issue an interrupt after 10 or 100 packets. This allows the spend less time switching between the
network and computational task, and more time executing the user's application. See Sections 5.5.4 and 5.5.5 for more
information about driver performance settings and techniques.

4.3.4 Network Software In Action

In general, cluster use is characterized by the execution of parallel applications. These applications consist of many instances of
the same application, running on multiple cluster nodes simultaneously. These instances of the application use the system area
network to communicate. These messages are typically used for coordination between instances of the parallel application.

When communication occurs, a complex series of actions is performed. First, the application makes a library call to initiate
message transfer. This call usually does a variety of things; it will frame the message and potentially split the message into
multiple packets if the message size is too large. At this point, the packet is passed to the network driver stack. The data is
transferred across the I/O bus to the NIC.

The network controller transmits the packets to the network controller on the intended recipient. The packet reaches receiving
network controller, where it is processed by the hardware and processed by the network driver stack. These packets are
reconstituted into the original message by the protocol stack, and this message is passed to the application when if calls a receive
function in its messaging library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Performance
As was mentioned earlier, clusters are built in most cases to harness the resources of many machines to solve a single problem.
In order for any problem to be solved on many hosts in a faster time than the single machine execution time, these hosts need to
coordinate.

During application execution, this coordination takes the form of messages transmitted from one node to another. The
communication patterns of these messages vary widely; some programs will spend most of their execution time performing
computation, with very occasional messages reporting results and receiving a new assignment. This sort of program will typically
perform independently of network performance. Other programs are constantly communicating between the parallel processes;
small variances in network performance can cause huge differences in application performance in these cases.

4.4.1 Hardware Performance

Network performance can be characterized in terms of three basic metrics: latency, bandwidth, and topology. Latency is the time
for a message to travel from the sender to a receiver via the network. Bandwidth is the rate at which data can be transmitted. The
topology of the network is the underlying "shape" of the network. These attributes are the key determinants of network-based
application performance for all applications. However, the nature of the application determines which of these attributes, if any,
are important with respect to performance. Section 1.3 introduced the analysis of application performance with respect to latency
and bandwidth in abstract terms; in this section we'll discuss these from the standpoint of the network hardware.

Latency is the measure of time for a message to transit the network from a sender to a receiver. Latency is important to
application performance for a number of reasons. Whenever synchronous communication occurs, the receiver is waiting for
messages to arrive. Fundamentally, this is the speed at which nodes in the cluster can coordinate themselves during a parallel
computation. Application latency can range from upwards of 100 microseconds down to approximately 4 microseconds.

Bandwidth is the most straightforward metric of networks. It is the rate of data transmission. This is also an extremely important
metric, as it governs how fast data can be exchanged between nodes.

There are many types of descriptions of bandwidth in a system, so some clarification is necessary. A network is composed of
nodes with network interfaces, a set of switches, and network links connecting these parts together into some topology. All
components in this system have individual bandwidth limitations, so determining what the actual available network bandwidth can
be tricky. Also, as all of these function as limiting factors, many factors must be considered together in order to form a complete
picture of available network bandwidth.

The most common network bandwidth quoted is the bandwidth of an individual link in the system. For example, gigabit Ethernet
networks are composed of links running at 1 gigabit per second. Current generation single link bandwidths currently range from
100 Mbps (12.5 MB/s) to nearly 4 Gbps (500 MB/s). In the next year, products featuring link speeds between 4–10 Gbps are
expected. It is worth noting that some network interfaces include multiple links in order to increase the available aggregate
bandwidth.

Bandwidth available within network switch complexes also effects the usable bandwidth for nodes on a network. In a network
composed of a single switch, the switch backplane bandwidth is an important factor. Backplane bandwidth is how much traffic the
switch can handle simultaneously. Some switches, typically cheaper ones, are also limited in the number of packets per second
(PPS) they are able to handle. While all of the links will still run at full speed, these two limitations cause packets to get dropped
within the switch itself.

Bisection bandwidth is the other important measure of network bandwidth. Bisection bandwidth is defined as the minimum of the
aggregate bandwidth between any two halves of a system. When communication is occurring between a number of stations on
the network at the same time, contention inside of the switching complex can reduce the bandwidth available to communications
regardless of the speed of links in the network. In many cases, individual links may not be usable because of a lack of available
bisection bandwidth.

4.4.2 Software Performance

Network software is essentially responsible for moving data from system main memory to the NIC for transmission, and vice
versa. This involves translating data into a format suitable for transmission, and translating data back from this formate upon
receipt. Performance in this process is limited by a few factors. The first of these is the use of data copies in libraries and protocol
stacks. In many cases, data starts in the user application, where it is copied into the network stack and processed. After this has
completed, the data is copied across the I/O bus and is transmitted. In the case of inbound messages, data is received on the
NIC, copied across the I/O bus into the network stack, processed, and finally copied into the application's memory.

A more optimized scheme would be to copy data directly from application memory to the NIC for transmission. This would avoid
one of the copies mentioned in the previous scenario for each direction. This has been implemented in two ways. The first is user-
level networking. In this case, all networking code exists in the user application; kernel facilities are used only to access the NIC.
The other way to implement this is to use NICs with hardware network protocol processing support. This allows the NIC to process
packets into an application usable form without involving the kernel at all.

Another performance problem is caused by the network stack's usage of the system CPU for computationally intensive tasks. One
example of this is computation of TCP checksums. The performance of early generation gigabit Ethernet NICs were severely
limited by the ability of the system CPU to compute TCP checksums quickly enough. Moreover, this computation also hampers
the node's ability to perform its primary computational tasks, like the execution of user applications. This problem can only be
solved by the addition of NIC support for network protocol processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As we mentioned previously, performance problems are caused by the frequent generation of interrupts during the usage of high
speed network interfaces. Any time an interrupt is received, the current running task is stopped, causing a context shift. If this
occurs every time a packet is received on the network, the host CPU will spend all of its time context shifting, without
accomplishing much in between. NIC hardware assistance can help with this issue in two ways. Interrupt coalescing helps with
this issue quite a bit. However, even when using interrupt coalescing, interrupt load scales with the number of packets received,
not with the number of messages received. If more network protocol processing can be done in hardware, the host CPU will get
interrupted less often, with more benefit.

Many of these issues have been addressed in both software and hardware. High end NIC manufacturers have begun addressing
these issues, interconnect vendors more so than Ethernet NIC vendors. Myricom already addresses most of these issues in their
software releases, because their hardware already supports these features. More details on tuning network software are
presented in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Network Choice
Choosing the appropriate system area network for a cluster can be complicated process. Two factors weigh heavily in this sort of
decision. The first is cost. Realistically, most clusters are built with a fixed budget. This means that a higher-priced, higher-
performance network will probably come at the cost of needing to purchase a smaller cluster. In many cases, specialized network
interconnects can cost upwards of $1000–2000 per node. At this point, this cost approximates the cost of a high performance
compute node. This means that building a high-performance network can reduce the cluster size by a factor of two, when working
with a fixed budget. As we saw in Section 1.3.6, a high-performance network can be a very reasonable use of resources because
of the greatly improved performance it can provide.

Another important factor is the performance of the network, and accordingly, the cluster itself. Many applications need particular
performance properties to function effectively. Serviceability is a third concern. When the scale of a cluster increases beyond 32
or 64 nodes, many low-cost solutions become quite unwieldy, and result in largely unusable clusters. Fundamentally, all of these
factors are pieces of the same puzzle: how to get the best value out of a cluster for its intended uses.

If a cluster is being built for a small number of applications, thorough application benchmarking is in order. The spectrum of
communication patterns exhibited by application ranges from occasional communication from one node to another, to consistant
communication from all nodes to all other nodes. At one extreme are applications that behave like SetiAtHome, wherein compute
nodes will infrequently query a master node for a work unit to process for hours or days. At the other extreme are many scientific
applications, where nodes will be in constant communication with one or more other nodes and the speed of the computation is
limited by the performance of the slowest performing node. As is obvious from the communication pattern description, basically
any interconnect would perform admirably in the first case, while the fastest interconnect possible is desirable in the second case.

The range of network options available to clusters ranges from the integrated Ethernet that is included with nearly any computer
sold today, to higher speed interconnects with substantially higher costs. Performance varies greatly between these options.
Integrated gigabit Ethernet will typically provide 100 MB/s of bandwidth, with latencies measured in the tens to hundreds of
microseconds. Cluster interconnects generally provide five to ten times the bandwidth, providing latencies in below ten
microseconds. As with many of the technologies described here, the state of the art is a fast moving target. Precise high-end
performance figures would be out of date within months; check online sources for up to data figures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Configuring and Tuning Cluster Networks

Overview
Daniel Nurmi and Brian Toonen

Cluster network configuration is a commonly overlooked aspect of many cluster design issues. Although designers think about
details regarding the required network hardware, they frequently overlook the network design until after the cluster is installed and
users start running code on the system.

The cluster network, the topic of this chapter, is most simply defined as the methods employed to connect various cluster entities
via networks. This high level definition leads us to consider equally high level issues of node connectivity, node visibility, and
cluster networking services. We will quickly discover that these seemingly simple issues encompass more complex topics, such as
how cluster users interact with the machine, how security requirements imposed on the system impact the network design, and
how application performance varies based upon the cluster network design. The methods used to handle these issues are
implemented in the cluster network design, which we define as an administrative network topology imposed on the cluster to
organize security, performance, and usability policies.

This chapter aims to bring the concept of cluster network design and tuning to the forefront of cluster designers' minds during the
design phase. Fundamentally, we hope to leave the reader with the sense that a cluster's network design heavily impacts its core
operation.

The rest of this chapter is arranged in the following manner. First, we will introduce some important issues that face the cluster
designer and show how these issues can be directly affected by the choice of network design. Next, we introduce some
fundamental concepts that will be used throughout the rest of the chapter, such as the Internet protocols and simple Linux
networking concepts. Then, we will construct a simple cluster from the leftmost side of the cluster network design continuum (fully
connected, fully visible). We will cover some of the most fundamental configuration issues involved by taking some machines and
setting up the network and network services so that the machines act as a cluster running parallel codes. We then use this
theoretical system as a vehicle to introduce the concepts of performance and security optimization techniques. We conclude with
a brief discussion of diagnosing and correcting network problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Cluster Network Designs
Just as many styles of node and network hardware exist, so do a wide variety of cluster network designs. To understand why such
variety exists is to understand how the choice of network design directly affects the operation of the cluster as a whole. In general,
the motivation for such variation comes from the striving to achieve a perfect balance of usability, performance, and security. As a
result, the cluster designer has realized that network design impacts all of these in important ways.

5.1.1 Impact of Network Design

Although it would be impossible to fully enumerate how a cluster network design impacts the overall look, feel, and operation of a
cluster, there are some key aspects that are directly and substantially affected.

One of the first issues affected by the cluster network is security. Questions include how secure the system is from outsider
attacks, how we maintain security over time, and how the cluster fits within institutional security requirements. The cluster network
design should directly address all of these issues since the primary security defenses are often implemented inside the
institution's network itself.

The cluster's usability is defined by how users interact with the system and what types of applications will use the cluster.
Application requirements impact every aspect of the cluster design, and the cluster network is no exception. If the cluster is
designed to run a single application, the designers can make very focused decisions about how the user(s) can employ the
machine. If the cluster is meant to be a general resource for students, researchers, etc., then intuitiveness and ease of use must
be considered.

Finally, we cannot overlook the impact of the cluster network design on application performance. The cluster network may impose
bottlenecks that could limit the performance of an application. The designer must be aware that some decisions, while bolstering
the security and usability of the cluster, can seriously impact the performance of applications.

5.1.2 Example Designs

Over time, cluster network designs have evolved from simple networks of desktops and servers. Modern designs focus more on
the specific realm of high performance computing and thus often mirror network designs that large site administrators have been
employing for years. The cluster community has built upon this substantial groundwork to generate a wide variety of network
topologies. As we examine some common network designs, we should remember that the examples are a small subset of the
many possibilities. For each of the following design descriptions, we could imagine a dozen permutations, each having a different
positive or negative impact on overall cluster issues.

The first, and probably the simplest, style of cluster is the fully connected system. In this case, all nodes in the system, as well as
any front end servers or login machines, are simply connected to the Internet the same way as any non-cluster server or
workstation. The major benefit of this design is obvious: very little work is required to initially bring the system online. While the
simplicity of such a design is attractive, the users and administrators of these systems must constantly be aware of all the
implications. Security, for instance, will be a major concern. Although each node is easily accessed by legitimate users and
administrators from anywhere on the Internet, each system is equally accessible to malicious outside attackers.

A simple optimization would be to reduce the number of systems visible to the Internet. Such a system would have a publicly
available front end login machine, with all other nodes hidden behind a firewall and only visible from that front end machine. A
user would log into the front end and then have access to cluster nodes. Although such a design provides tighter system security,
we still have a machine visible to the Internet. Internet visibility is inherently problematic, but certainly does not make the system
impossible to tightly secure. One interesting disadvantage of this design is that users whose work requires compute resources to
be Internet accessible are unable to use such a system.

Going one step further, measures could be taken to completely block all access to compute nodes, even from the user. The user
would log into a cluster front end (login) machine and would perform local operations such as compilation or preliminary testing.
When the user's program is ready to be run on the cluster, it is submitted as a job to the cluster scheduler. When sufficient
compute nodes become available, the scheduler runs the job on the user's behalf. Notice, in this design, the cluster nodes are
never directly accessed by the user. The nodes are therefore completely hidden to all entities except the scheduler and other
cluster services. We further could extend this concept by disallowing users access to the front end machine. Instead, the cluster
would only accept jobs from a meta scheduler.

One interesting design simulates a large multi-processor computer with a single system image on a Linux cluster. By running
custom operating systems, nodes become nearly invisible to users or outside influences. On such a system, users would employ
an OS level mechanism present on the login machine (which may or may not be externally visible) to run processes on the cluster
compute nodes. The biggest advantage of this design is ease of use for the application user. The user interface to a single system
image avoids the common problems of managing remote processes. Disadvantages may arise when a user needs direct access
to the compute nodes, which is prohibited by the nature of the system.

Cluster designers have put tremendous efforts into creating network topologies suited to their individual needs. Many designers
have made their experiences and technologies available for other cluster designers to use. For some real life examples of cluster
designs, see Chapters 6, 18, and 20.

Armed with an awareness of various cluster network configurations, as well as some of the most importantly impacted issues, the
cluster designer can embark on designing a network that optimally addresses individual needs. However, knowing the issues and
possibilities at hand is only the first step. We must understand the simplest case of cluster network designs and some of the
concepts surrounding their construction. In the sections that follow, we introduce customary communication protocols and give a
short overview of Linux networking concepts and services, before delving into the construction of a simple cluster network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Internet Protocol Stack
Simple Beowulf clusters are built with commodity networking hardware, typically Ethernet based, and communicate using standard
networking protocols such as TCP/IP. Before examining UNIX networking concepts and services, as well as the configuration of a
simple cluster, it is important that you understand the protocols involved in network communication. Understanding the protocols
will be necessary when performing advanced configuration, troubleshooting problems or attempting to improve performance.

Networking protocols are built, at least conceptually, in layers. Figure 5.1 depicts the layers involved in TCP and UDP
communication. In the paragraphs that follow, we will describe the layers from the bottom up, focusing on details important to our
later discussions. While a full discussion of IP networking is beyond the scope of this chapter, the interested reader will find that
[28, 110] discuss the topic in great detail. In addition, a more general discussion of network hardware, software, and protocols can
be found in Chapter 4.

Figure 5.1: Layering of network protocols

A combination of the network interface card and the associated driver is responsible for sending frames out to other devices on
the local area network. The maximum amount of data that can be placed in a frame is otherwise known as the maximum
transmission unit (MTU). The MTU for an Ethernet device depends on which specification the device implements, but most
devices have a MTU of 1500 bytes. Some newer Ethernet devices can be configured to send and receive jumbo frames, resulting
in a MTU as large as 9000 bytes. Jumbo frames and their implications will be discussed further in Section 5.5.4.

The Internet Protocol (IP) is the building block for TCP and UDP. IP is a communication protocol for transferring messages known
as datagrams between machines, even machines on different networks. An IP datagram consists of a header plus data. The
header contains, among other things, the addresses for the source and destination machines and the length of the datagram (in
bytes). The destination address is used by special network devices known as routers to forward (or route) the datagram between
networks until the datagram reaches its destination. Section 5.3.1 contains a more detailed discussion of IP addresses and
routing.

The length field of the datagram header is only 16 bits wide. As a result, the combination of the datagram header and data can be
at most 65,535 bytes in length. However, as you might have guessed, IP datagrams are transmitted on the underlying network
using frames, a network whose MTU is generally much smaller 65,535 bytes. To solve this problem, IP datagrams larger than the
MTU are fragmented into a series of IP packets and reassembled by the receiver. In addition, fragmentation may occur if a packet
is routed through any network having a smaller MTU.

IP is what is known as an unreliable, unordered, and connectionless protocol. Unreliable suggests that datagrams sent using IP
may not arrive at their destination. Although the protocol makes every effort to deliver the datagram, network misconfiguration,
resource exhaustion, or outright failure may result in data loss. Unordered indicates that datagrams that do arrive at their
destination may arrive in a different order from the one in which they were sent. And finally, connectionless implies that no state is
maintained at the sender or the receiver between datagrams.

The User Datagram Protocol (UDP) is a thin layer on top of IP. Like IP, UDP is unreliable, unordered and connectionless. The
primary contribution of UDP is the addition of ports. IP only identifies the source and destinations machines, not which application
or service was involved in the communication. The port is an integer identifier that allows multiple flows of communication to exist
between a pair of machines and ensures that the datagrams are delivered to the appropriate application or service.

The Transmission Control Protocol (TCP), also layered on top of IP, is substantially more complex that UDP. TCP provides a
bidirectional connection over which a stream of bytes is reliably communicated. Like UDP, TCP uses ports. A connection is
uniquely identified by a four-tuple (source address, source port, destination address, destination port). Using this four-tuple, the
TCP layer can locate the structures maintaining the state of the connection.

With TCP, data in the stream is divided into segments for transmission. These segments, plus a TCP header, are encapsulated
into an IP datagram. To avoid fragmentation, which can adversely affect performance, the maximum segment size (MSS) is
advertised when the connection is formed so that the segment data plus the TCP and IP headers do not exceed the MTU of the
underlying network. On a local-area network (LAN), the MSS can be computed by subtracting the size of the TCP header from the
network device's MTU.

TCP connections that reach outside of the LAN are more difficult as the MTU of all the networks involved is unknown when the
connection is formed. In this case, most TCP/IP implementations assume an initial MTU of 576 bytes, unless an alternative value
is specified by the system administrator. A discovery process is then employed to determine a MTU that is acceptable for all
networks involved in the connection. Since the primary focus of this chapter is the cluster network, a discussion of wide-area
network MTU discovery is unwarranted. However, the interested reader will find introductions to the topic in [28, 110] and a
detailed discussion in [74].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TCP uses a coupling of positive acknowledgments and a sliding window protocol. Positive acknowledgments and data buffering
along with timeouts and retransmission provide the reliability. The sliding window protocol allows the sender to have multiple
unacknowledged segments outstanding, substantially increase throughput. Additionally, the protocol provides the receiver with the
ability to advertise the amount of buffer space available at its end of the connection. By knowing the amount of available space at
the receiver, the sender can avoid transmitting more data than can be accommodated by the receiver. This is known as flow
control. More detailed discussions of these topics, and TCP as a whole, can be found in [28, 110, 87].

This concludes our high-level overview of the Internet Protocol stack. Building and operating a Beowulf cluster by no means
necessitates mastering these protocols; however, a basic understanding is required. After all, it is these protocols that enable
network communication. In the coming section, we will discuss a series of networking concepts and services which are built upon
these very protocols.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Networking Concepts and Services
Before constructing a cluster, it is important to understand the concepts and services that are involved in UNIX networking. This
section presents the basics in preparation for the step-by-step configuration of a simple cluster coming up in Section 5.4.
Additional information on the topics presented here can be found in [56].

5.3.1 IP addresses

Each node in the cluster must be assigned a unique IP address. IP addresses consist of 32 bits or four octets[1] and are usually
expressed by writing each octet in decimal and separating the octets with a decimal point. This is known as dotted decimal
notation. As an example, 192.168.13.24 is a valid IP address.

A netmask is used to split the IP address into two parts: the network address and the host address. The netmask expresses how
many of the high-end bits of an IP address are part of the network address. The low-end bits of the IP address then form the host
address. Using the previous example address of 192.168.13.24, asserting a netmask of 255.255.255.0 would mean that the
network address is 192.168.13.0 and the host address on that network is 24. Two special host addresses are reserved and
may not be used to identify an actual host. All bits turned off (or zero) is the address of the network, and all bits turned on (or 255
in our example) is the network broadcast address.

Hosts that share the same network address are generally part of the same physical network and can talk directly to each other.
Hosts on different networks require a router to talk to each other. The router uses the network portion of the destination IP
address to determine onto which physical network link to forward the data packet. In complex networks, the data packet may be
forwarded by several routers before it finally reaches the destination network and ultimately the destination host. To begin this
forwarding process, the sending host must know the address of the router on its local network. The address of this router is know
as the gateway address.

Not all IP addresses are routable to the Internet. Three address ranges have been reserved for private (internal) networks:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

These address ranges may be used by clusters that either have no need to communicate with Internet resources or are hidden
behind a firewall that does network address translation (NAT). Discussion of network address translation is beyond the scope of
this chapter; however, the interested reader will find the topic covered in [127].

5.3.2 Hostnames

In addition to an IP address, each node in the cluster will require a unique name. Names generally come in two forms: short and
long. The long name is used when referring to the host from outside of the local domain (or subdomain) in which it is present. The
long name for the first node in our Beowulf cluster might be bc1-001.phy.myu.edu. Notice that the long name is hierarchical. It
refers to the node bc1-001 in the phy (short for the Physics department) subdomain which is part of the myu.edu domain. The
short name, bc1-001, is often used when referring to the node from within the local subdomain, the Physics department.

With clusters, it is common practice to name the cluster nodes after their host addresses. For example, nodes in a 128 node
cluster with IP addresses ranging from 192.168.13.1 through 192.168.13.128 and a netmask of 255.255.255.0 might be
named bc1-001 through bc1-128. Computer scientists who prefer to begin counting their nodes from zero should recall that
host address zero is reserved for the network address (192.168.13.0 in our example). To avoid having the host address and
the node name differ by one, it is best to number nodes starting from one [108].

An additional side effect to starting the node number and host address of the first node at one is that the gateway address must
follow that of the nodes. To allow room for expansion, the gateway address is generally given the maximum available host
address. Remember, that the maximum host address is reserved for the network broadcast address, so the gateway address is
generally assigned the address just prior to the network broadcast address. In our continuing example, the gateway address
would be 192.168.13.254.

5.3.3 Name resolution

Given a set of hostnames and IP addresses for the nodes in the cluster, a mechanism is needed to map from one to the other.
For a small number of nodes, this can be accomplished with a hosts file ('/etc/hosts'). The hosts file will include a line for
each node in the cluster. Each line contains the IP address of the node followed by the names the nodes is known by, usually the
long name first followed by the short.

The hosts file traditionally contains one additional mapping from the names localhost and localhost.phy.myu.edu to
127.0.0.1. The address 127.0.0.1 is tied to the loopback device driver that funnels all messages sent from it back to the
same host. The combination of the loopback device and the mapping in the hosts file allows a host to communicate with itself as
though it were any other host on the network simply by using the name localhost.

One caveat of using a hosts file is that it must be replicated and kept current on every node in the cluster. However, for most
environments, the hosts file does not change that often. A master copy can be kept on one node of our cluster and then pushed to
the other nodes when changes are made. This push operation would be tedious to do by hand, but it is not very difficult to write a
script to copy the hosts file to the other nodes using a program like scp. A brief description of scp can be found in Section 5.3.5.
Chapter 6 describes tools that can handle all of these setup steps for you; the material in this section describes some of the
operations that those tools must perform and provides some background for understanding how those tools work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an alternative, the Network Information Service (NIS) exists to perform this type of replication automatically. NIS allows the
system administrator to manage a single copy of important files like the hosts file on one node designated as the NIS server. The
other nodes, acting as NIS clients, obtain the host information from the NIS server as necessary.

In addition to maintaining a single copy of the hosts file, NIS can also be used to propagate account ('/etc/passwd') and group
('/etc/group') information, as well as other important system files. A more detailed explanation on the capabilities of NIS can
be found in [109]. An example configuration of a NIS server and clients will be shown in Section 5.4.

Another option for avoiding the replication of the hosts file is the Domain Name Service (DNS). DNS differs from NIS in two major
ways. First, its sole purpose is to return information about a host or domain. Second, it performs resolution for hosts outside of the
local domain. DNS is by design a scalable distributed database capable of handling name resolution for the entire Internet.
Further information on DNS and Berkeley's implementation (BIND) can be found in [1].

DNS and NIS are designed to work together. It is not uncommon to use NIS for resolution of local hostnames and DNS for
resolving names external to the local domain (or subdomain).

5.3.4 File sharing

In most networked computing environments, the ability to share files with other machines on the network is extremely useful. Such
a capability allows system administrators to install a software package once an make it accessible to a set of machines. File
sharing also allows users to create a file on one machine and access it from a variety of other machines on the local-area network.
For Linux environments, this file sharing capability is traditionally provided by the Network File System (NFS).

File sharing is useful on Beowulf clusters for the same reasons. Application programs built by users typically reference libraries
from other software packages. If these software packages use shared libraries, ones that are dynamically loaded at runtime, then
those libraries must be accessible on all nodes where the application is being run. Thus the system administrator has two choices:
installing the necessary packages on each of the nodes or using a network based file system like NFS to make the packages
available to each of the nodes.

Likewise, the typical user of a Beowulf cluster will wish to run their application on several nodes, perhaps simultaneously. Most
users find copying their application's executable and input data files to each node before executing the application undesirable.
Instead, they would like to build their application on a single machine, construct any necessary input files on that same machine,
and have the executable and input files automatically available on all nodes of the cluster. Again, a file sharing system like NFS
can help. Using NFS, the users' home directories can be exported from one machine to each of the cluster nodes, allowing access
to these home directories from anywhere in the cluster. A detailed explanation of NFS and its capabilities can be found in [109].

5.3.5 Remote access

The purpose of building a Beowulf cluster is to run user applications. In a networked computing environment, users typically do
not have access to the console of all the compute resources. Even if they did, it is much more convenient to access those
resources from the workstations present on their desktops. Clusters are simply an array of compute resources with which users
wish to interact, execute programs, and share files.

A traditional UNIX system has programs like telnet and rlogin to establish an interactive terminal session with remote
compute resource over the network. In addition, rsh executes commands on the remote resource without user interaction, and
rcp transfers files between a local and remote resource when direct file sharing is not available. The last two commands are
especially powerful because they allow complex remote operations to be scripted and executed without user interaction.

The problem with all of these commands is security. None of the data transferred between the local and remote hosts is
encrypted, thus allowing the data to be easily read if captured by someone monitoring network traffic. While a user might not care
if someone saw their interactions with a remote resource, telnet transmits the user's password over that same unencrypted
channel. All users should care if their passwords are visible to potential outside attackers.

The rsh and rcp commands do not send passwords, making them somewhat more secure. Instead they use host based
authentication. If the host is listed in the system's or user's authorized hosts file on the remote machine, then the command is
allow to proceed. The rlogin command will also use host based authentication if possible; but, if the host is not authorized,
rlogin will ask for the user's password.

Clearly, host based authentication is preferable to sending a password in clear text. However, host based authentication is not
without its problems. First, all hosts on the local network must be strictly controlled. Physical security is important. If a malicious
host is allowed to attach to the local network, it can be configured to appear as an authorized host, thus compromising security.
Second, access to the authorized hosts files must be tightly controlled. If these files can be compromised, so too can the
machines for which they control access. Hence, many system administrators disallow the use of user controlled authorization files
(i.e., '~/.rhosts').

SSH, or the Secure Shell, was designed as a replacement for the previously mentioned remote access tools. However, SSH is
more than a just remote execution shell. It is a suite of tools utilizing public-private key based authentication and modern day
encryption to provide a secure means of remote access. As might be expected, it contains programs like slogin, ssh, and scp
to replace their less secure counterparts. SSH also contains tools for creating and managing authentication keys, the foundation
of its security. In addition, recent implementations like OpenSSH also provide a secure form of FTP.

SSH uses host authentication keys to verify that a host is the expected host and not a malicious decoy. During connection
establishment, these keys are used to verify that the connection is with the expected remote host before vital information, such as
the user's password, is sent. If host based authentication is employed, the connecting host can be verified before authorization is
granted. It is still important to strictly control which hosts are authorized and to disallow user controlled authorization files; but, on a
properly configured system, SSH's use of host authentication keys substantially reduces the security risk associated with host
based authentication.

SSH can also use authentication keys as a replacement for user passwords. The advantages may not be immediately apparent;
however, when combined with the SSH agent, user authentication keys can be very powerful. A more detailed discussion of
authentication keys, both host and user, and the SSH agent will be presented in Section 5.4.6.

[1]An octet is just 8 bits, which is the same as a byte in most modern systems. The term octet is used in networking to specify

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1]An octet is just 8 bits, which is the same as a byte in most modern systems. The term octet is used in networking to specify
precisely 8 bits. Once was a day when machines with 6-bit characters and 36-bit or 60-bit words were common, and the term octet
was coined to ensure that 8 bits were used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Simple Cluster Configuration Walkthrough
Now that we have discussed basic UNIX networking concepts and services, and briefly described the protocols involved in
network communication, it is time to walk through the configuration of a simple cluster. Since we cannot cover the variety of Linux
distributions in existence, we have chosen to use Red Hat Linux 9 for our example. If you are using a different Linux distribution,
the concepts should be same, but the exact commands and files may be different. Note that Chapter 6 describes tools that
automate many of the following steps; we are describing them here to provide an understanding of the steps involved in setting up
a cluster network.

Our example cluster consists of eight nodes. As in our previous examples, to avoid using IP addresses that may belong to an
existing domain, we place the nodes of our cluster on a private network with a network address of 192.168.13.0 and a netmask
of 255.255.255.0. The gateway address to our router is 192.168.13.254, the domain is phy.myu.edu, and our nodes are
named bc1-01 through bc1-08. The cluster configuration is depicted in Figure 5.2.

Figure 5.2: Diagram showing the configuration of our simple example cluster.

When installing Red Hat Linux 9 on each of the eight nodes, we used the standard "Workstation" install with one exception. We
included the NIS server package ypserv on the first node. Later, we will run a NIS server on bc1-01 for the purposes of
propagating system information like accounts and hostname to IP address mappings. Although the NIS hosts map is used for
resolving names local to our cluster, we assume that a DNS server exists at 192.168.1.1 to obtain information about hosts
outside of our cluster network. In addition to NIS, we will also run a NFS server on bc1-01 to provide each user access to a
common home directory accessible from all of the nodes.

5.4.1 Hostname and gateway address

We begin by setting the hostname and gateway address on each of the machines. These parameters may have been set during
the installation of the operating system; in which case, we need only verify that they are correct. Both of these parameters are set
in '/etc/sysconfig/network'. The contents of this file for the first node of our cluster should be as follows.
 NETWORKING=yes
 HOSTNAME=bc1-01.phy.myu.edu
 GATEWAY=192.168.13.254

Alterations made to this file do not take effect immediately; however, the changes should be realized the next time the system is
rebooted. If you had to make changes, it is recommended that you reboot now. This can be accomplished by executing
shutdown -r now.

Notice that the long name is used in the HOSTNAME setting. Use of the short name for this setting is discouraged as doing so
makes it difficult, if not impossible, for applications and libraries to properly identify the local machine in the global namespace.
This can cause some programs to behave incorrectly or fail altogether.

5.4.2 Network interface configuration

Next, we need to configure the IP settings for the network interface on each of the nodes. The network interface settings can be
changed using two different methods. The first is to use a program like netconf; the second is to edit the configuration file
directly. We will edit the configuration file, '/etc/sysconf/network-scripts/ifcfg-eth0', so the exact location of the
settings is clear. The contents of the configuration file for the first node of our cluster should be as follows.
 DEVICE=eth0
 ONBOOT=yes
 BOOTPROTO=static
 IPADDR=192.168.13.1
 NETMASK=255.255.255.0
 NETWORK=192.168.13.0
 BROADCAST=192.168.13.255

The settings on the other nodes are largely the same. Only the IPADDR setting needs to be adjusted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The settings on the other nodes are largely the same. Only the IPADDR setting needs to be adjusted.

Alterations to the network interface configuration file should only be made when the interface is disabled, accomplished by running
ifdown eth0. Once the changes are complete, ifup eth0 can be run to re-enable the interface with the new settings.

5.4.3 Name resolution

For our cluster, the hostname to IP address mappings are as follows.
 127.0.0.1 localhost.phy.myu.edu localhost
 192.168.13.1 bc1-01.phy.myu.edu bc1-01
 192.168.13.2 bc1-02.phy.myu.edu bc1-02
 192.168.13.3 bc1-03.phy.myu.edu bc1-03
 192.168.13.4 bc1-04.phy.myu.edu bc1-04
 192.168.13.5 bc1-05.phy.myu.edu bc1-05
 192.168.13.6 bc1-06.phy.myu.edu bc1-06
 192.168.13.7 bc1-07.phy.myu.edu bc1-07
 192.168.13.8 bc1-08.phy.myu.edu bc1-08
 192.168.13.254 bc1-gw.phy.myu.edu bc1-gw

To avoid a substantial amount of repetitive typing, the complete set of mappings need only be entered into the '/etc/hosts' file
on bc1-01. Later, in Section 5.4.7, we will configure NIS to provide this information to the other seven nodes. The '/etc/hosts'
file on the remaining nodes should consist only of the following entry.
 127.0.0.1 localhost.phy.myu.edu localhost

In addition to the hosts file, we need to configure the service that resolves names (the resolver for short) on each node of the
cluster. The configuration file, '/etc/resolv.conf', must contain the following.
 nameserver 192.168.1.1
 search phy.myu.edu

The resolver configuration file contains two important pieces of information. The first is the IP address of the DNS server used to
resolve names not found in the hosts file or the NIS hosts map; the second is the search list for hostname lookup. If a short or
incomplete hostname is supplied, entries in the search list are individually appended to the hostname. For example, if the system
were attempting to resolve the hostname foo, it would append phy.myu.edu and then perform a DNS query for
foo.phy.myu.edu.

5.4.4 Accounts

At this time, we need to create accounts for the users of our cluster. It is recommended that each user have his own account,
including the system administrator(s). While the administrator already has access to the root account, that account should only be
used to perform administrative tasks. Use of the root account for non-administrative tasks is frowned upon because that account
is unchecked, allowing for unintentional damage to the operating system. For more details on account management, see Section
13.6.

Users may be added to the system with the adduser program. Running adduser <username> creates an entry for the user in
the account information and shadow password files, '/etc/passwd' and '/etc/shadow' respectively. The adduser program
also adds a group for the user in '/etc/group' and creates a home directory for that user in '/home/<username>'. Usage
information about the adduser program can be obtained by running man adduser.

The creation of user accounts and home directories across all of the nodes in the cluster could be handled by running adduser
on each node for each user. However, this repetition is tedious and requires care so that the user and group identifiers are
consistent across all nodes. Alternatively, we could create a script which uses scp to replicate the appropriate system files and
ssh create the necessary home directories on each node. Instead, since we are already using NIS to provide the host map, we
will configure NIS to also provide account and group information to the other seven nodes. Additionally, we will use NFS to make
the '/home' directory on bc1-01 accessible to the remaining nodes. NIS will be configured in Section 5.4.7 and NFS in Section
5.4.8.

By default, adduser creates the account with a bogus password entry; thus effectively disabling the account. To enable the
account, run passwd <username> to set an initial password for the account. Usage information about the passwd program can
be obtained by running man passwd.

Unlike normal user accounts, NIS does not publish account information for the root user, and NFS is not configured to export the
root user's home directory, '/root'. Doing either is considered a security risk as it may allow a malicious user to obtain privileged
information and compromise one or more nodes of the cluster. Instead the root user has a separate entry in '/etc/passwd' and
'/etc/shadow' and a separate home directory on each cluster node. While these restrictions affect the ease with which the root
user can change its password or share files between machines, the security of the cluster as a whole is improved.

5.4.5 Packet filtering

As a security measure, the Linux kernel has the ability to filter IP packets. Among other things, packet filtering allows the system
administrator to control access to services running on a machine. By default, Red Hat Linux 9 uses packet filtering to block remote
access to most services including SSH, NFS and NIS. This default configuration presents a problem for a cluster environment
where remote execution, file sharing and collective system administration are critical.

To allow SSH, NIS and NFS to function, we must add a few new packet filtering rules to each node of our cluster, allowing SSH,
NFS and NIS to function. For Red Hat Linux 9, packet filtering rules are specified in the file '/etc/sysconfig/iptables'. Into
this file, we insert the following rules before the first line that starts with -A INPUT.
 -A INPUT -p tcp -m tcp --dport 22 --syn -j ACCEPT
 -A INPUT -p tcp -s 192.168.13.0/24 -j ACCEPT
 -A INPUT -p udp -s 192.168.13.0/24 -j ACCEPT

Once those changes have been made, the following command must be executed so the changes will take effect.
 /etc/rc.d/init.d/iptables restart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /etc/rc.d/init.d/iptables restart

The first rule we added tells the packet filter to allow new TCP connection requests made to port 22, the port monitored by sshd.
With this rule in place, ssh and scp can be used to access the nodes in our cluster from any other machine on the network,
including those not part of the cluster. If we were using routable addresses and our network was Internet accessible, any machine
on the Internet could attempt to access our cluster nodes. This accessibility might appear to be a security concern; but, the
connecting entity must know the name of an existing account and the associated password to obtain access, both of which SSH
encrypts before transmitting them over the network.

The second and third rules tell the packet filter to accept any packets from any machines on the cluster network. These rules allow
NFS and NIS to function between nodes in the cluster. The rules may seem unnecessarily liberal because they allow all UDP and
TCP packets to pass. However, the NIS services and the network status monitoring service used by NFS are dynamically
assigned ports by the portmap service. Because these port values are not known in advance, they cannot be explicitly specified
in our packet filtering rules. In addition, we don't want to prevent applications running across nodes of the cluster from being able
to communicate with each other. Therefore, we allow packets to freely flow between machines on the cluster network while still
blocking potentially security threatening traffic from the outside.

More information about Linux firewalls and iptables can be found in Section 5.6.2.

5.4.6 Secure shell

The OpenSSH package is installed automatically with Red Hat Linux 9, which means the SSH remote access clients like ssh and
scp are available to users immediately. The SSH service sshd is also available and started by default. Once the packet filtering
rules discussed in Section 5.4.5 have been applied, the root user should be able to remotely access any of the nodes in the
cluster. This ability can be tremendously useful when one needs to replicate configuration files across several nodes of the cluster
or to restart a service without being at the console of the specific node.

Initially, non-root users will only be able to remotely access bc1-01. This restriction is lifted once NIS and NFS have been
configured and enabled, thus providing account information and home directories to other nodes in the cluster. The configuration
of NIS and NFS are discussed in Section 5.4.7 and Section 5.4.8 respectively.

The first time the sshd service is started, authentication keys for the host are generated. The keys for the remote host are used
during the establishment of a SSH session, allowing the client (e.g., ssh) to validate the identity of the remote host. However, the
validation can occur only if the client knows the public key of the remote host to which it is trying to connect. When the public key
of the remote host is unknown, the user is notified that the authenticity of the remote host could not be verified. The connection
process then continues only if the user explicitly authorizes it. If the user agrees to continue establishing the connection, the client
stores the name of the remote host and its public key in '~/.ssh/known_hosts' on the local machine. The stored public key is
used during the establishment of future connections to validate the authenticity of the remote host.

To prevent the user from being questioned about host authenticity, the system administrator can establish a system-wide list of
hosts and their associated public keys. This list is placed in the '/etc/ssh/ssh_known_hosts' file on each of the nodes and
any other machines that are likely to remotely access the nodes. This approach has one other advantage. If a node is rebuilt and
new authentication keys are generated, then the system administrator can update the 'ssh_known_hosts' files. Such updates
can prevent the user from receiving errors about host identification changes and potential man-in-the-middle attacks.

The contents of the 'ssh_known_hosts' file can be generated automatically using ssh-keyscan. To use ssh-keyscan, we
must first create a file containing a list of our cluster nodes. Each line of this file, which we will call 'hosts', should contain the
primary IP address of a node followed by all of the names and addresses associated with that node.
 192.168.13.1 bc1-01.phy.myu.edu,bc1-01,192.168.13.1
 192.168.13.2 bc1-02.phy.myu.edu,bc1-02,192.168.13.2
 192.168.13.3 bc1-03.phy.myu.edu,bc1-03,192.168.13.3
 192.168.13.4 bc1-04.phy.myu.edu,bc1-04,192.168.13.4
 192.168.13.5 bc1-05.phy.myu.edu,bc1-05,192.168.13.5
 192.168.13.6 bc1-06.phy.myu.edu,bc1-06,192.168.13.6
 192.168.13.7 bc1-07.phy.myu.edu,bc1-07,192.168.13.7
 192.168.13.8 bc1-08.phy.myu.edu,bc1-08,192.168.13.8

Once the 'hosts' file has been created, the following command will obtain the public keys from each of the nodes and generate
the 'ssh_known_hosts' file.
 ssh-keyscan -t rsa,dsa,rsal -f hosts >/etc/ssh/ssh_known_hosts

The 'ssh_known_hosts' file needs to exist on each node of the cluster. While the above command could be executed on each of
the nodes, regenerating the contents each time, it is also possible to use scp to copy the file to each of the remaining nodes.

At this point, the client tools are able to validate the identity of the remote host. However, the remote host must still authenticate
the user before allowing the client access to the remote system. By default, users are prompted for their passwords as a means of
authentication. To prevent this from happening when access is from one cluster node to another, host based authentication can
be utilized. Host based authentication, as discussed in Section 5.3.5, allows a trusted client host to vouch for the user. The remote
host uses the public key of the client host, found in the file we just generated, to verify the identity of the client host. Enabling host
based authentication requires a few configuration changes on each of the nodes.

The sshd serv ice must be configured to allow host based authentication by changing, the following parameters in
'/etc/ssh/sshd_config'.
 HostbasedAuthentication yes
 IgnoreUserKnownHosts yes
 IgnoreRhosts no

The first parameter enables host based authentication. The second parameter disables the use of the user maintained known
host file, '~/.ssh/known_hosts', when host based authentication is performed. This change allows the system administrator to
maintain strict control over which hosts can be authenticated and thus authorized. The third parameter allows the user maintained
authorization file, '~/.shosts', to be used when determining whether or not a remote host is authorized to access the system
using host based authentication. This is largely provided for the root user for whom the system maintained file,
'/etc/ssh/shosts.equiv', is not used. While utilizing user authorization files could be considered a security risk, the change to
the IgnoreUserKnownHosts parameter prevents the user from authorizing access to any hosts not listed in the system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the IgnoreUserKnownHosts parameter prevents the user from authorizing access to any hosts not listed in the system
controlled '/etc/ssh/ssh_known_hosts' file. But, if host based authentication is not desired for the root user, then the third
parameter should be left at its default value of "yes".

Once the sshd configuration file has been updated to enable host based authentication, the system authorization file,
'/etc/ssh/shosts.equiv', must be created. That file simply consists of the hostnames of machines trusted by the local host.
For our cluster, the file should contain the following.
 bc1-01.phy.myu.edu
 bc1-02.phy.myu.edu
 bc1-03.phy.myu.edu
 bc1-04.phy.myu.edu
 bc1-05.phy.myu.edu
 bc1-06.phy.myu.edu
 bc1-07.phy.myu.edu
 bc1-08.phy.myu.edu

If host based authentication is to be used to allow a client to vouch for the root user, this same list of hostnames must also be
placed in the root user's authorization file, '/root/.shosts'. Again, scp can be employed to push copies of these files to each of
the nodes.

Now that the sshd service has been configured and the list of authorized hosts properly established, the sshd service must be
restarted. This is accomplished using the following command.
 /etc/rc.d/init.d/sshd restart

In addition to changing the service configuration file, a small change must be made to the client configuration file,
'/etc/ssh/ssh_config'. The following line should be added just after the line containing "Host *".
 HostbasedAuthentication yes

This option tells the client tools that they should attempt to use host based authentication when connecting to a remote host. By
default, they do not.

Users, including the root user, also have the ability to create authentication keys which can be use in place of passwords. Such
keys are generated with the command ssh-keygen -t rsa. By default, the public and private keys are placed in
'~/.ssh/id_rsa.pub' and '~/.ssh/id_rsa' respectively. The contents of the public key can be added to '~/.
ssh/authorized_keys' on any machine, allowing remote access to that machine using the authentication keys.

The ssh-keygen command will allow keys to be generated without a passphrase to protect the private key. Users often generate
unprotected keys simply to avoid having to reenter the passphrase with each remote operation. However, this practice is not
recommended as it substantially weakens the security of any machine allowing public key authentication. Instead of using
unprotected keys, a SSH agent can be established to manage the private key(s) of the user for the duration of a session. The
passphrase need only be typed once when the private key is registered with the agent. Thereafter, remote operations can proceed
without the continual reentry of the passphrase; but, the private key is still protected should a malicious user obtain access to the
file containing it.

From the shell, the agent is often used in the following manner.
 [root@bc1-01 root]# ssh-agent $SHELL
 [root@bc1-01 root]# ssh-add
 Enter passphrase for /root/.ssh/id_rsa:
 Identity added: /root/.ssh/id_rsa (/root/.ssh/id_rsa)
 [root@bc1-01 root]# <various SSH client commands>
 [root@bc1-01 root]# exit

The first command starts the agent and then begins a new shell. The second command adds the root user's private key to the set
of keys managed by the agent. In this case, only one key is managed by the agent, but more could be added through subsequent
invocations of ssh-add. After the agent has been started and the private key has been registered, the root user may execute
various client commands attempting to access to one or more remote machines. If the user's '~/.ssh/authorized_keys' file
on the remote host contains root's public key, the client command will proceed without requesting a password or passphrase. The
final command, exit, causes the shell and thus the agent to terminate.

A general discussion of SSH usage, configuration and protocols can be found in [11], although the details involving OpenSSH are
somewhat out of date. Information specific to OpenSSH commands and configuration can be found in the manual pages installed
with Red Hat Linux 9 and on the OpenSSH website, www.openssh.org. Links to IETF draft documents describing the SSH
protocols can also be found on the OpenSSH website.

5.4.7 Network Information Service

Now that the IP packet filter has been configured in a way that allows our services to function, and we have introduced the finer
points of SSH, we will proceed with configuring NIS. On each of the nodes, the following line must be added to
'/etc/sysconfig/network'.
 NISDOMAIN=bc1.phy.myu.edu

This line tells the NIS services the name of the NIS domain to which our nodes belong. The NIS domain name can be different
than the Internet domain in which the nodes reside (phy.myu.edu). The NIS domain name should identify the group of machines
the domain is servicing. In our case, this NIS domain is used only by our first Beowulf cluster. Therefore, we use the domain name
bc1.phy.myu.edu to avoid conflicts with other NIS domains that might exist on our local network.

Once the NIS domain has been set on each of the nodes, we must prepare bc1-01 to run the NIS server. Before enabling the
server to export information, we must secure the server so that only hosts in our cluster can obtain information from it. Entries in
the '/var/yp/securenets' file accomplish this. For our cluster, this file (on bc1-01) should contain the following entries.
host 127.0.0.1
255.255.255.0 192.168.13.0

Now we are ready to configure and run the NIS server. To begin, we edit the '/var/yp/Makefile' file on bc1-01. We need to
comment out the existing line that begins with "all:" and add the following line before it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

comment out the existing line that begins with "all:" and add the following line before it.
 all: passwd group hosts networks services protocols rpc

This line lists the information sources that we desire NIS to export to the client nodes. NIS maintains a set of databases, known as
maps, separate from the source files. To build the maps, the following commands must be executed on bc1-01.
 echo "loopback 127" >>/etc/networks
 /etc/rc.d/init.d/ypserv start
 /etc/rc.d/init.d/ypxfrd start
 /etc/rc.d/init.d/yppasswdd start
 cd /var/yp
 make

Since '/etc/networks' does not exist on Red Hat Linux 9 installations, the first command creates the file, adding the loopback
network as an entry. The next three commands start the services needed by a NIS server. And the last two commands build the
actual maps.

The previous commands started the necessary NIS services; however, they did not configure the system so the services would be
automatically started at boot time. To accomplish this, we must adjust the runlevel associated with the services. The following
commands tell the system to automatically start the services when booting the system. Remember, these commands should only
be executed on bc1-01, the system running the NIS server.
 chkconfig --level 345 ypserv on
 chkconfig --level 345 ypxfrd on
 chkconfig --level 345 yppasswdd on

Now that we have a running NIS server, it is time to configure the clients. The NIS client service ypbind will be run on all of the
nodes in our cluster, including bc1-01. The following commands start the client service and configure the operating system so the
service is started automatically when the system is booted.
 /etc/rc.d/init.d/ypbind start
 chkconfig --add ypbind
 chkconfig --level 345 ypbind on

To make the operating system use NIS when looking up information, we must update the name service switch configuration file,
'/etc/nsswitch.conf', on each of the nodes. The entries that follow should be modified accordingly.
 passwd: files nis
 group: files nis
 hosts: files nis dns
 networks: files nis
 services: files nis
 protocols: files nis
 rpc: files nis

When the source files on the server are modified, the NIS maps are not automatically updated . Therefore anytime a new account
or group is added or the hosts file is updated, the maps need to be rebuilt. To rebuild the maps, the following commands must be
run on bc1-01.
 cd /var/yp
 make

Once the maps are rebuilt, any updates are available to all nodes in the cluster.

The exception to the maps not being immediately updated is the changing of a user's password. If the password is changed using
the yppasswd program, the yppasswdd service immediately updates both the NIS maps and account files on bc1-01, making
the updated password immediately available to all nodes in the cluster. yppasswd may be run from any node that is part of the
NIS domain.

A small problem exists with regards to the NIS client and the sshd service. If sshd is started before ypbind, as it was in our
example, then sshd will not use NIS services to obtain account information. Therefore users will not be able to remotely access
bc1-02 through bc1-08 until sshd is restarted. The service may be restarted by executing
 /etc/rc.d/init.d/sshd restart

on each of those nodes. A similar problem will occur if bc1-02 through bc1-08 are rebooted and bc1-01 is not online or is not
running the NIS server. The ypbind service will fail causing sshd not to use NIS even if ypbind is started later. So, as a general
rule, if ypbind is manually started, sshd should also be restarted.

5.4.8 Network File System

Now that the NIS server and clients are running, the next task is to configure the NFS server and clients, thus allowing users
access to their home directories from any of the cluster nodes.

We will begin with configuring the server on bc1-01. To export the user home directories, the following line must be added to the
file '/etc/exports'.
 /home 192.168.13.0/24(rw)

This line tells the NFS server that any machine on our cluster network may access the home file system. Once the file has been
modified, the NFS service must be enabled and started using the following commands.
 chkconfig --level 345 nfs on
 /etc/rc.d/init.d/nfs start

Next we need to configure the other seven nodes to mount the '/home' directory on bc1-01. Mounting is the UNIX term for
attaching a file system space, whether it be local or remote, into the local directory structure. To express that we wish to have
'/home' on bc1-01 be mounted as '/home' in the directory structure present on our remaining cluster nodes, we must add the
following line to '/etc/fstab' on all nodes except bcl-01.
 192.168.13.1:/home /home nfs rw,hard,intr,bg,rsize=8192,wsize=8192 0 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 192.168.13.1:/home /home nfs rw,hard,intr,bg,rsize=8192,wsize=8192 0 0

Then we execute the following command on each of those nodes to cause the remote file system to be mounted.
 /etc/rc.d/init.d/netfs restart

You might have noticed that we use the IP address for bc1-01 instead of its host-name when we added the entry to
'/etc/fstab'. The reason is that netfs is started before before ypbind when the operating system is booting. If we were to use
bc1-01 in place of the address, hostname resolution would fail causing the mount to fail.

The options for mounting a file system exported by NFS are numerous. The manual pages, obtained by executing man fstab
and man nfs, provide an explanation of the '/etc/fstab' structure and the available options when mounting file systems via
NFS. Additional information can also be found in [109].

5.4.9 Scripting it

For small clusters, installing the operating system on each node, and performing the previously mention configuration adjustments
might not seem so bad. However, for a larger cluster, the task can be annoyingly repetitive and prone to error. Fortunately, several
solutions exist.

The Kickstart system, part of the Red Hat Linux 9 distribution, is one such solution. When Red Hat Linux 9 is installed, a Kickstart
configuration file is automatically generated during the installation process and stored as '/root/anaconda-ks.cfg'. Starting
with the file on created for bc1-01, we can create a 'ks.cfg' file for the other nodes of the cluster. Below is an example
configuration file for bc1-02.
 install
 lang en_US.UTF-8
 langsupport --default en_US.UTF-8 en_US.UTF-8
 keyboard us
 mouse generic3ps/2 --device psaux
 skipx
 network --device eth0 --bootproto static --ip 192.168.13.2
 --netmask 255.255.255.0 --gateway 192.168.13.254
 --nameserver 192.168.1.1 --hostname bc1-02.phy.myu.edu
 rootpw --iscrypted 1i0.gt4GF$75mVC3kgB2keUwJVgTZo8.
 firewall --medium
 authconfig --enableshadow --enablemd5
 timezone --utc America/Chicago
 bootloader --location=mbr
 clearpart --all --drives=sda
 part /boot --fstype ext3 --size=100 --ondisk=sda
 part / --fstype ext3 --size=1100 --grow --ondisk=sda
 part swap --size=96 --grow --maxsize=192 --ondisk=sda

 %packages
 @ Administration Tools
 @ Development Tools
 @ Dialup Networking Support
 @ Editors
 @ Emacs
 @ Engineering and Scientific
 @ GNOME Desktop Environment
 @ GNOME Software Development
 @ Games and Entertainment
 @ Graphical Internet
 @ Graphics
 @ Office/Productivity
 @ Printing Support
 @ Sound and Video
 @ Text-based Internet
 @ X Software Development
 @ X Window System

 %post

Note the lines containing the network option were broken into three separate lines for printing purposes. The Kickstart
system requires that these three lines exist as a single line in the actual 'ks.cfg' file.

A few changes have been made to the original 'anaconda-ks.cfg' file in creating a 'ks.cfg' for bc1-02. First, the hostname
and IP address, part of the network option, have been updated. Second, the disk partitioning options clearpart and part
have been uncommented informing Kickstart to clear and rewrite the disk partition table with an appropriate set of partitions for
bc1-02. Finally, the ypserv package was removed from packages list as bc1-01 is the only node that needs to run the NIS
server.

Now that we have created a 'ks.cfg' file, we need to place that file on a floppy diskette. Insert a floppy diskette, preferably a
blank one, into the floppy drive and execute the following commands.
 mformat a:
 mcopy ks.cfg a:

The mformat command will destroy any existing files on the diskette, so do not insert a diskette containing files you wish to keep.

Once the 'ks.cfg' file is on the diskette, you should boot the new node with CD-ROM #1 from the Red Hat Linux 9 distribution.
When the Linux boot prompt appears, insert the Kickstart floppy and type the following.
 linux ks=floppy

If the Red Hat Linux 9 installation system has difficulty detecting the graphics chipset or monitor type for your machine, the
following may have to be typed instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 linux ks=floppy text

Since we are installing from CD-ROM, the Red Hat installer will prompt you to change CD-ROMs as necessary. When the process
completes, the operating system has been installed on the new cluster node. However, the adjustments we made throughout this
section must still be made. But, the process of answering several pre-installation questions, partitioning the disk, and selecting
packages has now been eliminated.

Kickstart has a variety of options, many of which we did not use in our example 'ks.cfg'. These options can be used to directly
adjust some of the settings described earlier in this section. In addition, Kickstart has the ability to run a post installation script.
People with knowledge of one or more UNIX scripting environments should be able to create a post install script to automatically
perform the configuration adjustments we made throughout this section. The full set of Kickstart options are described in the
Kickstart Installations chapter of [93].

In [85], the authors describe a set of tools for rapidly building (or rebuilding) a cluster. These tools consist of a set of Kickstart
configuration files and postprocessing scripts. Although their post-processing scripts are run separate from Kickstart, their toolkit is
an excellent example of a simple yet effective means of automating operating system installation and network configuration in a
cluster environment. More sophisticated approaches are described in Chapter 6, including NPACI Rocks, which takes advantage
of Kickstart to setup a cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Improving Performance
The overall performance of a cluster is very difficult to measure because so many disparate resources must be properly tuned for
everything to run at peak performance. Also, different applications may require different tuning parameters to achieve optimal
behavior. The cluster network is probably the subsystem that most influences the performance of parallel scientific applications.

Many network performance benefits can be gained at the individual node level, but more still can be uncovered at the network and
network design level. When deciding on a specific network technology, the designer must think about performance of the system
as well as cost and vendor/OS support. In this section we will discuss some high level network design concepts which increase
overall performance of the cluster. In addition, we delve into some low level details involving the tuning of specific protocol and
network parameters, thereby giving the reader a feeling for the parts of their network that can be modified to potentially improve
application performance.

5.5.1 Offloading Services

One simple method for removing service bottlenecks in a cluster is to offload the service to a dedicated system. In our simple
cluster case, we had no machines dedicated to specific tasks. For small systems primarily used for compute bound applications,
this may work nicely. But as we increase the number of nodes, the number of users and the complexity of the applications,
running services on the compute nodes quickly becomes problematic. Imagine a case where one user's application, running on
the node providing NFS service, is fully utilizing the compute and I/O capabilities of that machine. Along comes another user,
attempting to run a parallel application with moderate NFS requirements. The result is resource contention for the CPU, disk and
network on the NFS server, causing both applications to slow down. If there is one node in a system that has multiple tasks to
perform while others have only one task, the potential exists for wasted cycles. The obvious, and often implemented, solution is to
offload services to a dedicated service machine so that all compute nodes are identical in the resources they provide to
applications. This simple optimization leaves us with a pool of compute nodes distinct from the machine devoted to servicing tasks
such as user login, compilation, NFS service, DNS service, etc. If bottlenecks still appear, services may be further split across
multiple machines, leaving us with several service nodes, each with their own set of balanced tasks. Service offloading is a very
important step towards achieving the goal of maximizing the performance of our cluster. However, the cluster can still have
bottlenecks within a specific service.

While not specific to cluster environment, the idea of service load balancing remains a very important concept for cluster network
designers. Although the idea of load balancing transfers nicely from more traditional UNIX networks, the specific load
characteristics of the same services in a cluster environment can be drastically different. For instance, a traditional UNIX network
may happily operate with a single NFS server and a large number of clients; whereas, a cluster with the same number of clients
could easily overrun the single NFS server because the intensity and frequency of client accesses is radically different. With this
disparity in mind, the cluster network designer should be careful to reevaluate their load balancing experiences with traditional
UNIX networks before applying that knowledge to balancing their cluster services.

The specifics of service offloading vary depending on the particular service, but the idea remains the same: identify service
bottlenecks (where a single service is being overwhelmed by multiple simultaneous requests) and find a way to offload that
specific service to multiple servers so no one server is being overwhelmed. For example, if a NFS home file system server is
being overwhelmed, a simple but effective way to lighten the burden is to bring up a second NFS server. The home file system
can then be split into two volumes with half the homes served by one machine and the other half served by the second machine.
While this technique can work for some services, it can not be used for services that require a synchronized, centralized repository
of data. These types of services often have their own mechanisms for dealing with load balancing and should be researched
thoroughly before attempting to make any adjustments.

Another case where the "splitting data in two" technique fails is when a single job places high demands on a single service,
overloading the associated server. For instance, if a user's job places heavy demands on a single NFS server from many nodes,
that job can overload the server. Since there is only one canonical data source, we cannot employ our "split into two" method
without introducing serious synchronization problems. As it turns out, this case highlights an inherent scalability problem with the
NFS service, which is not easily overcome. In such a situation, we may have to employ more powerful, better scaling solutions to
the problem. To rectify this situation, we would likely move to a parallel file system, such as PVFS (see Chapter 19), which scales
by splitting data requests to multiple servers and therefore eliminates the single server problem with NFS.

Figure 5.3: Diagram showing compute nodes with multiple interfaces on multiple networks. Notice that the Myrinet network
is entirely internal to the cluster, a common design point since the dedicated network is typically much higher performing
than networks outside the cluster.

5.5.2 Multiple Networks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a cluster with high performance requirements, a common network design optimization employs multiple networks to separate
different classes of network traffic. Examples of network traffic classes are application message passing, NFS traffic, cluster
management traffic, etc. If we think about the types of high bandwidth traffic that pass over a cluster network, we can identify
times when the network is saturated by one class, thus reducing the performance of the another class. In most cases, both
classes would be affected, and the overall performance of the system would suffer. We can imagine the situation where a user's
job is simultaneously reading a large file from NFS and attempting to do a collective communication operation, resulting in serious
network resource contention.

Application message passing traffic is probably the most sensitive to network resource contention. Since the performance of the
cluster is often gauged in terms of application performance, application message passing traffic is usually the class that drives the
need for a separate, dedicated network. The concept is fairly straightforward; we would have one network devoted to message
passing, and one devoted to all other traffic. While we can sometimes use a duplicate network technology such as fast Ethernet
for our dedicated network, the performance may not be sufficient. More often, designers invest in a specialized network
technology that will improve network performance for message passing by a large order of magnitude. The drawbacks of installing
a specialized dedicated network include increased cost and administrative complexity. The cost of a specialized network, on a per
host basis, may double the cost of a node.

5.5.3 Channel Bonding

As we stated earlier, cost plays a role in cluster network design. The highest bandwidth networks tend to be emerging
technologies with premium price tags. However, sometimes applications require more capacity than a single channel (link) of a
more suitably priced network can provide. One solution is to bind multiple channels together, thus creating a virtual channel of
higher capacity.

As you might have guessed, channel bonding is no stranger to Beowulf clusters. In the early days of Beowulf clusters, 10Mb
Ethernet was commonplace, but 100Mb Ethernet was still emerging and quite costly. Cluster designers wishing to obtain
additional bandwidth, but unable to afford 100Mb Ethernet, would place multiple 10Mb Ethernet cards in each node and bond
them together so they appeared as a single higher capacity link. The same thing occurred when 100Mb Ethernet became readily
available and gigabit Ethernet was still being sold at a premium price. Now, as the price of gigabit Ethernet hardware drops and
10Gb Ethernet begins to emerge, we are starting to see the bonding of multiple gigabit Ethernet channels appear in Beowulf
clusters.

While channel bonding can be an attractive solution to a bandwidth problem, it is not without its difficulties. For example, channel
bonding may require additional switches, one for each channel, if the switch itself does not support bonding. Also, the
configuration process is somewhat more complex than for a single network interface. More information on channel bonding can be
found in the Linux Ethernet Bonding Driver mini-howto, '/usr/src/linux/Documentation/networking/bonding.txt', as
well as in the mailing list archives on Beowulf.org.

5.5.4 Jumbo Frames

Often techniques for improving network performance spawn directly from the specific network technology deployed. The cluster
designer is encouraged to research their own choice of network technology to determine how best to tune their network. While
many technology specific solutions exist, we focus on one technology in particular, gigabit Ethernet using jumbo frames, as it has
gained a degree of support within the network vendor and user communities.

Historically, the Ethernet standard has specified a frame size of 1518 bytes. Drivers commonly set the MTU (Maximum Transfer
Unit) of the interface to 1500 bytes, leaving space for Ethernet header information in the frame. While this frame size was
appropriate for 10Mb and even 100Mb Ethernet, the introduction of 1000Mb Ethernet (gigabit Ethernet) has caused a great deal of
controversy surrounding the initial choice to stay with 1500/1518 byte MTU/frame sizes. Because gigabit Ethernet network
adapters, running at 1000Mb/s, can transmit far more frames per time unit than before, many modern computer architectures are
having difficulty keeping up with the number of frames, and hence interrupts, that must be serviced from the network. Increasing
the frame size decreases the number of times the network adapter must interrupt the processor, thus freeing CPU cycles for other
tasks when performing large network transfers. The commonly chosen size of this increased MTU/frame size, or jumbo frame, is
approximately 9000 bytes. This size was chosen for its proximity to a base two value (8192) with additional room for headers,
while still being small enough to not compromise Ethernet error detection schemes. The choice of an exact MTU greatly depends
on the largest size supported by both the gigabit Ethernet adapter and the switch hardware. Unfortunately, increasing the size of
MTU creates problems for existing hardware and clients that are configured to use the standard 1500 byte MTU. This disparity
can cause hosts communication problems, switch hardware to drop what it considers to be oversized frames, and various other
problems.

For the sake of simplicity, we will assume that the cluster network is composed entirely of all gigabit Ethernet connected hosts with
no external communication requirements. In other words, the network is a dedicated communication network. With this
assumption, enabling jumbo frames within the cluster just means that we need to set our interface's MTU to 9000 bytes using the
following command. If the reader's adapter/hardware configuration supports a different maximum MTU size, they should substitute
that value for the 9000 value used below.
 ifconfig eth0 mtu 9000 up

This command can be placed in the startup scripts of each node to ensure that the setting will persist across reboots. On Red Hat
systems, we can insert the following line into the '/etc/sysconfig/network-scripts/ifcfg-eth0' file to automatically set
the MTU for device eth0 on boot.
 MTU=9000

When configured correctly, we should see lower CPU utilization when network transfers are active, and higher bandwidth due to
the removal of potential bottlenecks.

5.5.5 Interrupt Coalescing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The primary advantage of jumbo frames is the reduction in the number of interrupts, and thus the CPU utilization, required to
process incoming data. As an alternative, some network cards can be configured to delay interrupting the host until multiple
packets have been sent or received. On the receive side, the interrupt is typically delayed until a specific number of packets have
been received or a specified amount of time has elapsed since the first packet was received after the last interrupt. A similar thing
occurs on the send side. The exact use of packet counts or delay times depends on implementation of the network card.
Regardless of the mechanism causing the interrupt delay, the effect is the coalescing of interrupts.

Network cards that support interrupt coalescing generally have tunable parameters that can be modified when the driver is loaded.
Care must be taken when adjusting these parameters. Increasing the maximum delay or packet count threshold too high can have
negative effects. On the send side, too long of a delay can result in all of the send descriptors being depleted, thus causing a stall.
A stall translates into wasted bandwidth. On the receive side, too long of a delay can result in all of the receive descriptors being
depleted, thus causing incoming packets to be dropped. For TCP, dropped packets means retransmission, wasting bandwidth and
delaying data reception. Frequent retransmission causes the TCP implementation to decide the link is oversubscribed and to
apply its congestion control algorithms. The net effect is a further reduction in available bandwidth for the application(s) attempting
to send data. (For details on TCP congestion control see [28, 110].)

Assuming the parameters are set to values preventing descriptor depletion, interrupt coalescing still impacts performance in
interesting ways. The obvious positive impact is the decrease in the amount of CPU time spent entering and exiting the interrupt
handling code, freeing the CPU to spend more time executing other user or kernel codes. If prior to enabling interrupt coalescing
the CPU was saturated with interrupts, the application may not have been receiving enough cycles to keep the send buffer
sufficiently full or the receive buffer sufficiently empty. Enabling interrupt coalescing may be just what a bandwidth starved
application needs to obtain maximal performance. On the other hand, any delay in triggering the receive interrupt directly affects
latency as the kernel has no knowledge of a packet's arrival until the interrupt occurs. This delay could have a negative effect on
latency sensitive applications.

As you can see, interrupt coalescing has tradeoffs and requires careful tuning to obtain maximal bandwidth while also achieving a
minimal impact on latency. But, when jumbo frames are not an available option, interrupt coalescing may prove important to
meeting the performance needs of your applications.

5.5.6 Socket Buffers

For TCP communication, the size of the send socket buffer determines the maximum window size at the sender. As mentioned in
Section 5.2, the send window controls the amount of unacknowledged data that can be outstanding, thereby affecting the actual
bandwidth achieved over the connection. Your first instinct might be to make the send socket buffer as big as possible; however,
this would unnecessarily consume a shared resource, thus possibly depriving other connections of suitable buffer space.
Additionally, excessively large buffers can result in less than optimal performance. The trick is to determine a suitably sized buffer
that maximizes bandwidth while minimizing the consumption of shared resources. The bandwidth-delay product is used to
compute the minimum necessary buffer size.

For the bandwidth-delay product, bandwidth is defined to be the maximum bandwidth obtainable over the connection. In other
words, it is the maximum possible bandwidth of the slowest network involved in the connection. On most clusters, intra-cluster
communication travels over a system area network for which the bandwidth is generally known, so obtaining the bandwidth figure
should not be difficult.

Delay is measured as the time it takes for the sender to send a packet to the receiver, the receiver to receive the packet and to
send an acknowledge back to the sender (possibly piggybacked on a data packet), and the sender to receive that
acknowledgment. This delay is traditionally known as the round trip time (RTT). RTT is frequently measured using the ping
program. Although ping does not use the same protocol nor have the same processing overheads as TCP, the ping RTT is
usually sufficiently close to the TCP RTT. The best results can be obtained if the size of the packet transmitted by ping is equal
to the MTU of the underlying network. Fortunately, the version of ping provided with most Linux distributions allows the data size
to be specified. For Ethernet, a data size of 1472 bytes plus the ICMP and IP headers will result in the desired MTU of 1500 bytes.

The size of the receive socket buffer determines the amount of data that can be buffered by the receiver while it is waiting for the
application to consume the data. The receive buffer size also impacts how much data the sender may send before being notified
that more buffer space is available on the receiving end. This notification is sent by the receiver along with acknowledgment and
data packets and is therefore impacted by the round trip delay we have already discussed. The implication is that the receive
buffer should be at least as big as the send buffer if maximum bandwidth is to be achieved.

Unfortunately, for high bandwidth, low latency links like those used for a cluster network, the bandwidth-delay product only
computes the lower bound of the needed buffer space. Other factors in the network hardware and software layers, for which the
delay measurements do not account, affect the amount of buffer space required to achieve the maximum obtainable bandwidth. In
fact, even the communication characteristics of the application can affect the buffer sizes required to obtain optimal performance.

The application itself (or a kernel of it) is a the best tool for determining the appropriate socket buffer sizes needed to obtain high
communication performance from that application. Sophisticated applications allow the send and receive buffer sizes to be
specified, either as command line options or through environment variables. Unfortunately, not all applications which use sockets
and TCP to communicate include this ability. And, even if they were included, many users are either unaware of the options or
lack the understanding to set them. Therefore, programs like iperf [59] and NetPIPE [104] must be used by the system
administrator to determine reasonable defaults.

Linux provides a mechanism for the system administrator to manipulate the default socket buffer sizes. The '/proc' file system
entries '/proc/sys/net/core/wmem_default' and '/proc/sys/net/core/rmem_default' correspond to the default send
and receive buffer sizes respectively. The current defaults can be obtained by executing the following commands.
 cat /proc/sys/net/core/wmem_default
 cat /proc/sys/net/core/rmem_default

New defaults can be set by writing the desired buffer sizes to those same '/proc' entries. For example, if send and receive buffer
sizes of 256KB were determined to be appropriate, the following commands could be executed to set those buffer sizes.
 echo 256000 >/proc/sys/net/core/wmem_default
 echo 256000 >/proc/sys/net/core/rmem_default

To automatically apply the settings when then system reboots, the above commands can be added to '/etc/rc.d/rc.local'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The system administrator also has control over the maximum buffer sizes, preventing applications from allocating excessive
amounts of buffer space. The maximum send and receive buffer sizes are set by writing the desired sizes to
'/proc/sys/net/core/wmem_max' and '/proc/sys/net/core/wmem_max' respectively. As before, the current settings can
be obtained by reading those same entries. The maximum buffer sizes should be set so they are at least as large as the defaults.
Again, commands to set these parameters when the system boots may be added to '/etc/rc.d/rc.local'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.6 Protecting Your Cluster
One of the most important issues that face the cluster network designer is that of cluster security. This is not only one of the most
obvious concerns, but security decisions are far reaching and can potentially interfere with the usability and performance of the
system.

In this section we discuss security concerns and delve into the details of techniques that cluster designers can employ to find the
optimal security solution for their own unique requirements.

Briefly, we define 'Protecting Your Cluster' as a series of techniques that range from minimizing a cluster's susceptibility to outsider
attacks to making a hackers life difficult even if they somehow gain login access to internal cluster machines. We will not be
addressing the securing/validation of application or user data via encryption or digital signature techniques.

We approach the concept of security by breaking the realm into two distinct phases: stopping unwanted network packets before
they reach a computer and stopping unwanted network packets once they reach a computer. It should be noted that some cluster
network design schemes will require attention in one or the other phases, but all schemes should probably pay attention to both.
Although this may seem oversimplified, we believe that by thinking of security in this way we can capture the major issues
surrounding cluster network security.

5.6.1 Phase 1: Once the Packets Get There

Since the simplest cluster network design case is one where all machines are openly connected to the Internet, we will first
consider security from the standpoint of how to make sure that individual systems are safeguarded against malicious network
packets once they arrive at the machine. We can imagine this case analogous to a case where a castle is being attacked by an
invading army. Once the invaders have breached the outer defenses, the castle is still far from lost as it could have internal
safeguards to keep the attacking forces at bay. While boiling oil and sharpened sticks will not help us in securing a compute
cluster (generally), we can still use common node securing techniques to keep intruders from damaging the integrity of our
systems once they have breached outer security systems (if such outer security systems exist).

Locking down individual node software
One simple concept, and one that should probably be understood and implemented regardless of a chosen network design, is that
of securing individual machines on a local level. History has shown us that Operating Systems are often times initially installed
with insecure parameters. The reasons for this truth vary, but are most often the cause of the wide range of users that are
installing from a single version of OS media. In our case, the version of Linux we will be installing on nodes was most likely not
meant to be a secure, high performance, optimized for scientific computing, cluster node OS. It was probably designed to be an
out of the box small business server OS or home desktop OS. The default settings, therefore, may not be properly tuned for our
specific application of the OS and must therefore be reconfigured to fit our needs.

Disabling unnecessary services
As a first step towards locking down our systems, we should first take a look at what is running on our systems when nobody is
logged in. Is a web server running? An NFS server? Other various network daemons that we don't necessarily need? Ideally, our
clusters would be running only what is necessary for compute jobs to run. In reality, this is very little, and is mostly software that
does not need to be running with an open port on the system. Historically, popular Linux distributions have been attacked by
security experts because the default OS configuration had almost every conceivable UNIX service process enabled. Although
these services had no known exploits at the time of distribution rollout, malicious entities across the world are continually looking
for service exploits, and inevitably some of the default services were found to be insecure, allowing remote attackers to gain
super-user access to machines. This situation gave rise to many Linux machines being installed that were immediately insecure.
Although the situation has recently improved a great deal (Linux distributions now focus on simple service configuration tools, but
have most of them disabled by default) the lesson is still an important one.

The first step to disabling unnecessary service is to first realize which services are running on the system. As discussed in Section
3.2.3, this information can be gathered using simple ps and netstat commands to examine what processes are running and
what network ports they are listening on respectively. See the man pages of these tools for more information. Another common
tool for examining which network ports a machine is listening on is the nmap tool which is used to show the network ports that are
open on a remote machine.

The second step is to understand the service startup scheme of your systems. This varies from distribution to distribution, but is
usually fairly straightforward using bundled GUI tools or command line interaction.

The last step in shutting off unwanted services, once they have been identified and the process for disabling them is understood,
is insuring that all systems in the cluster have identical configurations. The specifics of synchronizing configuration across
machines in your cluster is beyond the scope of this chapter, but can usually be accomplished via bundled cluster software or
simple shell scripts.

Although it would be generally grand to disable all services that can be remotely exploited, there will inevitably be some services
that must be enabled for proper cluster operation. This being said, since we can't disable the service, we must do our best to
make sure that each enabled service is secure as possible. First, since these network services typically accept remote queries, we
should enumerate the remote entities that need to be able to make connections to our local hosts. By default, most services will
allow connections from any machine on the Internet, a behavior which is most likely more flexible than it needs to be for Linux
cluster services (does a machine in Egypt really need to be able to connect to our local print spool?). For each service, the cluster
designer should be able to enumerate domains that should be able to connect to that service, often times to the IP level. The
cluster operator should make a table of necessary services, and which groups of external machines need to have access to the
service. Table 5.1 summarizes some of the important services.

Table 5.1: Some example services with descriptions and category of external systems that should have access to
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Service Description Allowed

ssh Allows remote users to log into machine securely Entire Internet

nfsd Allows remote machines to share file system volumes over the network Internal cluster nodes

named DNS server, serves name/IP mapping information Internal site machines

httpd Web server, serves cluster information documents, files Internal site machines

scheduler Batch job scheduler Login nodes only

Once we have a clear notion of which remote entities should be able to connect to each of our services, we must identify the
mechanism by which these services restrict access. Most services have their own mechanism for access control, while others may
rely on a uniform access control system. Following is an example of how we use the '/etc/exports' file to control access to an
NFS server process.
 [root@host.myu.edu /root]# cat /etc/exports
 /exports/rootnfs *.myu.edu(rw,no_root_squash)
 /exports/stage *.myu.edu(rw)
 /exports/my *.myu.edu(rw)
 /exports/scratch100 192.168.1.100(rw)
 [root@host.myu.edu /root]#

In this example, we are granting access to all machines in the domain myu.edu to the first three file systems, and only to the
machine which is bound to the IP address 192.168.1.100 for the last file system.

Now that we've disabled unneeded processes and secured everything else as much as possible, it may seem that on a local level,
we have gone as far as possible. However, the one dimension that most frequently creates security problems for UNIX machine
administrators is that of time. Generally, services are not written to be insecure (hopefully) and are not installed on systems with
known security holes. The problem is that over time, flaws are first found, shortly afterwards they are exploited. An attentive
cluster administrator needs to notice when flaws are found by the Internet security community and act to update installed software
in the short time interval between when the flaw is found and when the flaw is exploited. To do this, an administrator must
regularly watch the security websites and mailing lists for the uncovering of exploits, as well as watching the distribution vendors
security pages for notification of updates. Some examples of established and useful security websites are [101] and [23]. The
former has shown to be very fast to respond to new vulnerabilities and often includes proof of concept exploit code in addition to
descriptions fixes to security problems. CERT is a very complete index of vendor supplied problems/patches to security problems
but is sometimes slower to respond to new vulnerabilities.

5.6.2 Phase 2: Before the Packets Get There

In the previous section, we assumed that an attacker has breached a first line of defense and had the ability to make attacks on
individual machine entities in the cluster. To return to our analogy of a castle being attacked, the previous situation implied that our
outer walls had fallen or that we didn't have an outer wall at all. While this is sometimes considered sufficient security, we can use
outer walls in conjunction with local security measures to provide an even safer system.

Previously, we made sure that our local services were configured to reject connections from sources that we knew were not
supposed to be able to access that service but this rejection implicitly assumes that our service is operating properly with regards
to its decisions about incoming traffic. There are cases, however, where a service may have such a serious flaw that a remote
attacker can introduce a service failure to the point where the service is unable to operate properly anymore, making our hard
work of configuring access rules at the service level obsolete. The only way of preventing this from happening is by making sure
malicious network traffic never reaches our systems, a task that firewalls can help us with.

In this section we describe some very simple techniques that can be applied to prohibit unwanted network traffic from ever
reaching individual cluster machines in the form of software and hardware firewalls.

Firewalls Clarified
A firewall, simply put, is some mechanism that allows for the inspection of individual network packets combined with some set of
decisions to make based on where packets originated and where they are destined. Firewalls take many forms, ranging from
hardware devices that sit between a site's uplink to the Internet and all internal machines to kernel level software layers that are
active on each individual machines. Regardless of how a specific firewall is implemented, its job is essentially the same as any
other firewall; inspect a network packet for source and destination information, and decide what to do about it—let it through,
divert it to somewhere else, or throw it away.

By using firewalls, we can very efficiently block network packets from ever reaching nodes that we are certain never will need to
accept said packets. The first decision we must make, however, is that of where to put our firewall in the network chain of events.
The two extremes, as mentioned above, are between a site's uplink and all internal machines, and one firewall per machine. Both
extremes are most likely not ideal for a Linux cluster scenario. Since a cluster will comprise some subset of all machines at a site,
policies for the cluster nodes will not mirror policies for general site machines. This prohibits the use of one site firewall that can
handle all cases. On the other extreme, we would have to maintain one firewall per machine, which can be a potential source of
unneeded complexity. Most likely, the cluster designer would want to place a firewall in front of logical partitions of their cluster,
whether it be the entire cluster, compute nodes only, management nodes only, server nodes only, or some combination of the
above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4: Above are shown some possible locations one may wish to place a firewall, denoted by the curved dotted
lines.

Where a firewall is placed is entirely dependent on the policies set up by the cluster designer, but for simplicity we will assume one
firewall between the cluster uplink and the rest of the Internet (including other site machines). This is to say, all packets that are
destined for any machine inside the cluster must past through our firewall, and any packet originating from the Linux cluster must
also pass through the firewall.

Linux provides a very powerful suite of firewalling software, which we will cover in detail. Later we will briefly explore various
hardware solutions to the same problem.

Linux software firewalling using iptables
The Linux operating system, as of the time of this writing (Linux version 2.4.X), provides a very complete packet filtering and
mangling system that can be used as, among other things, a software firewall. All packet inspection/alteration activity is done via a
kernel subsystem known as netfilter and is controlled by a userspace utility known as iptables. The scenario in which these
subsystems are applicable in our case is when we're using a Linux machine as a network router. Say our cluster machines exist in
the 192.168.13.0/24 address range. We have one Linux machine with two network interfaces (one interface on the
192.168.13.0/24 network and the other on a network that is routed to the rest of the site). We can run routing software (refer to
routed or gated documentation) to cause our machine to forward packets from one interface to the other, thereby creating an
site gateway for our cluster nodes. If one's cluster was using an Internet routable network, the same router setups applies except
the router would now be acting as an Internet gateway instead of a simple gateway between one unroutable site network and the
unroutable cluster network. Once we have set up this routing Linux machine, we can configure it as a very powerful firewall.

The iptables/netfilter subsystem is best understood when considering the path a network packet takes when traveling through a
Linux machine that is acting as a router. Along this path, there are certain predefined inspection points where we can define sets
of tests that the packet must endure. Based on the outcome of the tests, we may allow the packet to continue, we may jump to a
different set of tests, we may alter the packet, or we may throw the packet away forever.

To understand how we might use such a system, we can start by considering two of the predefined checkpoints, or chains in
iptables terminology. One chain is encountered after a packet arrives at the Linux router and the router decides to forward the
packet on to its destination (box 1 in Figure 5.5). The other chain is reached by a packet when a Linux machine (router or
otherwise) decides that the packet is destined for itself (box 2 in Figure 5.5), and moves the packet up into userspace where a
waiting process can handle it. The former, in netfilter terminology is referred to as the FORWARD chain and the latter is the
INPUT chain. Each of these chains contain rules that are of the logical form "if the packet matches <X> then perform action <Y>".
For a given chain, a packet starts at the first rule and continues through the conditionals (assuming it does not match the <X>
criteria) until it reaches the very end. If a packet does match the <X> criteria, a common <Y> action to take would be to accept the
packet (let it continue on past the chain). Each chain has a policy set on what to do once a packet makes it through all the rules in
the chain.

Figure 5.5: Above are shown some of the interesting points through the Linux kernel where network packets are affected.
The letters are points in kernel space where routing decisions are made. Numbered locations are some of the places where
netfilters exist that will determine the fate of packets passing through. A.) incoming packet routing decision. B.) local machine
process space. C.) postrouting decision. 1.) FORWARD netfilter table. 2.) INPUT netfilter table. 3.) OUTPUT netfilter
table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this basic knowledge of what is happening to a inspected packet, we can start to think about how to use this system to
provide reasonable security for our cluster. An old but useful paradigm in firewall policies is to start by blocking all network traffic,
then start allowing only what needs to make it through. For us, this would mean that by default, we would want to set the chain
policy (remember this is the decision that is made when a packet passes through all the rules without matching any of them) to
drop the packet, and then insert rules that look for only the packets we would like to let through and allow them to pass. Generally,
we can expect to be able to set up rules that look at a packets source, its destination, protocol (TCP/UDP), and its service type
based on the port of its destination process. In this way, we can makes rules based on who is sending the packet, who the packet
is supposed to go to, and what service (sshd, httpd, etc) the packet is supposed to be a part of. Following is an example of how
we would set up a simple firewall that all incoming traffic except for that destined for the sshd and httpd processes on cluster
nodes. We do this by using a Linux router that is sitting between our cluster and the Internet.

First we show how to inspect the current state of the default chains (checkpoints).
 [root@host.myu.edu tmp]# iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

 Chain FORWARD (policy ACCEPT)
 target prot opt source destination

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 [root@host.myu.edu tmp]#

We can see that there are no rules defined.

Next we set the policy on the FORWARD chain to DROP, thus insuring that any packet that does not match one of our to be
determined rules will be immediately dropped instead of forwarded on.
 [root@host.myu.edu root]# iptables -P FORWARD DROP

Since our DROP policy will drop packets coming from and heading to the internal cluster machines, we set up a simple rule to let
all traffic originating from the cluster through. In the following, where we needed to continue an input line, we used a backslash at
the end of the line.
 [root@host.myu.edu root]# iptables -A FORWARD \
 -s 192.168.13.0/24 -d 0.0.0.0 -j ACCEPT

Finally we can set up some rules for allowing packets destined for sshd (port 22) or httpd (port 80) to pass from the outside
network to our internal network.
 [root@host.myu.edu root]# iptables -A FORWARD -s 0.0.0.0 \
 --protocol tcp --dport 22 -d 192.168.13.0/24 -j ACCEPT

 [root@host.myu.edu root]# iptables -A FORWARD -s 0.0.0.0 \
 --protocol tcp --dport 80 -d 192.168.13.0/24 -j ACCEPT

Once again, we use the -L flag to view our new firewall setup.
 [root@host.myu.edu root]# iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

 Chain FORWARD (policy DROP)
 target prot opt source destination
 ACCEPT all -- 192.168.13.0/24 0.0.0.0
 ACCEPT tcp -- 0.0.0.0 192.168.13.0/24 tcp dpt:22
 ACCEPT tcp -- 0.0.0.0 192.168.13.0/24 tcp dpt:www

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 [root@host.myu.edu root]#

If we wanted to set up rules to block packets arriving at the local machine, we would perform the same style of operations but
instead add rules to the INPUT chain instead of the FORWARD chain.

Setting up a complete firewall will take many rules, and will be different for every site. For more information regarding Linux
firewalls, the reader may wish to consult one of the many books written on the topic, for instance [127].

Hardware firewalls
An alternative to using a Linux machine as a router/firewall between protected machines and the Internet is to use any number of
specialized hardware devices which essentially do the same thing. Many companies have provided embedded systems that are
easy to configure/manage and quite robust. The benefit of these systems are they're relative ease of use (no iptables
commands to learn) and the fact that they have vendor support. The drawbacks are the slower response times to security hole
fixes and of course cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.7 Troubleshooting
Although cluster networks are typically rather robust, they are still sometimes responsible for unexpected behavior in one's cluster.
Some of these problems can be caused by hardware failures, but are more often the result of improper software configuration or
corrupted data in the system. Since the cluster network is not always easily identifiable as the cause of problems, we have chosen
to present some simple techniques which cluster administrators can employ while tracking down various cluster network related
problems. We also wish to illustrate the use of popular network troubleshooting tools by walking the reader through some common
failure/recovery scenarios. For a more complete network troubleshooting handbook, the reader may refer to one of many such
books devoted to the topic [103]. This section is designed to bring some potential pitfalls to the attention of the reader but is more
intended as a starting point for administrators attempting to track down various bugs in the system.

In order to diagnose a cluster network problem, we first must understand the various levels of the cluster and how they might
cause a problem. It is usually good practice to start at the application level, and work our way down through the kernel and logical
network, and finish by checking hardware. An example of an application problem may be a user using an incorrect hostname or
port in their application. OS level problems, which range from service configuration to driver problems, offer a wide variety of
debugging challenges. Logical network problems can be improper firewall rules or routing configurations, and hardware issues
range from bad switch ports to damaged cables. Attacking problems from the top of this chain, we can eliminate higher level
problems before getting lost in lower level details that may not have anything to do with the original problem.

Before we begin the failure scenarios along with solutions, we first need to have a toolkit of utilities that we can use to help us
determine the source of the problem.

ping. The faithful UNIX command ping has proven to be one of the most useful utilities in UNIX history. It uses a
property of the ICMP protocol that specifies that when an echo request packet is sent to a remote machine or
gateway, the remote machine sends back an echo response packet along with some timing metadata. Essentially
we will use ping to give us a first impression of whether a host is alive on the network.

netstat. Linux provides a utility netstat which allows us to inspect the current network connection status of our
machine. We use it to see which ports our machine has open, which remote machines are currently connected to
us, what state our TCP connections are in, etc.

Iperf. The iperf utility is a very complete network performance testing software suite. Being a modern utility for
testing network bandwidth, it supports all standard protocols, includes support for multicast performance testing,
and has IPv6 support.

nmap. The nmap utility is used to probe the network accessibility of a remote machine. It can be used to essentially
"map" a network by finding which machines are alive on the network and what ports they currently have open.

telnet. Although the use of the telnet remote login service is most likely disabled on any reasonable modern
OS (or should be), the client program, telnet, has other useful applications. To telnet we can specify a
hostname and a port to connect to, at which point the client makes a straightforward TCP connection to the remote
host/port and allows us to send and receive character streams to/from the remote host. This usage model can be
quite helpful when testing basic machine connectivity.

User applications. Often times, one of the best tools for finding problems, and sometimes solving them, is the
actual application codes being run on the system. After all, if our users are having no problems, are there actually
any problems?

Now that we have some useful tools in our toolbox, we can examine some problem scenarios and see how we can diagnose, then
attempt to solve them. The reader should bare in mind that real life problems will not mirror our examples exactly, and our
procedures are only meant to illustrate a general process, not a specific solution.

When I try to rsh/ssh to a remote machines, it fails.
Most often this problem is caused by improper software configuration. First, following our own advice, we should quickly check the
sshd/rsh configuration files to see if anything is obviously misconfigured. If the services appear to be configured correctly, we
step down to the OS/network level. For the ssh/rsh tools to function properly, the two machines in question must be visible to
each other on the network (connected), and they must be able to correctly identify each other when a connection is attempted. We
use ping and telnet to determine if both above conditions are satisfied.

log into source machine

ping destination machine

log into destination machine

ping source machine

This process will give us a very crude notion of whether the machines can contact each other over the network. If the above
process fails, skip down to the next scenario ping doesn't seem to be working to try resolving the problem, then return to this
scenario if there is still a problem with rsh/ssh.

Both ssh and rsh use TCP to start up an initial connection. We can test simple TCP connectivity using the telnet command.
Start by logging into the source machine. If a connection is established, one should see the following form of output.
 source.myu.edu % telnet remote.myu.edu 514
 Trying 192.168.13.7...
 Connected to remote.myu.edu.
 Escape character is '^]'.
 Connection closed by foreign host.
 source.myu.edu %

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 source.myu.edu %

For ssh, replace the port number of rshd (514 in the above example) with sshd's port, 22. Current port assignments should be
verified by looking in the machine's '/etc/services' file. If for some reason the two machines we able to ping one another but
not send TCP traffic to specified ports, we would expect the session to look similar to the following.
 source.myu.edu % telnet remote.myu.edu 514
 Trying 192.168.13.7...
 telnet: connect to address 192.168.13.7: Connection refused
 source.myu.edu %

If this occurs, our problem may be related to a routing or firewall problem, refer to the problem situation below entitled "ssh works,
but ... does not" for more details on how to track this down.

If we can ping our remote machine and telnet to the port in question, our problem is most likely a simple configuration file
problem (we're most likely to see an error message reporting a permission problem or similar). Check the utility's documentation to
learn more on how to set up the servers (sshd for ssh problems, inetd/xinetd for rsh problems) to accept remote
logins/commands.

ping doesn't seem to be working.
If our simple ping procedure is failing, either the machines are not properly configured for the network they're connected to, our
name resolution configuration is incorrect, our firewall is improperly configured, or we are having hardware problems.

To confirm that our machines are properly configured to have a presence on their networks, we can attempt to ping some external
machine (the gateway perhaps, some internal web site, etc). If one or the other cannot ping any external machine, there is most
likely a problem with the way the network interface is configured on the machine (see Section 5.4.2) or with bad hardware/cables.
If they are both alive and able to ping a common third machine, then we should try to ping with an IP address as opposed to using
hostnames. Using the ifconfig utility, we can acquire both machine's IP addresses which can then be used instead of
hostnames by a repeat of our ping procedure. If this fails, please refer to the problem scenario below entitled ssh works, but ...
does not.. Now if pinging with IP addresses works, but pinging with hostnames does not, then we know we have a problem with
the way our machines are resolving hostname mappings (or vice versa). We should consider how our systems are supposed to
resolve these mappings ('/etc/hosts', NIS, DNS, all three) and check the appropriate configuration files to make sure both
sides are properly set up to resolve hostnames (refer to Section 5.4.3 for details).

ssh works, but ping/rsh/application/etc does not.
If one finds that some specific application is functioning properly, while others are failing, the problem usually lies in the
misconfiguration of the failing application(s). Great care should be first put into determining if the cause of the failure is specific to
an application. If the failure continues when all configurations appear correct, we should turn our attention to router/firewall based
causes. Remember that just as we can configure a firewall to only allow certain traffic, we can also configure it to deny certain
traffic. We should check to make sure our firewall isn't explicitly denying our service traffic. Another possibility would be that we
have forgotten to include a rule in our firewall that fully allows a service's network requirements to be fulfilled. Often times services
require only one port for an initial connection to be made by a client, but use other ports upon successful connections, and we
must allow connections on all needed ports in order for such services to operate. Note that commonly we only need to allow a
single open port in one direction, but many ports must be unblocked in the other direction. The firewall must be configured to
manage this types of service behaviors.

The user's application is running, but seems like the network is slowing it down.
If everything appears functionally to be operating, but is simply performing poorly or is performance is wildly varying, we can
usually use iperf to quantify the problem. Below is an example of running the simplest test (TCP bandwidth, default window
size) on a set of machines.
 # This is the server command
 remote.myu.edu %, iperf -s

 # This is the client command
 source.myu.edu %, iperf -c remote.myu.edu

Both processes will show that a test has started and after a few seconds each will report the number of seconds taken, size of
total transfer, and calculated bandwidth of the connection. Try running this benchmark a few times, checking to see that whether
your network is supplying the expected performance. On an unloaded system, one should expect to see approximately 95 percent
of total link bandwidth to be reported by iperf, the remaining bandwidth being used by headers and other control traffic. If iperf
is giving you expected measurements, there may be something wrong with the application that is showing poor network
performance. Otherwise, the problem could be a bad port, cable, or even network card driver.

Nothing works!
A good rule of thumb to follow when nothing seems to be working is to follow the chain of commands that should be apparent from
this section. We have application errors, local host service configuration, local name resolution configuration, logical network
failures (firewalls), and hardware failures. Most problems that appear in a cluster network lie in one or many of these steps, and
careful consideration at each step before moving to the next should flush out the problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Setting up Clusters

Overview
Philip Papadopoulos

Your day is starting off well—many boxes of the fastest-ever cluster nodes have arrived on your shipping dock and you are ready
to tear them open, set them up, and start running your favorite code just as soon as you can. The space is planned out, you know
what kinds of nodes you need in terms of login, storage, compute and other types of devices, the electricians finished putting in
the plugs yesterday, and the cooling has been upgraded to keep your cluster nicely chilled. It then dawns up you, you are looking
at literally hundreds of components—computers, power distribution units, networking switches, racks (or tables, or shelves), disks,
and a monitor or two. You need to have a plan for how to layout and organize your cluster for the physical buildout. The harder
part is really deciding on how you are going to get the operating system onto each one of the nodes so that you can get started
computing in the shortest time possible. There isn't a "right way" or a "wrong way" to do this. And, in reality, how you provision
your nodes has quite a bit to do with personal taste and administrative style. There are, however, are two broad issues to keep in
mind—scalability and reproducibility.

Initial setup is closely aligned with management of the cluster (see Chapter 13). Setup is not a one-time task for a few reasons.
First, nodes do break and replacement nodes need to be turned on and provisioned with the latest software. Second, clusters
often incrementally expand requiring you to provision new (and sometimes physically different) nodes over the lifetime of a the
machine. Third, Linux moves quite rapidly—with 3 package updates every two days on the current release of Redhat—at some
point, patching simply won't work and a wholesale re-installation is needed to make the cluster stable and consistent. A real plan
is needed for both management and setup. These two aspects support each other.

This chapter is organized as follows: the challenges of cluster setup are introduced first, some simple but effective tips for
physically organizing your system, an overview of general approaches to cluster setup is given, and finally some detail is given
about two popular approaches to cluster setup: NPACI Rocks's description-based installation, and OSCAR's image-based setup.
This chapter is not meant to be a step-by-step instruction manual for any particular method, but has the primary purpose of giving
the reader some comparisons and motivation for why different teams choose very different approaches.

Before launching into the deep details it is worth noting that this chapter covers traditional Beowulfs where each node has a disk
and contains a local copy of the operating system. Single system image toolkits like Scyld and SCore have their own custom
installers. In particular, Scyld's setup and management are given in Chapter 18. Diskless systems are not covered in this section.

After reading this chapter, the reader should have a good overview of how different provisioning methodologies work. Setup and
ongoing management are intimately connected, and an administrator's style often dictates how a system is provisioned. In the
end, instantiated clusters, whether built with Rocks, OSCAR, SCE, or even other lesser-known systems toolkits, have very similar
functionality. Afterall, each has a basic Linux OS, a queueing system, monitoring, message passing, and I/O subsystems. The key
to evaluating each of these systems for your own use is how does a particular approach reduce your time for administrative issues
and increase your time for actually using the cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Challenges
Initial setup of a cluster is not trivial, but neither is it untenable. Suppose that 68 brand new computers have just arrived. 64 are
slated as compute nodes, two function as login and job launching nodes, and two are dedicated to providing I/O services, often
using plain old NFS. The hardware related challenges revolve around selecting your network setup (see Chapter 5), laying out the
systems in an organized fashion, physically wiring, and getting your electricians to believe just how much power the cluster will
actually consume. For the moment, let's assume that the cluster has been physically constructed and sitting with power turned off
and no software on any system (frontend, storage, compute, etc). It's raw hardware just waiting to be unleashed.

6.1.1 Software Provisioning Challenges—There are No Homogeneous Clusters

This subsection starts with a bold proposition—"There are no homogeneous clusters". Standard Beowulfs have at least two types
of nodes: login and compute, so homogeneity of function is already split. As clusters get larger, some nodes take on specialized
service roles to handle the aggregrate load—system logging nodes, dedicated I/O nodes, additional public login nodes, and
dedicated installation nodes are just a few personalities that might need to be supported. In a tale of two clusters (Chapter 20),
one can see the various node types that make up a real cluster. It's more than just head node and compute. Role specialization
isn't the only way that a model of homogeneity can break—differences in hardware is also quite common at design time and
throughout the life of the cluster. Even though many clusters may start out with compute nodes being of a homogeneous
hardware type, they often don't stay that way. Hardware is simply moving too quickly to expect that future expansions of a cluster
could be identical to current nodes. Equipment breaks and the replacement parts might have different memory types, updated
processors or a different network adapter. Even when all nodes are purchased at the same time in an attempt to insure hardware
homogeneity, small differencess still can get in the way.

Some years ago, the author worked with NT-based clusters. Our team had purchased 64 9.1 GB SCSI drives, all with the same
part number, all with the same specifications. They differed slightly—some had 980 cylinders and some had 981. From the
manufacturers perspective, both provided the advertised space. The problem occurred in the imaging program (ImageCast, in this
case). An image was taken from the 981 cylinder drive. Attempts to re-image the 980 cylinder drives failed beeause of the single
cylinder difference. Image-based programs have certainly improved since then, but these types of small differences can cause
many lost hours. We solved the problem by building the model node on the 980 cylinder disk that just happened to work on the
larger drive. We were lucky, we might have been forced to have two images just because of a one cylinder difference in the local
hard drive. The reality is that in commodity components, small low-level differences exist. Your setup and management
methodology must be able to handle these subtle differences without administrative intervention.

The previous example makes clusters sound ominous, impossible to provision, disorganized and the reader may feel that it is a
hopeless cause to build a real, functioning and stable cluster. That somehow small differences can wreak havoc on the
provisioning stage. Fear not. Clusters are everywhere. They include some of the fastest machines in the world, are stable and can
be provisioned easily to meet the configuration challenges to manage the inhomegeneity at the functional and hardware levels.

Differentiation along Functional Lines
Commonly, several types of functionality are needed to build a working cluster. As clusters grow in the number of nodes,
specialization of particular nodes to perform specific tasks becomes much more prevalent. In the largest clusters, functional
specialization of nodes is a necessity. The specialization is a direct outcome of needing to scale certain services. On a small
cluster, the head node can "do it all" — system logging, ganglia monitoring, function as an installation server, compilation, login,
and serve out home areas. As the cluster grows, these services need to be spread across physical machines so that each can
handle the load.

Any node in the cluster is differentiated by the types of services and software that are configured on it. Nodes can change their
logical functionality just by deploying and configuring a different software stack. A common differentiation in mid-sized clusters has
nodes of the following types (we will henceforth call these appliances):

Head Node/Frontend Node—This node is the public persona of the cluster. This is where users log in, compile, and
submit jobs.

Compute Node— Where most of the work happens

I/O server—Often an NFS server, but aggressive systems like PVFS can be used

Web server

System logging server

Installation server

Grid gateway node

Batch Scheduler and cluster-wide monitoring

When setting up a cluster, decisions are made as to how many I/O servers, how many system logging servers, and how many
installation servers are needed to support a given number of compute nodes. For small- to mid-sized clusters (perhaps up to 128
nodes), the services are all hosted by a single (or small number) of front-end or head nodes, so no real decision has to be made.
However, even in mid-sized clusters, special attention is often paid to improving file handling capability by provisioning a sub-
cluster of nodes dedicated to I/O. Chiba City at Argonne, for example, has different "towns"—visualization, storage, and compute
—that clearly define functional differences.

In common cluster construction, one builds a head node, a set of I/O nodes (collectively, an I/O cluster), and a set of compute
nodes. This chapter assumes that these types of "appliance" classifications have already been made by the cluster designer, but
that at this point, nothing is installed or set up.

6.1.2 System Software Consistency Across the Cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The issue that overshadows all others in cluster setup and management is creating and maintaining a software environment that
is consistent across all nodes and node types. Small anomolies such as different versions of the standard C library can cause
performance and correctness of operations problems. Progamming clusters is challenging enough without users needing to figure
out that nodes are behaving differently because of software version "skew" across the cluster. It is for this reason that cluster
installation and setup is so intimately tied to ongoing management. It simply does no good to install a new node (either expansion
or replacement of a failed node) that differs in software versions or configuration from the running cluster. The new node must be
brought into parity with the rest of cluster. Two popular open-source clustering toolkits, NPACI Rocks and OSCAR, take radically
different approaches to provisioning and management. Both toolkits' perspective on installation will described in some detail in this
chapter.

It is worth noting that diskless clusters often have fewer issues with software skew because all nodes mount a common root file
system over NFS. Even so, diskless clusters are significantly less popular because of the scaling problems of serving all system
software from a central NFS server. Chapters 3 and 20 cover some of the advantages and disadvantages of diskless nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Hardware Provisioning Challenges and Best Practices
Chapters 2 and 4 describe the critical hardware choices that one has to make when constructing a cluster. In this section, we
describe a few "tricks of the trade" that, down the road, can make a huge difference in terms of neatness, maintainability, and,
ultimately, reliability. The watchword is organization. Neat cables aren't just to look pretty, they can significantly improve your
ability to debug some types of problems on the cluster. Labeling cables and nodes is always helpful, but having a regular layout is
essential. For obvious reasons, powers of two (and/or multiples of 8) are natural quantities to deal with in the computing world,
and clusters are no different. There are four key areas to focus on in hardware provisioning

Layout of nodes—Rackmount vs. Workstation Towers vs. Blades

Cable management

Airflow management

Power Management

Paying attention to these issues for that pile of boxes in the corner will make your cluster last longer and be more stable. Building
a cluster is fun and rewarding, take the small amount of time to plan out your physical layout.

Node Layout and Cable Management
Rackmount systems are perhaps the most convenient way to stack nodes into a small space. in Figure 6.2, one can see the front
side and back side of a typical racking system. Cluster nodes themselves are defined in terms of a standard rack unit or "U". One
Rack Unit is 1.75" (4.45cm) and standard height (2 Meter tall) racks have 42U of available space. Rackmount nodes are typically
called servers, but there are plenty of hardware chassis that are rack mountable and take standard motherboards. As one gets
more densely packed such as in a tower full of 1U servers, CAP (Cable, Airflow, and Power) becomes of paramount importance.
We will take some time to detail out these issues for rack-based systems and then make comments on how these can be carried
over to shelves of desktops and newer blade servers.

In cable management, groups of four (4) and eight (8) are the tickets to success. In Figure 6.1, one can see 8 power cables in one
bundle and 4 ethernet cables in another bundle using wire ties available from the local home improvement store. To prebundle the
cables, just lay them out on the floor, and wrap a wire tie every 6–12 inches (15–30 cm). Clip off the excess from each wire tie and
you have taken just a few minutes to create nice, tidy packages. Do this with all of your cables. You will soon discover that a 128
node cluster can be wired with 16 power bundles and 16 ethernet bundles. A bit of pre-planning cable lengths is needed,
especially in the case of workstation towers. In this case you might prebundle a set of cables that contains two each of 5,6,7 and 8
foot long ethernet cables. At one end the cables are even so that they plug easily into the ethernet switch, the others are of the
correct length to plug into a specific server that are sitting in a line next to each other in a shelf configuration. If towers are 6
inches wide, then the 8th tower is about four feet (about 1 meter) further away than the first one. If on the other hand, you have
rackmounted 2U servers then the top server in a "bank" of 8 is only about 15 inches (40cm) away from the first one. In this case,
cabling 8 ethernet cables of the same length often works well.

Figure 6.1: Cable bundles. Wire ties make 8 power cables into a neat and managable group

The power cables are also grouped and bundled. It turns out that power cables are actually quite a headache. They are big, bulky,
heavy and rarely are close to the correct length. What you decide to do with the power cables can have a significant impact on
cooling. Figure 6.2 illustrates how cables are pulled to the sides of the rack allowing for unrestricted airflow. This is really one of
the compelling reasons to bundle cables—neatness improves the ability of the chassis to cool themselves by getting the cables
out of the airflow. Heat kills clusters and blocking the airflow is a common mistake. High-end nodes often dissipate 150–200
Watts, so a rack of 32 such servers is equivalent to 4 hair dryers running at high. As processor speeds improve, power
consumption always goes up before it comes back down as the semiconductor process is improved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.2: The back of a rack, showing the clean organization of the cables. Note that the fans are
unobstructed.

Power consumption of needs means power planning in the number circuits, and the number of power distribution units. In reality,
power is just another network. Take the power consumption seriously—there are many cases of overloaded power strips melting,
or worse, catching fire. There are many rules of thumb for how many machines can go on single circuit. The critical observation is
to not get too close to the max current of your circuit and to use thick enough power cabling. Standard power distribution units
(PDUs) are significantly better than the $2.00 power strip from the clearance table at the local hardware store. PDUs run about
$10.00/outlet and have quality cabling that won't overheat even as the current load increases. Remember, a Beowulf cluster is a
personal supercomputer, it has the electricty appetite to match. Network controlled PDUs generally run at about $50/outlet, and
these enable you to cycle power remotely. This is a very nice convenience for large installations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Different Types of Installation Management
As discussed in the introduction, setup and management of clusters can come down to a personal style choice. However, there
are technical and practical reasons to choose one type of installation method over another. We will describe the tradeoffs of each
type of installation. Popular open-source management systems include: NPACI Rocks, OSCAR, SCore, Scyld, and XCAT. The
Linux space is enormous and cluster toolkit designers have to make some decisions on what types of generalizations are the most
important. In particular, authors have to determine if and how they will scale across distributions and how they will support
different kinds of hardware. None of these toolkits covers the complete space of distributions × hardware.

The Linux distribution space is a moving target and includes (as of this writing) a number of players: RedHat, SuSE, Mandrake,
Debian, United Linux, and more. Each distribution has it's own style, file layout, package format, package definitions, and support
for a variety of hardware. Small differences such as using shadow passwords (or not), using xinetd or inetd, and SysV-
compatible startup differentiate distributions. For cluster software service designers (e.g., PBS, MPICH, Sun Grid Engine,
Ganglia), differences in packaging definitions can cause more headaches, especially in resolving dependencies. Redhat
packages, for example, are put together differently than similarly named SuSE packages. Debian uses dpkg and apt-get. For
the cluster toolkit designer, supporting all these variations is an impossibly large task. As a would-be cluster builder, you have to
choose the distribution and the toolkit. Do pick a toolkit as a starting point for your cluster and become involved in its improvement.
Don't roll your own installation and management from the ground up, as this just becomes a waste of your time in retreading old
ground. You have more important things to do with your time—using your new cluster.

Each of the commercial Linux distributions must do hardware detection to automatically install the right device drivers on the
widest variety of hardware possible. Distributions that don't detect the most common hardware (and support the quickly changing
network device world), simply are discarded by the user community in a classic case of "survival of the fittest." This last point is of
significant importance to cluster builders because of the desire to use the best, fastest, newest, and cheapest. No judgment is
made here as to which distribution is superior—rather it is the fact that these differences exist that is important.

The hardware space gets more complicated each day. Beowulf clusters used to be only IDE disks. Today, IDE (EIDE, UltraATA,
Serial ATA), SCSI, Integrated Drive Arrays, and Storage Area Network (SAN) adapters are de rigeur for cluster builders. High-
speed interconnects including Scali, Myrinet, Quadrics, and Infiniband need to be supported by cluster toolkits. Motherboards,
specialized chipsets, variants of x86, Itanium, and Opteron add more to the hardware mix. Again, none of the toolkits covers all of
this hardware space. You may asking yourself, "What's the problem? Why don't the cluster toolkits support all of these?". It comes
down to practical issues of time, money and resource. Each of the cluster toolkits tests a release on as much hardware as
possible—that collection of hardware is simply too small to cover most cases that users see in the field. The toolkit designers and
implementers must decide on "which disributions" and "what hardware" is supported. Another way to ask the question is

Should the toolkit scale across Linux distributions? or Should the toolkit scale across hardware?

Scaling across both, the obvious answer, is simply not something that the toolkit designers are able to practically accomplish.

The tradeoffs are simple—if you choose to scale across (support) multiple distributions, then one is practically forced to make
some generalizations to fit all the various distributions. The generalization uniformly selected by toolkits that scale across
distributions is to take over the base installation and hardware detection piece from the vendors and make these core pieces of
the cluster toolkit. These approaches don't leverage the installer supplied by the distribution. Instead, they build their own
customized installation programs that can handle a number of different distributions. The advantage is that users have more
choice of specific distributions. The drawback here is that the hardware space is large, and it is quite a job to manage the
hardware detection and customized kernel modules for lots of hardware.

If you choose a single distribution, then you can leverage the installation and hardware detection of the commericial vendor and
worry only about extensions to specific pieces of hardware, such as Myrinet. The clear drawback is that if the distribution does a
poor job of this, then the toolkit suffers the same fate.

What we see in the cluster toolkit space is a dichotomy of approaches—disk imaging and description methods. Disk imaging was
described in the first edition of this book as the practical way to clone a system onto your cluster nodes. Commercial and open-
source tools image-based programs are popular and include: Norton Ghost, PowerQuest Drive Image, SystemImager, Chiba City
Imager, and Power-Cockpit. Complete clustering toolkits that use imaging include OSCAR, Chiba City, and CLIC. Description-
based installers, on the other hand, use text files to provide a list of packages and instructions needed to completely configure a
node. Text-based installers are distribution-specific: Redhat Kickstart, SuSE YaST, and Debian Fully Automatic Installation (FAI).
Most of have their genesis (or, at least, inspiration) from Sun's Jumpstart installer. The text-based installation captures disk
partitioning, package listing, and software configuration. The advantage here is that a reasonably general text description can
work on many different variants of hardware because the distribution's installer is handling all the low-level details of hardware
detection. One popular description-based cluster toolkit is NPACI Rocks. But other examples exist like IBMs partially-open source
XCAT, and the European Data Grid's LCFG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 The Basic Steps
Before you select a toolkit to build your cluster, one needs to understand the basic high-level steps that are required to install your
basic Beowulf. At this point, we assume that the hardware has been physically assembled, cabled, and is ready for power up. The
steps are:

1. Install Head Node

2. Configure Cluster Services on Head Node

3. Define Configuration of a Compute Node

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node

b. Install complete OS onto new node

c. Complete Configuration of new node

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)

Sounds simple enough, and it is. Let's examine the first steps of installation and cluster services on the head node. Some toolkits,
like OSCAR, require the user to set up the Linux configuration separately from installing the cluster toolkit. Others, like Rocks,
combine these two steps into one.

The next step (define configuration of a cluster node) is perhaps where the differences between disk imaging and description
methods are most keenly felt. For disk imaging, a golden node needs to be installed and configured by a savvy administrator.
OSCAR's System Installation Suite (SIS), which is a combination of the Linux Utility for Installation and System Imager (originally
from VA Linux), uses a package list and an elaborate set of GUI's to create a golden image without actually first installing a node
and represents a significant improvement over older methods. (More details on OSCAR Installation will be given in Section 6.6).
Rocks uses an automatically generated text-description of a compute node "appliance" that is quite general across a wide variety
of harware types. (More details about Rocks installation and design will given in Section 6.5).

Once the basic configuration of compute node has either been created by a golden image or defined through a text description,
one must map where nodes are in the cluster. All ethernet interfaces have a unique MAC (Media Access Control) address,
00:50: 8B: D3:47: A5 is an example) and this is used by all tookits to identify particular nodes. When a node boots, it needs
network configuration parameters and usually gets this through a DHCP (Dynamic Host Configration Protocol) request. The node
presents the DHCP server with its MAC address and the server returns IP, Netmask, routing, node name, and other useful
components. (Chapters 2, 18 and 20 give further examples and details) Nearly all toolkits have some function or program to help
detect new MAC addresses (and hence new nodes). Rocks, for example, probes the '/var/log/messages' file for the
appearance of DHCPDISCOVER requests and checks these against a database. If an unknown address appears, the node is
added. OSCAR uses tcpdump to ascertain the same information. Not only do these detect the new addresses, but new node
names are automatically assigned. Once the detection is complete for a node, it does not have to be repeated, and the assigned
IP address is (almost always) permanent.

Installing the OS onto each node is another place where decription and image-based sytems differ. Image-based systems
download the golden image, make some adjustments for differences in disk geometry, IP address and other limited changes, and
then install the image on the compute node disk. Description-based methods download a text-based node description (which
already contains customization information) and use the native installer to drive the installation automatically. The description will
partition the disk, download packages, and perform post configuration of packages. The packages themselves are downloaded
from a distribution server instead of being contained inside of disk image.

It is critical to understand that disk image methods put the bulk of configuration information into the creation of the golden image.
Description-based methods, on the other hand, put configuration information into the text description, which is then applied at
installation time. It is often a matter of style as to which an administrator prefers. But, certain scenarios favor one method over
another.

The final step of node installation is to complete node configuration. Until recently, this was something that had to be done
explicitly by the system administrator after the base images were installed. Current toolkits completely automate this step.

The last step in complete cluster configuration is simply reconfiguring and restarting cluster-wide services like schedulers and
monitors to reflect an updated cluster configuration. Modern toolkits automate this for you.

In the next two sections we describe in some detail the NPACI Rocks Toolkit and the OSCAR Toolkit as two exemplars of
description-based and image-based methods. These sections do not take the place of howto's or installation instructions, but
rather describe the underlying mechanisms for installation and configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 NPACI Rocks
NPACI Rocks clustering software leverages RedHat's Kickstart utility to manage the software and configuration of all nodes. It
fundamentally enables the notion that reals clusters have many node types (hereafter referred to as "appliance types" or
"appliances"). Rocks decomposes the configuration of each appliance into several small single-purpose package and
configuration modules. Further, all site- and machine-specific information is managed in an SQL (MySQL) database as a single
"oracle" of cluster-wide information.

The Rocks configuration modules can be easily shared between cluster nodes and, more importantly, cluster sites. For example, a
single module is used to describe the software components and configuration of the ssh service. Cluster appliance types which
require ssh are built with this module. The configuration is completely transferrable, as is, to all Rocks clusters.

In Rocks, a single object-oriented framework is used to build the configuration/installation module hierarchy, resulting in multiple
cluster appliances being constructed from the same core software and configuration description. This framework is composed of
XML files and a Python engine to convert component descriptions of an appliance into a Redhat-compliant Kickstart file.

Anaconda is RedHat's installer that interprets Kickstart files. The Kickstart file describes what must be done from disk partitioning,
to package installation, and finally post- or site-configuration to create a completely functional node. Figure 6.3 presents a sample
Kickstart file. It has three sections: command, package, and post. The command section contains almost all the answers posed by
an interactive installation (e.g., location of the distribution, disk partitioning parameters and language support). The packages
section lists the names of Redhat packages (RPMs) to be installed on the machine. Finally, the post section contains scripts which
are run during the installation to further configure installed packages. The post section is the most complicated because this is
where site-specific customization is done. Rocks, for example, does not repackage available software—it simply has a mechanism
to easily provide the needed post-configuration.

 url --url http://10.1.1.1/install/1386
 zerombr yes
 clearpart --all
 part / --size 4096
 lang en_US
 keyboard us
 mouse genericps/2
 timezone --utc GMT
 skipx
 install
 reboot

 %packages
 @Base
 pdksh

 %post
 cat > /etc/motd << 'EOF'
 Kickstarted on 'date'
 EOF

Figure 6.3: Basic RedHat Kickstart file. The RedHat Installer, Anaconda, interprets the contents of the kickstart file to build a
node

While a Kickstart file is a text-based description of all the software packages and software configuration to be deployed on a node,
it is both static and monolithic. At best, this requires separate files for each appliance type. At worst, this requires a separate file
for each host. The overwhelming advantage of Kickstart is that it provides a de facto standard for installing software, performing
the system probing required to install and configure the correct device drivers, and automating the selection of these drivers on a
per machine basis. A Kickstart file is quite generic in that references to specific versions of packages are not needed. Neither is
specific identification of ethernet, disk, video, memory, motherboard, or other hardware devices needed.

Because the Kickstart file does not contain package versions, resolution of specific version information must be held somewhere.
For RedHat, this information is kept in a distribution tree. The distribution is simply a collection of RedHat Packages (RPMS) in
particular directory structure and a RedHat-specific index file that maps a generic package name to its fully-qualified version. In
this way, the Kick-start file may list an openssh-clients package, but the Anaconda installer will resolve this to the full name
openssh-clients-3. 1p1-6.i386.rpm by referencing the distribution's index file. Rocks provides some critical software
(rocks-dist) that greatly simplifies the creation of custom distributions. Multiple distributions can sit on a single server and end-
users can easily integrate site-specific software. In addition, distribution can be built with the latest update of packages so that
when a Rocks appliance installs itself, it can apply completely updated software in a single step. This eliminates an install-then-
patch scenario.

It is important to understand that the distribution contains all possible packages that might be installed on a cluster appliance
node. The Kickstart file describes exactly which of these will be installed and how each software subsystem will be configured to
make a particular appliance. Rocks allows a head node to serve out multiple distributions. This facilitates testing of nodes against
new software simply by pointing the installer to new distribution. See Chapter 20 and the Jazz cluster for a real world experience
on the necessity of having test hardware.

Description mechanisms for other distributions and operating systems exist and include SuSE's YaST (and YaST2), Debian FAI
(Fully Automatic Installer), and Sun Solaris Jumpstart. The structure of each of the text descriptions are actually quite similar as
the same problems of hardware probing, software installation, and software post-configuration must be done. The specifics of
package naming, partitioning commmands and other details are quite different among these methods.

6.5.1 Component-based configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key functionality missing from Kickstart to make it the only installation tool needed for clusters is the lack of macro language
and a framework for code re-use. A macro language would improve the programmability of Kickstart and code reuse significantly
ameliorates the problems of software skew across appliances by having shared configuration among appiance types be truly
shared (instead of being copies that require vigilance to keep in sync).

Rocks uses the concept of package and configuration modules as building blocks for creating entire appliances. Rocks modules
are small XML files that encapsulate package names and post-configuration into logical "chunks" of functionality. XML is used by
Rocks because of de facto standard software for parsing data.

Once the functionality of a system is broken into small single-purpose modules, a framework describing the inheritance model is
used to derive the full functionality of complete systems, each of which shares common base configuration. Figure 6.4 is a
representation of such a framework which describes the configuration of all appliances in a Rocks cluster. The framework is a
directed graph—each vertex represents the configuration for a specific service (software package(s), service configuration, local
machine configuration, etc.) Relationships between services are represented with edges. At the top of the graph there are four
vertexes which indicate the configuration of a "laptop", "desktop", "frontend", and "compute" cluster appliance.

Figure 6.4: Description (Kickstart) Graph. This graph completely describes all of the appliances of a Rocks
Cluster.

When a node is built using Rocks, the Kickstart file for a particular node is generated and customized on-the-fly by starting at an
appliance entry node and traversing the graph. The modules (XML Files) are parsed, and customization data is read from the
Rocks SQL database. Figure 6.5 shows some detail of the configuration graph. Two appliance types are illustrated here
—standalone and node. Both share everything that is contained in the base module and hence will be indentically installed and
configured for everything in base and modules below. In this example, a module called c-development is only attached to
standalone. With this type of construction it is quite easy to see (and therefore focus on) the differences between appliances.

Figure 6.5: Description Graph Detail. This illustrates how two modules 'standalone.xml' and 'base.xml' share base
configuration and also differ in other specifics

It is interesting to note that the interconnection graph is a different file from the modules themselves. This means that if a user
desires to have the c-development module as part of the base installation, one simply makes that change in the graph file and
attaches c-development to the base module. Also in Figure 6.5, edges can be annotated with architecture type (i386 and
ia64 in this example). This allows the same generic structure to describe appliances across significant architectural boundaries.
Real differences, such as the grub (for ia32) and elilo (for ia64) boot loaders can be teased out without completely replicating
all of the configuration.

6.5.2 Graph Components

In an earlier section, it was stated that image-based systems put the bulk of their configuration into creating an image, while
description methods put the bulk of their configuration into the description (e.g. Kickstart) file. In Rocks, the modules are small
XML files with simple structures as illustrated in Figures 6.6 and 6.7.

 <?xml version="1.0" standalone="no"?>
 <!DOCTYPE kickstart SYSTEM "dtds/node.dtd"
 [<!ENTITY ssh "openssh">]>
 <kickstart>

 <package>&ssh;</package>
 <package>&ssh;-clients</package>
 <package>&ssh;-server</package>
 <package>&ssh;-askpass</package>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <package>&ssh;-askpass</package>

 <!-- Required for X11 Forwarding -->
 <package>XFree86</package>
 <package>XFree86-libs</package>

 <post>
 <!-- default client setup -->
 cat > /etc/ssh/ssh_config << 'EOF'
 Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
 EOF
 </post>

 </kickstart>

Figure 6.6: The ssh.xml module includes the ssh packages and configures the service in the Kickstart post section.

 <?xml version="1.0" standalone="no"?>
 <!DOCTYPE kickstart SYSTEM "dtds/node.dtd">
 <kickstart>
 <main>
 <lang><var name="Kickstart_Lang"/></lang>
 <keyboard><var name="Kickstart_Keyboard"/></keyboard>
 <mouse><var name="Kickstart_Mouse"/></mouse>
 <timezone><var name="Kickstart_Timezone"/></timezone>
 <rootpw>--iscrypted <var name="RootPassword"/></rootpw>
 <install/>
 <reboot/>
 </main>
 </kickstart>

Figure 6.7: The 'base.xml' module configures the main section of the Kickstart file.

Figure 6.6 shows the XML file for an "ssh" module in the graph. The single purpose of this module is to describe the packages
and configuration associated with the installation of the ssh service and client on a machine. The package and post XML tags map
directly to Kickstart keywords. Figure 6.7 shows how global operations such as the root password and mouse selection similarly
can be described. Rocks also contains options on partitioning hard drives that ranges from a fully-automated scheme (which
works on IDE, SCSI, and RAID Arrays) to completely manual (adminstrator-controlled). The real advantage here is that ssh
configuration policy is done once instead of being replicated across all appliance types.

6.5.3 Putting it all together

Rocks uses a graph structure to create decription files for appliances. In the background is a mySQL database that holds cluster-
wide configuration information. When a node requests an IP address, a dhcp server on the head node replies with a filename
tag that contains a URL for the node's kickstart file. The node contacts the web server and a CGI script is run that 1) looks up the
node and appliance type in the database, and 2) traverses and expands the graph for that appliance and node type to dynamically
create the Kickstart file. Once the decscription is downloaded, the native installer takes over and downloads packages from the
location specified in the kickstart file, installs packages, performs the post installation tasks specified, and then reboots. Rocks
also uses the same structure to bootstrap a head node, except that the kickstart generation framework and Linux distribution is
held on the local boot CD and interactive screens gather the local information. In summary, we annotate the installation steps with
the steps that Rocks takes:

1. Install Head Node—Boot Rocks-augmented CD

2. Configure Cluster Services on Head Node—automatically done in step 1

3. Define Configuration of a Compute Node—Basic setup installed. Can edit graph or nodes to customize further

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node use insert-ethers tool

b. Install complete OS onto new node—Kickstart

c. Complete Configuration of new node—already described in Kickstart file

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)—part of insert-ethers

The key features of Rocks are that it is RedHat-specific, uses descriptions to build appliances, leverages the Redhat Installer to do
hardware detection, and will take hardware with no installed OS to an operating cluster in a short period of time. The description
files are almost completely hardware independent allowing the construction of Beowulfs with different physical nodes to be
handled as easily as homogeneous nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6 The OSCAR Toolkit
The Open Source Cluster Application Resource (OSCAR) uses imaging as its primary method of installing the operating system
on compute nodes of a cluster. Because it is image-based, OSCAR supports a wider array of Linux distributions (Redhat 7.2, 7.3
and Mandrake 8.0 as of this writing) with the with the same cluster tool stack, but is more limited in its hardware support. The
more limited hardware support juxtaposed to supporting more distributions seems to be an oxymoron. One has to examine exactly
how image-based installers actually work to see why this is the case.

6.6.1 How Image-based Installers Work

The most primitive image program is the venerable Unix dd command. With dd, one can save, bit-for-bit, a disk partition or entire
disk and store it as a file. The problem is that restoring such an image in a naive way requires that the new hardware be in
everyway identical. For disks, this level of identity is down to the geometry and cylinder count. Modern image-based installers take
this basic capability, but then add some critical features to significantly increase their utility across hardware.

The first key insight on how imaging works is to treat a disk (or partition) image as file system. Let's digress with an example.
Suppose you have a Linux system with a root partition in '/dev/hdal' and a separate partition (e.g. scratch) with enough free
space to hold a complete image of the root. Then try the following sequence (as root):

dd if=/dev/hdal of=/scratch/root.image

mkdir /mnt/root

mount /scratch/root.image /mnt/root -o loop

ls -l /mnt/root

As you make changes to the '/mnt/root', the contents of '/scratch/root. image' are updated. When you unmount the file
system, those changes are saved in the original image file. So it is really straightforward to take an image of system, save it,
update the image by using standard tools and tricks. Because the entire root file system is available in an image, there are no
limits on what could done to it. Files (like 'fstab', 'hosts', IP configuration, and more) can added, edited or deleted. In fact,
because it is the raw file system, it theoretically doesn't matter if the distribution is Redhat, Mandrake, Debian, or any of the 100's
of Linux distributions that are out there. Practically, the installer most know something about the file layout to be efficient and
therefore only a small subset of distributions is actually supported by any image-based installer. The one key feature that many
admins like about image based techniques is that they can handcraft a configuration and then take a snaphot. Image-based
installers help with the replication of this snapshot.

The second critical piece of image-based management is the customized installer. The installer must download an image from a
server, customize some portions of it for the target node, and then install the updated image on the particular hardware of the
node, taking into account small differences in hardware. An example of necessary customization is changing the network
configuration file which must be be updated to a new node's IP address. If this isn't done properly, then nodes would be are
identical in everyway—even to their IP address—which obviously leads to an unusable cluster. The installer, like System Imager
used in OSCAR can make several changes based upon differences in node hardware. It supports the most common adjustments
without intervention by the administrator: changes in the ethernet driver, changes in disk drive geometry (but not in disk type), and
memory size differences. Because the installer itself is designed to handle a variety of distributions, the onus of basic hardware
detection (e.g. disk geometry, network driver) is in the installer and not on the distribution. Resource constraints in supporting the
imaging software leads to the reality that only a subset of hardware can be supported. In OSCAR, for example, IDE and SCSI
devices are supported by the installer, but IDE and SCSI hardware RAID (e.g. HP Proliant's Integrated Drive Array, '/dev/ida/')
is not understood by the installer and hence not supported. A further constraint is the the installer itself is a specialized program
that runs a customized Linux kernel. The kernel may not have the complete set of device drivers needed to run your hardware,
even if the distribution natively supports your hardware. OSCAR allows users to build customized installation kernels to handle the
case where an administrator can identify manually the needed driver. Even though the above dd-based example is
straightforward, installing and customizing images is actually quite complex: to make configuration changes, the installer must
understand the file system, layout, and location of config files to do localization. Small differences, like choosing inetd over
xinetd, must be dealt with to manage across distributions.

6.6.2 Bootstrapping and Configuration

OSCAR assumes a working head node—which generally is installed "by hand" using the tools of the base distribution (Mandrake
or Redhat). The OSCAR toolset is then installed afterwards and requires additional configuration steps. The core of OSCAR is a
set of tools, all driven by the OSCAR install wizard, to define the set of packages and resources that are needed to create a disk
image. Resources include drive partitioning installation, which MPI libararies to install, and other OSCAR-specific tools. Once the
set of base software (stored as RPMs), is selected a client image is created. If further customization is needed, then the image
can be "edited" using SIS (System Installation Suite) tools. If one wants to create other types of nodes (e.g. an NFS server instead
of compute node) or if nodes of the same type haven't different disk subsytems (IDE and SCSI) the entire process is started again
with a different image name. The case of homogeneous hardware (and node function type) is handled easily by this setup. If your
cluster has heterogenous node types and/or different appliance types, then description-based methods generally provide a
simpler solution.

Once the OSCAR image is built, the wizard will guide you to start integrating new nodes. OSCAR uses a tcpdump to detect
DHCP requests—when a new node is seen, a new name is automatically assigned. The SIS installer kernel starts the process of
downloading the correct image from the server and at this point takes over, doing node customization by looking up node-specific
information in the SIS database. In summary, we annotate the installation steps with the steps that OSCAR takes:

1. Install Head Node—Hand installation. Usually using Distro installer

2. Configure Cluster Services on Head Node—Follow installer setup script

3. Define Configuration of a Compute Node—Use The OSCAR wizard to define a client image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node use OSCAR Wizard

b. Install complete OS onto new node—SIS disk image downloaded and installed

c. Complete Configuration of new node—Most customization already done in the image

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)—part of the OSCAR install
wizard

The key features of OSCAR is that it uses disk images and supports multiple distributions, it uses a configuration wizard to create
a client image without first installing a golden client, and supports cluster nodes with no previously installed OS. The images have
some hardware independence, but differences in disk subsystem type require different images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7 Other Important Toolkits
There are a number of other toolkits that might be used. In this section, we give a non-exhaustive description of some of the more
popular kits

6.7.1 SCore

SCore is a single system image abstraction that has traditionally focused on extreme performance. SCore was initially designed
as system for high-performance systems research and the well-known PM messaging layer is one of it's key technologies. PM
works on Myrinet and other low-latency networks (some of which are being developed by the Japanese Consortium that now
maintains and advances SCore). SCore uses a multicast-based image installer to put software onto each of the nodes. Multicast
is used to improve the speed of installation by broadcasting the image to a number of clients. The installer is itself a custom piece
of software and must manage making the multicast transport reliable

6.7.2 LCFG

LFCG is a description-based installer. It differs from Rocks in that inheritance is supported in LCFG through file inclusion (e.g.,
#include). LCFG also employs a proprietary configuration language for their source files and they provide a custom profile
compiler to combine the source files into single XML profile. LCFG doesn't use kickstart to install the operating environment.
Rather it uses its own boot environment to configure the machine (e.g., to detect the hardware, partition the disk, install RPMs).

6.7.3 XCat

XCat uses descriptions to create Kickstart files and just recently has added limited support for SuSE Linux YaST. XCat is quasi
open-source and its specific license is limited for use only on IBM hardware. The generation of descriptions must be generated
beforehand by the system administrator and each node must have it's own install file. XCat provides some structure in creating the
description files, but there is quite a bit of scripting needed to define different node types, add resources and the like. XCat's
strength lies in its integration with IBM's proprietary management processor—allowing administrators to handles BIOS updates,
remote power cycling, and more through remote console access and custom scripts.

6.7.4 Chiba City Toolkit

Chiba City Toolkit is an unsupported collection of tools from Argonne National Laboratory. Chiba, described more fully in Chapter
20, uses an image-based installer and was designed to help US Department Energy researchers investigate systems problems.
The model of operation for system developers is that complete (serial) console access is available to a user so they can install any
operating system image—including Windows. They have developed an image-based installer and a set of tools to interact with
each serial console to tell each node how to boot (e.g. from local hard drive or to download a particular image). Like the SIS suite
included in OSCAR, administrators can edit an image on a server and then push out changes or entire images to a node. Like all
image-based systems, the variation of hardware that the installer supports is limited.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8 When Things go Wrong
For cluster installation there are literally hundreds of small items that can be show-stoppers in getting an installation to work over
the network. In this section, we'll describe some the of common problems that users might encounter. There are many email and
web resources to check if you run into an installation problem including toolkit-specific discussion lists and the general Beowulf
users list. The key thing that makes clusters different is that one relies on a network to enable installation (whether image or
decription).

MAC addresses of new nodes are never detected. There a few things to check here. First, make sure on
motherboards with dual interfaces that you have plugged into the interface that will be labeled eth0. If you are
using PXE, make certain that it is enabled

on this interface. It is non-standard as to which interface is eth0 and sometimes the fix is as simple is switching the
cable. If you are still not seeing DHCPDISCOVER messages on the frontend, attach the frontend to the node with a
standard ethernet cross-over cable. If you do see the DHCPDISCOVER message in the logs (make sure dhcpd is
running), then you have narrowed things down to the network itself. For today's managed switches, you will need to
make certain that broadcast is enabled on the switch itself.

During download of image or packages, the node just freezes. There generally are two possibilities. The device
driver for your network card is buggy or unreliable (this is actually usual when new NICs are introduced) or your
node hardware is simply bad (memory, processor, disk, or more). If the problem affects all nodes, then look for
something that is common (like the network driver). It is also possible that either an image or a package is corrupted
on the server itself. For RPM-based installations, the installer will often tell you on what package things have failed
and using RPM to verify the package on the server is an easy remedy.

My network card isn't supported. This problem is much more common than you might think. NIC manufacturers
use a number of variants of a standard interface (the Intel e1000 has over 6 hardware variants)—and the Linux
driver may not have caught up to the latest versions. You first have to determine exactly what the interface is—if
you can hand-install a version of Linux on the node, you can use lspci to find all about the devices on your PCI
bus. Ethernet controllers will be listed that way and you can look at the specifics of the PCI ID and the text
description in the PCI record. A look at the source code will determine if that variant of a known device is supported.
If is is supported, then you have to work to get a custom installation kernel, boot floppy, or PXE image constructed.
This is toolkit specific and is quite deep into the specifics of a toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9 Summary
This section has described description-based and image based installers. In particular the Rocks and OSCAR toolkits were
discussed in some detail. Readers should recall the physical planning of cluster layout and trunking of cables leads to a more
reliable physical design. Also, real clusters are never homogeneous in function and rarely are they homogeneous in hardware
configuration. Finally, setup and installation is never done just once and is intimately tied to the style of management of the
administrator. Having a solid setup and initial software provisioning plan will allow you to get the more interesting part of clusters—
using them for productive work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Parallel Programming
Chapter List

Chapter 7: An Introduction to Writing Parallel Programs for Clusters

Chapter 8: Parallel Programming with MPI

Chapter 9: Advanced Topics in MPI Programming

Chapter 10: Parallel Virtual Machine

Chapter 11: Fault-Tolerant and Adaptive Programs with PVM

Chapter 12: Numerical and Scientific Software for Clusters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: An Introduction to Writing Parallel Programs for
Clusters

Overview
Ewing Lusk, William Gropp, and Ralph Butler

There are two common kinds of parallelism. The first, the master-worker approach, is the simplest and easiest to implement. It
relies on being able to break the computation into independent tasks. A master then coordinates the solution of these independent
tasks by worker processes. This kind of parallelism is discussed in detail in this Chapter, starting with Section 7.1. This part of the
chapter has three goals:

To present some of the ways parallelism can be introduced into an application.

To describe how to express parallelism using functions built into the operating system. Depending on your target
application, this information may be all you need, and we will show how to access these functions from several
different application-development languages.

To provide some realistic examples of applications illustrating this approach. We include string matching with
applications to computational biology.

The first task in creating a parallel program is to express concurrent work. Section 7.1 then focuses on task parallelism. Section
7.2 describes the use of Linux system calls for task parallelism. Section 7.4 then outlines an example from computational biology
to illustrate the use of task parallelism to carry out a large computation.

The second kind of parallelism is for computations that cannot (or cannot easily) be broken into independent tasks. In this kind of
parallelism, the computation is broken down into communicating, interdependent tasks. One example of this kind of parallelism
was introduced in Section 1.3.6. These parallel programs are more difficult to write, and a number of programming models have
been developed to support this kind of parallel program. The most common, and the one most appropriate for Beowulf clusters, is
message passing. The two most common message-passing systems are MPI (Message Passing Interface) and PVM (Parallel
Virtual Machine), covered in Chapters 8–11. In this chapter, Section 7.5 introduces some of the techniques used in dividing
programs into communicating, interdependent parts. Expressing these ideas as programs is left for the following chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Creating Task Parallelism
The essence of task parallelism is that the task to be accomplished can be executed in parallel. Since we assume that the tasks
are not completely independent (otherwise they are just a collection of ordinary sequential jobs), some sort of coordinating
mechanism must exist. We will call this process the manager, and the processes that carry out the subtasks the workers. (The
manager could even be the human user, who manages the worker processes "by hand," but we will assume that the manager is a
single program that the user causes to be started.) Manager/worker algorithms and execution mechanisms have many variations,
which we survey in the next section; but as we use the term, "task parallelism" always involves the following steps.

1. Divide the task into independent or nearly independent subtasks. By "independent" we mean that while
communication of some sort occurs between the manager and the workers, there is no direct communication
between any two workers.

2. Start the workers. We assume that each worker is represented by an operating system process. In Section 7.2
we will describe Unix processes and how to start them. (Use of threads for workers is atypical for a Beowulf
cluster and will not be described.)

3. Communicate subtask specifications from the manager to the workers.

4. Communicate results from the workers to the manager.

5. Ensure that all results have been collected and that the workers have been shut down.

7.1.1 Variations on Task Parallelism

The scheme just described had many variations; we will discuss a few of them here, and then in the following section we will
illustrate some of these with concrete examples. The variations involve the scheduling algorithm by which the manager assigns
subtasks to the workers, the ways in which the worker processes are started and managed, and the communication mechanism
between manager and workers.

Variations in How Work Is Assigned
For an efficient manager/worker parallel program, the workers should be kept working as much of the total time as possible. If the
total work to be done can be easily divided into arbitrarily sized subtasks, then the scheduling job is easy: if there are n workers,
then divide the work up into n pieces, each of which will take the same amount of time, and give one piece to each worker. This is
called static scheduling.

Although sometimes such scheduling can be done, breaking up the total amount of work into subtasks typically results in subtasks
of widely differing sizes, more subtasks than there are workers, or both. In all of these cases, the manager must organize the
assignment of work to workers more carefully in order to keep the workers working. If some workers are idle when there is still
more work to do, a load balancing problem occurs. Fortunately the general manager/worker algorithms can be used to overcome
this problem when there are substantially more subtasks than there are workers. The idea is for the manager to make an initial
assignment of subtasks to workers and then wait for subtask completion by any worker. At that point the worker can be assigned
another subtask. In this way the master does not need to know ahead of time how much time each subtask will take; it just keeps
all the workers as busy as possible.

Figure 7.1 shows a high-level framework for the manager and worker in a manager/worker system. In this example, n processes
(workers) are started and then each process is sent the data for each task to perform. New processes are started once rather than
for each task, because starting a new process is often a time-consuming operation.

 manager: worker:
 for (i=0; i<n; i++) { receive msg from manager
 start new process while (not exit msg) {
 send work do work
 } send results
 while (not done) { receive next message
 wait for msg from any worker }
 receive results exit
 if (work left) {
 send new work to worker
 }
 else {
 send exit msg to worker
 }
 }

Figure 7.1: Schematic of a general manager-worker system

We note a few points about this algorithm.

A load balancing problem will inevitably occur near the end of the job, as some workers become idle but there is no
more work to be assigned, because all the work that is not done is being worked on by other workers.

To make this period of load imbalance as small as possible, it is a good idea to make the subtasks small. If the
manager can estimate the sizes of the subtasks, then it should assign the larger tasks first and the smaller ones
near the end.

If the subtasks are too small, then the overhead of communication between manager and worker will take up too
much of the total time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Therefore one needs to give some thought to just exactly how to divide up the work. A technique that is sometimes used is to
further subdivide the work units during the computation. In some algorithms, the workers subdivide their own tasks and return the
new subsubtasks to the manager for redistribution to the other workers. An example is the Mandelbrot program described in
Chapter 5 of [48].

Variations in Implementation Mechanisms
Processes can be started in a variety of ways, including shell commands, Unix system calls, remote shell commands of different
kinds, parallel process management systems, and the use of daemons of various kinds. Even Web browsers can be used to
launch remote tasks. We will discuss process startup in Section 7.2, after we have established a deeper understanding of
operating system processes.

Similarly, the communication between manager and worker can be carried out in many ways. One way is to use the file system as
a communication device. This is particularly convenient if all of the workers have access to the same file system. (See Chapter 19
for a discussion of shared file systems.) This mechanism is often used when the manager is programmed as a shell script.

A more flexible and powerful approach to communication among processes uses sockets. Sockets and how to use them in
several programming languages are covered in Section 7.2.5. The use of higher-level communication libraries (MPI and PVM) is
covered in later chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Operating System Support for Parallelism
Although parallel programs can be quite complex, many applications can be made parallel in a simple way to take advantage of
the power of Beowulf clusters. In this section we describe how to write simple programs using features of the Linux operating
system that you are probably already familiar with. We begin with a discussion of processes themselves (the primary unit of
parallelism) and the ways they can be created in Unix environments such as Linux. A good reference on this material is [111].

7.2.1 Programs and Processes

First we review terminology. A program is a set of computer instructions. A computer fetches from its memory the instruction at the
address contained in its program counter and executing that instruction. Execution of the instruction sets the program counter for
the next instruction. This is the basic von Neumann model of computation. A process consists of a program, an area of computer
memory called an address space, and a program counter. (If there are multiple program counters for a single address space, the
process is called a multithreaded process.) Processes are isolated from one another in the sense that no single instruction from
the program associated with one process can access the address space of another process. Data can be moved from the address
space of one process to that of another process by methods that we will describe in this and succeeding chapters. For the sake of
simplicity, we will discuss single-threaded processes here, so we may think of a process as an (address space, program, program
counter) triple.

7.2.2 Local Processes

Where do processes come from? In Unix-based operating systems such as Linux, new processes are created by the fork
system call. This is an efficient and lightweight mechanism that duplicates the process by copying the address space and creating
a new process with the same program. The only difference between the process that executed the fork (called the parent
process) and the new process (called the child process) is that the fork call returns 0 in the child and the process id in the parent.
Based on this different return code from fork, the parent and child processes, now executing independently, can do different
things.

One thing the child process often does is an exec system call. This call changes the program for the process, sets the program
counter to the beginning of the program, and reinitializes the address space. The fork-exec combination, therefore, is the
mechanism by a process create a new, completely different one. The new process is executing on the same machine and
competing for CPU cycles with the original process through the process scheduler in the machine's operating system.

You have experienced this mechanism many times. When you are logged into a Unix system, you are interacting with a shell,
which is just a normal Unix process that prompts you, reads your input commands, and processes them. The default program for
this process is /bin/bash; but depending on the shell specified for your user name in '/etc/passwd', you may be using another
shell. Whenever you run a Unix command, such as grep, the shell forks and execs the program associated with the command.
The command ps shows you all the processes you are running under the current shell, including the ps process itself (strictly
speaking, the process executing the ps program).

Normally, when you execute a command from the shell, the shell process waits for the child process to complete before prompting
you for another command, so that only one process of yours at a time is actually executing. By "executing" we mean that it is in
the list of processes that the operating system will schedule for execution according to its time-slicing algorithm. If your machine
has ony one CPU, of course only one instruction from one process can be executing at a time. By time-slicing the CPU among
processes, however, the illusion of simultaneously executing process on a single machine, even a single CPU, is presented.

The easiest way to cause multiple processes to be scheduled for execution at the same time is to append the '&' character to a
command that you execute in the shell. When you do this, the shell starts the new process (using the fork-exec mechanism)
but then immediately prompts for another command without waiting for the new one to complete. This is called "running a process
in the background." Multiple background processes can be executing at the same time. This situation provides us with our first
example of parallel processes.

To determine whether a file contains a specific string, you can use the Unix command grep. To look in a directory containing mail
files in order to find a message about the Boyer-Moore string-matching algorithm, you can cd to that directory and do
 grep Boyer *

If your mail is divided into directories by year, you can consider search all those directories in parallel. You can use background
processes to do this search in a shell script:
 !# /bin/bash
 echo searching for $1
 for i in 20* ;
 do (cd $i; grep $1 * > $1.out &) ;
 done
 wait
 cat 20*/$1.out > $1.all

and invoke this with Boyer as an argument.

This simple parallel program matches our definition of a manager/worker algorithm, in which the master process executes this
script and the worker processes execute grep. We can compare its properties with the list in Section 7.1:

1. The subtasks, each of which is to run grep over all the files in one directory, are independent.

2. The workers are started by this shell script, which acts as the master.

3. The subtask specifications (arguments to grep) are communicated to the workers on their respective command
lines.

4. The results are written to the file system, one result file in each directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. The wait causes the shell script to wait for all background processes to finish, so that the results can be
collected by the manager (using cat) into one place.

One can make a few further observations about this example:

The first line of the script tells the system which program to use to interpret the script. Here we have used the
default shell for Linux systems, called bash. Other shells may be installed on your system, such as csh, tcsh, or
zsh. Each of these has a slightly different syntax and different advanced features, but for the most part they
provide the same basic functionality.

We could have made the size of the subtask smaller by running each invocation of grep on a single file. This would
have led to more parallelism, but it is of dubious value on a single machine, and we would have been creating
potentially thousands of processes at once.

We could time this script by putting date commands at the beginning and end, or by running it under the shell's
time command:
 time grepmail boyer

where grepmail is the name of this script and boyer is the argument.

7.2.3 Remote Processes

Recall that the way a process is created on a Unix system is with the fork mechanism. Only one process is not forked by
another process, namely the single init process that is the root of the tree of all processes running at any one time.

Thus, if we want to create a new process on another machine, we must contact some existing process and cause it to fork our
new process for us. There are many ways to do this, but all of them use this same basic mechanism. They differ only in which
program they contact to make a fork request to. The contact is usually made over a TCP socket. We describe sockets in detail in
Section 7.2.5.

rsh
The rsh command contacts the rshd process if it is running on the remote machine and asks it to execute a program or script.
To see the contents of the '/tmp' directory on the machine foo.bar.edu, you would do
 rsh foo.bar.edu ls /tmp

The standard input and output of the remote command are routed through the standard input and output of the rsh command, so
that the output of the ls comes back to the user on the local machine. Chapter 5 describes how to set up rsh on your cluster.

ssh
The ssh (secure shell) program behaves much like rsh but has a more secure authentication mechanism based on public key
encryption and encrypts all traffic between the local and remote host. It is now the most commonly used mechanism for starting
remote processes. Nevertheless, rsh is substantially faster than ssh, and is used when security is not a critical issue. A common
example of this situation occurs when the cluster is behind a firewall and rsh is enabled just within the cluster. Setting up ssh is
described in Chapter 5, and a book on ssh has recently appeared [11].

Here is a simple example. Suppose that we have a file called 'hosts' with the names of all the hosts in our cluster. We want to
run a command (in parallel) on all those hosts. We can do so with a simple shell script as follows:
 #! /bin/bash
 for i in 'cat hosts' ;
 do (ssh -x $i hostname &) ;
 done

If everything is working correctly and ssh has been configured so that it does not require a password on every invocation, then we
should get back the names of the hosts in our cluster, although not necessarily in the same order as they appear in the file.

(What is that -x doing there? In this example, since the remotely executed program (hostname) does not use any X windowing
facilities, we turn off X forwarding by using the -x option. To run a program that does use X, the X option must be turned on by the
sshd server at each remote machine and the user should set the DISPLAY environment variable. Then, the connection to the X
display is automatically forwarded in such a way that any X programs started from the shell will go through the encrypted channel,
and the connection to the real X server will be made from the local machine. We note that if you run several X programs at several
different hosts, they will each create a file named '.Xauthority' in your home directory on each of the machines. If the machines
all have the same home directory, for example mounted via NFS, the '.Xauthority' files will conflict with each other.)

Other Process Managers
Programs such as the ones rsh and ssh contact to fork processes on their behalf are often called daemons. These processes
are started when the system is booted and run forever, waiting for connections. You can see whether the ssh daemon is installed
and running on a particular host by logging into that host and doing ps auxw | grep sshd. Other daemons, either run as root
by the system or run by a particular user, can be used to start processes. Two examples are the daemons used to start processes
in resource managers and the mpd's that can be used to start MPI jobs quickly (see Chapter 8).

7.2.4 Files

Having discussed how processes are started, we next tunr to the topic of remote files, files that are local to a remote machine.
Often we need to move files from one host to another, to prepare for remote execution, to communicate results, or even to notify
remote processes of events.

Moving files is not always necessary, of course. On some clusters, certain file systems are accessible on all the hosts through a
system like NFS (Network File System) or PVFS (Parallel Virtual File System). (Chapter 19 describes PVFS in detail.) However,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system like NFS (Network File System) or PVFS (Parallel Virtual File System). (Chapter 19 describes PVFS in detail.) However,
direct remote access can sometimes be slower than local access. In this section we discuss some mechanisms for moving files
from one host to another, on the assumption that the programs and at least some of the files they use are desired to be staged to
a local file system on each host, such as '/tmp'.

rcp
The simplest mechanism is the remote copy command rcp. It has the same syntax as the standard local file copy command cp
but can accept user name and host information from the file name arguments. For example,
 rcp thisfile jeeves.uw.edu:/home/jones/thatfile

copies a local file to a specific location on the host specified by the prefix before the ':'. A remote user can also be added:
 rcp smith@jeeves.uw.edu:/home/jones/thatfile .

The rcp command uses the same authentication mechanism as rsh does, so it will either ask for a password or not depending
on how rsh has been set up. Indeed, rcp can be thought of as a companion program to rsh. The rcp command can handle
"third party" transfers, in which neither the source nor destination file is on the local machine.

scp
Just as ssh is replacing rsh for security reasons, scp is replacing rcp. The scp command is the ssh version of rcp and has a
number of other convenient features, such as a progress indicator, which is handy when large files are being transferred.

The syntax of scp is similar to that for rcp. For example,
 scp jones@fronk.cs.jx.edu:bazz .

will log in to machine fronk.cs.jx.edu as user jones (prompting for a password for jones if necessary) and then copy the
file 'bazz' in user jones's home directory to the file 'bazz' in the current directory on the local machine.

ftp and sftp
Both ftp and sftp are interactive programs, usually used to browse directories and transfer files from "very" remote hosts rather
than within a cluster. If you are not already familiar with ftp, the man page will teach you how to work this basic program. The
sftp program is the more secure, ssh-based version of ftp.

rdist
One can use rdist to maintain identical copies of a set of files across a set of hosts. A flexible 'distfile' controls exactly what
files are updated. This is a useful utility when one wants to update a master copy and then have the changes reflected in local
copies on other hosts in a cluster. Either rsh-style (the default) or ssh-style security can be specified.

rsync
An efficient replacement for rcp is rsync, particularly when an earlier version of a file or directory to be copied already exists on
the remote machine. The idea is to detect the differences between the files and then just transfer the differences over the network.
This is especially effective for backing up large directory trees; the whole directory is specified in the command, but only (portions
of) the changed files are actually copied.

7.2.5 Interprocess Communication with Sockets

The most common and flexible way for two processes on different hosts in a cluster to communicate is through sockets. A socket
between two processes is a bidirectional channel that is accessed by the processes using the same read and write functions
that processes use for file I/O. In this section we show how a process connects to another process, establishing a socket, and
then uses it for communication. An excellent reference for the deep topic of sockets and TCP/IP in general is [111]. Here we just
scratch the surface, but the examples we present here should enable you to write some useful programs using sockets. Since
sockets are typically accessed from programming and scripting languages, we give examples in C, Perl, and Python, all of which
are common languages for programming clusters.

Although once a socket is established, it is symmetric in the sense that communication is bidirectional, the initial setup process is
asymmetric: one process connects; the other one "listens" for a connection and then accepts it. Because this situation occurs in
many client/server applications, we call the process that waits for a connection the server and the process that connects to it the
client, even though they may play different roles after the socket has been established.

We present essentially the same example in three languages. In the example, the server runs forever in the background, waiting
for a socket connection. It advertises its location by announcing its host and "port" (more on ports below), on which it can be
contacted. Then any client program that knows the host and port can set up a connection with the server. In our simple example,
when the server gets the connection request, it accepts the request, reads and processes the message that the client sends it,
and then sends a reply.

Client and Server in C
The server is shown in Figure 7.2. Let us walk through this example, which may appear more complex than it really is. Most of the
complexity surrounds the sockaddr_in data structure, which is used for two-way communication with the kernel.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

main(int argc,char *argv[])
{
 int rc, n, len, listen_socket, talk_socket;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int rc, n, len, listen_socket, talk_socket;
 char buf[1024];
 struct sockaddr_in sin, from;

 listen_socket = socket(AF_INET, SOCK_STREAM, 0);

 bzero(&sin, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = INADDR_ANY;
 sin.sin_port = htons(0);

 bind(listen_socket, (struct sockaddr *) &sin ,sizeof(sin));
 listen(listen_socket, 5);

 getsockname(listen_socket, (struct sockaddr *) &sin, &len);
 printf("listening on port = %d\n", ntohs(sin.sin_port));

 while (1) {
 talk_socket = accept(listen_socket,
 (struct sockaddr *) &from, &len);
 n = read(talk_socket, buf, 1024);
 write(talk_socket, buf, n); /* echo */
 close(talk_socket);
 }
}

Figure 7.2: A simple server in C

First, we acquire a socket with the socket system call. Note that we use the word "socket" both for the connection between the
two processes, as we have used it up to now, and for a single "end" of the socket as it appears inside a program, as here. Here a
socket is a small integer, a file descriptor just like the ones used to represent open files. Our call creates an Internet (AF_INET)
stream (SOCK_STREAM) socket, which is how one specifies a TCP socket. (The third argument is relevant only to "raw" sockets,
which we are not interested in here. It is usually set to zero.) This is our "listening socket," on which we will receive connection
requests. We then initialize the sockaddr_in data structure, setting its field sin_port to 0 to indicate that we want the system
to select a port for us. A port is an operating system resource that can be made visible to other hosts on the network. We bind our
listening socket to this port with the bind system call and notify the kernel that we wish it to accept incoming connections from
clients on this port with the listen call. (The second argument to listen is the number of queued connection requests we want
the kernel to maintain for us. In most Unix systems this will be 5.) At this point clients can connect to this port but not yet to our
actual server process. Also, at this point no one knows what port we have been assigned.

We now publish the address of the port on which we can be contacted. Many standard daemons listen on "well known" ports, but
we have not asked for a specific port, so our listening socket has been assigned a port number that no one yet knows. We
ourselves find out what it is with the getsockname system call and, in this case, just print it on stdout.

At this point we enter an infinite loop, waiting for connections. The accept system call blocks until there is a connection request
from a client. Then it returns a new socket on which we are connected to the client, so that it can continue listening on the original
socket. Our server simply reads some data from the client on the new socket (talk_socket), echoes it back to the client, closes
the new socket, and goes back to listening for another connection.

This example is extremely simple. We have not checked for failures of any kind (by checking the return codes from our system
calls), and of course our server does not provide much service. However, this example does illustrate how to code a common
sequence of system calls (the socket-bind-listen sequence) that is used in nearly all socket setup code.

The corresponding client is shown in Figure 7.3. In order to connect to the server, it must know the name of the host where the
server is running and the number of the port on which it is listening. We supply these here as command-line arguments.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

main(int argc,char *argv[])
{
 int rc, n, talk_socket;
 char buf[1024] = "test msg";
 struct sockaddr_in sin;
 struct hostent *hp;

 talk_socket = socket(AF_INET, SOCK_STREAM, 0);

 hp = gethostbyname(argv[1]);
 bzero((void *)&sin, sizeof(sin));
 bcopy((void *) hp->h_addr, (void *) &sin.sin_addr, hp->h_length);
 sin.sin_family = hp->h_addrtype;
 sin.sin_port = htons(atoi(argv[2]));

 connect(talk_socket,(struct sockaddr *) &sin, sizeof(sin));

 n = write(talk_socket, buf, strlen(buf)+1);
 buf[0] = '\0'; /* empty the buffer */
 n = read(talk_socket, buf, 1024);
 printf("received from server: %s \n",buf);
}

Figure 7.3: A simple client in C

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Again we acquire a socket with the socket system call. We then fill in the sockaddr_in structure with the host and port (first
calling gethostbyname to fill in the hostent structure needed to be placed in sin). Next we call connect to create the socket.
When connect returns, the accept has taken place in the server, and we can write to and read from the socket as a way of
communicating with the server. Here we send a message and read a response, which we print.

Client and Server in Python
Python is an object-oriented scripting language. Implementations exist for Unix and Windows; see www.python.org for details. It
provides an extensive set of modules for interfacing with the operating system. One interesting feature of Python is that the block
structure of the code is given by the indentation of the code, rather than explicit "begin"/ "end" or enclosing braces.

Much of the complexity of dealing with sockets has to do with properly managing the sockaddr data structure. Higher-level
languages like Python and Perl make socket programming more convenient by hiding this data structure. A number of good books
on Python exist that include details of the socket module; see, for example, [14] and [70]. Python uses an exception handling
model (not illustrated here) for error conditions, leading to very clean code that does not ignore errors. The Python version of the
server code is shown in Figure 7.4. Here we use the "well-known port" approach: rather than ask for a port, we specify the one we
want to use. One can see the same socket-bind-listen sequence as in the C example, where now a socket object (s) is returned
by the socket call and bind, listen, and accept are methods belonging to the socket object. The accept method returns
two objects, a socket (conn) and information (addr) on the host and port on the other (connecting) end of the socket. The
methods send and recv are methods on the socket object conn, and so this server accomplishes the same thing as the one in
Figure 7.2.

#! /usr/bin/env python
#echo server program
from socket import *
HOST = '' # symbolic name for local host
PORT = 50007 # arbibrary port
s = socket(AF_INET, SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'connected to by', addr
while 1:
 data = conn.recv(1024)
 if not data:
 break
 conn.send(data)
conn.close()

Figure 7.4: A simple server in Python

The Python code for the corresponding client is shown in Figure 7.5. It has simply hard-coded the well-known location of the
server.

#!/usr/bin/env python
Echo client program
from socket import *
HOST = 'donner.mcs.anl.gov' # the remote host
PORT = 50007
s = socket(AF_INET, SOCK_STREAM)
s.connect((HOST, PORT))
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', 'data'

Figure 7.5: A simple client in Python

Client and Server in Perl
Perl [124] is a powerful and popular scripting language. Versions exist for Unix and for Windows; see www.perl.com for more
information. Perl provides a powerful set of string matching and manipulation operations, combined with access to many of the
fundamental system calls. The man page perlipc has samples of clients and servers that use sockets for communication.

The code for a "time server" in Perl is shown in Figure 7.6. It follows the same pattern as our other servers. The code for the
corresponding client is shown in Figure 7.7.

#!/usr/bin/perl

use strict;
use Socket;
use FileHandle;

my $port = shift || 12345;
my $proto = getprotobyname('tcp');
socket(SOCK, PF_INET, SOCK_STREAM, $proto)
 || die "socket: $!";
SOCK->autoflush();
setsockopt(SOCK, SOL_SOCKET, SO_REUSEADDR, pack("1", 1))
 || die "setsockopt: $! ";
bind(SOCK, sockaddr_in($port, INADDR_ANY))
 || die "bind: $!";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 || die "bind: $!";
listen(SOCK,SOMAXCONN)
 || die "listen: $!";

print "server started on port $port\n";

while (1)
{
 my $paddr = accept(CLIENT,SOCK);
 CLIENT->autoflush();
 my $msg = <CLIENT>;
 print "server: recvd from client: $msg \n";
 print CLIENT "Hello there, it's now ", scalar localtime, "\n";
 close(CLIENT);
}

Figure 7.6: A simple server in Perl

#!/usr/bin/perl -w

use strict;
use Socket;
use FileHandle;

my ($host,$port, $iaddr, $paddr, $proto, $line);

$host = shift || 'localhost';
$port = shift || 12345;

$iaddr = inet_aton($host)
 || die "no valid host specified: $host";
$paddr = sockaddr_in($port, $iaddr); # packed addr

$proto = getprotobyname('tcp');
socket(SOCK, PF_INET, SOCK_STREAM, $proto)
 || die "socket failed: $!";
SOCK->autoflush(); # from FileHandle
connect(SOCK, $paddr)
 || die "connect failed: $!";
print SOCK "hello from client\n";
$line = <SOCK>;
print "client: recvd from server: $line \n";

Figure 7.7: A simple client in Perl

7.2.6 Managing Multiple Sockets with Select

So far our example socket code has involved only one socket open by the server at a time (not counting the listening socket).
Further, the connections have been short lived: after accepting a connection request, the server handled that request and then
terminated the connection. This is a typical pattern for a classical server but may not be efficient for manager/worker algorithms in
which we might want to keep the connections to the workers open rather than reestablish them each time. Unlike the clients in the
examples above, the workers are persistent, so it makes sense to make their connections persistent as well.

What is needed by the manager in this case is a mechanism to wait for communication from any of a set of workers
simultaneously. Unix provides this capability with the select system call. The use of select allows a process to block, waiting
for a change of state on any of a set of sockets. It then "wakes up" the process and presents it with a list of sockets on which there
is activity, such as a connection request or a message to be read. We will not cover all of the many aspects of select here, but
the code in Figure 7.8 illustrates the features most needed for manager/worker algorithms. For compactness, we show this in
Python. A C version would have the same logic. See the select man page or [111] for the details of how to use select in C. It
is also available, of course, in Perl.

#!/usr/bin/env python

from socket import socket, AF_INET, SOCK_STREAM
from select import select

lsock = socket(AF_INET,SOCK_STREAM)
lsock.bind(('',0)) # this host, anonymous port
lsock.listen(5)
lport = lsock.getsockname()[1]
print 'listening on port =', lport

sockets = [lsock]
while 1:
 (inReadySockets, None, None) = select(sockets, [], [])
 for sock in inReadySockets:
 if sock == lsock:
 (tsock,taddr) = lsock.accept()
 sockets.append(tsock)
 else:
 msg = sock.recv(1024)
 if msg:
 print 'recvd msg=', msg
 else:
 sockets.remove(sock)
 sock.close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.8: A Python server that uses select

The first part of the code in Figure 7.8 is familiar. We acquire a socket, bind it to a port, and listen on it. Then, instead of doing an
accept on this socket directly, we put it into a list (sockets). Initially it is the only member of this list, but eventually the list will
grow. Then we call select. The arguments to select are three lists of sockets we are interested in for reading, writing, or other
events. The select call blocks until activity occurs on one of the sockets we have given to it. When select returns, it returns
three lists, each a sublist of the corresponding input lists. Each of the returned sockets has changed state, and one can take some
action on it with the knowledge that the action will not block.

In our case, we loop through the returned sockets, which are now active. We process activity on the listening socket by accepting
the connection request and then adding the new connection to the list of sockets we are interested in. Otherwise we read and print
the message that the client has sent us. If our read attempt yields an empty message, we interpret this as meaning that the worker
has closed its end of the socket (or exited, which will close the socket), and we remove this socket from the list.

We can test this server with the client in Figure 7.9.

#!/usr/bin/env python

from sys import argv, stdin
from socket import socket, AF_INET, SOCK_STREAM

sock = socket(AF_INET,SOCK_STREAM)
sock.connect((argv[1],int(argv[2])))

print 'sock=', sock
while 1:
 print 'enter something:'
 msg = stdin.readline()
 if msg:
 sock.sendall(msg.strip()) # strip nl
 else:
 break

Figure 7.9: A Python client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Parameter Studies
One straightforward application of task parallelism is the "parameter study", in which the same sequential program is run multiple
times with different sets of input parameters. Since the program to be run is sequential, there is no communication among the
workers, and the manager can be a simple script that communicates with the workers by means of the arguments to the
sequential program and its standard output. We can start the workers with ssh and collect the output by using the popen system
call, which returns a file descriptor we can select on and read the remote process's stdout from.

Although both the algorithm we use and its implementation are general, we present here a concrete example. We explore the
parameter space of compiler options for the default Linux C compiler gcc. The man page for gcc conveniently lists in one place
all the options that can be passed to gcc to cause it to produce faster machine code. Here is an excerpt from the man page:
 Optimization Options
 -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
 -fdelayed-branch -felide-constructors
 -fexpensive-optimizations -ffast-math -ffloat-store
 -fforce-addr -fforce-mem -finline-functions
 -fkeep-inline-functions -fmemoize-lookups
 -fno-default-inline -fno-defer-pop
 -fno-function-cse -fno-inline -fno-peephole
 -fomit-frame-pointer -frerun-cse-after-loop
 -fschedule-insns -fschedule-insns2
 -fstrength-reduce -fthread-jumps -funroll-all-loops
 -funroll-loops -0 -02 -03

For the matrix-matrix multiply program we are going to test with, which has no function calls, only some of these look useful. Here
is a subset of the above list containing optimization flags that might have an effect on the speed of the program:
 -fexpensive-optimizations
 -ffast-math
 -ffloat-store
 -fno-peephole
 -fschedule-insns
 -fschedule-insns2
 -fstrength-reduce
 -funroll-all-loops
 -funroll-loops
 -0
 -02
 -03

Since there are twelve switches that can be either present or absent, there are 212 possible combinations. These are not
completely independent, since some switch settings imply others, especially the three -0 flags, but we will ignore thus fact for the
sake of simplifying our example, and just try all 4096 combinations, Indeed, which switch settings are redundant in the presence of
others should be deducible from our results!

Our plan will be to take a simple test program and compile it with all possible switch combinations and run it, reporting back the
times. Since we have 4096 jobs to run, the use of a cluster will make a big difference, even if the individual tasks are short.

For our test program, we will use a straightforward matrix-matrix multiply program, shown in Figure 7.10. It multiples two 300 × 300
matrices, timing the calculation, this may not be the highest performing way to do this, but it will do for our purposes. The program
echoes its command line arguments, which it does not otherwise use; we will use them to help us record the arguments used to
compile the program.

#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#define SIZE 300

main(int argc, char *argv[])
{
 double a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE];
 int i, j, k;
 struct timeval tv;
 double starttime, endtime;

 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 a[i][j] = (double) (i + j);
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 b[i][j] = (double) (i + j);
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 c[i][j] = 0.0;

 gettimeofday(&tv, (struct timezone *) 0);
 starttime = tv.tv_sec + (tv.tv_usec / 1000000.0);
 for (i = 0; i < SIZE; i++) {
 for (j = 0; j < SIZE; j++) {
 for (k = 0; k < SIZE; k++) {
 c[i][j] = c[i][j] + a[i][k] * b [k][j];
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 }
 gettimeofday(&tv, (struct timezone *) 0);
 endtime = tv.tv_sec + (tv.tv_usec / 1000000.0);
 printf("%f seconds for", endtime - starttime);
 for (i = 1; i < argc; i++)
 printf(" %s", argv[i]);
 printf("\n");
}

Figure 7.10: Matrix-matrix multiply program

Our worker programs will just be the sequence
 gcc <flags> -o matmult matmult.c
 matmult

and the manager will start them with ssh, on hosts whose names are in a file. The other argument to our manager is a file of
possible arguments. It contains exactly the twelve lines listed above. The manager just steps through the numbers from 0 up to
the total number of runs (in our case 4096) treating each number as a binary number where a 1 bit represent the presence of the
compiler switch corresponding to that position in the binary number. Thus we will run through all possible combinations.

The overall plan is to loop through the parameter space represented by the binary numbers represented by the binary numbers
from 0 to 212. If there is a free host (no worker is working there) we assign it the next task; if not we select on the sockets that
are open to currently working workers. When one of them reports back, we add it back to the list of free hosts. At the end, after all
the work has been assigned, we still have to wait for the last tasks to complete.

Let us step through the code in Figure 7.11 in detail. First we read in the list of hosts (initial value of the list freeHosts) and the
list of possible arguments (parmList). We initialize the set of sockets to select on to empty since there are no workers yet, and
create an empty Python dictionary (fd2host) where we will keep track of busy hosts and the connections to them. We set
numParmSets to the number of subtasks, which we can calculate from the number of possible compiler flags in the input file.
Then we enter the main loop, which runs until we have assigned all the work and there are no outstanding workers working. If
there is a subtask still to do and a free host to do it on, we construct the parameter list corresponding to the next task (in
ParmSet), and pick the first host from the list of free hosts, temporarily removing it from the list. We then build a string containing
the specification of the subtask. The Popen3 command forks a process that runs the ssh program locally, which runs the gcc-
matmult sequence remotely. The ssh's, and therefore the remote processes, run in parallel.

#!/usr/bin/python

from sys import argv
from popen2 import Popen3
from select import select, error

hostFile = open(argv[1])
parmsFile = open(argv[2])
freeHosts = [line.strip() for line in hostFile.readlines()]
parmList = [line.strip() for line in parmsFile.readlines()]
lenParmList = len(parmList)
socketsToSelect = []
fd2host = {}
numParmSets = 2 ** lenParmList
pcnt = 0
while pcnt < numParmSets or socketsToSelect:
 if pcnt < numParmSets and freeHosts:
 parmSet = []
 for i in range(0,lenParmList):
 bit = 1 << i
 if bit & pcnt:
 parmSet.append(parmList[lenParmList-i-1])
 host = freeHosts[0]
 freeHosts.remove(host)
 cmd = ("ssh -l lusk -x -n %s 'gcc %s -o matmult matmult.c; " +
 "matmult %s'") % (host,' '.join(parmSet),' '.join(parmSet))
 runner = Popen3(cmd)
 runfd = runner.fromchild
 socketsToSelect.append(runfd)
 fd2host[runfd] = host
 pcnt += 1
 else:
 readyFDs = 0
 (readyFDs,None,None) = select(socketsToSelect,[],[],30)
 for fd in readyFDs:
 line = fd.readline()
 if line:
 print '%s on %s' % (line.strip(),fd2host[fd])
 else:
 freeHosts.append(fd2host[fd])
 socketsToSelect.remove(fd)
 fd.close()

Figure 7.11: Manager for parameter study

We set runfd to the stdout of the ssh, which collects the stdout from the matmult. Each line of stdout will contain the time
followed by the compiler flags used. Then we add this fd to the list of sockets available for selecting on and enter into the list
fd2host the host attached to that fd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fd2host the host attached to that fd.

If there are no free hosts or we have already assigned all the subtasks, then we select on the sockets connected to busy workers.
When one those sockets becomes active, it means that the associated worker has set us a line of output. We read it and print it,
or if the read fails (the worker exited, which sends an EOF on the socket), we close that socket, take it out of the list of sockets to
select on, and add the corresponding host to the list of free hosts, since it can mow be assigned another subtask.

The manager exits once all the subtasks have been done and all the workers have completed. If we run this with
 parmstudy.py hostfile parmfile | sort -n

then we will get the best combinations at the top of the list. Try it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Sequence Matching in Computational Biology
One of the most exciting application areas for clusters is bioinformatics. An enormous amount of fundamental data is becoming
available in the form of sequences: either nucleotide sequences (RNA and DNA) or amino acid sequences (proteins). In both
cases the data comes encoded in the form of long strings of characters. Important biological information can be extracted from
this data by matching, either exactly or inexactly, single strings of characters against other strings, or, more commonly, against
large databases of strings in order to find similarities. The process is like a glorified grep.

7.4.1 BLAST

Widely distributed (sequential) tools exist for matching a string, or a small file of strings, against a database of other strings. One
of the most widely used is a program called BLAST [2]. BLAST can deal with both nucleotide and amino acid sequences. Here we
will focus on amino acid sequences, which describe the structure of proteins. BLAST, together with many other tools, uses FASTA
format. Here is a single protein in FASTA format. Each letter in the sequence represents a single amino acid.
>sp|P28469 Alcohol dehydrogenase alpha chain (ADH).
 - Macaca mulatta
MSTAGKVIKCKAAVLWEVMKPFSIEDVEVAPPKAYEVRIKMVTVGICGTDDH
VVSGTMVTPLPVILGHEAAGIVESVGEGVTTVEPGDKVIPLALPQCGKCRI
CKTPERNYCLKNDVSNPRGTLQDGTSRFTCRGKPIHHFLGVSTFSQYTVVD
ENAVAKIDAASPMEKVCLIGCGFSTGYGSAVKVAKVTPGSTCAVFGLGGVG
LSAVMGCKAAGAARIIAVDINKDKFAKAKELGATECINPQDYKKPIQEVLK
EMTDGGVDFSFEVIGRLDTMMASLLCCHEACGTSVIVGVPPDSQNLSINPM
LLLTGRTWKGAVYGGFKSKEDIPKLVADFMAKKFSLDALITHVLPFEKINE
GFDLLRSGKSIRTILTF

Files containing proteins in FASTA format are fed into a program called formatdb to create an indexed database, consisting of
three files, that is structured to facilitate searching for matches. Suppose we have constructed a small database of proteins and
we wish to search for substring similarities between our protein above (P28469) and the proteins in our database (the three files
produced from the file 'homodimer.faa' by formatdb). Then we put our protein in a file that we might call
'homodimerstest.faa' and do:
 blastall -i homodimerstest.faa
 -d homodimer.faa
 -p blastp

The last parameter specifies the standard protein-protein matching algorithm. We get the following output, which lists the proteins
that are similar in some way, sorted in decreasing order of similarity.
Query= sp|P28469 Alcohol dehydrogenase alpha chain (ADH).
- Macaca mulatta (375 letters)

Database: homodimer.faa
 30 sequences; 10,597 total letters

Searching.done
 Score E
Sequences producing significant alignments: (bits) Value

sp|P28469 Alcohol dehydrogenase alpha chain (ADH). ... 721 0.0
sp|P14139 Alcohol dehydrogenase (ADH). - Papio hama... 682 0.0
sp|Q03505 Alcohol dehydrogenase alpha chain (ADH). ... 623 0.0
sp|Q64415 Alcohol dehydrogenase A chain . - Geomys k... 568 e-165
sp|Q64413 Alcohol dehydrogenase A chain . - Geomys b... 568 e-165
sp|P19631 Alcohol dehydrogenase alpha chain (ADH3).... 538 e-156
sp|P80338 Alcohol dehydrogenase I . - Struthio camelus 536 e-155
sp|P49645 Alcohol dehydrogenase I . - Apteryx australis 533 e-155
...

We also get details about just exactly what the similarities were.
>sp|P14139 Alcohol dehydrogenase (ADH). - Papio hamadryas
 Length = 375
 Score = 682 bits (1761), Expect = 0.0
 Identities = 336/375 (89%), Positives = 346/375 (92%)

Query: 1 MSTAGKVIKCKAAVLWEVMKPFSIEDVEVAPPKAYEVRIKMVTVGICGTDDHVVSGTMVT 60
 MSTAGKVIKCKAAVLWEV KPFSIEDVEVAPPKAYEVRIKMV VGIC TDDHVVSG +V+
Sbjct: 1 MSTAGKVIKCKAAVLWEVKKPFSIEDVEVAPPKAYEVRIKMVAVGICRTDDHVVSGNLVS 60

Query: 61 PLPVILGHEAAXXXXXXXXXXXXXXXXDKVIPLALPQCGKCRICKTPERNYCLKNDVSNP 120
 PLP ILGHEAA DKVIPL PQCGKCR+CK+PE NYC+KND+SNP
Sbjct: 61 PLPAILGHEAAGIVESVGEGVTTVKPGDKVIPLFTPQCGKCRVCKSPEGNYCVKNDLSNP 120

...

7.4.2 Running BLAST in Parallel

A single machine is sufficient for running small BLAST jobs, but some of the most important information is extracted by running
jobs involving large numbers of sequences. One widely used database contains roughly 1.4 million sequences. Suppose we want
to compare all the sequences in the database against one another. This is in some sense the largest possible BLAST job, but
many other smaller BLAST jobs are still large.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately, parallelism abounds. Clusters are popular platforms in computational biology precisely because there is so much
parallelism in many biologically significant computations. Moreover, most of them fit the manager/worker structure we have been
discussing in this chapter. Here we will describe one way to carry out a large BLAST computation.

The plan is to use the manager/worker scheme described in the previous section with a number of changes.
1. The database will be distributed ahead of time to all the nodes of the cluster using either rsync or rdist.

2. The workers will run blastall with an input file consisting of some subset of the large number of input
sequences, defined by the manager and referred to here as a chunk of input sequences. Each chunk will be
sent to a worker by the manager over a socket connected to the worker.

3. Each subtask will consist of running blastall with a chunk of input sequences against the database.

4. The workers will be persistent. That is, instead of a new process being started by ssh for each subtask, each
worker will remain running, exchanging messages over a socket with the manager, until the end of the job.

5. When a worker finishes a chunk, the output of the BLAST run will be copied to a directory of output files using
scp.

6. The manager is not responsible for starting the workers. The manager will start off selecting only on his
"listening" socket; as new workers are started (by whatever means) they connect to the manager and their
sockets are added to the "select" list. Thus workers can come and go independently.

7. Individual worker processes can die, or nodes crash altogether, with no impact on the job as long as the
manager keeps running. If a worker dies, it can be replaced by another one, which just connects to the manager
on the manager's advertised listening port and joins the worker pool.

8. The manager keeps track of the chunks that have been assigned to workers, those that have been completed,
and those that have not yet been assigned. Every time this information changes, the manager writes it to a file.
Thus, the whole job can be restarted if the system crashes.

The code is not given here, but can be constructed using the Python code we used in Section 7.2.6.

The combination of allowing the pool of workers to vary in size and keeping track of exactly what work has been done contributes
to the fault tolerance of this scheme: if workers or the machines they are running on fail, they can be replaced; and even if the
manager dies or must be halted due to scheduling constraints, it can be restarted and pick up again where it left off.

We note that a number of useful tools for dealing with FASTA format in Python, and other Python-based tools for computational
biology, can be found at www.biopython.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 Decomposing Programs Into Communicating Processes
Not all problems can be divided into independent tasks. As we saw in Section 1.3.6, some applications are too large, in terms of
their memory or compute needs, for a single processor or even a single SMP node. Solving these problems requires breaking the
task into communicating (rather than independent) processes. In this section we will introduce two examples of decomposing a
single task into multiple communicating processes. Because these programs are usually written using a message-passing
programming model such as MPI or PVM, the details of implementing these examples are left to the chapters on these
programming models.

7.5.1 Domain Decomposition

Many problems, such as the 3-dimensional partial differential equation (PDE) introduced in Section 1.3.6, are described by an
approximation on a mesh of values. This mesh can be structured (also called regular) or unstructured. These meshes can be very
large (as in the example in Chapter 1) and require more memory and computer power than a single processor or node can supply.
Fortunately, the

For simplicity, we consider a two-dimensional example. A simple PDE is the Poisson equation,

∇ 2u = f in the interior,

u = 0 on the boundary

where f is a given function and the problem is to find u. To further simplify the problem, we have chosen Dirichlet boundary
conditions, which just means that the value of u along the boundary is zero. Finally, the domain is the unit square [0, 1] × [0, 1]. A
very simple discretization of this problem uses a finite difference approximation to the derivatives, yielding the approximation

Defining a mesh of points (xi, yj) = (i × h, j × h) with h = 1/n, and using the ui,j to represent the approximation of u(xi, yj), we get

(7.1)

We can now represent this using two dimensional arrays. We'll use Fortran because Fortran has some features that will make
these examples easier to write. We will use U(i, j) as our computed value for ui,j.

To solve this approximation for the Poisson problem, we need to find the the values of U. This is harder than it may seem at first,
because Equation 7.1 must be satisified at all points on the mesh (i.e., all values of i and j) simultaneously. In fact, this equation
leads to a system of simultaneous linear equations. Excellent software exists to solve this problem (see Chapter 12), but we will
use a very simple approach to illustrate how this problem can be parallelized. The first step is to write this problem as an iterative
process

This is the Jacobi iteration, and can be written in Fortran as
 real UNEW(0:n,0:n), U(0:n,0:n), F(1:n-1,1:n-1)
 ... code to initialize U and F
 do iter=1,itermax
 do j=1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

At this point, we can see how to divide this problem across multiple processors. The simplest approach is to divide the mesh into
small pieces, giving each piece to a separate processor. For example, we could divide the original mesh (U(0:n,0:n) in the
code) into two parts: U(0:n,0:n/2) and (U(0:n,n/2+1:n). This approach is called domain decomposition, and is based on
using the decompositions of the physical domain (the unit square in this case) to create parallelism.

Applying this approach for two processors, we have the two code fragments shown in Figure 7.12. Note that each process now

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applying this approach for two processors, we have the two code fragments shown in Figure 7.12. Note that each process now
has only half of the data because each array is declared with only the data "owned" by that processor. This also shows why we
used Fortran; the ability to specify the range of the indices for the arrays in Fortran makes these codes very easy to write.

Code for process zero
 real UNEW(0:n,0:n/2), U(0:n,0:n/2), F(1:n-1,1:n/2)
 ... code to initialize u and f
 do iter=1,itermax
 do j=1,n/2
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Code for process one
 real UNEW(0:n,n/2+1:n), U(0:n,n/2+1:n), F(1:n-1,n/2+1:n-1)
 ... code to initialize u and f
 do iter=1,itermax
 do j=n/2+1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Figure 7.12: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration

However, unlike the decompositions into independent tasks in the first part of this chapter, this decomposition does not produce
indepentent tasks. Consider the case of j=n/2 in the original code. Process zero in Figure 7.12 computes the values of
UNEW(i,n/2). However, to do this, it needs the values of U(i,n/2+1). This data is owned by processor one. In order to make
this code work, we must communicate the data owned by processor one (the values of U(i,n/2+1) for i=1,...,n-1) to
processor zero. We must also allocate another row of storage to hold these values; this extra row is often called a ghost points or
a halo. The resulting code is shown in Figure 7.13.

Code for process zero
 real UNEW(0:n,0:n/2+1), U(0:n,0:n/2+1), F(1:n-1,1:n/2)
 ... code to initialize u and f
 do iter=1,itermax
 ... code to Get u(i,n/2+1) from process one
 do j=1,n/2
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Code for process one
 real UNEW(0:n,n/2:n), U(0:n,n/2:n), F(1:n-1,n/2+1:n-1)
 ... code to initialize u and f
 do iter=1,itermax
 ... code to Get u(i,n/2) from process zero
 do j=n/2+1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Figure 7.13: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration, including the
communication of ghost points. Note the changes in the declarations for U and UNEW.

Note also that although both processes have variables named UNEW and i, these are different variables. This kind of parallel
programming model is sometimes called a shared-nothing model because no data (variables or instructions) are shared between
the processes. Instead, explicit communication is required to move data from one process to another. Section 8.3 discusses this
example in detail, using the Message Passing Interface (MPI) to implement the communication of data between the processors,
using code written in C.

There are more complex and powerful domain decomposition techniques, but they all start from dividing the domain (usually the
physical domain of the problem) into a number of separate pieces. These pieces must communicate along their edges at each
step of the computation. As described in Section 1.3.6, a decomposition into squares (in two-dimensions) or cubes (in three
dimensions) reduces the amount of data that must be communicated because those shapes maximize the volume to surface area
ratio for rectangular solids.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5.2 Data Structure Decomposition

Not all problems have an obvious decomposition in terms of a physical domain. For these problems, a related approach that
decomposes the data-structures in the application can be applied. An example of this kind of application is the solution of a
system of linear equations Ax = b, where the equations are said to be dense. This simply means that most of the elements of the
matrix describing the problem are non-zero. A good algorihm for solving this problem is called LU factorization, because it involves
first computing a lower trianular matrix L and an upper triangular matrix U such that the original matrix A is given by the product
LU. Because an lower (resp. upper) triangular matrix has only zero elements below (resp. above) the diagonal, it is easy to find
the solution x once L and U are known. This is the algorithm used in the LINPACK [34] benchmark. A parallel verison of this is
used in the High-Performance Linpack benchmark, and this section will sketch out some of the steps used in parallelizing this kind
of problem.

The LU factorization algorithm looks something like the code shown in Figure 7.14, an n × n matrix A represented by the Fortran
array a(n,n).

real a(n,n)
do i=i, n
 do k=1,i-1
 sum = 0
 do j=1,k-1
 sum = sum + a(i,j)*a(j,k)
 enddo
 a(i,k) = (a(i,k) - sum) / a(k,k)
 enddo
 do k=1,i
 sum = 0
 do j=1,k-1
 sum = sum + a(k,j)*a(j,i)
 enddo
 a(k,i) = a(k,i) - sum
 enddo
enddo

Figure 7.14: LU Factorization code. The factors L and U are computed in-place; that is, they are stored over the input matrix
a.

An obvious way to decompose this problem, following the domain decomposition discussion, is to divide the matrix into groups of
rows (or groups of columns):

However, this will yield an inefficient program. Because of the outer-loop over the rows of the matrix (the loop over i), once i
reaches n/4 in the case of four processors, processor zero has no work left to do. As the computation proceeds, fewer and fewer
processors can help with the computation. For this reason, more complex decompositions are used. For example, the
ScaLAPACK library uses the two-dimensional block-cyclic distribution shown here:

This decomposition ensures that most processors are in use until the very end of the algorithm.

Just as in the domain decomposition example, communication is required to move data from one processor to another. In this
example, data from the ith row must be communicated from the processors that hold that data to the processors holding the data
needed for the computations (the loops over j). We do not show the communication here; see the literature on solving dense
linear systems in parallel for details on these algorithms.

The technique of dividing the data structure among processors is a general one. Chosing the decomposition to use requires
balancing the issues of load balance, communication, and algorithm complexity. Addressing these may suggest algorithmic
modifications to provide better parallel performance. For example, certain variations of the LU factorization method described
above may perform the floating-point operations in a different order. Because floating-point arithmetic is not associative, small
differences in the results may occur. Other variations may produce answers that are equally valid as approximations but give
results that are slightly different. Care must be exercised here, however, because some approximations are better behaved than
others. Before changing the algorithm, make sure that you understand the consequences of any change. Consult with a numerical
analysist or read about stability and well-posedness in any textbook on numerical computing.

7.5.3 Other Approaches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many techniques for creating parallel algorithms. Most involve dividing the problem into separate tasks that may need to
communicate. For an effective decomposition for a Beowulf cluster, the amount of computation must be large relative to the
amount of communication. Examples of these kinds of problems include sophisticated search and planning algorithms, where the
results of some tests are used to speed up other tests (for example, a computation may discover that a subproblem has already
been solved.).

Some computations are implemented as master/worker applications, where each worker is itself a parallel program (e.g., because
of the memory needs or the requirement that the computation finish within a certain amount of time, such as overnight).
Master/worker algorithms can also be made more sophisticated, guiding the choice and order of worker tasks by previous results
returned by the workers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Parallel Programming with MPI

Overview
William Gropp and Ewing Lusk

Chapter 7 described how parallel computation on a Beowulf is accomplished by dividing a computation into parts, making use of
multiple processes and executing each on a separate processor. Sometimes an ordinary program can be used by all the
processes, but with distinct input files or parameters. In such a situation, no communication occurs among the separate tasks.
When the power of a parallel computer is needed to attack a large problem with a more complex structure, however, such
communication is necessary.

One of the most straightforward approaches to communication is to have the processes coordinate their activities by sending and
receiving messages, much as a group of people might cooperate to perform a complex task. This approach to achieving
parallelism is called message passing.

In this chapter and the next, we show how to write parallel programs using MPI, the Message Passing Interface. MPI is a
message-passing library specification. All three parts of the following description are significant.

MPI addresses the message-passing model of parallel computation, in which processes with separate address
spaces synchronize with one another and move data from the address space of one process to that of another by
sending and receiving messages. [1]

MPI specifies a library interface, that is, a collection of subroutines and their arguments. It is not a language; rather,
MPI routines are called from programs written in conventional languages such as Fortran, C, and C++.

MPI is a specification, not a particular implementation. The specification was created by the MPI Forum, a group of
parallel computer vendors, computer scientists, and users who came together to cooperatively work out a
community standard. The first phase of meetings resulted in a release of the standard in 1994 that is sometimes
referred to as MPI-1. Once the standard was implemented and in wide use a second series of meetings resulted in
a set of extensions, referred to as MPI-2. MPI refers to both MPI-1 and MPI-2.

As a specification, MPI is defined by a standards document, the way C, Fortran, or POSIX are defined. The MPI standards
documents are available at www.mpi-forum.org and may be freely downloaded. The MPI-1 and MPI-2 standards are available as
journal issues [72, 73] and in annotated form as books in this series [105, 46]. Implementations of MPI are available for almost all
parallel computers, from clusters to the largest and most powerful parallel computers in the world. In Section 8.9 we summarizes
the most popular cluster implementations.

A goal of the MPI Forum was to create a powerful, flexible library that could be implemented efficiently on the largest computers
and provide a tool to attack the most difficult problems in parallel computing. It does not always do the simplest tasks in the
simplest way but comes into its own as more complex functionality is needed. As a result, many tools and libraries have been built
on top of MPI (see Table 9.1 and Chapter 12). To get the flavor of MPI programming, in this chapter and the next we work through
a set of examples, starting with the simplest.

[1]Processes may be single threaded, with one program counter, or multithreaded, with multiple program counters. MPI is for
communication among processes rather than threads. Signal handlers can be thought of as executing in a separate thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Hello World in MPI
To see what an MPI program looks like, we start with the classic "hello world" program. MPI specifies only the library calls to be
used in a C, Fortran, or C++ program; consequently, all of the capabilities of the language are available. The simplest "Hello
World" program is shown in Figure 8.1.

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello World\n");
 MPI_Finalize();
 return 0;
}

Figure 8.1: Simple "Hello World" program in MPI.

All MPI programs must contain one call to MPI_Init (or MPI_Init_thread, described in Section 9.9) and one to
MPI_Finalize. All other[2] MPI routines must be called after MPI_Init and before MPI_Finalize. All C and C++ programs
must also include the file 'mpi.h'; Fortran programs must either use the MPI module or include mpif.h.

The simple program in Figure 8.1 is not very interesting. In particular, all processes print the same text. A more interesting version
has each process identify itself. This version, shown in Figure 8.2, illustrates several important points. Of particular note are the
variables rank and size. Because MPI programs are made up of communicating processes, each process has its own set of
variables. In this case, each process has its own address space containing its own variables rank and size (and argc, argv,
etc.). The routine MPI_Comm_size returns the number of processes in the MPI job in the second argument. Each of the MPI
processes is identified by a number, called the rank, ranging from zero to the value of size minus one. The routine
MPI_Comm_rank returns in the second argument the rank of the process. The output of this program might look something like
the following:
 Hello World from process 0 of 4
 Hello World from process 2 of 4
 Hello World from process 3 of 4
 Hello World from process 1 of 4

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("Hello World from process %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Figure 8.2: A more interesting version of "Hello World".

Note that the output is not ordered from processes 0 to 3. MPI does not specify the behavior of other routines or language
statements such as printf; in particular, it does not specify the order of output from print statements. However, there are tools,
built using MPI, that can provide ordered output of messages.

8.1.1 Compiling and Running MPI Programs

The MPI standard does not specify how to compile and link programs (neither do C or Fortran). However, most MPI
implementations provide tools to compile and link programs.

For example, one popular implementation, MPICH, provides scripts to ensure that the correct include directories are specified and
that the correct libraries are linked. The script mpicc can be used just like cc to compile and link C programs. Similarly, the scripts
mpif77, mpif 90, and mpicxx may be used to compile and link Fortran 77, Fortran, and C++ programs.

If you prefer not to use these scripts, you need only ensure that the correct paths and libraries are provided. The MPICH
implementation provides the switch -show for mpicc that shows the command lines used with the C compiler and is an easy way
to find the paths. Note that the name of the MPI library may be 'libmpich.a', 'libmpi.a', or something similar and that
additional libraries, such as 'libsocket.a' or 'libgm.a', may be required. The include path may refer to a specific
installation of MPI, such as '/usr/include/local/mpich2-1.0/include'.

Running an MPI program (in most implementations) also requires a special program, particularly when parallel programs are
started by a batch system as described in Chapter 14. Many implementations provide a program mpirun that can be used to start
MPI programs. For example, the command
 mpirun -np 4 helloworld

runs the program helloworld using four processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runs the program helloworld using four processes.

The name and command-line arguments of the program that starts MPI programs were not specified by the original MPI standard,
just as the C standard does not specify how to start C programs. However, the MPI Forum did recommend, as part of the MPI-2
standard, an mpiexec command and standard command-line arguments to be used in starting MPI programs. A number of MPI
implementations including the all-new version of MPICH, called MPICH2, now provide mpiexec. The name mpiexec was
selected because no MPI implementation was using it (many are using mpirun, but with incompatible arguments). The syntax is
almost the same as for the MPICH version of mpirun; instead of using -np to specify the number of processes, the switch -n is
used:
 mpiexec -n 4 helloworld

The MPI standard defines additional switches for mpiexec; for more details, see Section 4.1, "Portable MPI Process Startup," in
the MPI-2 standard. For greatest portability, we recommend that the mpiexec form be used; if your preferred implementation
does not support mpiexec, point the maintainers to the MPI-2 standard.

Most MPI implementations will attempt to run each process on a different processor; most MPI implementations provide a way to
select particular processors for each MPI process.

8.1.2 Adding Communication to Hello World

The code in Figure 8.2 does not guarantee that the output will be printed in any particular order. To force a particular order for the
output, and to illustrate how data is communicated between processes, we add communication to the "Hello World" program. The
revised program implements the following algorithm:
 Find the name of the processor that is running the process
 If the process has rank > 0, then
 send the name of the processor to the process with rank 0
 Else
 print the name of this processor
 for each rank,
 receive the name of the processor and print it
 Endif

This program is shown in Figure 8.3. The new MPI calls are to MPI_Send and MPI_Recv and to MPI_Get_processor_name.
The latter is a convenient way to get the name of the processor on which a process is running. MPI_Send and MPI_Recv can be
understood by stepping back and considering the two requirements that must be satisfied to communicate data between two
processes:

1. Describe the data to be sent or the location in which to receive the data

2. Describe the destination (for a send) or the source (for a receive) of the data.

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int numprocs, myrank, namelen, i;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 char greeting[MPI_MAX_PROCESSOR_NAME + 80];
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Get_processor_name(processor_name, &namelen);

 sprintf(greeting, "Hello, world, from process %d of %d on %s",
 myrank, numprocs, processor_name);

 if (myrank == 0) {
 printf("%s\n", greeting);
 for (i = 1; i < numprocs; i++) {
 MPI_Recv(greeting, sizeof(greeting), MPI_CHAR,
 i, 1, MPI_COMM_WORLD, &status);
 printf("%s\n", greeting);
 }
 }
 else {
 MPI_Send(greeting, strlen(greeting) + 1, MPI_CHAR,
 0, 1, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return 0;
}

Figure 8.3: A more complex "Hello World" program in MPI. Only process 0 writes to stdout; each process sends a message
to process 0.

In addition, MPI provides a way to tag messages and to discover information about the size and source of the message. We will
discuss each of these in turn.

Describing the Data Buffer
A data buffer typically is described by an address and a length, such as "a,100," where a is a pointer to 100 bytes of data. For
example, the Unix write call describes the data to be written with an address and length (along with a file descriptor). MPI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, the Unix write call describes the data to be written with an address and length (along with a file descriptor). MPI
generalizes this to provide two additional capabilities: describing noncontiguous regions of data and describing data so that it can
be communicated between processors with different data representations. To do this, MPI uses three values to describe a data
buffer: the address, the (MPI) datatype, and the number or count of the items of that datatype. For example, a buffer a containing
four C ints is described by the triple "a, 4, MPI_INT." There are predefined MPI datatypes for all of the basic datatypes
defined in C, Fortran, and C++. The most common datatypes are shown in Table 8.1.

Table 8.1: The most common MPI datatypes. C and Fortran types on the same row are often but not always the same
type. The type MPI_BYTE is used for raw data bytes and does not correspond to any particular datatype. The type
MPI_PACKED is used for data that was incrementally packed with the routine MPI_Pack. The C++ MPI datatypes
have the same name as the C datatypes but without the MPI_prefix, for example, MPI::INT.

C Fortran
 MPI type MPI type

int MPI_INT INTEGER MPI_INTEGER
double MPI_DOUBLE DOUBLE PRECISION MPI_DOUBLE_PRECISION
float MPI_FLOAT REAL MPI_REAL
long MPI_LONG

char MPI_CHAR CHARACTER MPI_CHARACTER
 LOGICAL MPI_LOGICAL
— MPI_BYTE — MPI_BYTE
— MPI_PACKED — MPI_PACKED

Describing the Destination or Source
The destination or source is specified by using the rank of the process. MPI generalizes the notion of destination and source rank
by making the rank relative to a group of processes. This group may be a subset of the original group of processes. Allowing
subsets of processes and using relative ranks make it easier to use MPI to write component-oriented software (more on this in
Section 9.4). The MPI object that defines a group of processes (and a special communication context that will be discussed in
Section 9.4) is called a communicator. Thus, sources and destinations are given by two parameters: a rank and a communicator.
The communicator MPI_COMM_WORLD is predefined and contains all of the processes started by mpirun or mpiexec. As a
source, the special value MPI_ANY_SOURCE may be used to indicate that the message may be received from any rank of the MPI
processes in this MPI program.

Selecting among Messages
The "extra" argument for MPI_Send is a nonnegative integer tag value. This tag allows a program to send one extra number with
the data. MPI_Recv can use this value either to select which message to receive (by specifying a specific tag value) or to use the
tag to convey extra data (by specifying the wild card value MPI_ANY_TAG). In the latter case, the tag value of the received
message is stored in the status argument (this is the last parameter to MPI_Recv in the C binding). This is a structure in C, an
integer array in Fortran, and a class in C++. The tag and rank of the sending process can be accessed by referring to the
appropriate element of status as shown in Table 8.2.

Table 8.2: Accessing the source and tag after an MPI_Recv.

C Fortran C++

status.MPI_SOURCE status(MPI_SOURCE) status.Get_source()
status.MPI_TAG status(MPI_TAG) status.Get_tag()

Determining the Amount of Data Received
The amount of data received can be found by using the routine MPI_Get_count. For example,
 MPI_Get_count(&status, MPI_CHAR, &num_chars);

returns in num_chars the number of characters sent. The second argument should be the same MPI datatype that was used to
receive the message. (Since many applications do not need this information, the use of a routine allows the implementation to
avoid computing num_chars unless the user needs the value.)

Our example provides a maximum-sized buffer in the receive. It is also possible to find the amount of memory needed to receive a
message by using MPI_Probe, as shown in Figure 8.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char *greeting;
 int num_chars, src;
 MPI_Status status;
 ...
 MPI_Probe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status);
 MPI_Get_count(&status, MPI_CHAR, &num_chars);
 greeting = (char *)malloc(num_chars);
 src = status.MPI_SOURCE;
 MPI_Recv(greeting, num_chars, MPI_CHAR,
 src, 1, MPI_COMM_WORLD, &status);

Figure 8.4: Using MPI_Probe to find the size of a message before receiving it.

MPI guarantees that messages are ordered, that is, that messages sent from one process to another arrive in the same order in
which they were sent and that an MPI_Recv after an MPI_Probe will receive the message that the probe returned information on
as long as the same message selection criteria (source rank, communicator, and message tag) are used. Note that in this
example, the source for the MPI_Recv is specified as status.MPI_SOURCE, not MPI_ANY_SOURCE, to ensure that the message
received is the same as the one about which MPI_Probe returned information.

[2]There are a few exceptions, including MPI_Initialized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Manager/Worker Example
We now begin a series of examples illustrating approaches to parallel computations that accomplish useful work. While each
parallel application is unique, a number of paradigms have emerged as widely applicable, and many parallel algorithms are
variations on these patterns.

One of the most universal is the "manager/worker" or "task parallelism" approach. The idea is that the work that needs to be done
can be divided by a "manager" into separate pieces and the pieces can be assigned to individual "worker" processes. Thus the
manager executes a different algorithm from that of the workers, but all of the workers execute the same algorithm. Most
implementations of MPI (including MPICH2) allow MPI processes to be running different programs (executable files), but it is often
convenient (and in some cases required) to combine the manager and worker code into a single program with the structure shown
in Figure 8.5.

#include "mpi.h"

int main(int argc, char *argv[])
{
 int numprocs, myrank;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 if (myrank == 0) /* manager process */
 manager_code (numprocs);
 else /* worker process */
 worker_code ();
 MPI_Finalize();
 return 0;
}

Figure 8.5: Framework of the matrix-vector multiply program.

Sometimes the work can be evenly divided into exactly as many pieces as there are workers, but a more flexible approach is to
have the manager keep a pool of units of work larger than the number of workers and assign new work dynamically to workers as
they complete their tasks and send their results back to the manager. This approach, called self-scheduling, works well in the
presence of tasks of varying sizes or workers of varying speeds.

We illustrate this technique with a parallel program to multiply a matrix by a vector. (A Fortran version of this same program can
be found in [48].) This program is not a particularly good way to carry out this operation, but it illustrates the approach and is
simple enough to be shown in its entirety. The program multiplies a square matrix a by a vector b and stores the result in c. The
units of work are the individual dot products of the rows of a with the vector b. Thus the manager, code for which is shown in
Figure 8.6, starts by initializing a. The manager then sends out initial units of work, one row to each worker. We use the MPI tag
on each such message to encode the row number we are sending. Since row numbers start at 0 but we wish to reserve 0 as a tag
with the special meaning of "no more work to do," we set the tag to one greater than the row number. When a worker sends back
a dot product, we store it in the appropriate place in c and send that worker another row to work on. Once all the rows have been
assigned, workers completing a task are sent a "no more work" message, indicated by a message with tag 0.

#define SIZE 1000
#define MIN(x, y) ((x) < (y) ? x : y)

void manager_code(int numprocs)
{
 double a[SIZE][SIZE], c[SIZE];

 int i, j, sender, row, numsent = 0;
 double dotp;
 MPI_Status status;

 /* (arbitrary) initialization of a */
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 a[i][j] = (double) j;

 for (i = 1; i < MIN(numprocs, SIZE); i++) {
 MPI_Send(a[i-1], SIZE, MPI_DOUBLE, i, i, MPI_COMM_WORLD);
 numsent++;
 }
 /* receive dot products back from workers */
 for (i = 0; i < SIZE; i++) {
 MPI_Recv(&dotp, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 sender = status.MPI_SOURCE;
 row = status.MPI_TAG - 1;
 c[row] = dotp;
 /* send another row back to this worker if there is one */
 if (numsent < SIZE) {
 MPI_Send(a[numsent], SIZE, MPI_DOUBLE, sender,
 numsent + 1, MPI_COMM_WORLD);
 numsent++;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 else /* no more work */
 MPI_Send(MPI_BOTTOM, 0, MPI_DOUBLE, sender, 0,
 MPI_COMM_WORLD);
 }
}

Figure 8.6: The matrix-vector multiply program, manager code.

The code for the worker part of the program is shown in Figure 8.7. A worker initializes b, receives a row of a in a message,
computes the dot product of that row and the vector b, and then returns the answer to the manager, again using the tag to identify
the row. A worker repeats this until it receives the "no more work" message, identified by its tag of 0.

void worker_code(void)
{
 double b[SIZE], c[SIZE];
 int i, row, myrank;
 double dotp;
 MPI_Status status;

 for (i = 0; i < SIZE; i++) /* (arbitrary) b initialization */
 b[i] = 1.0;

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 if (myrank <= SIZE) {
 MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 while (status.MPI_TAG > 0) {
 row = status.MPI_TAG - 1;
 dotp = 0.0;
 for (i = 0; i < SIZE; i++)
 dotp += c[i] * b[i];
 MPI_Send(&dotp, 1, MPI_DOUBLE, 0, row + 1,
 MPI_COMM_WORLD);
 MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 }
 }
}

Figure 8.7: The matrix-vector multiply program, worker code.

This program requires at least two processes to run: one manager and one worker. Unfortunately, adding more workers is unlikely
to make the job go faster. We can analyze the cost of computation and communication mathematically and see what happens as
we increase the number of workers. Increasing the number of workers will decrease the amount of computation done by each
worker, and since they work in parallel, this should decrease total elapsed time. On the other hand, more workers mean more
communication, and the cost of communicating a number is usually much greater than the cost of an arithmetical operation on it.
The study of how the total time for a parallel algorithm is affected by changes in the number of processes, the problem size, and
the speed of the processor and communication network is called scalability analysis. We analyze the matrix-vector program as a
simple example.

First, let us compute the number of floating-point operations. For a matrix of size n, we have to compute n dot products, each of
which requires n multiplications and n - 1 additions. Thus the number of floating-point operations is n × (n + (n - 1)) = n×(2n-1) =
2n2-n. If Tcalc is the time it takes a processor to do one floating-point operation,[3] then the total computation time is (2n2 - n) ×
Tcalc. Next, we compute the number of communications, defined as sending one floating-point number. (We ignore for this simple
analysis the effect of message lengths; following Section 1.3, we could model these as s + rn, where Tcomm ≈ r.) Leaving aside
the cost of communicating b (perhaps it is computed locally in a preceding step), we have to send each row of a and receive back
one dot product answer. So the number of floating-point numbers communicated is (n × n) + n = n2 + n. If Tcomm is the time to
communicate one number, we get (n2 + n) × Tcomm for the total communication time. Thus the ratio of communication time to
computation time is

In many computations the ratio of communication to computation can be reduced almost to 0 by making the problem size larger.
Our analysis shows that this is not the case here. As n gets larger, the term on the left approaches 1/2. Thus we can expect
communication costs to prevent this algorithm from showing good speedups, even on large problem sizes.

The situation is better in the case of matrix-matrix multiplication, which could be carried out by a similar algorithm. We would
replace the vectors b and c by matrices, send the entire matrix b to the workers at the beginning of the computation, and then
hand out the rows of a as work units, just as before. The workers would compute an entire row of the product, consisting of the dot
products of the row of a with all of the column of b, and then return a row of c to the manager.

Let us now do the scalability analysis for the matrix-matrix multiplication. Again we ignore the initial communication of b. The
number of operations for one dot product is n + (n + 1) as before, and the total number of dot products calculated is n2. Thus the
total number of operations is n2 × (2n - 1) = 2n3 - n2. The number of numbers communicated has gone up to (n × n) + (n × n) =
2n2. So the ratio of communication time to computation time has become

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which does tend to 0 as n gets larger. Thus, for large matrices the communication costs play less of a role.

Two other difficulties with this algorithm might occur as we increase the size of the problem and the number of workers. The first is
that as messages get longer, the workers waste more time waiting for the next row to arrive. A solution to this problem is to
"double buffer" the distribution of work, having the manager send two rows to each worker to begin with, so that a worker always
has some work to do while waiting for the next row to arrive.

Another difficulty for larger numbers of processes can be that the manager can become overloaded so that it cannot assign work
in a timely manner. This problem can most easily be addressed by increasing the size of the work unit, but in some cases it is
necessary to parallelize the manager task itself, with multiple managers handling subpools of work units.

A more subtle problem has to do with fairness: ensuring that all worker processes are fairly serviced by the manager. MPI
provides several ways to ensure fairness; see [48, Section 7.1.4].

[3]The symbol f was used in Section 1.3; we use Tcalc here because of the more prominent role of floating point in this analysis.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Two-Dimensional Jacobi Example with One-Dimensional Decomposition
A common use of parallel computers in scientific computation is to approximate the solution of a partial differential equation
(PDE). One of the most common PDEs, at least in textbooks, is the Poisson equation (here shown in two dimensions):

(8.1)

(8.2)

This equation is used to describe many physical phenomena, including fluid flow and electrostatics. The equation has two parts: a
differential equation applied everywhere within a domain F (8.1) and a specification of the value of the unknown u along the
boundary of Γ (the notation ∂ Γ means "the boundary of Γ "). For example, if this equation is used to model the equilibrium
distribution of temperature inside a region, the boundary condition g(x, y) specifies the applied temperature along the boundary,
f(x, y) is zero, and u(x, y) is the temperature within the region. To simplify the rest of this example, we will consider only a simple
domain Γ consisting of a square (see Figure 8.8).

Figure 8.8: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson problem.

To compute an approximation to u(x, y), we must first reduce the problem to finite size. We cannot determine the value of u
everywhere; instead, we will approximate u at a finite number of points (xi,yj) in the domain, where xi = i × h and yj = j × h. (Of
course, we can define a value for u at other points in the domain by interpolating from these values that we determine, but the
approximation is defined by the value of u at the points (xi,yj).) These points are shown as black disks in Figure 8.8. Because of
this regular spacing, the points are said to make up a regular mesh. At each of these points, we approximate the partial
derivatives with finite differences. For example,

If we now let ui,j stand for our approximation to solution of Equation 8.1 at the

point (xi, yj), we have the following set of simultaneous linear equations for the values of u:

(8.3)

For values of u along the boundary (e.g., at x = 0 or y = 1), the value of the boundary condition g is used. If h = l/(n + 1) (so there
are n × n points in the interior of the mesh), this gives us n2 simultaneous linear equations to solve.

Many methods can be used to solve these equations. In fact, if you have this particular problem, you should use one of the
numerical libraries described in Section 12.2. In this section, we describe a very simple (and inefficient) algorithm because, from a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

numerical libraries described in Section 12.2. In this section, we describe a very simple (and inefficient) algorithm because, from a
parallel computing perspective, it illustrates how to program more effective and general methods. The method that we use is
called the Jacobi method for solving systems of linear equations. The Jacobi method computes successive approximations to the
solution of Equation 8.3 by rewriting the equation as follows:

(8.4)

Each step in the Jacobi iteration computes a new approximation to in terms of the surrounding values of uN:

(8.5)

This is our algorithm for computing the approximation to the solution of the Poisson problem. We emphasize that the Jacobi
method is a poor numerical method but that the same communication patterns apply to many finite difference, volume, or element
discretizations solved by iterative techniques.

In the uniprocessor version of this algorithm, the solution u is represented by a two-dimensional array u[max_n] [max_n], and
the iteration is written as follows:
 double u[NX+2][NY+2], u_new[NX+2][NY+2], f[NX+2][NY+2];
 int i, j;
 ...
 for (i=1;i<=NX;i++)
 for (j=1;j<=NY;j++)
 u_new[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] +
 u[i][j+1] + u[i][j-l] - h*h*f[i][j]);

Here, we let u[0][j], u[n+1][j], u[i][0], and u[i][n+1] hold the values of the boundary conditions g (these correspond
to u(0,y), u(1, y), u(x, 0), and u(x, 1) in Equation 8.1). To parallelize this method, we must first decide how to decompose the data
structure u and u_new across the processes. Many possible decompositions exist. One of the simplest is to divide the domain into
strips as shown in Figure 8.8.

Let the local representation of the array u be ulocal; that is, each process declares an array ulocal that contains the part of u
held by that process. No process has all of u; the data structure representing u is decomposed among all of the processes. The
code that is used on each process to implement the Jacobi method is
 double ulocal_new[NLOCAL][NY+2];
 ...
 for (i=i_start;i<=i_end;i++)
 for (j=1;j<=NY;j++)
 ulocal_new[i-i_start][j] =
 0.25 * (ulocal[i-i_start+1][j] + ulocal[i-i_start-1][j] +
 ulocal[i-i_start][j+1] + ulocal[i-i_start][j-1] -
 h*h*flocal[i-i_start][j]);

where i_start and i_end describe the strip on this process (in practice, the loop would be from zero to i_end-i_start; we
use this formulation to maintain the correspondence with the uniprocessor code). We have defined ulocal so that ulocal[0]
[j] corresponds to u[i_start][j] in the uniprocessor version of this code. Using variable names such as ulocal that make it
obvious which variables are part of a distributed data structure is often a good idea.

From this code, we can see what data we need to communicate. For i=i_start we need the values of u[i_start-1][j] for j
between 1 and NY, and for i=i_end we need u[i_end+1][j] for the same range of j. These values belong to the adjacent
processes and must be communicated. In addition, we need a location in which to store these values. We could use a separate
array, but for regular meshes the most common approach is to use ghost or halo cells, where extra space is set aside in the
ulocal array to hold the values from neighboring processes. In this case, we need only a single column of neighboring data, so
we will let u_local[1][j] correspond to u[i_start][j]. This changes the code for a single iteration of the loop to
 exchange_nbrs(ulocal, i_start, i_end, left, right);
 for (i_local=1; i_local<=i_end-i_start+1; i_local++)
 for (j=1; j<=NY; j++)

 ulocal_new[i_local][j] =
 0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +
 ulocal[i_local][j+1] + ulocal[i_local][j-1] -
 h*h*flocal[i_local][j]);

where we have converted the i index to be relative to the start of ulocal rather than u. All that is left is to describe the routine
exchange_nbrs that exchanges data between the neighboring processes. A very simple routine is shown in Figure 8.9.

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status status;
 int c;

 /* Send and receive from the left neighbor */
 MPI_Send(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD);
 MPI_Recv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &status);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MPI_COMM_WORLD, &status);

 /* Send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Send(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD);
 MPI_Recv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &status);
}

Figure 8.9: A simple version of the neighbor exchange code. See the text for a discussion of the limitations of this
routine.

We note that ISO/ANSI C (unlike Fortran) does not allow runtime dimensioning of multidimensional arrays. To keep these
examples simple in C, we use compile-time dimensioning of the arrays. An alternative in C is to pass the arrays as one-
dimensional arrays and compute the appropriate offsets.

The values left and right are used for the ranks of the left and right neighbors, respectively. These can be computed simply by
using the following:
 int rank, size, left, right;
 ...

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 left = rank - 1;
 right = rank + 1;
 if (left < 0) left = MPI_PROC_NULL;
 if (right >= size) right = MPI_PROC_NULL;

The special rank MPI_PROC_NULL indicates the edges of the mesh. If MPI_PROC_NULL is used as the source or destination rank
in an MPI communication call, the operation is ignored. MPI also provides routines to compute the neighbors in a regular mesh of
arbitrary dimension and to help an application choose a decomposition that is efficient for the parallel computer.

The code in exchange_nbrs will work with most MPI implementations for small values of n but, as described in Section 9.3, is
not good practice (and will fail for values of NY greater than an implementation-defined threshold). A better approach in MPI is to
use the MPI_Sendrecv routine when exchanging data between two processes, as shown in Figure 8.10.

/* Better exchange code. */
void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status status;
 int c;

 /* Send and receive from the left neighbor */
 MPI_Sendrecv(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 &ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &status);

 /* Send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Sendrecv(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &status);
}

Figure 8.10: A better version of the neighbor exchange code.

In Sections 9.3 and 9.7, we discuss other implementations of the exchange routine that can provide higher performance. MPI
support for more scalable decompositions of the data is described in Section 9.3.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Collective Operations
A collective operation is an MPI function that is called by all processes belonging to a communicator. (If the communicator is
MPI_COMM_WORLD, this means all processes, but MPI allows collective operations on other sets of processes as well.) Collective
operations involve communication and also sometimes computation, but since they describe particular patterns of communication
and computation, the MPI implementation may be able to optimize them beyond what is possible by expressing them in terms of
MPI point-to-point operations such as MPI_Send and MPI_Recv. The patterns are also easier to express with collective
operations.

Here we introduce two of the most commonly used collective operations and show how the communication in a parallel program
can be expressed entirely in terms of collective operations with no individual MPI_Sends or MPI_Recvs at all. The program
shown in Figure 8.11 computes the value of π by numerical integration. Since

#include "mpi.h"
#include <stdio.h>
#include <math.h>
double f(double a) { return (4.0 / (1.0 + a*a)); }

int main(int argc,char *argv[])
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 double startwtime = 0.0, endwtime;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 if (myid == 0) {
 startwtime = MPI_Wtime();
 n = atoi(argv[1]);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += f(x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 if (myid == 0) {
 endwtime = MPI_Wtime();
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 printf("wall clock time = %f\n", endwtime-startwtime);
 }
 MPI_Finalize();
 return 0;
}

Figure 8.11: Computing π using collective operations.

we can compute π by integrating the function f(x) = 4/(l + x2) from 0 to 1. We compute an approximation by dividing the interval
[0,1] into some number of subintervals and then computing the total area of these rectangles by having each process compute the
areas of some subset. We could do this with a manager/worker algorithm, but here we preassign the work. In fact, each worker
can compute its set of tasks, and so the "manager" can be a worker, too, instead of just managing the pool of work. The more
rectangles there are, the more work there is to do and the more accurate the resulting approximation of π is. To experiment, let us
make the number of subintervals a command-line argument. (Although the MPI standard does not guarantee that any process
receive command-line arguments, in most implementations, especially for Beowulf clusters, one can assume that at least the
process with rank 0 can use argc and argv, although they may not be meaningful until after MPI_Init is called.) In our

example, process 0 sets n, the number of subintervals, to argv[1]. Once a process knows n, it can claim approximately of
the work by claiming every nth rectangle, starting with the one numbered by its own rank. Thus, process j computes the areas of
rectangles j , j + n , j + 2n, and so on.

Not all MPI implementations make the command-line arguments available to all processes, however, so we start by having
process 0 send n to each of the other processes. We could have a simple loop, sending n to each of the other processes one at a
time, but this is inefficient. If we know that the same message is to be delivered to all the other processes, we can ask the MPI
implementation to do this in a more efficient way than with a series of MPI_Sends and MPI_Recvs.

Broadcast (MPI_Bcast) is an example of an MPI collective operation. A collective operation must be called by all processes in a
communicator. This allows an implementation to arrange the communication and computation specified by a collective operation
in a special way. In the case of MPI_Bcast, an implementation is likely to use a tree of communication, sometimes called a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in a special way. In the case of MPI_Bcast, an implementation is likely to use a tree of communication, sometimes called a
spanning tree, in which process 0 sends its message to a second process, then both processes send to two more, and so forth. In
this way most communication takes place in parallel, and all the messages have been delivered in log2 n steps.

The precise semantics of MPI_Bcast is sometimes confusing. The first three arguments specify a message with (address, count,
datatype) as usual. The fourth argument (called the root of the broadcast) specifies which of the processes owns the data that is
being sent to the other processes. In our case it is process 0. MPI_Bcast acts like an MPI_Send on the root process and like an
MPI_Recv on all the other processes, but the call itself looks the same on each process. The last argument is the communicator
that the collective call is over. All processes in the communicator must make this same call. Before the call, n is valid only at the
root; after MPI_Bcast has returned, all processes have a copy of the value of n.

Next, each process, including process 0, adds up the areas of its rectangles into the local variable mypi. Instead of sending these
values to one process and having that process add them up, however, we use another collective operation, MPI_Reduce.
MPI_Reduce performs not only collective communication but also collective computation. In the call
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);

the sixth argument is again the root. All processes call MPI_Reduce, and the root process gets back a result in the second
argument. The result comes from performing an arithmetic operation, in this case summation (specified by the fifth argument), on
the data items on all processes specified by the first, third, and fourth arguments.

Process 0 concludes by printing out the answer, the difference between this approximation and a previously computed accurate
value of π , and the time it took to compute it. This illustrates the use of MPI_Wtime.

MPI_Wtime returns a double-precision floating-point number of seconds. This value has no meaning in itself, but the difference
between two such values is the wall-clock time between the two calls. Note that calls on two different processes are not
guaranteed to have any relationship to one another, unless the MPI implementation promises that the clocks on different
processes are synchronized (see MPI_WTIME_IS_GLOBAL in any of the MPI books).

The routine MPI_Allreduce computes the same result as MPI_Reduce but returns the result to all processes, not just the root
process. For example, in the Jacobi iteration, it is common to use the two-norm of the difference between two successive
iterations as a measure of the convergence of the solution.
 ...
 norm2local = 0.0;
 for (ii=1; ii<i_end-i_start+1; ii++)
 for (jj=1; jj<NY; jj++)
 norm2local += ulocal[ii][jj] * ulocal[ii][jj];
 MPI_Allreduce(&norm2local, &norm2, 1, MPI_DOUBLE,
 MPI_COMM_WORLD, MPI_SUM);
 norm2 = sqrt(norm2);

Note that MPI_Allreduce is not a routine for computing the norm of a vector. It merely combines values contributed from each
process in the communicator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Parallel Monte Carlo Computation
One of the types of computation that is easiest to parallelize is the Monte Carlo family of algorithms. In such computations, a
random number generator is used to create a number of independent trials. Statistics done with the outcomes of the trials provide
a solution to the problem.

We illustrate this technique with another computation of the value of π . If we select points at random in the unit square [0, 1] × [0,

1] and compute the percentage of them that lies inside the quarter circle of radius 1, then we will be approximating . (See [48]
for a more detailed discussion together with an approach that does not use a parallel random number generator.) We use the
SPRNG parallel random number generator (sprng.cs.fsu.edu). The code is shown in Figure 8.12.

#include "mpi.h"
#include <stdio.h>
#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /* use MPI */
#include "sprng.h" /* SPRNG header file */
#define BATCHSIZE 1000000

int main(int argc, char *argv[])
{
 int i, j, numin = 0, totalin, total, numbatches, rank, numprocs;
 double x, y, approx, pi = 3.141592653589793238462643;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0) {
 numbatches = atoi(argv[1]);
 }
 MPI_Bcast(&numbatches, 1, MPI_INT, 0, MPI_COMM_WORLD);
 for (i = 0; i < numbatches; i++) {
 for (j = 0; j < BATCHSIZE; j++) {
 x = sprng(); y = sprng();
 if (x * x + y * y < 1.0)
 numin++;
 }
 MPI_Reduce(&numin, &totalin, 1, MPI_INT, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (rank == 0) {
 total = BATCHSIZE * (i + 1) * numprocs;
 approx = 4.0 * ((double) totalin / total);
 printf("pi = %.16f; error = %.16f, points = %d\n",
 approx, pi - approx, total);
 }
 }
 MPI_Finalize();
 return 0;
}

Figure 8.12: — Computing π using the Monte Carlo method.

The defaults in SPRNG make it extremely easy to use. Calls to the sprng function return a random number between 0.0 and 1.0,
and the stream of random numbers on the different processes is independent. We control the grain size of the parallelism by the
constant BATCHSIZE, which determines how much computation is done before the processes communicate. Here a million points
are generated, tested, and counted before we collect the results to print them. We use MPI_Bcast to distribute the command-line
argument specifying the number of batches, and we use MPI_Reduce to collect at the end of each batch the number of points
that fell inside the quarter circle, so that we can print the increasingly accurate approximations to π .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 MPI Programming without MPI
One of the major strengths of MPI is the support that MPI provides for building libraries of useful software. These libraries often
eliminate the need for explicit programming in MPI; in cases where no suitable library exists, MPI's design encourages the use of
modern software engineering techniques in creating application-specific support libraries. Some of the available libraries are
shown in Table 9.1; Chapter 12 discusses some of the more important libraries in more detail. To illustrate the power of libraries in
MPI, this section shows several programs that solve partial differential equations without the explicit use of MPI. These are still
MPI programs, however, and must be run using mpiexec just like other MPI programs.

8.6.1 A Poisson Solver

Section 8.3 presented an MPI code that implemented the Jacobi method for solving a simple partial differential equation. This
example provided a good introduction to MPI but is not meant as an example of how to solve differential equations in parallel with
MPI. For that task, one or more parallel libraries should be used. Figure 8.13 shows a short code for solving two-dimentional
Poisson problems on a regular mesh. This code makes very heavy use of two libraries:

PETSc [9, 10, 8] is a library designed to solve in parallel linear and nonlinear equations that arise from PDEs.
PETSc uses MPI.

"regmesh" is an application-specific library written to simplify the use of PETSc for regular mesh discritizations of
elliptic partial differential equations. This library makes no explicit MPI calls; instead, all parallelism is handled
through PETSc.

#include <math.h>
#include "petsc.h"
#include "regmesh.h"

/* This function is used to define the right-hand side of the
 Poisson equation to be solved */
double func(double x, double y)
{
 return sin(x)*sin(y);
}

int main(int argc, char *argv[])
{
 SLES sles;
 RegMesh g;
 Mat m;
 Vec b, x;
 Viewer viewer;
 int its;

 PetscInitialize(&argc, &argv, 0, 0);

 g = Create2dDistributedArray(n, n, 0.0, 1.0, 0.0, 1.0);
 m = ApplyStencilTo2dDistributedArray(g, REGMESH_LAPLACIAN);
 b = SetVectorFromFunction(g, (RegMeshFunc)func);
 VecDuplicate(b, &x);
 SLESCreate(PETSC_COMM_WORLD, &sles);
 SLESSetOperators(sles, m, m, DIFFERENT_NONZERO_PATTERN);
 SLESSetFromOptions(sles);
 SLESSolve(sles, b, x, &its);
 PetscViewerNetcdfOpen(PETSC_COMM_WORLD, "solution.nc",
 PETSC_NETCDF_CREATE, &viewer);
 MeshDAView(g, viewer);
 RegMeshDestroy(g); MatDestroy(m); VecDestroy(b); VecDestroy(x);
 SLESDestroy(sles);
 PetscFinalize();
 return 0;
}

Figure 8.13: A parallel Poisson solver that exploits two libraries written with MPI.

The routines in this example perform the following operations:
PetscInitialize — Initialize the PETSc library

Create2dDistributedArray — Create a handle (g) to a structure that defines a two-dimensional mesh of size
n×n on the unit square. This mesh is distributed across all processes. This routine is from regmesh.

ApplyStencilTo2dDistributedArray — Create the sparse matrix (returned as the value m) by applying a
disretization stencil to the mesh g. The discretization is predefined and is the same one described in Section 8.3.
This routine is from regmesh but returns a handle to a PETSc matrix.

SetVectorFromFunction — Return the vector representing the right-hand side of the problem by applying a
function func to the mesh g. This routine is from regmesh but returns a handle to a PETSc vector.

SLESCreate — Create a PETSc context for solving a linear system of equations. This is a handle for the internal
structure that PETSc uses to hold all of the information, such as the choice of algorithm, used to solve a linear
system of equations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SLESSetOperators — Define the linear system to solve by specifying the matrices. This routine allows several
variations of specification; this example uses the most common.

SLESSetFromOptions — Set the various parameter choices from the command line and a defaults file. This lets
the user choose the iterative method and pre-conditioner at run time by using command-line arguments.

SLESSolve — Solve the linear system Ax = b, returning the solution in the PETSc vector x. This is a PETSc
routine.

PetscViewerNetcdfOpen — Create a "viewer" by which a PETSc vector can be written to a file (here
'solution.nc') using the community-standard NetCDF format [95]. This is a PETSc routine.

MeshDAView — Output the solution using the viewer. This makes use of the PETSc "distributed array" structure as
well as other data from the regmesh g.

xxxDestroy — Free the space used by the mesh, vector, and matrix structures, as well as the linear equation
solver.

An advantage of this approach to writing parallel programs is that it allows the application programmer to take advantage of the
best numerical algorithms and parallel tools. For example, the command-line
 mpiexec -n 64 poisson -pc_type=ilu -ksp_type=gmres

runs this example on 64 processors, using the GMRES iterative method with a block incomplete factorization preconditioner.
Changing the choice of iterative method or preconditioner is accomplished by simply changing the command-line arguments.

In addition, this example includes output of the solution, using parallel I/O into a file (when supported by a parallel file system such
as PVFS, described in Chapter 19). Further, this file is written in a standard format called NetCDF; a wide variety of tools exist for
postprocessing this file, including programs to display the contents graphically.

Regmesh is a specialized library designed to simplify the creation of parallel programs that work with regular meshes. More
importantly, Regmesh is an example of structuring an application so that the important operations are organized into logical units.

8.6.2 Solving a Nonlinear Partial Differential Equation

To further illustrate the power of MPI libraries, Figure 8.14 shows the main program for solving the problem

#include "petsc.h"
/* User-defined data describing the problem */
typedef struct {
 DA da; /* distributed array data structure */
 double param; /* test problem parameter */
} AppCtx;
extern int FormFunctionLocal(DALocalInfo*,double**,double**,AppCtx*);
extern int FormJacobianLocal(DALocalInfo*,double**,Mat,AppCtx*);
int main(int argc,char *argv[])
{
 SNES snes; /* nonlinear solver */
 Vec x,r; /* solution, residual vectors */
 Mat A,J; /* Jacobian matrix */
 AppCtx user; /* user-defined work context */
 int its; /* iterations for convergence */

 PetscInitialize(&argc,&argv,(char *)0,help);
 user.param = 6.0;
 SNESCreate(PETSC_COMM_WORLD,&snes);
 DACreate2d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,
 -4,-4,PETSC_DECIDE,PETSC_DECIDE,
 1,1,PETSC_NULL,PETSC_NULL,&user.da);
 DACreateGlobalVector(user.da,&x);
 VecDuplicate(x,&r);
 DASetLocalFunction(user.da,(DALocalFunction1)FormFunctionLocal);
 DASetLocalJacobian(user.da,(DALocalFunction1)FormJacobianLocal);
 SNESSetFunction(snes,r,SNESDAFormFunction,&user);
 DAGetMatrix(user.da,MATMPIAIJ,&J);
 A = J;
 SNESSetJacobian(snes,A,J,SNESDAComputeJacobian,&user);
 SNESSetFromOptions(snes);
 FormInitialGuess(&user,x);
 SNESSolve(snes,x,&its);
 PetscPrintf(PETSC_COMM_WORLD,"Number of Newton iterations = %d\n",its);

 MatDestroy(J); VecDestroy(x); VecDestroy(r); SNESDestroy(snes);
 DADestroy(user.da);
 PetscFinalize();
 return 0;
}

Figure 8.14: The main program in a high-level program to solve a nonlinear partial differential equation using
PETSc.

∇ 2u = -λeu on Ω = [0, 1] × [0, 1]

u = 0 on the boundary of Ω .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This problem is the Bratu problem. This code uses only PETSc and, as a result, is somewhat longer. Not included in this figure are
some of the routines for computing the Jacobian elements, evaluating the function, setting the initial guess, or checking for errors.
A complete version of this example is included as 'src/snes/examples/tutorials/ex5.c' in the PETSc distribution. Even
this program is only a few hundred lines, including extensive comments.

These two examples show that tools are available that make writing parallel programs using MPI relatively easy, as long as high-
quality libraries are available for the operations needed by an application. Fortunately, in many areas of science and engineering,
such libraries are available, and more are added all the time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7 Installing MPICH2 under Linux
The MPICH implementation of MPI [47] is one of the most popular versions of MPI. Recently, MPICH was completely rewritten;
the new version is called MPICH2 and includes all of MPI, both MPI-1 and MPI-2. In this section we describe how to obtain, build,
and install MPICH2 on a Beowulf cluster. We then describe how to set up an MPICH2 environment in which MPI programs can be
compiled, executed, and debugged. We recommend MPICH2 for all Beowulf clusters. Original MPICH is still available but is no
longer being developed.

8.7.1 Obtaining and Installing MPICH2

The current version of MPICH2 is available at www.mcs.anl.gov/mpi/mpich.[4] From there one can download a gzipped tar file
containing the complete MPICH2 distribution, which contains

all source code for MPICH2;

configure scripts for building MPICH2 on a wide variety of environments, including Linux clusters;

simple example programs like the ones in this chapter;

MPI compliance test programs; and

the MPD parallel process management system.

MPICH2 is architected so that a number of communication infrastructures can be used. These are called "devices." The device
that is most relevant for the Beowulf environment is the channel device (also called "ch3" because it is the third version of the
channel approach for implementing MPICH); this supports a variety of communication methods and can be built to support the
use of both TCP over sockets and shared memory. In addition, MPICH2 uses a portable interface to process management
systems, providing access both to external process managers (allowing the process managers direct control over starting and
running the MPI processes) and to the MPD scalable process manager that is included with MPICH2. To run your first MPI
program, carry out the following steps (assuming a C-shell):

1. Download mpich2.tar.gz from www.mcs.anl.gov/mpi/mpich or from
ftp://ftp.mcs.anl.gov/pub/mpi/mpich2.tar.gz

2. tar xvfz mpich2.tar.gz ; cd mpich2-1.0

3. configure <configure options> >& configure.log. Most users should specify a prefix for the
installation path when configuring:
 configure --prefix=/usr/local/mpich2-1.0 >& configure.log

By default, this creates the channel device for communication with TCP over sockets.

4. make >& make.log

5. make install >& install.log

6. Add the '<prefix>/bin' directory to your path; for example, for tcsh, do
 setenv PATH <prefix>/bin:$PATH
 rehash

7. cd examples

8. make cpi

9. Before running your first program, you must start the mpd process manager. To run on a single node, you need
only do mpd -d &. See Section 8.7.3 for details on starting mpd on multiple nodes.

10. mpiexec -n 4 cpi (if '.' is not in your path, you will need to use mpiexec -n 4 ./cpi).

8.7.2 Building MPICH2 for SMP Clusters

To build MPICH2 to support SMP clusters and to use shared-memory to communicate data between processes on the same
node, configure MPICH2 with the additional option --with-device=ch3:ssm, as in
 configure --with-device=ch3:ssm --prefix=/usr/local/mpich2-1.0

In a system that contains both SMP nodes and uniprocessor nodes, or if you want an executable that can run on both kinds of
nodes, use this version of the ch3 device.

8.7.3 Starting and Managing MPD

Running MPI programs with the MPD process manager assumes that the mpd daemon is running on each machine in your
cluster. In this section we describe how to start and manage these daemons. The mpd and related executables are built when you
build and install MPICH2 with the default process manager. The code for the MPD demons are found in '<prefix-
directory>/bin', which you should ensure is in your path. A set of MPD daemons can be started with the command
 mpichboot <file> <num>

where file is the name of a file containing the host names of your cluster and num is the number of daemons you want to start.
The startup script uses ssh to start the daemons, but if it is more convenient, they can be started in other ways. The first one can
be started with mpd -t. The first daemon, started in this way, will print out the port it is listening on for new mpds to connect to it.
Each subsequent mpd is given a host and port to connect to. The mpichboot script automates this process. At any time you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each subsequent mpd is given a host and port to connect to. The mpichboot script automates this process. At any time you can
see what mpds are running by using mpdtrace.

An mpd is identified by its host and a port. A number of commands are used to manage the ring of mpds:
mpdhelp prints a short description of the available mpd commands.

mpdcleanup cleans up mpd if a problem occurred. For example, it can repair the local Unix socket that is used to
communicate with the MPD system if the MPD ring crashed.

mpdtrace causes each mpd in the ring to respond with a message identifying itself and its neighbors.

mpdallexit causes all mpds to exit gracefully.

mpdlistjobs lists active jobs for the user managed by mpds in ring. With the command-line option -a or --all,
lists the jobs for all user4s.

mpdkilljob job_id kills all of the processes of the specified job.

mpdsigjob sigtype job_id delivers the specified signal to the specified job. Signals are specified using the
name of the signal, e.g., SIGSTOP.

Several options control the behavior of the daemons, allowing them to be run either by individual users or by root without
conflicts. The most important is

-d background or "daemonize"; this is used to start an mpd daemon that will run without being connected to a
terminal session.

8.7.4 Running MPICH2 Jobs under MPD

MPICH2 jobs are run under the MPD process manager by using the mpiexec command. MPD's mpiexec is consistent with the
specification in the MPI standard and also offers a few extensions, such as passing of environment variables to individual MPI
processes. An example of the simplest way to run an MPI program is
 mpiexec -n 32 cpi

which runs the MPI program cpi with 32 processes and lets the MPD process manager choose which hosts to run the processes
on. Specific hosts and separate executables can be specified:
 mpiexec -n 1 -host node0 manager : -n 1 -host nodel worker

A configuration file can be used when a command line in the above format would be too long:
 mpiexec -configfile multiblast.cfg

where the file 'multiblast.cfg' contains
 -n 1 -host node0 blastmanager
 -n 1 -host nodel blastworker
 ...
 -n 1 -host node31 blastworker

One can use
 mpiexec -help

to discover all the possible command-line arguments for mpiexec.

The program mpiexec runs in a separate (non-MPI) process that starts the MPI processes running the specified executable. It
serves as a single-process representative of the parallel MPI processes in that signals sent to it, such as ^Z and ^C are conveyed
by the MPD system to all the processes. The output streams stdout and stderr from the MPI processes are routed back to the
stdout and stderr of mpiexec. As in most MPI implementations, mpirun's stdin is routed to the stdin of the MPI process
with rank 0.

8.7.5 Debugging MPI Programs

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only to the usual kinds of bugs but also to
new kinds having to do with timing and synchronization errors. Often, the program "hangs," for example when a process is waiting
for a message to arrive that is never sent or is sent with the wrong tag. Parallel bugs often disappear precisely when you add code
to try to identify the bug, a particularly frustrating situation. In this section we discuss three approaches to parallel debugging.

The printf Approach
Just as in sequential debugging, you often wish to trace interesting events in the program by printing trace messages. Usually you
wish to identify a message by the rank of the process emitting it. This can be done explicitly by putting the rank in the trace
message. As noted above, using the "line labels" option (-l) with mpirun in the ch_p4mpd device in MPICH adds the rank
automatically.

Using a Commercial Debugger
The TotalView© debugger from Etnus, Ltd. [119] runs on a variety of platforms and interacts with many vendor implementations of
MPI, including MPICH on Linux clusters. For the ch_p4 device you invoke TotalView with
 mpirun -tv <other arguments>

and with the ch_p4mpd device you use
 totalview mpirun <other arguments>

That is, again mpirun represents the parallel job as a whole. TotalView has special commands to display the message queues of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That is, again mpirun represents the parallel job as a whole. TotalView has special commands to display the message queues of
an MPI process. It is possible to attach TotalView to a collection of processes that are already running in parallel; it is also
possible to attach to just one of those processes.

Check the documentation on how to use Totalview with mpiexec in MPICH2, or with other implementations of MPI.

8.7.6 Other Compilers

MPI implementations are usually configured and built by using a particular set of compilers. For example, the configure script in
the MPICH implementation determines many of the characteristics of the compiler and the associated runtime libraries. As a
result, it can be difficult to use a different C or Fortran compiler with a particular MPI implementation. This can be a problem for
Beowulf clusters because several different compilers are commonly used.

The compilation scripts (e.g., mpicc) accept an argument to select a different compiler. For example, if MPICH is configured with
gcc but you want to use pgcc to compile and build an MPI program, you can use
 mpicc -cc=pgcc -o hellow hellow.c
 mpif77 -fc=pgf77 -o hellowf hellowf.f

This works as long as both compilers have similar capabilities and properties. For example, they must use the same lengths for
the basic datatypes, and their runtime libraries must provide the functions that the MPI implementation requires. If the compilers
are similar in nature but require slightly different libraries or compiler options, then a configuration file can be provided with the -
config=name option:
 mpicc -config=pgcc -o hellow hellow.c

Details on the format of the configuration files can be found in the MPICH installation manual.

The same approach can be used with Fortran as for C. If, however, the Fortran compilers are not compatible (for example, they
use different values for Fortran .true. and .false.), then you must build new libraries. MPICH2 provides a way to build just the
necessary Fortran support. See the MPICH2 installation manual for details.

[4]As this chapter is being written, the current version of MPICH2 is 0.93, and the current verison of MPICH is 1.2.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.8 Tools for MPI Programs
A number of tools are available for developing, testing, and tuning MPI programs. In this section, we describe some of the tools
that are available from www.mcs.anl.gov/mpi. These tools work with most MPI implementations, not just MPICH2.

8.8.1 Profiling Libraries

The MPI Forum decided not to standardize any particular tool but rather to provide a general mechanism for intercepting calls to
MPI functions, which is the sort of capability that tools need. The MPI standard requires that any MPI implementation provide two
entry points for each MPI function: its normal MPI_ name and a corresponding PMPI version. This strategy allows a user to write a
custom version of MPI_Send, for example, that carries out whatever extra functions might be desired, calling PMPI_Send to
perform the usual operations of MPI_Send. When the user's custom versions of MPI functions are placed in a library and the
library precedes the usual MPI library in the link path, the user's custom code will be invoked around all MPI functions that have
been replaced.

Three such "profiling libraries" and some tools for creating more are provided in the MPE tools. MPE is available at
ftp://ftp.mcs.anl.gov/pub/mpi/mpe.tar.gz.

8.8.2 Visualizing Parallel Program Behavior

The detailed behavior of a parallel program is surprisingly difficult to predict. It is often useful to examine a graphical display that
shows the exact sequence of states that each process went through and what messages were exchanged at what times and in
what order. The data for such a tool can be collected by means of a profiling library. One tool for looking at such log files is
Jumpshot [126]. A screenshot of Jumpshot in action is shown in Figure 8.15.

Figure 8.15: Jumpshot displaying message traffic.

The horizontal axis represents time, and there is a horizontal line for each process. The states that processes are in during a
particular time interval are represented by colored rectangles. Messages are represented by arrows. It is possible to zoom in for
microsecond-level resolution in time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.9 MPI Implementations for Clusters
Many implementations of MPI are available for clusters; Table 8.3 lists some of the available implementations. These range from
commercially supported software to supported, freely available software to distributed research project software.

Table 8.3: Some MPI implementations for Linux.

Name URL

BeoMPI www.scyld.com

LAM/MPI www.lam-mpi.org

MPICH www.mcs.anl.gov/mpi/mpich

MPICH-GM www.myricom.com

MPICH-G2 www.niu.edu/mpi

MPICH-Madeleine dept-info.labri.u-bordeaux.fr/~mercier/mpi.html

MPICH-V www.lri.fr/~gk/MPICH-V/

MPI/GAMMA www.disi.unige.it/project/gamma/mpigamma/

MPI/Pro www.mpi-softtech.com

MP-MPICH www.lfbs.rwth-aachen.de/mp-mpich/

MVABICH nowlab.cis.ohio-state.edu/projects/mpi-iba/

MVICH www.nersc.gov/research/ftg/mvich/

ScaMPI www.scali.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Advanced Topics in MPI Programming
William Gropp and Ewing Lusk

In this chapter we continue our exploration of parallel programming with MPI. We describe capabilities that are more specific to
MPI than to part of the message-passing programming model in general. We cover the more advanced features of MPI, such as
dynamic process management, parallel I/O, and remote memory access. These features are often described as MPI-2 because
they were added to the MPI standard in a second round of specification; however, MPI means both the original (MPI-1) and new
(MPI-2) features. We will use the term "MPI-2" to emphasize that a feature was added to MPI in the second round.

9.1 Dynamic Process Management in MPI
A new feature of MPI is the ability of an MPI program to create new MPI processes and communicate with them. (In the original
MPI specification, the number of processes was fixed at startup.) MPI calls this capability (together with related capabilities such
as connecting two independently started MPI jobs) dynamic process management. Three main issues are introduced by this
collection of features:

maintaining simplicity and flexibility;

interacting with the operating system, a parallel process manager, and perhaps a job scheduler; and

avoiding race conditions that could compromise correctness.

The key to avoiding race conditions is to make creation of new processes a collective operation, over both the processes creating
the new processes and the new processes being created. Using a collective operation in creating new processes also provides
scalability and addresses these other issues.

9.1.1 Intercommunicators

Recall that an MPI communicator consists of a group of processes together with a communication context. Strictly speaking, the
communicators we have dealt with so far are intracommunicators. There is another kind of communicator, called an
intercommunicator. An intercommunicator binds together a communication context and two groups of processes, called (from the
point of view of a particular process) the local group and the remote group. Processes are identified by rank in group, but ranks in
an intercommunicator always refer to the processes in the remote group. That is, an MPI_Send using an intercommunicator
sends a message to the process with the destination rank in the remote group of the intercommunicator. Collective operations are
also defined for intercommunicators; see [50, Chapter 7] for details.

9.1.2 Spawning New MPI Processes

We are now in a position to explain exactly how new MPI processes are created by an already running MPI program. The MPI
function that creates these processes is MPI_Comm_spawn. Its key features are the following.

It is collective over the communicator of processes initiating the operation (called the parents) and also collective
with the calls to MPI_Init in the processes being created (called the children). That is, MPI_Comm_spawn does
not return in the parents until it has been called in all the parents and MPI_Init has been called in all the children.

It returns an intercommunicator in which the local group contains the parents and the remote group contains the
children.

The new processes, which must call MPI_Init, have their own MPI_COMM_WORLD, consisting of all the processes
created by this one collective call to MPI_Comm_spawn.

The function MPI_Comm_get_parent, called by the children, returns an intercommunicator with the children in the
local group and the parents in the remote group.

The collective function MPI_Intercomm_merge may be called by parents and children to create a normal
(intra)communicator containing all the processes, both old and new, but for many communication patterns this is
not necessary.

9.1.3 Revisiting Matrix-Vector Multiplication

Here we illustrate the use of MPI_Comm_spawn by revisiting the matrix-vector multiply program of Section 8.2. Instead of starting
with a fixed number of processes, we compile separate executables for the manager and worker programs, start the manager with
 mpiexec -n 1 manager <number-of-workers>

and then let the manager create the worker processes dynamically. We assume that only the manager has the matrix a and the
vector b and broadcasts them to the workers after the workers have been created. The program for the manager is shown in
Figure 9.1 and the code for the workers is shown in Figure 9.2.

#include "mpi.h"
#include <stdio.h>
#define SIZE 10000

int main(int argc, char *argv[])
{
 double a[SIZE][SIZE], b[SIZE], c[SIZE];
 int i, j, row, numworkers;
 MPI_Status status;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MPI_Status status;
 MPI_Comm workercomm;

 MPI_Init(&argc, &argv);
 if (argc != 2 || !isnumeric(argv[1]))
 printf("usage: %s <number of workers>\n", argv[0]);
 else
 numworkers = atoi(argv[1]);

 MPI_Comm_spawn("worker", MPI_ARGV_NULL, numworkers,
 MPI_INFO_NULL,
 0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);
 ...
 /* initialize a and b */
 ...
 /* send b to each worker */
 MPI_Bcast(b, SIZE, MPI_DOUBLE, MPI_ROOT, workercomm);
 ...
 /* then normal manager code as before*/
 ...
 MPI_Finalize();
 return 0;
}

Figure 9.1: Dynamic process matrix-vector multiply program, manager part.

#include "mpi.h"

int main(int argc, char *argv[])
{
 int numprocs, myrank;
 double b[SIZE], c[SIZE];
 int i, row, myrank;
 double dotp;
 MPI_Status status;
 MPI_Comm parentcomm;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 MPI_Comm_get_parent(&parentcomm);

 MPI_Bcast(b, SIZE, MPI_DOUBLE, 0, parentcomm);

 ...
 /* same as worker code from original matrix-vector multiply */
 ...

 MPI_Comm_free(&parentcomm);
 MPI_Finalize();
 return 0;
}

Figure 9.2: Dynamic process matrix-vector multiply program, worker part.

Let us consider in detail the call in the manager that creates the worker processes.
 MPI_Comm_spawn("worker", MPI_ARGV_NULL, numworkers,
 MPI_INFO_NULL,
 0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);

It has eight arguments. The first is the name of the executable to be run by the new processes. The second is the null-terminated
argument vector to be passed to all of the new processes; here we are passing no arguments at all, so we specify the special
value MPI_ARGV_NULL. Next is the number of new processes to create. The fourth argument is an MPI "Info" object, which can
be used to specify special environment- and/or implementation-dependent parameters, such as the names of the nodes to start
the new processes on. In our case we leave this decision to the MPI implementation or local process manager, and we pass the
special value MPI_INFO_NULL. The next argument is the "root" process for this call to MPI_Comm_spawn; it specifies which
process in the communicator given in the following argument is supplying the valid arguments for this call. The communicator we
are using consists here of just the one manager process, so we pass MPI_COMM_SELF. Next is the address of the new
intercommunicator to be filled in, and finally an array of error codes for examining possible problems in starting the new
processes. Here we use MPI_ERRCODES_IGNORE to indicate that we will not be looking at these error codes.

Code for the worker processes that are spawned is shown in Figure 9.2. It is essentially the same as the worker subroutine in the
preceding chapter but is an MPI program in itself. Note the use of intercommunicator broadcast in order to receive the vector b
from the parents. We free the parent intercommunicator with MPI_Comm_free before exiting.

9.1.4 More on Dynamic Process Management

For more complex examples of the use of MPI_Comm_spawn, including how to start processes with different executables or
different argument lists, see [50, Chapter 7]. MPI_Comm_spawn is the most basic of the functions provided in MPI for dealing with
a dynamic MPI environment. By querying the attribute MPI_UNIVERSE_SIZE, you can find out how many processes can be
usefully created. Separately started MPI computations can find each other and connect with MPI_Comm_connect and
MPI_Comm_accept. Processes can exploit non-MPI connections to "bootstrap" MPI communication. These features are
explained in detail in [50].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Fault Tolerance
Communicators are a fundamental concept in MPI. Their sizes are fixed at the time they are created, and the efficiency and
correctness of collective operations rely on this fact. Users sometimes conclude from the fixed size of communicators that MPI
provides no mechanism for writing fault-tolerant programs. Now that we have introduced intercommunicators, however, we are in
a position to discuss how this topic might be addressed and how you might write a manager-worker program with MPI in such a
way that it would be fault tolerant. In this context we mean that if one of the worker processes terminates abnormally, instead of
terminating the job you will be able to carry on the computation with fewer workers, or perhaps dynamically replace the lost
worker.

The key idea is to create a separate (inter)communicator for each worker and use it for communications with that worker rather
than use a communicator that contains all of the workers. If an implementation returns "invalid communicator" from an MPI_Send
or MPI_Recv call, then the manager has lost contact only with one worker and can still communicate with the other workers
through the other, still-intact communicators. Since the manager will be using separate communicators rather than separate ranks
in a larger communicator to send and receive message from the workers, it might be convenient to maintain an array of
communicators and a parallel array to remember which row has been last sent to a worker, so that if that worker disappears, the
same row can be assigned to a different worker. Figure 9.3 shows these arrays and how they might be used. What we are doing
with this approach is recognizing that two-party communication can be made fault tolerant, since one party can recognize the
failure of the other and take appropriate action. A normal MPI communicator is not a two-party system and cannot be made fault
tolerant without changing the semantics of MPI communication. If, however, the communication in an MPI program can be
expressed in terms of intercommunicators, which are inherently two-party (the local group and the remote group), then fault
tolerance can be achieved.

 /* highly incomplete */

 MPI_Comm worker_comms[MAX_WORKERS];
 int last_row_sent[MAX_WORKERS];

 rc = MPI_Send(a[numsent], SIZE, MPI_DOUBLE, 0, numsent+1,
 worker_comms[sender]);
 if (rc != MPI_SUCCESS) {
 /* Check that error class is one we can recover from */
 ...
 MPI_Comm_spawn("worker" , ...);

Figure 9.3: Fault-tolerant manager.

Note that while the MPI standard, through the use of intercommunicators, makes it possible to write an implementation of MPI that
encourages fault-tolerant programming, the MPI standard itself does not require MPI implementations to continue past an error.
This is a "quality of implementation" issue and allows the MPI implementor to trade performance for the ability to continue after a
fault. As this section makes clear, however, nothing in the MPI standard stands in the way of fault tolerance, and the two primary
MPI implementations for Beowulf clusters, MPICH2 and LAM/MPI, both endeavor to support some style of fault tolerance for
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Revisiting Mesh Exchanges
The discussion of the mesh exchanges for the Jacobi problem in Section 8.3 concentrated on the algorithm and data structures,
particularly the ghost-cell exchange. In this section, we return to that example and cover two other important issues: blocking and
nonblocking communications and communicating noncontiguous data.

9.3.1 Blocking and Nonblocking Communication

Consider the following simple code (note that this is similar to the simple version of exchange_nbrs in Section 8.3):
 if (rank == 0) {
 MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);
 }
 else if (rank == 1) {
 MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 }

What happens with this code? It looks like process 0 is sending a message to process 1 and that process 1 is sending a message
to process 0. But more is going on here. Consider the steps that the MPI implementation must take to make this code work:

1. Copy the data from the MPI_Send into a temporary, system-managed buffer.

2. Once the MPI_Send completes (on each process), start the MPI_Recv. The data that was previously copied
into a system buffer by the MPI_Send operation can now be delivered into the user's buffer (rbuf in this case).

This approach presents two problems, both related to the fact that data must be copied into a system buffer to allow the
MPI_Send to complete. The first problem is obvious: any data motion takes time and reduces the performance of the code. The
second problem is more subtle and important: the amount of available system buffer space always has a limit. For values of n in
the above example that exceed the available buffer space, the above code will hang: neither MPI_Send will complete, and the
code will wait forever for the other process to start an MPI_Recv. This is true for any message-passing system, not just MPI. The
amount of buffer space available for buffering a message varies among MPI implementations, ranging from many megabytes to
as little as 128 bytes.

How can we write code that sends data among several processes and that does not rely on the availability of system buffers? One
approach is to carefully order the send and receive operations so that each send is guaranteed to have a matching receive. For
example, we can swap the order of the MPI_Send and MPI_Recv in the code for process 1:
 if (rank == 0) {
 MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);
 }
 else if (rank == 1) {
 MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }

This can be awkward to implement, however, particularly for more complex communication patterns; in addition, it does not
address the extra copy that may be performed by MPI_Send.

The approach used by MPI, following earlier message-passing systems as well as nonblocking sockets (see [48, Chapter 9]), is to
split the send and receive operations into two steps: one to initiate the operation and one to complete the operation. Other
operations, including other communication operations, can be issued between the two steps. For example, an MPI receive
operation can be initiated by a call to MPI_Irecv and completed with a call to MPI_Wait. Because the routines that initiate these
operations do not wait for them to complete, they are called nonblocking operations. The "I" in the routine name stands for
"immediate"; this indicates that the routine may return immediately without completing the operation. The arguments to
MPI_Irecv are the same as for MPI_Recv except for the last (status) argument. This is replaced by an MPI_Request value; it
is a handle that is used to identify an initiated operation. To complete a nonblocking operation, the request is given to MPI_Wait,
along with a status argument; the status argument serves the same purpose as status for an MPI_Recv. Similarly, the
nonblocking counterpart to MPI_Send is MPI_Isend; this has the same arguments as MPI_Send with the addition of an
MPI_Request as the last argument (in C). Using these routines, our example becomes the following:
 if (rank == 0) {
 MPI_Request req1, req2;
 MPI_Isend(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req1);
 MPI_Irecv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req2);
 MPI_Wait(&req1, &status);
 MPI_Wait(&req2, &status);
 }
 else if (rank == 1) {
 MPI_Request req1, req2;
 MPI_Irecv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req1);
 MPI_Isend(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req2);
 MPI_Wait(&req1, &status);
 MPI_Wait(&req2, &status);
 }

The buffer sbuf provided to MPI_Isend must not be modified until the operation is completed with MPI_Wait. Similarly, the
buffer rbuf provided to MPI_Irecv must not be modified or read until the MPI_Irecv is completed.

The nonblocking communication routines allow the MPI implementation to wait until the message can be sent directly from one
user buffer to another (e.g., from sbuf to rbuf) without requiring any copy or using any system buffer space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user buffer to another (e.g., from sbuf to rbuf) without requiring any copy or using any system buffer space.

Because it is common to start multiple nonblocking operations, MPI provides routines to test or wait for completion of any one, all,
or some of the requests. For example, MPI_Waitall waits for all requests in an array of requests to complete. Figure 9.4 shows
the use of nonblocking communication routines for the Jacobi example.[1]

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status statuses[4];
 MPI_Request requests[4];
 int c;

 /* Begin send and receive from the left neighbor */
 MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[0]);
 MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[1]);

 /* Begin send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[2]);
 MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[3]);

 /* Wait for all communications to complete */
 MPI_Waitall(4, requests, statuses);
}

Figure 9.4: Nonblocking exchange code for the Jacobi example.

MPI nonblocking operations are not the same as asynchronous operations. The MPI standard does not require that the data
transfers overlap computation with communication. MPI specifies only the semantics of the operations, not the details of the
implementation choices. The MPI nonblocking routines are provided primarily for correctness (avoiding the limitations of system
buffers) and performance (avoiding copies).

9.3.2 Communicating Noncontiguous Data in MPI

The one-dimensional decomposition used in the Jacobi example (Section 8.3) is simple but does not scale well and can lead to
performance problems. We can analyze the performance of the Jacobi following the discussion in Section 8.2. Let the time to
communicate n bytes be

Tcomm = s + rn,

where s is the latency and r is the (additional) time to communicate one byte. The time to compute one step of the Jacobi method,
using the one-dimensional decomposition in Section 8.3, is

where f is the time to perform a floating-point operation and p is the number of processes. Note that the cost of communication is
independent of the number of processes; eventually, this cost will dominate the calculation. Hence, a better approach is to use a
two-dimensional decomposition, as shown in Figure 9.5.

Figure 9.5: A 12 x 12 computational mesh, divided into 4×4 domains, for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

The time for one step of the Jacobi method with a two-dimensional decomposition is just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is faster than the one-dimensional decomposition as long as

(assuming p ≥ 16). To implement this decomposition, we need to communicate data to four neighbors, as shown in Figure 9.6.

Figure 9.6: Locations of mesh points in ulocal for a two-dimensional decomposition.

The left and right edges can be sent and received by using the same code as for the one-dimensional case. The top and bottom
edges have noncontiguous data.

For example, the top edge needs to send the tenth, sixteenth, and twenty-second element. There are four ways to move this data:
1. Each value can be sent separately. Because of the high latency of message passing, this approach is inefficient

and normally should not be used.

2. The data can be copied into a temporary buffer by using a simple loop, for example,
 for (i=0; i<3; i++) {
 tmp[i] = u_local[i][6];
 }
 MPI_Send(tmp, 3, MPI_DOUBLE, ..);

This is a common approach and, for some systems and MPI implementations, may be the most efficient.

3. MPI provides two routines to pack and unpack a buffer. These routines are MPI_Pack and MPI_Unpack. A
buffer created with these routines should be sent and received with MPI datatype MPI_PACKED. We note,
however, that these routines are most useful for complex data layouts that change frequently within a program.

4. MPI provides a way to construct new datatypes representing any data layout. These routines can be optimized
by the MPI implementation, in principle providing better performance than the user can achieve using a simple
loop [120]. In addition, using these datatypes is crucial to achieving high performance with parallel I/O.

MPI provides several routines to create datatypes representing common patterns of memory. These new datatypes are called
derived datatypes. For this case, MPI_Type_vector is what is needed to create a new MPI datatype representing data values
separated by a constant stride. In this case, the stride is NY+2, and the number of elements is i_end-i_start+1.
 MPI_Type_vector(i_end - i_start + 1, 1, NY+2,
 MPI_DOUBLE, &vectype);
 MPI_Type_commit(&vectype);

The second argument is a block count and is the number of the basic datatype items (MPI_DOUBLE in this case); this is useful
particularly in multicomponent PDE problems. The routine MPI_Type_commit must be called to commit the MPI datatype; this
call allows the MPI implementation to optimize the datatype (the optimization is not included as part of the routines that create MPI
datatypes because some complex datatypes are created recursively from other derived datatypes).

Using an MPI derived datatype representing a strided data pattern, we can write a version of exchange_nbr for a two-
dimensional decomposition of the mesh; the code is shown in Figure 9.7. Note that we use the same derived datatype vectype
for the sends and receives at the top and bottom by specifying the first element into which data is moved in the array u_local in
the MPI calls.

void exchange_nbrs2d(double ulocal[][NY+2],
 int i_start, int i_end, int j_start, int j_end,
 int left, int right, int top, int bottom,
 MPI_Datatype vectype)
{
 MPI_Status statuses[8];
 MPI_Request requests[8];
 int c;

 /* Begin send and receive from the left neighbor */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Begin send and receive from the left neighbor */
 MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[0]);
 MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[1]);

 /* Begin send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[2]);
 MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[3]);

 /* Begin send and receive from the top neighbor */
 MPI_Isend(&ulocal[1][NY], 1, vectype, top, 0,
 MPI_COMM_WORLD, &requests[4]);
 MPI_Irecv(&ulocal[1][NY+1], 1, vectype, top, 0,
 MPI_COMM_WORLD, &requests[5]);

 /* Begin send and receive from the bottom neighbor */
 MPI_Isend(&ulocal[1][1], 1, vectype, bottom, 0,
 MPI_COMM_WORLD, &requests[6]);
 MPI_Irecv(&ulocal[1][0], 1, vectype, bottom, 0,
 MPI_COMM_WORLD, &requests[7]);

 /* Wait for all communications to complete */
 MPI_Waitall(8, requests, statuses);
}

Figure 9.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the mesh.

When a derived datatype is no longer needed, it should be freed with MPI_Type_free. Many other routines are available for
creating datatypes; for example, MPI_Type_indexed is useful for scatter-gather patterns, and MPI_Type_create_struct can
be used for an arbitrary collection of memory locations.

Early implementations of derived datatypes did not achieve good performance, trading simplicity of implementation for
performance. More recent implementations provide better performance, sometimes greater than is possible with straightforward
user code. See [49, 120, 20] for some examples.

[1]On many systems, calling MPI_Isend before MPI_Irecv will improve performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Motivation for Communicators
Communicators in MPI serve two purposes. The most obvious purpose is to describe a collection of processes. This feature
allows collective routines, such as MPI_Bcast or MPI_Allreduce, to be used with any collection of processes. This capability is
particularly important for hierarchical algorithms. It also facilitates dividing a computation into subtasks, each of which has its own
collection of processes. For example, in the manager-worker example in Section 8.2, it may be appropriate to divide each task
among a small collection of processes, particularly if this causes the problem description to reside only in the fast memory cache.
MPI communicators are perfect for this; the MPI routine MPI_Comm_split is the only routine needed when creating new
communicators. Using ranks relative to a communicator for specifying the source and destination of messages also facilitates
dividing parallel tasks among smaller but still parallel subtasks, each with its own communicator.

A more subtle but equally important purpose of the MPI communicator involves the communication context that each
communicator contains. This context is essential for writing software libraries that can be safely and robustly combined with other
code, both other libraries and user-specific application code, to build complete applications. Used properly, the communication
context guarantees that messages are received by appropriate routines even if other routines are not so careful. Consider the
example in Figure 9.8 (taken from [48, Section 6.1.2]). In this example, two routines are provided by separate libraries or software
modules. One, SendRight, sends a message to the right neighbor and receives from the left. The other, SendEnd, sends a
message from process 0 (the leftmost) to the last process (the rightmost). Both of these routines use MPI_ANY_SOURCE instead
of a particular source in the MPI_Recv call. As Figure 9.8 shows, the messages can be confused, causing the program to receive
the wrong data. How can we prevent this situation? Several approaches will not work. One is to avoid the use of
MPI_ANY_SOURCE. This fixes the example, but only if both SendRight and SendEnd follow this rule. The approach may be
adequate (though fragile) for code written by a single person or team, but it isn't adequate for libraries. For example, if SendEnd
was written by a commercial vendor and did not use MPI_ANY_SOURCE, but SendRight, written by a different vendor or an
inexperienced programmer, did use MPI_ANY_SOURCE, then the program would still fail, and it would look like SendEnd was at
fault (because the message from SendEnd was received first).

Figure 9.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in the MPI_Recv calls (from
[48]).

Another approach that does not work is to use message tags to separate messages. Again, this can work if one group writes all of
the code and is very careful about allocating message tags to different software modules. However, using MPI_ANY_TAG in an
MPI receive call can still bypass this approach. Further, as shown in Figure 6.5 in [48], even if MPI_ANY_SOURCE and
MPI_ANY_TAG are not used, separate code modules still can receive the wrong message.

The communication context in an MPI communicator provides a solution to these problems. The routine MPI_Comm_dup creates
a new communicator from an input communicator that contains the same processes (in the same rank order) but with a new
communication context. MPI messages sent in one communication context can be received only in that context. Thus, any
software module or library that wants to ensure that all of its messages will be seen only within that library needs only to call
MPI_Comm_dup at the beginning to get a new communicator. All well-written libraries that use MPI create a private communicator
used only within that library.

Enabling the development of libraries was one of the design goals of MPI. In that respect MPI has been very successful. Many
libraries and applications now use MPI, and, because of MPI's portability, most of these run on Beowulf clusters. Table 9.1
provides a partial list of libraries that use MPI to provide parallelism. More complete descriptions and lists are available at
www.mcs.anl.gov/mpi/libraries and at sal.kachinatech.com/C/3. Chapter 12 discusses software, including MPI libraries and
programs, in more detail.

Table 9.1: A sampling of libraries that use MPI. See Chapter 12 for a more thorough list.

Library Description URL

PETSc Linear and nonlinear solvers for PDEs www.mcs.anl.gov/petsc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aztec Parallel iterative solution of sparse linear systems www.cs.sandia.gov/CRF/aztec1.html

Cactus Framework for PDE solutions www.cactuscode.org

FFTW Parallel FFT www.fftw.org

PPFPrint Parallel print www.llnl.gov/CASC/ppf/

HDF Parallel I/O for Hierarchical Data Format (HDF) files hdf.ncsa.uiuc.edu/Parallel_HDF

NAG Numerical library www.nag.co.uk/numeric/fd/FDdescription.asp

ScaLAPACK Parallel linear algebra www.netlib.org/scalapack

SPRNG Scalable pseudorandom number generator sprng.cs.fsu.edu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5 More on Collective Operations
One of the strengths of MPI is its collection of scalable collective communication and computation routines. Figure 9.9 shows the
capabilities of some of the most important collective communication routines. To illustrate their utility, we consider a simple
example.

Figure 9.9: Schematic representation of collective data movement in MPI.

Suppose we want to gather the names of all of the nodes that our program is running on, and we want all MPI processes to have
this list of names. This is an easy task with MPI_Allgather:
 char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];
 MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,
 all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

This code assumes that no hostname is longer than MAX_LEN characters (including the trailing null). A better code would check
this fact:
 char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];
 int my_name_len, max_name_len;
 ...
 my_name_len = strlen(my_hostname) + 1;

 MPI_Allreduce(&my_name_len, &max_name_len, 1, MPI_INT, MPI_MAX,
 MPI_COMM_WORLD);
 if (max_name_len > MAX_LEN) {
 printf ("Error: names too long (%d)\n", max_name_len);

 }
 MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,
 all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

Both of these approaches move more data than necessary, however. An even better approach is to first gather the size of each
processor's name and then gather exactly the number of characters needed from each processor. This uses the "v" (for vector)
version of the allgather routine, MPI_Allgatherv, as shown in Figure 9.10. The array all_lens is used to hold the length of
the name of the process with rank i in the ith location. From this information, the array displs is calculated, where the ith

element is the offset into the character array all_names where the name for the process with rank i begins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int all_lens[MAX_PROCS], displs[MAX_PROCS], totlen;
 char all_names[MAX_NAMES];
 ...
 /* Gather the names lengths from all of the processes */
 mylen = strlen(my_hostname) + 1; /* Include the trailing null */
 MPI_Allgather(&mylen, 1, MPI_INT, all_lens, 1, MPI_INT,
 MPI_COMM_WORLD);
 /* Compute the displacement (displs) of each string in the
 result array all-names and total length of all strings */
 totlen = all_lens[size-1];
 for (i=0; i<size-1; i++) {
 displs[i+1] = displs[i] + all_lens[i];
 totlen += all_lens[i];
 }
 all_names = (char *)malloc(totlen);
 if (!all names) MPI_Abort(MPI_COMM_WORLD, 1);
 /* Gather the names from each process, where the name from
 process i is all_lens[i] long and is placed into
 all names[displs[i]] */
 MPI_Allgatherv(my_hostname, mylen, MPI_CHAR,
 all_names, all_lens, displs, MPI_CHAR,
 MPI_COMM_WORLD);
 /* Hostname for the jth process is &all names[displs[j]] */

Figure 9.10: Using MPI_Allgather and MPI_Allgatherv.

This example provides a different way to accomplish the action of the example in Section 8.3. Many parallel codes can be written
with MPI collective routines instead of MPI point-to-point communication; such codes often have a simpler logical structure and
can benefit from scalable implementations of the collective communications routines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.6 Parallel I/O
MPI provides a wide variety of parallel I/O operations, more than we have space to cover here. See [50, Chapter 3] for a more
thorough discussion of I/O in MPI. These operations are most useful when combined with a high-performance parallel file system,
such as PVFS, described in Chapter 19.

The fundamental idea in MPI's approach to parallel I/O is that a file is opened collectively by a set of processes that are all given
access to the same file. MPI thus associates a communicator with the file, allowing a flexible set of both individual and collective
operations on the file.

This approach can be used directly by the application programmer, as described below. An alternative is to use libraries that are
designed to provide efficient and flexible access to files, described in a standard format. Two such libraries are parallel NetCDF
[66] and HDF5 [25].

9.6.1 A Simple Example

We first provide a simple example of how processes write contiguous blocks of data into the same file in parallel. Then we give a
more complex example, in which the data in each process is not contiguous but can be described by an MPI datatype.

For our first example, let us suppose that after solving the Poisson equation as we did in Section 8.3, we wish to write the solution
to a file. We do not need the values of the ghost cells, and in the one-dimensional decomposition the set of rows in each process
makes up a contiguous area in memory, which greatly simplifies the program. The I/O part of the program is shown in Figure 9.11.

 MPI_File outfile;
 size = NX * (NY + 2);
 MPI_File_open(MPI_COMM_WORLD, "solutionfile",
 MPI_MODE_CREATE | MPI_MODE_WRONLY,
 MPI_INFO_NULL, &outfile);
 MPI_File_set_view(outfile,
 rank * (NY+2) * (i_end - i_start) * sizeof(double),
 MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);
 MPI_File_write(outfile, &ulocal[1][O], size, MPI_DOUBLE,
 MPI_STATUS_IGNORE);
 MPI_File_close(&outfile);

Figure 9.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output step; if output of
multiple steps of the Jacobi method are needed, the arguments to MPI_File_set_view must be modified.

Recall that the data to be written from each process, not counting ghost cells but including the boundary data, is in the array
ulocal[i] [j] for i=i_start to i_end and j=0 to NY+1.

Note that the type of an MPI file object is MPI_File. Such file objects are opened and closed much the way normal files are
opened and closed. The most significant difference is that opening a file is a collective operation over a group of processes
specified by the communicator in the first argument of MPI_File_open. A single process can open a file by specifying the single-
process communicator MPI_COMM_SELF. Here we want all of the processes to share the file, and so we use MPI_COMM_WORLD.

In our discussion of dynamic process management, we mentioned MPI_Info objects. An MPI info object is a collection of
key=value pairs that can be used to encapsulate a variety of special-purpose information that may not be applicable to all MPI
implementations. In this section we will use MPI_INFO_NULL whenever this type of argument is required, since we have no
special information to convey. For details about MPI_Info, see [50, Chapter 2].

The part of the file that will be seen by each process is called the file view and is set for each process by a call to
MPI_File_set_view. In our example the call is
 MPI_File_set_view(outfile, rank * (NY+2) * (...),
 MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL)

The first argument identifies the file; the second is the displacement (in bytes) into the file of where the process's view of the file is
to start. Here we simply multiply the size of the data to be written by the process's rank, so that each process's view starts at the
appropriate place in the file. The type of this argument is MPI_Offset, which can be expected to be a 64-bit integer on systems
that support large files.

The next argument is called the etype of the view; it specifies the unit of data in the file. Here it is just MPI_DOUBLE, since we will
be writing some number of doubles. The next argument is called the filetype; it is a flexible way of describing noncontiguous views
in the file. In our case, with no noncontiguous units to be written, we can just use the etype, MPI_DOUBLE. In general, any MPI
predefined or derived datatype can be used for both etypes and filetypes. We explore this use in more detail in the next example.

The next argument is a string defining the data representation to be used. The native representation says to represent data on
disk exactly as it is in memory, which provides the fastest I/O performance, at the possible expense of portability. We specify that
we have no extra information by providing MPI_INFO_NULL for the final argument.

The call to MPI_File_write is then straightforward. The data to be written is a contiguous array of doubles, even though it
consists of several rows of the (distributed) matrix. On each process it starts at &ulocal [0] [1] so the data is described in
(address, count, datatype) form, just as it would be for an MPI message. We ignore the status by passing MPI_STATUS_IGNORE.
Finally we (collectively) close the file with MPI_File_close.

9.6.2 A More Complex Example

Parallel I/O requires more than just calling MPI_File_write instead of write. The key idea is to identify the object (across
processes), rather than the contribution from each process. We illustrate this with an example of a regular distributed array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code in Figure 9.12 writes out an array that is distributed among processes with a two-dimensional decomposition. To
illustrate the expressiveness of the MPI interface, we show a complex case where, as in the Jacobi example, the distributed array
is surrounded by ghost cells. This example is covered in more depth in Chapter 3 of Using MPI-2 [50], including the simpler case
of a distributed array without ghost cells.

/* no. of processes in vertical and horizontal dimensions
 of process grid */
dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);
/* global indices of the first element of the local array */

/* no. of rows and columns in global array*/
gsizes[0] = m; gsizes[1] = n;

lsizes[0] = m/dims[0]; /* no. of rows in local array */
lsizes[1] = n/dims[1]; /* no. of columns in local array */

start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];
MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
 MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(comm, "/pfs/datafile",
 MPI_MODE_CREATE | MPI_MODE_WRONLY,
 MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
 MPI_INFO_NULL);

/* create a derived datatype that describes the layout of the local
 array in the memory buffer that includes the ghost area. This is
 another subarray datatype! */
memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */
memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */
start_indices[0] = start_indices[1] = 4;
/* indices of the first element of the local array in the
 allocated array */
MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,
 MPI_ORDER_C, MPI_FLOAT, &memtype);
MPI_Type_commit(&memtype);
MPI_File_write_all(fh, local_array, 1, memtype, &status) ;
MPI_File_close(&fh);

Figure 9.12: C program for writing a distributed array that is also noncontiguous in memory because of a ghost area (derived
from an example in [50]).

This example may look complex, but each step is relatively simple.
1. Set up a communicator that represents a virtual array of processes that matches the way that the distributed

array is distributed. This approach uses the MPI_Cart_create routine and uses MPI_Cart_coords to find
the coordinates of the calling process in this array of processes. This particular choice of process ordering is
important because it matches the ordering required by MPI_Type_create_subarray.

2. Create a file view that describes the part of the file that this process will write to. The MPI routine
MPI_Type_create_subarray makes it easy to construct the MPI datatype that describes this region of the
file. The arguments to this routine specify the dimensionality of the array (two in our case), the global size of the
array, the local size (that is, the size of the part of the array on the calling process), the location of the local part
(start_indices), the ordering of indices (column major is MPI_ORDER_FORTRAN, and row major is
MPI_ORDER_C), and the basic datatype.

3. Open the file for writing (MPI_MODE_WRONLY), and set the file view with the datatype we have just constructed.

4. Create a datatype that describes the data to be written. We can use MPI_Type_create_subarray here as
well to define the part of the local array that does not include the ghost points. If there were no ghost points, we
could instead use MPI_FLOAT as the datatype with a count of lsizes [0] *lsizes [1] in the call to
MPI_File_write_all.

5. Perform a collective write to the file with MPI_File_write_all, and close the file.

By using MPI datatypes to describe both the data to be written and the destination of the data in the file with a collective file write
operation, the MPI implementation can make the best use of the I/O system. The result is that file I/O operations performed with
MPI I/O can achieve hundredfold improvements in performance over using individual Unix I/O operations [116].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.7 Remote Memory Access
The message-passing programming model requires that both the sender and the receiver (or all members of a communicator in a
collective operation) participate in moving data between two processes. An alternative model where one process controls the
communication, called one-sided communication, can offer better performance and in some cases a simpler programming model.
MPI-2 provides support for this one-sided approach. The MPI-2 model was inspired by the work on the bulk synchronous
programming (BSP) model [54] and the Cray SHMEM library used on the massively parallel Cray T3D and T3E computers [30].

In one-sided communication, one process may put data directly into the memory of another process, without that process using an
explicit receive call. For this reason, this is also called remote memory access (RMA).

Using RMA involves four steps:
1. Describe the memory into which data may be put.

2. Allow access to the memory.

3. Begin put operations (e.g., with MPI_Put).

4. Complete all pending RMA operations.

The first step is to describe the region of memory into which data may be placed by an MPI_Put operation (also accessed by
MPI_Get or updated by MPI_Accumulate). This is done with the routine MPI_Win_create:
 MPI_Win win;
 double ulocal[MAX_NX][NY+2];

 MPI_Win_create(ulocal, (NY+2)*(i_end-i_start+3)*sizeof(double),
 sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

The input arguments are, in order, the array ulocal, the size of the array in bytes, the size of a basic unit of the array (sizeof
(double) in this case), a "hint" object, and the communicator that specifies which processes may use RMA to access the array.
MPI_Win_create is a collective call over the communicator. The output is an MPI window object win. When a window object is
no longer needed, it should be freed with MPI_Win_free.

RMA operations take place between two sentinels. One begins a period where access is allowed to a window object, and one
ends that period. These periods are called epochs.[2] The easiest routine to use to begin and end epochs is MPI_Win_fence.
This routine is collective over the processes that created the window object and both ends the previous epoch and starts a new
one. The routine is called a "fence" because all RMA operations before the fence complete before the fence returns, and any
RMA operation initiated by another process (in the epoch begun by the matching fence on that process) does not start until the
fence returns. This may seem complex, but it is easy to use. In practice, MPI_Win_fence is needed only to separate RMA
operations into groups. This model closely follows the BSP and Cray SHMEM models, though with the added ability to work with
any subset of processes.

Three routines are available for initiating the transfer of data in RMA. These are MPI_Put, MPI_Get, and MPI_Accumulate. All
are nonblocking in the same sense MPI point-to-point communication is nonblocking (Section 9.3.1). They complete at the end of
the epoch that they start in, for example, at the closing MPI_Win_fence. Because these routines specify both the source and
destination of data, they have more arguments than do the point-to-point communication routines. The arguments can be easily
understood by taking them a few at a time.

1. The first three arguments describe the origin data, that is, the data on the calling process. These are the usual
"buffer, count, datatype" arguments.

2. The next argument is the rank of the target process. This serves the same function as the destination of an
MPI_Send. The rank is relative to the communicator used when creating the MPI window object.

3. The next three arguments describe the destination buffer. The count and datatype arguments have the same
meaning as for an MPI_Recv, but the buffer location is specified as an offset from the beginning of the memory
specified to MPI_Win_create on the target process. This offset is in units of the displacement argument of the
MPI_Win_create and is usually the size of the basic datatype.

4. The last argument is the MPI window object.

Note that there are no MPI requests; the MPI_Win_fence completes all preceding RMA operations. MPI_Win_fence provides a
collective synchronization model for RMA operations in which all processes participate. This is called active target
synchronization.

With these routines, we can create a version of the mesh exchange that uses RMA instead of point-to-point communication.
Figure 9.13 shows one possible implementation.

void exchang_nbrs(double u_local[][NY+2], int i_start, int i_end,
 int left, int right, MPI_Win win)
{
 MPI_Aint left_ghost_disp, right_ghost_disp;
 int c;

 MPI_Win_fence(0, win);
 /* Put the left edge into the left neighbors rightmost
 ghost cells. See text about right_ghost_disp */
 right_ghost_disp = 1 + (NY+2) * (i_end-i-start+2);
 MPI_Put(&u_local[1][1], NY, MPI_DOUBLE,
 left, right_ghost_disp, NY, MPI_DOUBLE, win);
 /* Put the right edge into the right neighbors leftmost ghost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Put the right edge into the right neighbors leftmost ghost
 cells */
 left_ghost_disp = 1;
 c = i_end - i_start + 1;
 MPI_Put(&u_local[c][1], NY, MPI_DOUBLE,
 right, left_ghost_disp, NY, MPI_DOUBLE, win);

 MPI_Win_fence(0, win)
}

Figure 9.13: Neighbor exchange using MPI remote memory access.

Another form of access requires no MPI calls (not even a fence) at the target process. This is called passive target
synchronization. The origin process uses MPI_Win_lock to begin an access epoch and MPI_Win_unlock to end the access
epoch.[3] Because of the passive nature of this type of RMA, the local memory (passed as the first argument to
MPI_Win_create) should be allocated with MPI_Alloc_mem and freed with MPI_Free_mem. For more information on passive
target RMA operations, see [50, Chapter 6]. Also note that as of 2003, not all MPI implementations support passive target RMA
operation. Check that your implementation fully implements passive target RMA operations before using them.

A more complete discussion of remote memory access can be found in [50, Chapters 5 and 6]. Note that MPI implementations
are just beginning to provide the RMA routines described in this section. Most current RMA implementations emphasize
functionality over performance. As implementations mature, however, the performance of RMA operations will also improve.

[2]MPI has two kinds of epochs for RMA: an access epoch and an exposure epoch. For the example used here, the epochs occur
together, and we refer to both of them as just epochs.

[3]The names MPI_Win_lock and MPI_Win_unlock are really misnomers; think of them as begin-RMA and end-RMA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.8 Using C++ and Fortran 90
MPI-1 defined bindings to C and Fortran 77. These bindings were very similar; the only major difference was the handling of the
error code (returned in C, set through the last argument in Fortran 77). In MPI-2, a binding was added for C++, and an MPI
module was defined for Fortran 90.

The C++ binding provides a lightweight model that is more than just a C++ version of the C binding but not a no-holds-barred
object-oriented model. MPI objects are defined in the MPI namespace. Most MPI objects have corresponding classes, such as
Datatype for MPI_Datatype. Communicators and requests are slightly different. There is an abstract base class Comm for
general communicators with four derived classes: Intracomm, Intercomm, Graphcomm, and Cartcomm. Most communicators
are Intracomms; GraphComm and CartComm are derived from Intracomm. Requests have two derived classes: Prequest for
persistent requests and Grequest for generalized requests (new in MPI-2). Most MPI operations are methods on the appropriate
objects; for example, most point-to-point and collective communications are methods on the communicator. A few routines, such
as Init and Finalize, stand alone. A simple MPI program in C++ is shown in Figure 9.14.

#include "mpi.h"
#include <iostream.h>

int main(int argc, char *argv[])
{
 int data;
 MPI::Init();

 if (MPI::COMM_WORLD.Get_rank() == 0) {
 // Broadcast data from process 0 to all others
 cout << "Enter an int" << endl;
 data << cin;
 }
 MPI::COMM_WORLD.Bcast(data, 1, MPI::INT, 0);

 MPI::Finalize();
 return 0;
}

Figure 9.14: Simple MPI program in C++.

The C++ binding for MPI has a few quirks. One is the C++ analogue to MPI_Comm_dup. In the C++ binding, MPI::Comm is an
abstract base class (ABC). Since it is impossible to create an instance of an abstract base class, there can be no general "dup"
function that returns a new MPI::Comm. Since it is possible in C++ to create a reference to an ABC, however, MPI defines the
routine (available only in the C++ binding) MPI::Clone that returns a reference to a new communicator.

Two levels of Fortran 90 support are provided in MPI. The basic support provides an 'mpif.h' include file. The extended support
provides an MPI module. The module makes it easy to detect the two most common errors in Fortran MPI programs: forgetting to
provide the variable for the error return value and forgetting to declare status as an array of size MPI_STATUS_SIZE. There are a
few drawbacks. Fortran derived datatypes cannot be directly supported (the Fortran 90 language provides no way to handle an
arbitrary type). Often, you can use the first element of the Fortran 90 derived type. Array sections should not be used in receive
operations, particularly nonblocking communication (see Section 10.2.2 in the MPI-2 standard for more information). Another
problem is that while Fortran 90 enables the user to define MPI interfaces in the MPI module, a different Fortran 90 interface file
must be used for each combination of Fortran datatype and array dimension (scalars are different from arrays of dimension one,
etc.). This leads to a Fortran 90 MPI module library that is often (depending on the Fortran 90 compiler) far larger than the entire
MPI library. However, particularly during program development, the MPI module can be very helpful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.9 MPI, OpenMP, and Threads
The MPI standard was carefully written to be a thread-safe specification. That means that the design of MPI doesn't include
concepts such as "last message" or "current pack buffer" that are not well defined when multiple threads are present. MPI
implementations can choose whether to provide thread-safe implementations. Allowing this choice is particularly important
because thread safety usually comes at the price of performance due to the extra overhead required to ensure that internal data
structures are not modified inconsistently by two different threads. Most early MPI implementations were not thread safe.

MPI-2 introduced four levels of thread safety that an MPI implementation could provide. The lowest level, MPI_THREAD_SINGLE,
allows only single threaded programs. The next level, MPI_THREAD_FUNNELED, allows multiple threads provided that all MPI calls
are made in a single thread; most MPI implementations provide MPI_THREAD_FUNNELED. The next level,
MPI_THREAD_SERIALIZED, allows many user threads to make MPI calls, but only one thread at a time. The highest level of
support, MPI_THREAD_MULTIPLE, allows any thread to call any MPI routine. The level of thread support can be requested by
using the routine MPI_Init_thread; this routine returns the level of thread support that is available.

Understanding the level of thread support is important when combining MPI with approaches to thread-based parallelism.
OpenMP [83] is a popular and powerful language for specifying thread-based parallelism. While OpenMP provides some tools for
general threaded parallelism, one of the most common uses is to parallelize a loop. If the loop contains no MPI calls, then
OpenMP may be combined with MPI. For example, in the Jacobi example, OpenMP can be used to parallelize the loop
computation:
 exchange_nbrs(u_local, i_start, i_end, left, right);
 #pragma omp for
 for (i_local=1; i<=i_end-i_start+1; i++)
 for (j=1; j<=NY; j++)
 ulocal_new[i_local][j] =
 0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +
 ulocal[i_local][j+1] + ulocal[i_local][j-1] -
 h*h*flocal[i_local][j]);

This exploits the fact that MPI was designed to work well with other tools, leveraging improvements in compilers and threaded
parallelism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.10 Measuring MPI Performance
Many tools have been developed for measuring performance. The best test is always your own application, but a number of tests
are available that can give a more general overview of the performance of MPI on a cluster. Measuring communication
performance is actually quite tricky; see [51] for a discussion of some of the issues in making reproducible measurements of
performance. That paper describes the methods used in the mpptest program for measuring MPI performance.

9.10.1 mpptest

The mpptest program allows you to measure many aspects of the performance of any MPI implementation. The most common
MPI performance test is the Ping-Pong test; this test measures the time it takes to send a message from one process to another
and then back. The mpptest program provides Ping-Pong tests for the different MPI communication modes, as well as providing
a variety of tests for collective operations and for more realistic variations on point-to-point communication, such as halo
communication (like that in Section 8.3) and communication that does not reuse the same memory locations (thus benefiting from
using data that is already in memory cache). The mpptest program can also test the performance of some MPI-2 functions,
including MPI_Put and MPI_Get.

Using mpptest
The mpptest program is distributed with MPICH and MPICH2 in the directory 'examples/perftest'. You can also download it
separately from www.mcs.anl.gov/mpi/perftest. Building and using mpptest is very simple:
% tar zxf perftest.tar.gz
% cd perftest-1.2.1
% ./configure --with-mpich
% make
% mpiexec -n 2 ./mpptest -logscale
% mpiexec -n 16 ./mpptest -bisect
% mpiexec -n 2 ./mpptest -auto

To run with LAM/MPI, simply configure with the option --with-lammpi. The 'README' file contains instructions for building with
other MPI implementations.

9.10.2 SKaMPI

The SKaMPI test suite [94] is a comprehensive test of MPI performance, covering virtually all of the MPI-1 communication
functions.

One interesting feature of the SKaMPI benchmarks is the online tables showing the performance of MPI implementations on
various parallel computers, ranging from Beowulf clusters to parallel vector supercomputers.

9.10.3 High Performance LINPACK

Perhaps the best-known benchmark in technical computing is the LINPACK benchmark. The version of this benchmark that is
appropriate for clusters is the High Performance LINPACK (HPL). Obtaining and running this benchmark are relatively easy,
though getting good performance can require a significant amount of effort. In addition, while the LINPACK benchmark is widely
known, it tends to significantly overestimate the achieveable performance for many applications because it involves n3

computation on n2 data and is thus relatively insensitive to the performance of the node memory system.

The HPL benchmark depends on another library, the basic linear algebra subroutines (BLAS), for much of the computation. Thus,
to get good performance on the HPL benchmark, you must have a high-quality implementation of the BLAS. Fortunately, several
sources of these routines are available. You can often get implementations of the BLAS from the CPU vendor directly, sometimes
at no cost. Another possibility is to use the ATLAS implementation of the BLAS.

ATLAS
ATLAS is available from math-atlas.sourceforge.net. If prebuilt binaries fit your system, you should use those. Note that ATLAS is
tuned for specific system characteristics including clock speed and cache sizes; if you have any doubts about whether your
configuration matches that of a prebuilt version, you should build ATLAS yourself.

To build ATLAS, first download ATLAS from the Web site and then extract it. This will create an 'ATLAS' directory into which the
libraries will be built, so extract this where you want the libraries to reside. A directory on a local disk (such as '/tmp') rather than
on on an NFS-mounted disk can help speedup ATLAS.
% cd /tmp
% tar zxf atlas3.4.1.tgz
% cd ATLAS

Check the 'errata.html' file at math-atlas.sourceforge.net/errata.html for updates. You may need to edit various
files (no patches are supplied for ATLAS). Pay particular attention to the items that describe various possible ways that the install
step may fail; you may choose to update values such as ATL_nkflop before running ATLAS. Next, have ATLAS configure itself.
Select a compiler; note that you should not use the Portland Group compiler here.
% make config CC=gcc

Answer yes to most questions, including threaded and express setup, and accept the suggested architecture name. Next, make
ATLAS. Here, we assume that the architecture name was Linux-PIIISSE2:
% make install arch=Linux-PIIISSE2 >&make.log

Note that this is not an "install" in the usual sense; the ATLAS libraries are not copied to '/usr/local/lib' and the like by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that this is not an "install" in the usual sense; the ATLAS libraries are not copied to '/usr/local/lib' and the like by the
install. This step may take as long as several hours, unless ATLAS finds a precomputed set of parameters that fits your machine.
ATLAS is also sensitive to variations in runtimes, so try to use a machine that has no other users. Make sure that it is the exact
same type of machine as your nodes (e.g., if you have login nodes that are different from your compute nodes, make sure that
you run ATLAS on the compute nodes).

At the end of the "make install" step, the BLAS are in 'ATLAS/lib/Linux-PIIISSE2'. You are ready for the next step.

HPL
Download and unpack the HPL package from www.netlib.org/benchmark/hpl:
% tar zxf hpl.tgz
% cd hpl

Create a 'Make.<archname>' in the 'hpl' directory. Consider an archname like Linux_PIII_CBLAS_gm for a Linux system on
Pentium III processors, using the C version of the BLAS constructed by ATLAS, and using the gm device from the MPICH
implementation of MPI. To create this file, look at the samples in the 'hpl/setup' directory, for example,
% cp setup/Make.Linux_PII_CBLAS_gm Make.Linux_PIII_CBLAS_gm

Edit this file, changing ARCH to the name you selected (e.g., Linux_PIII_CBLAS_gm), and set LAdir to the location of the
ATLAS libraries. Then do the following:
% make arch=<thename>
% cd bin/<thename>
% mpiexec -n 4 ./xhpl

Check the output to make sure that you have the right answer. The file 'HPL.dat' controls the actual test parameters. The version
of 'HPL.dat' that comes with the hpl package is appropriate for testing hpl. To run hpl for performance requires modifying
'HPL.dat'. The file 'hpl/TUNING' contains some hints on setting the values in this file for performance. Here are a few of the
most important:

1. Change the problem size to a large value. Don't make it too large, however, since the total computational work
grows as the cube of the problem size (doubling the problem size increases the amount of work by a factor of
eight). Problem sizes of around 5,000–10,000 are reasonable.

2. Change the block size to a modest size. A block size of around 64 is a good place to start.

3. Change the processor decomposition and number of nodes to match your configuration. In most cases, you
should try to keep the decomposition close to square (e.g., P and Q should be about the same value), with P ≥
Q.

4. Experiment with different values for RFACT and PFACT. On some systems, these parameters can have a
significant effect on performance. For one large cluster, setting both to right was preferable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.11 MPI-2 Status
MPI-2 is a significant extension of the MPI-1 standard. Unlike the MPI-1 standard, where complete implementations of the entire
standard were available when the standard was released, complete implementations of all of MPI-2 have been slow in coming. As
of June 2003, few complete implementations of MPI-2 exist for Beowulf clusters. Most MPI implementations include the MPI-IO
routines, in large part because of the ROMIO implementation of these routines, and at least some of the RMA routines (typically
the active-target operations MPI_Put and MPI_Get, along with MPI_Win_fence). Progress continues in both the completeness
and performance of MPI-2 implementations, and we expect more full MPI-2 implementations to appear by the end of 2003. One of
these is the MPICH2 implementation of MPI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Parallel Virtual Machine

Overview
Al Geist

PVM (Parallel Virtual Machine) was first released in the early 1990s as an outgrowth of an ongoing computing research project
involving Oak Ridge National Laboratory, the University of Tennessee, and Emory University. The general goals of this project are
to investigate issues in, and develop solutions for, heterogeneous distributed computing. PVM was one of the solutions. PVM was
designed to be able to combine computers having different operating systems, different data representations (both number of bits
and byte order), different architectures (multiprocessor, single processor, and even supercomputers), different languages, and
different networks and have them all work together on a single computational problem.

PVM existed before Beowulf clusters were invented and in fact was the software used to run applications on the first Beowulf
clusters. Today, both PVM and MPICH are often included in software distributions for Beowulf clusters.

The basic idea behind PVM was to create a simple software package that could be loaded onto any collection of computers that
would make the collection appear to be a single, large, distributed-memory parallel computer. PVM provides a way for aggregating
the power and memory of distributed compute resources. Today this is called Grid computing. In the early 1990s PVM was used
to do a number of early Grid experiments, including creating the first international Grid by combining supercomputers in the United
Kingdom with supercomputers in the United States, creating a Grid that combined 53 Cray supercomputers across the United
States into a single super-supercomputer, and connecting the two largest parallel computers in the world into a 4,000-processor
system to solve a nanotechnology problem that eventually led to the high-capacity hard drives used in today's PCs. In 1990 PVM
was used for an application in high-temperature superconductivity; the application won a Gordon Bell Prize in supercomputing—
the first of many Gordon Bell prizes won by researchers using PVM.

But PVM's real contribution to science and computing is not in supercomputing. PVM's reliability and ease of use made this
software package very popular for hooking together a network of workstations or a pile of PCs into a virtual parallel computer that
gave PVM users several times more power than they would have otherwise. With tens of thousands of users, PVM was so
popular that it became a de facto standard for heterogeneous distributed computing worldwide.

PVM still remains popular, particularly for applications that require fault tolerance. For example, PVM is used to provide fault
tolerance to the Globus Toolkit Grid Information Services for the DOE Science Grid. PVM is also used on clusters running the
Genomics Integrated Supercomputer Toolkit to provide 24/7 availability despite faults in the clusters.

The tiny 1.5 Mbyte PVM software package is an integrated set of software tools and libraries that emulates a general-purpose,
dynamic, heterogeneous parallel computing environment on a set of computers that are connected by a network. The network can
be the Internet (Grid computing) or a dedicated local network (cluster). One use of PVM today is to combine multiple Beowulf
clusters at a site into a Grid of clusters as shown in Figure 10.1.

Figure 10.1: PVM used to create a Grid of clusters.

The PVM library includes functions to add computers to the parallel virtual machine, spawn tasks on these computers, and
exchange data between tasks through message passing. This chapter provides detailed descriptions and examples of the basic
concepts and methodologies involved in using PVM on clusters as well as its use as a means to combine multiple clusters into a
Grid of clusters. The next chapter details the special functions in PVM for use in fault tolerant and dynamic environments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 The PVM System
The PVM system is composed of two parts. The first part is a daemon, called pvmd3 and sometimes abbreviated pvmd, that must
be installed on all the computers making up the virtual machine. (An example of a daemon program is the mail program that runs
in the background and handles all the incoming and outgoing electronic mail on a computer.) The daemon pvmd3 is designed so
any user with a valid login can install this daemon on a machine. To run a PVM application, you first create a virtual machine by
starting up PVM (Section 10.3.2 details how this is done). Multiple users can configure virtual machines that overlap the same
cluster nodes, and each user can execute several applications simultaneously on his own virtual machine.

The second part of the system is a library of PVM interface routines. It contains a functionally complete repertoire of primitives that
are needed for cooperation between tasks of an application. This library contains user-callable routines for fault detection,
message passing, spawning processes, coordinating tasks, and modifying the virtual machine.

The Parallel Virtual Machine computing environment is based on the following concepts:

User-configured host pool: The application's parallel tasks execute on a set of machines that are selected by the
user for a given run of the PVM program. The host pool may be altered by adding and deleting machines at any
time (an important feature for fault tolerance). When PVM is used on Beowulf clusters, the nodes within a cluster
and/or nodes spanning multiple clusters make up the host pool. There is no restriction on the number of parallel
tasks that can exist in a given virtual machine. If the number of tasks exceeds the number of processors in the
cluster, then PVM will run multiple tasks per processor.

Translucent access to hardware: Application programs may view the hardware environment as a transparent
computing resource or may exploit the capabilities of specific machines in the host pool by positioning certain tasks
on the most appropriate computers. On large clusters, for example, I/O nodes may run the monitoring tasks and
compute nodes may get the bulk of the computing load.

Explicit message-passing: PVM provides basic blocking and nonblocking send, receive, and collective
communication operations. For performance, PVM uses the native message-passing facilities on multiprocessors to
take advantage of the underlying hardware. For example, on the IBM SP, PVM transparently uses IBM's MPI to
move data. On the SGI multiprocessor, PVM uses shared memory to move data. On Linux clusters PVM typically
uses a mixture of UDP and TCP/IP to move data.

Dynamic program model: The PVM system supports a dynamic programming model where hosts and tasks can
come and go at any time. PVM tasks are dynamic. New ones can be spawned and existing ones killed at any time
by the application or manually from any host in the virtual machine. The virtual machine monitors its state and
automatically adapts to such changes.

Dynamic Groups: In some applications it is natural to think of a group of tasks. And there are cases where you
would like to identify your tasks by the numbers 0 to (p - 1), where p is the number of tasks. PVM includes the
concept of user-named groups. When a task joins a group, it is assigned a unique "instance" number in that group.
Instance numbers start at 0 and count up (similar to an MPI "rank"). In keeping with the dynamic programming
model in PVM , the group functions are designed to be very general and transparent to the user. For example, any
PVM task can join or leave any group at any time without having to inform any other task in the affected groups,
groups can overlap, and tasks can broadcast messages to groups of which they are not a member. To use any of
the group functions, a program must be linked with 'libgpvm3.a'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Writing PVM Applications
The PVM system currently supports many languages. C, C++, and Fortran languages are supported in the standard distribution.
Third-party groups have created freely available Java, Perl, Python, S, Matlab, TCL/TK, and IDL interfaces to PVM. All these are
downloadable from the PVM Web site (www.csm.ornl.gov/pvm). PVM is designed so that an application can be composed of
tasks written in any mixture of these languages and the tasks will still be able to exchange data and to synchronize with each
other.

The general paradigm for application programming with PVM is as follows. You write one or more sequential programs that
contain embedded calls to the PVM library. Each program corresponds to a task making up the application. These programs are
compiled for each architecture in the host pool, and the resulting object files are placed at a location accessible from machines in
the host pool. To execute an application, you typically start one copy of one task (typically the "manager" or "initiating" task) by
hand from a machine within the host pool. This process subsequently spawns other PVM tasks, eventually resulting in a collection
of active tasks that then compute on the cluster and exchange messages with each other to solve the problem.

The C and C++ language bindings for the PVM user interface library are implemented as functions, following the general
conventions used by most C systems. To elaborate, function arguments are a combination of value parameters and pointers as
appropriate, and function result values indicate the outcome of the call. In addition, macro definitions are used for system
constants, and global variables such as errno and pvm_errno are the mechanism for discriminating between multiple possible
outcomes. Application programs written in C and C++ access PVM library functions by linking against an archival library
('libpvm3.a') that is part of the standard distribution.

Fortran language bindings are implemented as subroutines rather than as functions. This approach was taken because some
compilers on the supported architectures would not reliably interface Fortran functions with C functions. One immediate
implication of this is that an additional argument is introduced into each PVM library call for status results to be returned to the
invoking program. Moreover, library routines for the placement and retrieval of typed data in message buffers are unified, with an
additional parameter indicating the datatype. Apart from these differences (and the standard naming prefixes pvm_ for C, and
pvmf for Fortran), a one-to-one correspondence exists between the two language bindings. Fortran interfaces to PVM are
implemented as library stubs that in turn invoke the corresponding C routines, after casting and/or dereferencing arguments as
appropriate. Thus, Fortran applications are required to link against the stubs library ('libfpvm3.a') as well as the C library.

All PVM tasks are identified by an integer task identifier tid. Messages are sent to tids and received from tids. Since tids must be
unique across the entire virtual machine, they are supplied by the local pvmd and are not user chosen. Although PVM encodes
information into each tid to improve performance, the user is expected to treat the tids as opaque integer identifiers. PVM contains
several routines that return tid values so that the user application can identify other tasks in the system.

As mentioned earlier, tasks interact through explicit message passing, identifying each other with a system-assigned, opaque tid.

Shown in Figure 10.2 is the body of the PVM program 'hello.c', a simple example that illustrates the basic concepts of PVM
programming. This program is intended to be invoked manually; after printing its task id (obtained with pvm_mytid()), it initiates
a copy of another program called 'hello_other.c' using the pvm_spawn() function. A successful spawn causes the program
to execute a blocking receive using pvm_recv. After the message is received, it is unpacked into a format the receiving computer
understands using pvm_upkstr. Then the program prints the message as well its task id. The final pvm_exit call dissociates the
program from the PVM system.

#include "pvm3.h"

main()
{
 int cc, tid, msgtag;
 char buf [100];

 printf("i'm t%x\n", pvm_mytid());

 cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid);

 if (cc == 1) {
 msgtag = 1;
 pvm_recv(tid, msgtag);
 pvm_upkstr(buf);
 printf("from t%x: %s\n", tid, buf);
 } else
 printf("can't start hello_other\n");

 pvm_exit();
}

Figure 10.2: PVM program 'hello.c'.

Figure 10.3 is a listing of the hello_other program. Its first PVM action is to obtain the task id of its parent using the pvm_parent
call. This program then obtains its hostname and transmits it to the parent using the three-call sequence: pvm_initsend to
initialize the (transparent) send buffer; pvm_pkstr to place a string in a strongly typed and architecture-independent manner into
the send buffer; and pvm_send to transmit it to the destination process specified by ptid, "tagging" the message with the number
1.

#include "pvm3.h"

main()
{
 int ptid, msgtag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int ptid, msgtag;
 char buf[100];

 ptid = pvm_parent();

 strcpy(buf, "hello, world from ");
 gethostname(buf + strlen(buf), 64);
 msgtag = 1;
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(buf);
 pvm_send(ptid, msgtag);

 pvm_exit();
}

Figure 10.3: PVM program 'hello_other.c'.

Message tags are user-defined identifiers put on a message by the sender so that the receiving task can selectively get a
particular message from the many that may have arrived. The receiver does not have to, nor may it be able to, know the tag put
on a message. It is possible in PVM to probe for what tags have arrived so far. It is also possible to ignore the tag and simply
receive the messages in the order they arrive at the receiving task. Message tags will become necessary as we explore more
complicated PVM examples.

The next example, 'forkjoin.c', demonstrates spawning a parallel application from one cluster node. We then show PVM
used in a Fortran dot product program PSDOT.F and a matrix multiply example that demonstrates the use of groups. Lastly, we
show an example of a master/worker PVM application that calculates heat diffusion through a wire.

10.2.1 fork/join

The fork/join example demonstrates how to spawn off PVM tasks and synchronize with them. The program spawns the number of
tasks specified by the user during startup. The children then synchronize by sending a message to their parent task. The parent
receives a message from each of the spawned tasks and prints out information about the message from the child tasks.

This program contains the code for both the parent and the child tasks. Let's examine it in more detail. The first action the
program takes is to call pvm_mytid(). In fork/join we check the value of mytid; if it is negative, indicating an error, we call
pvm_perror() and exit the program. The pvm_perror() call will print a message indicating what went wrong with the last PVM
call. In this case the last call was pvm_mytid(), so pvm_perror() might print a message indicating that PVM hasn't been
started on this machine. The argument to pvm_perror() is a string that will be prepended to any error message printed by
pvm_perror(). In this case we pass argv[0], which is the name of the program as it was typed on the command-line. The
pvm_perror() function is modeled after the Unix perror() function.

Assuming we obtained a valid result for mytid, we now call pvm_parent(). The pvm_parent() function will return the tid of
the task that spawned the calling task. Since we run the initial forkjoin program from a command prompt, this initial task will not
have a parent; it will not have been spawned by some other PVM task but will have been started manually by the user. For the
initial fork/join task the result of pvm_parent() will not be any particular task id but an error code, PvmNoParent. Thus we can
distinguish the parent fork/join task from the children by checking whether the result of the pvm_parent() call is equal to
PvmNoParent. If this task is the parent, then it must spawn the children. If it is not the parent, then it must send a message to the
parent.

Let's examine the code executed by the parent task. The number of tasks is taken from the command-line as argv[1]. If the
number of tasks is not legal, then we exit the program, calling pvm_exit() and then returning. The call to pvm_exit() is
important because it tells PVM this program will no longer be using any of the PVM facilities. (In this case the task exits and PVM
will deduce that the dead task no longer needs its services. Regardless, it is good style to exit cleanly.) If the number of tasks is
valid, fork/join will then attempt to spawn the children.

The pvm_spawn() call tells PVM to start ntask tasks named argv[0]. The second parameter is the argument list given to the
spawned tasks. In this case we don't care to give the children any particular command-line arguments, so this value is null. The
third parameter to spawn, PvmTaskDefault, is a flag telling PVM to spawn the tasks in the default method. The default method
is to distribute the tasks round robin to all the cluster nodes in the virtual machine. Had we been interested in placing the children
on a specific machine or a machine of a particular architecture, we would have used PvmTaskHost or PvmTaskArch for this flag
and specified the host or architecture as the fourth parameter. Since we don't care where the tasks execute, we use
PvmTaskDefault for the flag and null for the fourth parameter. Finally, ntask tells spawn how many tasks to start, and the
integer array child will hold the task ids of the newly spawned children. The return value of pvm_spawn() indicates how many
tasks were successfully spawned. If info is not equal to ntask, then some error occurred during the spawn. In case of an error,
the error code is placed in the task id array, child, instead of the actual task id; forkjoin loops over this array and prints the task
ids or any error codes. If no tasks were successfully spawned, then the program exits.

For each child task, the parent receives a message and prints out information about that message. The pvm_recv() call receives
a message from any task as long as the tag for that message is JOINTAG. The return value of pvm_recv() is an integer
indicating a message buffer. This integer can be used to find out information about message buffers. The subsequent call to
pvm_bufinfo() does just this; it gets the length, tag, and task id of the sending process for the message indicated by buf. In
forkjoin the messages sent by the children contain a single integer value, the task id of the child task. The pvm_upkint() call
unpacks the integer from the message into the mydata variable. As a sanity check, forkjoin tests the value of mydata and the
task id returned by pvm_bufinfo(). If the values differ, the program has a bug, and an error message is printed. Finally, the
information about the message is printed, and the parent program exits.

The last segment of code in forkjoin will be executed by the child tasks. Before data is placed in a message buffer, the buffer
must be initialized by calling pvm_initsend(). The parameter PvmDataDefault indicates that PVM should do whatever data
conversion is needed to ensure that the data arrives in the correct format on the destination processor. In some cases this may
result in unnecessary data conversions. If you are sure no data conversion will be needed because the destination machine uses
the same data format, then you can use PvmDataRaw as a parameter to pvm_initsend(). The pvm_pkint() call places a
single integer, mytid, into the message buffer. It is important to make sure the corresponding unpack call exactly matches the
pack call. Packing an integer and unpacking it as a float is an error. There should be a one-to-one correspondence between pack
and unpack calls. Finally, the message is sent to the parent task using a message tag of JOINTAG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and unpack calls. Finally, the message is sent to the parent task using a message tag of JOINTAG.
 pvm_perror("calling pvm_initsend"); pvm_exit(); return -1;
 }
 info = pvm_pkint(&mytid, 1, 1);
 if (info < 0) {
 pvm_perror("calling pvm_pkint"); pvm_exit(); return -1;
 }
 info = pvm_send(myparent, JOINTAG);
 if (info < 0) {
 pvm_perror("calling pvm_send"); pvm_exit(); return -1;
 }
 pvm_exit();
 return 0;
}

Figure 10.4 shows the output of running fork/join. Notice that the order the messages were received is nondeterministic. Since the
main loop of the parent processes messages on a first-come first-served basis, the order of the prints are determined simply by
the time it takes messages to travel from the child tasks to the parent.

/*
 Fork Join Example
 Demonstrates how to spawn processes and exchange messages
*/
 /* defines and prototypes for the PVM library */
 #include <pvm3.h>

 /* Maximum number of children this program will spawn */
 #define MAXNCHILD 20
 /* Tag to use for the joing message */
 #define JOINTAG 11

 int
 main(int argc, char* argv[])
 {

 /* number of tasks to spawn, use 3 as the default */
 int ntask = 3;
 /* return code from pvm calls */
 int info;
 /* my task id */
 int mytid;
 /* my parents task id */
 int myparent;
 /* children task id array */
 int child[MAXNCHILD];
 int i, mydata, buf, len, tag, tid;

 /* find out my task id number */
 mytid = pvm_mytid();

 /* check for error */
 if (mytid < 0) {
 /* print out the error */
 pvm_perror(argv[0]);
 /* exit the program */
 return -1;
 }
 /* find my parent's task id number */
 myparent = pvm_parent();

 /* exit if there is some error other than PvmNoParent */
 if ((myparent < 0) && (myparent != PvmNoParent)
 && (myparent != PvmParentNotSet)) {
 pvm_perror(argv[0]);
 pvm_exit ();
 return -1;
 }
 /* if i don't have a parent then i am the parent */
 if (myparent == PvmNoParent || myparent == PvmParentNotSet) {
 /* find out how many tasks to spawn */
 if (argc == 2) ntask = atoi(argv[l]) ;

 /* make sure ntask is legal */
 if ((ntask < 1) || (ntask > MAXNCHILD)) { pvm_exit(); return 0; }

 /* spawn the child tasks */
 info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault, (char*)0,
 ntask, child);
 /* print out the task ids */
 for (i = 0; i < ntask; i++)
 if (child[i] < 0) /* print the error code in decimal*/
 printf(" %d", child[i]);
 else /* print the task id in hex */
 printf("t%x\t", child[i]);
 putchar('\n');

 /* make sure spawn succeeded */
 if (info == 0) { pvm_exit(); return -1; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* only expect responses from those spawned correctly */
 ntask = info;

 for (i = 0; i < ntask; i++) {
 /* recv a message from any child process */
 buf = pvm_recv(-1, JOINTAG);
 if (buf < 0) pvm_perror("calling recv");
 info = pvm_bufinfo(buf, &len, &tag, &tid);
 if (info < 0) pvm_perror("calling pvm_bufinfo");
 info = pvm_upkint(&mydata, 1, 1);
 if (info < 0) pvm_perror("calling pvm_upkint");
 if (mydata != tid) printf("This should not happen!\n");
 printf("Length %d, Tag %d, Tid t%x\n", len, tag, tid);
 }
 pvm_exit();
 return 0;
 }

 /* i'm a child */
 info = pvm_initsend(PvmDataDefault);
 if (info < 0) {
 % forkjoin
 t10001c t40149 tc0037
 Length 4, Tag 11, Tid t40149
 Length 4, Tag 11, Tid tc0037
 Length 4, Tag 11, Tid t10001c
 % forkjoin 4
 t10001e t10001d t4014b tc0038
 Length 4, Tag 11, Tid t4014b
 Length 4, Tag 11, Tid tc0038
 Length 4, Tag 11, Tid t10001d
 Length 4, Tag 11, Tid t10001e

Figure 10.4: Output of fork/join program.

10.2.2 Dot Product

Here we show a simple Fortran program, PSDOT, for computing a dot product. The program computes the dot product of two
arrays, X and Y. First PSDOT calls PVMFMYTID() and PVMFPARENT(). The PVMFPARENT call will return PVMNOPARENT if the task
wasn't spawned by another PVM task. If this is the case, then PSDOT task is the master and must spawn the other worker copies
of PSDOT.PSDOT then asks the user for the number of processes to use and the length of vectors to compute. Each spawned
process will receive n/nproc elements of X and Y, where n is the length of the vectors and nproc is the number of processes being
used in the computation. If nproc does not divide n evenly, then the master will compute the dot product on the extra elements.
The subroutine SGENMAT randomly generates values for X and Y. PSDOT then spawns nproc-1 copies of itself and sends each
new task a part of the X and Y arrays. The message contains the length of the subarrays in the message and the subarrays
themselves. After the master spawns the worker processes and sends out the subvectors, the master then computes the dot
product on its portion of X and Y. The master process then receives the other local dot products from the worker processes.
Notice that the PVMFRECV call uses a wild card (-1) for the task id parameter. This indicates that a message from any task will
satisfy the receive. Using the wild card in this manner results in a race condition. In this case the race condition does not cause a
problem because addition is commutative; in other words, it doesn't matter in which order we add up the partial sums from the
workers. However, unless one is certain that the race will not affect the program adversely, race conditions should be avoided.

Once the master receives all the local dot products and sums them into a global dot product, it then calculates the entire dot
product locally. These two results are then subtracted, and the difference between the two values is printed. A small difference
can be expected because of the variation in floating-point roundoff errors.

If the PSDOT program is a worker, then it receives a message from the master process containing subarrays of X and Y. It
calculates the dot product of these subarrays and sends the result back to the master process. In the interests of brevity we do not
include the SGENMAT and SDOT subroutines.
 PROGRAM PSDOT
*
* PSDOT performs a parallel inner (or dot) product, where the vectors
* X and Y start out on a master node, which then sets up the virtual
* machine, farms out the data and work, and sums up the local pieces
* to get a global inner product.
*
* .. External Subroutines ..
 EXTERNAL PVMFMYTID, PVMFPARENT, PVMFSPAWN, PVMFEXIT, PVMFINITSEND
 EXTERNAL PVMFPACK, PVMFSEND, PVMFRECV, PVMFUNPACK, SGENMAT
*
* .. External Functions ..
 INTEGER ISAMAX
 REAL SDOT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 REAL SDOT
 EXTERNAL ISAMAX, SDOT
*
* .. Intrinsic Functions ..
 INTRINSIC MOD
*
* .. Parameters ..
 INTEGER MAXN
 PARAMETER (MAXN = 8000)
 INCLUDE 'fpvm3.h'
*
* .. Scalars ..
 INTEGER N, LN, MYTID, NPROCS, IBUF, IERR
 INTEGER I, J, K
 REAL LOOT, GDOT
*
* .. Arrays ..
 INTEGER TIDS(0:63)
 REAL X(MAXN), Y(MAXN)
*
* Enroll in PVM and get my and the master process' task ID number
*
 CALL PVMFMYTID(MYTID)
 CALL PVMFPARENT(TIDS(0))
*
* If I need to spawn other processes (I am master process)
*
 IF (TIDS(0) EQ. PVMNOPARENT) THEN
*
* Get starting information
*
 WRITE(*,*) 'How many processes should participate (1-64)?'
 READ(*,*) NPROCS
 WRITE(*,2000) MAXN
 READ(*,*) N
 TIDS(0) = MYTID
 IF (N GT. MAXN) THEN
 WRITE(*,*) 'N too large. Increase parameter MAXN to run'//
 $ 'this case.'
 STOP
 END IF
*
* LN is the number of elements of the dot product to do
* locally. Everyone has the same number, with the master
* getting any left over elements. J stores the number of
* elements rest of procs do.
*
 J = N / NPROCS
 LN = J + MOD(N, NPROCS)
 I = LN + 1
*
* Randomly generate X and Y
* Note: SGENMAT() routine is not provided here
*
 CALL SGENMAT(N, 1, X, N, MYTID, NPROCS, MAXN, J)
 CALL SGENMAT(N, 1, Y, N, I, N, LN, NPROCS)
*
* Loop over all worker processes
*
 DO 10 K = 1, NPROCS-1
*
* Spawn process and check for error
*
 CALL PVMFSPAWN('psdot', 0, 'anywhere', 1, TIDS(K), IERR)
 IF (IERR .NE. 1) THEN
 WRITE(*,*) 'ERROR, could not spawn process #',K,
 $ '. Dying . . .'
 CALL PVMFEXIT(IERR)
 STOP
 END IF
*
* Send out startup info
*
 CALL PVMFINITSEND(PVMDEFAULT, IBUF)
 CALL PVMFPACK(INTEGER4, J, 1, 1, IERR)
 CALL PVMFPACK(REAL4, X(I), J, 1, IERR)
 CALL PVMFPACK(REAL4, Y(I), J, 1, IERR)
 CALL PVMFSEND(TIDS(K), 0, IERR)
 I = I + J
 10 CONTINUE
*
* Figure master's part of dot product
* SDOT() is part of the BLAS Library (compile with -lblas)
*
 GDOT = SDOT(LN, X, 1, Y, 1)
*
* Receive the local dot products, and
* add to get the global dot product
*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

*
 DO 20 K = 1, NPROCS-1
 CALL PVMFRECV(-1, 1, IBUF)
 CALL PVMFUNPACK(REAL4, LDOT, 1, 1, IERR)
 GDOT = GDOT + LDOT
 20 CONTINUE
*
* Print out result
*
 WRITE(*,*) ' '
 WRITE(*,*) '<x,y> = ',GDOT
*
* Do sequential dot product and subtract from
* distributed dot product to get desired error estimate
*
 LDOT = SDOT(N, X, 1, Y, 1)
 WRITE(*,*) '<x,y> : sequential dot product. <x,y>^ : '//
 $ 'distributed dot product.'
 WRITE(*,*) '| <x,y> - <x,y>^ | = ' ,ABS(GDOT - LDOT)
 WRITE(*,*) 'Run completed.'
*
* If I am a worker process (i.e. spawned by master process)
*
 ELSE
*
* Receive startup info
*
 CALL PVMFRECV(TIDS(0), 0, IBUF)
 CALL PVMFUNPACK(INTEGER4, LN, 1, 1, IERR)
 CALL PVMFUNPACK(REAL4, X, LN, 1, IERR)
 CALL PVMFUNPACK(REAL4, Y, LN, 1, IERR)
*
* Figure local dot product and send it in to master
*
 LDOT = SDOT(LN, X, 1, Y, 1)
 CALL PVMFINITSEND(PVMDEFAULT, IBUF)
 CALL PVMFPACK(REAL4, LDOT, 1, 1, IERR)
 CALL PVMFSEND(TIDS(0), 1, IERR)
 END IF
*
 CALL PVMFEXIT(0)
*
1000 FORMAT(I10,' Successfully spawned process #' ,I2,', TID =',I10)
2000 FORMAT('Enter the length of vectors to multiply (1 -',I7,'):')
 STOP
*
* End program PSDOT
*
 END

10.2.3 Matrix Multiply

In this example we program a matrix multiply algorithm described by Fox et al. in [39]. The mmult program can be found at the
end of this section. The mmult program will calculate C = AB where C, A, and B are all square matrices. For simplicity we assume
that m × m tasks are used to calculate the solution. Each task calculates a subblock of the resulting matrix C. The block size and
the value of m are given as a command-line argument to the program. The matrices A and B are also stored as blocks distributed
over the m2 tasks. Before delving into the details of the program, let us first describe the algorithm at a high level.

In our grid of m x m tasks, each task (tij, where 0 ≤ i, j < m), initially contains blocks Cij, Aij, and Bij. In the first step of the algorithm
the tasks on the diagonal (tij where i = j) send their block Aii to all the other tasks in row i. After the transmission of Aii, all tasks
calculate Aii × Bij and add the result into Cij. In the next step, the column blocks of B are rotated. That is, tij sends its block of B to
t(i-1)j. (Task t0j sends its B block to t(m-1)j.) The tasks now return to the first step, Ai(i+1) is multicast to all other tasks in row i, and
the algorithm continues. After m iterations, the C matrix contains A × B, and the B matrix has been rotated back into place.

Let us now go over the matrix multiply as it is programmed in PVM. In PVM there is no restriction on which tasks may
communicate with which other tasks. However, for this program we would like to think of the tasks as a two-dimensional
conceptual torus. In order to enumerate the tasks, each task joins the group mmult. Group ids are used to map tasks to our torus.
The first task to join a group is given the group id of zero. In the mmult program, the task with group id zero spawns the other
tasks and sends the parameters for the matrix multiply to those tasks. The parameters are m and bklsize, the square root of the
number of blocks and the size of a block, respectively. After all the tasks have been spawned and the parameters transmitted,
pvm_barrier() is called to make sure all the tasks have joined the group. If the barrier is not performed, later calls to
pvm_gettid() might fail because a task may not have yet joined the group.

After the barrier, the task ids for the other tasks are stored in the row in the array myrow. Specifically, the program calculates
group ids for all the tasks in the row, and we ask PVM for the task id for the corresponding group id. Next the program allocates
the blocks for the matrices using malloc(). (In an actual application program we would expect that the matrices would already
be allocated.) Then the program calculates the row and column of the block of C it will be computing; this calculation is based on
the value of the group id. The group ids range from 0 to m - 1 inclusive. Thus, the integer division of (mygid/m) will give the task's
row and (mygid mod m) will give the column if we assume a row major mapping of group ids to tasks. Using a similar mapping, we
calculate the group id of the task directly above and below in the torus and store their task ids in up and down, respectively.

Next the blocks are initialized by calling InitBlock(). This function simply initializes A to random values, B to the identity matrix,
and C to zeros. This will allow us to verify the computation at the end of the program by checking that A = C.

Finally we enter the main loop to calculate the matrix multiply. First the tasks on the diagonal multicast their block of A to the other
tasks in their row. Note that the array myrow actually contains the task id of the task doing the multicast. Recall that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tasks in their row. Note that the array myrow actually contains the task id of the task doing the multicast. Recall that
pvm_mcast() will send to all the tasks in the tasks array except the calling task. This approach works well in the case of mmult
because we don't want to have to needlessly handle the extra message coming into the multicasting task with an extra
pvm_recv(). Both the multicasting task and the tasks receiving the block calculate the AB for the diagonal block and the block of
B residing in the task.

After the subblocks have been multiplied and added into the C block, we now shift the B blocks vertically. Specifically, the block of
B is packed into a message and sent to the up task id; then a new B block is received from the down task id.

Note that we use different message tags for sending the A blocks and the B blocks as well as for different iterations of the loop.
We also fully specify the task ids when doing a pvm_recv(). It's tempting to use wild cards for the fields of pvm_recv();
however, such use can be dangerous. For instance, had we incorrectly calculated the value for up and used a wild card for the
pvm_recv() instead of down, we would be sending messages to the wrong tasks without knowing it. In this example we fully
specify messages, thereby reducing the possibility of receiving a message from the wrong task or the wrong phase of the
algorithm.

Once the computation is complete, we check to see that A = C, just to verify that the matrix multiply correctly calculated the values
of C. This step would not be done in a matrix-multiply library routine, for example.

You do not have to call pvm_lvgroup() because PVM will automatically detect that the task has exited and will remove it from
the group. It is good form, however, to leave the group before calling pvm_exit(). The reset command from the PVM console
will reset all the PVM groups. The pvm_gstat command will print the status of any groups that currently exist.
/*
 Matrix Multiply
*/

/* defines and prototypes for the PVM library */
#include <pvm3.h>
#include <stdio.h>

/* Maximum number of children this program will spawn */
#define MAXNTIDS 100
#define MAXROW 10

/* Message tags */
#define ATAG 2
#define BTAG 3
#define DIMTAG 5

void
InitBlock(float *a, float *b, float *c, int blk, int row, int col)
{
 int len, ind;
 int i,j;

 srand(pvm_mytid());
 len = blk*blk;
 for (ind = 0; ind < len; ind++)
 { a[ind] = (float)(rand()%1000)/100.0; c[ind] = 0.0; }
 for (i = 0; i < blk; i++) {
 for (j = 0; j < blk; j++) {
 if (row == col)
 b[j*blk+i] = (i==j)? 1.0 : 0.0;
 else
 b[j*blk+i] = 0.0;
 }
 }
}

void
BlockMult(float* c, float* a, float* b, int blk)
{
 int i,j,k;
 for (i = 0; i < blk; i++)
 for (j = 0; j < blk; j ++)
 for (k = 0; k < blk; k++)
 c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]);
}

int
main(int argc, char* argv[])
{

 /* number of tasks to spawn, use 3 as the default */
 int ntask = 2;
 /* return code from pvm calls */
 int info;
 /* my task and group id */
 int mytid, mygid;
 /* children task id array */
 int child[MAXNTIDS-1];
 int i, m, blksize;
 /* array of the tids in my row */
 int myrow[MAXROW];
 float *a, *b, *c, *atmp;
 int row, col, up, down;

 /* find out my task id number */
 mytid = pvm_mytid();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mytid = pvm_mytid();
 pvm_setopt(PvmRoute, PvmRouteDirect);

 /* check for error */
 if (mytid < 0) {
 /* print out the error */
 pvm_perror(argv[0]);
 /* exit the program */
 return -1;
 }

 /* join the mmult group */
 mygid = pvm_joingroup("mmult");
 if (mygid < 0) {
 pvm_perror(argv[0]); pvm_exit(); return -1;
 }

 /* if my group id is 0 then I must spawn the other tasks */
if (mygid == 0) {
 /* find out how many tasks to spawn */
 if (argc == 3) {
 m = atoi(argv[1]);
 blksize = atoi(argv[2]);
 }
 if (argc < 3) {
 fprintf(stderr, "usage: mmult m blk\n");
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

 /* make sure ntask is legal */
 ntask = m*m;
 if ((ntask < 1) || (ntask >= MAXNTIDS)) {
 fprintf(stderr, "ntask = %d not valid.\n", ntask);
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }
 /* if there is more than one task spawn them*/
 if (ntask > 1) {

 /* spawn the child tasks */
 info = pvm_spawn("mmult", (char**)0, PvmTaskDefault, (char*)0,
 ntask-1, child);

 /* make sure spawn succeeded */
 if (info != ntask-1) {
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

 /* send the matrix dimension */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&m, 1, 1);
 pvm_pkint(&blksize, 1, 1);
 pvm_mcast(child, ntask-1, DIMTAG);
 }
 }
else {
 /* recv the matrix dimension */
 pvm_recv(pvm_gettid("mmult", 0), DIMTAG);
 pvm_upkint(&m, 1, 1);
 pvm_upkint(&blksize, 1, 1);
 ntask = m*m;
 }
/* make sure all tasks have joined the group */

info = pvm_barrier("mmult",ntask);
if (info < 0) pvm_perror(argv[0]);

/* find the tids in my row */
for (i = 0; i < m; i++)
 myrow[i] = pvm_gettid("mmult", (mygid/m)*m + i);

/* allocate the memory for the local blocks */
a = (float*)malloc(sizeof(float)*blksize*blksize);
b = (float*)malloc(sizeof(float)*blksize*blksize);
c = (float*)malloc(sizeof(float)*blksize*blksize);
atmp = (float*)malloc(sizeof(float)*blksize*blksize);
/* check for valid pointers */
if (!(a && b && c && atmp)) {
 fprintf(stderr, "%s: out of memory!\n", argv[0]);
 free(a); free(b); free(c); free(atmp);
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

/* find my block's row and column */
row = mygid/m; col = mygid % m;
/* calculate the neighbor's above and below */
up = pvm_gettid("mmult", ((row)?(row-1):(m-1))*m+col);
down = pvm_gettid("mmult", ((row == (m-1))?col:(row+1)*m+col));

/* initialize the blocks */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* initialize the blocks */
InitBlock(a, b, c, blksize, row, col);

/* do the matrix multiply */
for (i = 0; i < m; i++) {
 /* mcast the block of matrix A */
 if (col == (row + i)%m) {
 pvm_initsend(PvmDataDefault);
 pvm_pkfloat(a, blksize*blksize, 1);
 pvm_mcast(myrow, m, (i+1)*ATAG);
 BlockMult(c,a,b,blksize);
 }
 else {
 pvm_recv(pvm_gettid("mmult", row*m + (row +i)%m), (i+1)*ATAG);
 pvm_upkfloat(atmp, blksize*blksize, 1);
 BlockMult(c,atmp,b,blksize);
 }
 /* rotate the columns of B */
 pvm_initsend(PvmDataDefault);
 pvm_pkfloat(b, blksize*blksize, 1);
 pvm_send(up, (i+1)*BTAG);
 pvm_recv(down, (i+1)*BTAG);
 pvm_upkfloat(b, blksize*blksize, 1);
 }

 /* check it */
 for (i = 0 ; i < blksize*blksize; i++)
 if (a[i] != c[i])
 printf("Error a[%d] (%g) != c[%d] (%g) \n", i, a[i],i,c[i]);

 printf("Done.\n");
 free(a); free(b); free(c); free(atmp);
 pvm_lvgroup("mmult");
 pvm_exit();
 return 0;
}

10.2.4 One-Dimensional Heat Equation

Here we present a PVM program that calculates heat diffusion through a substrate, in this case a wire. Consider the one-
dimensional heat equation on a thin wire,

(10.1)

and a discretization of the form

(10.2)

giving the explicit formula

(10.3)

The initial and boundary conditions are

A(t, 0) = 0, A(t, 1) = 0 for all t

A(0, x) = sin(π x) for 0 ≤ x ≤ 1.

The pseudocode for this computation is as follows:
 for i = 1:tsteps-1;
 t = t+dt;
 a(i+1,1)=0;
 a(i+1,n+2)=0;
 for j = 2:n+1;
 a(i+1,j)=a(i,j) + mu*(a(i,j+1)-2*a(i,j)+a(i,j-1));
 end;
 end

For this example we use a master/worker programming model. The master, 'heat.c', spawns five copies of the program
heatslv. The workers compute the heat diffusion for subsections of the wire in parallel. At each time step the workers exchange
boundary information, in this case the temperature of the wire at the boundaries between processors.

Let's take a closer look at the code. In 'heat.c' the array solution will hold the solution for the heat diffusion equation at each
time step. First the heatslv tasks are spawned. Next, the initial dataset is computed. Notice that the ends of the wires are given
initial temperature values of zero.

The main part of the program is then executed four times, each with a different value for Δ t. A timer is used to compute the
elapsed time of each compute phase. The initial datasets are sent to the heatslv tasks. The left and right neighbor task ids are
sent along with the initial dataset. The heatslv tasks use these to communicate boundary information. Alternatively, we could

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sent along with the initial dataset. The heatslv tasks use these to communicate boundary information. Alternatively, we could
have used the PVM group calls to map tasks to segments of the wire. By using that approach we would have avoided explicitly
communicating the task ids to the slave processes.

After sending the initial data, the master process waits for results. When the results arrive, they are integrated into the solution
matrix, the elapsed time is calculated, and the solution is written to the output file.

Once the data for all four phases have been computed and stored, the master program prints out the elapsed times and kills the
slave processes.
/*
heat.c

 Use PVM to solve a simple heat diffusion differential equation,
 using 1 master program and 5 slaves.

 The master program sets up the data, communicates it to the slaves
 and waits for the results to be sent from the slaves.
 Produces xgraph ready files of the results.
*/

#include "pvm3.h"
#include <stdio.h>
#include <math.h>
#include <time.h>
#define SLAVENAME "heatslv"
#define NPROC 5
#define TIMESTEP 100
#define PLOTINC 10
#define SIZE 1000

int num_data = SIZE/NPROC;

main()
{ int mytid, task_ids[NPROC], i, j;
 int left, right, k, 1;
 int step = TIMESTEP;
 int info;

 double init[SIZE], solution[TIMESTEP][SIZE];
 double result[TIMESTEP*SIZE/NPROC], deltax2;
 FILE *filenum;
 char *filename [4] [7] ;
 double deltat[4];
 time_t t0;
 int etime [4] ;

 filename[0][0] = "graph1";
 filename[1][0] = "graph2";
 filename[2][0] = "graph3";
 filename[3][0] = "graph4";

 deltat[0] = 5.0e-1;
 deltat[1] = 5.0e-3;
 deltat[2] = 5.0e-6;
 deltat[3] = 5.0e-9;

/* enroll in pvm */
 mytid = pvm_mytid();

/* spawn the slave tasks */
 info = pvm_spawn(SLAVENAME,(char **)0,PvmTaskDefault,"",
 NPROC,task_ids);
/* create the initial data set */
 for (i = 0; i < SIZE; i++)
 init[i] = sin(M_PI * ((double)i / (double)(SIZE-1)));
 init[0] = 0.0;
 init[SIZE-1] = 0.0;

/* run the problem 4 times for different values of delta t */
 for (1 = 0; 1 < 4; 1++) {
 deltax2 = (deltat[1]/pow(1.0/(double)SIZE,2.0));
 /* start timing for this run */
 time(&t0);
 etime[1] = t0;
/* send the initial data to the slaves. */
/* include neighbor info for exchanging boundary data */
 for (i = 0; i < NPROC; i++) {
 pvm_initsend(PvmDataDefault);
 left = (i == 0) ? 0 : task_ids[i-1];
 pvm_pkint(&left, 1, 1);
 right = (i == (NPROC-1)) ? 0 : task_ids[i+1];
 pvm_pkint(&right, 1, 1);
 pvm_pkint(&step, 1, 1);
 pvm_pkdouble(&deltax2, 1, 1);
 pvm_pkint(&num_data, 1, 1);
 pvm_pkdouble(&init[num_data*i], num_data, 1);
 pvm_send(task_ids[i], 4);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* wait for the results */
 for (i = 0; i < NPROC; i++) {
 pvm_recv(task_ids[i], 7);
 pvm_upkdouble(&result[0], num_data*TIMESTEP, 1);
/* update the solution */
 for (j = 0; j < TIMESTEP; j++)
 for (k = 0; k < num_data; k++)
 solution[j][num_data*i+k] = result[wh(j,k)];
 }

/* stop timing */
 time(&t0);
 etime[1] = t0 - etime[l];

/* produce the output */
 filenum = fopen(filename[1][0], "w");
 fprintf(filenum,"TitleText: Wire Heat over Delta Time: %e\n",
 deltat[1]);
 fprintf(filenum,"XUnitText: Distance\nYUnitText: Heat\n");
 for (i = 0; i < TIMESTEP; i = i + PLOTINC) {
 fprintf(filenum,"\"Time index: %d\n",i);
 for (j = 0; j < SIZE; j++)
 fprintf(filenum,"%d %e\n",j, solution[i][j]);
 fprintf(filenum,"\n");
 }
 fclose (filenum);
 }

/* print the timing information */
 printf("Problem size: %d\n",SIZE);
 for (i = 0; i < 4; i++)
 printf("Time for run %d: %d sec\n",i,etime[i]);

/* kill the slave processes */
 for (i = 0; i < NPROC; i++) pvm_kill(task_ids[i]);
 pvm_exit();
}

int wh(x, y)
int x, y;
{
 return(x*num_data+y);
}

The heatslv programs do the actual computation of the heat diffusion through the wire. The worker program consists of an
infinite loop that receives an initial dataset, iteratively computes a solution based on this dataset (exchanging boundary
information with neighbors on each iteration), and sends the resulting partial solution back to the master process. As an alternative
to using an infinite loop in the worker tasks, we could send a special message to the worker ordering it to exit. Instead, we simply
use the infinite loop in the worker tasks and kill them off from the master program. A third option would be to have the workers
execute only once, exiting after processing a single dataset from the master. This would require placing the master's spawn call
inside the main for loop of 'heat.c'. While this option would work, it would needlessly add overhead to the overall
computation.

For each time step and before each compute phase, the boundary values of the temperature matrix are exchanged. The left-hand
boundary elements are first sent to the left neighbor task and received from the right neighbor task. Symmetrically, the right-hand
boundary elements are sent to the right neighbor and then received from the left neighbor. The task ids for the neighbors are
checked to make sure no attempt is made to send or receive messages to nonexistent tasks.
/*

heatslv.c

 The slaves receive the initial data from the host,
 exchange boundary information with neighbors,
 and calculate the heat change in the wire.
 This is done for a number of iterations, sent by the master.

*/

#include "pvm3.h"
#include <stdio.h>

int num_data;

main()
{
 int mytid, left, right, i, j, master;
 int timestep;

 double *init, *A;
 double leftdata, rightdata, delta, leftside, rightside;

/* enroll in pvm */
 mytid = pvm_mytid();
 master = pvm_parent();

/* receive my data from the master program */
 while(1) {
 pvm_recv(master, 4);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvm_recv(master, 4);
 pvm_upkint(&left, 1, 1);
 pvm_upkint(&right, 1, 1);
 pvm_upkint(×tep, 1, 1);
 pvm_upkdouble(&delta, 1, 1);
 pvm_upkint(&num_data, 1, 1);
 init = (double *) malloc(num_data*sizeof(double));
 pvm_upkdouble(init, num_data, 1);

/* copy the initial data into my working array */
 A = (double *) malloc(num_data * timestep * sizeof(double));
 for (i = 0; i < num_data; i++) A[i] = init[i];

/* perform the calculation */

 for (i = 0; i < timestep-1; i++) {
 /* trade boundary info with my neighbors */
 /* send left, receive right */
 if (left != 0) {
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[wh(i,0)],1,1);
 pvm_send(left, 5);
 }
 if (right != 0) {
 pvm_recv(right, 5);
 pvm_upkdouble(&rightdata, 1, 1);
 /* send right, receive left */
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[wh(i,num_data-1)],1,1);
 pvm_send(right, 6);
 }
 if (left != 0) {
 pvm_recv(left, 6);
 pvm_upkdouble(&leftdata,1,1);
 }

/* do the calculations for this iteration */

 for (j = 0; j < num_data; j++) {
 leftside = (j == 0) ? leftdata : A[wh(i,j-1)];
 rightside = (j == (num_data-1)) ? rightdata : A[wh(i,j+1)];
 if ((j==0)&&(left==0))
 A[wh(i+1,j)] = 0.0;
 else if ((j==(num_data-1))&&(right==0))
 A[wh(i+1,j)] = 0.0;
 else
 A[wh(i+1,j)]=
 A[wh(i,j)]+delta*(rightside-2*A[wh(i,j)]+leftside);
 }
 }

/* send the results back to the master program */

 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[0],num_data*timestep,1);
 pvm_send(master,7);
 }

/* just for good measure */
 pvm_exit();
}

int wh(x, y)
int x, y;
{
 return(x*num_data+y);
}

In this section we have given a variety of example programs written in both Fortran and C. These examples demonstrate various
ways of writing PVM programs. Some divide the application into two separate programs, while others use a single program with
conditionals to handle spawning and computing phases. These examples show different styles of communication, both among
worker tasks and between worker and master tasks. In some cases messages are used for synchronization, and in others the
master processes simply kill off the workers when they are no longer needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 Installing PVM
This section describes how to set up the PVM software package, how to configure a simple virtual machine, and how to compile
and run the example programs supplied with PVM. The first part describes the straightforward use of PVM and the most common
problems in setting up and running PVM. The latter part describes some of the more advanced options available for customizing
your PVM environment.

10.3.1 Setting Up PVM

One of the reasons for PVM's popularity is that PVM is simple to set up and use. It does not require special privileges to be
installed. Anyone with a valid login on the hosts can do so. In addition, only one person at an organization needs to get and install
PVM for everyone at that organization to use it.

PVM uses two environment variables when starting and running. Each PVM user needs to set these two variables to use PVM.
The first variable is PVM_ROOT, which is set to the location of the installed pvm3 directory. The second variable is PVM_ARCH,
which tells PVM the architecture of this host and thus what executables to pick from the PVM_ROOT directory.

Because of security concerns many sites no longer allow any of their computers, including those in clusters, to use rsh, which is
what PVM uses by default to add hosts to a virtual machine. It is easy to configure PVM to use ssh instead. Just edit the file
'PVM_ROOT/conf/PVM_ARCH.def' and replace rsh with ssh then recompile PVM and your applications.

If PVM is already installed at your site, you can skip ahead to "Creating Your Personal PVM." The PVM source comes with
directories and makefiles for Linux and most architectures you are likely to have in your cluster. Building for each architecture type
is done automatically by logging on to a host, going into the PVM_ROOT directory, and typing make. The 'makefile' will
automatically determine which architecture it is being executed on, create appropriate subdirectories, and build pvmd3,
libpvm3.a, and libfpvm3.a, pvmgs, and libgpvm3.a. It places all these files in 'PVM_ROOT/lib/PVM_ARCH' with the
exception of pvmgs, which is placed in 'PVM_ROOT/bin/PVM_ARCH'.

Setup Summary
Set PVM_ROOT and PVM_ARCH in your '.cshrc' file.

Build PVM for each architecture type.

Create an '.rhosts' file on each host listing all the hosts.

Create a '$HOME/.xpvm_hosts' file listing all the hosts prepended by an "&".

10.3.2 Creating Your Personal PVM

Before we go over the steps to compile and run parallel PVM programs, you should be sure you can start up PVM and configure a
virtual machine. On any host on which PVM has been installed you can type
% pvm

and you should get back a PVM console prompt signifying that PVM is now running on this host. You can add hosts to your virtual
machine by typing at the console prompt
pvm> add hostname

You also can delete hosts (except the one you are on) from your virtual machine by typing
pvm> delete hostname

If you get the message "Can't Start pvmd," PVM will run autodiagnostics and report the reason found.

To see what the present virtual machine looks like, you can type
pvm> conf

To see what PVM tasks are running on the virtual machine, you can type
pvm> ps -a

Of course, you don't have any tasks running yet. If you type "quit" at the console prompt, the console will quit, but your virtual
machine and tasks will continue to run. At any command prompt on any host in the virtual machine, you can type
% pvm

and you will get the message "pvm already running" and the console prompt. When you are finished with the virtual machine you
should type
pvm> halt

This command kills any PVM tasks, shuts down the virtual machine, and exits the console. This is the recommended method to
stop PVM because it makes sure that the virtual machine shuts down cleanly.

You should practice starting and stopping and adding hosts to PVM until you are comfortable with the PVM console. A full
description of the PVM console and its many command options is given in the documentation that comes with the PVM software.

If you don't wish to type in a bunch of hostnames each time, there is a hostfile option. You can list the hostnames in a file one per
line and then type
% pvm hostfile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% pvm hostfile

PVM will then add all the listed hosts simultaneously before the console prompt appears. Several options can be specified on a
per host basis in the hostfile, if you wish to customize your virtual machine for a particular application or environment.

PVM may also be started in other ways. The functions of the console and a performance monitor have been combined in a
graphical user interface called XPVM, which is available from the PVM Web site. If XPVM has been installed at your site, then it
can be used to start PVM. To start PVM with this interface, type
% xpvm

The menu button labeled "hosts" will pull down a list of hosts you can add. If you click on a hostname, it is added, and an icon of
the machine appears in an animation of the virtual machine. A host is deleted if you click on a hostname that is already in the
virtual machine. On startup XPVM reads the file '$HOME/. xpvm_hosts', which is a list of hosts to display in this menu. Hosts
without leading "&" are added all at once at startup.

The quit and halt buttons work just like the PVM console. If you quit XPVM and then restart it, XPVM will automatically display
what the running virtual machine looks like. Practice starting and stopping and adding hosts with XPVM. If any errors occur, they
should appear in the window where you started XPVM.

10.3.3 Running PVM Programs

This section describes how to compile and run the example programs supplied with the PVM software. These example programs
make useful templates on which to base your own PVM programs.

The first step is to copy the example programs into your own area:
% cp -r $PVM_ROOT/examples $HOME/pvm3/examples
% cd $HOME/pvm3/examples

The examples directory contains a 'Makefile.aimk' and 'Readme' file that describe how to build the examples. PVM supplies
an architecture-independent make, aimk, that automatically determines PVM_ARCH and links any operating system-specific
libraries to your application. when you placed the 'cshrc.stub' in your '.cshrc' file, aimk was automatically added to your
$PATH. Using aimk allows you to leave the source code and makefile unchanged as you compile across different architectures.

The master/worker programming model is the most popular model used in cluster computing. To compile the master/slave C
example, type
% aimk master slave

If you prefer to work with Fortran, compile the Fortran version with
% aimk fmaster fslave

Depending on the location of PVM_ROOT, the INCLUDE statement at the top of the Fortran examples may need to be changed. If
PVM_ROOT is not 'HOME/pvm3', then change the include to point to '$PVM_ROOT/include/f pvm3.h'. Note that PVM_ROOT
is not expanded inside the Fortran, so you must insert the actual path.

The makefile moves the executables to '$HOME/pvm3/bin/PVM_ARCH', which is the default location where PVM will look for
them on all hosts. If your file system is not common across all your cluster nodes, then you will have to copy these executables on
all your nodes.

From one window start up PVM and configure some hosts. These examples are designed to run on any number of hosts,
including one. In another window, cd to the location of the PVM executables and type
% master

The program will ask about the number of tasks. This number does not have to match the number of hosts in these examples. Try
several combinations.

The first example illustrates the ability to run a PVM program from a prompt on any host in the virtual machine. This is how you
would run a serial a.out program on a front console of a cluster. The next example, which is also a master/slave model called
codehitc, shows how to spawn PVM jobs from the PVM console and also from XPVM.

The model hitc illustrates dynamic load balancing using the pool of tasks paradigm. In this paradigm, the master program
manages a large queue of tasks, always sending idle slave programs more work to do until the queue is empty. This paradigm is
effective in situations where the hosts have very different computational powers because the least-loaded or more powerful hosts
do more of the work and all the hosts stay busy until the end of the problem. To compile hitc, type
% aimk hitc hitc_slave

Since hitc does not require any user input, it can be spawned directly from the PVM console. Start the PVM console, and add
some cluster nodes. At the PVM console prompt, type
pvm> spawn -> hitc

The "->" spawn option causes all the print statements in hitc and in the slaves to appear in the console window. This can be a
useful feature when debugging your first few PVM programs. You may wish to experiment with this option by placing print
statements in 'hitc.f' and 'hitc_slave.f' and recompiling.

10.3.4 PVM Console Details

The PVM console, called pvm, is a standalone PVM task that allows you to interactively start, query, and modify the virtual
machine. The console may be started and stopped multiple times on any of the hosts in the virtual machine without affecting PVM
or any applications that may be running.

When the console is started, pvm determines whether PVM is already running and, if not, automatically executes pvmd on this
host, passing pvmd the command-line options and hostfile. Thus, PVM need not be running to start the console.
 pvm [-n<hostname>] [hostfile]

The -n option is useful for specifying another name for the master pvmd (in case hostname doesn't match the IP address you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The -n option is useful for specifying another name for the master pvmd (in case hostname doesn't match the IP address you
want). This feature becomes very useful with Beowulf clusters because the nodes of the cluster sometime are on their own
network. In this case the front-end node will have two hostnames: one for the cluster and one for the external network. The -n
option lets you specify the cluster name directly during PVM startup.

Once started, the console prints the prompt
pvm>

and accepts commands from standard input. The available commands are as follows:
add followed by one or more hostnames (cluster nodes), adds these hosts to the virtual machine.

alias defines or lists command aliases.

conf lists the configuration of the virtual machine including hostname, pvmd task ID, architecture type, and a
relative speed rating.

delete followed by one or more hostnames, deletes these hosts from the virtual machine. PVM processes still
running on these hosts are lost .

echo echoes arguments.

halt kills all PVM processes including console and then shuts down PVM. All daemons exit.

help can be used to get information about any of the interactive commands. The help command may be followed
by a command name that will list options and flags available for this command.

id prints console task id.

jobs lists running jobs.

kill can be used to terminate any PVM process.

mstat shows status of specified hosts.

ps -a lists all processes currently on the virtual machine, their locations, their task IDs, and their parents' task IDs.

pstat shows status of a single PVM process.

quit exits the console, leaving daemons and PVM jobs running.

reset kills all PVM processes except consoles, and resets all the internal PVM tables and message queues. The
daemons are left in an idle state.

setenv displays or sets environment variables.

sig followed by a signal number and tid, sends the signal to the task.

spawn starts a PVM application. Options include the following:
-count shows the number of tasks; default is 1

-(host) spawn on host; default is any

-(PVM_ARCH) spawn of hosts of type PVM_ARCH

-? enable debugging

-> redirect task output to console

->file redirect task output to file

->>file redirect task output append to file

-@ trace job; display output on console

-@file trace job; output to file

unalias undefines command alias.

version prints version of PVM being used.

PVM supports the use of multiple consoles. It is possible to run a console on any host in an existing virtual machine and even
multiple consoles on the same machine. It is possible to start up a console in the middle of a PVM application and check on its
progress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Fault-Tolerant and Adaptive Programs with PVM

Overview
Al Geist and Jim Kohl

A number of factors must be considered when you are developing applications for Beowulf clusters. In the preceding chapters the
basic methods of message passing were illustrated so that you could create your own parallel programs. This chapter describes
the issues and common methods for making parallel programs that are fault tolerant and adaptive.

Fault tolerance is the ability of an application to continue to run or make progress even if a hardware or software problem causes
a node in the cluster to fail. It is also the ability to tolerate failures within the application itself. For example, one task inside a
parallel application may get an error and abort, but the rest of the tasks are able to carry on the calculation. Because Beowulf
clusters are built from commodity components that are designed for the desktop rather than heavy-duty computing, failures of
components inside a cluster are higher than in a more expensive multiprocessor system that has an integrated RAS (Reliability,
Availability, Serviceability) system.

While fault-tolerant programs can be thought of as adaptive, the term "adaptive programs" is used here more generally to mean
parallel (or serial) programs that dynamically change their characteristics to better match the application's needs and the available
resources. Examples include an application that adapts by adding or releasing nodes of the cluster according to its present
computational needs and an application that creates and kills tasks based on what the computation needs.

In later chapters you will learn about Condor and other resource management tools that automatically provide some measure of
fault tolerance and adaptability to jobs submitted to them. This chapter teaches the basics of how to write such tools yourself.

PVM is based on a dynamic computing model in which cluster nodes can be added and deleted from the computation on the fly
and parallel tasks can be spawned or killed during the computation. PVM doesn't have nearly as rich a set of message-passing
features as MPI; but, being a virtual machine model, PVM has a number of features that make it attractive for creating dynamic
parallel programs. For this reason, PVM will be used to illustrate the concepts of fault tolerance and adaptability in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Considerations for Fault Tolerance
A computational biologist at Oak Ridge National Laboratory wants to write an parallel application that runs 24/7 on his Beowulf
cluster. The application involves analysis of the human genome and is driven by a constant stream of new data arriving from
researchers all around the world. The data is not independent because new data helps refine and extend previously calculated
sequences. How can he write such a program?

A company wants to write an application to process a constant stream of sales orders coming in from the Web. The program
needs to be robust because down time costs not only the lost revenue stream but also wages of workers who are idle. The
company has recently purchased a Beowulf cluster to provide a reliable, cost-effective solution. But how does a company write the
fault-tolerant parallel program to run on the cluster?

When you are developing algorithms that must be reliable the first consideration is the hardware. The bad news is that your
Beowulf cluster will have failures; it will need maintenance. It is not a matter of whether some node in the cluster will fail but when.
Experience has shown that the more nodes the cluster has, the more likely one will fail within a given time.

How often a hardware failure occurs varies widely between clusters. It depends on the quality of the components used by the
manufacturer. It depends on the room the cluster is set up in. Is it adequately cooled? Is ventilation good? It is possible to have a
cool room but have the cluster nodes stacked so close together that the inner nodes get hot and begin to have component
failures. It is possible to have the hot air from one node blow into the cool air intake of another node. Hardware failure also
depends on the applications being run on the nodes. Some parallel applications do intense sustained calculations that cause the
floating point chips to generate much more heat. Other applications read and write intensely to memory, thereby increasing the
probability of having a memory fault.

Some clusters have failures every week; others run for months. It is not uncommon for several nodes to fail at about the same
time with similar hardware problems. Evaluate your particular cluster under a simulated load for a couple of weeks to get data on
expected mean time between failures (MTBF). If the MTBF is many times longer than your average application run time, then it
may not make sense to restructure the application to be fault tolerant. In most cases it is more efficient simply to rerun a failed
application if it has a short run time.

The second consideration is the fault tolerance of the underlying software environment. If the runtime system is not robust, then
the hardware is the least of your problems. The PVM system sits between the operating system and the application and, among
other things, monitors the state of the virtual machine. The PVM runtime system is designed to be fault tolerant and to reconfigure
itself automatically when a failure is detected. (It doesn't help your fault-tolerant application if the underlying failure detection
system crashes during a failure!) The PVM failure detection system is responsible for detecting problems and notifying running
applications about the problem. The PVM runtime system keeps track of and automatically reconfigures itself around failed nodes
and tasks. It makes no attempt to recover a parallel application automatically.

The third consideration is the application. Not every parallel application can recover from a failure; recovery depends on the
design of the application and the nature of the failure. For example, in the manager/worker programs of the preceding chapters, if
the node that fails was running a worker, then recovery is possible; but if the node was running the manager, then key data may
be lost that can't be recovered.

At the least, any parallel program can be made fault tolerant by restarting it automatically from the beginning if a failure in
detected. The most common form of fault tolerance in use today is a variation of this approach, called checkpoint/restart. Instead
of starting from the beginning, an application periodically stops calculating and sending messages and writes out its partial results
to disk as a checkpoint. When a failure occurs, the runtime system kills the parallel application and automatically restarts it from
the last checkpoint. The time lost in this technique is the time from the last checkpoint and the time it takes to write out all the
checkpoints during the entire run.

This technique works for MPI, PVM, shared-memory paradigms, and most other programming paradigms. The application
developer has to write two routines. One collects and writes out the checkpoint information from all the parallel tasks. The other
checks whether the application is restarting, reads in the checkpoint data, and distributes the data to the parallel tasks. While
writing these two routines is not trivial, failure recovery without stopping the application can get much more complicated.

On-the-fly recovery of parallel programs is complicated because data in messages may be in flight when the recovery begins.
Hence, a race condition arises. If the data does not arrive, then it will need to be resent as part of the recovery. But if the data
manages to be received just before the recovery, then there isn't an outstanding receive call, and the data shouldn't be resent.

File I/O is another problem that complicates recovery. File pointers may need to be reset to the last checkpoint to avoid getting a
repeated set of output data in the file.

Despite all these issues, a few common methods can be used to improve the fault tolerance of many parallel applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Building Fault-Tolerant Parallel Applications
From the application's view, three steps must be performed for fault tolerance: detection, notification, and recovery.

The first step is being able to detect that something has gone wrong. Detection is typically the job of the runtime environment; but
when the runtime envoronment does not provide this capability, application developers can create their own set of monitoring
tasks to oversee an application.

The PVM runtime system has a monitoring and notification capability built into it. Any or all tasks in an application can ask to be
notified of specific events. These events include the failure of a task, the failure of a cluster node, or the availability of new nodes
into the application.

The second step in building fault-tolerant applications is notification. The PVM task(s) requesting notification can specify a
particular task or set of tasks to be monitored. Or it can ask to be notified if any task within the application fails. The notification
message contains the ID of the task that failed.

Unlike many detection systems, PVM's monitoring system is not based on the detection of a broken communication channel
between the monitored and notifed task. Thus there is no need for the notified task and the failed task ever to have communicated
in order to detect the failure. This approach provides more robustness in the first step of detection.

The failure or deletion of a node in the cluster is another notify event that can be requested. Again the requesting application task
can specify a particular node, set of nodes, or all nodes. And, as before, the notification message returns the ID of the failed
node(s).

The addition of one or more cluster nodes to the application's computational environment is also an event that PVM can notify an
application about. In this case no ID can be specified, and the notification message returns the ID of the new node(s).
int info = pvm_notify(int EventType, int msgtag, int cnt, int *ids)

The EventType options are PvmTaskExit, PvmHostDelete, or PvmHostAdd. A separate notify call must be made for each
event type that the application wishes to be notified about. The msgtag argument specifies what message tag the task will be
using to listen for events. The cnt argument is the number of tasks or node IDs in the ids list for which notification is requested.

Given the flexibility of the pvm_notify command, there are several options for how the application can be designed to receive
notification from the PVM system. The first option is designing a separate watcher task. One or more of these watcher tasks are
spawned across the cluster and often have the additional responsibility of managing the recovery phase of the application. The
advantage of this approach is that the application code can remain cleaner. Note that in the manager/worker scheme the manager
often assumes the additional duty as watcher.

A second option is for the application tasks to watch each other. A common method is to have each task watch its neighbor in a
logical ring. Thus each task just watches one or two other tasks. Another common, but not particularly efficient, method is to have
every task watch all the other tasks. Remember that the PVM system is doing the monitoring, not the application tasks. So the
monitoring overhead is the same with all these options. The difference is the number of notification messages that get sent in the
event of a failure.

Recovery is the final step in building fault-tolerant programs. Recovery depends heavily on the type of parallel algorithm used in
the application. The most commonly used options are restart from the beginning, roll back to the last checkpoint, or reassign the
work of a failed task.

The first option is the simplest to implement but the most expensive in the amount of calculation that must be redone. This option
is used by many batch systems because it requires no knowledge of the application. It guarantees that the application will
complete even if failures occur, although it does not guarantee how long this will take. On average the time is less than twice the
normal run time. For short-running applications this is the best option.

For longer-running applications, checkpointing is a commonly used option. With this option you must understand the parallel
application and modify it so that the application can restart from an input data file. You then have to modify the application to write
out such a data file periodically. In the event of a failure, only computations from the last checkpoint are lost. The application
restarts itself from the last successful data file written out. How often checkpoints are written out depends on the size of the restart
file and how long the application is going to run. For large, scientific applications that run for days, checkpointing is typically done
every few hours.

Note that if a failure is caused by the loss of a cluster node, then the application cannot be restarted until the node is repaired or is
replaced by another node in the cluster. The restart file is almost always written out assuming that the same number of nodes is
available during the restart.

In the special case where an application is based on a manager/worker scheme, it is often possible to reassign the job sent to the
failed worker to another worker or to spawn a replacement worker to take its place. Manager/worker is a very popular parallel
programming scheme for Beowulf clusters, so this special case arises often. Below is an example of a fault-tolerant
manager/worker program.
/* Fault Tolerant Manager / Worker Example
 * using notification and task spawning.
 * example1.c
 */

#include <stdio.h>
#include <math.h>
#include <pvm3.h>

#define NWORK 4
#define NPROB 10000
#define MSGTAG 123

int main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int main()
{
 double sum = 0.0, result, input = 1.0;
 int tids[NWORK], numt, probs[NPROB], sent=0, recvd=0;
 int aok=0, cc, bufid, done=0, i, j, marker, next, src;

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Spawn NWORK Worker Tasks */
 numt = pvm_spawn("example1", (char **) NULL, PvmTaskDefault,
 (char *) NULL, NWORK, tids);

 /* Set Up Notify for Spawned Tasks */
 pvm_notify(PvmTaskExit, MSGTAG, numt, tids);

 /* Send Problem to Spawned Workers */
 for (i=0 ; i < NPROB ; i++) probs[i] = -1;
 for (i=0 ; i < numt ; i++) {
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */
 input = (double) (i + 1);
 pvm_pkdouble(&input, 1, 1);
 pvm_send(tids[i], MSGTAG);
 probs[i] = i; sent++; /* Next Problem */
 }

 /* Collect Results / Handle Failures */
 do {
 /* Receive Result */
 bufid = pvm_recv(-1, MSGTAG);
 pvm_upkint(&marker, 1, 1);

 /* Handle Notify */
 if (marker > 0) {
 /* Find Failed Task Index */
 for (i=0, next = -1 ; i < numt ; i++)
 if (tids[i] == marker)
 /* Find Last Problem Sent to Task */
 for (j=(sent-1) ; j > 0 ; j--)
 if (probs[j] == i) {
 /* Spawn Replacement Task */
 if (pvm_spawn("example1", (char **) NULL,
 PvmTaskDefault, (char *) NULL, 1,
 &(tids[i])) == 1) {
 pvm_notify(PvmTaskExit, MSGTAG, 1,
 &(tids[i]));
 next = i; sent--;
 }
 probs[j] = -1; /* Reinsert Prob */
 break;
 }
 } else {
 /* Get Source Task & Accumulate Solution */
 pvm_upkdouble(&result, 1, 1);
 sum += result;
 recvd++;
 /* Get Task Index */
 pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);
 for (i=0 ; i < numt ; i++)
 if (tids[i] == src) next = i;
 }

 /* Send Another Problem */
 if (next >= 0) {
 for (i=0, input = -1.0 ; i < NPROB ; i++)
 if (probs[i] < 0) {
 input = (double) (i + 1);
 probs [i] = next; sent++; /* Next Problem */
 break;
 }
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */
 pvm_pkdouble(&input, 1, 1);
 pvm_send(tids[next], MSGTAG);
 if (input < 0.0) tids[next] = -1;
 }

 } while (recvd < sent);

 printf("Sum = %lf\n", sum);
 }

 /* If I am a Worker Task */
 else if (cc > 0) {
 /* Notify Me If Manager Fails */
 pvm_notify(PvmTaskExit, MSGTAG, 1, &cc);
 /* Solve Problems Until Done */
 do {
 /* Get Problem from Master */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Get Problem from Master */
 pvm_recv(-1, MSGTAG);
 pvm_upkint(&aok, 1, 1);
 if (aok > 0) /* Master Died */
 break;
 pvm_upkdouble(&input, 1, 1);
 if (input > 0.0) {
 /* Compute Result */
 result = sqrt((2.0 * input) - 1.0);
 /* Send Result to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Ask for more... */
 pvm_pkdouble(&result, 1, 1);
 pvm_send(cc, MSGTAG);
 } else
 done = 1;
 } while (!done);
 }

 pvm_exit();

 return(0);
}

This example illustrates another useful function: pvm_spawn(). The ability to spawn a replacement task is a powerful capability in
fault tolerance. It is also a key function in adaptive programs, as we will see in the next section.
int numt = pvm_spawn(char *task, char **argv, int flag,
 char *node, int ntasks, int *tids)

The routine pvm_spawn() starts up ntasks copies of an executable file task on the virtual machine. The PVM virtual machine
is assumed to be running on the Beowulf cluster. Here argv is a pointer to an array of arguments to task with the end of the
array specified by NULL. If task takes no arguments, then argv is NULL. The flag argument is used to specify options and is a
sum of the following options:

PvmTaskDefault: has PVM choose where to spawn processes

PvmTaskHost: uses a where argument to specify a particular host or cluster node to spawn on

PvmTaskArch: uses a where argument to specify an architecture class to spawn on

PvmTaskDebug: starts up these processes under debugger

PvmTaskTrace: uses PVM calls to generate trace data

PvmMppFront: starts process on MPP front-end/service node

PvmHostComp: starts process on complementary host set

For example, flag = PvmTaskHost + PvmHostCompl spawns tasks on every node but the specified node (which may be the
manager, for instance).

On return, numt is set to the number of tasks successfully spawned or an error code if no tasks could be started. If tasks were
started, then pvm_spawn() returns a vector of the spawned tasks' tids. If some tasks could not be started, the corresponding
error codes are placed in the last (ntask - numt) positions of the vector.

In the example above, pvm_spawn() is used by the manager to start all the worker tasks and also is used to replace workers who
fail during the computation. This type of fault-tolerant method is useful for applications that run continuously with a steady stream
of new work coming in, as was the case in our two initial examples. Both used a variation on the above PVM example code for
their solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Adaptive Programs
In this section, we use some more of the PVM virtual machine functions to illustrate how cluster programs can be extended to
adapt not only to faults but also to many other metrics and circumstances. The first example demonstrates a parallel application
that dynamically adapts the size of the virtual machine through adding and releasing nodes based on the computational needs of
the application. Such a feature is used every day on a 128-processor Beowulf cluster at Oak Ridge National Laboratory that is
shared by three research groups.
int numh = pvm_addhosts(char **hosts, int nhost, int *infos)
int numh = pvm_delhosts(char **hosts, int nhost, int *infos)

The PVM addhosts and delhosts routines add or delete a set of hosts in the virtual machine. In a Beowulf cluster this
corresponds to adding or deleting nodes from the computation; numh is returned as the number of nodes successfully added or
deleted. The argument infos is an array of length nhost that contains the status code for each individual node being added or
deleted. This allows you to check whether only one of a set of hosts caused a problem, rather than trying to add or delete the
entire set of hosts again.
/*
 * Adaptive Host Allocation Example adds and removes cluster nodes
 * from computation on the fly for different computational phases
 */

#include <stdio.h>
#include <pvm3.h>

static char *host_set_A[] = { "node1", "node2", "node3" };
static int nhosts_A = sizeof(host_set_A) / sizeof(char **);

static char *host_set_B[] = { "node10", "node12" };
static int nhosts_B = sizeof(host_set_B) / sizeof(char **);

#define MAX_HOSTS 255
#define MSGTAG 123

double phase1(int prob) {
 return((prob == 1) ? 1 : ((double) prob * phase1(prob - 1))); }

double phase2(int prob) {

int main(int argc, char **argv)
{
 double sum1 = 0.0, sum2 = 0.0, result;
 int status[MAX_HOSTS], prob, cc, i;
 char *args[3], input[16];

 /* If I am the Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Phase #1 of computation - Use Host Set A */
 pvm_addhosts(host_set_A, nhosts_A, status);

 /* Spawn Worker Tasks - One Per Host */
 args[0] = "phase1"; args[1] = input; args[2] = (char *) NULL;
 for (i=0, prob=0 ; i < nhosts_A ; i++)
 if (status[i] > 0) { /* Successful Host Add */
 sprintf(input, "%d", prob++);
 pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,
 host_set_A[i], 1, (int *) NULL);
 }
 /* Collect Results */
 for (i=0 ; i < prob ; i++) {
 pvm_recv(-1, MSGTAG);
 pvm_upkdouble(&result, 1, 1);
 sum1 += result;
 }

 /* Remove Host Set A after Phase #1 */
 for (i=0 ; i < nhosts_A ; i++)
 if (status[i] > 0) /* Only Delete Successful Hosts */
 pvm_delhosts(&(host_set_A[i]), 1, (int *) NULL);

 /* Phase #2 of Computation - Use Host Set B */
 pvm_addhosts(host_set_B, nhosts_B, status);

 /* Spawn Worker Tasks - One Per Host (None Locally) */
 args[0] = "phase2";
 for (i=0, prob=0 ; i < nhosts_B ; i++)
 if (status[i] > 0) { /* Successful Host Add */
 sprintf(input, "%d", prob++);
 pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,
 host_set_B[i], 1, (int *) NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 host_set_B[i], 1, (int *) NULL);
 }
 /* Collect Results */
 for (i=0 ; i < prob ; i++) {
 pvm_recv(-1, MSGTAG);
 pvm_upkdouble(&result, 1, 1);
 sum2 += result;
 }

 /* Remove Host Set B from Phase #2 */
 for (i=0 ; i < nhosts_B ; i++)
 if (status[i] > 0) /* Only Delete Successful Hosts */
 pvm_delhosts(&(host_set_B[i]), 1, (int *) NULL);

 /* Done */
 printf("sum1 (%lf) / sum2 (%lf) = %lf\n", sum1, sum2, sum1/sum2);
 }

 /* If I am a Worker Task */
 else if (cc > 0) {
 /* Compute Result */
 prob = atoi(argv[2]);
 if (!strcmp(argv[1], "phase1"))
 result = phase1(prob + 1);
 else if (!strcmp(argv[1], "phase2"))
 result = phase2(100 * (prob + 1));
 /* Send Result to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&result, 1, 1);
 pvm_send(cc, MSGTAG);
 }

 pvm_exit();

 return(0);
}

One of the main difficulties of writing libraries for message-passing applications is that messages sent inside the application may
get intercepted by the message-passing calls inside the library. The same problem occurs when two applications want to
cooperate, for example, a performance monitor and a scientific application or an airframe stress application coupled with an
aerodynamic flow application. Whenever two or more programmers are writing different parts of the overall message-passing
application, there is the potential that a message will be inadvertently received by the wrong part of the application. The solution to
this problem is communication context. As described earlier in the MPI chapters, communication context in MPI is handled cleanly
through the MPI communicator.

In PVM 3.4, pvm_recv() requests a message from a particular source with a user-chosen message tag (either or both of these
fields can be set to accept anything). In addition, communication context is a third field that a receive must match on before
accepting a message; the context cannot be specified by a wild card. By default a base context is predefined, which is similar to
the default MPI_COMM_WORLD communicator in MPI.

PVM has four routines to manage communication contexts.
 new_context = pvm_newcontext()
 old_context = pvm_setcontext(new_context)
 info = pvm_freecontext(context)
 context = pvm_getcontext()

Pvm_newcontext() returns a systemwide unique context tag generated by the local daemon (in a way similar to the way the
local daemon generates systemwide unique task IDs). Since it is a local operation, pvm_newcontext is very fast. The returned
context can then be broadcast to all the tasks that are cooperating on this part of the application. Each of the tasks calls
pvm_setcontext, which switches the active context and returns the old context tag so that it can be restored at the end of the
module by another call to pvm_setcontext. Pvm_freecontext and pvm_getcontext are used to free memory associated
with a context tag and to get the value of the active context tag, respectively.

Spawned tasks inherit the context of their parent. Thus, if you wish to add context to an existing parallel routine already written in
PVM, you need to add only four lines to the source:
 int mycxt, oldcxt;
 /* near the beginning of the routine set a new context */
 mycxt = pvm_newcontext();
 oldcxt = pvm_setcontext(mycxt);

 /* spawn slave tasks to help */
 /* slave tasks require no source code change */
 /* leave all the PVM calls in master unchanged */

 /* just before exiting the routine restore previous context */
 mycxt = pvm_setcontext(oldcxt);
 pvm_freecontext(mycxt);

 return;

PVM has always had message handlers internally, which were used for controlling the virtual machine. In PVM 3.4 the ability to
define and delete message handlers was raised to the user level so that parallel programs can be written that can add new
features while the program is running.

The two new message handler functions are
 mhid = pvm_addmhf(src, tag, context, *function);
 pvm_delmhf(mhid);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvm_delmhf(mhid);

Once a message handler has been added by a task, whenever a message arrives at this task with the specified source, message
tag, and communication context, the specified function is executed. The function is passed the message so that it may unpack the
message if desired. PVM places no restrictions on the complexity of the function, which is free to make system calls or other PVM
calls. A message handler ID is returned by the add routine, which is used in the delete message handler routine.

There is no limit on the number of handlers you can set up, and handlers can be added and deleted dynamically by each
application task independently.

By setting up message handlers, you can now write programs that can dynamically change the features of the underlying virtual
machine. For example, message handlers can be added that implement active messages; the application then can use this form
of communication rather than the typical send/receive. Similar opportunities exist for almost every feature of the virtual machine.

The ability of the application to adapt features of the virtual machine to meet its present needs is a powerful capability that has yet
to be fully exploited in Beowulf clusters.
/* Adapting available Virtual Machine features with
 * user redefined message handlers.
 */
#include <stdio.h>
#include <pvm3.h>

#define NWORK 4
#define MAIN_MSGTAG 123
#define CNTR_MSGTAG 124
int counter = 0;

int handler(int mid) {
 int ack, incr, src;

 /* Increment Counter */
 pvm_upkint(&incr, 1, 1);
 counter += incr;
 printf("counter = %d\n", counter);

 /* Acknowledge Counter Task */
 pvm_bufinfo(mid, (int *) NULL, (int *) NULL, &src);
 pvm_initsend(PvmDataDefault);
 ack = (counter > 1000) ? -1 : 1;
 pvm_pkint(&ack, 1, 1);
 pvm_send(src, CNTR_MSGTAG);

 return(0);
}

int main(int argc, char **argv)
{
 int ack, cc, ctx, bufid, incr=1, iter=1, max, numt, old, value=1, src;
 char *args[2];

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Generate New Message Context for Counter Task messages */
 ctx = pvm_newcontext();

 /* Register Message Handler Function for Independent Counter */
 pvm_addmhf(-1, CNTR_MSGTAG, ctx, handler);

 /* Spawn 1 Counter Task */
 args[0] = "counter"; args[1] = (char *) NULL;
 old = pvm_setcontext(ctx); /* Set Message Context for Task */
 if (pvm_spawn("example3", args, PvmTaskDefault,
 (char *) NULL, 1, (int *) NULL) != 1)
 counter = 1001; /* Counter Failed to Spawn, Trigger Exit */
 pvm_setcontext(old); /* Reset to Base Message Context */

 /* Spawn NWORK Worker Tasks */
 args[0] = "worker";
 numt = pvm_spawn("example3", args, PvmTaskDefault,
 (char *) NULL, NWORK, (int *) NULL);

 /* Increment & Return Worker Values */
 do {
 /* Get Value */
 bufid = pvm_recv(-1, MAIN_MSGTAG);
 pvm_upkint(&value, 1, 1);
 max = (value > max) ? value : max;
 printf("recvd value = %d\n", value);

 /* Send Reply */
 pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);
 if (counter <= 1000) value += iter++;
 else { value = -1; numt--; } /* Tell Workers to Exit */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&value, 1, 1);
 pvm_send(src, MAIN_MSGTAG);
 } while (numt > 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("Max Value = %d\n", max);
 }

 /* If I am a Worker Task */
 else if (cc > 0 && !strcmp(argv[1], "worker")) {
 /* Grow Values Until Done */
 do {
 /* Send Value to Master */
 value *= 2;
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&value, 1, 1);
 pvm_send(cc, MAIN_MSGTAG);
 /* Get Incremented Value from Master */
 pvm_recv(cc, MAIN_MSGTAG);
 pvm_upkint(&value, 1, 1);
 } while (value > 0);
 }
 /* If I am a Counter Task */
 else if (cc > 0 && !strcmp(argv[1], "counter")) {
 /* Grow Values Until Done */
 do {
 /* Send Counter Increment to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&incr, 1, 1);
 pvm_send(cc, CNTR_MSGTAG);
 incr *= 2;
 /* Check Ack from Master */
 pvm_recv(cc, CNTR_MSGTAG);
 pvm_upkint(&ack, 1, 1);
 } while (ack > 0);
 }

 pvm_exit();

 return(0);
}

In a typical message-passing system, messages are transient, and the focus is on making their existence as brief as possible by
decreasing latency and increasing bandwidth. But in a growing number of situations in the parallel applications seen today,
programming would be much easier if one could have persistent messages. This is the purpose of the Message Box feature in
PVM.

The Message Box is an simple key/value database in the virtual machine. The key is a user-specified name, and the value is any
valid PVM message. Given that there are no restrictions on the complexity or size of a PVM message, the database is simple, but
remarkably flexible.

Four functions make up the Message Box:
 index = pvm_putinfo(name, msgbuf, flag)
 pvm_recvinfo(name, index, flag)
 pvm_delinfo(name, index, flag)
 pvm_getmboxinfo(pattern, matching_names, info)

Tasks can use regular PVM pack routines to create an arbitrary message and then use pvm_putinfo() to place this message
into the Message Box with an associated name. Copies of this message can be retrieved by any PVM task that knows the name.
If the name is unknown or is changing dynamically, then pvm_getmboxinfo () can be used to find the list of names active in
the Message Box. The flag defines the properties of the stored message, such as who is allowed to delete this message, whether
this name allows multiple instances of messages, and whether a put to the same name can overwrite the message.

The Message Box has been used for many other purposes. For example, the dynamic group functionality in PVM is implemented
in the new Message Box functions; the Cumulvs computational steering tool uses the Message Box to query for the instructions
on how to attach to a remote distributed simulation; and performance monitors leave their findings in the Message Box for other
tools to use.

The capability to have persistent messages in parallel computing opens up many new application possibilities not only in high-
performance computing but also in collaborative technologies.
/* Example using persistent messages to adapt to change
 * Monitor tasks are created and killed as needed
 * Information is exchanged between these tasks using persistent messages
 */

#include <stdio.h>
#include <sys/time.h>
#include <pvm3.h>

#define MSGBOX "load_stats"

int main()
{
 int cc, elapsed, i, index, load, num;
 struct timeval start, end;
 double value;

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Periodically Spawn Load Monitor, Check Current System Load */
 do {
 /* Spawn Load Monitor Task */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Spawn Load Monitor Task */
 if (pvm_spawn("example4", (char **) NULL, PvmTaskDefault,
 (char *) NULL, 1, (int *) NULL) != 1) {
 perror("spawning load monitor"); break;
 }
 sleep(1);

 /* Check System Load (Microseconds Per Megaflop) */
 for (i=0, load=0.0, num=0 ; i < 11 ; i++)
 if (pvm_recvinfo(MSGBOX, i, PvmMboxDefault) >= 0) {
 pvm_upkint(&elapsed, 1, 1);
 load += elapsed; num++;
 }
 if (num)
 printf("Load Avg = %lf usec/Mflop\n",
 (double) load / (double) num);
 sleep(5);
 } while (1);
 }

 /* If I am a Load Monitor Task */
 else if (cc > 0) {
 /* Time Simple Computation */
 gettimeofday(&start, (struct timezone *) NULL);
 for (i=0, value=1.0 ; i < 1000000 ; i++)
 value *= 1.2345678;
 gettimeofday(&end, (struct timezone *) NULL);
 elapsed = (end.tv_usec - start.tv_usec)
 + 1000000 * (end.tv_sec - start.tv_sec);

 /* Dump Into Next Available Message Mbox */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&elapsed, 1, 1);
 index = pvm_putinfo(MSGBOX, pvm_getsbuf(),
 PvmMboxDefault | PvmMboxPersistent
 | PvmMboxMultiInstance | PvmMboxOverWritable);

 /* Free Next Mbox Index for Next Instance (Only Save 10) */
 pvm_delinfo(MSGBOX, (index + 1) % 11, PvmMboxDefault);
 }

 pvm_exit();

 return(0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Numerical and Scientific Software for Clusters

Overview
Victor Eijkhout and Jack Dongarra

In this chapter we discuss numerical software for clusters. We focus on some of the most common numerical operations: linear
system solving, eigenvalue computations, and fast Fourier transform.

Numerical operations such as linear system solving and eigenvalue calculations can be applied to two different kinds of matrix:
dense and sparse. In dense systems, essentially every matrix element is nonzero; in sparse systems, a sufficiently large number
of matrix elements is zero that a specialized storage scheme is warranted; for an introduction to sparse storage, see [12].
Because the two classes are so different, usually different numerical libraries apply to them. For dense systems, we discuss
ScaLAPACK and PLAPACK as the choices for both system solving and eigenvalue computations. For sparse systems, we
discuss Arpack for eigenvalue problems. There exist two classes of algorithms for solving sparse linear systems: direct methods
and iterative methods. We will discuss SuperLU as an example of a direct solver and PETSc and Aztec as examples of iterative
solvers.

Fast Fourier transforms (FFTs) typically are applied many times to different data. For FFTs we discuss the FFTW package
(Section 12.4), which is probably better optimized than any other free FFT package.

In addition to numerical software operations, we discuss the issue of load balancing. We focus on two software packages,
ParMetis and Chaco, which can be used in the above-mentioned sparse packages.

We conclude this chapter with a brief list of some popular science applications that run on Linux clusters, as well as a list of
software for linear algebra that is freely available on the Web.

A practical point. Some of these packages are written in Fortran, some in C. While calling a Fortran package from C is relatively
easy by observing linker naming conventions, the reverse direction can be difficult unless the package was designed to be called
from Fortran. We will remark on the implementation language of each package, and the ease with which it can be interfaced to
other languages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 Dense Linear System Solving
The problem in solving linear systems is: Given a square matrix A and a vector b, find a vector x such that Ax = b. In the most
general case, the matrix is stored as a distributed array, and the system is solved by Gaussian elimination. This is the basic
algorithm in ScaLAPACK and PLAPACK, the two packages we discuss for solving a linear system with a distributed dense
coefficient matrix. (Sparse systems are discussed in Section 12.2.)

On a single processor, the algorithm for dense linear system solving is fairly obvious, although a good deal of optimization is
needed for high performance (see Section 12.6.) In a distributed context, achieving high performance—especially performance
that scales up with increasing processor numbers—requires radical rethinking about the basic data structures. Both ScaLAPACK
and PLAPACK use block-cyclic data distributions. In Section 11.2.1, we focus on how to specify data in this distribution in
ScaLAPACK, since it is the more widely used package; we then briefly compare PLAPACK's calling style.

12.1.1 ScaLAPACK

ScaLAPACK is a parallel version of LAPACK, both in function and in software design. Like the earlier package, ScaLAPACK
targets linear system solution and eigenvalue calculation for dense and banded matrices. Note that, while sparse matrices are
often of banded form, use of the band storage is usually not an efficient way of dealing with sparse systems; other software
packages are better suited to that. In particular, one should use SuperLU (section 12.2.1) for sparse linear systems and Arpack
(section 12.3.2) for eigenvalue computations.

In a way, ScaLAPACK is the culmination of a line of linear algebra packages that started with LINPACK and EISPACK. The
coding of those packages was fairly straightforward, using at most Basic Linear Algebra Subprograms (BLAS) Level-1 operations
as an abstraction level. LAPACK [4, 63] attains high efficiency on a single processor (or a small number of shared-memory
processors) through the introduction of blocked algorithms and the concomitant use of BLAS Level-3 operations. ScaLAPACK
uses these blocked algorithms in a parallel context to attain scalably high performance on parallel computers.

The seemingly contradictory demands of portability and efficiency are realized in ScaLAPACK through confining the relevant parts
of the code to two subroutine libraries: the BLAS for the computational kernels and the BLACS (Basic Linear Algebra
Communication Subprograms) for communication kernels. While the BLACS come with ScaLAPACK, the user is to supply the
BLAS library; see Section 12.6.

ScaLAPACK is written in Fortran, as are the examples in this section. The distribution has no C prototypes, but interfacing to a C
program is simple, observing the usual name conversion conventions.

ScaLAPACK Parallel Initialization
ScaLAPACK relies for its communications on the BLACS, (Basic Linear Algebra Communication Subprograms) (Basic Linear
Algebra Communication Subprograms) which offers an abstraction layer over MPI. Its main feature is the ability to communicate
submatrices, rather than arrays, and of both rectangular and trapezoidal shape. The latter is of obvious value in factorization
algorithms. We will not go into the details of the BLACS here; instead, we focus on the aspects that come into play in the program
initialization phase.

Suppose you have divided your cluster into an approximately square grid of nprows by npcols processors. The following two
calls set up a BLACS processor grid - its handle is returned as ictxt - and return the current processor number (by row and
column) in it:
 call sl_init(ictxt,nprows,npcols)
 call blacs_gridinfo(ictxt,nprows,npcols,myprow,mypcol)

Correspondingly, at the end of your code you need to release the grid by
 call blacs_gridexit(ictxt)

ScaLAPACK Data Format
Creating a matrix in ScaLAPACK is, unfortunately, not simple, even though none of the indirect addressing problems of sparse
storage concern us here. The difficulty lies in the fact that for scalably high performance on factorization algorithms, a storage
mode called "two-dimensional block-cyclic" storage is used. The blocking is what enables the use of BLAS Level-3 routines; the
cyclic storage is needed for scalable parallelism.

Specifically, the block-cyclic storage implies that a global (i, j) coordinate in the matrix gets mapped to a triplet of (p, l, x) for both
the i and the j directions, where p is the processor number, l the block, and x the offset inside the block.

The block size has to be decided by the user; 64 is usually a safe bet. For generality, let us assume that block sizes bs_i and
bs_j have been chosen. First we determine how much storage is needed for the local part of the matrix:
 mlocal = numroc(mglobal,bs_i,myprow,0,nprows)
 nlocal = numroc(nglobal,bs_j,mypcol,0,npcols)

where numroc is a library function. (The m and n sizes of the matrix need not be equal, since ScaLAPACK also has routines for
QR factorization and such.)

Filling in a matrix requires the conversion from (i, j) coordinates to (p, l, x) coordinates. It is best to use conversion functions
 p_of_i(i,bs,p) = mod(int((i-1)/bs),p)
 l_of_i(i,bs,p) = int((i-1)/(p*bs))
 x_of_i(i,bs,p) = mod(i-1,bs)+1

that take i or j as input, as well as the block size and the number of processors in that direction. The global matrix element (i, j) is
then mapped to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pi = p_of_i(i,bs_i,nprows)
 li = l_of_i(i,bs_i,nprows)
 xi = x_of_i(i,bs_i,nprows)

 pj = p_of_i(j,bs_j,npcols)
 lj = l_of_i(j,bs_j,npcols)
 xj = x_of_i(j,bs_j,npcols)

 mat(li*bs_i+xi,lj*bs_j+xj) = mat_global(i,j)

if the current processor is (pi, pj).

Calling ScaLAPACK Routines
ScaLAPACK routines adhere to the LAPACK naming scheme: PXYYZZZ, where P indicates parallel; X is the "precision," meaning
single or double, real or complex; YY is the shape, with GE for rectangular and TR for triangular; and ZZZ denotes the function.

For most functions there is a "simple driver" (for instance, SV for system solving), which makes the routine name in our example
PDGESV for double precision, as well as an "expert driver," which has X attached to the name, PDGESVX in this example. The
expert driver usually has more input options and usually returns more diagnostic information.

In the call to a ScaLAPACK routine, information about the matrix has to be passed by way of a descriptor:
 integer desca(9)
 call descinit(desca,
 > mglobal,nglobal, bs_i,bs_j, 0,0,ictxt,lda,ierr)
 call pdgesv(nglobal,1, mat_local,1,1, desca,ipiv,
 > rhs_local,1,1, descb, ierr)

where lda>mlocal is the allocated first dimension of a.

Linear System Solution Routines
ScaLAPACK linear solver routines support dense and banded matrices. The drivers for solving a linear system are PxyySV,
where yy=GE or GB for dense and band, respectively. We do not discuss here other cases such as positive definite band, nor do
we discuss band matrices, which are stored by using a variant of the scheme described above. The reader is referred to the
ScaLAPACK Users' Guide [15] for details. The input matrix A of the system is on output overwritten with the LU factorization, and
the right-hand side B is overwritten with the solution. Temporary storage is needed only for the (integer) pivot locations.

12.1.2 PLAPACK

PLAPACK [86] is a package with functionality similar to that of ScaLACK but with a different calling style. It also relies on
optimized BLAS routines and is therefore able to achieve a high performance. Whereas ScaLAPACK uses a calling style that is
similar to Fortran, to stay close to its LAPACK roots PLAPACK uses a more object-oriented style. Its interface is similar in
philosophy to that of the PETSc package (discussed later in this chapter).

As an illustration of this object-oriented handling of matrices and vectors, here are matrix-vector multiply and triangular system
solve calls:
 PLA_Gemv(PLA_NO_TRANS, one, A, x, zero, b);
 PLA_Trsv(PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE,
 PLA_UNIT_DIAG, A, b);

The distribution of the matrix over the processors is induced as a "distribution template" declared by the user and is passed to the
matrix creation call:
 PLA_Matrix_create(datatype, size, size,
 templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A);

PLAPACK wins over ScaLAPACK in user-friendliness in filling in the matrix. As in PETSc, matrix elements can be specified
anywhere; and instead of being written directly into the data structure, they are passed by a
PLA_API_axpy_matrix_to_global call. On the other hand, PLAPACK lacks ScaLAPACK's sophistication of simple and
expert drivers and pays less attention to the issue of numerical stability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 Sparse Linear System Solving
For sparse matrices, more economical storage can be used, but the most foolproof algorithm is still Gaussian elimination. This is
the principle behind SuperLU (Section 12.2.1). In certain applications, especially physics-based ones, the matrix has favorable
properties that allow so-called iterative solution methods, which can be much more efficient than Gaussian elimination. The Aztec
and PETSc packages are built around such iterative methods (Sections 12.2.2 and 12.2.3).

12.2.1 SuperLU

SuperLU [67, 112] is one of the foremost direct solvers for sparse linear system. It is available in single-processor, multithreaded,
and parallel versions.

One of the aims of SuperLU is obtaining a high computational efficiency. To this end it finds cliques in the matrix graph.
Eliminating these reduces the cost of the graph algorithms used; and since cliques lead to dense submatrices, it enables the use
of higher-level BLAS routines.

The sequential and threaded versions of SuperLU use partial pivoting for numerical stability. Partial pivoting is avoided in the
parallel version, however, because it would lead to large numbers of small messages. Instead, "static pivoting" is used, with repair
of zero pivots during run time. To compensate for these numerically suboptimal strategies, the solution process uses iterative
refinement to obtain the full available precision.

Like ScaLAPACK, SuperLU has both simple drivers and expert drivers; the latter give the user opportunity for further steering,
return more detailed information, and are more sophisticated in terms of numerical precision.

While SuperLU accepts the user's matrix data structure (it must be in compressed column format), this is not a critical feature as it
is in our discussion of the relative merits of PETSc (Section 12.2.3) and Aztec (Section 12.2.2), for the following reason. SuperLU,
being a direct method, generates large amounts of data for the factorization, making the savings from reusing the user data and
the extra matrix storage in the parallel case relatively unimportant.

ScaLAPACK accepts two input modes: one where the matrix is distributed and the other where the matrix is replicated on every
processor. The former mode is less efficient because it requires more data redistribution.

SuperLU is written in C and cannot easily be used from Fortran. The standard installation comes with its own collection of BLAS
routines; one can edit the makefile to ensure that an optimized version of the BLAS library is used.

12.2.2 Aztec and Trilinos

The Aztec package [57, 6] has as its main focus linear system solving. While it is not so sophisticated as PETSc, it has two
advantages:

It has far fewer routines, so the learning curve is conceivably shorter.

It uses the user's matrix data structure and thus is easier to integrate in existing applications and to avoid
duplication of storage. (See Section 12.2.3 for a discussion of this issue in PETSc.)

Thus, Aztec is an attractive choice for supplying matrix-vector product and linear system solution routines for use in Arpack
(Section 12.3.2).

Aztec is written in C but supports a full set of Fortran interfaces.

Aztec supports a few parallel sparse matrix formats, in particular a parallel form of compressed row storage. The user first
partitions the matrix over the parallel processors using the global numbering for the element indices; Aztec then transforms the
matrix to a local (on-processor) indexing scheme.

The following code illustrates the gist of an Aztec iterative solution program:
 AZ_transform(proc_config,&external, idx,mat_el,update,
 &update_index,&extern_index,&data_org, n_update,
 index,bpntr,rpntr,&cpntr,AZ_MSR_MATRIX);
 AZ_defaults(options,params);
 options[AZ_conv] = AZ_r0;
 params[AZ_tol] = rtol;
 options[AZ_solver] = AZ_bicgstab;
 options[AZ_precond] = AZ_Jacobi;
 options[AZ_max_iter] = maxit;
 AZ_reorder_vec(invec,data_org,update_index,rpntr);
 AZ_solve(outvec,invec, options,params,
 index,idx,rpntr,cpntr,bpntr,mat_el,data_org,
 status,proc_config);
 iterations = status[AZ_its];
 convergence = (status[AZ_why]==AZ_normal);

Aztec is no longer under development but has been incorporated in a larger Sandia project, Trilinos [122],[1] that includes linear
and nonlinear solvers, with time-stepping methods and eigensolvers planned.

Trilinos is based on an object-oriented design with matrix/vector classes and an abstract solver interface that are specified pure
virtual. A linear algebra library called Epetra implements this interface, but the user can write a matrix and vector class, thereby
using the Trilinos algorithms on the user data structures.

Apart from the Epetra lower layer, Trilinos contains the algorithms of Aztec, plus (among others) Belos (a block Krylov package),
IFPACK (which has Schwarz preconditioners with local ILU), and the ML algebraic multilevel package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.3 PETSc

PETSc is a library for the solution of partial differential equations. It features tools for manipulating sparse matrix data structures, a
sizable repertoire of iterative linear system solvers and preconditioners, and nonlinear solvers and time-stepping methods.
Although it is written in C, it includes Fortran and F90 interfaces.

PETSc differs from other libraries in a few aspects. First, it is usable as a tool box: many low-level routines can be used to
implement new methods. In particular, PETSc provides tools for parallel computation (VecScatter objects) that offer an
abstraction layer over straight MPI communication.

Second, PETSc's approach to parallelism is very flexible. Many routines operate on local matrices as easily as on distributed
ones. Impressively, during the construction of a matrix any processor can specify the value of any matrix element. This approach,
for instance, facilitates writing parallel FEM codes because, along processor boundaries, elements belonging to different
processors will contribute to the value of the same matrix element.

A third difference between PETSc and other packages (often counted as a disadvantage) is that its data structures are internal
and not explicitly documented. Unlike Aztec (Section 12.2.2), which accepts the user's matrix, PETSc has its own data structure,
built up by passing matrix elements through function calls.
 MatCreate(comm,...,&A);
 for (i=...)
 for (j= ...)
 MatSetValue(A,...,i,j,value,...);

Thus, the user faces the choice of maintaining duplicate matrices (one in the native user format and one in PETSc format) with
the resulting storage overhead or of using PETSc throughout the code. However, because PETSc provides a large set of
operations, many applications can be written using PETSc for all matrix operations. In this case, there is no duplicate storage
because the only storage is within the PETSc routines. In addition, PETSc provides a way, though what are called "shell" objects,
to make direct use of application data structures. This provides a modular alternative to the "reverse communication" approach
used by Arpack.

Once PETSc data objects have been built, they are used in an object-oriented manner, where the contents and the exact nature
of the object are no longer visible:
 MatMult(A,X,Y);

Likewise, parameters to the various objects are kept internal:
 PCSetType(pc,PCJACOBI);

Of particular relevance in the current context is that after the initial creation of an object, its parallel status is largely irrelevant.

[1]As of this writing, a first public release of Trilinos is scheduled for the second half of 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 Eigenvalue Problems
Eigenvalue problems involve the following: Given a matrix A, find the numbers λ and vectors x such that Ax = λx, or more
generally, Ax = λMx, where M is another matrix. The distinction between sparse and dense matrices does not play so large a role
as it does in systems solving; for eigenvalues the main distinction is whether one wants all the possible λ values and attendant x
vectors, or just a subset, typically the few largest or smallest. ScaLAPACK and PLAPACK are packages that start with a dense
matrix to calculate all or potentially part of the spectrum (Section 12.3.1), while Arpack (Section 12.3.2) is preferable when only
part of the spectrum is wanted; since it uses reverse communication, Arpack can handle matrices in sparse format.

12.3.1 Eigenvalue Computations in ScaLAPACK and PLAPACK

In addition to the linear system solvers mentioned above, ScaLAPACK has eigenvalue routines. For the symmetric eigenvalue
problem there are driver routines; for the nonsymmetric (non-Hermitian) problem, you need to call individual computational
routines.

For the single- and double-precision real symmetric eigenvalue problem, there are simple drivers PSSYEV and
PDSYEV, respectively, as well as expert drivers with X appended.

For the complex Hermitian problem there are only expert drivers: PCHEEVX and PZHEEVX for single and double
precision, respectively.

The nonsymmetric eigenvalue problem is tackled in two steps: reduction to upper Hessenberg form by PxGEHERD,
followed by reduction of the Hessenberg matrix to Schur form by PxLAHQR.

ScaLAPACK has routines for the generalized eigenvalue problem only in the symmetric (Hermitian) definite case:
PxSYGST (with x=S,D), and PxHEGST (with x=C,Z).

PLAPACK version 3.2 (announced for release in late 2003) contains an implementation of the "Holy Grail" eigensolver, which is
also present in LAPACK. The functionality of the PLAPACK eigensolvers is twofold. First, there is a parallel eigensolver for
tridiagonal symmetric matrices extending the algorithm presented by Dhillon and Parlett [32]; this routine allows the computation
of all or a subset of the eigenvalues and eigenvectors with a given number of processors. This is claimed to be the fastest parallel
tridiagonal eigensolver available. Second, the tridiagonal eigensolver is merged with a routine to reduce a dense symmetric matrix
to tridiagonal form and with a routine for the backtransformation, thus obtaining a dense eigensolver for symmetric matrices. Large
problems (n > 100,000) can be tackled with this routine on a 256-processor machine.

12.3.2 Eigenvalue Computations in Arpack

Often, in eigenvalue computations, not all eigenvalues or eigenvectors are needed. In such cases One is typically interested in the
largest or smallest eigenvalues of the spectrum, or eigenvalues clustered around a certain value.

While ScaLAPACK has routines that can compute a full spectrum, Arpack focuses on the computation of a small number of
eigenvalues and corresponding eigenvectors. It is based on the Arnoldi method. [2]

The Arnoldi method is unsuitable for finding eigenvalues in the interior of the spectrum, so such eigenvalues are found by "shift-
invert": Given some σ close to the eigenvalues being sought, one solves the eigenvalue equation (A - σ)-1 x = μx, since
eigenvalues of A close to σ will become the largest eigenvalues of (A - σ)-1.

Reverse Communication Program Structure
The Arnoldi method has the attractive property of accessing the matrix only through the matrix-vector product operation. However,
finding eigenvalues other than the largest requires solving linear systems with the given matrix or one derived from it.

Since the Arnoldi method can be formulated in terms of the matrix-vector product operation, Arpack (strictly speaking) never
needs access to individual matrix elements. To take advantage of this fact, Arpack uses a technique called "reverse
communication," which dispenses with the need for the user to pass the matrix to the library routines. Thus, Arpack can work with
any user data structure or even with matrices that are only operatively defined.

With reverse communication, whenever a matrix operation is needed, control is passed back to the user program, with a return
parameter indicating what operation is being requested. The user then satisfies this request, with input and output in arrays that
are passed to the library, and calls the library routine again, indicating that the operation has been performed.

Thus, the structure of a routine using Arpack will be along the following lines:
 ido = 0
10 continue
 call dsaupd(ido,)
 if (ido.eq.-1 .or. ido.eq.1) then
C perform matrix vector product
 goto 10
 end if

For the case of shift-invert or the generalized eigenvalue problem, the conditional has more clauses, but the structure stays the
same.

Arpack can be used in a number of different modes, covering the regular and generalized eigenvalue problem, symmetry of the
matrix A (and possibly M), and various parts of the spectrum to be computed. Rather than explaining these modes, we refer the
reader to the excellent example drivers provided in the Arpack distribution.

Practical Aspects of Using Arpack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arpack is written in Fortran. No C prototypes are given, but the package is easily interfaced to a C code, observing the usual linker
naming conventions for Fortran and C routines. The parallel version of Arpack, PArpack, can be based on either MPI or the
BLACS, the communication layer of Scalapack; see Section 12.1.1. Arpack uses LAPACK and, unfortunately, relies on an older
version than the current. While this version is included in the distribution, it cannot easily be replaced by a vendor-optimized
version.

The flip side of the data independence obtained by reverse communication is that the user must provide a matrix-vector product, a
task that—especially in the parallel case—is not trivial. Also, in the shift-invert case the user must provide a linear system solver.
We recommend the use of a package such as Aztec [57] (see Section 12.2.2), or PETSc [8] (see Section 12.2.3).

[2]In fact, the pure Arnoldi method would have prohibitive memory demands; what is used here is the "implicitly restarted Arnoldi
method" [106].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4 FFTW
FFTW [40, 37], the "Faster Fourier Transform in the West," is arguably the best public-domain FFT package available. It features
both real and complex multidimensional transforms and is available in sequential, multithreaded, and parallel versions.[3] FFTW
uses runtime optimization of the desired transform to adapt to the runtime platform. Furthermore, it claims that the optimizer will
become more sophisticated over time.

Since Fourier transforms are typically executed many times on different data, FFTW has separate create/destroy and execute
calls. A notable feature of the create call is a flag with values FFTW_ESTIMATE and FFTW_MEASURE, which determines the
dynamic choice of a suitable implementation of the desired transform. With the former value, the package picks an
implementation at essentially no cost, but probably with suboptimal performance. The latter value instructs FFTW to run and
measure the execution time of several FFTs in order to find the best way to compute the desired transform. This process may
take several seconds, depending on the platform and the size of the transform. Further flags FFTW_PATIENT and
FFTW_EXHAUSTIVE can give even "more optimal" performance. Transform implementations found through this search
mechanism are stored in a datatype fftw_plan; plans can be exported and imported between runs in a mechanism called
"wisdom."

Also influencing the speed of FFTW is the fact that it can take advantage of SIMD instructions, such as SSE/SSE2 (Intel), 3DNow!
(AMD), and Altivec (PowerPC). The user must align data correctly, as described in the manual.

FFTW is written in C, but wrapper code is provided to facilitate an interface to Fortran.

[3]As of this writing, version 3 of the package does not yet support MPI parallelism, but version 2 does. The two versions have
slightly different calling conventions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5 Load Balancing
Many applications can be distributed in more than one way over a parallel architecture. Even if one distribution is the natural result
of one component of the computation (for instance, setup of a grid and generation of the matrix), a subsequent component (for
instance, an eigenvalue calculation) may be so labor intensive that the cost of a full data redistribution may be outweighed by
resulting gains in parallel efficiency.

In this section we discuss two packages for graph partitioning: ParMetis and Chaco. These packages aim at finding a partitioning
of a graph that assigns roughly equally sized subgraphs to processors, thereby balancing the work load, while minimizing the size
of the separators and the consequent communication cost.

12.5.1 ParMetis

ParMetis [99, 84] is a parallel package for mesh or graph partitioning for parallel load balancing. It is based on a three-step
coarsening/partitioning/uncoarsening algorithm that the authors claim is faster than multiway spectral bisection. It can be used in
several modes, for instance, repartitioning graphs from adaptively refined meshes or partitioning graphs from multiphysics
simulations.

The input format of ParMetis, in its serial form, is a variant on compressed matrix storage. The adjacency of each element is
stored consecutively (excluding the diagonal, but for each pair u, v storing both (u, v) and (v, u)), with a pointer array indicating
where each element's data starts and ends. Both vertex and edge weights can be specified optionally. The parallel version of the
graph input format takes blocks of consecutive nodes and allocates these to subsequent processors. An array that is identical on
each processor then indicates which range of variables each processor owns. The distributed format uses global numbering of the
nodes.

The output of ParMetis is a mapping of node numbers to processors. No actual redistribution is performed.

12.5.2 Chaco

The Chaco [24] package comprises several algorithms for graph partitioning, including inertial, spectral, Kernighan-Lin, and
multilevel algorithms. It can be used in two modes:

stand-alone In this mode, input and output are done through files.

library Chaco can be linked to C or Fortran codes, and all data is passed through arrays.

Unlike ParMetis, Chaco runs only sequentially.

Zoltan [128] is a package for dynamic load balancing that builds on top of Chaco. Thanks to an object-oriented design, it is data
structure neutral, so it can be interfaced by using existing user data structures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6 Support Libraries
The packages in this chapter rely on two very common support libraries: MPI and BLAS. Since you are reading this book, we
assume that you have an MPI library somewhere.

The Basic Linear Algebra Subprograms [64] are fairly simple linear algebra kernels that you can easily code yourself in a few
lines. You can also download the source and compile the library [16]. Doing so, however, is unlikely to give good performance, no
matter the level of sophistication of your compiler. The recommended way is to use vendor libraries that are available on a number
of platforms, for instance, in the ESSL library on IBM machines and the mkl on Intel. On platforms without such vendor libraries (or
sometimes even if they are present) we recommend that you install the ATLAS [125] (for Automatically Tuned Linear Algebra
Software) package, which gives a library tuned to your specific machine. In a nutshell, ATLAS has a search algorithm that
generates many implementations of each kernel, saving the one with the highest performance. This will far outperform anything
you can write by hand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.7 Scientific Applications
In the preceding sections we described numerical libraries, that is, software that can be linked to application programs that you
write. In this section we list some stand-alone scientific applications that can run on Linux clusters. Such applications typically take
an input file of model parameters and specifications and output another file containing the results of the calculation. The following
list is obviously incomplete: for each application area there are several applications with similar functionality, and more
applications are released all the time.

Gaussian [42] is a connected system of programs for performing semi-empirical and ab initio molecular orbital
quantum chemical calculations. It can be used to study molecules and reactions under a wide range of conditions,
including both stable species and compounds that are difficult or impossible to observe experimentally, such as
short-lived intermediates and transition structures. It is currently available for Unix/Linux, MS Windows, and Mac OS
X platforms.

Fluent [38] is a computational fluid dynamics package, used for such applications as environmental control
systems, rotor-airframe interactions, propulsion, reactor modeling, airflow around buildings, rotating cavities, fan
noise modeling, and vortex shedding. It is available for Unix/Linux and MS Windows clusters.

MSC/Nastran [77] is a computer aided engineering / structural finite element application developed by NASA. It is
available for Unix/Linux platforms, MS Windows, and vector machines such as Fujitsu and NEC.

LS-DYNA [69] is a general-purpose transient dynamic finite element program. LS-DYNA is optimized for shared-
and distributed-memory Unix, Linux, and Windows-based platforms. LS-DYNA Applications include
crashworthiness, occupant safety, metal forming, biomedical, fluid-structure interaction, and earthquake
engineering.

NAMD [76] is a molecular dynamics code, available for workstation clusters with Unix/Linux, MS Windows, or Mac
OS X.

NWChem [81] provides many methods to compute the properties of molecular and periodic systems using standard
quantum mechanical descriptions of the electronic wavefunction or density. In addition, NWChem can perform
classical molecular dynamics and free energy simulations. It is available free of charge (certain countries
embargoed), with support for various Unix/Linux clusters, MS Windows, and vector computers such as the Fujitsu
VPP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.8 Freely Available Software for Linear Algebra on the Web
Tables 12.1-12.5 present a list of freely available software for the solution of linear algebra problems. The interest is in software
for high-performance computers that is available in "open source" form on the web for solving problems in numerical linear
algebra, specifically dense, sparse direct and iterative systems and sparse iterative eigenvalue problems.

Additional pointers to software can be found at:
www.nhse.org/rib/repositories/nhse/catalog/\hyper@hash{}Numerical_Programs_and_Routines. A survey of Iterative Linear
System Solver Packages can be found at: www.netlib.org/utk/papers/iterative-survey.

Notes for Tables 12.1-12.5:
Type: Real for Real arithmetic and Complex for Complex arithmetic

Support: An email address where you can send questions and bug reports.

Language: f77(may also mean Fortran 95), C, C++

Mode: Seq for Sequential, vector and/or SMP/multithreaded versions

Dist for distributed memory message passing (M = MPI, P = PVM)

Dense: Dense, triangular, banded, tridiagonal matrices

Sparse: A sparse matrix representation is used to contain the data.

Direct: A direct approach is used to factor and solve the system.

SPD: The matrix is symmetric and positive definite

Gen: The matrix is general

Iterative: An iterative method is used to solve the system.

P: when used in a column labeled "Sparse Iterative," indicates preconditioners

Sparse eigenvalue: An iterative method is used to find some of the eigenvalues

Sym: The matrix is symmetric (Hermitian in the complex case)

Table 12.1: Support routines for numerical linear algebra. LINALG is a collection of software that is available but too varied to
describe.

Package Support Type Language Mode Dense Sparse
Direct

Sparse
Iterative

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen

ATLAS yes X X X X X X

BLAS yes X X X X X X

FLAME yes X X X X X X

LINALG * ?

MTL yes X X X X

NETMAT yes X X X X

NIST S-
BLAS

yes X X X X X X X X X

PSBLAS yes X X X X X M X X X X

SparseLib++ yes X X X X X X X X X

Table 12.2: Direct solvers for systems of linear equations.

Package Support Type Language Mode Dense Sparse
Iterative

Sparse
Eigenvalue

 Real Complex f77 c c++ Seq Dist SPD Gen Sym Gen

LAPACK yes X X X X X X

LAPACK95 yes X X 95 X X

NAPACK yes X X X X X X

PLAPACK yes X X X X M X

PRISM yes X X X M X

ScaLAPACK yes X X X X M/P X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 12.3: Sparse direct solvers.

Package Support Type Language Mode Dense Sparse
Direct

Sparse
Iterative

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen

HSL yes X X X X X X

MFACT yes X X X X

MP_SOLVE yes X X X M X

MUMPS yes X X X X X M X X

PSPASES yes X X X M X

SPARSE yes X X X X X X

SPARSEQR yes X X X X X X

SPOOLES yes X X X X M X X X X

SuperLU yes X X X X X M X X

TAUCS yes X X X X X X X X

UMFPACK yes X X X X X X

Y12M ? X X X X X

Table 12.4: Sparse eigenvalue solvers.

Package Support Type Language Mode Sparse Eigenvalue

Real Complex f77 c c++ Seq Dist Sym Gen

LZPACK yes X X X X M/P X

LASO ? X X X X

P_ARPACK yes X X X X X X M/P X X

PLANSO yes X X X M X

TRLAN yes X X X M X

Table 12.5: Sparse iterative solvers.

Package Support Type Language Mode Sparse
Direct

Sparse
Iterative

Sparse
Eigenvalue

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen Sym

AZTEC yes X X X M X X

BILUM yes X X X X X

BlockSolve95 ? X X X X M X X

BPKIT yes X X X X P P

CERFACS yes X X X X X X

HYPRE yes X X X X M P P

IML++ ? X X X X X X X

ISIS++ yes X X M X X

ITL yes X X X X X

ITPACK ? X X X X X

LASPack yes X X X X X

LSQR yes X X X X X

pARMS yes X X X X M X X

PARPRE yes X X M P P

PCG yes X X X X P X

PETSc yes X X X X X M X X

P-SparsLIB yes X X M X

PSPASES yes X X X X M X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QMRPACK ? X X X X X X X

SLAP ? X X X X

SPAI yes X X X M X X

SPLIB ? X X X X X

SPOOLES ? X X X X M X X X X

SYMMLQ yes X X X X X

Templates yes X X X X X X

Reading List
Linear systems. The literature on linear system solving, like the research in this topic, is mostly split along the lines
of direct versus iterative solvers. An introduction that covers both (as well as eigenvalue methods) is the book by
Dongarra et al. [35]. A very practical book about linear system solving by iterative methods is the Templates book
[12], which in addition to the mathematical details contains sections on sparse data storage and other practical
matters. More in depth and less software oriented is the book by Saad [98].

Eigensystems. Along the lines of the Templates book for linear systems is a similar book for eigenvalues problems
[7].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Managing Clusters
Chapter List

Chapter 13: Cluster Management

Chapter 14: Cluster Workload Management

Chapter 15: Condor: A Distributed Job Scheduler

Chapter 16: Maui Scheduler: A High Performance Cluster Scheduler

Chapter 17: PBS: Portable Batch System

Chapter 18: Scyld Beowulf

Chapter 19: Parallel I/O and the Parallel Virtual File System

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz

Chapter 21: Conclusions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: Cluster Management

Overview
J. P. Navarro

In Section I we covered the enabling technologies that make up a cluster's hardware and software components. As we presented
node hardware (Chapter 2), the Linux kernel (Chapter 3), cluster networks (Chapter 4), network configuration and tuning (Chapter
5), and cluster setup (Chapter 6) we presented the most significant concepts to consider in selecting cluster hardware and the
major operating system installation and configuration activities necessary to deploy a cluster.

After completing basic hardware and operating system installation a cluster administrator will configure cluster wide file systems,
install and configure scheduling and resource management software, and install compilers, application libraries, and other
software packages needed by cluster users.

With these activities complete a cluster should be ready for productive use. From this point forward cluster management will
include activities focused on: 1) detecting, investigating, and recovering from hardware and software failures; and 2) adapting to
changing requirements that drive changes to cluster hardware, software, and usage patterns.

This chapter is organized around these two major aspects of cluster management. First we will cover monitoring, logging,
backups, configuration management, and the broader set of activities that surround detecting and recovering from failures.
Second we will discuss activities like software upgrades and account management that are primarily driven by changing cluster
requirements.

We will finally wrap up by discussing the differences between systems management and cluster management which constitute the
most significant cluster management challenges.

After making a cluster available to users it will not take long for someone to report a failure. Perhaps a hardware component like a
hard disk, node memory, or an interconnect adapter that had passed initial functionality tests during installation will fail under real
application load, or perhaps a software library or service that appeared to work initially will fail when used by a real user or
application. These are but two of the many possible reasons why a cluster component can fail.

Investigating a failure to determine a root cause can be a challenge. Problems may be clearly hardware related, software related,
or in some cases not clearly either. In the following sections we will discuss cluster management activities used by cluster
administrators to investigate failures, find the root cause of those failures, and ensure a smooth return to a functional state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Logging
Logging is the process by which almost every aspect of machine and cluster operation can be recorded for future reference. In a
cluster, just like in a stand-alone Linux machine, the operating system and system services will normally be configured to log
significant event information. At a higher level, workload management software, application libraries, and even user applications
can and often do generate logging information.

Many techniques are available for logging, but in the Linux environment a service called syslog, and its associated library
functions (see the syslog man page) is the standard way used by system logging services. While logging performed using
syslog may be the most common, any application or service can use any technique it wishes for logging. The most simple
logging technique is opening a file and writing textual event or error messages to it.

Just as logging techniques can be very different, log file locations can also vary. The most common location where Linux
distributions place log files is in the '/ var/log' directory.

Managing clusters, and especially reviewing activity and failures, requires in-depth knowledge of all the available log files and the
information commonly stored in them. The following sections describe the major types of logging that cluster administrators should
be familiar with.

13.1.1 Kernel logging

The Linux kernel records log messages to a special memory location called the ring buffer. Two major categories of information
logged to the ring buffer are kernel and driver initialization information and significant and unrecoverable hardware failures or other
unexpected kernel state information..

The kernel provides its own logging capability using this in-memory ring buffer because it needs to have logging capability
independent of any other system services. To view the ring buffer use the dmesg command.
Linux version 2.4.18-3smp (bhcompile@daffy.perf.redhat.com) (gcc version 2.96
20000731 (Red Hat Linux 7.3 2.96-110)) #1 SMP Thu Apr 18 07:27:31 EDT 2002
BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 000000000009f400 (usable)
 BIOS-e820: 000000000009f400 - 00000000000a0000 (reserved)
 BIOS-e820: 00000000000d8000 - 00000000000e0000 (reserved)
 BIOS-e820: 00000000000e4000 - 0000000000100000 (reserved)
 BIOS-e820: 0000000000100000 - 000000003fef0000 (usable)
 BIOS-e820: 000000003fef0000 - 000000003fefc000 (ACPI data)
 BIOS-e820: 000000003fefc000 - 000000003ff00000 (ACPI NVS)
 BIOS-e820: 000000003ff00000 - 000000003ff80000 (usable)
 BIOS-e820: 000000003ff80000 - 0000000040000000 (reserved)
 BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)
 BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)
 BIOS-e820: 00000000ff800000 - 00000000ffc00000 (reserved)
 BIOS-e820: 00000000fff00000 - 0000000100000000 (reserved)
127MB HIGHMEM available.
found SMP MP-table at 000f6760
hm, page 000f6000 reserved twice.
hm, page 000f7000 reserved twice.
hm, page 0009f000 reserved twice.
hm, page 000a0000 reserved twice.
On node 0 totalpages: 262016
zone(0): 4096 pages.
zone(1): 225280 pages.
zone(2): 32640 pages.
...

With some Linux distributions ring buffer contents are saved to the file '/var/ log/dmesg' at boot time, in effect preserving all
the kernel initialization log information. This is valuable because, as the name implies, the ring buffer is circular. When this fixed-
size buffer fills up, messages wrap around to the beginning and start overwriting the oldest messages. If you are concerned about
preserving all ring buffer messages you should configure a regular cron job to write ring buffer contents to a '/var/log' file.

If you ever suspect a kernel-related issue the first place to look is in dmesg output or in files containing dmesg output in the
'/var/log/' directory.

The following is an example of a kernel crash (also called an "oops") that would be logged to the ring buffer. The line starting with
the label "Process" identifies the active process when the kernel crash occured.
Oops: 0000
CPU: 0
EIP: 0010:[journal_dirty_metadata+98/368] Not tainted
EIP: 0010:[<c015fcc2>] Not tainted
EFLAGS: 00010206
eax: 0a60c4ed ebx: 00000000 ecx: 00000bb8 edx: dfc32a40
esi: d53ccd40 edi: dfee4800 ebp: c8c2b8e0 esp: dfc35c4c
ds: 0018 es: 0018 ss: 0018
Process nfsd (pid: 727, stackpage=dfc35000)
Stack: dfb31480 dfc32a40 00000001 c8c2b8e0 c0158ff
...

13.1.2 System service logging

Most of the useful facilities on a machine are provided by system services or daemons. Examples include, sshd, the ssh server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most of the useful facilities on a machine are provided by system services or daemons. Examples include, sshd, the ssh server
daemon, xinetd/inetd, the extended Internet service daemons, cron for executing scheduled commands, and others. These
and most other system services log using the syslog facility to files in the '/var/log' directory.

The most common and useful system service log files that a cluster administrator should be familiar with are:

Table 13.1: Most useful system log files.

File Contents

'/var/log/messages' Many common system service messages like sshd, automount, ntp, and some kernel
messages

'/var/log/auth.log' security and authorization messages

'/var/log/kern.log' kernel boot time messages (dmesg)

'/var/log/daemon.log' system service messages

13.1.3 Workload Logging

Whether you are running PBS, Maui, Condor, or any other scheduling or resource management software, you will probably have
log files produced by these software packages. OpenPBS or PBSPro, for example, default to logging in the '/var/ spool/pbs'
(or '/var/spool/PBS'). You should check the documentation of your workload management software for information on logfile
locations and become familiar with the contents of those files.

13.1.4 Syslog capabilities and limitations

The syslog utility has the ability to both record events to the log files described earlier and to forward the events to other
machines. In a cluster environment a common and recommended practice is to designate a central machine where the most
commonly referenced log messages get collected and to configure this machine to receive and log syslog messages from other
machines.

If you have configured a central syslog server you will encounter a significant architectural limitation from the standard syslog
software. Because it uses unreliable data network packets (UDP), under high syslog traffic syslog messages may be lost.
Fortunately where there is a need there is an open-source tool to address the need. One useful tool that overcomes this scalability
challenge is syslog-ng. For additional information and to download syslog-ng visit:

http://www.balabit.com/products/syslog_ng/.

When a machine stays up for a long time the contents of the '/var/log' directory can grow large. This is especially true on the
central machine where you collect logging for the entire cluster. Many Linux distribution automatically run log rotation cron jobs
that periodically rename and compress the contents of '/var/log' files. Log rotation often also includes automatic deletion of the
oldest rotated log files. Whether your distribution has pre-configured logrotate capability or not you should review all the
logging files generated by system services and scheduling and resource management services to ensure that log files are rotated,
compressed, and retained based on your particular requirements.

13.1.5 Tools to Monitor Log Files

When failures happen you will often need to investigate them using log files. As you become more familiar with the most frequent
failures and the log entries than accompany them you may find yourself wanting to take automated corrective action, or at a
minimum wanting automated e-mail notification that the failure occured. Both of these are possible thanks to a class of tools
called log watchers that can constantly watch log files for configurable log entry strings and take configurable action.

The following are several examples of log-watching tools:

LogCheck, http://www.psionic.com/abacus/logcheck/

swatch, http://swatch.sourceforge.net/

LogSentry, http://www.linux-sxs.org/files/psionic/

LogDog, http://caspian.dotconf.net/menu/Software/LogDog/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Monitoring, or Measuring Cluster Health
Monitoring involves watching the many performance and operational variables that establish whether a cluster is running correctly
and as efficiently as possible. Correct operation involves looking at all hardware and software components and determining that
they are available and operating as expected.

For example, to establish that all the expected hardware components are available one would need to ensure that all the CPUs,
memory, disks, and network interfaces were detected by the operating system at boot time, and that all the other devices in a
cluster that aren't part of a host, such as network devices, power controllers, terminal servers, and network storage devices are
detected by the components that use them.

Similarly one can monitor the collection of software services than need to be running correctly for a cluster to be operational.
Services such as schedulers, resource managers, and node monitoring daemons themselves need to be up and operational for
the various user or operational activities on a cluster to function.

Sometimes, even though hardware and software components are detected and operational they may be operating in a degraded
state, affecting efficient operation of the a cluster. Monitoring for degraded operation is often neglected; strictly speaking,
applications may work correctly, but not at the expected level of performance. Monitoring for degraded performance can
sometimes help predict components that are likely to fail completely in the near future. Some examples are network cables that
may be producing packet loss, a disk that is very close to full, or system processes with higher-than-expected memory
consumption, indicating a probable memory leak bug.

When you combine all of possible hardware and software monitoring elements and multiply them by the number of components
you may find yourself needing to monitor 1000s of operational elements just to answer the basic question of to what degree a
cluster is running normally.

13.2.1 Monitoring Tools

Fortunately, monitoring has been an important element of systems management so a plethora of both commercial and open-
source products are available to assist with this task. Whether you want to monitor systems, networks, or both, and whether you
want to use protocols like SNMP or not, many tools are useful for monitoring clusters. Some of the most common non-commercial
cluster monitoring tools are:

Big Brother, http://bb4.com/

Cluemon, http://clumon.ncsa.uiuc.edu/

Ganglia, http://ganglia.sourceforge.net/

Nagios (was NetSaint), http://www.nagios.org/

PARMON, http://www.cs.mu.oz.au/~raj//parmon/

Performance Co-Pilot, http://oss.sgi.com/projects/pcp/

Supermon, http://www.acl.lanl.gov/supermon/

We do not discuss these and other monitoring tools here, since many articles, papers, and discussions on cluster monitoring are
available. Our main point is that these tools can be useful for measuring cluster health and summarizing cluster operational status.

13.2.2 What to Monitor

Monitoring Workload
Most workload management tools, including the Condor, Maui, and PBS discussed in this book, offer monitoring capability.
Cluster managers should be very familiar with the monitoring capabilities in these tools as they summarize the most visible cluster
state information: whether the nodes used by applications appear to be functional from a workload perspective, how active or busy
is the cluster currently, and what the workload backlog looks like.

From a monitoring perspective, the node state information offered by workload management tools is an excellent indicator of
overall cluster state and health since it indicates both that the workload management services are running and reachable on each
node, and that basic monitoring implemented by these workload management services do not detect any type of node fault.

Monitoring for Degraded Performance
Both monitoring tools and logging files may at times detect or record failure situations. If you don't want to constantly have to look
at these log files you can use tools designed to detect trigger strings that represent failures and report them via e-mail or other
methods.

Resource Usage Monitoring
When cluster resources, such as file system space, machine memory and swap, and network or file I/O bandwidth are exhausted
the entire cluster may be affected. One possible effect is the literal failure of a component, for example a machine with exhausted
memory and swap is likely to crash or terminate the application exhausting memory. Another and more difficult-to-detect effect is
degraded performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3 Hardware Failure and Recovery
One of the most burdensome responsibilities in cluster management is dealing with the consequences of hardware failures. The
impact of hardware failures can vary drastically based on how much of the cluster depends on the failing component.

Of highest impact are failures like the loss of the file-servers serving user file-systems or the loss of infrastructure components like
management nodes, nodes where scheduling and resource management services run, and the loss of commodity networking or
interconnect components like switches and routers. If any of these components fails, the entire cluster may be unusable.

At the opposite end of the impact spectrum are failures that do not affect any other cluster component, for example the loss of a
single compute node. When a single compute node fails, only the users active on that node will be affected and other activities on
other nodes may proceed unaffected.

Given the broad impact spectrum that a particular failure can have and that the failing component can be as minor as a single disk
or as major as an entire cluster network one can't write a single procedure for recovering from hardware failures. In a general
sense though, the following outline should be used. Recovery from a hardware failure involves:

1. Isolating the failed component to make sure no additional cluster activities are impacted.

2. If the failure has a major impact you may want to find existing hardware that can temporarily be used to fill in for
the failing component so you can recover immediately. For example, if you lose a disk, controller, or server
serving critical file-systems, and you have some other server with available capacity, you can start immediate
recovery to an alternate server.

3. Getting the hardware serviced.

4. And finally, fixed hardware must be integrated back into the cluster. If the failed component included data, like a
disk containing the operating system or user data the recovery will involve recovering the required contents to
the new disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4 Software Failure
Although software failures may be similar to hardware failures in their ability to bring an entire machine down, they are also quite
different in several respects.

Software failures sometimes do not have a fix. If nobody has detected the failure or bug then a new version or patch may not be
available. When this happens the only solution is to avoid the conditions that trigger the fault, report the failure to software
supplier, and either wait for the fix or try to fix the problem yourself.

Regardless of what type of software failure you are dealing with, kernel, distribution, scheduling and resource management, or
application support library, the best practices for avoiding software failures are:

Keep an eye out for new software versions and bug fixes.

Perform careful testing and verification prior to upgrading to new software versions.

Whenever possible give yourself a way to return to previous software in case an upgrade has major problems.

Maintain good records of unresolved failures, such as the ones that disappear after a reboot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5 File System Failure and Recovery
If a hardware component or software service fails, the most a user will normally lose is the intermediate results from running
applications. The user will normally lose a few hours of work at most and can easily recover by restarting jobs. If, on the other
hand, a home file system containing months of work results is lost, the impact on users from data loss could be huge.

For this reason, no cluster component is more critical than the storage and file systems that hold users' applications and data.

Regardless of hardware or software used to provide home file systems the first line of defense consists of regularly scheduled
backups. Backups also offer the added advantage that they can be used to recover data lost through human error.

Besides backups the following hardware and software options offer improved protection from hardware and software failures.

Use of RAID 0, 3, or 5 file systems that protect from individual disk failures.

Use of journaled file systems that protect from file system corruption and provide fast recovery in the case of
crashes.

Use of parallel file systems that protect from the loss of a file server by providing access to the file system through
multiple machines. Commercial file systems in this category include GPFS from IBM, GFS from Systina, and
PolyServe.

Adapting to Changing Requirements
In previous sections of this chapter we focused on cluster management activities surrounding investigating and recovering from
failures. Sometimes the recovery process will drive a change in the base hardware or software configuration. The most common
example is upgrading a software package in order to fix a bug in an older version.

Even when a cluster is fully functional, the world around it is constantly evolving. Application developers enhance their code to use
new compiler or library features, new users need to use the cluster, potential security vulnerabilities are revealed that if not fixed
could make a cluster susceptible. These are just some examples of the changes that surround a cluster. All of these make it
necessary to iterate through a careful change-management process.

Examples of changes driven by changing requirements include:

Adding more disk to expand storage capacity

Upgrading the RAM or processors in nodes to increase throughput

Applying security updates to system services

Upgrading to new and improved compilers or application libraries

New user account requests

Workload management

In the following sections we will discuss cluster management activities driven by changes like these. Many factors can influence a
change of requirements, but the most common are the evolving needs of existing users, the needs of new users, hardware
changes driven by failures or changing capacity requirements, and the software life cycle. Collectively these changes alter the
base state of a cluster and the definition of operational.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6 Account Management
The Linux environment offers many techniques for maintaining a coherent set of accounts across a collection of machines. The
most common and easiest to administer involve the use of network based account management services. When these techniques
are employed, individual machines query a central authorization and authentication service of account information. These
techniques are easier to manage because maintenance of account and authorization information is maintained in a central
location. Examples include NIS and LDAP.

Using NIS involves maintenance of a central copy of password, group, and other security related files in a ypserver. Individual
machine needing to reference these security files are configured as yp clients and automatically query a ypserver for data from
the security files.

Another technique for maintaining security information involves updating security information on the machines in a cluster through
a distributed push, pull, or update. The primary advantages of using this technique are performance and reliability of authorization
and authentication queries. The main disadvantages include the need to initiate distributed security update procedures. Updates
can become complicated if a machine is down during the update process. To overcome this a combination of push, pull, and boot
time and in between job refresh must be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7 Workload Management
The next several chapters introduce cluster workload management concepts and present in detail three specific software
packages, Condor, Maui, and PBS, which are commonly used to manage the workload on Beowulf clusters.

Managing the workload on a Beowulf cluster is one of the most visible cluster management activities since its purpose is to run
user applications. The following are examples of workload management activities that are critical to cluster management:

Managing node availability

Configuring node attributes important to the workload

Managing user/group/project fair usage quotas

Configuring and tuning scheduling policy

Managing dedicated or maintenance reservations

Tracking user/group/project usage history

After selecting and installing workload management software, a cluster administrator will perform these activities to ensure that a
cluster usage is consistent with its goals.

Every cluster has a different set of goals, and how to implement an appropriate workload management policy for those goals
depends on the software packages in use. You should consult Condor, Maui, PBS, or other workload management software
documentation for details on options available to implement the policies you need.

Regardless of what workload management tools you use you should try to find out how to perform the following activities to assist
in failure investigation and recovery.

1. Taking a node off line so it is not considered for future jobs.

2. Placing a system or individual user or project reservation on a node so the node is not available to everyone but
still available for investigating a hardware or software failure.

3. Modifying the properties or attributes of a node to reflect a change in the availability of a failing component (like
the interconnect), or to reflect that it has a test operating system or collection of software.

4. Adding or removing individual nodes from the list of known nodes.

5. Suspending all job execution without losing previously queued jobs.

6. Canceling running jobs.

7. Placing a hold on a queued job to ensure that it doesn't run and trigger some type of harmful failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8 Software upgrades
Whoever coined the saying that only death and taxes are certain was definitely not a system or cluster administrator. As certain as
death and taxes are software upgrades. How many software packages that continue to be useful don't change? Even when a
package is stable, the environment around it constantly changes, making new versions necessary to fix new issues derived from
this evolving environment.

The scope of the impact of a software upgrade can vary tremendously. At the low end are upgrades that do not affect other
software packages on the system, such as the version of a particular numerical library. At the high-impact end are distribution
upgrades that change the version of libc, the standard C library, which can have a ripple effect through many of the software
packages on a system, and a large set of in-between upgrades that can affect a varying number of users and applications.

Upgrading software on an individual cluster machine is similar to upgrading software on non-cluster machines. In many respects
clusters should be managed like non-cluster machines. If you are dealing with a production cluster that servers a large user
community, then all the standard practices should be followed, such as pre-change testing and a carefully planned and
communicated migration path.

One of the most critical reasons to upgrade cluster software is to address security vulnerabilities. If your cluster is reachable by the
world at large or by potential hackers you should keep a close eye out for security advisories for your kernel, system services, and
any other software component that could be used to compromise a system. Some of the most useful resources to keep an eye on
for software vulnerability and fix information are:

1. the vendor supplying the kernel and distribution you use,

2. the U.S. Department of Energy Computer Incident Advisory Capability, also known as CIAC, which can be found
at http://www.ciac.org/ciac/, and

3. the CERT Coordination Center: a federally funded Internet security research and development center which can
be found at http://www.cert.org/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9 Configuration Management
Configuring management refers to the activities performed on a machine that adapt it to a particular organization, its network
services, security policies, management policies, access policy, etc. In other words, it is the set of activities that integrate a
machine into the cluster and organization.

Why would configuration management need to be mentioned in the context of Beowulf clusters? First, because it's a critical
aspect of making a Beowulf cluster functional, and secondly because it can be a challenge if one doesn't follow a carefully
designed configuration management process.

Most Beowulf clusters have a variety of machine configurations that share many common characteristics, but also vary in
important ways. For example, management nodes, login nodes, file-servers, and computer nodes all may need to be configured
similarly to set and maintain accurate clocks, but they all have a slightly different access policy and collection of configured and
available software services.

Describing configuration information and propagating it to machines is often performed by the cluster installation software.
Chapter 6 describes cluster setup using various tools. Each of these cluster installation tools provides some type of configuration
management capability. In some cases the capability is the basic capability you would use on stand-alone machines.

Regardless of which tool you use, an important aspect of cluster management is maintaining a central repository of the
configuration information used in a cluster. Without this information, whenever a machine fails and needs to be rebuilt,
determining what configuration information was applied to make the machine functional may be difficult to ascertain. Every time
you rebuild a compute node you would rather not have to look at other compute nodes to remember which files contain important
configuration information that must be applied to the rebuilt machine, and then go through a diff process comparing it to other
nodes to make sure you remembered everything.

The important point to remember is that the most effective way to deal with configuration management is to maintain some type of
central repository from which you push configuration changes. If this repository can be organized by node types or some other
organizational approach, all the better. That way when you need to change something on all compute nodes, or all login nodes, or
every node on the cluster, you don't have to update a centrally managed file for every node, but just the files from the appropriate
classes of nodes.

If you need additional functionality in this respect that is not a part of your cluster distribution or installation suite you may find one
of the following tools helpful:

cfengine, http://www.cfengine.org/

sanity/cfg, http://www-unix.mcs.anl.gov/systems/software/msys/

and various proprietary vendor solutions

Administration Challenges Unique to Clusters
One appealing way to think of cluster management is as management of a collection of individual machines. This approach is
appealing since it sidesteps the complexity of the whole by focusing on the management of the individual components. Although
managing a cluster this way may work at a basic level, it isn't very effective and doesn't consider the intended architecture and
usage model of a cluster.

The Linux cluster's claim to fame is in its ability to produce supercomputer class results at a fraction of the cost. This means,
among other things, that the collection of components at a practical level needs to be usable by applications and manageable by
administrators as a single machine.

This is where the cluster management challenge begins. To overcome this challenge, cluster administrators must approach
cluster management at the cluster level and therefore need tools for logging, monitoring, build and configuration management,
workload management, and so forth that are aware of, and operate at, the cluster level.

Today we have many cluster management tools that make it easier to work with the entire cluster. But there is still significant room
for improvement. One example is in the area of fault detection, analysis, and recovery. The major supercomputer vendors have
worked for decades to make their machines fault tolerant. By contrast, today's cluster management tools for the most part ignore
the issue of fault detection and recovery. This deficiency undoubtedly constitutes the greatest cluster management challenge.

An approach used to bridge the gap between cluster level management and machine specific administration tools is scripting or
automation. The premise behind this approach is to make scriptable interfaces to all the actions performed at the machine level
and to use cluster-level tools to automatically iterate the same action over many components or machines. While this concept
sounds simple and achievable, it is unfortunately not always possible since hardware and software at the machine level is often
not designed for complete hands-off administration.

One of the most basic and useful tools for invoking a scriptable command on a group of machines is the "parallel distributed shell"
or pdsh. This tool is the cluster aware equivalent of rsh or ssh. With it you can define various sets of nodes and perform
operation on those collections in parallel. For example, to verify the uptime and load across an entire cluster with pdsh use the
command:
 pdsh -a uptime

For download or learn about pdsh visit: http://www.llnl.gov/linux/pdsh/pdsh.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.10 Conclusion
Cluster management, although based on many of the same procedures and practices used to manage individual machines, is
strongly influenced by the unique challenges derived from administering a group of machines that need to operate as a single
entity for the application and user.

Cluster management is fundamentally about keeping a machine running. For cluster administrators to do this effectively they must
use a set of tools and techniques that operate at the cluster level. In this chapter we have discussed both basic system
administration tools and the techniques available to administrators to help them effectively manage the cluster at the cluster level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14: Cluster Workload Management

Overview
James Patton Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum

A Beowulf cluster is a powerful (and attractive) tool. But managing the workload can present significant challenges. It is not
uncommon to run hundreds or thousands of jobs or to share the cluster among many users. Some jobs may run only on certain
nodes because not all the nodes in the cluster are identical; for instance, some nodes have more memory than others. Some
nodes temporarily may not be functioning correctly. Certain users may require priority access to part or all of the cluster. Certain
jobs may have to be run at certain times of the day or only after other jobs have completed. Even in the simplest environment,
keeping track of all these activities and resource specifics while managing the ever-increasing web of priorities is a complex
problem. Workload management software attacks this problem by providing a way to monitor and manage the flow of work
through the system, allowing the best use of cluster resources as defined by a supplied policy.

Basically, workload management software maximizes the delivery of resources to jobs, given competing user requirements and
local policy restrictions. Users package their work into sets of jobs, while the administrator (or system owner) describes local use
policies (e.g., Tom's jobs always go first). The software monitors the state of the cluster, schedules work, enforces policy, and
tracks usage.

A quick note on terminology: Many terms have been used to describe this area of management software. All of the following topics
are related to workload management: distributed resource management, batch queuing, job scheduling, and resource and task
scheduling.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1 Goal of Workload Management Software
The goal of workload management software is to make certain the submitted jobs ultimately run to completion by utilizing cluster
resources according to a supplied policy. But in order to achieve this goal, workload management systems usually must perform
some or all of the following activities:

Queuing

Scheduling

Monitoring

Resource management

Accounting

The typical relationship between users, resources, and these workload management activities is depicted in Figure 14.1. As
shown in this figure, workload management software sits between the cluster users and the cluster resources. First, users submit
jobs to a queue in order to specify the work to be performed. (Once a job has been submitted, the user can request status
information about that job at any time.) The jobs then wait in the queue until they are scheduled to start on the cluster. The
specifics of the scheduling process are defined by the policy rules. At this point, resource management mechanisms handle the
details of properly launching the job and perhaps cleaning up any mess left behind after the job either completes or is aborted.
While all this is going on, the workload management system is monitoring the status of system resources and accounting for
which users are using what resources.

Figure 14.1: Activities performed by a workload management system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2 Workload Management Activities
Now let us take a look in more detail at each of the major activities performed by a cluster workload management system.

14.2.1 Queueing

The first of the five aspects of workload management is queuing, or the process of collecting together "work" to be executed on a
set of resources. This is also the portion most visible to the user.

The tasks the user wishes to have the computer perform, the work, is submitted to the workload management system in a
container called a "batch job." The batch job consists of two primary parts: a set of resource directives (such as the amount of
memory or number of CPUs needed) and a description of the task to be executed. This description contains all the information the
workload management system needs in order to start a user's job when the time comes. For instance, the job description may
contain information such as the name of the file to execute, a list of data files required by the job, and environment variables or
command-line arguments to pass to the executable.

Once submitted to the workload management system, the batch jobs are held in a "queue" until the matching resources (e.g., the
right kind of computers with the right amount of memory or number of CPUs) become available. Examples of real-life queues are
lines at the bank or grocery store. Sometimes you get lucky and there's no wait, but usually you have to stand in line for a few
minutes. And on days when the resources (clerks) are in high demand (like payday), the wait is substantially longer.

The same applies to computers and batch jobs. Sometimes the wait is very short, and the jobs run immediately. But more often
(and thus the need for the workload management system) resources are oversubscribed, and so the jobs have to wait.

One important aspect of queues is that limits can be set that restrict access to the queue. This allows the cluster manager greater
control over the usage policy of the cluster. For example, it may be desirable to have a queue available for short jobs only,
analogous to the "ten items or fewer express lane" at the grocery store, providing a shorter wait for "quick tasks."

Each of the different workload management systems discussed later in this volume offers a rich variety of queue limits and
attributes.

14.2.2 Scheduling

The second area of workload management is scheduling, which is simply the process of choosing the best job to run. Unlike in our
real-life examples of the bank and grocery store (which employ a simple first-come, first-served model of deciding who's next),
workload management systems offer a variety of ways by which the best job is identified.

As we have discussed earlier, however, best can be a tricky goal. It depends on the usage policy set by local management, the
available workload, the type and availability of cluster resources, and the types of application being run on the cluster. In general,
however, scheduling can be broken into two primary activities: policy enforcement and resource optimization.

Policy encapsulates how the cluster resources are to be used, addressing such issues as priorities, traffic control, and capability
vs. high throughput. Scheduling is then the act of enforcing the policy in the selection of jobs, ensuring that priorities are met and
policy goals are achieved.

While implementing and enforcing the policy, the scheduler has a second set of goals. These are resource optimization goals,
such as "pack jobs efficiently" or "exploit underused resources."

The difficult part of scheduling, then, is balancing policy enforcement with resource optimization in order to pick the best job to run.

Logically speaking, one can think of a scheduler as performing the following loop:
1. Select the best job to run, according to policy and available resources.

2. Start the job.

3. Stop the job and/or clean up after a completed job.

4. Repeat.

The nuts and bolts of scheduling is, of course, choosing and tuning the policy to meet your needs. Although different workload
management systems each have their own idiosyncrasies, they typically all provide ways in which their scheduling policy can be
customized. Subsequent chapters of this book discuss the various scheduling policy mechanisms available in several popular
workload management systems.

14.2.3 Monitoring

Resource monitoring is the third part of any cluster workload management system. It provides necessary information to
administrators, users and the scheduling system itself on the status of jobs and resources. Resource monitoring comes into play
in three critical times:

1. When nodes are idle, to verify that they are in working order before starting another job on them.

2. When nodes are busy running a job. Users and administrators may want to check memory, CPU, network, I/O,
and utilization of other system resources. Such checks often are useful in parallel programming when users wish
to verify that they have balanced their workload correctly and are effectively using all the nodes they've been
allocated.

3. When a job completes. Here, resource monitoring is used to ensure that no processes remain from the
completed job and that the node is still in working order before starting another job on it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workload management systems query the compute resources at these times and use the information to make informed decisions
about running jobs. Much of the information is cached so that it can be reported quickly in answer to status requests. Some
information is saved for historical analysis purposes. Still other information is used in the enforcement of local policy. The method
of collection may differ in different workload management systems, but the general purposes are the same.

14.2.4 Resource Management

The fourth area, resource management, is essentially responsible for the starting, stopping, and cleaning up after jobs that are run
on cluster nodes. In a batch system resource management involves running a job for a user, under the identity of the user, on the
resources the user was allocated, in such a way that the user need not be present at that time.

Many cluster workload management systems provide mechanisms to ensure the successful startup and cleanup of jobs and to
maintain node status data internally, so that jobs are started only on nodes that are available and functioning correctly.

In addition, limits may need to be placed on the job and enforced by the workload management system. These limits are yet
another aspect of policy enforcement, in addition to the limits on queues and those enacted by the scheduling component.

Resource management also includes removing or adding compute resources to the available pool of systems. Clusters are rarely
static; systems go down, or new nodes are added. The "registration" of new nodes and the marking of nodes as unavailable are
both additional aspects of resource management.

14.2.5 Accounting

The fifth aspect of workload management is accounting and reporting. Workload accounting is the process of collecting resource
usage data for the batch jobs that run on the cluster. Such data includes the job owner, resources requested by the job, and total
amount of resources consumed by the job. Other data about the job may also be available, depending on the specific workload
managment system in use.

Cluster workload accounting data can used for a variety of purposes, such as

producing weekly system usage reports,

preparing monthly per user usage reports,

enforcing per project allocations,

tuning the scheduling policy,

calculating future resource allocations,

anticipating future computer component requirements, and

determining areas of improvement within the computer system.

The data for these purposes may be collected as part of the resource monitoring tasks or may be gathered separately. In either
case, data is pulled from the available sources in order to meet the objectives of workload accounting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3 Conclusions
Workload management is all about utilizing cluster resources according to a supplied policy. The five activies of workload
management—queueing, scheduling, monitoring, resource manangement, and accounting—interact to produce the system usage
results desired by the site.

The next few chapters of this book discuss in detail two complete workload management systems (Condor and PBS) and the Maui
job scheduler. Details of using the features of each system are provided in the specific chapters. In addition to the systems
discussed in this book, there are several others that are popular with Beowulf clusters. One that has recently become popular is
the Sun Grid Engine (SGE) wwws.sun.com/software/gridware/sge.html. Another system that contains aspects of a workload
management system is Scyld, discussed in Chapter 18.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15: Condor: A Distributed Job Scheduler

Overview
Todd Tannenbaum, Derek Wright, Karen Miller, Erik Paulson, and Miron Livny

Condor is a sophisticated and unique distributed job scheduler developed by the Condor research project at the University of
Wisconsin-Madison Department of Computer Sciences.

Condor is open-source software, under the very liberal Condor Public License. The program binaries, documentation, and source
code may all be found on the Condor project's Web site at www.cs.wisc.edu/condor. Support contracts are available from several
different sources; for additional information see www.cs.wisc.edu/condor/condor-support. The Condor Public License permits
installation, use, reproduction, display, modification and redistribution of Condor, with or without modification, in source and binary
forms.

This chapter introduces all aspects of Condor, from its ability to satisfy the needs and desires of both submitters and resource
owners, to the management of Condor on clusters. Following an overview of Condor and Condor's ClassAd mechanism is a
description of Condor from the user's perspective. The architecture of the software is presented along with overviews of
installation and management. The chapter ends with configuration scenarios specific to clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1 Introduction to Condor
Condor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, Condor
provides a job queuing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users
submit their jobs to Condor, and Condor places them into a queue, chooses when and where to run them based upon a policy,
monitors their progress, and ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queuing system, Condor's novel architecture allows it to
succeed in areas where traditional scheduling systems fail. Condor can be used to manage a cluster of dedicated Beowulf nodes.
In addition, several unique mechanisms enable Condor to effectively harness wasted CPU power from otherwise idle desktop
workstations. Condor can be used to seamlessly combine all of your organization's computational power into one resource.

Condor is the product of the Condor Research Project at the University of Wisconsin-Madison (UW-Madison) and was first
installed as a production system in the UW-Madison Department of Computer Sciences nearly ten years ago. This Condor
installation has since served as a major source of computing cycles to UW-Madison faculty and students. Today, just in our
department alone, Condor manages more than one thousand workstations, including the department's 500-CPU Linux Beowulf
cluster. On a typical day, Condor delivers more than 650 CPU-days to UW researchers. Additional Condor installations have been
established over the years across our campus and the world. Hundreds of organizations in industry, government, and academia
have used Condor to establish compute environments ranging in size from a handful to hundreds of workstations.

15.1.1 Features of Condor

Condor's features are extensive. Condor provides great flexibility for both the user submitting jobs and for the owner of a machine
that provides CPU time toward running jobs. The following list summarizes some of Condor's capabilities.

ClassAds: The ClassAd mechanism in Condor provides an extremely flexible and expressive framework for
matching resource requests (jobs) with resource offers (machines). Jobs can easily state both job requirements and
job preferences. Likewise, machines can specify requirements and preferences about the jobs they are willing to
run. These requirements and preferences can be described in powerful expressions, resulting in Condor's
adaptation to nearly any desired policy.

Distributed submission: There is no single, centralized submission machine. Instead, Condor allows jobs to be
submitted from many machines, and each machine contains its own job queue. Users may submit to a cluster from
their own desktop machines.

User priorities: Administrators may assign priorities to users using a flexible mechanism that enables a policy of
fair share, strict ordering, fractional ordering, or a combination of policies.

Job priorities: Users can assign priorities to their submitted jobs in order to control the execution order of the jobs.
A "nice-user" mechanism requests the use of only those machines that would have otherwise been idle.

Job dependency: Some sets of jobs require an ordering because of dependencies between jobs. "Start job X only
after jobs Y and Z successfully complete" is an example of a dependency. Enforcing dependencies is easily
handled.

Support for multiple job models: Condor handles both serial jobs and parallel jobs incorporating PVM, dynamic
PVM, and MPI.

Job checkpoint and migration: With certain types of jobs, Condor can transparently take a checkpoint and
subsequently resume the application. A checkpoint is a snapshot of a job's complete state. Given a checkpoint, the
job can later continue its execution from where it left off at the time of the checkpoint. A checkpoint also enables the
transparent migration of a job from one machine to another machine. Condor will take a checkpoint of a job when it
schedules the resource to a different job or the resource returns to the owner. Condor will also periodically produce
a checkpoint for a job. This provides a form of fault tolerance and safeguards the accumulated computation time of
a job. It reduces the loss in the event of a system failure such as the machine being shut down or hardware failure.

Job suspend and resume: Based on policy rules, Condor can ask the operating system to suspend and later
resume a job.

Remote system calls: Despite running jobs on remote machines, Condor can often preserve the local execution
environment via remote system calls. Users do not need to make data files available or even obtain a login account
on remote workstations before Condor executes their programs there. The program behaves under Condor as if it
were running as the user that submitted the job on the workstation where it was originally submitted, regardless of
where it really executes.

Authentication and authorization: Administrators have fine-grained control of access permissions, and Condor
can perform strong network authentication using a variety of mechanisms including Kerberos and X.509 public key
certificates.

Heterogeneous platforms: In addition to Linux, Condor has been ported to most of the other primary flavors of
Unix as well as Windows NT. A single pool can contain multiple platforms. Jobs to be executed under one platform
may be submitted from a different platform. As an example, an executable that runs under Windows 2000 may be
submitted from a machine running Linux.

Pools of machines working together: Flocking allows jobs to be scheduled across multiple Condor pools. It can
be done across pools of machines owned by different organizations that impose their own policies.

Grid computing: Condor incorporates many of the emerging grid-based computing methodologies and protocols.
Condor can submit jobs into resources managed via other scheduling systems such as PBS using the Globus
Toolkit. Condor also includes all of the necessary software to receive jobs from other sites using the Globus Toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1.2 Understanding Condor ClassAds

The ClassAd is a flexible representation of the characteristics and constraints of both machines and jobs in the Condor system.
Matchmaking is the mechanism by which Condor matches an idle job with an available machine. Understanding this unique
framework is the key to harness the full flexibility of the Condor system. ClassAds are employed by users to specify which
machines should service their jobs. Administrators use them to customize scheduling policy.

Conceptualizing Condor ClassAds: Just Like the Newspaper
Condor's ClassAds are analogous to the classified advertising section of the newspaper. Sellers advertise specifics about what
they have to sell, hoping to attract a buyer. Buyers may advertise specifics about what they wish to purchase. Both buyers and
sellers list constraints that must be satisfied. For instance, a buyer has a maximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rank requests to their own advantage. Certainly a seller would rank one offer
of $50 higher than a different offer of $25. In Condor, users submitting jobs can be thought of as buyers of compute resources and
machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM memory, CPU type and speed, virtual memory
size, current load average, current time and date, and other static and dynamic properties. This machine ClassAd also advertises
under what conditions it is willing to run a Condor job and what type of job it prefers. These policy attributes can reflect the
individual terms and preferences by which the different owners have allowed their machines to participate in the Condor pool.

After a job is submitted to Condor, a job ClassAd is created. This ClassAd includes attributes about the job, such as the amount of
memory the job uses, the name of the program to run, the user who submitted the job, and the time it was submitted. The job can
also specify requirements and preferences (or rank) for the machine that will run the job. For instance, perhaps you are looking for
the fastest floating-point performance available. You want Condor to rank available machines based on floating-point
performance. Perhaps you care only that the machine has a minimum of 256 MBytes of RAM. Or, perhaps you will take any
machine you can get! These job attributes and requirements are bundled up into a job ClassAd.

Condor plays the role of matchmaker by continuously reading all the job ClassAds and all the machine ClassAds, matching and
ranking job ads with machine ads. Condor ensures that the requirements in both ClassAds are satisfied.

Structure of a ClassAd
A ClassAd is a set of uniquely named expressions. Each named expression is called an attribute. Each attribute has an attribute
name and an attribute value. The attribute value can be a simple integer, string, or floating-point value, such as
 Memory = 512
 OpSys = "LINUX"
 NetworkLatency = 7.5

An attribute value can also consist of a logical expression that will evaluate to TRUE, FALSE, or UNDEFINED. The syntax and
operators allowed in these expressions are similar to those in C or Java, that is, == for equals, ! = for not equals, && for logical
and, | | for logical or, and so on. Furthermore, ClassAd expressions can incorporate attribute names to refer to other attribute
values. For instance, consider the following small sample ClassAd:
 MemoryInMegs = 512
 MemoryInBytes = MemoryInMegs * 1024 * 1024
 Cpus = 4
 BigMachine = (MemoryInMegs > 256) && (Cpus >= 4)
 VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8)
 FastMachine = BigMachine && SpeedRating

In this example, BigMachine evaluates to TRUE and VeryBigMachine evaluates to FALSE. But, because attribute
SpeedRating is not specified, FastMachine would evaluate to UNDEFINED.

Condor provides meta-operators that allow you to explicitly compare with the UNDEFINED value by testing both the type and
value of the operands. If both the types and values match, the two operands are considered identical; =?= is used for meta-equals
(or, is-identical-to) and =!= is used for meta-not-equals (or, is-not-identical-to). These operators always return TRUE or FALSE
and therefore enable Condor administrators to specify explicit policies given incomplete information.

A complete description of ClassAd semantics and syntax is documented in the Condor manual.

Matching ClassAds
ClassAds can be matched with one another. This is the fundamental mechanism by which Condor matches jobs with machines.
Figure 15.1 displays a ClassAd from Condor representing a machine and another representing a queued job. Each ClassAd
contains a MyType attribute, describing what type of resource the ad represents, and a TargetType attribute. The TargetType
specifies the type of resource desired in a match. Job ads want to be matched with machine ads and vice versa.

Job ClassAd Machine ClassAd

MyType = "Job" MyType = "Machine"

TargetType = "Machine" TargetType = "Job"

Requirements = ((Arch== "INTEL" && Op-Sys=="LINUX") &&
Disk > DiskUsage)

Requirements = Start

Rank = TARGET. Department==MY. Department

Rank = (Memory * 10000) + KFlops Activity = "Idle"

Args = "-ini ./ies.ini" Arch = "INTEL"

ClusterId = 680 ClockDay = 0

Cmd = "/home/tannenba/bin/sim-exe" ClockMin = 614

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Department = "CompSci" CondorLoadAvg = 0.000000

DiskUsage = 465 Cpus = 1

StdErr = "sim.err" CurrentRank = 0.000000

ExitStatus = 0 Department = "CompSci"

FileReadBytes = 0.000000 Disk = 3076076

FileWriteBytes = 0.000000 EnteredCurrentActivity = 990371564

ImageSize = 465 EnteredCurrentState = 990330615

StdIn = "/dev/null" FileSystemDomain = "cs.wisc.edu"

Iwd = "/home/tannenba/sim-m/run_55" Islnstructional = FALSE

JobPrio = 0 KeyboardIdle = 15

JobStartDate = 971403010 KFlops = 145811

JobStatus = 2 LoadAvg = 0.220000

StdOut = "sim.out" Machine = "nostos.cs.wisc.edu"

Owner = "tannenba" Memory = 511

ProcId = 64 Mips = 732

QDate = 971377131 OpSys = "LINUX"

RemoteSysCpu = 0.000000 Start = (LoadAvg <= 0.300000) && (KeyboardIdle
> (15 * 60))RemoteUserCpu = 0.000000

RemoteWallClockTime = 2401399.000000 State = "Unclaimed"

TransferFiles = "NEVER" Subnet = "128.105.165"

WantCheckpoint = FALSE TotalVirtualMemory = 787144

WantRemoteSyscalls = FALSE ⋮

⋮

Figure 15.1: Examples of ClassAds in Condor.

Each ClassAd engaged in matchmaking specifies a Requirements and a Rank attribute. In order for two ClassAds to match, the
Requirements expression in both ads must evaluate to TRUE. An important component of matchmaking is the Requirements
and Rank expression can refer not only to attributes in their own ad but also to attributes in the candidate matching ad. For
instance, the Requirements expression for the job ad specified in Figure 15.1 refers to Arch, OpSys, and Disk, which are all
attributes found in the machine ad.

What happens if Condor finds more than one machine ClassAd that satisfies the constraints specified by Requirements? That is
where the Rank expression comes into play. The Rank expression specifies the desirability of the match (where higher numbers
mean better matches). For example, the job ad in Figure 15.1 specifies
 Requirements = ((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage)
 Rank = (Memory * 100000) + KFlops

In this case, the job requires a computer running the Linux operating system and more local disk space than it will use. Among all
such computers, the user prefers those with large physical memories and fast floating-point CPUs (KFlops is a metric of floating-
point performance). Since the Rank is a user-specified metric, any expression may be used to specify the perceived desirability of
the match. Condor's matchmaking algorithms deliver the best resource (as defined by the Rank expression) while satisfying other
criteria.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.2 Using Condor
The road to using Condor effectively is a short one. The basics are quickly and easily learned.

15.2.1 Roadmap to Using Condor

The following steps are involved in running jobs using Condor:

Prepare the Job to Run Unattended. An application run under Condor must be able to execute as a batch job.
Condor runs the program unattended and in the background. A program that runs in the background will not be able
to perform interactive input and output. Condor can redirect console output (stdout and stderr) and keyboard
input (stdin) to and from files. You should create any needed files that contain the proper keystrokes needed for
program input. You should also make certain the program will run correctly with the files.

Select the Condor Universe. Condor has five runtime environments from which to choose. Each runtime
environment is called a Universe. Usually the Universe you choose is determined by the type of application you are
asking Condor to run. There are six job Universes in total: two for serial jobs (Standard and Vanilla), one for parallel
PVM jobs (PVM), one for parallel MPI jobs (Parallel), one for Grid applications (Globus), and one for meta-
schedulers (Scheduler). Section 15.2.4 provides more information on each of these Universes.

Create a Submit Description File. The details of a job submission are defined in a submit description file. This file
contains information about the job such as what executable to run, which Universe to use, the files to use for
stdin, stdout, and stderr, requirements and preferences about the machine which should run the program,
and where to send e-mail when the job completes. You can also tell Condor how many times to run a program; it is
simple to run the same program multiple times with different data sets.

Submit the Job. Submit the program to Condor with the condor_submit command.

Once a job has been submitted, Condor handles all aspects of running the job. You can subsequently monitor the job's progress
with the condor_q and condor_status commands. You may use condor_prio to modify the order in which Condor will run
your jobs. If desired, Condor can also record what is being done with your job at every stage in its lifecycle, through the use of a
log file specified during submission.

When the program completes, Condor notifies the owner (by e-mail, the user-specified log file, or both) the exit status, along with
various statistics including time used and I/O performed. You can remove a job from the queue at any time with condor_rm.

15.2.2 Submitting a Job

To submit a job for execution to Condor, you use the condor_submit command. This command takes as an argument the name
of the submit description file, which contains commands and keywords to direct the queuing of jobs. In the submit description file,
you define everything Condor needs to execute the job. Items such as the name of the executable to run, the initial working
directory, and command-line arguments to the program all go into the submit description file. The condor_submit command
creates a job ClassAd based on the information, and Condor schedules the job.

The contents of a submit description file can save you considerable time when you are using Condor. It is easy to submit multiple
runs of a program to Condor. To run the same program 500 times on 500 different input data sets, the data files are arranged
such that each run reads its own input, and each run writes its own output. Every individual run may have its own initial working
directory, stdin, stdout, stderr, command-line arguments, and shell environment.

The following examples illustrate the flexibility of using Condor. We assume that the jobs submitted are serial jobs intended for a
cluster that has a shared file system across all nodes. Therefore, all jobs use the Vanilla Universe, the simplest one for running
serial jobs. The other Condor Universes are explored later.

Example 1

Example 1 is the simplest submit description file possible. It queues up one copy of the program 'foo' for execution by Condor. A
log file called 'foo.log' is generated by Condor. The log file contains events pertaining to the job while it runs inside of Condor.
When the job finishes, its exit conditions are noted in the log file. We recommend that you always have a log file so you know
what happened to your jobs. The queue statement in the submit description file tells Condor to use all the information specified so
far to create a job ClassAd and place the job into the queue. Lines that begin with a pound character (#) are comments and are
ignored by condor_submit.
 # Example 1 : Simple submit file
 universe = vanilla
 executable = foo
 log = foo.log
 queue

Example 2

Example 2 queues two copies of the program 'mathematica'. The first copy runs in directory 'run_1', and the second runs in
directory 'run_2'. For both queued copies, 'stdin' will be 'test.data', 'stdout' will be 'loop.out', and 'stderr' will
be 'loop.error'. Two sets of files will be written, since the files are each written to their own directories. This is a convenient
way to organize data for a large group of Condor jobs.
 # Example 2: demonstrate use of multiple
 # directories for data organization.
 universe = vanilla
 executable = mathematica
 # Give some command line args, remap stdio

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # Give some command line args, remap stdio
 arguments = -solver matrix
 input = test.data
 output = loop.out
 error = loop.error
 log = loop.log

 initialdir = run_1
 queue
 initialdir = run_2
 queue

Example 3

The submit description file for Example 3 queues 150 runs of program 'foo'. This job requires Condor to run the program on
machines that have greater than 128 megabytes of physical memory, and it further requires that the job not be scheduled to run
on a specific node. Of the machines that meet the requirements, the job prefers to run on the fastest floating-point nodes currently
available to accept the job. It also advises Condor that the job will use up to 180 megabytes of memory when running. Each of the
150 runs of the program is given its own process number, starting with process number 0. Several built-in macros can be used in
a submit description file; one of them is the $ (Process) macro which Condor expands to be the process number in the job cluster.
This causes files 'stdin', 'stdout', and 'stderr' to be 'in.0', 'out.0', and 'err.0' for the first run of the program,
'in.1', 'out.1', and 'err.1' for the second run of the program, and so forth. A single log file will list events for all 150 jobs in
this job cluster.
 # Example 3: Submit lots of runs and use the
 # pre-defined $(Process) macro.
 universe = vanilla
 executable = foo
 requirements = Memory > 128 && Machine != "server-node.cluster.edu"
 rank = KFlops
 image_size = 180

 Error = err.$(Process)
 Input = in.$(Process)
 Output = out.$(Process)
 Log = foo.log

 queue 150

Note that the requirements and rank entries in the submit description file will become the requirements and rank attributes of
the subsequently created ClassAd for this job. These are arbitrary expressions that can reference any attributes of either the
machine or the job; see Section 15.1.2 for more on requirements and rank expressions in ClassAds.

15.2.3 Overview of User Commands

Once you have jobs submitted to Condor, you can manage them and monitor their progress. Table 15.1 shows several commands
available to the Condor user to view the job queue, check the status of nodes in the pool, and perform several other activities.
Most of these commands have many command-line options; see the Command Reference chapter of the Condor manual for
complete documentation. To provide an introduction from a user perspective, we give here a quick tour showing several of these
commands in action.

Table 15.1: List of user commands.

Command Description

condor_analyze Troubleshoot jobs that are not being matched

condor_checkpoint Checkpoint jobs running on the specified hosts

condor_compile Create a relinked executable for submission to the Standard Universe

condor_glidein Add a Globus resource to a Condor pool

condor_history View log of Condor jobs completed to date

condor_hold Put jobs in the queue in hold state

condor_prio Change priority of jobs in the queue

condor_qedit Modify attributes of a previously submitted job

condor_q Display information about jobs in the queue

condor_release Release held jobs in the queue

condor_reschedule Update scheduling information to the central manager

condor_rm Remove jobs from the queue

condor_run Submit a shell command-line as a Condor job

condor_status Display status of the Condor pool

condor_submit_dag Manage and queue jobs within a specified DAG for interjob dependencies.

condor_submit Queue jobs for execution

condor_userlog Display and summarize job statistics from job log files

condor_version Display version number of installed software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When jobs are submitted, Condor will attempt to find resources to service the jobs. A list of all users with jobs submitted may be
obtained through condor_status with the -submitters option. An example of this would yield output similar to the following:
% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

 RunningJobs IdleJobs HeldJobs

 ballard@cs.wisc.edu 0 11 0
 jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
 wright@cs.wisc.edu 1 1 0

 Total 7 516 5

Checking on the Progress of Jobs
The condor_q command displays the status of all jobs in the queue. An example of the output from condor_q is
% condor_q

-- Schedd: uug.cs.wisc.edu : <128.115.121.12:33102>
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 55574.0 jane 6/23 11:33 4+03:35:28 R 0 25.7 seycplex seymour.d
 55575.0 jane 6/23 11:44 0+23:24:40 R 0 26.8 seycplexpseudo sey
 83193.0 jane 3/28 15:11 48+15:50:55 R 0 17.5 cplexmip test1.mp
 83196.0 jane 3/29 08:32 48+03:16:44 R 0 83.1 cplexmip test3.mps
 83212.0 jane 4/13 16:31 41+18:44:40 R 0 39.7 cplexmip test2.mps

 5 jobs; 0 idle, 5 running, 0 held

This output contains many columns of information about the queued jobs. The ST column (for status) shows the status of current
jobs in the queue. An R in the status column means the the job is currently running. An I stands for idle. The status H is the hold
state. In the hold state, the job will not be scheduled to run until it is released (via the condor_release command). The
RUN_TIME time reported for a job is the time that job has been allocated to a machine as DAYS+HOURS+MINS+SECS.

Another useful method of tracking the progress of jobs is through the user log. If you have specified a log command in your
submit file, the progress of the job may be followed by viewing the log file. Various events such as execution commencement,
checkpoint, eviction, and termination are logged in the file along with the time at which the event occurred. Here is a sample
snippet from a user log file
000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>
...
001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>
...
005 (8135.000.000) 05/25 19:13:06 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage
 Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage
 9624 - Run Bytes Sent By Job
 7146159 - Run Bytes Received By Job
 9624 - Total Bytes Sent By Job
 7146159 - Total Bytes Received By Job

...

The condor_jobmonitor tool parses the events in a user log file and can use the information to graphically display the progress
of your jobs. Figure 15.2 contains a screenshot of condor_jobmonitor in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.2: Condor jobmonitor tool.

You can locate all the machines that are running your job with the condor_status command. For example, to find all the
machines that are running jobs submitted by breach@cs.wisc.edu, type
% condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type
% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. INTEL LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi INTEL LINUX 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

Removing a Job from the Queue
You can remove a job from the queue at any time using the condor_rm command. If the job that is being removed is currently
running, the job is killed without a checkpoint, and its queue entry is removed. The following example shows the queue of jobs
before and after a job is removed.
% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
 132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Changing the Priority of Jobs
In addition to the priorities assigned to each user, Condor provides users with the capability of assigning priorities to any submitted
job. These job priorities are local to each queue and range from -20 to +20, with higher values meaning better priority.

The default priority of a job is 0. Job priorities can be modified using the condor_prio command. For example, to change the
priority of a job to -15, type
% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 jobs; 1 idle, 0 running, 0 held
% condor_prio -p -15 126.0
% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

We emphasize that these job priorities are completely different from the user priorities assigned by Condor. Job priorities control
only which one of your jobs should run next; there is no effect whatsoever on whether your jobs will run before another user's jobs.

Determining Why a Job Does Not Run
A specific job may not run for several reasons. These reasons include failed job or machine constraints, bias due to preferences,
insufficient priority, and the preemption throttle that is implemented by the condor_negotiator to prevent thrashing. Many of
these reasons can be diagnosed by using the -analyze option of condor_q. For example, the following job submitted by user
jbasney had not run for several days.
% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Running condor_q's analyzer provided the following information:
% condor_q 125.0 -analyze

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

125.000: Run analysis summary. Of 323 resource offers,
 323 do not satisfy the request's constraints
 0 resource offer constraints are not satisfied by this request
 0 are serving equal or higher priority customers
 0 are serving more preferred customers
 0 cannot preempt because preemption has been held
 0 are available to service your request

WARNING: Be advised:
 No resources matched request's constraints
 Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&
 Disk >= ExecutableSize && VirtualMemory >= ImageSize

The Requirements expression for this job specifies a platform that does not exist. Therefore, the expression always evaluates to
FALSE.

While the analyzer can diagnose most common problems, there are some situations that it cannot reliably detect because of the
instantaneous and local nature of the information it uses to detect the problem. The analyzer may report that resources are
available to service the request, but the job still does not run. In most of these situations, the delay is transient, and the job will run
during the next negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, the job may begin to run but immediately terminates and
return to the idle state. Viewing the job's error and log files (specified in the submit command file) and Condor's SHADOW_LOG file
may assist in tracking down the problem. If the cause is still unclear, you should contact your system administrator.

Job Completion
When a Condor job completes (either through normal means or abnormal means), Condor will remove it from the job queue
(therefore, it will no longer appear in the output of condor_q) and insert it into the job history file. You can examine the job history
file with the condor_history command. If you specified a log file in your submit description file, then the job exit status will be
recorded there as well.

By default, Condor will send you an e-mail message when your job completes. You can modify this behavior with the
condor_submit "notification" command. The message will include the exit status of your job or notification that your job
terminated abnormally.

Job Policy
Condor provides several expressions to control your job while it is in the queue. Condor periodically evaluates these expressions
and may perform actions on your behalf, reducing the tedium of managing running jobs.

Condor provides five of these expressions: periodic_hold, periodic_release, periodic_remove, on_exit_hold, and
on_exit_remove. The periodic expressions are evaluated every 20 seconds, and the on_exit expressions are evaluated when
your job completes, but before the job is removed from the queue. The periodic expressions take precedence over the on_exit
requirements, and the hold expressions take precedence over the remove expressions. The periodic expressions are ClassAd
expressions, just like the requirements expression introduced in Section 15.1.2. They are added to the job ClassAd via the submit
file.

You can use these expressions to automate many common actions. For example, suppose you know that your job will never run
for more than an hour, and if it is running for more than an hour, something is probably wrong and will need investigating. Instead
leaving your job running on the cluster needlessly, Condor can place your job on hold with the following added to the submit file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 periodic_hold = (ServerStartTime - JobStartDate) > 3600
Or suppose you have a job that occasionally segfaults but you know if you run it again on the same data, chances are it will finish
successfully. You can get this behavior by adding this line to the submit file:
on_exit_remove = (ExitBySignal == True) && (ExitSignal != 11)
The above expression will not let the job leave the queue if it exited by a signal and that signal number was 11 (representing
segmentation fault). In any other case of the job exting, it will leave the queue.

15.2.4 Submitting Different Types of Jobs: Choosing a Universe

A Universe in Condor defines an execution environment. Condor supports the following Universes on Linux:

Vanilla

Parallel

PVM

Globus

Scheduler

Java

Standard

The Universe attribute is specified in the submit description file. If the Universe is not specified, it will default to Standard.

Vanilla Universe
The Vanilla Universe is used to run serial (nonparallel) jobs. The examples provided in the preceding section use the Vanilla
Universe. Most Condor users prefer to use the Standard Universe to submit serial jobs because of several helpful features of the
Standard Universe. However, the Standard Universe has several restrictions on the types of serial jobs supported. The Vanilla
Universe, on the other hand, has no such restrictions. Any program that runs outside of Condor will run in the Vanilla Universe.
Binary executables as well as scripts are welcome in the Vanilla Universe.

A typical Vanilla Universe job relies on a shared file system between the submit machine and all the nodes in order to allow jobs to
access their data. However, if a shared file system is not available, Condor can transfer the files needed by the job to and from the
execute machine. See Section 15.2.5 for more details on this.

Parallel Universe
The Parallel Universe allows parallel programs written with MPI to be managed by Condor. To submit an MPI program to Condor,
specify the number of nodes to be used in the parallel job. Use the machine_count attribute in the submit description file to
specify the number of resources to claim, as in the following example:
Submit file for an MPI job which needs 8 large memory nodes
universe = parallel
executable = my-parallel-job
requirements = Memory >= 512
machine_count = 8
queue

Further options in the submit description file allow a variety of parameters, such as the job requirements or the executable to use
across the different nodes.

The start up of parallel jobs can be a complicated procedure, and each parallel library is different. The Condor parallel universe
tries to provide enough flexibility to allow jobs linked with any parallel library to be scheduled and launched. Jobs under the parallel
universe are allowed to run a script before a process is started on any node, and Condor provides tools to start processes on
other nodes. Condor includes all the necessary scripts to support the most common MPI implementations, such as MPICH,
MPICH2 and LAM. By default, Condor expects a parallel job to be linked with the MPICH implementation of MPI configured with
the ch_p4 device. For other parallel libraries, the Condor manual contains directions on how to write the necessary scripts.

If your Condor pool consists of both dedicated compute machines (that is, Beowulf cluster nodes) and opportunistic machines
(that is, desktop workstations), by default Condor will schedule MPI jobs to run on the dedicated resources only.

PVM Universe
Several different parallel programming paradigms exist. One of the more common is the "master/worker" or "pool of tasks"
arrangement. In a master/worker program model, one node acts as the controlling master for the parallel application and sends
out pieces of work to worker nodes. The worker node does some computation and sends the result back to the master node. The
master has a pool of work that needs to be done, and it assigns the next piece of work out to the next worker that becomes
available.

The PVM Universe allows master/worker style parallel programs written for the Parallel Virtual Machine interface (see Chapter 10)
to be used with Condor. Condor runs the master application on the machine where the job was submitted and will not preempt the
master application. Workers are pulled in from the Condor pool as they become available.

Specifically, in the PVM Universe, Condor acts as the resource manager for the PVM daemon. Whenever a PVM program asks
for nodes via a pvm_addhosts() call, the request is forwarded to Condor. Using ClassAd matching mechanisms, Condor finds a
machine in the Condor pool and adds it to the virtual machine. If a machine needs to leave the pool, the PVM program is notified
by normal PVM mechanisms, for example, the pvm_notify() call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by normal PVM mechanisms, for example, the pvm_notify() call.

A unique aspect of the PVM Universe is that PVM jobs submitted to Condor can harness both dedicated and nondedicated
(opportunistic) workstations throughout the pool by dynamically adding machines to and removing machines from the parallel
virtual machine as machines become available.

Writing a PVM program that deals with Condor's opportunistic environment can be a tricky task. For that reason, the MW
framework has been created. MW is a tool for making master-worker style applications in Condor's PVM Universe. For more
information, see the MW Home page online at www.cs.wisc.edu/condor/mw.

Submitting to the PVM Universe is similar to submitting to the MPI Universe, except that the syntax for machine_count is
different to reflect the dynamic nature of the PVM Universe. Here is a simple sample submit description file:
Require Condor to give us one node before starting
the job, but we'll use up to 75 nodes if they are
available.
universe = pvm
executable = master.exe
machine_count = 1..75
queue

By using machine_count = <min>..<max>, the submit description file tells Condor that before the PVM master is started,
there should be at least <min> number of machines given to the job. It also asks Condor to give it as many as <max> machines.

More detailed information on the PVM Universe is available in the Condor manual as well as on the Condor-PVM home page at
URL www.cs.wisc.edu/condor/pvm.

Globus Universe
The Globus Toolkit® is available from www.globus.org and is the most popular (although not the only) collection of middleware to
build computational grids. The Globus universe in Condor is intended to provide the standard Condor interface to users who wish
to submit jobs to machines being managed by Globus. Instead of the jobs executing in the Condor pool, jobs in the Globus
universe specify which resource the user wants and has authorization to use. The benefits for running Globus jobs in Condor are
that all the Condor job management, such as persistent logging, file management, and the DAGMan (15.2.6) meta-scheduler are
available.

The Globus universe is not the only way to share resources in Condor. The Condor manual has a section entitled "Grid
Computing" that describes Condor Flocking, Condor Glide-in, and the Globus universe in much more detail.

Scheduler Universe
The Scheduler Universe is used to submit a job that will immediately run on the submit machine, as opposed to a remote
execution machine. The purpose is to provide a facility for job meta-schedulers that desire to manage the submission and removal
of jobs into a Condor queue. Condor includes one such meta-scheduler that utilizes the Scheduler Universe: the DAGMan
scheduler, which can be used to specify complex interdependencies between jobs. See Section 15.2.6 for more on DAGMan.

Java Universe
There is growing interest in writing scientific programs in Java, and Condor provides special support for running Java programs in
a pool. Java programs are not loaded directly by the operating system and run on the processor. Instead, they are loaded by the
Java Virtual Machine(JVM) and interpreted. This allows the same Java program to run on any operating system and hardware
combination at the cost of reduced performance.

One inelegant way to run Java programs in a Condor pool is to submit the JVM to the Standard or Vanilla universe, and give the
Java program to be run as an argument. This is deficient in two ways. For one, it puts considerable burdens on users who want to
take advantage the platform independence that Java provides. Additionally, it is difficult to determine the cause of errors when a
job fails, as the error may be from the JVM or from the Java program running on the JVM.

The Java Universe changes the abstraction of a remote resource from a Linux machine to a Java environment. If a resource has a
JVM installed, Condor advertises facts about the JVM such as versions and performance benchmarks. When a Java universe job
is matched with a resource, Condor assumes responsibility of running the Java program. This allows specialized JVMs to be
deployed by the resource administrator and removes the burden of providing a suitable execution environment from the submitter.
If an error occurs, Condor can detect if the error occurred in the job or in the JVM. If the error is from the JVM, Condor
automatically retries the job. If the error is from the job, Condor can report directly into the job logfile what the exception was and
where it occurred. A sample Java submit file appears in Figure 15.3.

Submit file for an Java job which prefers the fastest JVM in the pool
universe = java
executable = my-java-sim.class
jar_files = simulation_library.jar
arguments = -x 100 -y 100
output = simulation.out
log = simulation.log
rank = JavaMFlops * 100
queue

Figure 15.3: A sample Java submit file.

Standard Universe
The Standard Universe requires minimal extra effort on the part of the user but provides a serial job with the following highly
desirable services:

Transparent process checkpoint and restart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transparent process migration

Remote system calls

Configurable file I/O buffering

On-the-fly file compression/inflation

Process Checkpointing in the Standard Universe
A checkpoint of an executing program is a snapshot of the program's current state. It provides a way for the program to be
continued from that state at a later time. Using checkpoints gives Condor the freedom to reconsider scheduling decisions through
preemptive-resume scheduling. If the scheduler decides to rescind a machine that is running a Condor job (for example, when the
owner of that machine returns and reclaims it or when a higher-priority user desires the same machine), the scheduler can take a
checkpoint of the job and preempt the job without losing the work the job has already accomplished. The job can then be resumed
later when the Condor scheduler allocates it a new machine. Additionally, periodic checkpoints provide fault tolerance. Normally,
when performing long-running computations, if a machine crashes or must be rebooted for an administrative task, all the work that
has been done is lost. The job must be restarted from the beginning, which can mean days, weeks, or even months of wasted
computation time. With checkpoints, Condor ensures that progress is always made on jobs and that only the computation done
since the last checkpoint is lost. Condor can be take checkpoints periodically, and after an interruption in service, the program can
continue from the most recent snapshot.

To enable taking checkpoints, you do not need to change the program's source code. Instead, the program must be relinked with
the Condor system call library (see below). Taking the checkpoint of a process is implemented in the Condor system call library as
a signal handler. When Condor sends a checkpoint signal to a process linked with this library, the provided signal handler writes
the state of the process out to a file or a network socket. This state includes the contents of the process's stack and data
segments, all CPU state (including register values), the state of all open files, and any signal handlers and pending signals. When
a job is to be continued using a checkpoint, Condor reads this state from the file or network socket, restoring the stack, shared
library and data segments, file state, signal handlers, and pending signals. The checkpoint signal handler then restores the CPU
state and returns to the user code, which continues from where it left off when the checkpoint signal arrived. Condor jobs
submitted to the Standard Universe will automatically perform a checkpoint when preempted from a machine. When a suitable
replacement execution machine is found (of the same architecture and operating system), the process is restored on this new
machine from the checkpoint, and computation is resumed from where it left off.

By default, a checkpoint is written to a file on the local disk of the submit machine. A Condor checkpoint server is also available to
serve as a repository for checkpoints.

Remote System Calls in the Standard Universe
One hurdle to overcome when placing an job on a remote execution workstation is data access. In order to utilize the remote
resources, the job must be able to read from and write to files on its submit machine. A requirement that the remote execution
machine be able to access these files via NFS, AFS, or any other network file system may significantly limit the number of eligible
workstations and therefore hinder the ability of an environment to achieve high throughput. Therefore, in order to maximize
throughput, Condor strives to be able to run any application on any remote workstation of a given platform without relying upon a
common administrative setup. The enabling technology that permits this is Condor's Remote System Calls mechanism. This
mechanism provides the benefit that Condor does not require a user to possess a login account on the execute workstation.

When a Unix process needs to access a file, it calls a file I/O system function such as open(), read(), or write(). These
functions are typically handled by the standard C library, which consists primarily of stubs that generate a corresponding system
call to the local kernel. Condor users link their applications with an enhanced standard C library via the condor_compile
command. This library does not duplicate any code in the standard C library; instead, it augments certain system call stubs (such
as the ones that handle file I/O) into remote system call stubs. The remote system call stubs package the system call number and
arguments into a message that is sent over the network to a condor_shadow process that runs on the submit machine.
Whenever Condor starts a Standard Universe job, it also starts a corresponding shadow process on the initiating host where the
user originally submitted the job (see Figure 15.4). This shadow process acts as an agent for the remotely executing program in
performing system calls. The shadow then executes the system call on behalf of the remotely running job in the normal way. The
shadow packages up the results of the system call in a message and sends it back to the remote system call stub in the Condor
library on the remote machine. The remote system call stub returns its result to the calling procedure, which is unaware that the
call was done remotely rather than locally. In this fashion, calls in the user's program to open(), read(), write(), close(),
and all other file I/O calls transparently take place on the machine that submitted the job instead of on the remote execution
machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.4: Remote System calls in the Standard Universe.

Relinking and Submitting for the Standard Universe
To convert a program into a Standard Universe job, use the condor_compile command to relink with the Condor libraries. Place
condor_compile in front of your usual link command. You do not need to modify the program's source code, but you do need
access to its unlinked object files. A commercial program that is packaged as a single executable file cannot be converted into a
Standard Universe job.

For example, if you normally link your job by executing
% cc main.o tools.o -o program

You can relink your job for Condor with
% condor_compile cc main.o tools.o -o program

After you have relinked your job, you can submit it. A submit description file for the Standard Universe is similar to one for the
Vanilla Universe. However, several additional submit directives are available to perform activities such as on-the-fly compression
of data files. Here is an example:
Submit 100 runs of my-program to the Standard Universe universe = standard
executable = my-program.exe
Each run should take place in a separate subdirectory: run0, run1, ...
initialdir = run$(Process)
Ask the Condor remote syscall layer to automatically compress
on-the-fly any writes done by my-program.exe to file data.output
compress_files = data.output
queue 100

Standard Universe Limitations
Condor performs its process checkpoint and migration routines strictly in user mode; there are no kernel drivers with Condor.
Because Condor is not operating at the kernel level, there are limitations on what process state it is able to checkpoint. As a
result, the following restrictions are imposed upon Standard Universe jobs:

1. Multiprocess jobs are not allowed. This includes system calls such as fork(), exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared memory.

3. Network communication must be brief. A job may make network connections using system calls such as
socket(), but a network connection left open for long periods will delay checkpoints and migration.

4. Multiple kernel-level threads are not allowed. However, multiple user-level threads (green threads) are allowed.

5. All files should be accessed read-only or write-only. A file that is both read and written to can cause trouble if a
job must be rolled back to an old checkpoint image.

6. On Linux, your job must be statically linked. Dynamic linking is allowed in the Standard Universe on some other
platforms supported by Condor, and perhaps this restriction on Linux will be removed in a future Condor release.

15.2.5 Giving Your Job Access to Its Data Files

Once your job starts on a machine in your pool, how does it access its data files? Condor provides several choices.

If the job is a Standard Universe job, then Condor solves the problem of data access automatically using the Remote System call
mechanism described above. Whenever the job tries to open, read, or write to a file, the I/O will actually take place on the submit
machine, whether or not a shared file system is in place.

Condor can use a shared file system, if one is available and permanently mounted across the machines in the pool. This is usually
the case in a Beowulf cluster. But what if your Condor pool includes nondedicated (desktop) machines as well? You could specify
a Requirements expression in your submit description file to require that jobs run only on machines that actually do have access
to a common, shared file system. Or, you could request in the submit description file that Condor transfer your job's data files
using the Condor File Transfer mechanism.

When Condor finds a machine willing to execute your job, it can create a temporary subdirectory for your job on the execute
machine. The Condor File Transfer mechanism will then send via TCP the job executable(s) and input files from the submitting
machine into this temporary directory on the execute machine. After the input files have been transferred, the execute machine
will start running the job with the temporary directory as the job's current working directory. When the job completes or is kicked
off, Condor File Transfer will automatically send back to the submit machine any output files created or modified by the job. After
the files have been sent back successfully, the temporary working directory on the execute machine is deleted.

Condor's File Transfer mechanism has several features to ensure data integrity in a nondedicated environment. For instance,
transfers of multiple files are performed atomically.

Condor File Transfer behavior is specified at job submission time using the submit description file and condor_submit. Along
with all the other job submit description parameters, you can use the following File Transfer commands in the submit description
file:

transfer_input_files = < file1, file2, file... >: Use this parameter to list all the files that should be transferred into
the working directory for the job before the job is started.

transfer_output_files = < file1, file2, file... >: Use this parameter to explicitly list which output files to transfer back
from the temporary working directory on the execute machine to the submit machine. Most of the time, however,
there is no need to use this parameter. If transfer_output_files is not specified, Condor will automatically
transfer in the job's temporary working directory all files that have been modified or created by the job.

transfer_files = <ONEXIT | ALWAYS | NEVER>: If transfer_files is set to ONEXIT, Condor will transfer the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transfer_files = <ONEXIT | ALWAYS | NEVER>: If transfer_files is set to ONEXIT, Condor will transfer the
job's output files back to the submitting machine only when the job completes (exits). Specifying ALWAYS tells
Condor to transfer back the output files when the job completes or when Condor kicks off the job (preempts) from a
machine prior to job completion. The ALWAYS option is specifically intended for fault-tolerant jobs that periodically
write out their state to disk and can restart where they left off. Any output files transferred back to the submit
machine when Condor preempts a job will automatically be sent back out again as input files when the job restarts.

15.2.6 The DAGMan Scheduler

The DAGMan scheduler within Condor allows the specification of dependencies between a set of programs. A directed acyclic
graph (DAG) can be used to represent a set of programs where the input, output, or execution of one or more programs is
dependent on one or more other programs. The programs are nodes (vertices) in the graph, and the edges (arcs) identify the
dependencies. Each program within the DAG becomes a job submitted to Condor. The DAGMan scheduler enforces the
dependencies of the DAG.

An input file to DAGMan identifies the nodes of the graph, as well as how to submit each job (node) to Condor. It also specifies
the graph's dependencies and describes any extra processing that is involved with the nodes of the graph and must take place
just before or just after the job is run.

A simple diamond-shaped DAG with four nodes is given in Figure 15.5.

Figure 15.5: A directed acyclic graph with four nodes.

A simple input file to DAGMan for this diamond-shaped DAG may be
file name: diamond.dag
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

The four nodes are named A, B, C, and D. Lines beginning with the keyword Job identify each node by giving it a name, and they
also specify a file to be used as a submit description file for submission as a Condor job. Lines with the keyword PARENT identify
the dependencies of the graph. Just like regular Condor submit description files, lines with a leading pound character (#) are
comments.

The DAGMan scheduler uses the graph to order the submission of jobs to Condor. The submission of a child node will not take
place until the parent node has successfully completed. No ordering of siblings is imposed by the graph, and therefore DAGMan
does not impose an ordering when submitting the jobs to Condor. For the diamond-shaped example, nodes B and C will be
submitted to Condor in parallel.

Each job in the example graph uses a different submit description file. An example submit description file for job A may be
 # file name: A.condor
 executable = nodeA.exe
 output = A.out
 error = A.err
 log = diamond.log
 universe = vanilla
 queue

An important restriction for submit description files of a DAG is that each node of the graph use the same log file. DAGMan uses
the log file in enforcing the graph's dependencies.

The graph for execution under Condor is submitted by using the Condor tool condor_submit_dag. For the diamond-shaped
example, submission would use the command
condor_submit_dag diamond.dag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3 Condor Architecture
A Condor pool comprises a single machine that serves as the central manager and an arbitrary number of other machines that
have joined the pool. Conceptually, the pool is a collection of resources (machines) and resource requests (jobs). The role of
Condor is to match waiting requests with available resources. Every part of Condor sends periodic updates to the central
manager, the centralized repository of information about the state of the pool. The central manager periodically assesses the
current state of the pool and tries to match pending requests with the appropriate resources.

15.3.1 The Condor Daemons

In this subsection we describe all the daemons (background server processes) in Condor and the role each plays in the system.
condor_master: This daemon's role is to simplify system administration. It is responsible for keeping the rest of
the Condor daemons running on each machine in a pool. The master spawns the other daemons and periodically
checks the timestamps on the binaries of the daemons it is managing. If it finds new binaries, the master will restart
the affected daemons. This allows Condor to be upgraded easily. In addition, if any other Condor daemon on the
machine exits abnormally, the condor_master will send e-mail to the system administrator with information about
the problem and then automatically restart the affected daemon. The condor_master also supports various
administrative commands to start, stop, or reconfigure daemons remotely. The condor_master runs on every
machine in your Condor pool.

condor_startd: This daemon represents a machine to the Condor pool. It advertises a machine ClassAd that
contains attributes about the machine's capabilities and policies. Running the startd enables a machine to
execute jobs. The condor_startd is responsible for enforcing the policy under which remote jobs will be started,
suspended, resumed, vacated, or killed. When the startd is ready to execute a Condor job, it spawns the
condor_starter, described below.

condor_starter: This program is the entity that spawns the remote Condor job on a given machine. It sets up
the execution environment and monitors the job once it is running. The starter detects job completion, sends back
status information to the submitting machine, and exits.

condor_schedd: This daemon represents jobs to the Condor pool. Any machine that allows users to submit jobs
needs to have a condor_schedd running. Users submit jobs to the condor_schedd, where they are stored in the
job queue. The various tools to view and manipulate the job queue (such as condor_submit, condor_q, or
condor_rm) connect to the condor_schedd to do their work.

condor_shadow: This program runs on the machine where a job was submitted whenever that job is executing.
The shadow serves requests for files to transfer, logs the job's progress, and reports statistics when the job
completes. Jobs that are linked for Condor's Standard Universe, which perform remote system calls, do so via the
condor_shadow. Any system call performed on the remote execute machine is sent over the network to the
condor_shadow. The shadow performs the system call (such as file I/O) on the submit machine and the result is
sent back over the network to the remote job.

condor_collector: This daemon is responsible for collecting all the information about the status of a Condor
pool. All other daemons periodically send ClassAd updates to the collector. These ClassAds contain all the
information about the state of the daemons, the resources they represent, or resource requests in the pool (such as
jobs that have been submitted to a given condor_schedd). The condor_collector can be thought of as a
dynamic database of ClassAds. The condor_status command can be used to query the collector for specific
information about various parts of Condor. The Condor daemons also query the collector for important information,
such as what address to use for sending commands to a remote machine. The condor_collector runs on the
machine designated as the central manager.

condor_negotiator: This daemon is responsible for all the matchmaking within the Condor system. The
negotiator is also responsible for enforcing user priorities in the system.

15.3.2 The Condor Daemons in Action

Within a given Condor installation, one machine will serve as the pool's central manager. In addition to the condor_master
daemon that runs on every machine in a Condor pool, the central manager runs the condor_collector and the
condor_negotiator daemons. Any machine in the installation that should be capable of running jobs should run the
condor_startd, and any machine that should maintain a job queue and therefore allow users on that machine to submit jobs
should run a condor_schedd.

Condor allows any machine simultaneously to execute jobs and serve as a submission point by running both a condor_startd
and a condor_schedd. Figure 15.6 displays a Condor pool in which every machine in the pool can both submit and run jobs,
including the central manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.6: Daemon layout of an idle Condor pool.

The interface for adding a job to the Condor system is condor_submit, which reads a job description file, creates a job ClassAd,
and gives that ClassAd to the condor_schedd managing the local job queue. This triggers a negotiation cycle. During a
negotiation cycle, the condor_negotiator queries the condor_collector to discover all machines that are willing to perform
work and all users with idle jobs. The condor_negotiator communicates in user priority order with each condor_schedd that
has idle jobs in its queue, and performs matchmaking to match jobs with machines such that both job and machine ClassAd
requirements are satisfied and preferences (rank) are honored.

Once the condor_negotiator makes a match, the condor_schedd claims the corresponding machine and is allowed to make
subsequent scheduling decisions about the order in which jobs run. This hierarchical, distributed scheduling architecture
enhances Condor's scalability and flexibility.

When the condor_schedd starts a job, it spawns a condor_shadow process on the submit machine, and the condor_startd
spawns a condor_starter process on the corresponding execute machine (see Figure 15.7). The shadow transfers the job
ClassAd and any data files required to the starter, which spawns the user's application.

Figure 15.7: Daemon layout when a job submitted from Machine 2 is running.

If the job is a Standard Universe job, the shadow will begin to service remote system calls originating from the user job, allowing
the job to transparently access data files on the submitting host.

When the job completes or is aborted, the condor_starter removes every process spawned by the user job, and frees any
temporary scratch disk space used by the job. This ensures that the execute machine is left in a clean state and that resources
(such as processes or disk space) are not being leaked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4 Configuring Condor
This section describes how to configure and customize Condor for your site. It discusses the configuration files used by Condor,
describes how to configure the policy for starting and stopping jobs in your pool, and recommends settings for using Condor on a
cluster.

A number of configuration files facilitate different levels of control over how Condor is configured on each machine in a pool. The
top-level or global configuration file is shared by all machines in the pool. For ease of administration, this file should be located on
a shared file system. In addition, each machine may have multiple local configuration files allowing the local settings to override
the global settings. Hence, each machine may have different daemons running, different policies for when to start and stop
Condor jobs, and so on.

All of Condor's configuration files should be owned and writable only by root. It is important to maintain strict control over these
files because they contain security-sensitive settings.

The Condor project's website at www.cs.wisc.edu/condor has detailed installation instructions. For some Linux distributions,
Condor is available in the native packaging format. For Linux distributions that Condor is not natively packaged for, it is available
as a tarfile. A perl script is included to help install Condor and customize the configuration.

15.4.1 Location of Condor's Configuration Files

Condor has a default set of locations it uses to try to find its top-level configuration file. The locations are checked in the following
order:

1. The file specified in the CONDOR_CONFIG environment variable.

2. '/etc/condor/condor_config', if it exists.

3. If user condor exists on your system, the 'condor_config' file in this user's home directory.

If a Condor daemon or tool cannot find its global configuration file when it starts, it will print an error message and immediately
exit. Once the global configuration file has been read by Condor, however, any other local configuration files can be specified with
the LOCAL_CONFIG_FILE macro.

This macro can contain a single entry if you want only two levels of configuration (global and local). If you need a more complex
division of configuration values (for example, if you have machines of different platforms in the same pool and desire separate
files for platform-specific settings), LOCAL_CONFIG_FILE can contain a list of files.

Condor provides other macros to help you easily define the location of the local configuration files for each machine in your pool.
Most of these are special macros that evaluate to different values depending on which host is reading the global configuration file:

HOSTNAME: The hostname of the local host.

FULL_HOSTNAME: The fully qualified hostname of the local host.

TILDE: The home directory of the user condor on the local host.

OPSYS: The operating system of the local host, such as "LINUX," "WINNT4" (for Windows NT), or "WINNT5" (for
Windows 2000). This is primarily useful in heterogeneous clusters with multiple platforms.

RELEASE_DIR: The directory where Condor is installed on each host. This macro is defined in the global
configuration file and is set by Condor's installation program.

By default, the local configuration file is defined as
LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local

15.4.2 Recommended Configuration File Layout for a Cluster

Ease of administration is an important consideration in a cluster, particularly if you have a large number of nodes. To make
Condor easy to configure, we highly recommend that you install all of your Condor configuration files, even the per-node local
configuration files, on a shared file system. That way, you can easily make changes in one place.

You should use a subdirectory in your release directory for holding all of the local configuration files. By default, Condor's release
directory contains an 'etc' directory for this purpose.

You should create separate files for each node in your cluster, using the hostname as the first half of the filename, and ".local" as
the end. For example, if your cluster nodes are named "n01," "n02," and so on, the files should be called 'n01.local',
'n02.local', and so on. These files should all be placed in your 'etc' directory.

In your global configuration file, you should use the following setting to describe the location of your local configuration files:
LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$(HOSTNAME).local

The central manager of your pool needs special settings in its local configuration file. These attributes are set automatically by the
Condor installation program. The rest of the local configuration files can be left empty at first.

Having your configuration files laid out in this way will help you more easily customize Condor's behavior on your cluster. We
discuss other possible configuration scenarios at the end of this chapter.

Note We recommend that you store all of your Condor configuration files under a version control system, such as CVS.
While this is not required, it will help you keep track of the changes you make to your configuration, who made them,
when they occurred, and why. In general, it is a good idea to store configuration files under a version control system,
since none of the above concerns are specific to Condor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4.3 Configuring Security in Condor

Condor has a rich and highly-configurable security implementation. Condor separates security into two parts: Authentication and
Authorization. Authentication identifies the client requesting an action, and does not pass judgment on if that client is allowed to
perform that action. Condor can use many different methods for authentication, including Kerberos, X.509 Public/Private keys,
and TCP/IP hostnames. Authentication levels and methods are automatically negotiated by Condor. Authentication can be
Required, Preferred, Optional, or Never. Given the distributed nature of the daemons that implement Condor, access to these
daemons is naturally host based, and is currently the default. However, host-based security is fairly easy to defeat. In any sort of
untrusted environment, we strongly recommend using a more sophisticated authentication method such as X.509.

Authorization builds on top of authentication by specifying who is allowed to do what. There are four different classes of access
levels: Read, Write, Administrator, and Config. Each level may require a different strength of authentication, and have a different
set of clients who are allowed to perform that action. For example, it is very common to allow anyone who can authenticate as
being from a local subnet to read information about Condor resources and jobs. At the same time, only a few people be might
allowed to administer a machine, and these people may be required to identify themselves using Kerberos. The four access levels
are described below:

Read: allows a client to obtain information from Condor. Examples of information that may be read are the status of
the pool and the contents of the job queue.

Write: allows a client to provide information to Condor, such as submit a job or join the pool. Note that Write access
does not imply Read access.

Administrator: allows a client to affect privileged operations such as changing a user's priority level or starting and
stopping the Condor system from running.

Config: allows a client to change Condor's configuration settings remotely using the condor_config_val tool's -
set and -rset options. This has very serious security implications, so we recommend that you not enable Config
access to any hosts.

The defaults during installation give all machines in the pool read and write access. The central manager is also given
administrator access. You will probably wish to change these defaults for your site. Read the Condor Administrator's Manual for
details on authentication and authorization in Condor and how to customize it for your site.

15.4.4 Customizing Condor's Policy Expressions

Certain configuration expressions are used to control Condor's policy for executing, suspending, and evicting jobs. Their
interaction can be somewhat complex. Defining an inappropriate policy impacts the throughput of your cluster and the happiness
of its users. If you are interested in creating a specialized policy for your pool, we recommend that you read the Condor
Administrator's Manual. Only a basic introduction follows.

All policy expressions are ClassAd expressions and are defined in Condor's configuration files. Policies are usually poolwide and
are therefore defined in the global configuration file. If individual nodes in your pool require their own policy, however, the
appropriate expressions can be placed in local configuration files.

The policy expressions are treated by the condor_startd as part of its machine ClassAd (along with all the attributes you can
view with condor_status -long). They are always evaluated against a job ClassAd, either by the condor_negotiator when
trying to find a match or by the condor_startd when it is deciding what to do with the job that is currently running. Therefore, all
policy expressions can reference attributes of a job, such as the memory usage or owner, in addition to attributes of the machine,
such as keyboard idle time or CPU load.

Most policy expressions are ClassAd Boolean expressions, so they evaluate to TRUE, FALSE, or UNDEFINED. UNDEFINED
occurs when an expression references a ClassAd attribute that is not found in either the machine's ClassAd or the ClassAd of the
job under consideration. For some expressions, this is treated as a fatal error, so you should be sure to use the ClassAd meta-
operators, described in Section 15.1.2 when referring to attributes which might not be present in all ClassAds.

An explanation of policy expressions requires an understanding of the different stages that a job can go through from initially
executing until the job completes or is evicted from the machine. Each policy expression is then described in terms of the step in
the progression that it controls.

The Lifespan of a Job Executing in Condor
When a job is submitted to Condor, the condor_negotiator performs matchmaking to find a suitable resource to use for the
computation. This process involves satisfying both the job and the machine's requirements for each other. The machine can
define the exact conditions under which it is willing to be considered available for running jobs. The job can define exactly what
kind of machine it is willing to use.

Once a job has been matched with a given machine, there are four states the job can be in: running, suspended, graceful
shutdown, and quick shutdown. As soon as the match is made, the job sets up its execution environment and begins running.

While it is executing, a job can be suspended (for example, because of other activity on the machine where it is running). Once it
has been suspended, the job can resume execution or can move on to preemption or eviction.

All Condor jobs have two methods for preemption: graceful and quick. Standard Universe jobs are given a chance to produce a
checkpoint with graceful preemption. For the other universes, graceful implies that the program is told to get off the system, but it
is given time to clean up after itself. On all flavors of Unix, a SIGTERM is sent during graceful shutdown by default, although users
can override this default when they submit their job. A quick shutdown involves rapidly killing all processes associated with a job,
without giving them any time to execute their own cleanup procedures. The Condor system performs checks to ensure that
processes are not left behind once a job is evicted from a given node.

Condor Policy Expressions
Various expressions are used to control the policy for starting, suspending, resuming, and preempting jobs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

START: when the condor_startd is willing to start executing a job.

RANK: how much the condor_startd prefers each type of job running on it. The RANK expression is a floating-
point instead of a Boolean value. condor_startd will preempt the job it is currently running if there is another job
in the system that yields a higher value for this expression.

WANT_SUSPEND: controls whether the condor_startd should even consider suspending this job or not. In effect,
it determines which expression, SUSPEND or PREEMPT, should be evaluated while the job is running.
WANT_SUSPEND does not control when the job is actually suspended; for that purpose, you should use the
SUSPEND expression.

SUSPEND: when the condor_startd should suspend the currently running job. If WANT_SUSPEND evaluates to
TRUE, SUSPEND is periodically evaluated whenever a job is executing on a machine. If SUSPEND becomes TRUE,
the job will be suspended.

CONTINUE: if and when the condor_startd should resume a suspended job. The CONTINUE expression is
evaluated only while a job is suspended. If it evaluates to TRUE, the job will be resumed, and the condor_startd
will go back to the Claimed/Busy state.

PREEMPT: when the condor_startd should preempt the currently running job. This expression is evaluated
whenever a job has been suspended. If WANT_SUSPEND evaluates to FALSE, PREEMPT is checked while the job is
executing.

WANT_VACATE: whether the job should be evicted gracefully or quickly if Condor is preempting a job (because the
PREEMPT expression evaluates to TRUE). If WANT_VACATE is FALSE, the condor_startd will immediately kill the
job and all of its child processes whenever it must evict the application. If WANT_VACATE is TRUE, the
condor_startd performs a graceful shutdown, instead.

KILL: when the condor_startd should give up on a graceful preemption and move directly to the quick
shutdown.

PREEMPTION_REQUIREMENTS: used by the condor_negotiator when it is performing matchmaking, not by the
condor_startd. While trying to schedule jobs on resources in your pool, the condor_negotiator considers the
priorities of the various users in the system (see Section 15.5.3 for more details). If a user with a better priority has
jobs waiting in the queue and no resources are currently idle, the matchmaker will consider preempting another
user's jobs and giving those resources to the user with the better priority. This process is known as priority
preemption. The PREEMPTION_REQUIREMENTS expression must evaluate to TRUE for such a preemption to take
place.

PREEMPTION_RANK: a floating-point value evaluated by the condor_negotiator. If the matchmaker decides it
must preempt a job due to user priorities, the macro PREEMPTION_RANK determines which resource to preempt.
Among the set of all resources that make the PREEMPTION_REQUIREMENTS expression evaluate to TRUE, the one
with the highest value for PREEMPTION_RANK is evicted.

15.4.5 Customizing Condor's Other Configuration Settings

In addition to the policy expressions, you will need to modify other settings to customize Condor for your cluster.
DAEMON_LIST: the comma-separated list of daemons that should be spawned by the condor_master. As
described in Section 15.3.1 discussing the architecture of Condor, each host in your pool can play different roles
depending on which daemons are started on it. You define these roles using the DAEMON_LIST in the appropriate
configuration files to enable or disable the various Condor daemons on each host.

DedicatedScheduler: the name of the dedicated scheduler for your cluster. This setting must have the form
DedicatedScheduler = "DedicatedScheduler@full.host.name.here"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.5 Administration Tools
Condor has a rich set of tools for the administrator. Table 15.2 gives an overview of the Condor commands typically used solely
by the system administrator. Of course, many of the "user-level" Condor tools summarized in Table 15.2 can be helpful for cluster
administration as well. For instance, the condor_status tool can easily display the status for all nodes in the cluster, including
dynamic information such as current load average and free virtual memory.

Table 15.2: Commands reserved for the administrator.

Command Description

condor_checkpoint Checkpoint jobs running on the specified hosts

condor_config_val Query or set a given Condor configuration variable

condor_fetch_log Retrieve daemon logs from a remote machine

condor_master_off Shut down Condor and the condor_master
condor_off Shut down Condor daemons

condor_on Start up Condor daemons

condor_reconfig Reconfigure Condor daemons

condor_restart Restart the condor_master
condor_stats Display historical information about the Condor pool

condor_userprio Display and manage user priorities

condor_vacate Vacate jobs that are running on the specified hosts

15.5.1 Remote Configuration and Control

All machines in a Condor pool can be remotely managed from a centralized location. Condor can be enabled, disabled, or
restarted remotely using the condor_on, condor_off, and condor_restart commands, respectively. Additionally, any aspect
of Condor's configuration file on a node can be queried or changed remotely via the condor_config_val command. Of course,
not everyone is allowed to change your Condor configuration remotely. Doing so requires proper authorization, which is set up at
installation time.

Many aspects of Condor's configuration, including its scheduling policy, can be changed on the fly without requiring the pool to be
shut down and restarted. This is accomplished by using the condor_reconfig command, which asks the Condor daemons on a
specified host to reread the Condor configuration files and take appropriate action—on the fly if possible.

15.5.2 Accounting and Logging

Condor keeps many statistics about what is happening in the pool. Each daemon can be asked to keep a detailed log of its
activities; Condor will automatically rotate these log files when they reach a maximum size as specified by the administrator.

In addition to the condor_history command, which allows users to view job ClassAds for jobs that have previously completed,
the condor_stats tool can be used to query for historical usage statistics from a poolwide accounting database. This database
contains information about how many jobs were being serviced for each user at regular intervals, as well as how many machines
were busy. For instance, condor_stats could be asked to display the total number of jobs running at five-minute intervals for a
specified user between January 15 and January 30.

The condor_view tool takes the raw information obtainable with condor_stats and converts it into HTML, complete with
interactive charts. Figure 15.8 shows a sample display of the output from condor_view in a Web browser. The site administrator,
using condor_view, can quickly put detailed, real-time usage statistics about the Condor pool onto a Web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.8: CondorView displaying machine usage.

15.5.3 User Priorities in Condor

The job queues in Condor are not strictly first-in, first-out. Instead, Condor implements priority queuing. Different users will get
different-sized allocations of machines depending on their current user priority, regardless of how many jobs from a competing
user are "ahead" of them in the queue. Condor can also be configured to perform priority preemption if desired. For instance,
suppose user A is using all the nodes in a cluster, when suddenly a user with a superior priority submits jobs. With priority
preemption enabled, Condor will preempt the jobs of the lower-priority user in order to immediately start the jobs submitted by the
higher-priority user.

Starvation of the lower-priority users is prevented by a fair-share algorithm, which attempts to give all users the same amount of
machine allocation time over a specified interval. In addition, the priority calculations in Condor are based on ratios instead of
absolutes. For example, if Bill has a priority that is twice as good as that of Fred, Condor will not starve Fred by allocating all
machines to Bill. Instead, Bill will get, on average, twice as many machines as will Fred because Bill's priority is twice as good.

The condor_userprio command can be used by the administrator to view or edit a user's priority. It can also be used to
override Condor's default fair-share policy and explicitly assign users a better or worse priority in relation to other users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.6 Cluster Setup Scenarios
This section explores different scenarios for how to configure your cluster. Five scenarios are presented, along with a basic idea of
what configuration settings you will need to modify or what steps you will need to take for each scenario:

1. A uniformly owned, dedicated compute cluster, with a single front-end node for submission, and support for MPI
applications.

2. A cluster of multiprocessor nodes.

3. A cluster of distributively owned nodes. Each node prefers to run jobs submitted by its owner.

4. Desktop submission to the cluster.

5. Expanding the cluster to nondedicated (desktop) computing resources.

Most of these scenarios can be combined. Each scenario builds on the previous one to add further functionality to the basic
cluster configuration.

15.6.1 Basic Configuration: Uniformly Owned Cluster

The most basic scenario involves a cluster where all resources are owned by a single entity and all compute nodes enforce the
same policy for starting and stopping jobs. All compute nodes are dedicated, meaning that they will always start an idle job and
they will never preempt or suspend until completion. There is a single front-end node for submitting jobs, and dedicated MPI jobs
are enabled from this host.

In order to enable this basic policy, your global configuration file must contain these settings:
START = True
SUSPEND = False
CONTINUE = False
PREEMPT = False
KILL = False
WANT_SUSPEND = True
WANT_VACATE = True
RANK = Scheduler =?= $(DedicatedScheduler)
DAEMON_LIST = MASTER, STARTD

The final entry listed here specifies that the default role for nodes in your pool is execute-only. The DAEMON_LIST on your front-
end node must also enable the condor_schedd. This front-end node's local configuration file will be
DAEMON_LIST = MASTER, STARTD, SCHEDD

15.6.2 Using Multiprocessor Compute Nodes

If any node in your Condor pool is a symmetric multiprocessor machine, Condor will represent that node as multiple virtual
machines (VMs), one for each CPU. By default, each VM will have a single CPU and an even share of all shared system
resources, such as RAM and swap space. If this behavior satisfies your needs, you do not need to make any configuration
changes for SMP nodes to work properly with Condor.

Some sites might want different behavior of their SMP nodes. For example, assume your cluster was composed of dual-processor
machines with 1 gigabyte of RAM, and one of your users was submitting jobs with a memory footprint of 700 megabytes. With the
default setting, all VMs in your pool would only have 500 megabytes of RAM, and your user's jobs would never run. In this case,
you would want to unevenly divide RAM between the two CPUs, to give half of your VMs 750 megabytes of RAM. The other half
of the VMs would be left with 250 megabytes of RAM.

There is more than one way to divide shared resources on an SMP machine with Condor, all of which are discussed in detail in
the Condor Administrator's Manual. The most basic method is as follows. To divide shared resources on an SMP unevenly, you
must define different virtual machine types and tell the condor_startd how many virtual machines of each type to advertise.
The simplest method to define a virtual machine type is to specify what fraction of all shared resources each type should receive.

For example, if you wanted to divide a two-node machine where one CPU received one-quarter of the shared resources, and the
other CPU received the other three-quarters, you would use the following settings:
VIRTUAL_MACHINE_TYPE_1 = 1/4
VIRTUAL_MACHINE_TYPE_2 = 3/4
NUM_VIRTUAL_MACHINES_TYPE_1 = 1
NUM_VIRTUAL_MACHINES_TYPE_2 = 1

If you want to divide certain resources unevenly but split the rest evenly, you can specify separate fractions for each shared
resource. This is described in detail in the Condor Administrator's Manual.

15.6.3 Scheduling a Distributively Owned Cluster

Many clusters are owned by more than one entity. Two or more smaller groups might pool their resources to buy a single, larger
cluster. In these situations, the group that paid for a portion of the nodes should get priority to run on those nodes.

Each resource in a Condor pool can define its own RANK expression, which specifies the kinds of jobs it would prefer to execute. If
a cluster is owned by multiple entities, you can divide the cluster's nodes up into groups, based on ownership. Each node would
set Rank such that jobs coming from the group that owned it would have the highest priority.

Assume there is a 60-node compute cluster at a university, shared by three departments: astronomy, math, and physics. Each
department contributed the funds for 20 nodes. Each group of 20 nodes would define its own Rank expression. The astronomy
department's settings, for example, would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rank = Department == "Astronomy"

The users from each department would also add a Department attribute to all of their job ClassAds. The administrators could
configure Condor to add this attribute automatically to all job ads from each site (see the Condor Administrator's Manual for
details).

If the entire cluster was idle and a physics user submitted 40 jobs, she would see all 40 of her jobs start running. If, however, a
user in math submitted 60 jobs and a user in astronomy submitted 20 jobs, 20 of the physicist's jobs would be preempted, and
each group would get 20 machines out of the cluster.

If all of the astronomy department's jobs completed, the astronomy nodes would go back to serving math and physics jobs. The
astronomy nodes would continue to run math or physics jobs until either some astronomy jobs were submitted, or all the jobs in
the system completed.

15.6.4 Submitting to the Cluster from Desktop Workstations

Most organizations that install a compute cluster have other workstations at their site. It is usually desirable to allow these
machines to act as front-end nodes for the cluster, so users can submit their jobs from their own machines and have the
applications execute on the cluster. Even if there is no shared file system between the cluster and the rest of the computers,
Condor's remote system calls and file transfer functionality can enable jobs to migrate between the two and still access their data
(see Section 15.2.5 for details on accessing data files).

To enable a machine to submit into your cluster, run the Condor installation program and specify that you want to setup a submit-
only node. This will set the DAEMON_LIST on the new node to be
DAEMON_LIST = MASTER, SCHEDD

The installation program will also create all the directories and files needed by Condor.

Note that you can have only one node configured as the dedicated scheduler for your pool. Do not attempt to add a second
submit node for MPI jobs.

15.6.5 Expanding the Cluster to Nondedicated (Desktop) Computing Resources

One of the most powerful features in Condor is the ability to combine dedicated and opportunistic scheduling within a single
system. Opportunistic scheduling involves placing jobs on nondedicated resources under the assumption that the resources might
not be available for the entire duration of the jobs. Opportunistic scheduling is used for all jobs in Condor with the exception of
dedicated MPI applications.

If your site has a combination of jobs and uses applications other than MPI, you should strongly consider adding all of your
computing resources, even desktop workstations, to your Condor pool. With checkpointing and process migration, suspend and
resume capabilities, opportunistic scheduling and matchmaking, Condor can harness the idle CPU cycles of any machine and put
them to good use.

To add other computing resources to your pool, run the Condor installation program and specify that you want to configure a node
that can both submit and execute jobs. The default installation sets up a node with a policy for starting, suspending, and
preempting jobs based on the activity of the machine (for example, keyboard idle time and CPU load). These nodes will not run
dedicated MPI jobs, but they will run jobs from any other universe, including PVM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.7 Conclusion
Condor is a powerful tool for scheduling jobs across platforms, both within and beyond the boundaries of your Beowulf clusters.
Through its unique combination of both dedicated and opportunistic scheduling, Condor provides a unified framework for high-
throughput computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Maui Scheduler: A High Performance Cluster
Scheduler
David B. Jackson

In this chapter we describe the Maui scheduler, a job-scheduling component that coordinates activities among Grid scheduling,
resource management, and allocation management services, which can provide advanced scheduling services for most major
resource managers.

16.1 Overview
Over the years, Maui has become the standard in high-performance cluster job scheduling. It is capable of operating with and
extending the functionality of virtually all major resource management systems, including OpenPBS, PBSPro, SGE, LSF,
Loadleveler, SSS, and BProc. From its origins, Maui has been designed to empower a given site to maximize the use of the
cluster. It does this by allowing translation of local mission policies into scheduling behavior, optimizing scheduling decisions, and
intelligently minimizing resource contention. In doing so, it allows sites not only to gain greater return on investment from their
cluster but also to improve end-user satisfaction and reduce administrative overhead required to manage the cluster.

At a high level, the role of a job scheduler is to direct the actions of the resource manager, indicating when, where, and how jobs
are to be started, preempted, canceled, and otherwise managed. It is also responsible for coordinating actions with other systems
such as a Grid scheduler, allocation manager, or information service. In fulfilling these roles, Maui adds a unique suite of
scheduling services including advance reservations, backfill, fairshare, dynamic job prioritization, quality of service support, and
metascheduling.

Maui's design allows sites to maintain consistently high levels of cluster performance and support for advanced scheduling
features regardless of the local resource manager used. With Maui, sites are not locked into a single resource manager but may
freely select and interchange resource managers according to need. Further, Maui allows end users the choice of using the
command and GUI interfaces of Maui or the commands of the underlying resource manager. Thus, sites can roll Maui in and out
with no end-user training; end users can continue using familiar job management commands, GUIs, and job submission
languages. If sites wish to introduce end users to new advanced Maui features and commands, they can. If not, the users can
operate successfully without even knowing Maui is installed on the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2 Installation and Initial Configuration
The Maui scheduler is available in the most popular cluster-building toolkits, including OSCAR and Rocks. The most recent
versions of Maui can also be downloaded from the Maui home page at http://supercluster.org/maui. This site contains online
documentation, FAQs, links to the Maui users mailing list, other standard open source utilities, and contact information for
obtaining support and other services. Building the code consists of the standard configure, make, and make install process.

16.2.1 Basic Configuration

The configure script will set up the basic build environment and initial configuration files including the master config file,
'maui.cfg'. This master config file is a flat text file that includes information regarding resource manager interface configuration,
scheduling optimizations, usage limits, and cluster usage objectives. In most cases, the initial configuration done by the
configure command is adequate to allow Maui to be used immediately with no further changes. Maui is extremely configurable,
with hundreds of parameters available. Rarely, however, do sites need to use more than a fraction of the available services to
meet their specific needs. Maui's highly modularized design allows sites to accept the initial defaults and focus only on configuring
those aspect of scheduling pertinent to their environment.

Among the parameters detected and set by the configure script are RMCFG, SCHEDCFG, and ADMIN. The initial settings of these
values can be checked and modified by editing the 'maui.cfg' file. Alternatively, once the scheduler is running, Maui can be
configured dynamically by using text- or GUI-based commands. For text-based configuration, the schedctl command can be
used with the '-l' flag to list the value of any parameter whether explicitly set or not, while the '-m' flag can be used to
dynamically modify parameter values. The online parameters documentation provides details about all Maui parameters,
including format, default values, usage, examples, and links to related sections of the admin manual.

16.2.2 Simulation and Testing

Often, after the initial configuration is verified, sites choose to test the scheduler to become familiar with its capabilities and to
verify basic functionality. Maui can be run in a completely safe manner by setting the MODE attribute of the SCHEDCFG parameter
to TEST, that is, SCHEDCFG[orion] MODE=TEST PORT=40559. In test mode, Maui contacts the resource manager to obtain up-
to-date configuration, node, and job information; however, in this mode, Maui's ability to start or modify these jobs is disabled.
Once the needed parameter changes have been made, Maui can be started by issuing the command maui. At this point,
commands such as showq, showstate, and checknode may be used to verify proper scheduler-resource manager
communication and scheduler functionality. Details on the full suite of Maui commands are available online or in the man-page
documentation included with the distribution.

16.2.3 Production Scheduling

Once evaluation is complete, the scheduler can be placed in production mode by disabling the default resource manager
scheduler and setting the scheduler MODE attribute to NORMAL. Information on disabling the default resource manager scheduler is
provided in the resource manager's documentation and in the online Maui migration guides located at
http://supercluster.org/documentation/maui. Running in normal mode allows Maui to start, modify, and cancel jobs according to
the specified scheduling policies. The default configuration of Maui enables basic scheduling services, providing first-in, first-out
scheduling with backfill.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.3 Advanced Configuration
Maui's real power is unleashed when the defaults are replaced with more advanced configuration. Specifically, sites can map
mission objectives into scheduling policies: selecting how resources are to be used, how users are to be treated, and how jobs are
to be scheduled. To this end, Maui can be thought of as an integrated scheduling toolkit providing a number of capabilities that
may be used individually or in concert to obtain the desired system behavior. These capabilities include

job prioritization,

node allocation policies,

throttling policies,

fairshare,

reservations,

allocation management,

quality of service,

backfill,

node sets, and

preemption policies.

Most capabilities are disabled by default; thus, a site need configure only the features of interest. In the following subsections, we
describe each of these capabilities. While our description will be adequate for configuring these capabilities, the online Maui
Administrators Manual should be consulted for full details.

16.3.1 Assigning Value: Job Prioritization and Node Allocation

In general, prioritization is the process of determining which of many options best fulfills overall goals. In the case of scheduling, a
site often has multiple, independent goals such as maximizing system utilization, giving preference to users in specific projects, or
making certain that no job sits in the queue for more than a given period of time. The most common approach to representing a
multifaceted set of site goals is to assign to each objective an overall weight (value or priority) that can be associated with each
potential scheduling decision. With the jobs prioritized, the scheduler can roughly fulfill site objectives by starting the jobs in priority
order.

Maui allows component and subcomponent weights to be associated with many aspects of a job. In order to realize this fine-
grained control, a simple priority-weighting hierarchy is used in which the contribution of priority components is calculated as
PRIORITY-FACTOR-VALUE * SUBFACTORWEIGHT * FACTORWEIGHT. Component and subcomponent weights are listed in
Table 16.1. Values for all weights may be set in the 'maui.cfg' file by using the associated component-weight parameter
specified as the name of the weight followed by the string WEIGHT (e.g., SERVICEWEIGHT or PROCWEIGHT).

Table 16.1: Maui priority components.

Component Subcomponent

SERVICE (Level of Service) QUEUETIME (Current queue time in minutes)
XFACTOR (Current expansion factor)
BYPASS (Number of times jobs were bypassed via backfill)

TARGET (Proximity to Service
Target - Exponential)

TARGETQUEUETIME (Delta to queue-time target in minutes)
TARGETXFACTOR (Delta to Xfactor target)

RESOURCE (Resources Requested) PROC (Processors)
MEM (Requested memory in MBytes)
SWAP (Requested virtual memory in MBytes)
DISK (Requested local disk in MBytes)
NODE (Requested number of nodes)
WALLTIME (Requested wall time in seconds)
PS (Requested processor-seconds)
PE (Requested processor-equivalents)

FS (Fairshare) FSUSER (User fairshare percentage)
FSGROUP (Group fairshare percentage)
FSACCOUNT (Account fairshare percentage)
FSCLASS (Class fairshare percentage)
FSQOS (QoS fairshare percentage)

CRED (Credential) USER (User priority)
GROUP (Group priority)
ACCOUNT (Account priority)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ACCOUNT (Account priority)
CLASS (Class priority)
QOS (QoS priority)

By default, Maui prioritizes jobs exclusively on their submission time. By using priority components, however, a site can
incorporate additional information, such as current level of service, quality of service targets, resources requested, and historical
usage. The contribution of any single component can be limited by specifying a priority component cap, such as RESCAP, which
prevents the contribution of a single component from exceeding the specified value. In the end, a job's priority is equivalent to the
sum of all enabled priority components.

Each component or subcomponent may be used for different purposes. For example, WALLTIME can be used to favor (or
disfavor) jobs based on their duration; ACCOUNT can be used to favor jobs associated with a particular project; QUEUETIME can be
used to favor those jobs that have been waiting the longest. By mixing and matching priority weights, sites can obtain the desired
job-start behavior. To aid in tuning job priority, Maui provides the diagnose -p command, which summarizes the impact of the
current priority-weight settings on idle jobs.

While most subcomponents are metric based (i.e., number of seconds queued or number of nodes requested), the credential
subcomponents are based on priorities specified by the administrator. Maui allows use of the *CFG parameters to rank jobs by
individual job credentials. For example, to favor jobs submitted by users bob and john and members of the group staff, a site
might specify the following:
 USERCFG[bob] PRIORITY=100
 USERCFG[john] PRIORITY=500
 GROUPWEIGHT[staff] PRIORITY=1000
 USERWEIGHT 1
 GROUPWEIGHT 1
 CREDWEIGHT 1

Note that both component and subcomponent weights are specified to enable these credential priorities to take effect. Further
details about the use of these component factors, as well as anecdotal usage information, are available in the Maui Administrators
Manual.

Complementing the specification of job prioritization is that of node allocation. When the scheduler selects a job to run, it must
also determine which resources to allocate to the job. Depending on the use of the cluster, different allocation policies can be
specified using NODEALLOCATIONPOLICY. Parameter values include the following:

MINRESOURCE: This algorithm selects the nodes with the minimum configured resources that still meet the
requirements of the job. The algorithm leaves more richly endowed nodes available for other jobs that may
specifically request these additional resources.

LASTAVAILABLE: This algorithm is particularly useful when making reservations for backfill. It determines the
earliest time a job can run and then selects the resources available at a time such that, whenever possible,
currently idle resources are left unreserved and are thus available for backfilling.

PRIORITY: This policy allows a site to create its own node allocation prioritization scheme, taking into account
issues such as installed software, jobs currently running on the node, available processors, or other local node
configurations. This allocation policy requires specification of the PRIORITYF attribute of the NODECFG parameter.
For example, to base node allocation priority on available node memory load, historical utilization, and machine
speed, a site may specify something like NODECFG [DEFAULT] PRIORITYF='AMEM - 10*USAGE + SPEED'.

CPULOAD: This policy attempts to allocate the most lightly loaded nodes first.

16.3.2 Fairness: Throttling Policies and Fairshare

The next issue often confronting sites is the management of fairness. At first glance, fairness seems like a simple concept, but in
actual practice it can be very difficult to map onto a cluster. Should all users get to run the same number of jobs or use the same
number of nodes? Do these usage constraints cover the present time only or a specified time frame? If historical information is
used, what is the metric of consumption? What is the time frame? Does fair consumption necessarily mean equal consumption?
How should resources be allocated if user X bought two-thirds of the nodes and user Y purchased the other third? Is fairness
based on a static metric, or is it conditional on current resource demand?

While Maui is not able to address all these issues, it does provide some flexible tools that help with 90 percent of the battle.
Specifically, these tools are throttling policies and fairshare used to control immediate and historical usage, respectively.

Throttling Policies
The term "throttling policies" is collectively applied to a set of policies that constrain real-time resource consumption. Maui
supports limits on the number of processors, nodes, proc-seconds, jobs, and processor equivalents allowed at any given time.
Limits may be applied on a per user, group, account, QoS, or queue basis via the *CFG set of parameters. For example,
specifying USERCFG[bob] MAXJOB=3 MAXPROC=32 will constrain user bob to running no more than 3 jobs and 32 total
processors at any given time. Specifying GROUPCFG [DEFAULT] MAXNODE=64 will limit each group to using no more than 64
nodes simultaneously unless overriding limits for a particular group are specified. ACCOUNTCFG, QOSCFG, and CLASSCFG round
out the *CFG family of parameters providing a means to throttle instantaneous use on accounts, QoS's, and classes, respectively.

With each of the parameters, hard and soft limits can be used to apply a form of demand-sensitive limits. While hard limits cannot
be violated under any conditions, soft limits may be violated if no other jobs can run. For example, specifying
USERCFG[DEFAULT] MAXNODE=16,24 will allow each user to cumulatively allocate up to 16 nodes while jobs from other users
can use available resources. If no other jobs can use these resources, a user may run on up to 24 nodes simultaneously.

Throttling policies are effective in preventing cluster "hogging" by an individual user or group. They also provide a simple
mechanism of fairness and cycle distribution. Such policies may lead to lower overall system utilization, however. For instance,
resources might go unused if these policies prevent all queued jobs from running. When possible, throttling policies should be set
to the highest feasible level, and the cycle distribution should be managed by tools such as fairshare, allocation management
systems, and QoS-based prioritization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fairshare
Fairshare algorithms attempt to distribute resources over time according to specified usage targets. As noted earlier, however, this
general statement leaves much to interpretation, including the distribution usage metric and the monitored time frame.

The Maui parameter FSPOLICY specifies the usage metric allowing sites to determine how resource distribution is to be
measured. The parameters FSINTERVAL, FSDEPTH, and FSDECAY control how historical usage information is to be weighted.

To control resource distribution, Maui uses fairshare targets that can be applied to users, groups, accounts, queues, and QoS
mechanisms with both default and specific targets available. Each target may be one of four different types: target, floor, ceiling,
or cap. In most cases, Maui adjusts job priorities to meet fairshare targets. With the standard target, Maui attempts to adjust
priorities at all times in an attempt to meet the target. In the case of floors, Maui will increase job priority only to maintain at least
the targeted usage. With ceilings, the converse occurs. Finally, with fairshare caps, job eligibility rather than job priority is adjusted
to prevent jobs from running if the cap is exceeded during the specified fairshare interval.

The example below shows a possible fairshare configuration.
 # maui.cfg
 FSPOLICY DEDICATEDPS
 FSDEPTH 7
 FSINTERVAL 24:00:00
 FSDECAY 0.80

 USERCFG[DEFAULT] FSTARGET=10.0
 USERCFG[john] FSTARGET=25.0+
 GROUPCFG[staff] FSTARGET=20.0-

In this case, fairshare usage will track delivered system processor seconds over a seven-day period with a 0.8 decay factor. All
users will have a fairshare target of 10 percent of these processor seconds—with the exception of john, who will have a floor of
25 percent. Also, the group staff will have a fairshare ceiling of 20 percent. At any time, the status of fairshare can be examined
by using the diagnose -f command.

16.3.3 Managing Resource Access: Reservations, Allocation Managers, and Quality of Service

In managing any cluster system, half of the administrative effort involves configuring it to handle the steady-state situation. The
other half encompasses the handling of the vast array of special one-time requests. Maui provides two features, advance
reservations and QoS, which greatly ease the handling of these special requests.

Advance Reservations
Reservations allow a site to set aside a block of resources for various purposes such as cluster maintenance, special user
projects, or benchmarking nodes. In general, a reservation consists of time frame, and resource lists, and an access control list.
The time frame can be specified as a simple start and end time while the resource list can consist of either a list of specific hosts
or a general resource description. The access control list indicates who or what will be allowed to use the specified resources
during the reservation time frame. Reservations can be created dynamically by scheduler administrators using the setres
command or managed directly by Maui via config file parameters.

For example, to reserve nodeA and nodeB for a four-hour maintenance window starting at 2:30 P.M., one could issue the
following command:
 > setres -s 14:30 -d 4:00:00 'node[AB]'

For reservations requesting allocation of a given quantity of resources, the TASK keyword can be used in the resource description.
For example, the following reservation allocates 20 processors with the feature fast to users john and sam starting on April 14
at 5:00 P.M.
 > setres -u john:sam -f fast -s 17:00_04/14 TASKS==20
With no duration or end time specified, this reservation will default to an infinite length and will remain in place until removed by a
scheduler administrator using the releaseres command.

Access to reservations is controlled by an access control list (ACL). Reservation access is based on job credentials, such as user
or group, and job attributes, such as wall time requested. Reservation ACLs can include multiple access types and individuals. For
example, a reservation might reserve resources for users A and B, jobs in class C, and jobs that request less than 30 minutes of
wall time. Reservations may also overlap each other if desired, in which case access is granted only if the job meets the access
policies of all active reservations.

At many sites, reservations are used on a permanent or periodic basis. In such cases, it is best to use standing reservations.
Standing reservations allow a site to apply reservations as an ongoing part of cluster policies. The attributes of the SRCFG
parameter are used to configure standing reservations. For example, to specify the periodicity of a given reservation, the SRCFG
PERIOD attribute can be set to DAY, WEEK, or INFINITE. Additional parameter attributes are available to determine what time of
the day or week the reservation should be enabled. To demonstrate, the following configuration can be used to create a
reservation named development that, during primetime hours, will set aside 16 nodes for exclusive use by jobs requiring less
than 30 minutes.
 SRCFG[development] PERIOD=DAY DAYS=MON, TUE, WED, THU, FRI
 SRCFG[development] STARTTIME=8:00:00 ENDTIME=17:00:00
 SRCFG[development] TASKCOUNT=16 TIMELIMIT=00:30:00

Occasionally, a site may want to allow access to a set of resources only if there are no other resources available. Maui enables
this conditional usage through reservation affinity. When any reservation access list is specified, each access value can be
associated with positive, negative, or neutral affinity by using the "+", "-", or "=" characters. If nothing is specified, positive affinity is
assumed. For example, consider the following reservation line:
 SRUSERLIST[special] bob john steve= bill-

With this specification, bob's and john's jobs receive the default positive affinity and are essentially attracted to the reservation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this specification, bob's and john's jobs receive the default positive affinity and are essentially attracted to the reservation.
For these jobs, Maui will attempt to use resources in the special reservation first, before considering any other resources. Jobs
belonging to steve, on the other hand, can use these resources but are not attracted to them. Finally, bill's jobs will use
resources in the special reservation only if no other resources are available. Detailed information about reservations can be
obtained by using the showres and diagnose -r commands.

Allocation Managers
Allocation management systems allow a site to control total resource access in real time. While interfaces to support other
systems exist, the allocation management system most commonly used with the Maui scheduler is QBank [92], provided by
Pacific Northwest National Laboratory. This system and others like it allow sites to provide distinct resource allocations much like
the creation of a bank account. As jobs run, the resources used are translated into a charge and debited from the appropriate
account. In the case of QBank, expiration dates may be associated with allocations, private and shared accounts maintained, per
machine allocations created, and so forth.

Within Maui, the allocation manager interface is controlled through the AMCFG parameter such as in the example below:
 AMCFG[qbank] TYPE=QBANK HOST=bank.univ.edu
 AMCFG[qbank] CHARGEPOLICY=DEBITSUCCESSFULWC DEFERJOBONFAILURE=TRUE
 AMCFG[qbank] FALLBACKACCOUNT=freecycle

This configuration enables a connection to an allocation manager located on bank.univ.edu using the QBank interface. The
unit of charge is configured to be dedicated processor-seconds, and users are charged only if their job completes successfully. If
the job does not have adequate allocations in the specified account, Maui will attempt to redirect the job to use allocations in the
freecycle account. In many cases, a fallback account is configured so as to be associated with lower priorities and/or additional
limitations. If the job is not approved by the allocation manager, Maui will defer the job for a period of time and try it again later.

Quality of Service
Maui's Quality of Service (QoS) feature allows sites to control access to special functions, resources, and service levels. Each
QoS consists of an access control list controlling which users, groups, accounts, and job queues can access the QoS privileges.
Associated with each QoS are special service-related priority weights and service targets. Additionally, each QoS can be
configured to span resource partitions, preempt other jobs, and the like.

Maui also enables a site to charge a premium rate for the use of some QoS services. For example, the following configuration will
cause user john's jobs to use QoS hiprio by default and allow members of the group bio to access it by request:
 USERCFG[john] QLIST=hiprio:normal QDEF=hiprio
 GROUPCFG[bio] QLIST=hiprio:medprio:development QDEF=medprio
 QOSCFG[hiprio] PRIORITY=50 QTTARGET=30 FLAGS=PREEMPTOR
 QOSCFG[hiprio] OMAXJOB=20 MAXPROC=150

Jobs using QoS hiprio receive the following privileges and constraints:

A priority boost of 50 * QOSWEIGHT * CREDWEIGHT

A queue-time target of 30 minutes

The ability to preempt lower-priority PREEMPTEE jobs

The ability to override MAXJOB policy limits defined elsewhere

A cumulative limit of 150 processors allocated to QoS hiprio jobs

A site may have dozens of QoS objects described and may allow users access to any number of these. Depending on the type of
service desired, users may then choose the QoS that best meets their needs.

16.3.4 Optimizing Usage: Backfill, Node Sets, and Preemption

The Maui scheduler provides several features to optimize performance in terms of system utilization, job throughput, and average
job turnaround time.

Backfill
Backfill is a now common method used to improve both system utilization and average job turnaround time by running jobs out of
order. Backfill, simply put, enables the scheduler to run any job so long as it does not delay the start of jobs of higher priority.
Generally, the algorithm prevents delay of high-priority jobs through some form of reservation. Backfill can be thought of as a
process of filling in the resource holes left by the high priority jobs. Since holes are being filled, it makes sense that the jobs most
commonly backfilled are the ones requiring the least time and/or resources. With backfill enabled, sites typically report system
utilization improvements of 10 to 25% and slight improvement in average job response time.

At installation, backfill scheduling is enabled in Maui, but this is configurable with the parameter BACKFILLPOLICY. While the
default configuration generally is adequate, sites may want to adjust the job selection policy, the reservation policy, the depth of
reservations, or other aspects of backfill scheduling. The online documentation indicates the general effects of changing the
backfill algorithm or any of the associated backfill parameters.

Allocation Based on Node Set
While backfill can improve the scheduler's performance in terms of job selection, other facilities can be used to further optimize
scheduling decisions. At a high level, the efficiency of a cluster, in terms of actual work accomplished, is a function of both
scheduling performance and individual job efficiency. In many clusters, job efficiency can vary widely based on the two key
factors, node selection, and node mix. Node selection reflects the impact of how well a single task of a job executes on a single
node while node mix accounts for performance changes resulting from communication issues or disparities in node performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since most parallel jobs written in popular languages such as MPI or PVM do not internally load balance their workload, they often
run only as fast as the slowest node allocated. Consequently, these jobs run most effectively on homogeneous sets of nodes.
While many clusters start out as homogeneous, they quickly evolve as new generations of compute nodes are integrated into the
system. Research has shown that this integration, while improving scheduling performance because of increased scheduler
selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without specifying exactly what resources are
required. Node set policy can be specified globally or on a per job basis and can be based on node processor speed, memory,
network interfaces, or locally defined node attributes. In addition to forcing jobs onto homogeneous nodes, these policies may also
be used to guide jobs to one or more types of nodes on which a particular job performs best, similar to job preferences available in
other systems. For example, an I/O-intensive job may run best on a certain range of processor speeds, running slower on slower
nodes while wasting cycles on faster nodes. A job may specify ANYOF:PROCSPEED:450:500:650 to request nodes with
processors speeds in the range of 450 to 650 MHz. Alternatively, if a simple procspeed-homogeneous node set is desired,
ONEOF:PROCSPEED may be specified. On the other hand, a communication-sensitive job may request a network-based node set
with the configuration ONEOF:NETWORK:VIA:MYRINET:ETHERNET, in which case Maui will first attempt to locate adequate
nodes where all nodes contain VIA network interfaces. If such a set cannot be found, Maui will look for sets of nodes containing
the other specified network interfaces. In highly heterogeneous clusters, the use of node sets has been found to improve job
throughput by 10 to 15 percent.

Preemption
Many sites possess workloads of varying importance. While some jobs may required resources immediately, other jobs are less
time sensitive but have an insatiable hunger for compute cycles. These latter jobs often have turnaround times on the order of
weeks or months. The concept of cycle stealing, popularized by systems such as Condor, handles such situations well and
enables systems to run low-priority preemptible jobs whenever something more pressing is not running. These other systems are
often employed on compute farms of desktops where the jobs must vacate whenever interactive system use is detected.

Maui's QoS-based preemption system allows a dedicated, noninteractive cluster to be used in much the same way. Certain QoS
objects may be marked with the flag PREEMPTOR and others with the flag PREEMPTEE. With this configuration, low-priority
"preemptee" jobs can be started whenever idle resources are available. These jobs will be allowed to run until a "preemptor" job
arrives, at which point the preemptee job will be checkpointed if possible and vacated. This strategy allows almost immediate
resource access for the preemptor job. Using this approach, a cluster can maintain nearly 100 percent system utilization while still
delivering excellent turnaround time to the jobs of greatest value.

Use of the preemption system is not be limited to controlling low-priority jobs. Site can use this feature to support optimistic backfill
scheduling, enable deadline based scheduling, and provide QoS guarantees.

16.3.5 Evaluating System Performance: Diagnostics, Profiling, Testing, and Simulation

High-performance computing clusters are complicated. First, such clusters have an immense array of attributes that affect overall
system performance, including processor speed, memory, networks, I/O systems, enterprise services, and application and system
software. Second, each of these attributes is evolving over time, as is the usage pattern of the system's users. Third, sites are
presented with an equally immense array of buttons, knobs, and levers which they can push, pull, kick, and otherwise manipulate.
How does one evaluate the success of a current configuration? And how does one establish a causal effect between pushing one
of the many provided buttons and improved system performance when the system is constantly changing in multiple simultaneous
dimensions?

To help alleviate this problem, Maui offers several useful features.

Diagnostics
Maui possesses many internal diagnostic functions that both locate problems and present system state information. For example,
the priority diagnostic aggregates priority relevant information, presenting configuration settings and their impact on the current
idle workload; administrators can see the contribution associated with each priority factor on a per job and systemwide average
basis. The node diagnostic presents significant node-relevant information together with messages regarding any unexpected
conditions. Other diagnostics are available for jobs, reservations, QoS, fairshare, priorities, fairness policies, users, groups, and
accounts.

Profiling Current and Historical Usage
Maui maintains internal statistics and records detailed information about each job as it completes. The showstats command
provides detailed usage information for users, groups, accounts, nodes, and the system as a whole. The showgrid command
presents scheduler performance statistics in a job size/duration matrix to aid in analyzing the effectiveness of current policies.

The completed job statistics are maintained in a flat file located in the 'stats' directory. These statistics are useful for two primary
purposes: driving simulations (described later) and profiling actual system usage. The profiler command allows the processing
of these historical scheduler statistics and generation of usage reports for specific time frames or for selected users, groups,
accounts, or types of jobs.

Testing
Maui supports a scheduling mode called test. In this mode, the scheduler initializes, contacts the resource manager and other
peer services, and conducts scheduling cycles exactly as it would if running in NORMAL or production mode. Job are prioritized,
reservations created, policies and limits enforced, and admin and end-user commands enabled. Using the fact that test mode
disables Maui's ability to impact the system, a site can safely verify scheduler operation and validate new policies and constraints.
In fact, Maui can be run in test mode on a production system while another scheduler or even another version of Maui is running
on the same system. This unique ability can allow new versions and configurations to be fully tested without any exposure to
potential failures and with no cluster downtime.

To run Maui in test mode, simply set the MODE attribute of the SCHEDCFG parameter to TEST and start Maui. Normal scheduler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To run Maui in test mode, simply set the MODE attribute of the SCHEDCFG parameter to TEST and start Maui. Normal scheduler
commands can be used to evaluate configuration and performance. Diagnostic commands can be used to look for any potential
issues. Further, the Maui log file can be used to determine which jobs Maui attempted to start and which resources Maui
attempted to allocate.

In addition to test mode, Maui supports a mode known as interactive. This mode also allows for evaluation of new versions and
configurations using a different approach. Instead of disabling all resource and job control functions, however, Maui sends the
desired change request to the screen and asks for permission to complete it. The administrator must specifically accept each
command request before Maui will execute it.

If another instance of Maui is running in production mode and a site wishes to evaluate a different configuration or new version
using one of the above evaluation modes, this is easily done, but care should be taken to avoid conflicts with the primary
scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user interface ports. One of the easiest ways to
avoid these conflicts is to create a new "test" directory with its own log and stats subdirectories. The new 'maui.cfg' file can be
created from scratch or based on the existing 'maui.cfg' file already in use. In either case, make certain that the SCHEDCFG
PORT attribute parameter differs from that used by the production scheduler. If testing is being done with the production binary
executable, the MAUIHOMEDIR environment variable should be set to point to the new test directory in order to prevent Maui from
loading the production 'maui.cfg' file.

Simulation
The Maui simulation facility allows a site to evaluate cluster performance in an almost arbitrary environment. This is done by
creating a resource and workload tracefile to specify the desired cluster and workload to be evaluated. These traces, specified via
the SIMWORKLOADTRACEFILE and SIMRESOURCETRACEFILE, can accurately and reproducibly replicate the workload and
resources recorded at the site or may represent an entirely new cluster and workload. In order to run a simulation, an adjusted
'maui.cfg' file is created with the policies of interest in place and the MODE attribute of the SCHEDCFG parameter set to
SIMULATION. Once started, Maui can be stepped through simulated time using the schedctl -S command. In the simulation,
all Maui commands continue to function as before, allowing interactive querying of status, adjustment of parameters, or even
submission or cancellation of jobs.

This feature enables sites to analyze the impact of different scheduling policies on their own workload and system configuration.
The effects of new reservations or job prioritizations can be evaluated in a zero-exposure environment, allowing sites to determine
ideal policies without experimenting on a production system. Sites can also evaluate the impact of additional or modified
workloads or changes in available resources. What impact will removing a block of resources for maintenance have on average
queue time? How much benefit will a new reservation dedicated exclusively to development jobs have on development job
turnaround time? How much pain will it cause nondevelopment jobs? Using simulation makes it easier and safer to obtain
answers to such questions.

This same simulation feature can also be used to test a new algorithm against workload and resource traces from various
supercomputing centers. Moreover, with the simulator, sites can create and plug in modules to emulate the behavior of various job
types on different hardware platforms, across bottlenecking networks, or under various data migration conditions.

Further information on the capabilities and use of simulation is given in the Maui Administrators Manual.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.4 Steering Workload and Improving Quality of Information
A good scheduler can improve the use of a cluster significantly, but its effectiveness is limited by the scheduling environment in
which it must operate and the quality of information it receives. Often, a cluster is underutilized because users overestimate a job's
resource requirements. Other times, inefficiencies crop up when users request job constraints in terms of job duration or
processors required that are not easily packed onto the cluster. Maui provides tools to allow fine tuning of job resource
requirement information and steering of cluster workload so as to allow maximum utilization of the system.

One such tool is the feedback interface, which allows a site to report detailed job usage statistics to users. This interface provides
information about the resources requested and those actually used. With the FEEDBACKPROGRAM parameter, local scripts can be
executed that use this information to help users improve resource requirement estimates. For example, a site with nodes of
various memory configurations may choose to create a script such as the following that automates the mailing of notices at job
completion:
Job 1371 completed successfully. Note that it requested nodes
with 512 MBytes of RAM yet used only 112 MBytes. Had the job provided a
more accurate estimate, it would have, on average, started 02:27:16
earlier.

While such notices can be used to improve memory, disk, processor, and wall-time estimates, they may be freely ignored by the
end user. A more forceful approach is to use the allocation manager charge policy so as to charge users for requested resources
rather than used resources. This approach quickly motivates end users to evaluate their true job needs and adjust their job
requests accordingly.

Another realm of feedback involves steering jobs to use currently available resources. The showbf command is designed to help
users tailor jobs to request resources that are free for immediate use. This command allows users to incorporate specific
information about what they need and who needs it, allowing all scheduling policies and resource availability information to be
integrated into the response. Users may specify details about the prospective job including user, group, queue, and memory
requirements, and the command returns information regarding the quantity of available nodes and the duration of their availability.

A third area of user feedback is job scaling. Often, users will submit parallel jobs that only moderately scale, hoping that by
requesting more processors, their job will run faster and provide results sooner. A job's completion time is simply the sum of its
queue time plus its execution time. Users often fail to realize that a larger job may be more difficult to schedule, resulting in a
longer queue time, and may run less efficiently, with a sublinear speedup. The increased queue-time delay, together with the
limitations in execution time improvements, generally results in larger jobs having a greater average turnaround time than smaller
jobs performing the same work. Maui commands such as showgrid can provide real-time job efficiency and average queue-time
statistics correlated to job attributes such as job size. The output of the mprof command can also be used to provide per user job
efficiency and average queue time correlated by job size and can alert administrators and users to this problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.5 Troubleshooting
Maui's diagnostic commands provide a good start for troubleshooting any scheduling issues. The diagnose command together
with checknode and checkjob provides detailed state information about the scheduler, including its various facilities, nodes,
and jobs. In addition to state information, these commands can also trigger extensive internal sanity checks for the scheduling
realm of interest. For example, if the job priorities do not appear to properly reflect site objectives, the diagnose -p command
can be used to display the priorities of all jobs and the contributions of the various priority components and subcomponents. This
command will also look for invalid priority values and summarize overall priority contributions of each component. At a glance, it
will help administrators determine whether parameters need to be adjusted and, if so, by how much. Other diagnostic commands
assist in both problem resolution and system tuning in areas such as throttling policies, reservations, fairshare, Grid scheduling,
and job management. If any diagnostic command uncovers a potential problem, the issue is reported in the form of WARNING
messages appended to the normal command output. Use of these commands typically identifies or resolves the vast majority of
all scheduling issues.

If additional information is required, Maui writes out detailed logging information in a logfile specified by the LOGFILE parameter
(usually in 'log/maui.log'). The LOGLEVEL and LOGFACILITY parameters enable control over the verbosity and focus of
these logs. Maui's high verbosity levels are very verbose, however, so keeping the LOGLEVEL below 4 or so unless actually
tracking problems can help prevent excessing file activity.

These logs contain a number of entries, including the following:
INFO: provides status information about normal scheduler operations.

WARNING: indicates that an unexpected condition was detected and handled.

ALERT: indicates that an unexpected condition occurred that could not be fully handled.

ERROR: indicates that problem was detected that prevents Maui from fully operating. This may be a problem with
the cluster that is outside of Maui's control or may indicate corrupt internal state information.

Function header: indicates when a function is called and what parameters are passed.

A simple grep through the log file will usually indicate whether any serious issues have been detected and is of significant value
when obtaining support or locally diagnosing problems. If neither commands nor logs point to the source of the problem, the Maui
users list (<mauiusers@supercluster.org>) or Supercluster support (<support@supercluster.org>) may be consulted for additional
assistance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.6 Conclusions
This chapter has introduced some of the key Maui features currently available. With hundreds of sites now using and contributing
to this project, Maui is evolving and improving faster than ever. While this chapter was able to address common aspects of
scheduler configuration, many features such as Grid scheduling, virtual resources, and dynamic jobs could not be adequately
covered. To learn about the latest developments and to obtain more detailed information about the capabilities described above,
see the Maui home page at http://www.supercluster.org/maui.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17: PBS: Portable Batch System

Overview
James Patton Jones

The Portable Batch System (PBS) is a flexible workload management and job scheduling system originally developed to manage
aerospace computing resources at NASA. PBS has since become the leader in supercomputer workload management and the de
facto standard job scheduler for Linux.

Today, growing enterprises often support hundreds of users running thousands of jobs across different types of machines in
different geographical locations. In this distributed heterogeneous environment, it can be extremely difficult for administrators to
collect detailed, accurate usage data or to set systemwide resource priorities. As a result, many computing resources are left
underused, while others are overused. At the same time, users are confronted with an ever-expanding array of operating systems
and platforms. Each year, scientists, engineers, designers, and analysts waste countless hours learning the nuances of different
computing environments, rather than being able to focus on their core priorities. PBS addresses these problems for computing-
intensive industries such as science, engineering, finance, and entertainment.

PBS allows you to unlock the potential in the valuable assets you already have, while at the same time reducing demands on
system administrators, freeing them to focus on other activities. PBS can also help you effectively manage growth by tracking use
levels across your systems and enhancing effective utilization of future purchases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1 History of PBS
In the past, computers were used in a completely interactive manner. Background jobs were just processes with their input
disconnected from the terminal. As the number of processors in computers continued to increase, however, the need to be able to
schedule tasks based on available resources rose in importance. The advent of networked compute servers, smaller general
systems, and workstations led to the requirement of a networked batch scheduling capability. The first such Unix-based system
was the Network Queueing System (NQS) funded by NASA Ames Research Center in 1986. NQS quickly became the de facto
standard for batch queuing.

Over time, distributed parallel systems began to emerge, and NQS was inadequate to handle the complex scheduling
requirements presented by such systems. In addition, computer system managers wanted greater control over their compute
resources, and users wanted a single interface to the systems. In the early 1990s NASA needed a solution to this problem, but
after finding nothing on the market that adequately addressed their needs, led an international effort to gather requirements for a
next-generation resource management system. The requirements and functional specification were later adopted as an IEEE
POSIX standard (1003.2d). Next, NASA funded the development of a new resource management system compliant with the
standard. Thus the Portable Batch System was born.

PBS was quickly adopted on distributed parallel systems and replaced NQS on traditional supercomputers and server systems.
Eventually the entire industry evolved toward distributed parallel systems, taking the form of both special-purpose and commodity
clusters. Managers of such systems found that the capabilities of PBS mapped well onto cluster systems.

The PBS story continued when Veridian (the research and development contractor that developed PBS for NASA) released the
Portable Batch System Professional Edition (PBS Pro), a complete workload management solution. After three years of
commercial success, in March 2003, the PBS technology and associated engineering team was acquired by Altair Engineering,
Inc. Altair set up the PBS team as a seperate, subsiderary company (Altair Grid Technologies) focused on continued development
of the PBS product line, and created a world-wide PBS support network via the Altair international offices.

The cluster administrator can now choose between two versions of PBS: an older restricted-use Open Source release (Altair
OpenPBS); and Altair PBS Pro, the new hardened and enhanced commercial version.

This chapter gives a technical overview of PBS and information on installing, using, and managing both versions of PBS.
However, it is not possible to cover all the details of a software system as feature-rich as PBS in a single chapter. Therefore, we
limit this discussion to the recommended configuration for Linux clusters, providing references to the various PBS documentation
where additional, detailed information is available.

While this chapter describes only single-operating system clusters, the reader should note that PBS Pro is not limited to this
configuration. Heterogenous clusters containing UNIX, Linux, and Windows systems are also supported.

17.1.1 Acquiring PBS

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best sources for the most current release of either
product are the official Altair PBS Web sites: www.OpenPBS.org and www.PBSpro.com. Both sites offer downloads of the
software and documentation, as well as FAQs, discussion lists, and current PBS news. Hardcopy documentation, media kits, and
training classnotes are available from the PBS Online Store, accessed through the PBS Pro Web site.

17.1.2 PBS Features

PBS Pro provides many features and benefits to the cluster administrator. A few of the more important features are the following:

Enterprisewide resource sharing provides transparent job scheduling on any PBS system by any authorized user. Jobs can be
submitted from any client system, both local and remote, crossing domains where needed.

Multiple user interfaces provide a graphical user interface for submitting batch and interactive jobs; querying job, queue, and
system status; and monitoring job progress. Also provided is a traditional command line interface.

Security and access control lists permit the administrator to allow or deny access to PBS systems on the basis of username,
group, host, and/or network domain.

Job accounting offers detailed logs of system activities for charge-back or usage analysis per user, per group, per project, and per
compute host.

Automatic file staging provides users with the ability to specify any files that need to be copied onto the execution host before the
job runs and any that need to be copied off after the job completes. The job will be scheduled to run only after the required files
have been successfully transferred.

Parallel job support works with parallel programming libraries such as MPI, PVM, and HPF. Applications can be scheduled to run
within a single multiprocessor computer or across multiple systems.

System monitoring includes a graphical user interface for system monitoring. PBS displays node status, job placement, and
resource utilization information for both standalone systems and clusters.

Job interdependency enables the user to define a wide range of interdependencies between jobs. Such dependencies include
execution order, synchronization, and execution conditioned on the success or failure of another specific job (or set of jobs).

Computational Grid support provides an enabling technology for meta-computing and computational Grids, including support for
the Globus Toolkit.

Comprehensive API includes a complete application programming interface for sites that wish to integrate PBS with other
applications or to support unique job-scheduling requirements.

Automatic load-leveling provides numerous ways to distribute the workload across a cluster of machines, based on hardware

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automatic load-leveling provides numerous ways to distribute the workload across a cluster of machines, based on hardware
configuration, resource availability, keyboard activity, and local scheduling policy.

Distributed clustering allows customers to use physically distributed systems and clusters, even across wide area networks.

Common user environment offers users a common view of the job submission, job querying, system status, and job tracking over
all systems.

Cross-system scheduling ensures that jobs do not have to be targeted to a specific computer system. Users may submit their job
and have it run on the first available system that meets their resource requirements.

Job priority allows users the ability to specify the priority of their jobs; defaults can be provided at both the queue and system level.

Full configurability makes PBS easily tailored to meet the needs of different sites. Much of this flexibility is due to the unique
design of the scheduler module, which permits complete customization.

Broad platform availability is achieved through support of Windows 2000 and XP, and every major version of Unix and Linux, from
workstations and servers to supercomputers. New platforms are being supported with each new release.

User name mapping provides support for mapping user account names on one system to the appropriate name on remote server
systems. This allows PBS to fully function in environments where users do not have a consistent username across all the
resources they have access to.

System integration allows PBS to take advantage of vendor-specific enhancements on different systems (such as supporting
cpusets on SGI systems and interfacing with the global resource manager on the Cray T3E).

For a comparison of the features available in the latest versions of OpenPBS and PBS Pro, visit the PBS Product Comparison
web page: www.OpenPBS.org/product_comparison.html.

17.1.3 PBS Architecture

PBS consists of two major component types: user-level commands and system daemons. A brief description of each is given here
to help you make decisions during the installation process.

PBS supplies both command-line programs that are POSIX 1003.2d conforming and a graphical interface. These are used to
submit, monitor, modify, and delete jobs. These client commands can be installed on any system type supported by PBS and do
not require the local presence of any of the other components of PBS. There are three classifications of commands: user
commands that any authorized user can use, operator commands, and manager (or administrator) commands. Operator and
manager commands require specific access privileges. (See also the security sections of the PBS Administrator Guide.)

The job server daemon is the central focus for PBS, fulfilling the queueing and accounting roles of workload management (see
Chapter 16 for details). Within this document, this daemon process is generally referred to as the Server or by the execution name
pbs_server. All commands and the other daemons communicate with the Server via an Internet Protocol (IP) network. The
Server's main function is to provide the basic batch services such as receiving or creating a batch job, modifying the job,
protecting the job against system crashes, and running the job. Typically, one Server manages a given set of resources.

The job executor is the daemon that actually places the job into execution. This daemon, pbs_mom, is informally called MOM
because it is the mother of all executing jobs. (MOM is a reverse-engineered acronym that stands for Machine Oriented Mini-
server.) MOM places a job into execution when it receives a copy of the job from a Server. MOM creates a new session as
identical to a user login session as possible. For example, if the user's login shell is csh, then MOM creates a session in which
.login is run as well as .cshrc. MOM also has the responsibility for returning the job's output to the user when directed to do so
by the Server. One MOM daemon runs on each computer that will execute PBS jobs. The MOM daemons, collectively, are
responsible for the monitoring and resource management (and part of accounting) roles of workload management.

The job scheduler daemon, pbs_sched, implements the site's policy controlling when each job is run and on which resources (i.e.
fulfiling the scheduling role of workload management). The Scheduler communicates with the various MOMs to query the state of
system resources and with the Server to learn about the availability of jobs to execute. The interface to the Server is through the
same API (discussed below) as used by the client commands. Note that the Scheduler interfaces with the Server with the same
privilege as the PBS manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.2 Using PBS
From the user's perspective, a workload mangement system enables you to make more efficient use of your time by allowing you
to specify the tasks you need run on the cluster. The system takes care of running these tasks and returning the results to you. If
the cluster is full, then it holds your tasks and runs them when the resources are available.

PBS provides two user interfaces: a command-line interface (CLI) and a graphical user interface (GUI). You can use either to
interact with PBS: both interfaces have the same functionality. (The examples below show the command line interface; see the
"Using the PBS Graphical User Interface" section below for examples of the GUI.)

Using either interface, you create a batch job that you then submit to PBS. A batch job is a shell script containing the set of
commands you want run on the cluster. It also contains directives that specify the resource requirements (such as memory or
CPU time) that your job needs. Once you create your PBS job, you can reuse it, if you wish, or you can modify it for subsequent
runs. Example job scripts are shown below.

PBS also provides a special kind of batch job called interactive batch. This job is treated just like a regular batch job (it is queued
up and must wait for resources to become available before it can run). But once it is started, the user's terminal input and output
are connected to the job in what appears to be an rlogin session. It appears that the user is logged into one of the nodes of the
cluster, and the resources requested by the job are reserved for that job. Many users find this feature useful for debugging their
applications or for computational steering.

17.2.1 Creating a PBS Job

Previously we mentioned that a PBS job is simply a shell script containing resource requirements of the job and the command(s)
to be executed. (However, if you use the PBS graphical interface, you do not have to edit any batch files; instead, the GUI
provides a point and click interface that creates the batch job script for you.) A sample PBS job might look like the following:
 #!/bin/sh
 #PBS -1 walltime=1:00:00
 #PBS -1 nodes=4
 #PBS -j oe

 cd ${HOME}/PBS/trial
 mpiexec -n 4 myprogram

This script would then be submitted to PBS using the qsub command.

Let us look at the script for a moment. The first line tells what shell to use to interpret the script. Lines 2-3 are resource directives,
specifying arguments to the "resource list" ("-1") option of qsub. Note that all PBS directives begin with #PBS. These lines tell
PBS what to do with your job. Any qsub option can also be placed inside the script by using a #PBS directive. However, PBS
stops parsing directives with the first blank line encountered.

Returning to our example above, we see a request for one hour of wall-clock time and four nodes. The fourth line is a request for
PBS to merge the stdout and stderr file streams of the job into a single file. The last two lines are the commands the user wants
executed: change directory to a particular location, then execute an MPI program called 'myprogram'.

This job script could have been created in one of two ways: using a text editor, or using the xpbs graphical interface (see below).

17.2.2 Submitting a PBS Job

The command used to submit a job to PBS is qsub. For example, say you created a file containing your PBS job called
'myscriptfile'. The following example shows how to submit the job to PBS:
 % qsub myscriptfile
 12322.sol.pbspro.com

The second line in the example is the job identifier returned by the PBS Server. This unique identifier can be used to act on this
job in the future (before it completes running). The next section of this chapter discusses using this "job id" in various ways.

The qsub command has a number of options that can be specified either on the command-line or in the job script itself. Note that
any command-line option will override the same option within the script file.

Table 17.1 lists the most commonly used options to qsub. See the PBS User Guide for the complete list and full description of the
options.

Table 17.1: Qsub options.

Option Purpose

-1 list List of resources needed by job

-q queue Queue to submit job to

-N name Name of job

-S shell Shell to execute job script

-p priority Priority of job relative to your jobs

-a datetime Delay job under after datetime

-j oe Join output and error files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-h Place a hold on job

The "-l resource_list" option is used to specify the resources needed by the job. Table 17.2 lists all the resources available
to jobs running on clusters.

Table 17.2: PBS resources.

Resource Meaning

arch System architecture needed by job

cput CPU time required by all processes in job

file Maximum single file disk space requirements

mem Total amount of RAM memory required

ncpus Number of CPUs (processors) required

nice Requested "nice" (Unix priority) value

nodes Number and/or type of nodes needed

pcput Maximum per-process CPU time required

pmem Maximum per-process memory required

wall time Total wall-clock time needed

workingset Total disk space requirements

17.2.3 Getting the Status of a PBS Job

Once the job has been submitted to PBS, you can use either the qstat or xpbs commands to check the job status. If you know
the job identifier for your job, you can request the status explicitly. Note that unless you have multiple clusters, you need only
specify the sequence number portion of the job identifier:
 % qstat 12322
 Job id Name User Time Use S Queue
 ------------- ------------ ------ -------- - -----
 12322.sol myscriptfile jjones 00:06:39 R submit

If you run the qstat command without specifing a job identifier, then you will receive status on all jobs currently queued and
running.

Often users wonder why their job is not running. You can query this information from PBS using the "-s" (status) option of
qstat, for example,
 % qstat -s 12323
 Job id Name User Time Use S Queue
 ------------- ------------ ------ -------- - -----
 12323.sol myscriptfile jjones 00:00:00 Q submit
 Requested number of CPUs not currently available.

A number of options to qstat change what information is displayed. The PBS User Guide gives the complete list.

17.2.4 PBS Command Summary

So far we have seen several of the PBS user commands. Table 17.3 is provided as a quick reference for all the PBS user
commands. Details on each can be found in the PBS manual pages and the PBS User Guide.

Table 17.3: PBS user commands.

Command Purpose

qalter Alter job(s)

qdel Delete job(s)

qhold Hold job(s)

qmsg Send a message to job(s)

qmove Move job(s) to another queue

qrls Release held job(s)

qrerun Rerun job(s)

qselect Select a specific subset of jobs

qsig Send a signal to job(s)

qstat Show status of job(s)

qsub Submit job(s)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xpbs Graphical Interface (GUI) to PBS commands

17.2.5 Using the PBS Graphical User Interface

PBS provides two GUI interfaces: a TCL/TK-based GUI called xpbs and an optional Web-based GUI.

The GUI xpbs provides a user-friendly point-and-click interface to the PBS commands. To run xpbs as a regular, nonprivileged
user, type
 setenv DISPLAY your_workstation_name:0
 xpbs

To run xpbs with the additional purpose of terminating PBS Servers, stopping and starting queues, or running or rerunning jobs,
type
 xpbs -admin

Note that you must be identified as a PBS operator or manager in order for the additional "-admin" functions to take effect.

From this main xpbs window, you can create and submit jobs, monitor jobs, queues, and servers, as well as perform any of the
actions that the command line interface permits you to do.

The optional Web-based user interface provides access to all the functionality of xpbs via almost any Web browser. To access it,
you simply type the URL of your PBS Server host into your browser. The layout and usage are similar to those of xpbs.

17.2.6 PBS Application Programming Interface

Part of the PBS package is the PBS Interface Library, or IFL. This library provides a means of building new PBS clients. Any PBS
service request can be invoked through calls to the interface library. Users may wish to build a PBS job that will check its status
itself or submit new jobs, or they may wish to customize the job status display rather than use the qstat command.
Administrators may use the interface library to build new control commands.

The IFL provides a user-callable function that corresponds to each PBS client command. There is (approximately) a one-to-one
correlation between commands and PBS service requests. Additional routines are provided for network connection management.
The user-callable routines are declared in the header file 'PBS_ifl.h'. Users request service of a batch server by calling the
appropriate library routine and passing it the required parameters. The parameters correspond to the options and operands on the
commands. The user must ensure that the parameters are in the correct syntax. Each function will return zero upon success and
a nonzero error code on failure. These error codes are available in the header file 'PBS_error.h'. The library routine will accept
the parameters and build the corresponding batch request. This request is then passed to the server communication routine. (The
PBS API is fully documented in the PBS External Reference Specification.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.3 Installing PBS
PBS is able to support a wide range of configurations. It may be installed and used to control jobs on a single system or to load
balance jobs on a number of systems. It may be used to allocate nodes of a cluster or parallel system to both serial and parallel
jobs. It can also deal with a mix of these situations. However, given the topic of this book, we focus on the recommended
configuration for clusters. The PBS Administrator Guide explains other configurations.

When PBS is installed on a cluster, a MOM daemon must be on each execution host, and the Server and Scheduler should be
installed on one of the systems or on a front-end system.

For Linux clusters, PBS is packaged in the popular RPM format (Red Hat's Package Manager). (See the PBS Administrator Guide
for installation instructions on other systems.) PBS RPM packages are provided as a single tar file containing

the PBS Quick Start Guide in both Postscript and PDF form (PBS Pro only),

the PBS Administrator Guide in both Postscript and PDF form,

the PBS User Guide in both Postscript and PDF form (PBS Pro only),

multiple RPM packages for different components of PBS (see below),

a full set of Unix-style manual pages, and

supporting text files: software license, README, release notes, and the like.

When the PBS tar file is extracted, a subtree of directories is created in which all these files are created. The name of the top-level
directory of this subtree will reflect the release number and patch level of the version of PBS being installed. For example, the
directory for PBS Pro 5.3 will be named 'PBSPro_5_3_0'.

To install PBS Pro, change to the newly created directory, and run the installation program:
 cd PBSPro_5_3_0
 ./INSTALL

The installation program will prompt you for the names of directories for the different parts of PBS and the type of installation. A
"full" installation will install all parts of PBS on the computer (including the PBS daemons/services); the "server-only" is intended
for the control node of the cluster; the "execution host only" option is intended for compute-nodes of the cluster. Next, you will be
prompted for your software license key(s). (See the "Acquiring PBS" section above if you do not already have your software
license key.)

For OpenPBS, there are multiple RPMs corresponding to the different installation possibilities: full installation, execution host only,
or client commands only. Select the correct RPM for your installation; then install it manually:
 cd pbspro_v5.3
 rpm -i RPMNAME...

Note that in OpenPBS, the RPMs will install into predetermined locations under '/usr/pbs' and '/usr/spool/PBS'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.4 Configuring PBS
Now that PBS has been installed, the Server and MOMs can be configured and the scheduling policy selected. Note that further
configuration of PBS may not be required since PBS Pro comes preconfigured, and the default configuration may completely meet
your needs. However, you are advised to read this section to determine whether the defaults are indeed complete for you or
whether any of the optional settings may apply.

17.4.1 Network Addresses and PBS

PBS makes use of fully qualified host names for identifying the jobs and their location. A PBS installation is known by the host
name on which the Server is running. The name used by the daemons or used to authenticate messages is the canonical host
name. This name is taken from the primary name field, h_name, in the structure returned by the library call gethostbyaddr().
According to the IETF RFCs, this name must be fully qualified and consistent for any IP address assigned to that host.

17.4.2 The Qmgr Command

The PBS manager command, qmgr, provides a command-line administrator interface. The command reads directives from
standard input. The syntax of each directive is checked and the appropriate request sent to the Server(s). A qmgr directive takes
one of the following forms:
 command server [names] [attr OP value[,...]]
 command queue [names] [attr OP value[,...]]
 command node [names] [attr OP value[,...]]

where command is the command to perform on an object. The qmgr commands are listed in Table 17.4.

Table 17.4: qmgr commands.

Command Explanation

active Set the active objects.

create Create a new object, applies to queues and nodes.

delete Destroy an existing object (queues or nodes).

set Define or alter attribute values of the object.

unset Clear the value of the attributes of the object.

list List the current attributes and values of the object.

print Print all the queue and server attributes.

The list or print subcommands of qmgr can be executed by the general user. Creating or deleting a queue requires PBS
Manager privilege. Setting or unsetting server or queue attributes requires PBS Operator or Manager privilege.

Here are several examples that illustrate using the qmgr command. These and other qmgr commands are fully explained below,
along with the specific tasks they accomplish.
 % qmgr
 Qmgr: create node mars np=2,ntype=cluster
 Qmgr: create node venus properties="inner,moonless"
 Qmgr: set node mars properties = inner
 Qmgr: set node mars properties += haslife
 Qmgr: delete node mars
 Qmgr: d n venus

Commands can be abbreviated to their minimum unambiguous form (as shown in the last line in the example above). A command
is terminated by a new line character or a semicolon. Multiple commands may be entered on a single line. A command may
extend across lines by marking the new line character with a backslash. Comments begin with a hash sign ("#") and continue to
the end of the line. Comments and blank lines are ignored by qmgr. See the qmgr section of the PBS Administrator Guide for
detailed usage and syntax description.

17.4.3 Nodes

Where jobs will be run is determined by an interaction between the Scheduler and the Server. This interaction is affected by the
contents of the PBS 'nodes' file and the system configuration onto which you are deploying PBS. Without this list of nodes, the
Server will not establish a communication stream with the MOM(s), and MOM will be unable to report information about running
jobs or to notify the Server when jobs complete. In a cluster configuration, distributing jobs across the various hosts is a matter of
the Scheduler determining on which host to place a selected job.

Regardless of the type of execution nodes, each node must be defined to the Server in the PBS nodes file, (the default location of
which is '/usr/spool/PBS/server_priv/nodes'). This is a simple text file with the specification of a single node per line in
the file. The format of each line in the file is
 node_name[:ts] [attributes]

The node name is the network name of the node (host name), it does not have to be fully qualified (in fact, it is best kept as short
as possible). The optional ":ts" appended to the name indicates that the node is a timeshared node (i.e. a nodes on which multiple
jobs may be run if the required resources are available).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nodes can have attributes associated with them. Attributes come in three types: properties, name=value pairs, and
name.resource=value pairs. Zero or more properties may be specified. The property is nothing more than a string of
alphanumeric characters (first character must be alphabetic) without meaning to PBS. Properties are used to group classes of
nodes for allocation to a series of jobs.

Any legal node name=value pair may be specified in the node file in the same format as on a qsub directive:
attribute.resource=value. Consider the following example:
 NodeA resource_available.ncpus=3 max_running=1

The expression np=N may be used as shorthand for the expression
 resources_available.ncpus=N

which can be added to declare the number of virtual processors (VPs) on the node. This syntax specifies a numeric string, for
example, np=4. This expression will allow the node to be allocated up to N times to one job or more than one job. If np=N is not
specified for a cluster node, it is assumed to have one VP.

You may edit the nodes list in one of two ways. If the server is not running, you may directly edit the nodes file with a text editor. If
the server is running, you should use qmgr to edit the list of nodes.

Each item on the line must be separated by white space. The items may be listed in any order except that the host name must
always be first. Comment lines may be included if the first nonwhite space character is the hash sign ("#").

The following is an example of a possible nodes file for a cluster called "planets":
 # The first set of nodes are cluster nodes.
 # Note that the properties are provided to
 # logically group certain nodes together.
 # The last node is a timeshared node.
 #
 mercury inner moonless
 venus inner moonless np=1
 earth inner np=1
 mars inner np=2
 jupiter outer np=18
 saturn outer np=16
 uranus outer np=14
 neptune outer np=12
 pluto:ts

17.4.4 Creating or Adding Nodes

After pbs_server is started, the node list may be entered or altered via the qmgr command:
 create node node_name [attribute=value]

where the attributes and their associated possible values are shown in Table 17.5.

Table 17.5: PBS node attributes.

Attribute Value

state free, down, offline
properties any alphanumeric string

ntype cluster, time-shared
resources_available.ncpus (np) number of virtual processors > 0
resources_available list of resources available on node
resources_assigned list of resources in use on node
max_running maximum number of running jobs
max_user_run maximum number of running jobs per user
max_group_run maximum number of running jobs per group

queue queue name (if any) associated with node

reservations list of reservations pending on the node

comment general comment

Below are several examples of setting node attributes via qmgr:
 % qmgr
 Qmgr: create node mars np=2,ntype=cluster
 Qmgr: create node venus properties="inner,moonless"

Once a node has been created, its attributes and/or properties can be modified by using the following qmgr syntax:
 set node node_name [attribute[+|-]=value]

where attributes are the same as for create, for example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where attributes are the same as for create, for example,
 % qmgr
 Qmgr: set node mars properties=inner
 Qmgr: set node mars properties+=haslife

Nodes can be deleted via qmgr as well, using the delete node syntax, as the following example shows:
 % qmgr
 Qmgr: delete node mars
 Qmgr: delete node pluto

Note that the busy state is set by the execution daemon, pbs_mom, when a load-average threshold is reached on the node. See
max_load in MOM's config file. The job-exclusive and job-sharing states are set when jobs are running on the node.

17.4.5 Default Configuration

Server management consist of configuring the Server and establishing queues and their attributes. The default configuration,
shown below, sets the minimum server settings and some recommended settings for a typical PBS cluster.
 % qmgr
 Qmgr: print server
 # Create queues and set their attributes
 #
 # Create and define queue workq
 #
 create queue workq
 set queue workq queue_type = Execution
 set queue workq enabled = True
 set queue workq started = True
 #
 # Set Server attributes
 #
 set server scheduling = True
 set server default_queue = workq
 set server log_events = 511
 set server mail_from = adm
 set server query_other_jobs = True
 set server scheduler_iteration = 600

17.4.6 Configuring MOM

The execution server daemons, MOMs, require much less configuration than does the Server. The installation process creates a
basic MOM configuration file that contains the minimum entries necessary in order to run PBS jobs. This section describes the
MOM configuration file and explains all the options available to customize the PBS installation to your site.

The behavior of MOM is controlled via a configuration file that is read upon daemon initialization (startup) and upon reinitialization
(when pbs_mom receives a SIGHUP signal). The configuration file provides several types of runtime information to MOM: access
control, static resource names and values, external resources provided by a program to be run on request via a shell escape, and
values to pass to internal functions at initialization (and reinitialization). Each configuration entry is on a single line, with the
component parts separated by white space. If the line starts with a hash sign ("#"), the line is considered to be a comment and is
ignored.

A minimal MOM configuration file should contain the following:
 $logevent 0x1ff
 $clienthost server-hostname

The first entry, $logevent, specifies the level of message logging this daemon should perform. The second entry,
$clienthost, identifies a host that is permitted to connect to this MOM. You should set the server-hostname variable to the
name of the host on which you will be running the PBS Server (pbs_server). Advanced MOM configuration options are
described in the PBS Administrator Guide.

17.4.7 Scheduler Configuration

Now that the Server and MOMs have been configured, we turn our attention to the PBS Scheduler. As mentioned previously, the
Scheduler is responsible for implementing the local site policy regarding which jobs are run and on what resources. This section
discusses the recommended configuration for a typical cluster. The full list of tunable Scheduler parameters and detailed
explanation of each is provided in the PBS Administrator Guide.

The PBS Pro Scheduler provides a wide range of scheduling policies. It provides the ability to sort the jobs in dozens of different
ways, including FIFO order. It also can sort on user and group priority. The queues are sorted by queue priority to determine the
order in which they are to be considered. As distributed, the Scheduler is configured with the defaults shown in Table 17.6.

Table 17.6: Default scheduling policy parameters.

Option Default Value

round_robin False
by_queue True
strict_fifo False
load_balancing False
load_balancing_rr False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

load_balancing_rr False
fair_share False
help_starving_jobs True
backfill True
backfill_prime False
sort_queues True
sort_by shortest_job_first
smp_cluster_dist pack
preemptive_sched True

Once the Server and Scheduler are configured and running, job scheduling can be initiated by setting the Server attribute
scheduling to a value of true:
 # qmgr -c "set server scheduling=true"

The value of scheduling is retained across Server terminations or starts. After the Server is configured, it may be placed into
service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.5 Managing PBS
This section is intended for the PBS administrator: it discusses several important aspects of managing PBS on a day-to-day basis.

During the installation of PBS Pro, the file '/etc/pbs.conf' was created. This configuration file controls which daemons are to
be running on the local system. Each node in a cluster should have its own '/etc/pbs.conf' file.

17.5.1 Starting PBS Daemons

The daemon processes (pbs_server, pbs_sched, and pbs_mom) must run with the real and effective uid of root. Typically, the
daemons are started automatically by the system upon reboot. The boot-time start/stop script for PBS is '/etc/init.d/pbs'.
This script reads the '/etc/pbs.conf' file to determine which daemons should be started.

The startup script can also be run by hand to get status on the PBS daemons, and to start/stop all the PBS daemons on a given
host. The command line syntax for the startup script is
 /etc/init.d/pbs [status | stop | start]

Alternatively, you can start the individual PBS daemons manually, as discussed in the following sections. Furthermore, you may
wish to change the options specified to various daemons, as discussed below.

17.5.2 Monitoring PBS

The node monitoring GUI for PBS is xpbsmon. It is used for displaying graphically information about execution hosts in a PBS
environment. Its view of a PBS environment consists of a list of sites where each site runs one or more Servers and each Server
runs jobs on one or more execution hosts (nodes).

The system administrator needs to define the site's information in a global X resources file, 'PBS_LIB/xpbsmon/xpbsmonrc',
which is read by the GUI if a personal '.xpbsmonrc' file is missing. A default 'xpbsmonrc' file is created during installation
defining (under *sitesInfo resource) a default site name, the list of Servers that run on the site, the set of nodes (or execution
hosts) where jobs on a particular Server run, and the list of queries that are communicated to each node's pbs_mom. If node
queries have been specified, the host where 'xpbsmon' is running must have been given explicit permission by the pbs_mom
daemon to post queries to it; this is done by including a $restricted entry in the MOM's config file.

17.5.3 Tracking PBS Jobs

Periodically you (or the user) will want track the status of a job. Or perhaps you want to view all the log file entries for a given job.
Several tools allow you to track a job's progress, as Table 17.7 shows. While the job is running, the 'qstat' command should be
used to track the status of a job. However, after the job has completed, then 'tracejob' should be used.

Table 17.7: Job-tracking commands.

Command Explanation

qstat Shows status of jobs, queues, and servers

xpbs Can alert user when one or more job completes

tracejob Collates and sorts PBS log entries for specified job

17.5.4 PBS Accounting Logs

The PBS Server daemon maintains an accounting log. The log name defaults to
'/usr/spool/PBS/server_priv/accounting/yyyymmdd' where yyyymmdd is the date. The file will be closed and a new
one opened every day on the first event (write to the file) after midnight.

The accounting log files may be placed elsewhere by specifying the -A option on the pbs_server command line. The option
argument is the full (absolute) path name of the file to be used. If a null string is given, for example
 # pbs_server -A ""

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # pbs_server -A ""

then the accounting log will not be opened, and no accounting records will be recorded.

The accounting file is changed according to the same rules as the log files. With either the default file or a file named with the -A
option, the Server will close the accounting log and reopen it upon the receipt of a SIGHUP signal. This strategy allows you to
rename the old log and start recording anew on an empty file. For example, if the current date is December 1, the Server will be
writing in the file '20011201'. The following actions will cause the current accounting file to be renamed 'dec1' and the Server
to close the file and starting writing a new '20011201'.
 # mv 20011201 dec1
 # kill -HUP (pbs_server's PID)

17.5.5 PBS Accounting Report

The PBS administrator can use the 'pbs-report' command to generate a wide range of system, user, and job usage reports
(including statistical analysis of jobs, cluster monitoring reports, etc). The program extracts data from the above-described PBS
accounting logs, and performs any necessary calculations to produce the requested report. The PBS Administrator Guide includes
detailed examples of the reports this command can produce.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.6 Troubleshooting
The following is a list of common problems and recommended solutions. Additional information is always available on the PBS
Web sites.

17.6.1 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a Server there are several possible errors to check. If the
error return is 15034, No server to connect to, check (1) that there is indeed a Server running and (2) that the default Server
information is set correctly. The client commands will attempt to connect to the Server specified on the command line if given or, if
not given, the Server specified in the default server file, '/usr/spool/PBS/default_server'.

If the error return is 15007, No permission, check for (2) as above. Also check that the executable pbs_iff is located in the
search path for the client and that it is setuid root. Additionally, try running pbs_iff by typing
 pbs_iff server_host 15001

where server_host is the name of the host on which the Server is running and 15001 is the port to which the Server is listening
(if started with a different port number, use that number instead of 15001). The executable pbs_iff should print out a string of
garbage characters and exit with a status of 0. The garbage is the encrypted credential that would be used by the command to
authenticate the client to the Server. If pbs_iff fails to print the garbage and/or exits with a nonzero status, either the Server is
not running or it was installed with a different encryption system from that used for pbs_iff.

17.6.2 Nodes Down

The PBS Server determines the state of nodes (up or down), by communicating with MOM on the node. The state of nodes may
be listed by two commands: qmgr and pbsnodes.
 % qmgr
 Qmgr: list node @active

 % pbsnodes -a
 Node jupiter
 state = down, state-unknown
 properties = sparc, mine
 ntype = cluster

A node in PBS may be marked down in one of two substates. For example, the state above of node "Jupiter" shows that the
Server has not had contact with MOM on that since the Server came up. Check to see whether a MOM is running on the node. If
there is a MOM and if the MOM was just started, the Server may have attempted to poll her before she was up. The Server should
see her during the next polling cycle in ten minutes. If the node is still marked down, state-unknown after ten minutes, either the
node name specified in the Server's node file does not map to the real network hostname or there is a network problem between
the Server's host and the node.

If the node is listed as
 % pbsnodes -a
 Node jupiter
 state = down
 properties = sparc, mine
 ntype = cluster

then the Server has been able to communicate with MOM on the node in the past, but she has not responded recently. The
Server will send a ping PBS message to every free node each ping cycle (10 minutes). If a node does not acknowledge the ping
before the next cycle, the Server will mark the node down.

17.6.3 Nondelivery of Output

If the output of a job cannot be delivered to the user, it is saved in a special directory '/usr/spool/PBS/undelivered' and
mail is sent to the user. The typical causes of nondelivery are the following:

The destination host is not trusted and the user does not have a .rhost file.

An improper path was specified.

A directory in the specified destination path is not writable.

The user's .cshrc on the destination host generates output when executed.

The '/usr/spool/PBS/spool' directory on the execution host does not have the correct permissions. This directory must
have mode 1777 (drwxrwxrwxt).

17.6.4 Job Cannot Be Executed

If a user receives a mail message containing a job identifier and the line "Job cannot be executed," the job was aborted by MOM
when she tried to place it into execution. The complete reason can be found in one of two places: MOM's log file or the standard
error file of the user's job.

If the second line of the message is "See Administrator for help," then MOM aborted the job before the job's files were set up. The
reason will be noted in MOM's log. Typical reasons are a bad user/group account or a system error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the second line of the message is "See job standard error file," then MOM had already created the job's file, and additional
messages were written to standard error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18: Scyld Beowulf
Walt Ligon and Dan Stanzione

The first Beowulf developed at NASA Goddard Space Flight Center [107] was billed as a "Giga-ops workstation." The first and
most important part being the performance (giga-ops) but the second part being a workstation. In the minds of the creators, a
Beowulf was to be a single computer used to solve large problems quickly. The implementation, of course, was quite different.
Each node in a Beowulf was, in reality, a distinct computer system with a distinct copy of the operating system running
independently of the other nodes. The Beowulf architecture supports the notion of a single computer in that there was one node
that was connected to the external network, there was often a network file system to provide a common storage area, and there
was software for running programs across the nodes. This software, typically PVM [43] or an implementation of MPI [48], creates
a virtual parallel computer that allows the programmer to create and manage processes on the various nodes. This software is
not, however integrated with the operating system, it does little or nothing to assist in system configuration and management, and
is not well suited to managing processing resources on a system-wide basis. This chapter describes Scyld, a system designed to
provide a system-wide view of a Beowulf cluster.

18.1 Introduction
Early on, the ideal was to have a single system image: cooperation between the nodes of a Beowulf at the operating system level
that not only eases programming across the nodes, but all aspects of interacting with the machine, including programming,
configuration, and management tasks. The first attempts at this were to develop a global process ID space, so that processes
running anywhere on the Beowulf could be uniquely identified, and so that the node the process executes on can be determined.
This mechanism was implemented for the Linux kernel but proved to be of limited value. A more complete implementation later
emerged that extended the process ID space of the master node of the machine, including all aspects of process control and
management. The bproc process management system included fast creation and migration of processes across nodes,
maintained information on remote processes for local reporting, included signal delivery services, and continued the abstraction of
the single image process space to processes subsequently created on the remote nodes. Later versions included the ability to
control access rights for creating processes on remote nodes.

With bproc process management in place, the next logical step is stripping the nodes down to a bare minimum of processes and
services, and letting the master node start and manage all other processes using bproc. This quickly reduces the number of actual
processes run directly on each compute node to a bproc daemon and a few other key processes. Once this runtime image is
reduced, the next and final step is to move the copy of the runtime image off of the node completely so that each node boots from
the master. The fact that the runtime image is very small makes this feasible for even a fairly large number of nodes. Finally, the
resulting system provides a single system image that allows easy management of the configuration (it is all stored on the master
node and loaded to the compute nodes at boot time), of the running system (almost everything is visible from the master node)
and programming (uses the same programming model as the original Beowulf).

Figure 18.1: Evolution of Beowulf System Image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resulting single system image approach has been developed and marketed by Scyld Computing, Inc. as Scyld Beowulf. Scyld
Beowulf is a complete Linux distribution based on RedHat Linux with modified installation scripts, a Scyld-enabled kernel, and the
rest of the tools needed to implement the system. The Scyld CD is booted to install the Master node. Installation scripts configure
the private network and set up the services to boot the nodes. Once installed, the Master node can make a CD or floppy that can
boot the nodes, or they can boot using PXE boot. Nodes boot a minimal kernel, connect to the server, and then re-boot from the
server. Facilities are provided to install a boot area on the local hard disk of each node so that subsequent boots do not require
the CD or a floppy. The boot kernel is used only to start the system and thus does not need to be changed even in the event that
the desired runtime kernel configuration is changed. The node kernel is updated on the server, the nodes are rebooted, and are
ready to go. Utilities are provided to manage the nodes, determine their status, start and monitor processes, and even control
access rights to the nodes.

18.1.1 Process Management with Bproc

The heart of Scyld Beowulf is the bproc process management facility. On the surface, bproc is just another facility for starting
remote processes such as rsh or ssh. In reality, bproc is a sophisiticated tool for migrating processes to remote nodes, while
maintaining a centralized locus of control. The principle function in bproc is bproc_move() which migrates a process from the
master to a remote node. This function is built upon the VMADump facility, which is a library for copying and restoring the
complete virtual address space of a process. Essentially, VMADump copies the virtual address space on the master node, the
copy is sent to the remote node, a new process is started there and then VMADump restores the address space in this new
process. The original process does not go away, but becomes a "ghost process." This ghost process stands in on the master
node as a placeholder of sorts for the remote process. It is just like a regular process, except that it has no memory space and no
open files. In implementation, ghost processes behave like Linux kernel threads, they can sleep or run as needed, they can catch
signals (including SIGKILL) and forward them to the running process. They are different than regular threads in that they inherit a
number of process statistics like CPU time used from the remote process. For the user on the master node, the ghost process is
the remote process.

Figure 18.2: Migration of processes using bproc.

18.1.2 Node Management with Beoboot

The key to managing nodes with Scyld Beowulf lies in the fact that the nodes have no permanent state other than a simple boot
loader. All of the node configuration is maintained on the master node and downloaded to the compute nodes when they boot with
beoboot. The beoboot utilities, along with the beoserv daemon which runs on the master node, allow the compute node
configuration to be tuned as needed. The Scyld Beowulf software allows the kernel to be configured, startup scripts to be
adjusted, and very importantly, shared libraries to be managed. Since all processes that are run on the compute nodes of a Scyld
Beowulf machine are transferred from the master node, it is important that any libraries used by the executables are either
statically linked or present on the compute node. Since this can be a rather extreme requirement, bproc will transfer any shared
library linked to a migrated process along with the process itself, if the shared library is not installed on the target compute node.
This solves a potential problem with running applications, but may not be as efficient as it could be. Thus, the beoboot system
allows the compute nodes to be configured with shared libraries that are highly likely to be used. This increases the size of the
boot image, and hence the boot time, but reduces the size of the typical process image and the time to start an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.2 Using Scyld Beowulf
To the typical user of a Scyld Beowulf system, there is little difference between a Scyld and a non-Scyld system. Programs are
written with MPI or PVM libraries, and executed interactively or submitted using PBS or some other scheduler. There are small
details that may be different, such as how one selects a set of nodes to execute a program or, or how one views a process
running on a node. For the most part, these are easier to do. For a system administrator, however, Scyld Beowulf offers a number
of features that greatly simplify the configuration and management of a cluster, and in particular, a large cluster.

The ability to boot a machine over a network connection has been available for a long time, and many cluster tool-kits offer
mechanisms to simplify cluster installation based on mechanisms such as bootp, dhcp, and similar protocols. Scyld Beowulf also
offers a simplified installation procedure for nodes in the form of a boot image that can be installed on a CD or floppy disk. Unlike
other systems however, Scyld extends this concept to simplify configuration and management not just at installation time, but
every time the cluster boots.

Booting a compute node in a Scyld Beowulf system starts when the node first powers up. A fully installed node will have a boot
image installed on the default boot device. This image is responsible for bringing up a minimal running kernel including network
services through which the node can broadcast its readiness to boot to the beoserv daemon running on the master node. This
boot image is extremely generic, it is used only during this first phase of booting, thus it rarely needs to be changed, even if the
clusters compute nodes are completely reconfigured. In fact, this image only need be updated if the Scyld beoboot system
requires an update, which normally wouldn't occur even if the Scyld software was updated. Only in fairly extreme circumstances
requiring extensive changes to the beoboot system would the boot loader be changed. This is a critical point, because updating an
on-disk boot loader can be a cumbersome task, though even in the event this is required, the Scyld beoboot system can usually
install on-disk boot loaders automatically onto the disk from the master node, making the process much simpler than even a per-
node network install.

Once the phase 1 boot loader has contacted the beoserv daemon on the master node, the beoserv daemon sends boot
instructions to the node. If the node has been booted before and has a local disk partition with a kernel installed, the daemon can
simply instruct the node to boot from the local image. In many cases the node might not have a local boot image. This might be
because a decision has been made not to use the local disk to hold the OS. Or it might be that we want to boot a new
configuration that the node does not have installed. This could be a kernel upgrade, a distribution upgrade, or a library upgrade.
Whatever the reason, the new boot image is transferred over the network to the booting node, where it can either be loaded into a
RAM disk or it can be loaded into an available disk partition on the local disk so that future boots can be performed from local disk.
Whatever the source, when the beoserv daemon instructs the node to boot a new image an interesting process takes place. A
small bit of Scyld code known as "Two-Kernel Monte" loads the new kernel and tricks the old kernel into giving up control to the
new image. This bypasses the normal boot process, but effectly switches kernels to the new image.

The beoserv daemon need not instruct a booting node to boot at all. The daemon maintains a database of nodes, their
corresponding MAC addresses, and their current disposition in the system. A node that has never been booted before can be
placed in a holding pattern to wait for the system administrator to choose to boot it. Even nodes that have been previously booted
can be set to stay in the "down" state until such time as the sysadmin decides to bring it "up." In addition, when selecting a node to
boot, the sysadmin can specify whether to boot a local disk image or a server image, the logical node number of the node and
other configuration information.

Once a node has its boot instructions it loads and initializes its kernel the same way any other Linux computer does. The primary
difference at this point lies in the system startup scripts that are part of a Scyld Beowulf image. Put simply, Scyld Beowulf boot
nodes do not start any daemons or services that are not needed to bring the node to a running state other than the bproc slave
daemon. The bproc slave daemon contacts the bproc master daemon running on the master and enrolls the compute node as a
slave to the master. Once this is completed, the master can initiate processes on the node, and all processes, including any
service daemons, are started from the master by the beoboot system.

18.2.1 Programming and Debugging

Writing programs for a Scyld Beowulf is generally very straight-forward. Most users of a distributed memory parallel computer will
use a message passing library, such as MPI or PVM to write their program. Both MPICH (a popular implementation of MPI) and
PVM have configurations for use with Scyld. For the most part, these packages only have to be configured to use bpsh rather
than rsh or its equivalent for starting processes on the nodes. The only other issues comes in naming nodes. Under Scyld, nodes
are named .-1 (the master node), .0, .1, .2, and so on, whereas under other Beowulf installation, nodes may be named almost
anything. Other than this, the process of creating a socket and establishing a connection are exactly the same as on any other
Linux platform. MPICH and PVM are already configured with these issues in mind, and can be used directly for parallel
programming.

Running Parallel Programs
When running MPICH, there are a number of features to be aware of. The first of which is that under Scyld, most of the controls
for launching a job are controlled with environment variables. Thus, one can launch and MPI job without the traditional mpirun
command just by setting the various environment variables. For example, the environment variable NP specifies the number of
tasks to start. The variable NOLOCAL specifies not to run any tasks on the master (the default is to run the first task on the master,
the rest on the nodes). Table 18.1 lists the environment variables used when starting MPI jobs under Scyld.

Table 18.1: Environment variables used when starting MPI jobs.

Environment Variable mpirun flag Description

NP -np number of tasks to run

NO_LOCAL -nolocal no tasks on master

ALL_LOCAL -all_local all tasks on master

ALL_CPUS -all_cpus task on every cpu in the system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXCLUDE -exclude exclude nodes

BEOWULF_JOB_MAP -map specify node to use for each task

Otherwise, writing MPI programs for Scyld is about the same as for any other Beowulf system. On the other hand, things can be a
little different when writing more traditional programs or doing things more out of the ordinary within an MPI program. For example,
Scyld does not load a copy of shared libraries on the disk of the nodes unless this is specifically done as part of configuration (see
the section below on administration of Scyld systems). When a program is launched, all shared libraries referenced by the
program and not already loaded on the target node are loaded. On the other hand, shared libraries used by a program but not
referenced directly in the calling code (done via a call to dl_open() and the path to the library) cannot be loaded by Scyld, and
will fail unless the library referenced is already installed on the nodes.

Scyld Libraries
In addition to libraries such as MPI, programmers can take advantage of APIs provided specifically for Scyld systems. Table 18.2
outlines the libraries provided by Scyld. Of these, the bproc, perf, and beostat libraries are the most likely to be of interest to some
programmers.

Table 18.2: Scyld libraries.

libbeostat Library for returning compute node status info

libbeomap Library for finding available (unloaded) nodes

libbpsh Library for bproc shell-like functions

libbproc Library for access to Bproc API

libbpslave Library for compute nodes to receive Bproc requests

perf Library for access to Pentium Hardware Performance Counters

The bproc libraries provide access to routines for starting new processes under bproc and for moving existing processes. The perf
libraries provide access to performance counters in the Pentium hardware. beostat routines are for gathering node status info.
These facilities are most likely to useful to systems programmers rather than applications programmers.

Other libraries such a mathematical codes like lapack or IO packages such as HDF are pretty much independent of Scyld, unless
they have library loading issues as described above.

Debugging
Debugging parallel programs can be a complex task. Debugging programs with Scyld Beowulf can in many cases be easier than
on a standard Beowulf system because of the bproc process management. Typical debugging techniques for MPI programs
involve the use of MPE to generate a log file and tools such as Jumpshot [126] to help in analyzing the data. Using these tools on
Scyld Beowulf is no different than on any platform. Similarly, the use if print statements in the program code is relatively straight-
forward due to the structure of most MPI implementations.

On the other hand, sometimes these tools are not as effective as we may like for debugging. Other tools such as strace,
ltrace, and gdb are standard for debugging sequential programs, but are often difficult to use on a parallel program because the
processes are not local, but are distributed among many machines. On a standard Beowulf, the approach is to run all of the
processes locally, thus allowing these tools to be used, but on Scyld Beowulf, these tools can be used even if the processes are
remote. As an example, gdb can be made to attach to a running processes, and once attached can set breakpoints examine and
change memory, trace references, and a number of other useful things. On a standard Beowulf, this involves logging in to the
remote node the processes is running on, and then running GDB. On Scyld Beowulf, we merely need to identify the process id
and attach to it just like any other process.

Overall, debugging is not significantly different under Scyld Beowulf, but in some cases is a little easier and a little more flexible.
For more details on these debugging tools see their respective documentation and Section 8.8.

File I/O
A critical issue in an program is I/O. Most programs read at least some data from a file and output results to a file. The I/O may be
quite minimal, or it may be hundreds of megabytes. File I/O in any Beowulf system is an issue because there are several distinct
ways file I/O can be configured, and these alternatives have very different performance depending on how you use them. There
are three major options: local disks on the nodes, Network File System (NFS), or a parallel file system.

Local disks are easy to use, assuming your cluster has local disks. Each task in your program can simply open a file and read and
write data from and to that file. The difficulty comes in coordinating the files before and after running your program. If all of your
tasks need to read the same data, then you simply copy the file to all of your disks before the program runs. If they all need to
ready different parts of a single file, then you must divide the file accordingly and copy the correct part to each node. Similarly,
after running the program there are many output files that may need to be reassembled. Sometimes this is a complex enough task
as to not be worth the trouble. If your program requires that one task writes a file that is subsequently read by another task, this
will not work on local disks, the reading task will only see what was written on that node. If your program runs more than one task
on a node, then you must be careful in naming files to prevent a conflict. There are C library routines such as mktemp() that
make this fairly easy to do.

Another alternative is the use of NFS [109]. With NFS the disk or disks on one machine can be accessed from all of the nodes.
This eliminates the need to distribute and gather files before and after execution, and allows the tasks to read and write portions of
the same file simultaneously. The Master node can act as an NFS server, which works well for small clusters, or a dedicated
server might be set up. This machine can act as a slave, but usually is configured as a full server just like the master, but without

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server might be set up. This machine can act as a slave, but usually is configured as a full server just like the master, but without
acting as bproc master. This prevents traffic related to NFS from bogging down bproc traffic to and from the master. The down
side of NFS is performance. The NFS server becomes a bottleneck. Experience has shown that one a machine gets to be the
side of 100 nodes or more, the potential for severe performance problems exists. Even for much smaller clusters, if there is a
large amount of data read or written during the execution of a job, NFS can become the limiting factor to performance. In other
words the processors have to wait on the I/O. Other issues of concern include caching and other matters related to semantics as
implemented by NFS. In general NFS was not designed to act as a parallel file system, thus in many cases it does not behave as
one would expect.

The last option for file I/O is the use of a parallel file system. Parallel file systems allow program tasks to interact with a shared file
just like NFS, but they do it by distributing the data among many servers, and managing the I/O throughput across the network so
as the reduce or eliminate the effect of bottlenecks. An example of a parallel file system is PVFS [22], detailed in Chapter 19. Not
only do parallel file systems provide high performance access to shared files, they also tend to offer interfaces better suited to
parallel processing. As previously mentioned, there are issues of caching and other semantics that should make a parallel file
system better suited to parallel computing. The MPI specification includes a parallel I/O standard called MPI-IO as detailed in
Chapter 9. As discussed in chapter 19, one implementation of MPI-IO known as ROMIO [115] works with PVFS and MPICH
implementation of MPI.

On the down side, some parallel file systems are so tuned for high performance use by parallel programs that they are not
particularly well suited to common every day file system use the NFS is. In the end, it is usually best to provide all three forms of
storage and let each application make use of the facilities as best it can. User's home file systems and small config files work well
in NFS, large data files work well in parallel file systems, and local disks are still useful for certain types of logging and in other
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.3 Administration
One of the primary advantages to the single system image approach is simple system administration. Most administrative work,
from simple jobs like adding users to more complex tasks like adding network drivers or kernel modules, can be done simply by
manipulating the image, rather than manually configuring each node. Experience has shown that administration of traditional
Beowulf systems can be as labor intensive as managing a comparable number of workstations, with as much one full time
administrator required per 128 nodes. While nothing in the Scyld approach makes maintaining the cluster hardware any less labor
intensive, managing the OS is substantially simpler. In earlier chapters of this book, such as Chapters 5, 6, and 13, the
complexities of managing traditional clusters have been discussed in detail. This section contrasts with that the Scyld approach to
some common administrative tasks to provide some insight into the process of administering Scyld clusters versus the more
traditional approach.

Most of the administration tasks that will need to be done can be performed using Scyld's beosetup program, which provides a
GUI interface for performing all common configuation tasks. The system can also be configured and administered using command
line programs and by modifying relevant configuration files using a text editor. Table 18.3 lists the major configuration files. The
sections below describe common administration tasks, including the configuration files and tools related. Sysadmins new to Scyld
should probably try to use beosetup rather than using a manual approach until they are familiar with a running system.

Table 18.3: Common configuration files.

/etc/Beowulf Directory with Scyld Beowulf configuration files

/etc/Beowulf/config Main configuration file

/etc/Beowulf/fdisk Default disk partitioning for nodes

/etc/Beowulf/fdisk.1 Disk passioning for node 1

/etc/Beowulf/fstab Default fstab for nodes

/etc/Beowulf/fstab.1 Fstab for node 1

/var/Beowulf Node boot images

/var/log/Beowulf Node logging

/usr/lib/Beowulf Scripts and programs

While some functions of administering the cluster use the same configuration systems as normal Linux machines (such as user
accounts and groups), the Beowulf specific functions require additions to the "normal" set of Linux configuration files. Scyld
encapsulates the additional configuration information into a small set of files consistent with the Linux/UNIX administrative
philosophy. The '/etc/beowulf' directory contains information about cluster configuration and node management. Node boot
images and related information are kept in '/var/beowulf'. Node logging information is in the directory '/var/log/beowulf',
and scripts and programs used in booting are in '/usr/lib/beoboot'.

The sections below discuss how some of the normal tasks of a cluster administrator are performed using the Scyld Beowulf OS.
These tasks are broadly grouped into four categories: managing nodes, system maintenance tasks, failure detection and
recovery, and finally node allocation and scheduling.

18.3.1 Managing Nodes

A fairly frequent task for a Beowulf system administrator is the addition, deletion, or customization of the compute nodes. Like
most tasks on a Scyld Beowulf, all of these tasks are handled from the head node.

Adding and Deleting Compute Nodes
When a new node is added to the cluster, the phase 1 boot image must be booted on this node. This is the same procedure as
discussed previously in the install section, and can be done via floppy, CD, or PXE boot. When the node boots, it will make a
RARP request to the head node. When the head node sees this request, it examines the MAC address of the requesting node,
then examines it's configuration file, '/etc/Beowulf/config' to determine what to do.

If the MAC address of the node does not appear in the configuration file, the request is ignored, and the address is added to the
file '/var/Beowulf/unknown_addresses'. If the MAC address of the requesting node does appear in the configuration file,
there are two possibilities. If the address is labeled in the configuration file as "ignore", the request will simply be ignored.
Otherwise, the head node will respond to the compute node's RARP request, and assign it a node number corresponding to the
label or position in the configuration file. Nodes can be removed from the cluster by simply marking the corresponding line in the
configuration file as "ignore".

This behavior can be modified if the beosetup GUI is used when nodes are being added. This GUI includes an option to auto-
activate new nodes that appear as unknown addresses. This option is particularly useful when adding large numbers of new
nodes to the cluster. beosetup also allows you to drag and drop nodes between the unknown and active lists, reorder the node
list, and perform many other node setup features as mentioned in the installation section.

Compute Node Disks
One of the components in a Beowulf cluster that is most susceptible to failure is the disk drives. Due to the short product life
cycles of commodity hard drives, it is only a matter of time before a Beowulf cluster will be using several different types and sizes
of disk drives in the compute nodes. The single system image concept provided by Scyld and the Bproc system make it possible
to deal with frequent rebuilds of node file systems. However, it is important that the system image have flexibility in dealing with
different disk drives on which the image is to be stored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Scyld OS deals with this issue by keeping partition tables for each type of disk in the cluster in the '/etc/Beowulf' directory
on the head node. These partition tables are indexed by either the geometry and device number of the disk to which they apply.
This allows the head node to automatically determine the appropriate partitioning for a given disk drive at boot time. To add a new
type of disk drive to a cluster, the administrator can either manually add the new configuration, or take it from a running node.
When a new type of disk is installed on a node, the node can initially be booted using a RAM disk. The node's new disk can be
partitioned using the standard fdisk command via bpsh, then this partition table can be read in by the head node in the
appropriate format via the beofdisk command. beofdisk can also be used to propagate this partition table to every other node
in the cluster with the same hardware, eliminating the need to manually partition each disk.

Compute Node File systems
The default setting in Scyld Beowulf is for each node to use a RAM disk for it's root file system, and to use NFS to mount the
'/home' file system from the head. However, it is a simple process for the administrator to customize compute nodes to make use
of local disks, or to access any number of network or parallel file systems, either from the head or another accessible server.

In traditional Linux systems, the file systems a node mounts is determined by the '/etc/fstab' file. In the Scyld OS, compute
node 'fstab' files are kept in the '/etc/Beowulf' directory. A single file may be used to control all nodes, or, if there are
differences in node configurations, fstab files may be created for each node. Ideally, a single fstab would suffice for an entire
cluster (and frequently does), but sometimes certain nodes may have additional disks to provide additional swap or temporary
space, or to serve as I/O servers for a parallel file system. The list of network file systems available to nodes may change to allow
only certain nodes to have access to sensitive data.

The syntax for the 'fstab' files is identical to normal Linux syntax, and allows the use of RAM disks, local disks, NFS file systems,
or parallel file systems such as PVFS as described in Chapter 19.

The Scyld OS also provides a number of options for when node file systems should be rebuilt. To maintain a single system image,
some users opt to have all local file systems on a node rebuilt each time a node is booted. This option is particularly useful when
adding new nodes to the cluster. Some choose to use the local file systems for permanent storage, and never wish to rebuild
those images. Still others may choose for performance reasons to only rebuild node file systems when checks on the file system
fail, indicating errors. Scyld supports all of these options, and the policy can be changed at any time through the Beosetup GUI or
by editing the '/etc/Beowulf/config' file and sending HUP signals to the associated beoboot and bproc daemons.

Compute Node Shared Libraries
The Bproc system provided with Scyld allows jobs to be migrated quickly to the nodes by not migrating shared library code with
the nodes, but rather remapping these libraries within the process after it is migrated. To achieve high performance with this
technique, nodes must keep a cache of the shared libraries. Administrators can easily change the list of libraries kept cached on
the nodes to achieve good performance on any application. The '/etc/Beowulf/config' file contains a keyword libraries,
after which can be listed individual libraries or whole directories of libraries can be listed. All libraries listed in this line will be
moved to the compute nodes when they boot.

18.3.2 System Maintenance

Another group of important tasks involves the overall maintenance of the system, such as controlling the state of the nodes, the
boot image and kernel run by the nodes, and account management.

Controlling Node State
Compute nodes can be in any of a number of states, including up, down, unavailable, boot, reboot, error, and pwroff. As
a node powers up, it moves from the down state to the boot state, and, if all goes well, eventually to the up state. The state of a
node can also be controlled by the administrator via the bpctl command. This command allows the the administrator to set the
state (among other things) of all the nodes, individual nodes, or ranges of nodes. Bpctl can be used to reboot nodes, shut them
down, tag them as unavailable to users or mark them as back up.

Node Boot Images
Periodically, as updates become available or new drivers are added, the administrator may want to change either the phase 1 or
phase 2 boot images that are given to the slave nodes. Both images can be recreated through the beosetup GUI or via the
beofdisk command.

The phase 1 image rarely needs to be changed. It consists simply of a small RAM disk image and a minimal kernel, and is
designed to fit on a floppy disk or in a 2 megabyte partition at the start of a hard drive. The RAM disk and kernel can also be
generated separately for use with a PXE boot server.

The phase 2 image contains the runtime kernel, and may need to be updated more frequently. This image is created in a format
suitable for download by a phase 1 image. When the image is created, the head node must be running the same version of the
kernel as to be placed in the phase 2 image.

Kernel Maintenance
Periodically, administrators may wish to update kernels on their cluster to take advantage of bug fixes, new features, etc. More
frequently, an administrator may wish to add a device driver or new module to the existing kernel, and propagate this change to
the slaves. The kernel used in the Scyld system is not quite the standard Linux kernel, so the recommended procedure is to
download source for the new kernel from Scyld. If you wish to use a kernel version that is not available from Scyld, you should
have some expertise in hacking Linux kernels, and be prepared to add in a number of additional modules for beoboot, bproc,
PVFS, etc.

Adding drivers to kernels is a fairly simple task in a Scyld cluster. Most drivers are added via a dynamically loadable module, so
recompiling the full kernel is not necessary. In order to add a driver, you will need to compile the module twice, once with options
for the kernel on the head node, and a second time with the options for the beoboot kernel on the nodes. The correct options are
shown in Table 18.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 18.4: Parameters for building Scyld kernels.

For Uniprocessor kernel on head: -D__BOOT_KERNEL_SMP=0
-D__BOOT_KERNEL_UP=1

For Uniprocessor kernel for BeoBoot: -D__BOOT_KERNEL_SMP=0
-D__BOOT_KERNEL_UP=1
-D__module__beoboot

Each compiled version will need to be installed in '/lib/modules' in the appropriate directory for each kernel (the kernel for the
head has an _Scyld after the version number, the kernel for the compute nodes has an _Scyldbeoboot extension). Once the
modules are created, you will need to update your Beoboot images. If the module is a critical one, such as the module for your
compute node's primary network interface, you may need to update both the phase 1 and phase 2 kernel images.

If the new module is to be included in the phase 1 image, the '/etc/Beowulf/config' file must be edited to include this module
in the module list and to determine how it is loaded. The bootmodule lines in the configuration file list all the modules to be
included in the phase 1 image. Addition of new modules may require the deletion of some old ones if the phase 1 image must still
fit on the floppy drive. If you wish the module to always be loaded, you must also add a modprobe to the config file. If you wish it
to be loaded only when the corresponding hardware is detected, the system's PCI table must be edited. Finally, the new beoboot
images can be created including the new kernel modules using the beoboot command.

Additional Compute Node Boot Commands
System administrators may wish to perform site specific customizations of the compute nodes when they boot, such as starting
additional daemons or copying extra files to the nodes. At the end of the node boot cycle, each node runs a script called
node_up. During its execution, this script looks in the directory '/etc/beowulf/init.d' and executes any scripts it finds there.
This is where administrators can add any additional site-specific commands to be run. Any script run from this directory will have
the additional environment variable $NODE defined, which will contain the node number of the node on which the script is being
executed. This makes it possible to have the script only act on certain nodes, or act differently on each node if this is desired.

Account Maintenance
Managing user accounts on a Scyld system is just as easy as managing user accounts on a single workstation. All account
management is done from the head node, using the normal linux tools, for instance the adduser script or the passwd command,
or manual editing of the '/etc/password' file. Compute nodes see exactly the set of user IDs and permissions that are available
on the head, and need no passwords.

This removes a number of authentication problems that can exist in traditional Beowulfs. For instance, as seen in Chapter 5, in a
traditional Beowulf, user accounts must be added on every node with the same user ID, and passwords must be kept consistent
on every node, or some central account management service such as NIS (Network Information Service) must be maintained and
accessed via the network by all nodes. Typically, users wish to spawn tasks on compute nodes of the cluster without being
prompted for a password. The solution to this problem is usually to maintain a 'hosts.equiv' or '.rhosts' file on every node in
the Beowulf, which contains the name or network address of every other node in the Beowulf. This file must be kept to up-to-date
each time the cluster's configuration changes.

Managing groups is equally simple. Groups take on an added importance in Scyld clusters. In addition to the traditional use of
managing file access, groups can be used to manage access to compute nodes. Groups are defined by the file '/etc/group',
and can be changed by directly editing the file, or through the standard usermod, groupadd and groupdel commands.

More sophisticated mechanisms to prevent User and Group ID-space conflicts are being built into the newest version of the Scyld
OS to allow for clusters with multiple heads, primarily to provide high availability or failover capabilities.

18.3.3 Failure Detection and Recovery

An important issue whenever working with a large number of nodes is detecting their failure and recovering. This includes systems
for monitoring the nodes, and strategies for replacing a failed node.

Monitoring Cluster Status
The Bproc and Beoboot packages provide useful libraries for tracking the status of your cluster from a central location. The Scyld
Beowulf OS provides a number of tools that take advantage of these libraries to allow administrators to better control their
clusters, as well as the APIs for the creation of more sophisticated tools.

Among the tools provided for for cluster monitoring are the tools beostatus and bpstat, which are designed for direct user
interaction, and the beostat tool which is more appropriate for embedding in scripts. beostatus provides a display of common
performance metrics for each node, such as CPU, memory, and network utilization. The output display can be graphical or text
based. Bpstat provides a summary of the state and permissions for each node, and can also be used in conjunction with the UNIX
ps command to list which compute node every bproc process is running on. The beostat tool provides any of the information
normally available in the '/proc' file system of a Linux machine for any or all of the compute nodes. The 'libbeostat' library
and the bproc kernel module provide a variety of system calls and library functions which make cluster status information easily
available to a programmer. These calls can be used for making more sophisticated status reporting tools, or to import status
information into load management and other tools. 'libbeostat' has a library call to report each of the same fields as the
beostat command line tool, ranging from node status to CPU speed and about twenty other quantities.

Web Based Monitoring
Most of the functionality provided by the beosetup configuration tool, the beostatus monitor, and the Beowulf batch queue
monitor can also be accessed through the web on a Scyld Beowulf cluster. All of these functions are provided as add-ons to the
standard webmin interface for remote system administration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard webmin interface for remote system administration.

Compute Node Failure
Inevitably, nodes will eventually fail. This may be do to software failures somewhere along the boot process, such as file system
errors or bad scripts added to the boot sequence, or a variety of hardware failures. In the case of software failures, the node is
placed in the error state and a complete log of both the phase 1 and phase 2 boot process is stored on a per node basis in the
directory '/var/log/Beowulf' in a file named 'node.<nodenumber>'. This makes debugging possible without having to
physically access one of the compute nodes.

In the case of a hardware failure, Scyld provides no additional support beyond simply marking the node as being in the down or
error state. A system administrator would be well advised to employ one of the cluster management techniques described in
Chapter 13 to debug hardware issues.

In either case, the Scyld OS continues to function in the event of a compute node failure. Processes currently running on a node
that fails will be lost, and it is up to the application to provide checkpoints if recovery of the job is possible. However, the system as
a whole will continue to function, and the OS will not schedule any new tasks on the node that has failed. Unfortunately, some
applications and/or users may hard code node numbers into scripts that run jobs. While this practice should generally be
discouraged, system administrators can compensate this by simply reordering the node list such that another node takes the
place of the one that has failed. For instance, say a cluster has one spare node available for failover. If node 15 on that cluster
fails, the administrator can either use the beosetup GUI or edit the configuration file to place the MAC address of the spare node
in the 15th position on the node list. If the administrator then boots the spare node, it will come up as node 15. The users will then
see the same set of nodes they always see, and service was not interrupted on any other node, though anything on the original
node 15 at the time of the failure will be lost.

18.3.4 Node Allocation and Scheduling

One of the primary chores of running a large Beowulf is allocating and scheduling nodes to particular jobs or to particular users.
The Scyld/bproc system provides an elegant means for providing access to nodes, and a simple set of tools for allocation and
scheduling. These mechanisms can in turn be used as a basis for building more sophisticated tools.

The core of the node allocation mechanism is the Bproc permission model. Nodes are given owners, groups, and permission bits,
much like the UNIX file permission system. For nodes, the "read" and "write" bits are meaningless, only the execute bit has
importance. Nodes are given an owner and group user ID. The permission bits allow the administrator to define whether a node
can be used by the owner, by all members of the group, or by all users. Permissions can be changed on the fly manually by the
administrator, or can be set by allocation and scheduling software to restrict node access.

The Beowulf Batch Queue
Scyld Beowulf includes a simple load management system based on the UNIX at facility known as bbq, the Beowulf Batch
Queue. The bbq system queues jobs submitted by users, and runs them on a first-come, first-served basis to processors deemed
available by the beomap calls. The number of processors required for a particular job is determined from the users submitted job
script. A request for this number of processors is made of beomap, which will return a list of processor numbers which have a load
average below 0.8. The job is then issued to this list of processors.

The scheduling policy implemented in BBQ can be changed by replacing 'libbeostat', or by just replacing the call
get_beowulf_job_map(). BBQ is a functional scheduler for simple workloads, but lacks the ability to enforce limits on job time,
out-of-order execution, and other features expected in a modern scheduler. If a Beowulf has a fairly complicated workload, the
PBS system described in Chapter 17 has also been modified to work with Scyld Beowulf, and may provide a better option.

18.3.5 Scyld Command Summary

The commands listed in Table 18.5 are used to perform all of the Scyld system administration tasks. New administrators should
stick to the GUI systems provided, but in some cases these commands can be very useful. Man pages are provided online with all
of the details.

Table 18.5: Scyld command line programs.

atd Beowulf Batch Queue daemon

atrm Remove jobs from batch queue

batch Submit job to queue

bbq Check queue status

bdate Set the time and date on slave nodes

beoboot Generate Beowulf boot images

beoboot-install Install beoboot on compute node drives

beofdisk Partition slave node disks

beoserv Beoboot server daemon

beostatus Interactive status tool

beostat Display raw data from libbeostat

beowebenable Activate web access

bpcp Copy files to compute nodes

bpctl Set node state and ownership

bpmaster The bproc server daemon on the head

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bpsh Run programs on compute nodes

bpslave Bproc client daemon on compute nodes

bpstat Show node status information

linpack Run linpack benchmark

mpprun Launch a non-parallel job on compute nodes

mpirun Launch an MPI job on compute nodes

node_down Shutdown compute nodes cleanly

recvstats Daemon to receive multicast status info for libbeostat

sendstats Daemon to send multicast status info for libbeostat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.4 Features in Upcoming Releases
The Scyld Beowulf OS continues to evolve over time, and many new features are planned for upcoming releases, primarily
focused on scalability and high reliability. Beowulf clusters are being built with larger and larger numbers of nodes, and are more
often now used in production environments. Larger clusters often require substantially different techniques than those used to run
8, 16, or 64 node clusters, and production environments find downtime to deal with hardware failures or upgrades less acceptable.

18.4.1 Failover Head Nodes

One of the most important new features will be support for multi-headed clusters. While a current Scyld cluster can continue to
function in the event of a compute node failure, the head node remains a single point of failure. In the upcoming release, a new
head node can take over when the original head fails.

This is achieved by adding some extensions to the bproc model. Bproc is being extended to allow slave processes to detach from
the head node that spawned them, and run independently. These tasks can then continue to run to completion on their own, or
they can use the slave daemon on the nodes to contact a new master, and insert themselves into the process table of the new
head node. This will allow a switch from one head to another without disrupting any ongoing jobs.

18.4.2 Scalable bproc Job Spawning

The bproc mechanism provides extremely rapid migration of jobs from the head node to the compute nodes. However, as the
number of compute nodes grows to hundreds or even thousands, the total time to launch jobs via bproc can become substantial.
Future versions of bproc will contain the ability to do a tree-based spawn. In this system, the head node will migrate tasks to
nodes at the top of the tree, and these nodes will then migrate the tasks to additional nodes, and so on. This offloads some of the
load of spawning tasks from the head, and removes a potential bottleneck. Experimental work at Scyld has shown that this
approach begins to become useful as clusters grow past 256 nodes using a single head.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5 Conclusion
Scyld Beowulf is a packaged product that makes the installation, management, and use of Beowulf computers easier and more
effective. The main tools for doing this are the bproc process management libraries and the beoboot node management tools.
Together these tools create an effective single system image that allows all installation and management activities to be
performed from a single master node. From the programmer's perspective, a Scyld Beowulf is pretty much the same as any
Beowulf system, right down to the use of tools and libraries for parallel programming. Current development of Scyld Beowulf is
exploring new ways to use its unique features to provide even better system management for clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19: Parallel I/O and the Parallel Virtual File System

Overview
Walt Ligon and Rob Ross

Ever more frequently users of clusters find themselves in an interesting situation: it isn't the processors, communication network,
or memory that is limiting their application; it is the storage system. This might force the users to checkpoint less frequently than
they would like, might limit the resolution of output visualization data, or might prevent the use of out-of-core solutions needed for
the largest of problems. What's worse, the I/O hardware in the system may indeed be adequate for the user's needs but may be
being used ineffectively by one of the many software layers involved.

A lot of mystery surrounds I/O solutions in clusters today. For this reason we have rewritten this chapter in the second edition. We
begin by covering what we believe are some of the most important issues in parallel I/O systems. These include parallel access
patterns, parallel I/O system components and architectures, and consistency semantics. Knowing how parallel I/O systems
operate and the issues involved can be useful when performance tuning an application for a particular system or choosing an I/O
solution to match expected workloads. This material builds on material in many preceding chapters, including the I/O hardware
discussion in Chapter 2, the local and distributed file system discussion in Chapter 3, and the network hardware discussion in
Chapter 4.

Following this more general discussion, we delve into PVFS, specifically covering some of the quirks of PVFS, management and
tuning, and approaches for narrowing down the source of problems that may crop up. Finally, we discuss some critical issues for
parallel file systems and how PVFS2, the next-generation parallel file system being developed by the PVFS team, attempts to
address these.

These are very interesting times for parallel file systems on Linux clusters. As we are writing this chapter, the Lustre, PVFS2, and
GPFS groups are all bringing new parallel file systems to the Linux cluster environment. The relative success of each of these is
not likely to be known for quite some time, but we can certainly hope that at least one of these projects will result in a new, high-
performance parallel file system designed to operate on systems with thousands of nodes (and, we hope, more!).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1 Parallel I/O Systems
What do we mean by a "parallel I/O system"? At a high level three characteristics are key:

multiple hardware I/O resources on which data will be stored,

multiple connections between these I/O resources and compute resources, and

high-performance, concurrent access to these I/O resources by numerous compute resources.

Parallel I/O systems get their performance by using multiple I/O resources that are connected to compute resources through
multiple I/O paths. Multiple physical I/O devices and paths are required to ensure that the system has enough bandwidth to attain
the performance desired. The hardware could consist of nodes with local disks attached via more traditional IP networks, a
separate storage area network, or something else entirely; all of these are valid options for parallel I/O systems.

The third characteristic is easily as important as the first two but is considerably more difficult to pin down. Parallel I/O systems
should be designed from the bottom up with the assumption that performance is a key attribute and that concurrent access to
resources will be commonplace. This characteristic is heavily dependent on the software architecture; the software managing the
hardware resources can make or break a parallel I/O system.

Often I/O systems that have multiple connections and hardware devices but don't cater to high-performance concurrent access
are called distributed file systems. The software in these systems is tailored to other workloads. Chapter 3 discusses distributed
file systems such as NFS.

A parallel file system is simply a component of a parallel I/O system that presents a hierarchical (file- and directory-based) view of
data stored in the system. In the next section will see where this component fits into the big picture.

19.1.1 Components of a Parallel I/O Stack

A parallel I/O system includes both the hardware and a number of layers of software, as shown in Figure 19.1. While this chapter
really focuses on parallel file systems and PVFS in particular, it is important to understand what other components might be
involved and how these work together to provide a reasonable solution to a tricky problem.

Figure 19.1: Parallel I/O System Components

At the lowest level is the I/O hardware, described briefly in Chapter 2. This layer comprises the disks, controllers, and interconnect
across which data is moved. Obviously, this hardware determines the maximum raw bandwidth and the minimum latency of the
system. The bisection bandwidth (defined in Chapter 4) of the underlying I/O transport is an important measure for determining
the possible aggregate bandwidth of the resulting parallel I/O system, just as it is an important measure for the communication
network as seen in Chapter 4. At the hardware level, data is usually accessed at the granularity of blocks, either physical disk
blocks or logical blocks spread across multiple physical devices, such as in a RAID array.

Above the hardware is the parallel file system. The role of the parallel file system is to manage the data on the storage hardware,
to present this data as a directory hierarchy, and to coordinate access to files and directories in a consistent manner. Later in this
chapter we'll talk more about what "consistent manner" means, as this is an interesting topic in itself. At this layer the file system
typically provides a UNIX-like interface allowing users to access contiguous regions of files. Additional low-level interfaces may
also be provided by the file system for higher-performance access.

While some applications still choose to access I/O resources by using a UNIX-like interface, many parallel scientific applications
instead choose to use higher-level interfaces. These higher-level interfaces allow for richer I/O description capabilities that enable
application programmers to better describe to the underlying system how the application as a whole wants to access storage
resources. Furthermore, these interfaces, especially high-level I/O interfaces, provide data abstractions that better match the way
scientific applications view data.

Above the parallel file system layer sits the MPI-IO implementation. The MPI-IO interface [46], part of the MPI-2 interface
specification, is the standard parallel I/O interface and exists on most parallel computing platforms today. The role of the MPI-IO
implementation, in addition to simply providing the API, is to provide optimizations such as collective I/O that are more effectively
implemented at this layer. In some sense the job of MPI-IO is to take accesses presented by the user and translate them, as best
as possible, into accesses that can be performed efficiently on the underlying parallel file system. This makes the MPI-IO interface
the ideal place to leverage file system-specific interfaces transparently to the user. The MPI-IO API is covered in Chapter 9.

The MPI-IO interface is useful from a performance and portability standpoint, but the interface is relatively low level (basic types
stored at offsets in a file), while most scientific applications work with more structured data. For this reason many scientific
applications choose to use a higher-level API written on top of MPI-IO (e.g., HDF5 [25] or Parallel netCDF [66]). This allows
scientists to work with data sets in terms closer to those used in their applications, such as collections of multidimensional
variables. These high-level interfaces often provide the same level of performance as using MPI-IO directly. However, one should
be aware that in practice the implementation details of some of these systems do sometimes add significant overhead [96].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1.2 Access Patterns and Scientific Applications

Applications exhibit all sorts of different access patterns, and these patterns have a significant effect on overall I/O performance.
The cat program, for example, accesses blocks of a file starting from beginning to end. This is the ideal pattern of access for most
file systems, because many systems can identify this pattern and optimize for it, and the prefetching implemented in many I/O
devices also matches with this well. This pattern is seen for a large number of applications, including video and audio streaming,
copying of data files, and archiving.

Database systems use I/O resources as another level of memory. In doing so, they tend to access it in very large blocks
(contiguous data regions) in an order that the I/O system cannot always predict. However, because the blocks are large and are
aligned to match well with the underlying disks, this access pattern can also match well with the I/O system.

Studies tell us that the access patterns seen in scientific applications are significantly different from what we see in these other
application domains. Scientific applications are in some sense worst-case scenarios for parallel I/O systems. One such study, the
CHARISMA project [79], provides a great deal of insight into the patterns seen in scientific applications. We will extract some of
the more important points here.

The CHARISMA project defines sequential access as a pattern where each subsequent access begins at a higher file offset than
the point at which the previous access ended. Most of the write-only files were written sequentially by a single process. This
behavior was likely because in many applications each process would write out its data to a separate file. This may have been an
artifact of poor concurrent write performance on the studied platform. Read-only files were accessed sequentially as well, but
regions were often skipped over by processes indicating that multiple processes were somehow dividing up the data. About a third
of the files were accessed with a single request.

Figure 19.2 shows an example of a nested-strided access, in this case utilizing three strided patterns in order to access a block of
a 3D data set. The study noted that strided access patterns were very common in these applications, with both simple (single)
strides and nested strides present. A nested-strided pattern is simply the application of multiple simple-strided patterns, allowing
the user to build more complex descriptions of stored data. These patterns arise from applications partitioning structured data
such as multidimensional arrays. More recent studies, such as an analysis of the FLASH I/O benchmark [96], support these
findings, although in this particular case the strided patterns occur in memory rather than in the file (which is written sequentially)
and data from all processes is always written to a single file.

Figure 19.2: Nested-Strided Example

What does all this mean to us? First, it indicates that application programmers really can benefit from the descriptive capabilities
available in high-level interfaces. Second, it suggests that the layers below these high-level interfaces should be capable of
operating in terms of structured data as well. As we will see in the next section, some parallel file systems fall short in this area.

Because of the differences in access patterns between various applications, I/O solutions that work well for one application may
perform poorly for another. This situation encourages us to consider using multiple file systems in the same cluster to fill particular
roles. For example, a very reliable distributed file system that might not handle concurrent writes well could be a very useful file
system for storing home directories in a large cluster. For smaller clusters NFS might fill this role. On the other hand, a very fast
parallel file system with no fault tolerance capabilities might be perfect for storing application data used at run time that is backed
up elsewhere. With this in mind, we will now discuss some typical parallel file system architectures with specific examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2 Parallel File System Architectures
Numerous parallel I/O systems have been built, although few have seen wide use. If we look at these file systems we do see
trends in how the systems are designed. The architecture of these systems, both hardware and software, can have a significant
effect on application performance, particularly with the demanding access characteristics of scientific applications.

We discuss the two most common architectures, including the components of the systems and some of the key characteristics.
These architectures serve as a starting point for discussion of specific parallel file systems. For each architecture we give three
example file systems, all of which have run on Linux at one time or another, and all of which have had an impact on parallel I/O
systems of today.

19.2.1 Shared Storage Architectures

File systems relying on a shared storage architecture are the most popular approach for large production systems. The reason
rests at least in part on the popularity of storage area networks (SANs) and fibre channel (FC) storage. File systems using shared
storage have the common feature of accessing block devices remotely, either through direct attach hardware (such as FC disks)
or through intermediate I/O servers that provide a block-oriented interface to disks attached locally to the server. In either case, a
key component of these systems is a locking subsystem. The locking subsystem is necessary to coordinate access to these
shared resources. While we will not discuss the issue of fault tolerance with respect to the locking subsystems of the example file
systems, we note that a significant amount of effort has been put forth to ensure that locks can be recovered from failed nodes.
This is a complicated problem, and the cited works discuss the issues in detail.

Some file systems that use shared storage implement a "virtual block device" in order to separate the access of logical blocks of
data from their physical representation on storage. This virtual block device provides a mapping from logical blocks to physical
storage. A file system component builds on this to provide the directory hierarchy for the file system, just as a local file system
builds on a disk or RAID volume. This approach is advantageous from a system management point of view. The virtual block
device, because it abstracts away physical data location, can provide facilities for data migration and replication transparent to the
upper layers of the system. This approach simplifies the implementation of the upper level components. Further, this virtual block
device provides a mechanism for adding and removing hardware while the system runs. Data blocks can be migrated off a device
before removal and can later be moved onto a newly installed device. This capability is very valuable in systems that must provide
high availability.

The abstraction is, however, limiting in some ways as well. First, all file system accesses must be translated to block accesses
before hitting this component. Because scientific applications often have noncontiguous access patterns, this approach can result
in read/modify/write patterns that could have been avoided if more fine-grained accesses were allowed. Second, control over
physical data locations is lost to the upper layers. While few scientific applications currently try to perform careful block placement
for performance reasons, this could be an issue as groups attempt to further push the boundaries of I/O performance. Finally, this
additional level of indirection adds overhead in the system, increasing the latency of operations.

A number of systems are available with this architecture. The first two example systems that we cover, Frangipani and GFS, rely
on virtual block devices. The last, GPFS, uses a slightly different organization. SGI's CXFS file system, not discussed here, has a
similar architecture to GFS.

Frangipani and Petal
The Frangipani and Petal systems, originally developed at Digital Equipment Corporation (DEC), together form a good example of
the virtual block device approach. The Petal [65] component implements a virtual block device with replication, snapshotting, and
hot swapping of devices. It presents a simple RPC-like API for atomically reading and writing blocks that higher-level components
can use to build a file system. The Petal component runs on nodes that have attached storage. Instances of the Petal component
communicate to manage these devices, as not all Petal instances can directly access all the devices that make up the virtual block
device.

The Frangipani [118] component implements a distributed file system on top of Petal. A distributed locking component is used by
Frangipani to manage consistency. Locks are multiple-reader, single-writer and are granted on a per file basis. Locks are "sticky";
clients hold onto locks until asked to release them by the locking subsystem, allowing for read and write caching at the client side.
The Frangipani component runs on nodes that access the shared storage region. Instances of the Frangipani component do not
communicate with each other, only the locking component and Petal.

Figure 19.3: Frangipani and Petal File System Architecture

This architecture provides us with a good opportunity to introduce a common term in distributed file systems. A system can be
considered a serverless distributed file system if nodes work together as peers to provide a shared storage region, as opposed to
some specific server or servers providing this functionality [5]. When the term was coined back in the mid-1990s, systems weren't
particularly large (the referenced paper tested on 32 nodes), and the point was really to distribute both metadata and data across
multiple nodes more than to actually use every node as a storage resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In any case, it's easy to imagine that the Frangipani and Petal approach could be used in this "serverless" mode with Petal
running on all clients, or it could be used in a system with a collection of heavy-duty servers with RAID arrays running Petal, with
most nodes running only Frangipani. Without knowing more about a particular architecture, it's not clear which of these would be
the right choice.

Frangipani and Petal are an early and well-documented example of this architecture. The Frangipani and Petal code is still
around, although obtaining it seems difficult. At the time of writing rumor was that the code has been ported to Linux 2.4 and is
floating around at one of the major hardware vendors. Perhaps it will pop up again to compete with some of the currently available
systems.

GFS
The Global File System (GFS) was originally developed at Minnesota and is now developed and supported by Sistina [89, 88].
GFS is actively maintained and improved by Sistina. An older version of the source code, originally released under the GPL, is
also available under the name OpenGFS. GFS also uses a virtual block device architecture, in this case using LVM (Logical
Volume Manager) underneath the GFS file system layer.

GFS currently uses a "Pool" driver to organize storage devices into a logical space. They are investigating the use of LVM [52], a
newer system for organizing multiple physical storage devices into "volume groups" and then partitioning these into "logical
volumes," which are the virtual equivalent of partitions on a disk. Just as with Petal, the Pool driver (and eventually LVM) provides
capabilities for snapshotting and hot swapping of devices. The typical installation of GFS uses some number of nodes connected
to shared fibre channel storage, with all nodes running both the LVM and GFS software (making it serverless). Alternatively a
GNBD component can be used to provide remote access to a storage device over IP. This is similar to the VSD component in
GPFS, which will be discussed in the next section.

GFS stores data as blocks on this virtual block device. A locking subsystem, OmniLock, provides the locking infrastructure
necessary to ensure consistency. A number of locking modules are available with OmniLock allowing the locking granularity to be
tuned to match expected workloads. Locks are sticky here as well, again allowing for read and write caching of data at the client.

GPFS
The General Parallel File System (GPFS) from IBM grew out of the Tiger Shark multimedia file system [100] and has been widely
used on the AIX platform. Unlike the other file systems described, GPFS has no explicit virtual block device component. Instead
GPFS simply uses one of two techniques for accessing block devices remotely and manages these devices itself. IBM's Virtual
Shared Disk (VSD) component allows storage devices attached to multiple I/O nodes to be accessed remotely. VSD is different
from the previous two approaches in that no logical volume management is performed at this level; it just exports an API to allow
access to the devices. Alternatively, the VSD component can be avoided by attaching all nodes that wish to access the system to
a SAN that gives them direct access to storage devices (Figure 19.4). This can be an expensive solution for large clusters, thus
the existence of the VSD component. The newer Linux version of GPFS uses a similar component, called the Network Shared
Disk (NSD), to provide remote access to storage devices.

Figure 19.4: GPFS Architecture Using Storage Area Network

In either case, GPFS operates on a shared storage region using block accesses. Because there is no volume management,
however, GPFS sees multiple devices. This approach was a conscious decision on the part of the developers to provide the file
system with direct control over striping of data across devices. A side effect of this decision is that volume management and fault
tolerance capabilities must be handled outside of the VSD, either below the VSD or in GPFS. RAID devices can be used below
the VSD layer (or directly attached via the SAN). In addition to or in place of RAID, GPFS also supports data and metadata
replication at the file system layer. If this capability is enabled, GPFS will allocate space for a copy of data on a different disk and
keep copies synchronized. In the event of a temporary failure, GPFS will continue to operate and will update the device when it is
returned to service. Likewise, functionality for migrating data onto new devices or off bad ones is also implemented within GPFS.

GPFS relies on a distributed locking component to guarantee consistency. Similarly to the other two systems, locks are acquired
and kept by clients who then cache data. The granularity of locking in GPFS is at the byte-range level (actually rounded to data
blocks), so writes to nonoverlapping data blocks of the same file can proceed concurrently.

GPFS provides as an alternative a consistency management system called data shipping. This mode disables the byte-range
locks described above. Instead nodes become responsible for particular data blocks, and clients forward data belonging in these
blocks to the appropriate node for writing. This approach is similar to the two-phase I/O approach often applied to collective I/O
operations [113]. It is more effective than the default locking approach when fine-grained sharing is present, and it forms a
building-block optimization for MPI-IO implementations.

The GPFS system also recognizes metadata blocks as distinct from data blocks. A single node that is accessing a file is given
responsibility for metadata updates for that file. A multiple-reader, multiple-writer system then is applied to metadata that allows
concurrent updates in many circumstances.

GPFS is arguably the most successful parallel file system to date. It is in use on a variety of large parallel machines, such as ASCI
White, a 512-node Power3-based system. We note that only 16 I/O server nodes (running VSD) are used in that particular
instantiation. At this time GPFS has been made available in a limited fashion on IA32 and IA64 Linux systems but has not seen
widespread use on these platforms.

19.2.2 Intelligent Server Architectures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second common approach to parallel file systems is the use of "intelligent" I/O servers. By this we mean that the servers do
more than simply export a block-oriented interface to local storage devices. These systems usually communicate with clients in
terms of higher-level constructs, such as files (or parts of files) and directories. Specific operations to act on metadata atomically
might be included as well, rather than treating them as data operations as in the previous systems. Further these servers have
knowledge that the data they are storing corresponds to particular file system entities (e.g., files or directories), not just arbitrary
blocks on a storage device. Hence they have the potential to accept more complex, structured requests than are possible with
other approaches. This is a particularly useful capability for scientific applications given their structured file accesses.

Designers of systems using this architecture often logically separate the storage of metadata from the storage of file data. This
approach allows for flexibility in configuration because they can choose to handle metadata operations with different servers from
the I/O traffic. Because providing distributed metadata services is more complicated than placing metadata in a single location,
some systems support only a single metadata server while maintaining many I/O servers. On the other hand, using a single
metadata server adds a potential bottleneck, so some systems distribute metadata across multiple servers, possibly even all the
I/O servers. We will see examples of both of these approaches in upcoming sections.

Groups have been implementing parallel file systems using this approach for quite some time as well. Two of these systems are
the Galley parallel file system and the Parallel Virtual File System (PVFS). An emerging parallel file system, Lustre, also has this
type of architecture.

Galley
The Galley parallel file system [78] was developed at Dartmouth College in the mid-1990s (Figure 19.5). It was a research file
system designed to investigate file structures, application interfaces, and data transfer ordering for parallel I/O systems. As such
many things that we expect from a production file system were never implemented, including kernel modules to allow mounting of
Galley file systems and administrative tools.

Figure 19.5: Galley Architecture

Galley breaks user's files into subfiles, which are stored on Galley servers. These subfiles have forks that allow for multiple byte
streams to be associated with a particular subfile as well and can be used for more complex storage organizations. The client-side
code handles placement of file data into appropriate subfiles and forks. Metadata is also stored on all the Galley servers. File
names are hashed to find a server on which to store data (a technique also used by the Vesta parallel file system [29], which we
will not cover in detail here).

Galley servers understand strided and batch accesses, making the interface quite rich. Many of the application access patterns
seen in the CHARISMA study, as well as the patterns seen in the Flash I/O study, could be described with Galley's I/O language
as single accesses.

Galley also implements disk-directed I/O [62], a method for organizing how data is moved between client and server. In disk-
directed I/O, the server calculates a preferable ordering of data transfer based on predicted disk access costs. This ordering is
then used when moving data. The method worked well for many access patterns, although the designers of Galley did see low
performance due to network flow control problems in some cases. Later work showed that a more general approach of optimizing
for the bottleneck resource can be more effective [97].

While Galley never made it into production, it is an excellent example of the intelligent server approach. Further, many of the ideas
embodied in this design, in particular rich I/O request capabilities and more complex file representations, are becoming key
components of new parallel file system designs. The Galley source code is available online [41].

PVFS
The Parallel Virtual File System (PVFS) [22] was originally developed at Clemson University by the authors of this chapter, starting
in the mid-1990s, and is now a joint project between Clemson University and the Mathematics and Computer Science Division at
Argonne National Laboratory. PVFS is designed to be used as a high-performance scratch space for parallel applications.

PVFS file systems are maintained by two types of servers (Figure 19.6). A single metadata server, typically called the "mgr"
because of the name of the daemon that runs on this server, maintains metadata for all files. For many workloads and
configurations this is not seen as a bottleneck, although it is increasingly becoming one as systems grow in numbers of nodes.
Separate I/O servers handle storage of file data. File data is distributed in a round-robin fashion across some set of I/O servers
using a user-defined stripe size. Thus a simple algorithm can be used to determine the I/O server holding a particular file region.
This simplifies the metadata stored on the metadata server and eliminates the need for metadata updates as files are written. I/O
servers write to local file systems, so local disk management is managed by the local file system. Likewise, single disk failures can
be tolerated by using a RAID to store local file system data at the I/O server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19.6: PVFS File System Architecture

PVFS uses what the authors term stream-based I/O for data movement. PVFS transfers data using TCP, and the stream-based
I/O technique leverages this by predefining a data ordering and eliminating all control messages in the data stream. This approach
is able to attain very high utilization of TCP bandwidth; however, in many cases PVFS is disk bound, not network bound. The
more adaptive approach given in [97] would likely provide better overall performance, but it was not merged into the PVFS source.

PVFS implements simple strided operations. These can be useful for some patterns; however, a more general approach is
necessary for implementing MPI-IO operations. More recently a more flexible (but less concise) system was added for accepting
arbitrary lists of I/O regions as single operations [27]. Called List I/O, this was first proposed in [115] and has been shown to be of
great benefit to some access patterns. Support is provided in ROMIO for leveraging this; the hint to enable this is described in
Section 19.4.4.

PVFS has no locking component. Instead, the metadata server supplies atomic metadata operations, eliminating the need for
locking when performing metadata operations. Data operations are guaranteed by I/O servers to be consistent for concurrent
writes that do not overlap at the byte granularity, but byte-overlapping concurrent writes result in undefined file state. This
approach allows for a relatively simple system with no file system state held at clients, but it precludes client-side caching, which
makes for very poor performance in a number of cases, particularly uniprocess workloads where systems from the preceding
section would perform well.

Further, PVFS does not implement any form of fault tolerance. RAID can be used to tolerate disk failures, but node failures cause
the system to be at least temporarily unusable. High-availability (HA) software is being investigated as a solution to this problem.

PVFS is also missing many of the administrative features that file systems such as GPFS offer. This limitation, combined with the
lack of fault tolerance, has dissuaded many sites from using PVFS.

Nevertheless, PVFS has made it into production use at a number of sites around the world, mainly as a large, shared scratch
space. PVFS is actively developed and supported, and the source for the file system, now commonly referred to as PVFS1 by the
developers, is freely available online [90]. Because of its easy installation and source availability, many I/O researchers have
chosen to compare their work to PVFS or to use PVFS as the starting point for their own research. We couldn't be happier that so
many people have found this work to be so useful!

PVFS1 is showing its age, and a new version is under development to replace it before typical systems scale beyond its
capabilities. We discuss this version, PVFS2, later in the chapter.

Lustre
The Lustre file system [17] is being developed by Cluster File Systems. At the time of writing the Lustre file system is under
development, but much documentation and early code is available. The Lustre design benefits heavily from previous work in
parallel file systems.

One of the key features of Lustre is the use of modules connected by well-defined APIs. This is seen in at least three areas:
networking, allowing for multiple underlying transports; metadata storage, allowing for multiple underlying metadata targets; and
object (data) storage, allowing for caching and multiple underlying data storage technologies. In the latter two cases modules can
be stacked to implement additional functionality. This provides great potential for the reuse of significant portions of the code when
porting to new platforms or adding support for new hardware. Lustre uses the Portals API [19] for request processing and data
transfer. Portals is a full-featured, reliable transfer layer designed for use in large-scale systems over multiple underlying network
technologies.

Lustre breaks the nodes of the system into three types: clients, Object Storage Targets (OSTs), and Metadata Servers (MDSs).
Object Storage Targets store objects, similar to inodes, which hold file data. OSTs perform their own block allocation, simplifying
the metadata for a file in a manner similar to previous systems [22]. Objects can be stored on a number of back-end resources
attached to OSTs, including using raw file system inodes. Alternatively data can be stored on more traditional SAN resources. In
this case OSTs would still be in place, but would handle only authentication and block allocation, allowing data to be transferred
directly between clients and SAN storage devices. This is similar to the GPFS approach when the VSD component is not used.
This configuration could be convenient for sites with a SAN already in place.

Metadata servers store attributes and directory hierarchy information that is used to build the name space for the file system.
Lustre's design calls for multiple MDS nodes in order to help balance the load on these systems. The protocol for metadata
operations is explicit and transaction based, allowing for the avoidance of locks. An option is provided for using a node as both a
MDS and as an OST.

A snapshot capability is also provided in Lustre, similar to the approach seen in [65], except that snapshotting is performed on
object volumes (collections of objects) rather than a collection of blocks.

The designers of Lustre also propose a collaborative caching capability, where caching servers aggregate accesses to particular
objects so that a single cache can be shared by multiple applications. This is similar in some ways to the data shipping scheme
used in GPFS and distributed caches seen in research parallel file systems [55, 123]. However it is of particular note that Lustre is
able to provide this functionality in a modular way.

Lustre relies on a distributed locking system for data coherence. Locks are available at different granularity levels to allow for
concurrent access to disjoint file regions. Locks are managed by the OST that stores the object. Metadata operations are also
performed by using locks to allow for client-side caching. Lustre adds intent locks for use in metadata operations. These are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performed by using locks to allow for client-side caching. Lustre adds intent locks for use in metadata operations. These are
special locks that are used to perform some type of atomic operation at lock time. While in many instances an explicit operation to
perform the intent could be used instead, this approach may lead to fewer opportunities for races between atomic operations by
immediately returning a lock that could be used for a subsequent operation.

Lustre implements full POSIX semantics, but this can be turned off on a per file or per file system basis. An interface similar to the
List I/O interface described in [115] is proposed as an optimization as well.

Beta versions of Lustre are available, and development is very active. Also released under the GPL license, Lustre could become
the next widely used parallel file system for Linux clusters; license compatibility with the PVFS2 project means that the two
projects could share components if appropriate APIs were developed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3 File System Access Semantics
From the user's point of view, two aspects of the file system API should be considered: what types of accesses can be described
to the file system, and what happens when multiple processes access a file at the same time. We discussed earlier the
importance of structured access descriptions; in this section we will focus on the second aspect, concurrent access semantics.

19.3.1 POSIX I/O Semantics

The most significant barrier to scalable parallel I/O systems today is the POSIX I/O interface and its associated semantics.

The POSIX I/O interface [58] was specified with local file systems in mind. The POSIX I/O interface specifies the open, close,
read, write interface that we are all accustomed to using. It further specifies that writes through this interface must be
performed in a sequentially consistent manner. Writes to the file must also appear as atomic operations to any readers that
access the file during the write; the reader will see either all or none of any write. These semantics apply to any processes that
access the file from any location.

Internal to a single system, the disadvantages of the POSIX semantics are not so apparent. In the single system, all operations to
a file will pass through to a single device, and locks can be used to efficiently manage atomic access to files. However, the
semantics of the POSIX interface have broad-reaching implications on any type of distributed or parallel file storage. In stark
contrast to the single system, now we have multiple devices that might be accessed by any single operation, and all these
devices, plus the clients, are distributed across some type of network. In this situation maintaining the POSIX semantics can be a
complicated and communication-intensive process, particularly when many processes access the same resources.

POSIX I/O and Locking
The most common approach to providing these semantics is to use a locking subsystem to manage access to files, and this is in
fact the approach applied in all our example systems that implement the POSIX semantics (Frangipani, GFS, GPFS, and Lustre).
POSIX semantics require that all accesses be atomic operations. When implemented with locks, this means that before a process
can write to a region of a file, it must obtain the lock associated with that region. It can then write, then release the lock.
Sophisticated lock caching and forwarding are used to alleviate the overhead of the locking subsystem in systems that expect to
see a high degree of concurrent access.

Locks may be applied at the block, file, or extent granularity. The most coarse grained of these is file-based locks. File-based
locks associate a single lock with an entire file. No distributed file system employing file-based locks should be seriously
considered as part of a parallel I/O system because the contention for locks during concurrent access will ruin the performance of
all but the least I/O-bound problems.

The second most coarse grained is block-based locks. This approach is often used in systems that use block-based accesses
when communicating between clients and the underlying storage. Block-based locks have the advantage of being much finer
grained than are file based locks. For large files, however, this approach can result in a very large number of locks being present
in the system. Often these file systems address this by simply increasing the size of blocks. This, however, results in a situation
where false sharing of blocks is more likely to occur.

The third, and most flexible, locking approach is extent-based locks. This approach can result in fewer locks in use because large
ranges may be described as a single extent. This advantage is lost; however, if accesses are interleaved at a fine granularity. This
approach, when coupled with noncontiguous access, can also result in a very large number of locks being processed in the
system. Even with these two disadvantages this is the best locking approach for concurrent access under POSIX in use in parallel
file systems today.

Scientific access patterns have a great deal of regularity. None of this information is retained in any of these locking approaches,
however, leading to all these approaches being relatively inefficient, either in number of locks or in contention for a small number
of locks. Approaches like IBM's data shipping can certainly help make lock approaches perform more effectively, especially when
accesses are interleaved. We will discuss the similar two-phase I/O approach later in Section 19.4.4.

From this discussion, and the presence of optimizations such as data shipping, it should be clear that the POSIX semantics are
known in the community to be a problem. In fact, this problem is very similar to those seen in distributed shared memory (DSM)
systems, where hardware and software are used to build globally accessible memory regions [121, 54]. The DSM community has
for the most part abandoned the sequential consistency model in favor of more relaxed consistency models, in large part because
of the overhead of maintaining such a model as systems scale. Perhaps it is time for the I/O community to follow suit.

19.3.2 NFS Semantics

The Network File System (NFS) protocol [80, 21, 102] is probably the most popular means for accessing remote file systems.
Typically, remote file systems are "mounted" via NFS and accessed through the Linux virtual file system (VFS) layer just as local
file systems are. What many users don't understand is that these NFS-mounted file systems do not provide the POSIX
consistency semantics! The NFS version 3 RFC notes [21]:

The NFS version 3 protocol does not define a policy for caching on the client or server. In particular, there is no
support for strict cache consistency between a client and server, nor between different clients.

The story is a little more complicated for NFS version 4, but the lack of cache consistency on the client side remains.

NFS is an everyday example of relaxing the POSIX I/O consistency semantics in order to gain performance. NFS clients cache file
data, checking every now and again to see whether the file has changed. This loosely synchronous consistency model makes for
convenient, low-latency access to one's home directory stored on a remote system. Further, the locking systems typically used to
implement the POSIX semantics are avoided along with their overheads.

On the other hand, NFS semantics are nearly useless from a parallel computing point of view. Clients can cache data
indiscriminately, and tend to do so at arbitrary block boundaries. This causes unexpected results when nearby regions are written

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indiscriminately, and tend to do so at arbitrary block boundaries. This causes unexpected results when nearby regions are written
by processes on different clients; if two processes concurrently write to the same block on different processes, even if they write to
different bytes, the result is undefined! Figure 19.7 shows an example of how this happens. Two nodes have cached the same
block, and processes have written to different parts. First one block is committed back to storage, then the second. Because of the
blocking, and the lack of consistency control, the data from the first write is lost when the second write completes.

Figure 19.7: Concurrent Writes and NFS

Nevertheless, the semantics implemented by most NFS clients are sufficient to provide a usable file system for a number of
situations.

19.3.3 MPI-IO Semantics

One could argue that the POSIX semantics are stricter than necessary for use in parallel I/O in that they force I/O systems to
implement more consistency control than applications really need. Do scientific application programmers typically write to
overlapping regions and let the file system sort it out? Probably not; they have better things to do with the I/O bandwidth! On the
other hand, NFS semantics are definitely too loose; the nondeterminism introduced by uncoordinated client-side caching makes
NFS semantics troublesome for concurrent writes.

The MPI-IO semantics [46] provide a very precise, but less strict, set of consistency semantics. The Using MPI-2 [50] book
provides a very thorough description of these semantics; they are actually relatively complicated. We touch on the semantics for
some common cases here.

First, the scope of the MPI-IO semantics is the MPI communicator used to open the file. MPI says nothing about the semantics of
access from different communicators, leaving this coordination to the application programmer. Second, by default MPI-IO does
guarantee that concurrent nonoverlapping writes will be written correctly (unlike NFS) and that the changes will be immediately
visible to the writing process. These changes are not visible by other processes in the communicator right away. Instead, explicit
synchronization between the processes is necessary. This can be accomplished in a number of ways, all outlined in [50]. Simply
closing and reopening the file is one method of synchronization, and the use of explicit file synchronization operations is another.

This model makes a lot of sense for many access modes seen in parallel applications, including checkpointing and of course all
read-only modes. More importantly it relaxes the requirements on the underlying I/O components significantly and provides many
opportunities for optimization within the MPI-IO implementation. We will discuss two such optimizations later in this chapter in the
context of using ROMIO with PVFS.

19.3.4 PVFS Semantics

Noting the increased system complexity and potential overhead in implementing full POSIX I/O semantics (and having limited
resources!), the PVFS developers chose to implement a different set of I/O semantics. With PVFS, concurrent nonoverlapping
writes are written correctly and are immediately visible to all processes. Note that this approach is stronger than the default MPI-IO
semantics. Overlapping writes will leave some undefined combination of the written data in the overlapping file region, and reads
that occur concurrently with writes may see pieces of old and new data.

These semantics are adequate for implementing most of MPI-IO and are more than adequate for most access methods while
simultaneously simplifying the system significantly: no coordination is needed at write time between clients or servers. The result
is a more scalable system, at the cost of POSIX semantics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.4 Using PVFS
In the previous edition of this book, the majority of this chapter was dedicated to the specifics of PVFS configuration and use. This
information is all available at the PVFS Web site [90], in particular in the User's Guide [91]. Rather than rehash that document,
we'll talk a little bit about practical aspects of using PVFS, including implications of the PVFS design on certain types of
operations, managing and tuning PVFS file systems, using ROMIO with PVFS, and bug spotting. We hope that this information
supplements the online documentation nicely. Section 19.5 describes PVFS2, the next generation of PVFS, which addresses
many of the design limitations of PVFS.

19.4.1 Implications of the PVFS Design

The preceding sections have prepared us to discuss the implications of the PVFS design from a practical standpoint. First, PVFS
does not perform client-side caching for metadata. Hence, all metadata operations have to travel across the network to the
metadata server. For heavy metadata workloads, this design can cause sluggish performance.

Additionally, PVFS does not keep a file size as part of the metadata stored at the metadata server; rather, it calculates this value
when it is requested. The advantage is that, during writes, the metadata need not be updated. However, a stat on a file requires
not only a message to the metadata server to obtain the static metadata but also a sequence of messages to the I/O servers
(performed by the metadata server) in order to obtain the partial sizes necessary to fill in the file size. The ls program performs
this operation on every file in a listed directory, which can cause ls to be very slow for PVFS file systems. In practice, this makes
PVFS a poor performer for small files, too, because users tend to put all the small files in one directory. Then they ls the directory
and are frustrated by the delay. A pvfs-ls utility is provided with PVFS that avoids gathering this metadata, instead just printing
directory contents. For users who simply want to see what resides in a directory, this is a much faster option.

PVFS does not cache data at the client side because it has no mechanism for ensuring that cached data is kept synchronized with
data in other caches or on I/O servers. Hence, all data reads and writes must cross the network as well. Thus, the size of reads
and writes to large files does have a significant impact on performance, especially through the VFS interface, which has
particularly high overhead. This design decision makes PVFS perform poorly for benchmarks such as Bonnie [18]. Along these
same lines, executing programs stored on a PVFS volume can be quite slow because pages are read one at a time on demand.

Missing Features
Users are occasionally surprised by the fact that some features are missing from PVFS. Here's a list as of version 1.5.8:

links (both hard and symbolic)

write-sharing through mmap

flock and fcntl locks

fault tolerance (other than using RAID, described later)

That's about it! If a user requires one of these features, perhaps one of the systems described earlier in the chapter will suffice
instead.

19.4.2 Managing PVFS File Systems

PVFS allows for many different possible configurations. In this section we'll discuss some of these options.

While PVFS is relatively simple for a parallel file system, it can sometimes be difficult to discover the cause of problems when they
occur simply because there are many components that might be the source of trouble. Here we discuss some tools and
techniques for finding problem spots.

Monitoring File System Health
The pvfs-ping utility is the most useful tool for discovering the status of a PVFS file system and has turned into something of a
"Swiss army knife" for PVFS debugging at this point.

A simple example of its use is as follows:
pvfs-ping -h localhost -f /pvfs-meta -p 3000
mgr (localhost:3000) is responding.
iod 0 (127.0.0.1:7000) is responding.
pvfs file system /pvfs-meta is fully operational.

In this case the I/O server is dead and needs to be restarted:
pvfs-ping -h localhost -f /pvfs-meta -p 3000
mgr (localhost:3000) is responding.
pvfs-ping: unable to connect to iod at 127.0.0.1:7000.
iod 0 (127.0.0.1:7000) is down.
pvfs file system /pvfs-meta has issues.

Using Multiple File Systems
Since PVFS includes no fault tolerance, for large systems it can make sense from a fault tolerance point of view to create multiple
PVFS volumes. A single metadata server can serve multiple file systems if desired; however, if multiple file systems are chosen
for fault tolerance reasons, it is definitely better to use multiple servers for I/O (one per file system). A single I/O server daemon
(iod) cannot serve more than one file system. However, more than one daemon may be run on the same server if desired by
specifying a different port value in the iod.conf file used to start the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifying a different port value in the iod.conf file used to start the server.

Tolerating Disk Failures
Disk failures can be tolerated by using any of the many available RAID solutions under Linux, including both hardware devices
and software RAID. There have been very few reported instances of data loss with PVFS because of software failures. Using
RAID to tolerate disk failures is an effective mechanism for increasing the reliability of PVFS.

Increasing Usable File Descriptors
While some improvements have been made in PVFS with respect to file descriptor (FD) utilization, the servers in particular still
can end up using all of their available FDs. The I/O servers will print a little message when this is about to happen:
NOTICE: exceeded 90 percent of available FDs (1024)!

Luckily this is easy to fix. The limits are set in /etc/security/limits.conf. Lines are of the following format:
<domain> <type> <item> <value>

The domain can be "*" for everyone, a userid, or a group using "@group". The type can be soft (setting the default) or hard
(setting the maximum). The item parameter controls what limit this affects and can take many values, including nofile (open files).
"Value" is the new value to set.

For example, the following lines would set the maximum number of FDs for root to 8192 and the default to 4096:
root hard nofile 8192
root default nofile 4096

Likewise one can set a new maximum and then use limit or ulimit as appropriate in the startup script for the servers.

Migrating Metadata
When upgrading to a newer PVFS version, occasionally the format of metadata on disk changes. This is due to oversights in the
original design of the metadata format. Tools are now provided that can be used to convert metadata to the new format (assuming
you haven't gotten too far behind on updates).

For example, if you are moving from version 1.5.6 to version 1.5.8, a utility called migrate-1.5.6-to-1.5.8 is provided (there
were no changes from 1.5.7 to 1.5.8 in the metadata format). This tool is used in conjunction with find:
find /pvfs-meta -type f -not -name .pvfsdir -not \
 -name .iodtab -exec migrate-1.5.6-to-1.5.8 \{\} \;

Warning messages will be printed and the process aborted if the utility detects that the metadata is not the correct version. This
process should be performed after stopping the mgr.

19.4.3 Tuning PVFS File Systems

We often get questions about how to tune PVFS file systems for the best performance. Truthfully, system hardware varies widely
enough that it is difficult for us to supply any single set of parameters that will work best for everyone. Instead, in this section
discuss some specific parameters common to all machines and some general techniques for improving overall PVFS file system
performance. Chapters 3 and 5 include many tips for improving the overall performance of Linux nodes; all that information
certainly applies to PVFS servers as well.

Of course, in addition to tuning the file system itself, many steps can be taken above the file system that can make a huge
difference. Given the discussion of the PVFS design, many of these are obvious: using large requests rather than small ones,
using MPI-IO so PVFS List I/O optimizations can be leveraged, and avoiding lots of metadata operations (opens, closes, and
stats). Often such optimizations in application code can make more difference than any tuning within PVFS itself. An in-depth
discussion of improving the performance of MPI-IO access can be found in [50].

Adjusting Socket Buffers
PVFS relies heavily on the select call and kernel handling of multiple TCP connections for parallelism. For this reason, it is often
useful to tune the network-related parameters on the system. Chapter 5 covers this process in some detail; in particular increasing
the wmem_max and rmem_max values is often very helpful.

Once these have been increased, the socket_buf option in the I/O server's configuration file (iod.conf) can be used to adjust the
socket buffer size up to the new maximum.

Enabling DMA for Hard Drives
Chapter 3 describes the hdparm tool. It can be used to verify that DMA is turned on for the hard drives that are being used for
PVFS storage and to turn this on if it is not enabled. Because PVFS pushes both the network and storage hardware, alleviating
any load on the CPU is helpful. Note that DMA isn't reliable on some hardware, so you should check the support of your hardware
if this isn't turned on by default.

Improving Space Utilization
Originally we thought that users would want to know where their data was striped so that they could distribute processes to match
data locations. Hence, we set up default striping so that data always started on the first I/O server. It turns out that for the most
part people don't care about this and rarely use this information. Additionally, when users create lots of small files, this unbalances
the distribution of data across the I/O servers.

We have subsequently added a "-r" flag that can be passed to the metadata server (mgr). This flag will cause the metadata
server to choose a random starting I/O server when no server is specified (this can be done through the MPI-IO interface, for
example). This will better distribute files and has a particularly large effect in the small files case.

Here we examine the free space on the I/O servers of a PVFS file system using the additional "-s" option to pvfs-ping:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here we examine the free space on the I/O servers of a PVFS file system using the additional "-s" option to pvfs-ping:
pvfs-ping -h localhost -f /pvfs-meta -s
mgr (localhost:3000) is responding.
iod 0 (192.168.67.51:7000) is responding.
iod 0 (192.168.67.51:7000): total space = 292825 Mbytes,
 free space = 92912 Mbytes
iod 1 (192.168.67.52:7000) is responding.
iod 1 (192.168.67.52:7000): total space = 307493 Mbytes,
 free space = 121154 Mbytes
iod 2 (192.168.67.53:7000) is responding.
iod 2 (192.168.67.53:7000): total space = 307485 Mbytes,
 free space = 121155 Mbytes
iod 3 (192.168.67.54:7000) is responding.
iod 3 (192.168.67.54:7000): total space = 307493 Mbytes,
 free space = 121199 Mbytes

We see that the first I/O server has significantly less free space than the others. This will show up in the df output:
Filesystem Size Used Avail Use% Mounted on
localhost:/pvfs-meta
 1.2T 824G 363G 69% /pvfs

PVFS calculates the available space returned to the system by the minimum amount available on any single I/O server (in this
case 92.9 Gbytes) times the number of I/O servers (in this case 4). Because so much less space is available on the first server,
we get a very low reported available space. Using the "-r" manager flag described above will help alleviate this problem.

Testing Aggregate Bandwidth
Since users are mostly interested in PVFS for high performance, obtaining a baseline performance number for a particular
configuration is fairly important. The pvfs-test tool supplied with PVFS can be used for this purpose. This is an MPI program
that opens a file from a large number of processes and writes or reads that file in parallel with each process accessing a different
large block of the file. A "-h" option will cause it to list its options. This program can be used as a simple benchmark for testing the
effects of configuration changes.

Here's the output of one of our favorite runs, using 80 nodes of Chiba City (see Chapter 20) as clients for PVFS and 128 separate
nodes for I/O servers back in April of 2001:
mpirun -nolocal -np 80 -machinefile mach.all pvfs-test -s 262144 -f
 /sandbox/pvfs/testfile -b 268435456 -i 1 -u
Using native pvfs calls.
nr_procs = 80, nr_iter = 1, blk_sz = 268435456, nr_files = 1
total_size = 21474836480
Write: min_t = 3.639028, max_t = 6.166665, mean_t = 4.755538,
 var_t = 0.334923
Read: min_t = 6.490499, max_t = 7.171075, mean_t = 6.977580,
 var_t = 0.023353
Write bandwidth = 3482.406857 Mbytes/sec
Read bandwidth = 2994.646755 Mbytes/sec

We did not sync after the writes ("-y" option), so the data was at the servers but not necessarily on disk. Nevertheless we were
able to create a 20 Gbyte file in just over 6 seconds and read it back in just over 7 seconds. Not too shabby at the time. Note that
we found a strip size of 256 Kbytes to be the best for that particular configuration, where a strip is the amount of data written to a
single server (and a stripe is the amount written across all servers in the round-robin fashion).

Adjusting the Default Strip Size
By default the strip size (the size of the regions distributed in round-robin fashion to I/O servers) is set to 64 Kbytes (as of version
1.5.8). For some systems, particularly ones using large RAID volumes at each I/O server, this is simply too small.

The pvfs-test tool can be used to experiment with various strip sizes in order to find a good one for a particular configuration.
Using the "-y" option will help ensure more accurate results by forcing data to the disk. Once a good value has been found, an
additional "-s ssize" option can be used with the metadata server in order to provide the new default value (ssize is in bytes).

It is also useful to adjust the I/O server write buffer size to be larger than this size. That value is set in the I/O server configuration
file with the write_buf option (value is in Kbytes, and the default is 512 Kbytes).

19.4.4 ROMIO and PVFS

MPI-IO implementations provide a number of services over using a local file interface. First and foremost these implementations
provide a portable interface to which application programmers can code. The MPI-IO implementation takes MPI-IO operations and
translates these into operations that can be performed by the underlying file system. Depending on the underlying file system, the
MPI-IO implementation has a number of options with respect to how it translates an MPI-IO read or write operation into file system
operations. If the underlying file system supports only POSIX operations, the MPI-IO layer might convert the MPI-IO request into a
collection of contiguous operations. For a file system such as PVFS, MPI-IO requests might instead be converted into List I/O
operations.

The second service that MPI-IO implementations provide is I/O optimizations. As we have discussed before, the MPI-IO
semantics leave some opportunities for performance optimizations that are not available under the POSIX semantics. Further, the
information provided by the use of collective I/O calls provides additional opportunities for optimizations. For more information on
MPI-IO in general, including examples, see Chapter 9 of this book or [50]. In this section we will touch upon building ROMIO with
PVFS support and then discuss in detail the optimizations available within ROMIO that are usable with PVFS.

Building MPICH and ROMIO with PVFS Support
Chapter 8 introduced the MPICH implementation of the MPI standard. ROMIO is included as part of the MPICH package. When

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8 introduced the MPICH implementation of the MPI standard. ROMIO is included as part of the MPICH package. When
configuring MPICH with ROMIO and PVFS support, a few additional parameters are necessary. Particularly we want to tell
ROMIO what kinds of file systems to support, link to the PVFS library, and provide the path to PVFS include files.

For example, let us assume that PVFS was previously installed into /soft/pub/packages/pvfs-1.5.8, and we want both
PVFS and "regular" (UFS) file system support:
./configure --with-romio="-file_system=pvfs+ufs"
 -lib="-L/soft/pub/packages/pvfs-1.5.8/lib/ -lpvfs"
 -cflags="-I/soft/pub/packages/pvfs-1.5.8/include"

The standard MPICH build and installation procedure can be followed from here. Building with LAM is very similar.

If ROMIO is not compiled with PVFS support, it will access files only through the kernel-supported interface (i.e., a mounted PVFS
file system). If PVFS support is compiled into ROMIO and you attempt to access a PVFS-mounted volume, the PVFS library will
detect that these are PVFS files (if the pvfstab file is correct) and use the library calls to avoid the kernel overhead. If PVFS
support is compiled into ROMIO and you attempt to access a PVFS file for which there is no mounted volume, the file name
passed to the MPI-IO call must be prefixed with pvfs: to indicate that the file is a PVFS file; otherwise ROMIO will not be able to
find the file.

ROMIO Optimizations
ROMIO implements a pair of optimizations to address inefficiencies in existing file system interfaces and to leverage additional
information provided through the use of collective operations. These optimizations, as well as PVFS options such as striping
parameters, are controlled through the use of the MPI_Info system, commonly known as "hints." Much of the information in this
section comes from the ROMIO users guide [117]; this guide provides additional information on these topics as well as covering
the use of ROMIO on file systems other than PVFS.

ROMIO implements two I/O optimization techniques that in general result in improved performance for applications. The first of
these is data sieving [114]. Data sieving is a technique for efficiently accessing noncontiguous regions of data in files when
noncontiguous accesses are not provided as a file system primitive or where the noncontiguous access primitives are inefficient
for a certain datatype. In the data sieving technique, a number of noncontiguous regions are accessed by reading a block of data
containing all of the regions, including the unwanted data between them (called "holes"). The regions of interest are then extracted
from this large block by the client. This technique has the advantage of a single I/O call, but additional data is read from the disk
and passed across the network. For file systems with locking the data sieving technique can also be used for writes through the
use of a read-modify-write process. Unfortunately, since PVFS does not have file locking of any kind currently, this is not available
for PVFS.

Two hints can be used to control the application of data sieving in ROMIO for PVFS:

ind_rd_buffer_size controls the size (in bytes) of the intermediate buffer used by ROMIO when performing
data sieving during read operations. Default is 4194304 (4 Mbytes). If data will not all fit into this buffer, multiple
reads will be performed.

romio_ds_read determines when ROMIO will choose to perform data sieving. Valid values are enable,
disable, or automatic. Default value is automatic. In automatic mode ROMIO may choose to enable or
disable data sieving based on heuristics.

The second optimization is two-phase I/O [113]. Two-phase I/O, also called collective buffering, is an optimization that applies only
to collective I/O operations. In two-phase I/O, the collection of independent I/O operations that make up the collective operation
are analyzed to determine what data regions must be transferred (read or written). These regions are then split up among a set of
aggregator processes that will actually interact with the file system. In the case of a read, these aggregators first read their regions
from disk and redistribute the data to the final locations; in the case of a write, data is first collected from the processes before
being written to disk by the aggregators. Figure 19.8 shows a simple example of the two-phase write using a single aggregator
process. In the first phase (step), the two nonaggregator processes pass their data to the aggregator. In the second step the
aggregator writes all the data to the storage system. In practice many aggregators are used to help balance the I/O rate of the
aggregators to that of the I/O system. Because the MPI semantics specify results of I/O operations only in the context of the
processes in the communicator that opened the file, and all these processes are involved in collective operations, two-phase I/O
can be applied on PVFS files.

Figure 19.8: Two-Phase Write Steps

Six hints can be used to control the application of two-phase I/O:

cb_buffer_size controls the size (in bytes) of the intermediate buffer used in two-phase collective I/O (both

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cb_buffer_size controls the size (in bytes) of the intermediate buffer used in two-phase collective I/O (both
reads and writes). If the amount of data that an aggregator will transfer is larger than this value, then multiple
operations are used. The default is 4194304 (4 Mbytes). If the data size exceeds this buffer size, multiple iterations
of the two-phase algorithm will be used to accomplish data movement.

cb_nodes controls the maximum number of aggregators to be used. By default this is set to the number of unique
hosts in the communicator used when opening the file.

romio_cb_read controls when collective buffering is applied to collective read operations. Valid values are
enable, disable, and automatic. Default is automatic. When enabled, all collective reads will use collective
buffering. When disabled, all collective reads will be serviced with individual operations by each process. When set
to automatic, ROMIO will use heuristics to determine when to enable the optimization.

romio_cb_write controls when collective buffering is applied to collective write operations. Valid values are
enable, disable, and automatic. Default is automatic. See the description of romio_cb_read for an
explanation of the values.

romio_no_indep_rw indicates that no independent read or write operations will be performed. This can be used
to limit the number of processes that open the file.

cb_config_list provides explicit control over aggregators, allowing for particular hosts to be used for I/O. See
the ROMIO users guide for more information on the use of this hint.

ROMIO Data Placement Hints
Three hints may also be used to control file data placement. These are valid only at open time:

striping_factor controls the number of I/O servers to stripe across. The default is file system dependent, but
for PVFS it is -1, indicating that the file should be striped across all I/O devices.

striping_unit controls the striping unit (in bytes). For PVFS the default will be the PVFS file system default strip
size.

start_iodevice determines what I/O device data will first be written to. This is a number in the range of 0 ...
striping_factor - 1.

ROMIO and PVFS List I/O
Two hints are available for controlling the use of list I/O in PVFS:

romio_pvfs_listio_read has valid values enable, disable, and automatic. The default is disable. This
hint takes precedence over the romio_ds_read hint.

romio_pvfs_listio_write has valid values enable, disable, and automatic. The default is disable.

Clearly, a wide variety of parameters can be used to control the behavior of ROMIO and PVFS when used together. Because no
single set of parameters works best for all applications, experimentation is often necessary to attain the best set of parameters. A
study examining some of these parameters has been published [26]; this can serve as a starting point for your own tuning.

19.4.5 Bugs

Users sometimes encounter bugs in PVFS. When they do, we generally guide them through a predictable set of steps to help us
discover where the problem lies. This section outlines this process. The purpose is not to discourage users from reporting bugs or
asking for help, but to streamline the process. If you have already tried these steps, we can skip a number of email exchanges
and get right to the root of the problem!

Checking the List Archives
The very first thing to do is to check the PVFS mailing list archives. These are searchable online and available from the PVFS
Web site [90]. Many problems have already been reported, so checking here might provide you with an immediate solution.

Reporting Versions and Logged Output
Bugs should always be reported to the PVFS users mailing list. This is an open list for discussion of many PVFS issues, one of
them being bugs. By reporting to the mailing list you reach the maximum number of people that might be able to solve your
problem, and you guarantee that an archive of the discussion will be saved.

We will always ask what version of the code you are running, especially if the problem that you report looks like something that
has already been fixed. The distribution and kernel version you are using are helpful as well. If the problem is related to compiling,
we'll ask for configure output and a log of the make process. If the problem is a runtime one, we'll ask for any information in the
logs that might help. This includes dmesg output, the pvfsd log, the iod logs, and the mgr log. By default the three types of log
files are all placed in /tmp, although this can be changed with configure-time options.

Providing this information in your first message is the easiest way to get the bug reporting and fixing process started.

Client Side or Server Side
The most common runtime bugs seen in PVFS at this time concern the Linux kernel module. One of the first things that we do in
the case of a runtime problem is try to determine whether the problem is related to the servers themselves or to a particular client.
We usually ask the user to look at the state of other clients in order to determine this. For example, one bug that we have seen
prevented new files from showing up on certain clients. One client would see the new file while others did not. By looking at the
state of multiple clients, the user was able to report this back and help us narrow down the problem.

Simplifying the Scenario

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The simpler the set of conditions necessary to cause the problem on your system, the more likely we are to be able to replicate it
on some system we have access to. Hacking out portions of a scientific code so that it performs only I/O or writing a script that
uncovers a metadata incoherence problem really helps us see what is going on and replicate the problem on our end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.5 Parallel I/O in the Future
Machines with tens of thousands of nodes are on the horizon. For a parallel I/O system to efficiently operate at this scale, a
number of issues must be addressed.

Adapting to new technologies is critical in this environment. It is not clear what processor, storage, or network technologies will be
present in future machines, or even what operating system will run on nodes. Any new parallel file system design should be built
with abstract interfaces to allow adoption of new technologies and porting to new operating systems.

Leveraging collective operations, rich I/O request languages, and relaxed consistency semantics will be key to operating efficiently
on these machines and exploiting the inherent hierarchy in these systems. Opportunities exist at many levels in the I/O component
stack to boost performance.

Management of I/O systems is a growing concern because the systems continue to become more complex. Tools to aid the
administrator are key, and self-maintaining solutions would be ideal.

Our next-generation parallel file system, PVFS2, is being designed to tackle just these problems. By the time this book is
published, early versions of the next-generation Parallel Virtual File System, PVFS2, should be available online. The core of
PVFS2 has been designed to provide PVFS2 is the culmination of a 3-year effort to redesign PVFS as a production-capable
parallel file system based on experience gained in the design and operation of the original PVFS, observations of other parallel file
systems, and interactions with the scientific data management community.

modular networking and storage subsystems,

a structured data request format modeled after MPI datatypes,

flexible and extensible data distribution modules,

distributed metadata,

tunable consistency semantics, and

and support for data redundancy.

In this section we will examine some of the challenges facing parallel I/O systems both today and in the near future. We will use
PVFS2 as one example of how these problems might be addressed.

19.5.1 Supporting New Hardware Technologies

While in some sense cluster computing is about using commodity parts, we often see new technologies in use in larger clusters
before they hit the commodity market. Networks are a great example of this; we see many interesting network technologies,
including Myrinet, Quadrics, and InfiniBand, in use in clusters today. Likewise on the storage side we see locally attached
hardware, SANs, and iSCSI as some of the potential mechanisms for storage access. Leveraging these technologies requires
appropriate abstractions in the I/O system. In the Lustre design we see a very modular system used to attack just this problem
[17].

19.5.2 PVFS2 Abstract Interfaces

PVFS2 also addresses this problem with abstraction layers. The first two of these are BMI, through which client and server
messages flow, and Trove, through which storage is accessed. Figure 19.9 shows the overall software architecture of PVFS2; we
will discuss the major components here.

Figure 19.9: PVFS2 Software Architecture

The Buffered Messaging Interface (BMI) provides a nonblocking network interface that can be used with a variety of high-
performance network fabrics and is tailored for use in file system servers and clients. Currently BMI modules exist for both TCP/IP
and GM networks.

The Trove storage interface provides a nonblocking interface that can be used with a number of underlying storage mechanisms.
Trove storage objects, called data spaces, consist of both a stream of bytes and a keyword/value pair space, similar in some ways
to the data and resource forks available in other local file systems. Keyword/value pairs are convenient for arbitrary metadata
storage and directory entries, while the stream of bytes is a natural place to store file data. The current implementation uses Unix
files and Berkeley db4, but many other implementations are possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The third major abstraction in PVFS2 is Flows. Flows combine the functionality of the network and storage subsystems by
providing a mechanism to specify a flow of data between network and storage. Flows also incorporate the request and distribution
processing system that allows PVFS2 to handle highly complex access patterns. Finally, Flows provide a point for optimization:
specific flow implementations to optimize data movement between a particular network and storage pair can be implemented to
exploit fast paths.

Above all these the job scheduling layer provides a common interface for posting BMI, Trove, and Flows and checking on their
completion. Within this layer, scheduling decisions are made, and multiple threads are used to manage asynchrony and leverage
multiple CPUs. This is tightly integrated with a state machine processing system that is used to track operations in progress. With
this layer in place, new underlying components may also be added and integrated with minimal effort. At the highest level within
the server, the request processing component handles incoming requests and initializes new state machines to process these
requests.

19.5.3 Tolerating Faults

Parallel computing systems continue to grow in numbers of components (nodes, disks, etc.), and because components are
becoming no more reliable, the likelihood of component failure is increasing. While application and middleware are beginning to
be adapted to handle faults, most users depend on the I/O system to be a reliable and available location for data storage. On the
other hand, because providing fault tolerance usually lowers performance, some users will desire to forego fault tolerance at the
I/O system level and instead implement it in a more efficient manner at the application level. Doing so allows them to get the
highest performance from the I/O system. For a parallel file system to be usable in many domains, the level of redundancy should
be configurable. The approach PVFS2 takes to redundancy is much the same as it takes to semantics and other issues involving
a trade-off between performance and protection: that is, it provides a choice of various levels of protection, with the requisite loss
or gain in performance. Thus PVFS2 aims to allow files to be stored with no redundancy or with varying degrees of redundancy,
as needed. Multiple technologies may be leveraged to accomplish this, some built into the file system and others external
components.

Redundant Storage
Many tools are available for providing fault tolerance in storage systems. One is the use of local RAID arrays. This is a time-
proven approach to handling disk failures, and a RAID provides high-performance I/O with minimal performance degradation
when directly accessed by a single I/O server. We encourage this application of RAID with both PVFS1 and PVFS2. RAID like-
techniques can also be applied across the devices on a SAN; the file system examples implementing a VSD use this type of
approach. Using RAID in this way can incur performance penalties because of the fine-grained locking often used to control
concurrent access when multiple nodes have access to the resources.

In PVFS2 we will provide what we term lazy redundancy as an option. In this approach writes to files do not update redundant
information automatically as they would in a RAID-like approach. Instead redundant information is updated only when clients
make explicit calls. These calls can be automatically made within I/O middleware libraries at logical points, such as MPI sync or
close operations. By delaying the update to these explicit points we allow the I/O layers the option of aggregating updates to
redundant data. Further, in the context of MPI-IO we have control of all the processes accessing the file; we can use these
processes to update redundant data in parallel for higher performance. The data distribution component of PVFS allows us to
describe where this redundant data is located in a convenient manner, and the approach can be applied on a per file basis. Lazy
redundancy can be coupled with server failover to provide an even greater degree of protection.

Failover
High availability (HA) software provides a mechanism for server failover in the case of node failure. Dual-attach storage hardware
can be used with this software to tolerate single-node failures by creating pairs of nodes that provide "backup" for each other. This
allows systems to run in what is termed active-active mode (meaning that neither node sits idle in absence of failure), with
somewhat degraded performance in the event that one node fails. Of course, if you don't mind having half your system sitting idle,
active-passive mode can be used, leaving an extra server for each of the ones in service. More complicated HA solutions are
becoming available that allow for a pool of backup servers that can be brought online as needed. In contrast to active-active pairs,
this architecture would allow for a small number of extra servers that could fill in without degrading performance. However, these
extra servers would need access to many different storage resources; providing this capability could be prohibitively expensive.

Having the hardware and software infrastructure necessary to restart a server on backup hardware is just the first step. A second
issue to be considered with respect to failover is shared state. Clients and servers in a stateless system do not maintain
information about other entities in the system that is necessary for correct operation (i.e., they can cache information for
performance reasons, but the system must be able to function without this information). Assuming that a system is stateless and
that no file system data is cached in volatile storage, a server restart need not cause the loss of any data. Unfortunately, shared
state is used in many parallel file systems; write-back caches are an example, where a client is holding onto the state of blocks
(for performance reasons) that a server is in fact responsible for. Servers and clients can checkpoint their state on shared storage
if it is available. This is a viable option for systems where clients and servers have access to shared storage, but this connectivity
may not be available. Another option is to implement an arbitration process that allows the system as a whole to reclaim resources
and synchronize state in the event of a node loss. Handling all the failure cases can be very difficult. PVFS2 servers and clients
are stateless in order to simplify the use of failover solutions and minimize complication in failure scenarios.

19.5.4 Aiding Management

Most parallel file systems today (excluding PVFS1) have mechanisms for checking the status of devices involved in the system,
migrating data on and off particular resources, checking the consistency of the file system, and adding or removing devices from
the file system. Looking beyond this functionality, we can imagine I/O systems that can suggest optimizations based on observed
access patterns or, even better, manage themselves. The areas of "autonomic computing" [61] and "autonomous storage" in
particular cover just this type of operation. PVFS1 lacked most of the management tools that administrators expect from such a
system, and we believe that this discouraged its use in a number of cases. We intend to take management very seriously in
PVFS2, and we will discuss some of the basics here.

System Monitoring

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first step in easing the management task is providing tools for system monitoring. These tools should allow for both examining
the real-time state of the system and looking at trends over time for optimization purposes. A complicating factor in parallel I/O
monitoring is the sheer amount of data available, particularly information on access patterns. This process is similar to gathering
logs from parallel programs in that data from many cooperating components must be collected and presented coherently.

The PVFS development team has experimented with instrumentation of the PVFS1 servers and has developed tools to aggregate
performance metrics, collect access pattern statistics, and visualize the results. Using the tools and techniques developed for
PVFS and looking at other work in the area, we have slated monitoring operations to be an integral part of the suite of operations
that PVFS2 supports. These monitoring functions can be used as a starting point for visualization, analysis, and self-management
tools.

Data Migration
In PVFS2, file data is distributed to Trove data objects for storage. Trove data objects are referenced by a handle. These data
object handles are clustered into logical groups such that all handles within a logical group are managed by a single server. In the
simplest case, each server manages a single logical group of Trove handles, and therefore the objects referenced by those
handles. These groups can be split and merged if necessary for repartitioning purposes, and servers may be responsible for many
of these logical groups. The mapping of handles to the servers where they are stored is a part of system configuration and is
easily changed. This not only provides a decoupling from handles to servers but potentially allows storage objects to be moved
from server to server by transferring the control of an entire logical group and updating the handle mapping appropriately.

Figure 19.10 shows three servers, each with two logical groups of storage objects referenced by different handle ranges. If
resources on the middle server need to be freed (e.g., to replace faulty hardware), the groups of objects stored on the server can
be relocated to one or more servers, and requests from the clients can be redirected by updating the mapping of these groups.
Because these Trove objects are used to store both metadata and data, metadata can be migrated in the same manner.

Figure 19.10: Migrating Storage Objects

Automated Management
Ideally, these systems would simply manage themselves! If components fail, data could be migrated appropriately to allow for
continued fault tolerance and minimum degradation of performance. Data that is used frequently as input could be replicated so
that multiple copies were available for reading or redistributed to match observed access patterns. Infrequently used data could be
kept on slower disks or moved to tertiary storage. Caching and scheduling policies could be tuned to match access patterns as
well.

We are very interested in this type of system, and we plan to start working in this area once the PVFS2 system matures. The first
step is to provide a suite of management operations as part of the server API. With this API in place, an additional set of
monitoring processes can interpret the performance monitoring information over time and direct changes to the file system
accordingly. Separating these management processes into their own components will maintain the simplicity of the underlying
PVFS2 core.

19.5.5 Leveraging I/O Languages and Semantics

Earlier in the chapter we discussed consistency semantics; obviously we feel that experimentation in this area could lead to useful
alternative semantics. Equally important is the use of structured I/O descriptions from the highest-level interfaces down as low as
possible in the I/O stack. Certainly, parallel file systems should be supporting these operations.

MPI-IO
So far, MPI-IO implementations have been very conservative in their exploitation of the more relaxed MPI-IO consistency
semantics. As systems scale, taking further advantage of these semantics allows us to potentially improve I/O system
performance using the same hardware as before. During this process, however, some users are likely to experience surprising
behavior from the I/O system because of assumptions about what level of consistency MPI-IO will provide. We will do everything
possible to minimize the pain experienced by users in order to keep them from abandoning this powerful API.

Caching at the MPI layer is one of the biggest opportunities that has so far been unexploited in production systems. The
constrained scope of the MPI-IO semantics, coupled with the explicit synchronization points, makes caching in MPI-IO a
straightforward process. This is in stark contrast to the infrastructure necessary to cache under the POSIX interface. File systems
such as PVFS2 can benefit greatly from caching at this layer.

Operations such as MPI_File_open can be further optimized with appropriate support from the parallel file system. PVFS2 does
not keep state regarding open files. Instead, clients essentially find only a file handle during an open call. A scalable
implementation of MPI_File_open for PVFS2 can have a single process perform the mapping from file name to handle, then
broadcast the file handle to the rest of the processes. This type of optimization can be applied in a number of cases where MPI
collectives are used.

Configurable Semantics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Earlier in the chapter we discussed the file consistency semantics of a number of interfaces. We noted that for some types of
workloads the NFS semantics were acceptable, while for others they were not. It is not difficult for a parallel file system to relax its
semantics; usually this is a matter of simply neglecting to perform consistency checks it might have otherwise. This approach
should be considered seriously. As a real example, many large physics datasets are being put online today. Files in these
datasets are never modified once written. Aggressive caching of these files can be performed because the semantics applied to
the dataset by the scientists permit it. We should allow for these optimizations.

Likewise, relaxing the consistency of directory contents provides another potential point of optimization, as could metadata of files
and directories (in particular file size). PVFS2 will provide a configurable window of time for which previous metadata values and
directory contents are treated as up to date. This allows for caching without locks, at the cost of short periods of time where views
of the file system on different clients are slightly different. Such an approach might be useful as we attempt to share parallel file
system access across wide-area networks.

Describing I/O Operations and Data Distributions
PVFS2 allows for structured I/O requests via a format based directly on MPI datatypes. Currently a set of datatype constructor
functions identical in function to the equivalent MPI calls is provided, and the format can readily be translated from existing MPI
datatype formats, making it trivial to leverage this functionality within an MPI-IO implementation such as ROMIO. PVFS2 servers
directly process this format (in the flow component) to service I/O requests; the type is not converted into a vector before
processing.

With structured data sets comes the potential for leveraging more sophisticated data distributions. Most parallel file systems use
striping. In PVFS2, however, the distribution mechanism has been abstracted so that different files can be stored with different
distributions. PVFS2 relies on an algorithmic mechanism for distribution of data to servers. The functions that define the
distribution can now be selected at file creation time, permitting a number of potential data distributions.

One such alternative distribution pattern is nested striping. As shown in Figure 19.11, simple striping distributes data round-robin
to all IO nodes used to store the file. Nested striping distributes data round-robin first to one subset of nodes and then to another
subset in a round-robin pattern among subsets. This pattern better matches block distributions of multidimensional datasets. Any
distribution that can be represented algorithmically can potentially become a PVFS2 distribution scheme.

Figure 19.11: Examples of Data Distributions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.6 Conclusions
The many software and hardware layers of parallel I/O systems and the terminology used to describe them can be very confusing.
Underlying this complexity, however, are simple concepts: methods of describing accesses, consistency semantics, distributing
data across many resources, and surviving component failures. Armed with knowledge of these concepts, one can both
qualitatively assess the appropriateness of a particular system to a given problem and devise tests to measure quantitatively the
effectiveness of the system. Many of these I/O systems share common traits, so the example systems presented here can be
used as a frame of reference when examining new systems as well.

Parallel I/O continues to grow in importance as a component of clusters. While existing parallel file systems such as PVFS1,
GPFS, and GFS are filling existing needs, new systems such as Lustre and PVFS2 are already being built to meet the needs of
upcoming systems. These systems build on the successes of the past but also address issues germane to upcoming systems, in
particular parallel I/O system portability and increased scale. Even so, additional effort will be necessary to see exciting concepts
such as autonomous storage become reality.

As parallel I/O researchers and developers, we definitely have our work cut out for us!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz

Overview
Rémy Evard

This case study examines and compares two large-scale Linux clusters. The first of these is Chiba City, a 256-node cluster
supporting computer science that was installed at Argonne National Laboratory in 1999. The second is Jazz, a 350-node cluster
for production computing. Jazz was installed a few feet away from Chiba City in late 2002.

A comparison between the two clusters is instructive. Chiba City is beginning to fade into the half-life of technology, while Jazz is
just getting started. Our design choices on Jazz were based on our experiences with Chiba City, on changes in the industry, and
the need to support a production computing user base.

We'll first describe Chiba City in some detail, considering the design, configuration, operation and usage. While Chiba City's
technology is aging, the cluster architecture itself is still extremely relevant. Then we'll describe Jazz similarly while contrasting it
with Chiba City in order to illustrate those aspects of cluster design that change over time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1 Chiba City
With 256 dual-CPU computing nodes, Chiba City is the largest cluster in the Argonne scalable clusters project.

Chiba City was designed with a unique purpose in mind: to support scalable computer science and the development of scalable
systems software. We believe that advances in the state of system software for high-performance computing are critical in order
to improve the performance and reliability of high-end machines. Yet the developers and researchers who will bring about those
advances often find it very difficult to gain access to the largest systems because those computers are dedicated to running large
code. With the advent of commodity clusters, the solution to this problem became clear: using relatively inexpensive parts, it was
now possible to build a system that could be used to support activities that required development and testing at large scale without
the usual large price tag. This was the basis of the idea for Chiba City.

In addition, Chiba City was built to support a wide range of parallel computational science applications. In the Mathematics and
Computer Science (MCS) Division of Argonne National Laboratory, we collaborate with hundreds of researchers around the world
who use our computing facilities in partnership with the scientists in our division. Chiba City was meant to be used by these
scientists in order to tackle real scientific problems while they simultaneously worked with computer scientists to expand the scope
of problem that they could address.

In essence, Chiba City is intended to support two distinct goals that are occasionally in conflict: scalable computer science
research, which needs a dynamic and interactive testbed, and computational science, which has historically used stable, batch-
oriented systems. We believe that Chiba City has achieved a comfortable balance between these two worlds and has helped
promote good science in both.

The difference in requirements between experimentation and classic production computing has kept us—Chiba City's designers
and administrators—living in two worlds at once, trying to keep the cluster both stable and interesting.

20.1.1 Chiba City Configuration

In this section, we describe the configuration of the Chiba City from multiple perspectives. We cover not only what went into the
cluster but why it is there and how it is used.

Node Configuration
Chiba City includes the following computing components (see Figure 20.1):

256 computing nodes

32 visualization nodes

8 storage nodes

18 management nodes

Figure 20.1: Chiba City schematic.

Computing Nodes. The 256 computing nodes are the workhorse portion of the cluster. These are the primary nodes that run the
user's programs.

CPU. Each computing node has two 550 MHz Pentium III CPUs. This lets us play the game of sometimes referring to the system
as a "512-CPU computer" rather than a "256-node computer." (Of course, some people actually include every CPU on the system
when they count, not just the ones available to the users. In Chiba's case, this would be 574 CPUs, not including the CPUs in the
networking equipment.)

One of the more hotly debated issue throughout the design phase of Chiba was the question of how many CPUs each node
should have. From a pure performance viewpoint, it makes the most sense to have only one CPU per system, for several reasons.
First, the memory bandwidth on Pentium IIIs is quite limited; thus one CPU alone can easily saturate the memory bus, making any
more than the first one potentially useless. Second, in order to most efficiently use all of the CPUs in the system with an MPI job,
the communication between processes must use both network and shared-memory communication, which is difficult. Third, at the
time of the installation, Linux didn't run on more than one CPU particularly well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the other hand, from a price/performance perspective, it makes much more sense to have multiple CPUs on each node—and
in fact, four would have been better than two from this viewpoint. It's typically cheaper to buy a dual-CPU system than to buy two
of the same system, each with only one CPU. Furthermore, it's far cheaper to install a network for 256 nodes than for 512 nodes.
(On the other hand, if the network is the bottleneck, then some people who use multi-CPU systems end up installing two or more
network interfaces per computer.)

On Chiba City, we decided to go with dual-CPUs for flexibility. We wanted to be able to support experiments and development on
both types of MPI programming. Those wishing to go for maximal node performance could ignore the second CPU. Alternatively,
those wishing to use or experiment with mixed-mode MPI programming would have that option as well.

In retrospect, this is exactly what has happened. Some users find that their code is more efficient if they use only one processor.
Others find that two processors work well for them. And developers have needed access to both types of configurations.

Computing Node Memory. Each computing node has 512 megabytes of RAM. We felt that this was a minimum for dual CPUs at
the time. We do occasionally see applications run out of free memory and start swapping, particularly when using both CPUs, but
in general this has proven to be sufficient.

Computing Node Footprint. The nodes themselves are 2U units. (Equipment that can be housed in computer racks is measured
in the unit U, where 1U is 1.75 inches. A standard rack is 42U.) We went with these because they were the smallest system we
could find at the time. In fact, the size of the units was a major driver: one of the initial proposals we received from vendors had 3U
and 5U units, which would essentially doubled the floor space required for the cluster. We simply didn't have that much space in
our machine room.

Ironically, 1U Pentium systems hit the market a few months after we installed Chiba City. We knew they were likely be available
around then, but renegotiating the cluster purchase to have 1Us was simply not an option. These days, blade technology and
clever mounting schemes allow configurations of less than 1U.

Computing Node Disks. Some cluster builders include disks in all nodes. Others go completely diskless. Diskless nodes have a
number of advantages in a cluster. First, it's a little easier to configure the operating systems on the nodes when they're diskless,
because those configurations are stored on management nodes. (This advantage can be negated if adequate configuration tools
are used to manage diskful nodes.) Also, disks tend to break. If the nodes don't have disks, that's one less thing on each node
that may require service. On large clusters, it's a good idea to eliminate any situation that involves touching the nodes.

On Chiba City, we have 9 gigabyte hard drives on each node. We decided to install disks in each node for maximum flexibility.
Some applications that the scientists run make extensive use of local disk. We also anticipated that system-software experiments
or alternative operating systems might need to use the local disk. It has turned out that, for us, this was the right choice. Many,
many uses of the system rely on or take advantage of the local disk. And while we do occasionally have drives that fail, this has
been much less of an issue than many other hardware components, particularly the fans.

Other Computing Node Hardware. In addition to the CPUs, the RAM, and the hard drive, each computing node has

one 32-bit PCI slot that is used for a Myrinet card,

a 10/100 Ethernet port on the motherboard,

a floppy drive (because that was included), and

serial, parallel, keyboard, and the other usual PC ports.

Computing Node Connections. Looking at the back of a node can be instructive. Each connection plugs into another component
of the cluster, all of which are described in detail in following sections of this chapter.

The Myrinet card is a part of the Myrinet network. Each node has one fairly large Myrinet cable that runs under the
floor to a Myrinet Clos64 switch.

The Ethernet port is used for to connect to the Ethernet network. Each node connects to an Ethernet switch in its
rack or in a neighboring rack.

The serial port that Linux uses as the console plugs into a serial concentrator in the rack, which enables remote
access to all of the consoles.

The "management" serial port on each node plugs into a separate serial concentrator, to be used for low-level
hardware and management. This is a motherboard-specific management interface, and we've never needed to use
it.

The power cable runs to a Baytech power control unit that allows us to remotely monitor and control the power to
each node.

The keyboard and video ports are left vacant. In rare situations, such as hardware diagnosis or BIOS upgrades, we
may plug a keyboard and monitor into them. In an ideal world, we would never use these at all. Other clusters built
since Chiba use daisy-chain mechanisms to allow somewhat remote access to the keyboard and video.

Visualization Nodes. The 32 visualization nodes are used by computer scientists for research into cluster-based image synthesis
and computer graphics. They are sometimes used as their own independent 32-node cluster and sometimes used in conjunction
with the computing nodes as part of one large program.

The primary feature of the visualization nodes is that they include high-end video cards that can be used for graphics and image
synthesis. Ideally, these cards can be used in two ways:

Simply as video cards. In our environment, we have a remote console infrastructure for graphics systems that
allows us to connect the display port of graphics systems located in one spot to display systems located in a
laboratory. This means that the visualization nodes can be housed in the machine room and still be used to drive
the CAVE or our 15-projector Active Mural, both of which are in other rooms.

As pipelines for generating images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These video cards typically require an AGP slot. The requirement for the AGP slot drives every other detail of the visualization
nodes. For example, computers with AGP slots are usually desktop systems or workstations rather than servers. Our visualization
nodes are workstation-style systems that don't fit into racks well and are actually kept on shelves. The systems that were available
at the time we purchased Chiba City were 550 MHz Pentium III systems configured with 13 GBytes of disk and 384 MBytes of
RAM. We manage them the same way that we do the compute nodes, including remote serial and power control.

The video cards were originally Matrox Millenium 32 MBytes G400Max cards. Since installing Chiba City, we've upgraded the
video cards to NVidea GEFORCE3 cards.

Storage Nodes. The eight storage nodes are not accessed directly by most of the users of Chiba City. Instead, they provide file
system service to the computing nodes, as described below under "file servers."

Each storage node has a 500 MHz Xeon, 512 MBytes of RAM, and, most important, 300 Gbytes of SCSI-attached disk. So, in
aggregate, the storage nodes provide 2.4 TBytes of raw disk space to the computing nodes. This was a lot of disk at the time we
installed the cluster.

The storage nodes are a part of the Myrinet network. In some cases, cluster builders will choose to put their storage nodes
exclusively on the Ethernet network. This choice is primarily an issue of performance versus cost. With an even order of two
number of computing nodes (i.e., 64, 128, 256, etc.), one can often build an interconnect network with a lot less hardware than
would be required for those same compute nodes plus a few storage nodes. The difference may be negligible or may be
substantial. In our case, getting the storage nodes onto the Myrinet meant that we needed to purchase several additional Myrinet
switches. Because I/O performance and experiments are important to our user community, we felt the cost was worth it.

The storage nodes interface with the rest of the cluster in the same way that the rest of nodes on the cluster do. In addition to
being available over Myrinet, they're also on the Ethernet. They also have remote power and console control.

Under normal conditions users don't have direct access to the storage nodes. However, scientists working on a project specifically
related to I/O research may have access to the I/O servers. In this case, it's possible that their programs will run simultaneously on
both the compute nodes and the storage nodes.

Management Nodes and Servers. The nodes used for cluster management come in several different flavors:

12 systems used as the cluster "mayors," or monitor systems

4 front ends

2 file servers

The mayors provide a scalable management mechanism, which is described in greater detail in Section 20.1.1. Most clusters don't
need this many mayors because their configuration isn't changed as frequently as Chiba City's.

Mayor systems. Every set of 32 computers in the cluster is associated with a computer, called their "mayor," that monitors and
manages them. The mayors are never used as part of any computation or experiment running on the cluster but are instead used
to configure the cluster for that experiment and recover from any problems it might cause. Each mayor is system with a single 550
MHz Pentium III, 512 MBytes of RAM, 10/100 Ethernet, Gigabit Ethernet, and 200 GBytes of SCSI disk. Two of the mayor units
have special functions. One serves as the "city mayor" and is used to control the other mayors. The other runs the scheduler for
the cluster.

Front ends. Chiba City was originally configured with four front ends: systems that users could login to in order to build their
programs and launch them onto the compute nodes. Since these systems are identical to the compute nodes, the users' build
environment would be the same as program's execution environment. In practice we found that two front ends was sufficient, and
we have used the other two nodes as test systems.

File servers. The two file servers provide file systems via NFS to the login nodes and to the mayors. They house all of the user's
home file systems and all of the configuration files (kernels, RPMs, config files, and so on) for the nodes. They do not export file
systems directly to the nodes—that's the job of the storage nodes. The file servers have exactly the same hardware configuration
as the storage nodes. Each has 500 GBytes of disk.

Nodes We Missed. After a few years of running the cluster, we've concluded that the configuration that we put together is almost
correct, but we missed a few pieces.

First, we could use more test systems. Linux kernels, file systems, system software, and applications all change rapidly. Having
between four and eight test machines for testing individual pieces of code and cluster functions would be extremely helpful. At
present, we usually allocate some of the compute nodes in order to test new software. This procedure works okay, but since it
reduces the pool of compute nodes the users can access, it tends to be a short-term solution.

Second, we could use a few spare nodes. We always seem to have a small handful of nodes with hardware problems, which
makes it difficult to reliably be able to run jobs on all 256 nodes. We would like to have a pool of spare nodes that we would swap
in for a node with broken hardware. Then, once that node was repaired, it would go into the pool of spare nodes. Four spare
nodes would probably cover most situations.

We actually considered both of these in the original plan, but for financial reasons they were removed. It's difficult to justify
between eight and twelve computers that aren't really being used most of the time.

Logical Configuration
Chiba City is conceptually divided into cluster building units which we call "towns." In our definition, a town consists of a set of
computers and a single "mayor" node that manages them. For example, each of the eight towns of computing nodes in Chiba City
includes one mayor and thirty-two computing nodes.

In Chiba City, there are eleven towns:

8 computing towns, each with 32 computing nodes

1 visualization town of 32 visualization nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 storage town with the 8 storage nodes

1 server/mayor town with the 10 mayors, login nodes, and file servers

The towns are a mechanism to allow scalable management (see Figure 20.2). From a systems administration perspective, we
would like to be able to completely manage every node in a town by interacting with its mayor. So, in order to manage the 256
computing nodes in Chiba, one merely needs to manage the 8 mayors of those computing nodes. To accomplish this, the mayor
provides boot service, operating system configuration, console management, and file services to each of the other nodes in its
town. It monitors those nodes to make sure that they're running correctly. The mayor performs management functions only and
never participates in the computing activity of the nodes, so the users of the cluster never work with the mayors directly.

Figure 20.2: A Chiba City town.

In most cases on Chiba City, each mayor monitors 32 nodes. In a few cases, such as the storage town, there are fewer nodes in
the town. We chose 32 clients for a number of reasons:

Our tests indicated that NFS performed reasonably with 32 clients. Thus, NFS would be an option within a town if
we so chose.

In a 1024-node cluster, there would be 32 towns of 32 nodes.

The hardware for a 32-node town fit nearly perfectly into two racks.

The town relationship is hierarchical. A collection of mayors can be managed by a higher-level mayor in the same way that a
collection of nodes is managed by a mayor. In Chiba City, we have one node, which we refer to as the City Mayor, that is
responsible for managing each of the mayors. This gives us a single point of control from which the entire cluster can be
managed.

The concept of building the larger system out of smaller replicated systems, each with their own server, wasn't a new one. Beyond
being a classic computer science technique, it was used to some degree in the IBM SP, has been a standard approach for years
in the systems administration community, and was demonstrated on clusters by the Sandia National Laboratories CPlant project.

We've made a number of observations about the mayor/town concept while operating the cluster:

The mayor concept has proven its worth over and over. We could not manage the cluster without some sort of
hierarchical approach.

Some network services already have scalability mechanisms built in, or scale to the size of the cluster. The
Dynamic Host Configuration Protocol (DHCP) is one of these. Breaking these down so that it runs on each mayor
and supports only the local town isn't worth the time. In other words, some services for the cluster can and should
be global.

The ratio of clients to mayor is highly dependent on what those clients are doing. With 32 nodes, we're comfortable
supporting network booting and remote operating system installation. If we were also supporting high-capacity file
systems or other services, we might need to scale down. On the other hand, if every node was largely independent
except for monitoring and time service, for example, then we could probably shift to 64 nodes per mayor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have often been asked why we call the building blocks "towns." In the early design phases of Chiba City, we talked to a lot of
people in a lot of companies who had never heard of clusters before. We had trouble explaining that we wanted to build the
cluster out of these subclusters that had a monitoring agent, so we started to call them "towns" as a part of the city metaphor. This
explanation helped quite a bit even though, of course, real cities aren't made up of towns that look identical—they're made up of
neighborhoods that are usually very different. But the metaphor helped explain the concept, and the name stuck.

Network Configuration
Chiba City has two types of networks—Myrinet and Ethernet. In this section, we describe their configuration and their use.

Myrinet. The Myrinet network is used to support high-speed communication between nodes as part of a user's program, usually
related to computation or I/O.

On Chiba City, a high-performance network is essential. Many of the jobs that run on the cluster are bound by the performance of
the network: the faster the network, the better the performance of their code. Also, a lot of the computer science research on
Chiba is related to communication.

We chose to use Myrinet, a product of Myricom, because it was the most cost-effective high-performance networking solution on
the market at the time we purchased the cluster. Myrinet has a number of nice characteristics. It can deliver a full bisection
bandwith network between all of the nodes of a cluster. The network cards that we installed can support a theoretical 1.28 Gbps
transfer rate, with latencies from process to process in the 10–15 microsecond range.

The specific Myrinet hardware on Chiba City includes 4 Myrinet spine switches, 5 CLOS-64 switches, and 320 Lanai 7.2 NICs.
The hosts that usually participate on the Myrinet network include the computing nodes, the visualization nodes, the storage nodes,
and the login nodes. In other words, everything except the management nodes and the file servers is typically on Myrinet. At
different times over the life of the cluster, we have connected the file servers and mayors to support experiments.

It is possible to run IP over Myrinet, and we do. From an IP standpoint, the Myrinet network is a flat IP subnet and is not
accessible from outside of the cluster.

Ethernet. The Ethernet network is used for everything that the Myrinet network isn't. For the most part, this means management
functions, remote access, and a fallback communications network for applications if the Myrinet network isn't available.

Figure 20.3 is a diagram of the Ethernet network, which is arranged in a simple tree structure. Each computing, visualization, and
storage node is connected via Fast Ethernet to an Ethernet switch near that node. There are 10 Cisco Catalyst 4000s distributed
around the cluster, each connecting approximately 32 nodes.

Figure 20.3: The Chiba City Ethernet.

A central Gigabit Ethernet switch, a Cisco Catalyst 6509, is connected to each of the Catalyst 4000s with two channel bonded
Gigabit Ethernet links. The remaining computers—the front end nodes, the file servers, and the mayors—all connect directly to the
Catalyst 6509. Also, Chiba City's link to the outside world comes in through the Catalyst 6509.

In essence, Chiba City has a completely switched Ethernet. The IP network layered on top of this Ethernet is one flat subnet with
no routing. Every node in the cluster is at most three Ethernet switch hops away from every other node.

Physical Configuration
The physical layout of a cluster is particularly important if space is limited, as is the case for us. Chiba City occupies twenty-seven
standard 19-inch racks arranged into two rows (see Figure 20.4). The racks include

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.4: One of two rows of Chiba City.

16 racks of computing nodes. Each computing town fits precisely into two racks. This include the 32 compute
nodes, the mayor and its disk, the serial and power management systems, and the Ethernet switch for the town.

4 racks of storage nodes. The storage nodes and their associated disk each take up half of a rack.

2 double-layer shelving units for the visualization nodes. Because of cable length limits for the video systems, these
are located in another part of our machine room from the rest of Chiba City.

3 racks for the Myrinet switches. These racks have the heaviest cable density in Chiba, because every node has a
cable that runs to some port in these racks.

1 rack for the file servers and their disk.

1 rack for the Gigabit Ethernet switch and remaining servers.

20.1.2 Chiba City Timeline

In this section of the case study, we examine the phases of activity that Chiba City has gone through, starting with the early seeds
of the idea up through full-time operation. These are similar to the phases that most other clusters go through.

Phase 1: Motivation
As noted at the beginning of this chapter, the primary driver for Chiba City was to create a testbed that could be used to support
scalability testing and research into scalability issues. We believe that this area is the most important aspect of computing to
address in order to advance the state of high-performance computing.

Furthermore, we felt that it was important to build a system that could be used for general computer science and development,
rather than on applications and simulations, which is typically what large computers are used for.

Before building Chiba City, we had been building and running small clusters for several years, including clusters based on
Windows NT, Linux, and FreeBSD. We had used those to support research into communication, visualization, and several other
areas of experimentation. But, by fall of 1998, we still had not yet been convinced that the large system in MCS would be a
cluster.

However, once we considered the issues of scalability, the need for a computer science testbed, and the price/performance of
commodity clusters, it became clear that a large-scale cluster could probably address all of these needs as well as become the
next major MCS platform for simulation and computational science.

We originally considered installing a 1024-node system. However, we decided to start with a 256-node system in order to test
many of the concepts. Thus, Chiba City was started as the first step toward a thousand-node (or larger) cluster, with a primary
goal of supporting scalable computer science and a secondary goal of supporting scientific applications.

Phase 2: Design and Purchase
Having convinced ourselves that a large cluster was the right direction for MCS, we started, in December 1998, to design the
system and arrange to purchase it.

We spent the next several months repeating this cycle over and over:
1. Think about what we needed and how we would use it.

2. Talk to vendors, integrators, and the cluster community in order to find out what would be available on our time
frame.

3. Consider various funding options and match those with design and availability.

We discovered, among other things, that the traditional set of high-performance computing vendors were all trying to decide what
to do about clusters (and what to do about Linux). At the time, it was possible to buy an actual cluster from Compaq and from a
number of small integrators, but none of the larger vendors had yet created cluster product lines. No one was selling anything like
what we wanted for Chiba City.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Eventually we put together a presentation to use to explain to vendors what we wanted to buy. The presentation explained what
clusters were, what the cluster would be used for, how we wanted to operate it, and what we thought the necessary parts might
be. As we updated our internal designs for the system software, we updated the purchasing presentation. We talked to a lot of
different vendors and then went through the formal purchasing process. Eventually we agreed to buy the system through IBM.
IBM arranged to provide subsets of the system from other vendors, including the Ethernet hardware from Cisco, the Myrinet from
Myricom, and the 2U compute nodes from VA Linux.

These days, the purchasing phase is a lot easier. Almost every vendor can sell you a small or medium cluster without much
thought, and even standard large clusters are relatively simple. However, the very large clusters with focused requirements still
require a great deal of interaction with the vendor, as will be described later in this chapter when we discuss Jazz.

Throughout this period, we continued the design of the management infrastructure and system software for Chiba City, developing
and testing it on a small cluster. (We called the nodes in the small cluster "the freakies." No one seems to knows why. That small
cluster is long gone, but the name continues to live on in code references and machine configurations. Be warned.)

Phase 3: Installation
In October 1999, we installed the cluster.

During the preceding month, truck after truck had backed up to our loading dock and dropped off boxes. We had piles of
computers, racks, cables, network boxes, disks, and miscellaneous hardware stacked everywhere. Fortunately we had been
through large computer installations before, so we were careful to keep rigorous track of which boxes arrived from which vendor
on which truck on which day. Despite this, there were still a few missing boxes that took weeks to locate.

During the purchase phase of the system, we realized that the installation of the cluster would be interesting. While the vendors
were willing to provide installation technicians as part of the package, we were the ones who knew how the cluster should be
connected. We needed to be actively involved in the installation.

Once we realized this, we decided this was an opportunity rather than a problem. Many of the scientists at Argonne are interested
in the details of the computers, and we felt that they would probably enjoy being able to help install the system. We decided to
assemble the cluster in the style of an old-fashioned barnraising, inviting everyone to join in. Everyone was enthusiastic about the
idea. Over forty people signed up to help.

Before the installation, the MCS Systems Group built one of the computing towns. We took detailed notes on what we did and
then put together a twelve-page installation manual. Based on the amount of time it took us and the space to work in the machine
room, we estimated that we could build the entire cluster in two days. We spent the day before the barnraising working with
technicians from VA to assemble the racks and to put the Ethernet and serial cables under the floor.

The barnraising itself was great fun. We divided the volunteers into teams of four people. Each team was led by a member of the
Systems Group or a VA technician. We ran four teams at a time. Each team took half a day to assemble one rack, and each rack
was half a town. So, by the end of the first day, four computing towns—half of Chiba City—was assembled.

While the teams worked, lots of other things were going on. IBM engineers assembled the storage nodes. The Chiba development
team fine-tuned the software for some initial testing. And, most important, Janet Sayre of the Systems Group created just the right
kind of atmosphere by sitting in the middle of all the activity and playing the banjo.

At the end of the second day, we connected all of the towns and booted every node. There were a few minor hardware problems
with a few systems, so we weren't able to bring them all up, but we were able to run an MPI job on 248 of the nodes.

A time-lapse video of the barnraising is available on the Chiba City Web page www.mcs.anl.gov/chiba/barnraising/video.html.

Phase 4: Final Development
For the next four months, the cluster was primarily in development mode. While we had demonstrated that the nodes were
running an operating system and connected to each other at the end of the barnraising, a lot of work had to be completed before
the system was ready for users.

Among other things, we needed to finish the cluster environment: to get a cluster schedule installed, arrange for data
management, and tune the communications networks. We also had to get the management system working, including the ability
to create user accounts, push out node configuration changes, and so on.

During this time, we asked a few users to try various tests on the system, but it was not available to more than three or four users.

Phase 5: Early Users
Starting in March 2000, we opened up the cluster to the first set of early application users. There were around four early users at
first, all of whom were trying to use the cluster but were also providing detailed feedback to us so that we could fix problems they
found.

Once things were relatively stable for them, we opened up the cluster to a few more users, and then a few more, and so on. By
the end of the early user phase, we had around sixty user accounts on the cluster.

The majority of the problems that we had to address during this time were related to the scheduler and to the Myrinet
communication libraries.

Phase 6: Full Operation
In June 2000, we felt that we had eliminated most of problems that would impact users of the system, and we opened up the
cluster for general use.

From this point on, account requests for Chiba City were handled in the same way that requests are handled for other MCS
computing facilities—the account request is approved based on whether the use matches the mission (and therefore the funding)
of the system. These decisions are made by a group of MCS scientists who are responsible for the activities on the MCS systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chiba City has been in full operation mode since that point. The nature of the operational load has shifted—initially it was
supporting a lot of computational science interspersed with computer science testing. As the cluster aged, however, many
computational scientists shifted to faster platforms while the computer scientists begin to carry out more substantial systems
software development and deployment. Fortunately, the cluster was able to support both of these kinds of usage without any
modification.

In the future, Chiba will no doubt go through the next phase: gradual obsolescense. At one time, we could have upgraded it, but at
this point it will likely make more sense to simply replace it.

20.1.3 Chiba City Software Environment

In this section we examine two aspects of the Chiba City software environment: computing and management.

The Computing Environment
The computing environment on Chiba City was, like the rest of the cluster, optimized to support computer science yet intended to
support other uses. In this section, we describe the standard computing environment on the cluster as well as the special
modifications we've made to support computer science and scalability research.

The Default Node Environment. The "node computing environment" is the set of programs and services available on the user-
accessible nodes of the system, that is, the computing nodes, the visualization nodes, and the login nodes.

All machines in the cluster run Linux by default. The original distribution that we started with when building the node operating
system was Red Hat 6.2. Over time, we added and removed RPMs, changed much of the default behavior, and added software
from all over. The nodes are still vaguely recognizable as Red Hat, but they could just as easily have been another distribution.

The specific kernel installed by default on the computing nodes varies over time. Intially, it varied a bit more than we would like
because we kept running into odd problems that forced us to switch kernels to isolate problems. After the first year of operation,
this settled down—we found a kernel version that worked and didn't change it without substantial testing.

Twice in the lifetime of the cluster, we have installed a completely new software image on the entire cluster in order to roll out a
global update of new kernels, libraries, and software. These images are tested rigorously on a small set of nodes before they
become the default environment. Updating the computing nodes has proven to be relatively simple, while updating the mayors
and servers is always complex.

The compilers available on the front end include C, C++, and Fortran 90. Some users also program in Java, Perl, Python, and
PHP.

The Default Cluster Environment. The software glue that we use to turn the pile of nodes into a functional cluster includes a
number of different packages.

Communications libraries. The vast majority of jobs on Chiba City use MPI for communication. Our preferred version of MPI is
MPICH. We have multiple versions of MPICH installed in order to allow users to choose their favorite compiler and flavor of
network. To use generic messages over Myrinet, you must link with MPICH-GM from Myricom.

The set of MPICH installations on Chiba got so large, in fact, that we built a small tool that lists all of the MPICH installations and
allows you to pick the one you will be working with by default. The number of MPICH installations inspired the MPICH group to
provide an alternative for handling multiple compilers; see Section 8.7.6.

Scheduling. We use OpenPBS on Chiba City for queue management. (See Chapter 17 for a detailed discussion of PBS.)
OpenPBS is the open source fork of the Portable Batch Scheduler (PBS).

OpenPBS wasn't designed for environments as large or distributed as Chiba City and therefore has some scalability issues. Most
of the problems that users of the cluster have had are related to OpenPBS. Many of these have been solved by the community
over time, while others remain issues. Becaues OpenPBS is not under active development by a focused author or community, it's
not clear that these will ever be solved.

OpenPBS can be interfaced with an external scheduler that makes the decisions about which jobs in the queue will run at what
time. We use the Maui scheduler for this purpose (see Chapter 16 for a detailed discussion of the Maui scheduler). We've been
quite happy with Maui.

Global file systems. A global file system is one that is available on every node of the cluster and presents the same view of the
data in the file system. It is not necessarily capable of supporting high-performance use, but at least provides a common name
space. This normally is used for home directories, common applications, and so on.

One of the early design decisions on Chiba City was that we would not use NFS as a global file system on the cluster. NFS
performs badly and scales worse. We felt that if it were really necessary, NFS could be made to work on the 256+ nodes of Chiba
City, perhaps by using an optimized NFS server such as a Network Appliance box. However, Chiba City is meant in part to be a
prototype of a much larger cluster of 1024 nodes or more, and at that level we expect NFS to be useless. Therefore, we decided
to try to run the cluster without a global NFS file system to see how it worked out.

This has been an experiment with a clear finding: global file systems are very important.

Because there was no plausible file system alternative at the time we built Chiba City, we avoided NFS by simply not having a
global file system.

It's fairly easy to survive without a global file system for administration purposes—one simply uses rdist or other file
synchronization mechanisms. On the user side, though, we've had two primary problems:

Job staging. The user's program, support files, and data must be copied out to that user's nodes at the beginning of
their job. After the job has completed, any output files that were created must be staged off the nodes before the
nodes can be used by the next user. We've tackled this problem from a number of angles and have a solution in
place that works but is not as fast as we would like. We believe that multicast file copying is the right solution to this
problem and will be investigating it in the near future.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Confusion. Users tend to expect that the cluster will have a global file system. When they log in to their nodes and
look around, they don't see the files they expect in their home file system on that node. Even when the entire
environment is explained, it is difficult to use the data transfer tools to copy in the right files and copy out the right
files.

Initially, we felt that a global file system would be convenient, but not critical. Based on all the difficulties that the users of the
system have had, we now believe that a global file system, even if it performs relatively poorly, is essential.

Parallel file systems. In contrast to a global file system, a parallel file system is specifically meant to provide high-performance
access to application data for large parallel jobs. For example, one might store a very large input dataset on a parallel file system
and subsequently start an application consisting of a few hundred tasks, all of which simultaneously access portions of this
dataset. The parallel file system provides both a single logical space for application processes to look for data files and also the
performance necessary for these parallel applications to have timely access to their data.

The only open source parallel file system available on Linux clusters at the time that we installed Chiba City was the Parallel
Virtual File System (PVFS), which is described in detail in Chapter 19. PVFS and Chiba have a comfortable relationship, and over
the years Chiba has become the primary development platform for PVFS. In this environment PVFS has been proven to scale to
hundreds of I/O servers and compute processes, and peak aggregate throughput of over 3 GBytes per second has been shown.

Running at these scales also served to highlight some reliability issues in PVFS that were not evident when running in smaller
configurations. As these problems have been addressed and PVFS has begun to stabilize, we have begun to make a PVFS file
system available as a full-time resource for the users of Chiba City. This has two benefits for users: it provides a high-performance
data storage space for use by applications, and it gives users a single place to store datasets that can be accessed from any
node.

Job invocation. Job startup of hundreds of processes using MPICH with its default ch_p4 device is slow. Especially for
interactive jobs, something more scalable is needed. Chiba provided some of the motivation for the ch_p4mpd device that made
use of an earlier version of the MPD process startup system, described in Section 8.7.3. Chiba City has provided a valuable
testbed for the development of the MPD system and the version of MPICH that relies on it for job startup. The MPD daemons can
run as root, and we have been using them to run a mix of user jobs.

Parallel Unix commands. Chiba City is also serving as testbed for the Scalable Unix Commands [44], which provide parallel
versions of the common Unix commands such as ps and cp. A new version of these [82] is now available at
www.mcs.anl.gov/sut. The new version implements these interactive commands as MPI applications, so the fast startup of MPI
jobs made possible by MPD is critical. We plan to make these familiar commands available to all users as part of the Chiba
environment.

Support for Computer Science. Computer scientists have a few general requirements that conflict with running applications on a
system: interactivity, a license to crash the system, and the need to modify the system software.

Interactivity. Computer scientists, as well as developers of all types, often want to use the computer in "interactive" mode. They
want to edit code, compile it, and then test it immediately. The test, and even the production run, may last only for a few seconds,
but it often needs to use the entire system.

If the computer scientist has to submit a test job in a queue and wait until it can be scheduled, it can take hours or even days to
complete a one-minute run. If the scheduler is optimized to allow access to the entire machine quickly, the resulting schedule will
have huge numbers of unused node time. Production sites and computers that have real dollars tied to machine utilization simply
can't afford to have that type of scheduling policy.

This need for interactivity is not unique to computer scientists, of course. Application developers need interactive test cycles while
building code that will eventually run for hours. But many of these developers can get away with testing on a small set of nodes,
which is easier to acquire, and computer scientists may never need the entire cluster for more than a few minutes at a time.

On Chiba City, we do run a batch scheduler because we have not yet found a better way to equitably share the system between
many users. But we clear the cluster of all jobs every day for a two-hour period, during which time no job longer than five minutes
can run. This gives computer scientists a two-hour window every day for quick turnaround. Long-running jobs have to wait until the
weekend, when we allow jobs to go from Friday evening until Monday morning.

Also, it's possible to schedule a number of nodes and then simply use them in interactive mode during that timeslot.

License to crash. Some computer scientists and developers work on low-level pieces of code that can have bugs that impact the
entire operating system on a node. In some cases, such as in file systems and job managers, they may even crash the entire
cluster. It's important to have some kind of facility where code like this can be tested in a real-world environment.

Crashing a node on Chiba, even to the point of requiring a rebuild, is fairly minor. We have remote power control, remote
monitoring, and the ability to rebuild a node from scratch. (All of these systems are described in Section 20.1.3.) If a node needs
to be rebuilt, we simply set a flag in the City database for that node, and that node's mayor will initiate a rebuild the next time that
node reboots. If necessary, the mayor can force the reboot.

Crashing the entire cluster is a bigger problem. Still, we set the expectation that we actively support development of the cluster's
system software and that we expect things will occasionally crash. We try to minimize the frequency of these large-scale problems
and try to minimize their impact. But in a worst-case situation, we can rebuild all the nodes and reboot in 20–30 minutes.

Modifiable node environment. A small number of developers actually need a completely different node environment. They might
be testing a set of device drivers that are unusual, or comparing FreeBSD to Windows XP to Linux. (We actually have run
FreeBSD and Windows XP on the computing nodes on Chiba.) In any of these cases, the scientists may need to have root access
on their nodes or may want to replace the node operating system entirely for the duration of their job.

We support the ability to arbitrarily modify the node computing environment. The mayors build their nodes from a node "image,"
where an image is a set of files or binary file system data. The mayor will write that to the node's disk, then boot it.

You can build an image of any operating system desired, as long as it boots. During the time that the nodes are reserved for you
by the scheduler, you can do whatever is necessary on those nodes. Once your scheduled time is up, the mayor power cycles the
node, catches the booting system, and reinstalls the Chiba City default Linux image on the node. This process is illustrated in
Figure 20.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.5: Node image management.

Management Environment
Starting with the very first design for the cluster, we put a great deal of emphasis on scalable management of Chiba City. For
example, one of our goals was never to have to physically touch a node unless it was having hardware problems.

We emphasized scalable administration because we must. All management functions of a very large system, of which Chiba City
is a prototype, must scale for obvious reasons. Furthermore, we need scalable management for Chiba itself. The management
team for Chiba City consists of three people who are responsible for all aspects of the administration of the cluster, all user
support, the development of management tools and system software, involvement in experiments, and other aspects of the MCS
computing environment.

The management approach for Chiba City incorporates a number of philosophies:

Support all the needs of the diverse user community, ranging from stable batch-oriented computing to letting
individual users have root access on their nodes.

Don't change the model too much, because our scientists need to work in the common model to make their tools
applicable to others. For example, we couldn't switch over to a shared-memory model of the cluster.

Manage from a central point. The mayor/town architecture—in which the city mayor presides over the mayors, each
of whom manages a set of nodes—is designed to strongly support central management.

Use open source and existing tools as much as possible. As much as we like to invent cooler wheels, we don't have
time.

The remainder of this section describes the individual components of the management environment.

City Database. The city mayor keeps a database of relatively static cluster information. We call this database the City Database
or "citydb." The database describes the node/mayor relationship, keeps track of which nodes have what types of hardware, and
knows which nodes should have which operating system image at which time.

The City Database is different from the database kept by the scheduler, which is much more dynamic. The dynamic database
includes job information, which users own which nodes, and which nodes are currently up. Optimally, both databases would be
more closely related, but in practice it has been easier for us to keep the functionality split.

The City Database is authoritative. If the database and reality don't match, then reality must be wrong. Using this philosophy, we
can describe the desired cluster configuration in the database and then tell the mayors to make sure the cluster conforms to the
configuration. The configuration management tools described below take care of this.

Citydb is built on MySQL using standard SQL.

Configuration Management. At the highest level, the configuration model works this way:

The configuration for every node is described on the city mayor. Since many nodes are identical, this is not as bad
as it might seem.

The city mayor is the source for all configuration files, images, and RPMs. All mayors keep a mirror image of those
files.

When a configuration change is necessary, the administrator makes a change on the city mayor and then invokes a
process to push that change out.

The nodes themselves are checked at boot up and after user jobs run to make sure that they have the correct
configuration.

The primary configuration management tool that we use on Chiba City is a program called sanity. The idea behind sanity is
that it can install RPMs, modify configuration files, and execute scripts. It decides what to do based on a configuration file that can
be general or very specific to a node. Once it has established that the node matches the configuration in that file, the node is
pronounced sane.

The mayors have the ability to invoke sanity on each of their nodes. The nodes also run sanity when they first boot and after a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mayors have the ability to invoke sanity on each of their nodes. The nodes also run sanity when they first boot and after a
user job completes. The configuration for sanity is an aspect of the image on that node, and the image for each node is
recorded in the citydb on the city mayor.

In order to make a change to all of the nodes on the system, one would modify the sanity configuration file for the default image,
then invoke a global sanity push on the city mayor. It tells each mayor to kick off a sanity run, and each mayor in turn tells
each node to run sanity. This process is illustrated in Figure 20.6.

Figure 20.6: OS image management.

Serial Infrastructure. Another tool in the management arsenal is remote console management. The console of every system in
Chiba City is available over the network. The system works in the following way:

The console port on each node is connected to a serial concentrator for that town.

The serial concentrator is connected to the mayor.

The mayor runs a daemon called conserver that enables remote access to the console from anywhere on the
network that has permission. This daemon is an open source tool that is widely used in the system administration
community.

From any point on the MCS network, an administrator can type console <node> and get access to the console of
that node.

This process is illustrated in Figure 20.7.

Figure 20.7: Serial infrastructure.

In practice, we use this feature only when debugging. Ideally we don't want to actually have to go to all the consoles of all the
nodes. Sometimes, though, a node will quit responding for no reason. It's frequently possible to recover the node via the console
—or at least get a hint from the console messages what might have gone wrong.

The conserver daemon has another feature of console management that is also critical to Chiba City. It can log all of the output
of any console to a file or to a process. We wrote a program called chex that monitors the output of each console, looking for
particular strings. Among other things, this lets us know whether a node is rebooting, whether it has panicked, or whether some
other error condition has taken place.

We take advantage of this console monitoring to capture node-specific information such as the node's MAC address. See the
section below entitled "The First Boot Process" for an example of why this is useful.

Low-Level Diagnostics. Some motherboards have the ability to provide useful information about the hardware, such as the
temperature of the node and the fan speed. Some can also control the power of the system.

The nodes that we are using have this ability. Initially, however, this functionality was accessible only if you used a Windows NT
system to monitor the node remotely. Since then, people have created open source software that runs on Linux to manage these
ports.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, we have never taken advantage of this system. It would be nice, but we haven't had time to get to it.

Power Control. We do, however, have remote power control for every component of Chiba City. The power control system works
as follows:

Every computer and network box is plugged into a Baytech power unit. There are, on average, five Baytech units
per town.

The Baytech unit is somewhat like a power strip with an Ethernet port. It's possible to telnet to the Baytech and then
power on, power off, or query the power status of anything plugged into it.

We have a simple tool called city_power that allows a Chiba City administrator to control the power of any device
or set of devices in Chiba City.

The Baytechs are connected to their own network, which is built of very simple Ethernet hubs. We could connect them using the
Chiba City Ethernet, but then, if something went wrong with the network, we couldn't access the Baytechs to reset the Ethernet
devices. The power network is accessible only via the City Mayor.

The power configuration is shown in detail in Figure 20.8.

Figure 20.8: Power infrastructure.

The First Boot Process. To explain how the management tools work together, we give an example. One of the more complicated
scenarios on a cluster is when a node is booted for the very first time. The cluster software needs to be made aware of that
process, and the node needs to get the right operating system. Many people ignore this situation and take care of the details by
hand.

Here is what happens on Chiba City when a completely new node is installed in the cluster:
1. We set a flag in the City Database indicating that this is a new node.

2. The node is installed in the correct spot in the rack and cabled appropriately.

3. We install the correct BIOS in the node. This, unfortunately, is still done manually, although we are looking into a
boot floppy approach that will do the right thing. Among other things, the BIOS is set to boot using PXE, a type
of network booting. This means that on all subsequent power cycles, the node will boot from the network.

4. The node is turned on, and it boots from the network. Some server on the net, usually that node's mayor,
responds with the boot image.

5. The boot code is a Linux boot image that includes LILO and a kernel. LILO is configured to launch and then wait
forever at its boot prompt, occasionally reissuing the prompt.

6. The LILO boot prompt is issued over the serial line.

7. The node's mayor sees the Boot prompt. It knows which node this is because it knows which serial lines it is
watching. Thus, at this point, the mayor knows that it node15 (for example) is waiting to boot.

8. The mayor checks the City Database to see what image should be on that node. It discovers that this is a new
node.

9. Based on this information, it issues a boot command over the serial line to the node, handing it a set of boot
parameters. This command tells the node to boot from the mayor from the Build Image.

10. The node receives the command and boots the Build Image kernel that was transferred back in Step 4.

11. As a part of booting the Build Image, the setup scripts partition the node's disk and install the correct image files.

12. At the end of the Build Image, the node displays certain relevant pieces of information to its console, including
its Ethernet MAC address.

13. The mayor, which is monitoring the console, now knows that this new node has successfully built. Furthermore,
it has the MAC address of that node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14. The mayor updates the DHCP tables on the city mayor with the new MAC address and queues a DHCP restart
request.

15. The mayor updates Citydb with a flag saying that the node has the correct image installed.

16. The node waits for a minute and then reboots. Once again, it PXE boots and loads the boot image from the
mayor. It issues the LILO boot prompt to the serial console and waits.

17. The mayor checks Citydb and notes that this node has already built the correct image onto its local disk. It
issues a "boot from local disk" command to the LILO boot prompt over the serial line.

18. The node boots from the local disk. Among other things, it will send out a DHCP request to get its IP address
and will be sent the correct IP address for the node in that spot of the cluster.

19. After rebooting, the node runs sanity. It installs any modifications necessary for that operating system image.

20. Finally, the node is ready to run. The scheduler notes that the node is up and adds it to the pool of allocatable
resources.

This whole process is long to describe but fast to run. The only slow part is the operating system build in Step 11, when the bits
are being installed on the local disk. That can take 10–15 minutes, with the exact time dependent on the size of the image and the
activity on the network. Once the node has been installed and the BIOS updated, the process requires no intervention from an
administrator.

20.1.4 Chiba City Use

The average user of Chiba City interacts with it just like any other cluster of distributed supercomputer. Consider the following
scenario.

A user logs into the front end node using ssh. She compiles her code on that system, or perhaps copy in precompiled code. If she
wants to test the code on several nodes before submitting a large job, she can choose nodes on the 32 nodes of the cluster that
we refer to as the interactive town. This set of nodes is configured in the same way as the standard computing nodes, but is never
scheduled. It is always available specifically for testing purposes. It's quite possible that two users' codes will conflict with each
other, so it's not useful for performance testing or long-running code. Once she is confident that her code will run successfully, she
prepares her code and her job data to be copied out to the nodes that she will eventually be allocated. She does this by putting
everything together in a directory. Finally, she submits her job to the PBS queue using the qsub command. She can check on the
status of her job with qstat. Eventually she will be assigned a set of nodes for the duration of her timeslot, and her job will be
invoked on those nodes. During this time, she will be able to login to her nodes, which she will want to do if she's running an
interactive job. If there are any errors with her job, she will be notified by e-mail. Once her job has completed or her time is up,
whichever comes first, the datafiles she created are copied back to her home directory on the front end node.

Nonstandard use of Chiba City can entail endless variations of this scenario. A user might arrange to have dedicated access to
the cluster for a long period of time—this requires administrator and, in some cases, management approval. Or a user might have
a custom image to be tested and then arranged for installation on that user's nodes. Some people use the storage nodes as part
of I/O experiments. Others use the visualization nodes, sometimes in conjunction with the jobs on the computing nodes, and other
times as a completely separate activity.

Currently, we have about one hundred active users on Chiba City. We expect to add several hundred more in the next few months
as a result of changes in the allocation policies on some of our other supercomputers.

Since its installation, Chiba has been used for many different types of activities. Notable among these are the following:

Monte Carlo simulations in nuclear physics

Computational optimization

Parallel and numerical library development

Distributed supercomputing development

Communication library development

File system development

Astrophysical simulation

Scalable system software development

Visualization

Genomics

Automated reasoning

Climate modeling of both Earth and Mars

Molecular dynamics simulations

Scalability testing of open source tools

A detailed description of these projects is beyond the scope of this chapter; this list is merely meant to give a feel for the different
types of use that the cluster enables.

20.1.5 Final Thoughts on Chiba City

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case study, we have described in detail the kinds of issues that we encounter when designing, building, and running a
multipurpose large cluster. We hope that the topics discussed here will be useful to others who may find themselves in a similar
situation.

Lessons Learned
This entire case study is about lessons that we've learned while running Chiba City. We still have a few that are worth mentioning.

It is surprisingly difficult to run a job on the entire cluster. Most users don't care about this, but management would
always like to confirm that a job has used every possible resource on the system. It seems like there is always at
least one node that is down for hardware maintenance, or one network interface this is flaky, or a node that just isn't
in the mood to play. We have actually run jobs on all of the nodes using both types of network, but these jobs take
focused effort and are relatively rare.

In a cluster, the hardware gets stressed beyond what any vendor expects because it is always being used,
sometimes in ways that the designer never anticipated. We've had bad AGP and PCI slots, large-scale memory
problems, fan lossage, bad cables, and everything else. Furthermore, when buying commodity hardware, one gets
commodity quality. This hardware doesn't take abuse the way high-end supercomputing equipment does. It's a very
good idea to invest in a three-year hardware maintenance option.

When running a cluster like Chiba City, it is essential to have at least one person who lives in the Linux world. Two
or three people is even better. Those people should follow the important Linux mailing lists, track bugs, and follow
discussions on Web sites. The success of the cluster often rides on figuring out exactly which version of the kernel
works best with which set of applications, or knowing that a particular feature will be available (or removed) in a few
weeks.

Future Directions for Chiba
Chiba City has largely been a success. We would like for some portions of the system, notably the scheduler and the I/O system,
to be more reliable and functional, but despite these failings, good science has been accomplished on the computer, both in the
realm of computer science and in scientific simulation. The model that we use to manage and operate the cluster has worked well
and shows every sign of scaling to a much larger cluster. We have a number of plans for software modifications to improve the
system and to support new capabilities.

In the near future, the scalability work that has been started on Chiba City must continue to expand to larger and larger testbed
systems. Many open scientific questions require systems that can deliver sustained petaflops of computation. It is not yet clear
what the path to building a petaflop system is, but it is very likely that such a computer will be built from many tens or hundreds of
thousands of individual computing components. As a community, in order to build such a system, we must have systems software
that can operate a machine of that scale, and we must have algorithms and applications that can make reasonable use of it. Thus,
while the computing industry forges ahead with building better and faster processors, we must have a strategy for connecting
them together and making them run well. Scalability testbeds such as Chiba City are an important part of this plan, and we hope
that research and activities in this space will continue to be expanded.

For more information on Chiba City and the software used to drive it, see www.mcs.anl.gov/chiba.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2 Jazz—A New Production Cluster
In 2002, Argonne determined that the Laboratory had a need for a production computing facility that would support the computing
needs of scientists and engineers around the Lab. The Lab's Computational Science Advisory Committee discussed and studied
the situation in detail and determined that a Linux cluster would be the appropriate way to satisfy the majority of the Lab's scientific
computing requirements. Unlike Chiba City, which was limited to computer scientists and collaborators, this new cluster would be
available to anyone at the Lab.

Thus, in October, we installed "Jazz," a 350-node Linux cluster purchased from Linux NetworX. Jazz achieved just over a teraflop
on sustained Linpack benchmarks, putting it in the top 50 of the world's fastest supercomputers (or at least those that had been
registered on the list). Although our goal had only been to install a cost-effective and efficient mid-range computer, it was
interesting to see what it took to land towards the top of the top 500 list. A far more interesting fact was that we had a lot of
company. The entire list, including the upper echelon, was loaded with clusters running Linux. Since we had installed Chiba City a
mere three years earlier, the world of high-end computing had bought into (or been consumed by) Linux clusters in a serious way.

20.2.1 Different Worlds

While our plans for Jazz were built on our experience with Chiba City, we found that designing, installing, and running Jazz was
quite different for a number of reasons.

First, the entire field of cluster computing on Linux had matured substantially. It was now possible to go to many different vendors
and request some flavor of Linux cluster without first explaining what Linux was, why we wanted it, and how clusters worked.
Vendors had experience with installing clusters. They had custom software suites, often built on open-source tools, for managing
clusters.

That said, we found that buying a Linux cluster was still more complicated than buying an IBM SP or an SGI Origin 2000 simply
because of the range of choices in hardware, interconnect, storage and software. One might say that buying an established
supercomputer is a lot like buying a condo—you don't have any choice about where the walls go, but you choose your own
furniture. In contrast, buying a Linux cluster today is like buying a house that hasn't been built yet. You sit down with the blueprints
and the architect and discuss where to put toilets and whether or not to have a fourth bedroom.

A second reason that the experience was different was simply because the hardware had changed substantially in three years.
Rather than looking at 500 MHz Pentium IIIs in a 2U case, we were looking at 2.4 GH Pentium IVs in a sub-1U case. This, of
course, is something we've all grown to expect, but it's still entertaining. While the impact of Moore's Law is one of the main
economic forces behind the technology industry, one could still make an argument that it's always better to delay your purchase
by six months, when everything will be faster and cheaper.

Finally, and perhaps most importantly, Jazz was different then Chiba City because it was built for a different purpose.

20.2.2 Mission and Design

Jazz was designed from the outset to support serious production computing for a wide-range of users, namely the Argonne
scientific computing community. Argonne is somewhat like a university campus in that it is divided into departments (or divisions,
in Argonne's case) that operate relatively independently. For example, there's a chemistry division, a physics division, and a lot of
engineering divisions. Overall there are over thirty different divisions at Argonne, and Jazz was meant to be a technical computing
resource for all of them.

Therefore, unlike Chiba City, Jazz was meant to be a "production" resource. It needed to perform well on a mix of code. It needed
to be stable. We needed to make sure we had a happy user community, so we had to be helpful, answer questions, solve
problems, and not crash the machine by trying out the latest Linux kernel to check out cool new features.

The need to be a production facility impacted the design in a number of ways:

As part of the initial planning, we carried out a lot of benchmarks and testing on available systems using code that
we expected to use on the system. We verified what we already knew—in most cases, application performance was
directly related to the performance of the memory system. Anything that could be done to avoid memory
bottlenecks and speed up memory was likely to be worth it. As a result, we decided to use nodes with just one CPU
—the last thing we needed were multiple CPUs fighting over the memory bus, even if the price/performance ratio
looked better on multiple CPU systems. We also decided to go with the best memory technology that we could
afford. Benchmarks with Rambus were much better than the same tests with slower memory.

We also knew from a survey of the application community that many of the applications were bound by the size of
physical memory on a node. Thus we needed to try to maximize the amount of memory within budget constraints.

Although we didn't expect every user to be running code that relied heavily on communications performance, we
knew that many would, so we planned again on having a high-performance interconnect for the cluster.

As described earlier, we knew from our experience with Chiba City that a global file system was essential. We knew
that we had to have some way of having exactly the same file namespace on all nodes, even if the I/O performance
on those files were bad.

We also knew that the highest-performing code required fast I/O but could live with variable reliability for the sake of
speed. Thus we expected that we would likely to have to have at least two different file systems installed (like our
older SPs had had): a slow, global, reliable home file system, and a fast parallel file system.

We'd had no end of troubles with OpenPBS on Chiba City, so we decided to use a more current resource manager.
After surveying the options, we ended up buying PBS Pro.

We knew that the system would require more human effort to support applications and operate in production mode
for a large community than a cluster for a small number of users or purposes. Thus we planned on hiring four or five
system administrators and application engineers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With a lot of users, and when allocating time on the machine to projects, the account and project system becomes
a critical part of the infrastructure. We therefore anticipated that the time for "early user mode" would take longer
than on previous systems, as we would be getting the allocation system working during that time.

Being production means being fairly consistent. Because we expected to keep the software installation on the
computing nodes relatively constant (as compared to Chiba City, where we load new images continually), we didn't
feel that we needed as substantial a management infrastructure. Also, we had carried out a lot of testing of the
management functionality of Chiba City, as reported in our team's paper at Cluster 2002 [36]. So, while Jazz still
has mayors, it has many fewer than Chiba City did. The irony here is that in order to have a production facility, we
felt that we could have fewer management systems, but this has turned out to be true.

Finally, we needed the hardware on Jazz to be supported by a vendor. As part of the purchase, we specified that
everything needed to have support for at least three years.

As a result, by knowing that we had to run a production facility and understanding the characteristics of the applications fairly well,
we had a pretty solid definition of our requirements. In short, we had to have:

single-CPU nodes with a lot of fast RAM

a fast interconnect

a rock-solid, but not necessarily fast, global file system

a fast parallel file system

reliable systems software

good vendor support

This was the list that we took to the cluster vendors. From there, the question was how best to maximize the cluster parameters
within our budget.

20.2.3 Architecture

The system that we ended up purchasing is illustrated in Figure 20.9. We purchased this cluster. Jazz, in its entirety from Linux
NetworX.

Figure 20.9: Argonne's Jazz Cluster

The cluster consists of:

350 computing nodes. Each node has one 2.4 GHz Pentium IV. Half of the nodes have 2 GB of RAM, half have 1
GB. We ended up using DDR RAM for budget reasons after confirming that the performance was sufficient.

4 login nodes. These nodes are identical to the computing nodes, except that each has two CPUs and 2 GB of
RAM.

8 home directory servers and 10 TB of FibreChannel disk. For home directory service, we went with a
recommendation made by Linux NetworX and used a combination of GFS and NFS. GFS is a file system product
from Sistina. Each of these eight servers has joint access to a large GFS file system shared between them. Each
then provides access to that file system to one eigth of the cluster using NFS. In this way, we avoid the scaling
problems of NFS while maintaining consistency across all of the NFS servers.

8 PVFS servers and 10 TB of JBOD disk. For parallel I/O, we use eight servers running the Parallel Virtual File
System exported to the entire cluster. Most users of this file system access it via MPI-IO interfaces.

8 management nodes. These nodes share a variety of duties including scheduler and job management,
configuration management, monitoring, web services, and so on. As noted above, the management requirements
for Jazz are substially lower than those of Chiba City because we rarely change the configuration of the entire
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Myrinet 2000. We selected Myrinet for the fast interconnect for the system because it was proven to scale to
clusters this size (and larger), performs well, and wasn't overwhelmingly expensive. We seriously considered
Gigabit Ethernet as an alternative, but the cost of well-performing GigE switches is still prohibitive, and the reliability
of some GigE NICs under Linux is a problem.

Fast Ethernet. Even with Myrinet, we felt that we need a rock-solid network for management and applications to fall
back onto.

For management purposes such as remote power control and console management, Linux NetworX provided a proprietary
solution—the ICEbox, which fulfilled the functionality of a collection of similar hardware that we'd found incredibly handy on Chiba
City.

20.2.4 Installation

It's interesting to understand precisely what you're getting when you buy a cluster. The vendors are striving to be able to provide a
turn-key system, but the definition of "turn-key" changes rather dramatically between a cluster that runs one application and a
cluster than runs hundreds. We didn't expect to have a system that worked with no modification, nor did we expect to be handed
350 computers with no operating system, but we weren't sure where in the middle things would land.

On the hardware side, having installed a 256-node cluster ourselves, we had no particular desire to build a 350-node cluster.
Fortunately, this was one of the many things that the vendors had taken on, and learned to do quite well, since we'd had the Chiba
City barnraising. Linux NetworX installed Jazz without substantial help from us, although we needed to be involved from time-to-
time to handle power attachments, floor space issues, cable routing decisions, and so on.

On the software side, it turns out that it would have been possible for us to stay similarly uninvolved. We would have ended up
with Linux installed on every node, an environment for parallel computing that had MPI and PVM installed, the global file systems
built, and Linux NetworX's "ClusterWorX" management software that could be used to build and configure nodes. This was
substantially more than we could have imagined when installing Chiba City three years earlier, and was quite excellent in and of
itself.

However, to run a production computing environment, we had to do quite a lot more work, such as installing extra software,
building the user environment, building the allocation mechanisms, installing bug and request tracking systems, and adding our
favorite set of management tools. Fortunately, the Linux NetworX folks understood that we were in a rush, so while they were
working on software installs, we had joint access to the machine. We ended up working together on a lot of the detailed
configuration.

As it turns out, it was very important for us to be involved during the software installation, because we needed to become very
familiar with the configuration of the machine as a part of taking ownership of it. Also, there were several situations where we were
able to ask the vendor to do things differently then they normally would have in order to accomodate our specific needs.

20.2.5 Software Environment

While it's not feasible to list the entire set of software packages that are installed on the cluster in this space, it is useful to
describe the more essential tools available to users of the system.

This list of software refers to the software installed on the login nodes, which is where the users do the bulk of their work. The
compute nodes have fully-populated Linux installations and all of the tools that might be necessary to have on compute nodes
(such as libraries) but don't necessarily have every tool installed on them.

The Base Installation
RedHat 7.2

All the tools and languages you'd expect in a reasonable UNIX-based environment including X11, Perl, Python, the
GNU tools, CVS, Bitkeeper, and so on.

The Development Environment

ABSoft Compilers MPICH - multiple versions

NAG Compilers and Libraries ROMIO

Intel Compilers and Libraries MPICH-2

Portland Group Compilers Globus

Totalview Columbus

IDL NetCDF

Matlab NCAR

Gaussian PETSc

StarCD ScaLAPACK

Gnu compilers

20.2.6 Going Production

When you buy a large machine from a vendor, one of the first major transition points in the lifecycle of that system is when the
machine is turned over to you from the vendor. In our case, this happened after Linux NetworX had finished building the machine,
installing the base software with a number extensions, configuring the file systems, teaching us about the tools that they delivered,
and passing a number of tests confirming that the machine was operating correctly. While it was great to finally get to this point,
our work was really just starting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If this machine were going to run only a few applications or support only a few users, we could have started doing so immediately.
Enough of the software was installed and enough of the system configured that we could have started using it for parallel jobs at
this point. However, in order to turn it into a multi-user, multi-project resource, we had quite a few more things to complete.

For the next two months, we kept the system in "Configuration and Testing mode". During this time, we installed the majority of
the programs listed in the previous section. We installed the Maui scheduler to work in conjunction with PBS Pro, and spent a lot
of time configuring those. We began to create web pages with information for the user community. We put in an initial user
account creation system, and began to slowly add users to the system. These were users who we knew would be comfortable on
large and potentially unstable machines, users who could put the machine through its paces and give us lots of feedback on how it
was working, what was missing, and so on. By the time we were done with this phase of testing, we probably had about ten user
accounts on the system.

Once the system was relatively stable, we entered "Early User mode". At this point, we added accounts for anyone who asked,
with the caveat that we were still specifically asking for feedback and that the machine might be taken down at any point to fix
problems or reconfigure things. The bulk of our own effort at this point, beyond responding to user issues, was to focus on the
account creation system and the allocation tracking system. (That said—responding to user issues took a huge amount of time.)
In our division, we already have a comprehensive user account management system. We extended it to include the Jazz system,
and then created web pages so that anyone at the Laboratory could easily request an account specific to Jazz and use those web
pages to manage their account.

Like most multi-user production facilities, we planned for Jazz to be formally allocated. We had an allocations committee that
would be making decisions about which projects at the Laboratory would be able to use the system and what percentage of the
machine would be available to each project. The committee met several times to discuss allocation and scheduling policies, and
our job was to make sure that those allocation policies could be implemented on the system. We used the "QBank" software [92],
created by Pacific Northwest National Laboratory, to manage allocations.

After three months of Early User Mode, the cluster was stable, the majority of requested software was configured and installed, we
had a fairly good start at the web-based documentation, and the account and allocation system was working. We were ready to
shift formally into production mode.

We held a ribbon-cutting ceremony to mark the occasion, at which the Laboratory Director, Dr. Hermann Grunder, spoke and
helped cut a ceremonial ribbon cable.

From this point onwards, we opened up the cluster to access by the entire Laboratory community and began to track allocations.
Based on the policies set the allocations committee, any user at Argonne who got an account would be given 1000 CPU hours of
initial startup time. To compute for longer than that, a user would need to submit a project request that explained the project in
fairly substantial detail. The committee would then determine how much time on the machine to allocate—times of 20,000 hours
and more are currently typical. Although we have the option of stopping any project that has run beyond its allocation, we're
currently taking the more friendly approach of warning those projects that they're exceeding their allocated time and discussing the
usage of the system with the allocations board. As the user community and usage on Jazz expands, this will no doubt become a
more complex issue.

20.2.7 Jazz Status and Futures

Jazz is now really at the beginning of its life cycle. At the time of this writing, it has been in production mode for only a few months.
Use of the cluster is expanding regularly, and we will begin outreach efforts across the Laboratory shortly.

Response from the user community has been exceptionally positive. The individual nodes are fast and responsive—the Pentium
IVs and the memory system compare well to all other systems currently out there, although this will of course change as new
technology is rolled out. The entire cluster is solid and reliable.

Although we are still early in the project, we can identify a number of essential bits of information that we have learned or
confirmed:

Both GFS and PVFS are working well. Having a global file system is proving to be just as critical as we had thought
it would be.

We're generally happy with the way that the vendors have embraced Linux clusters. Designing and purchasing this
system was far simpler then what we went through with Chiba City, and the vendor handled installation and
followup support quite well. Obviously, the experience of others in this case will depend on who their specific vendor
is, but the point here is that there are now a number of professionals in the business who are doing a good job of
this.

That said, these clusters are still not simple. We've had some very serious headaches with the networks, the file
systems, the schedulers, and in configuring the environment. We've overcome all of these (for the moment), but the
situation is not yet optimal, and is nowhere near turn-key.

Adequate and experienced staffing is essential. We have had the equivalent of three system administrators working
full-time (and then some) on this project since its inception. Among the staff are people with experience on large-
scale parallel computers, strong Linux backgrounds, and networking skills. As the user community grows, we are
adding people who can focus on supporting applications with porting, parallelizing, and tuning code, as well as
running seminars and tutorials. This is essential to the success of a production facility for a large user community.

We hope that Jazz, in its current configuration, will meet the needs of the Argonne computing community for the next three years.
Our development and expansion focus during that time will be on application support and capabilities. If Jazz is operating correctly
as a production facility, it will simply continue to work smoothly through the efforts of the systems administration team. Based on
our experiences thus far with Jazz and with Linux clusters in general, we're confident that this goal is within reach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21: Conclusions
William Gropp and Ewing Lusk

In this book we have tried to collect the information needed to build, use, and operate a Beowulf computer. The chapter authors
have described the key issues and technologies associated with their individual topics, and then gone on to provide details
associated with the current state of the art. We hope that this combination will not only guide you in making near-term decisions
but also enable you to make informed choices in the future regarding hardware and software use with clusters.

21.1 Keeping Up To Date
In preparing this second edition of Beowulf Cluster Computing with Linux, nearly all authors were reminded how quickly software
evolves by the number of changes in the details of installing and using the software packages described here. Fortunately, it is
primarily the details that change; the concepts either remain the same or evolve much more slowly.

A number of approaches exist for keeping up to date. Nearly all of the software packages and some of the hardware items
described in this book have web sites. We have tried to include as many as possible explicitly; if we haven't included the site you
need, Google (www.google.com) is your friend.

The Beowulf mailing list (<beowulf@beowulf.org>) is an active, ongoing discussion of all Beowulf-related topics, for clusters both
large and small. A number of specific technology areas also have newsgroups, such as comp.parallel,
comp.parallel.mpi, and comp.parallel.pvm. Specific software often has its own mailing list and/or web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2 Future Directions for Clusters
It seems likely that Beowulf-style cluster computing will continue to grow, due to considerations of both supply (costs will continue
to decrease, driven by commodity markets) and demand (more applications will come into existence and evolve to exploit
parallelism to meet their computing resource requirements). As the use of clusters grows, we will see even more "integration
vendors" that bundle pre-assembled hardware with increasingly professional software to provide turnkey solutions. At the same
time, those seeking the most economical solutions will still be able to create their own quite capable parallel computers from
components available at the nearest mall and software they can download for free. A wonderful thing about Beowulf computing is
that the same technology underlies both approaches.

21.2.1 Clusters Get Faster

The amazing increases in CPU clock rates will continue, at least for the next few years, following the "doubling every 18 month"
prediction of Moore's law. However, Moore's law, which is really an observation about the rate at which the size of features such
as a transistor shrink on silicon wafer, cannot hold true indefinitely. If nothing else, feature sizes are rapidly approaching the
dimensions of a single atom, where no further reduction will be possible (even if a gate can be built with a single atom). One
possibility is to increase the CPU power by using parallelism; a number of research groups are already looking at such
approaches. In some ways, these CPUs become little clusters. Other approaches look at different architectures, concentrating on
a memory-centric, rather than processor-centric, computing model. Whatever the approach taken, we can expect that CPU's will
continue to rapidly increase in performance.

The development that would have the greatest impact on the range of applications that can exploit cluster computing would occur
if interconnection networks began behaving according to Moore's Law. So far, this has not been historically true, but recent
developments are encouraging. The early parallel computer networks started at relatively low speed. (The Intel iPSC 1 used the
original Ethernet to connect its nodes based on the Intel 80286 CPU.) There was a rapid increase through the time of the Intel
Paragon and the ASCI Red machine, which had more than 100 MByte/second bandwidth between nodes. It is unfortunate that
these early networks were never commoditized into high performance system area networks (the one exception being Myrinet,
which grew out of Chuck Seitz's pioneering work with the Cosmic Cube, a machine that can be viewed as the ancestor of all
cluster computers because it used commodity CPUs as the building block).

One solution to the problem of commodity, multi-vendor high-performance networking may be Infiniband. The original goals for
Infiniband included doubling bandwidth at the same rate as Moore's law—every 18 months. Unlike latency, which is constrained
by the speed of light to no less than about 1 ns/foot (3 ns/meter), increasing bandwidth is an engineering problem. Infiniband
vendors are just beginning to sell large-scale switches this year. Time will tell whether Infiniband achieves its promise and
provides a suitable cost-effective cluster network. Software will also be required; fortunately, support for MPI, both as part of the
MPICH project and MVAPIBCH (nowlab.cis.ohio-state.edu/projects/mpi-iba), is already available.

21.2.2 Clusters Get Larger

This year (2003), multiple Linux clusters are being installed with more than a thousand nodes each. Even larger, "Beowulf-like"
systems are coming soon, such as the 10,000-CPU Red Storm machine from Cray and the 64,000-CPU BG/L from IBM. These
will be among the very most powerful computers in the world when they are installed. While you can't buy all of their components
at the corner electronics store, many of the topics covered in this book are relevant to their design, system software,
programming, use, and management. And in the future, the technology used in these machines may become more generally
available.

One interesting open-source effort is the Scalable Systems Software project (www.scidac.org/ScalableSystems). In it a number of
groups are collaborating on the development of a component architecture, with well-defined interfaces expressed in XML, for the
systems software (schedulers, process managers, monitors, accounting systems, etc.) for large systems. The component
structure makes it possible for alternate component implementations to evolve individually and interact with other, separately
developed, components.

21.2.3 Clusters Get Smaller

Nodes developed for the game market have become capable enough to run Linux and thus serve as cluster building blocks. A
number of sites have assembled clusters from Sony Playstation 2's. Continuing downward in size, as we noted above, increasing
densities for transistors on a chip are leading in the direction of clusters that fit on a single chip. You can already buy small
clusters that are in a single PC tower; desktop clusters will become common-place in the next few years. And someday soon, you
may have a cluster in your PDA or cell phone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.3 Learning More
Although we hope we have done a lot more than "scratch the surface" of Beowulf-style computing in this book there is of course
much more to learn in every area, and keeping current in any area of computing remains a challenge. We recommend the reading
list in Appendix B, which includes some other books in this series from MIT Press. Suggestions for further study are also given in
individual chapters.

To keep abreast of the latest research in cluster computing, you might consider attending any of the several annual conferences
and workshops devoted to related topics. Examples include the IEEE Cluster Conference (all aspects of clusters),
Supercomputing (both research papers and vendor exhibits, especially high-end machines), EuroPVM/MPI (both applications and
implementation research on MPI and PVM), and the multiple conferences devoted to Linux and to parallel computing in general.

Now that you have finished this book, it is time to put your new knowledge into practice. Go forth and compute!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A: Glossary of Terms

B-I
Beowulf-class system

commodity cluster employing personal computers or low-cost SMP servers to achieve excellent price-
performance initially developed by the Beowulf project at the NASA Goddard Space Flight Center

bit
the fundamental unit of information representing a two-state value; a digital circuit capable of storing a two-state
value

BLAS
basic linear algebra subroutines

bps
bits per second, a unit measure of data transfer rate

byte
a commonly addressed quantity of digital information storage of eight bits reflecting one of 256 distinct values

cluster
in the general sense, any interconnected ensemble of computers capable of independent operation but employed
to service a common workload

commodity cluster
a cluster of commercial computing nodes integrated with a commercial system area network

constellation
a cluster of large DSM, SMP, or MPP computing nodes incorporating more microprocessors per node than there
are nodes in the system

COW
cluster of workstations; an early project at the University of Wisconsin

DSM
distributed shared memory multiprocessor, tightly coupled cache coherent multiprocessor with non-uniform
memory access

EPIC
Explicitly Parallel Instruction Computing

Ethernet
the first widely used and truly ubiquitous local area network operating at 10 Mbps

Fast Ethernet
a cost effective local area network based on the original Ethernet protocol that has become very popular with low
end Beowulf-class systems; providing 100 Mbps

Gigabit Ethernet
a LAN that is the successor of Fast Ethernet providing peak bandwidth of 1 Gbps.

GNU
a project resulting in a number of open source and free software tools including the GNU C compiler and Emacs

GPL
GNU Public License; a legal framework protecting open source software

HDF
Hierarchical data format, both a file format and high level interface for I/O access in both sequential and parallel
applications

HPL
High Performance Linpack

Infiniband
a system-area network designed to provide high performance and to provide a path for rapid improvement in
network bandwidth.

ISA
Instruction Set Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L-P
LAN

Local Area Network; a network employed within a single administrative domain such as a laboratory or office
complex, connecting PCs and workstations together to file servers, printers and other peripherals, and to the
Internet. Low cost LAN technology has been adopted to provide Beowulf-class systems with inexpensive
moderate bandwidth interconnect

LED
Light Emitting Diode

Linux
the dominant Unix-like cross-platform operating system developed by a broad international community enabled by
an open source code framework

Mbps
1 million bits per second data transfer rate or bandwidth

Mega
prefix meaning 1 million or in the case of storage 220

message passing
An approach to parallelism based on communicating data between processes running (usually) on separate
computers.

metadata
Used in the context of file systems, this is the information describing the file, including owner, permissions, and
location of data

MPI
message passing interface, a community derived logical standard for the transfer of program messages between
separate concurrent processes

MPP
Massively Parallel Processors

MTBF
Mean Time Between Failure

Myricom
vendor, distributor, and developer of the Myrinet network for commodity clusters

network
the combination of communication channels, switches, and interface controllers that transfer digital messages
between Beowulf cluster nodes

NIC
network interface controller; usually the combination of hardware and software that matches the network transport
layer to the computer node of a cluster

NOW
network or workstations, and early influential commodity cluster project at UC Berkeley

PC

See Personal Computer or PC.

PCI
the dominant external interface standard for PCs and workstations to support I/O controllers including NICs

Personal Computer or PC
mass market microprocessor based computer employed by both commercial and consumer users for everything
from games to spreadsheets and internet browsers; emphasizing performance/cost for maximum market share,
these nodes are the basis for low cost Beowulf-class clusters

PVFS
Parallel virtual file system

PVM
Parallel Virtual Machine, a library of functions supporting an advanced message-passing semantics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Q-W
QSW

high bandwidth network employed in very large clusters, specifically the SC series developed by Compaq

Quadrics
commercial vendor of networking hardware and software.

See also QSW.

RISC
Reduced Instruction Set Computer

ROMIO
Portable implementation of MPI-IO interface (not an acronym)

RWCP
major Japanese initiative to develop robust and sophisticated cluster software environment

SAN
System Area Network; a network optimized for use as a dedicated communication medium within a commodity
cluster

Scheduler
a software tool which is part of the node operating system or system middleware that manages the assignment of
tasks to cluster nodes and determines the timing of their execution

SMP
Symmetric MultiProcessor, tightly coupled cache coherent multiprocessor with uniform memory access

SSE
Streaming SIMD Extensions

WAN
Wide Area Networks used to connect distant sites, even on a continental scale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B: Annotated Reading List
This appendix contains an annotated reading list of books and papers of interest to builders and users of Beowulf clusters.

Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy White, editors.
Sourcebook of Parallel Computing. Morgan Kaufmann, 2003. A collection of chapters written by many of the leaders in
the field of parallel computing, including overviews of parallel computer architecture, programming models, algorithms.
Also included are descriptions of applications that have successfully used parallel computing.

Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995. Also at: http://www.mcs.anl.gov/dbpp/.
A general introduction to the process of creating parallel applications. It includes short sections on MPI and HPF.

William Gropp,Steven Huss-Lederman,Andrew Lumsdaine,Ewing Lusk,Bill Nitzberg,William Saphir, and Marc Snir.
MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998. An annotated
version of the MPI Standard; this contains additional examples and discussion about MPI-2.

William Gropp,Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message
Passing Interface, 2nd edition. MIT Press, 1999. A tutorial introduction to the MPI Standard, with examples in C and
Fortran.

William Gropp,Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, 1999. A tutorial introduction to the MPI-2 Standard, with examples in C and Fortran. This
is the best place to find information on using MPI I/O in applications.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. PTR Prentice Hall, 2nd edition, 1988. The
original book describing the C programming language.

John M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann, 2001. A thorough introduction to
parallel I/O including MPI I/O and higher-level libraries such as HDF.

Evi Nemeth,Garth Snyder,Scott Seebass, and Trent R. Hein. Unix System Administration Handbook. Prentice Hall
PTR, 3rd edition, 2001. A comprehensive and practical book on Unix system administration, it covers all major
varieties of Unix, not just Linux.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997. A good introductory text on parallel
programming using MPI.

Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel Computing, 2nd ed. Prentice Hall,
Englewood Cliffs, NJ, 1995 edition, 1998. A delightful book advocating clusters for many problems, including for
commercial computing. It has nice sections on parallel programming and (as part of his argument for clusters) a good
discussion of shared-memory systems and the issues of correctness and performance that are often brushed under
the rug. See Pfister's annotated bibliography for more books and articles on clusters.

Marc Snir,Steve W. Otto,Steven Huss-Lederman,David W. Walker, and Jack Dongarra. MPI—The Complete
Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998. An annotated version of the MPI-
1 Standard, it contains more examples than the official copy and is a good reference on MPI.

Thomas L. Sterling,John Salmon,Donald J. Becker, and Daniel F. Savarese. How to Build a Beowulf. MIT Press,
1999. The original and best-selling Beowulf book. Includes a discussion of building and testing Beowulf node
hardware.

W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading, MA, USA, 1992. A
thorough and highly readable reference on programming under Unix.

W. Richard Stevens. UNIX Network Programming: Interprocess Communications, volume 2. Prentice-Hall, Upper
Saddle River, NJ 07458, USA, second edition, 1998. A companion to Stevens' excellent book on sockets and XTI, this
book covers POSIX and System V interprocess communication mechanisms including shared memory, remote
procedure calls, and semaphores.

W. Richard Stevens. UNIX Network Programming: Networking APIs: Sockets and XTI, volume 1. Prentice-Hall PTR,
Upper Saddle River, NJ 07458, USA, second edition, 1998. An excellent reference for network programming under
Unix; it provides a highly readable and detailed description of all aspects of Unix socket programming.

David Wright, editor. Beowulf. Penguin Classics, 1957. A highly regarded translation (into prose) of the Beowulf Epic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C: Annotated URLs
Below is a sampling of URLs that are helpful for those building or using a Beowulf. This is not an exhaustive list, and we
encourage the reader to browse the Web for other sites. A good place to start is the general Beowulf Web sites.

C.1 General Beowulf Information
www.beowulf.org: The original Beowulf Web site. See also the Beowulf mailing list at
www.beowulf.org/mailman/listinfo/beowulf.

beowulf-underground.org: The Beowulf Underground provides "unsanctioned and unfettered information on
building and using Beowulf systems." It is a site that allows the Beowulf community to post brief articles about
software, documentation, and announcements related to Beowulf computing. Each article includes links to Web
sites and downloads for the various items. A separate commercial and vendor area keeps free software well
delineated. Moderators work to keep the material brief and on topic and to prevent abuses. This is the one stop for
all things Beowulf.

dsg.port.ac.uk/sigwulf: The special interest group (SIG) on Beowulfs. Provides material material for
teaching courses on cluster computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2 Node and Network Hardware
www.cs.virginia.edu/stream: The STREAM Benchmark provides a simple measure of the performance of the
memory system on a node. This site also includes results for a wide variety of platforms, from PC nodes suitable for
a Beowulf, to workstations, to supercomputers.

www.tomshardware.com: Aimed at hobbyists building their own computers, this is a good site for general
background on node hardware and includes up-to-date instructions on building your own node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3 Network Security
www.securityfocus.org: An up-to-date, searchable security exploit information service that supplies descriptions,
discussions, solutions, and exploit codes on a per vulnerability basis.

www.cert.org: Very complete, includes vendor responses to vulnerabilities, but holds back vulnerability information
until vendors have had time to respond.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.4 Performance Tools
www.netlib.org/benchmark/hpl: Home of the High Performance Linpack Benchmark

www.mcs.anl.gov/mpi/mpptest: Performance tests for MPI, including a guide for how not to measure
communication performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.5 Parallel Programming and Software
www.mpi-forum.org: The official MPI Forum Web site, contains Postscript and HTML versions of the MPI-1 and
MPI-2 Standards.

www.mcs.anl.gov/mpi: A starting point for information about MPI, including libraries and tools that use MPI and
papers about the implementation or use of MPI.

www.mcs.anl.gov/mpich: Home of the MPICH and MPICH2 implementations of MPI. Download source,
documentation, and Unix and Windows versions of MPI from here. Also check the bug list page for patches and
announcements of releases.

www.netlib.org: A valuable collection of mathematical software and related information.

www.csm.ornl.gov/pvm: PVM home page.

www.mcs.anl.gov/romio: Home of the ROMIO implementation of the I/O chapter from MPI-2. ROMIO is included in
MPICH and LAM but can also be downloaded separately. Information on tuning ROMIO for performance can be
found here.

hdf.ncsa.uiuc.edu: Home of HDF. Included here are I/O libraries; tools for analyzing, visualizing, and converting
scientific data; and software downloads, documentation, and support information.

www.parl.clemson.edu/pvfs: Home of PVFS, a parallel file system designed for Beowulf. This site includes online
documentation, FAQ, source code downloads, mailing lists, developer's area, and research papers about PVFS.

www.cs.dartmouth.edu/pario: Home of the Parallel I/O Archive. This includes a list of projects in parallel I/O, people
working in parallel I/O, and conferences on parallel I/O. Its biggest claim to fame is an extensive annotated
bibliography of parallel I/O resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.6 Scheduling and Management
www.openpbs.org: The OpenPBS site is the official Web site for the open source version of PBS. Maintained by
Altair, it offers downloads of software, patches, and documentation, and it hosts FAQs, discussion lists, searchable
archives, and general PBS community announcements.

www.pbspro.com: Focused on the Professional Version of PBS, the PBS Pro Web site includes software
downloads, documentation, evaluation versions, beta releases of new software, news, and information for the PBS
administrator.

www.supercluster.org: The Supercluster Web site contains documentation for the Maui scheduler and Silver
metascheduler. It also includes cluster-relevant research in areas of simulation, metascheduling, data staging,
allocation management, and resource optimization.

www.scyld.com: The Scyld Web site provides information on the profession version of the Scyld Beowulf product.
Scyld was recently acquired by Penguin Computing (www.penguincomputing.com).

www.cs.wisc.edu/condor: The Condor Project Homepage provides access to software, documentation and reports.

gridengine.sunsource.net: The Grid Engine Web site provides access to software, documentation, mailing lists,
and other resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

References
[1] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilly & Associates, Inc., Sebastopol, CA 95472, 4th edition, 2001.

[2] Stephen F. Altschul,Thomas L. Madden,Alejandro A. Schaffer,Jinghui Shang,Zheng Zhang,Webb Miller, and David J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.,
25:3389–3402, 1997.

[3] Sridhar Anandakrishnan. Penguins everywhere: GNU/Linux in Antarctica. IEEE Software, 16(6):90–96, Nov/Dec 1999.

[4] E. Anderson,Z. Bai,C. Bischof,J. Demmel,J. Dongarra,J. Du Croz,A. Greenbaum,S. Hammarling,A. McKenney,S.
Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.

[5] Thomas E. Anderson,Michael D. Dahlin,Jeanna M. Neefe,David A. Patterson,Drew S. Roselli, and Randolph Y. Wang.
Serverless network file systems. ACM Transactions on Computer Systems, 14(1):41–79, February 1996.

[6] Aztec home page. http://www.cs.sandia.gov/CRF/aztec1.html.

[7] Zhaojun Bai,James Demmel,Jack Dongarra,Axel Ruhe, and Henk van der Vorst. Templates for the Solution of Algebraic
Eigenvalue Problems, A Practical Guide. SIAM, 2000.

[8] Satish Balay,Kris Buschelman,William D. Gropp,Dinesh Kaushik,Matt Knepley,Lois Curfman McInnes,Barry F. Smith, and
Hong Zhang. PETSc web page. http://www.mcs.anl.gov/petsc, 2001.

[9] Satish Balay,Kris Buschelman,William D. Gropp,Dinesh Kaushik,Matt Knepley,Lois Curfman McInnes,Barry F. Smith, and
Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.

[10] Satish Balay,William D. Gropp,Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object
oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in
Scientific Computing, pages 163-202. Birkhauser Press, 1997.

[11] Daniel J. Barrett and Richard Silverman. SSH, The Secure Shell: The Definitive Guide. O'Reilly & Associates, Inc.,
Sebastopol, CA 95472, 1st edition, 2001.

[12] Richard Barrett,Michael Berry,Tony F. Chan,James Demmel,June Donato,Jack Dongarra,Victor Eijkhout,Roldan
Pozo,Charles Romine, and Henk van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia PA, 1994. http://www.netlib.org/templates/.

[13] Luiz André Barroso,Jeffrey Dean, and Urs Hölzle. Web search for a planet: The Google cluster architecture. IEEE Micro,
2003.

[14] David M. Beazley. Python Essential Reference. New Riders Publishing, second edition, 2001.

[15] L.S. Blackford,J. Choi,A. Cleary,E. D'Azevedo,J. Demmel,I. Dhillon,J. Dongarra,S. Hammerling,G. Henry,A. Petitet,K.
Stanley,D. Walker, and R.C. Whaley. ScaLAPACK Users' Guide. SIAM, 1997.

[16] BLAS web page. http://www.netlib.org/blas.

[17] Peter J. Braam. The Lustre storage architecture. Technical report, Cluster File Systems, Inc., 2003.

[18] Tim Bray. Bonnie file system benchmark. http://www.textuality.com/bonnie/.

[19] Ron Brightwell,Tramm Hudson,Arthur B. Maccabe, and Rolf Riesen. The Portals 3.0 message passing interface.
Technical Report SAND99-2959, Sandia Technical Report, November 1999.

[20] Surendra Byna,William Gropp,Xian-He Sun, and Rajeev Thakur. Improving the performance of MPI derived datatypes
by optimizing memory-access cost. Technical Report ANL/MCS-P1045-0403, Mathematics and Computer Science Division,
Argonne National Laboratory, 2003.

[21] B. Callaghan,B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. Technical Report RFC 1813, Sun
Microsystems, Inc., June 1995.

[22] Philip H. Carns,Walter B. Ligon III,Robert B. Ross, and Rajeev Thakur. PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327, Atlanta, GA, October 2000. USENIX
Association.

[23] CERT web site. http://www.cert.org.

[24] Chaco web page. http://www.cs.sandia.gov/~bahendr/chaco.html.

[25] Albert Cheng and Michael Folk. HDF5: High performance science data solution for the new millennium. In ACM, editor,
SC2000: High Performance Networking and Computing. Dallas Convention Center, Dallas, TX, USA, November 4–10, 2000,
pages 149–149, New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. ACM
Press and IEEE Computer Society Press.

[26] Averg Ching,Alok Choudhary,Kenin Coloma,Wei keng Liao,Robert Ross, and William Gropp. Noncontiguous I/O
accesses through MPI-IO. In Proceedings of the Third IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2003), May 2003.

[27] Avery Ching,Alok Choudhary,Wei keng Liao,Robert Ross, and William Gropp. Noncontiguous I/O through PVFS. In
Proceedings of the 2002 IEEE International Conference on Cluster Computing, September 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[28] Douglas Comer. Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture. Prentice Hall, Inc.,
Englewood Cliffs, NJ 07632, 4th edition, 2000.

[29] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya,
editors, High Performance Mass Storage and Parallel I/O: Technologies and Applications, chapter 20, pages 285–308. IEEE
Computer Society Press and Wiley, New York, NY, 2001.

[30] Cray Research. Application Programmer's Library Reference Manual, 2nd edition, November 1995. Publication SR-
2165.

[31] David E. Culler,Richard M. Karp,David A. Patterson,Abhijit Sahay,Klaus E. Schauser,Eunice Santos,Ramesh
Subramonian, and Thorsten von Eicken. LogP: towards a realistic model of parallel computation. ACM SIGPLAN Notices,
28(7):1–12, July 1993.

[32] I. S. Dhillon. A new O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. PhD thesis,
Computer Science Division, University of California, Berkeley, California, 1997.

[33] Chris DiBona,Sam Ockman, and Mark Stone. Open Sources: Voices from the Open Source Revolution. O'Reilly &
Associates, Inc., 1999.

[34] Jack Dongarra. Performance of various computers using standard linear equations software. Technical Report Number
CS-89-85, University of Tennessee, Knoxville TN, 37996, 2001. http://www.netlib.org/benchmark/performance.ps.

[35] Jack J. Dongarra,Iain S. Duff,Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems on Vector and
Shared Memory Computers. SIAM, Philadelphia, 1991.

[36] R. Evard,N. Desai,J. Navarro, and D. Nurmi. Clusters as large-scale development facilities. In Proceedings of the 2002
IEEE International Conference on Cluster Computing, September 2002.

[37] FFTW web page. http://www.fftw.org.

[38] Fluent web page. http://www.fluent.com.

[39] G. C. Fox,S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrix multiplication. Parallel Computing,
4:17–31, 1987.

[40] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. 1998 IEEE Intl.
Conf. Acoustics Speech and Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[41] The galley parallel file system. http://www.cs.dartmouth.edu/~dfk/nils//galley.html.

[42] Gaussian web page. http://www.gaussian.com.

[43] Al Geist,Adam Beguelin,Jack Dongarra,Weicheng Jiang,Bob Manchek, and Vaidy Sunderam. PVM: Parallel Virtual
Machine—A User's Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, Mass., 1994.

[44] W. Gropp and E. Lusk. Scalable Unix tools on parallel processors. In Proceedings of the Scalable High-Performance
Computing Conference, May 23–25, 1994, Knoxville, Tennessee, pages 56–62, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1994. IEEE Computer Society Press.

[45] W. D. Gropp,D. K. Kaushik,D. E. Keyes, and B. F. Smith. Towards realistic performance bounds for implicit CFD codes.
In Proceedings of Parallel CFD'99, pages 241–248, 1999.

[46] William Gropp,Steven Huss-Lederman,Andrew Lumsdaine,Ewing Lusk,Bill Nitzberg,William Saphir, and Marc Snir. MPI
—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[47] William Gropp,Ewing Lusk,Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the
MPI Message-Passing Interface standard. Parallel Computing, 22(6):789–828, 1996.

[48] William Gropp,Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message Passing
Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[49] William Gropp,Ewing Lusk, and Debbie Swider. Improving the performance of MPI derived datatypes. In Anthony
Skjellum, Purushotham V. Bangalore, and Yoginder S. Dandass, editors, Proceedings of the Third MPI Developer's and
User's Conference, pages 25–30. MPI Software Technology Press, 1999.

[50] William Gropp,Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, 1999.

[51] William D. Gropp and Ewing Lusk. Reproducible measurements of MPI performance characteristics. In Jack Dongarra,
Emilio Luque, and Tomàs Margalef, editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
volume 1697 of Lecture Notes in Computer Science, pages 11–18. Springer Verlag, 1999. 6th European PVM/MPI Users'
Group Meeting, Barcelona, Spain, September 1999.

[52] Michael Hasenstein. The logical volume manager (LVM). Technical Report Whitepaper, SuSE Inc., 2001.

[53] Don Heller. Rabbit: A performance counters library for Intel/AMD processors and Linux.
www.scl.ameslab.gov/Projects/Rabbit/.

[54] J. M. D. Hill,B. McColl,D. C. Stefanescu,M. W. Goudreau,K. Lang,S. B. Rao,T. Suel,T. Tsantilas, and R. H. Bisseling.
BSPlib: The BSP programming library. Parallel Computing, 24(14):1947–1980, December 1998.

[55] James V. Huber, Jr.,Christopher L. Elford,Daniel A. Reed,Andrew A. Chien, and David S. Blumenthal. PPFS: A high
performance portable parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performance portable parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass
Storage and Parallel I/O: Technologies and Applications, chapter 22, pages 330–343. IEEE Computer Society Press and
Wiley, New York, NY, 2001.

[56] Craig Hunt. TCP/IP Network Administration. O'Reilly & Associates, Inc., Sebastopol, CA 95472, 3rd edition, 2002.

[57] S. A. Hutchinson,J. N. Shadid, and R. S. Tuminaro. Aztec user's guide: Version 1.1. Technical Report SAND95-1559,
Sandia National Laboratories, 1995.

[58] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)-part 1: System application program interface (API)
[C language], 1996 edition.

[59] Iperf home page. http://dast.nlanr.net/projects/iperf.

[60] Alan H. Karp. Bit reversal on uniprocessors. SIAM Review, 38(1): 1–26, March 1996.

[61] Jeffrey Kephart and David Chess. The vision of autonomic computing. IEEE Computer, pages 41–50, January 2003.

[62] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High
Performance Mass Storage and Parallel I/O: Technologies and Applications, chapter 35, pages 513–535. IEEE Computer
Society Press and John Wiley & Sons, 2001.

[63] LAPACK software. http://www.netlib.org/lapack.

[64] C. Lawson,R. Hanson,D. Kincaid, and F. Krogh. Basic linear algebra subprograms for FORTRAN usage. Transactions
on Mathematical Software, 5:308–323, 1979.

[65] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Seventh
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 84–92,
Cambridge, MA, October 1996.

[66] J. Li,W.-K. Liao,A. Choudhary,R. Ross,R. Thakur,W. Gropp, and R. Latham. Parallel netCDF: A scientific high-
performance I/O interface. Technical Report ANL/MCS-P1048-0503, Mathematics and Computer Science Division, Argonne
National Laboratory, May 2003.

[67] Xiaoye S. Li. Sparse Gaussian Eliminiation on High Performance Computers. PhD thesis, University of California at
Berkeley, 1996.

[68] Josip Loncaric. Linux 2.2.12 TCP performance fix for short messages. www.icase.edu/coral/LinuxTCP2.html. This web
site is no longer available.

[69] LS-Dyna web page. http://www.lstc.com.

[70] Alex Martelli and David Ascher, editors. Python Cookbook. O'Reilly and Associates, 2002.

[71] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream/.

[72] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. International Journal of Supercomputer
Applications, 8(3/4):165–414, 1994.

[73] Message Passing Interface Forum. MPI2: A message passing interface standard. International Journal of High
Performance Computing Applications, 12(1–2):1–299, 1998.

[74] Jeffrey Mogul and Steve Deering. Path MTU discovery. Technical Report IETF RFC 1191, Digital Equipment
Corporation WRL and Stanford University, November 1990. http://www.ietf.org/rfc/rfc1191.txt.

[75] P. Mucci,S. Brown,C. Deane, and G. Ho. Papi: A portable interface to hardware performance counters.
icl.cs.utk.edu/projects/papi/.

[76] NAMD web page. http://www.ks.uiuc.edu/Research/namd/.

[77] Nastran web page. http://www.mscsoftware.com/products/products_detail.cfm?S=74&PI=7&M=0.

[78] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Computing, 23(4):447–476, June 1997.

[79] Nils Nieuwejaar,David Kotz,Apratim Purakayastha,Carla Schlatter Ellis, and Michael Best. File-access characteristics of
parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[80] Bill Nowicki. NFS: Network file system protocol specification. Technical Report RFC 1094, Sun Microsystems, Inc.,
March 1989.

[81] NWChem web page. http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html.

[82] Emil Ong,Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: A high-performance
implementation. In Jack Dongarra and Yiannis Cotronis, editors, Proceedings of Euro PVM/MPI. Springer Verlag, 2001.

[83] OpenMP Web page. www.openmp.org.

[84] ParMetis web page. http://www-users.cs.umn.edu/~karypis/metis/parmetis/index.html.

[85] Chrisila Pettey,Ralph Butler,Brad Rudnik, and Thomas Naughton. A rapid recovery Beowulf platform. In Henry Selvaraj
and Venkatesan Muthukumar, editors, Proceedings of Fifteenth International Conference on Systems Engineering, pages
278–283, 2002.

[86] PLAPACK web page. http://www.cs.utexas.edu/users/plapack/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[87] Jon Postel, editor. Transmission control protocol. Technical Report IETF RFC 793, Information Sciences Institute,
University of Southern California, September 1981. http://www.ietf.org/rfc/rfc0793.txt.

[88] Kenneth W. Preslan,Andrew Barry,Jonathan E. Brassow,Russell Cattlelan,Adam Manthei,Erling Nygaard,Seth Van
Oort,David C. Teigland,Mike Tilstra, Matthew O'Keefe,Grant Erickson, and Manish Agarwal. A 64-bit, shared disk file system
for Linux. In Proceedings of the Eighth NASA Goddard Conference on Mass Storage Systems and Technologies, March
2000.

[89] Kenneth W. Preslan,Andrew P. Barry,Jonathan E. Brassow,Grant M. Erickson,Erling Nygaard,Christopher J.
Sabol,Steven R. Soltis,David C. Teigland, and Matthew T. O'Keefe. A 64-bit, shared disk file system for Linux. In
Proceedings of the Seventh NASA Goddard Conference on Mass Storage Systems, pages 22–41, San Diego, CA, March
1999. IEEE Computer Society Press.

[90] The parallel virtual file system. http://www.pvfs.org.

[91] Using the parallel virtual file system. http://www.parl.clemson.edu/pvfs/user-guide.html.

[92] QBank: A CPU allocations bank. http://www.emsl.pnl.gov:2080/docs/mscf/qbank-2.10/.

[93] Red Hat Linux 9: Red Hat Linux Customization Guide. Red Hat web site.
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/pdf/rhl-cg-en-9.p%df.

[94] R. Reussner,P. Sanders,L. Prechelt, and M Müller. SKaMPI: A detailed, accurate MPI benchmark. In Vassuk
Alexandrov and Jack Dongarra, editors, Recent advances in Parallel Virtual Machine and Message Passing Interface,
volume 1497 of Lecture Notes in Computer Science, pages 52–59. Springer Verlag, 1998. 5th European PVM/MPI Users'
Group Meeting.

[95] R. K. Rew and G. P. Davis. The unidata netCDF: Software for scientific data access. Sixth Int'l. Conf. on Interactive Inf.
and Processing Sys. for Meteorology, Oceanography, and Hydrology, February 1990.

[96] R. Ross,D. Nurmi,A. Cheng, and M. Zingale. A case study in application I/O on linux clusters. In Proceedings of
SC2001, November 2001.

[97] Robert B. Ross. Reactive Scheduling for Parallel I/O Systems. PhD thesis, Dept. of Electrical and Computer
Engineering, Clemson University, Clemson, SC, December 2000.

[98] Youcef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2003. Originally published by PWS
Publishing Company, Boston, 1996; this edition is available for download from http://www.cs.umn.edu/~saad.

[99] K. Schloegel,G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-constraint graph partitioning. In
Proceedings of EuroPar-2000, 2000.

[100] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large computing clusters. In First USENIX
Conference on File and Storage Technologies (FAST'02), Monterey, CA, January 28–30 2002.

[101] SecurityFocus web site. http://www.securityfocus.org.

[102] S. Shepler,B. Callaghan,D. Robinson,R. Thurlow,C. Beame,M. Eisler, and D. Noveck. NFS version 4 protocol.
Technical Report RFC 3010, Sun Microsystems, Inc., Hummingbird Ltd., Zambeel, Inc., and Network Appliance, Inc.,
December 2000.

[103] Joseph D. Sloan. Network Troubleshooting Tools. O'Reilly & Associates, 2001.

[104] Quinn O. Snell,Armin R. Mikler, and John L. Gustafson. NetPIPE: A network protocol independent performace
evaluator. In IASTED International Conference on Intelligent Information Management and Systems, June 1996.
http://www.scl.ameslab.gov/netpipe/paper/netpipe.ps.

[105] Marc Snir,Steve W. Otto,Steven Huss-Lederman,David W. Walker, and Jack Dongarra. MPI—The Complete
Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

[106] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal., 13:357–385,
1992.

[107] T. Sterling,D. Savarese,D. J. Becker,J. E. Dorband,U. A. Ranawake, and C. V. Packer. BEOWULF : A parallel
workstation for scientific computation. In International Conference on Parallel Processing, Vol.1: Architecture, pages 11–14,
Boca Raton, USA, August 1995. CRC Press.

[108] Thomas L. Sterling,John Salmon,Donald J. Becker, and Daniel F. Savarese. How to Build a Beowulf. MIT Press, 1999.

[109] Hal Stern,Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS. O'Reilly & Associates, Inc., Sebastopol, CA
95472, 2nd edition, 2001.

[110] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley Publishing Company, Reading, MA
01867, 1994.

[111] W. Richard Stevens. UNIX network programming: Networking APIs: Sockets and XTI, volume 1. Prentice-Hall PTR,
Upper Saddle River, NJ 07458, USA, second edition, 1998.

[112] SuperLU web page. http://www.nersc.gov/~xiaoye/SuperLU/.

[113] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays.
Scientific Programming, 5(4):301–317, Winter 1996.

[114] Rajeev Thakur,Alok Choudhary,Rajesh Bordawekar,Sachin More, and Sivaramakrishna Kuditipudi. Passion: Optimized
I/O for parallel applications. IEEE Computer, 29(6):70–78, June 1996.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[115] Rajeev Thakur,William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high performance. In
Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pages 23–32. ACM Press, May 1999.

[116] Rajeev Thakur,Ewing Lusk, and William Gropp. A case for using MPI's derived datatypes to improve I/O performance.
In Proceedings of SC98: High Performance Networking and Computing, November 1998.

[117] Rajeev Thakur,Robert Ross,Ewing Lusk, and William Gropp. Users guide for ROMIO: A high-performance, portable
MPI-IO implementation. Technical Report ANL/MCS Technical Memorandum No. 234, Mathematics and Computer Science
Division, Argonne National Laboratory, May 2002.

[118] C. Thekkath,T. Mann, and E. Lee. Frangipani: A scalable distributed file system. In Proceedings of the Sixteenth ACM
Symposium on Operating System Principles (SOSP), October 1997.

[119] TotalView Multiprocess Debugger/Analyzer, 2000. www.etnus.com/Products/TotalView.

[120] J. L. Traeff,R. Hempel,H. Ritzdoff, and F. Zimmermann. Flattening on the fly: Efficient handling of MPI derived
datatypes. In J. J. Dongarra, E. Luque, and Tomas Margalef, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 6th European PVM/MPI Users' Group Meeting, volume 1697 of Lecture Notes in Computer
Science, pages 109–116. Springer Verlag, 1999.

[121] The treadmarks distributed shared memory (DSM) system. www.cs.rice.edu/~willy/TreadMarks/overview.html.

[122] Trilinos web page. http://software.sandia.gov/trilinos/index.html.

[123] M. Vilayannur,A. Sivasubramaniam,M. Kandemir,R. Thakur, and R. Ross. Discretionary caching for I/O on clusters. In
Proceedings of the Third IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2003), May 2003.

[124] Larry Wall,Tom Christiansen, and Jon Orwant. Programming Perl. O'Reilly and Associates, third edition, 2000.

[125] R. Clint Whaley,Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, January 2001.

[126] Omer Zaki,Ewing Lusk,William Gropp, and Deborah Swider. Toward scalable performance visualization with Jumpshot.
High Performance Computing Applications, 13(2):277–288, Fall 1999.

[127] Robert L. Ziegler. Linux Firewalls. New Riders Publishing, 2nd edition, 2001.

[128] Zoltan web page. http://www.cs.sandia.gov/Zoltan/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Symbols
'/etc/exports', 116
'/etc/fstab', 117
'/etc/group', 101, 108
'/etc/hosts', 101, 107
'/etc/inetd.conf', 63
'/etc/nsswitch.conf', 115
'/etc/passwd', 101, 108
'/etc/resolv.conf', 107
'/etc/services', 63
'/etc/shadow', 108
'/etc/xinetd.conf', 63
'/etc/xinetd.d', 63
'/proc', 52

socket buffers, 127–128

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

A
accept, 183
access control list, 435
accounting, 377

batch jobs, 467
PBS, 467
report, 467

accounts
'/etc/passwd', 101, 108
'/etc/shadow', 108
adduser, 108
home directory, 108
management, 107–108
NIS, 101, 108
root, 107, 108
under Scyld, 486

achievable performance, 5
active target

RMA synchronization, 270
ActiveMural, 540
adaptability, 315, 324
adding cluster nodes, 324
adduser, 108
Altair, 448
Anubis project, 43
ARGOS, 43
Arnoldi method, 344
Arpack, 344
ASCI Red, 580
ATLAS, 276, 348
authentication keys

SSH, 104, 110–113
Aztec, 341

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
backfill, 429, 438
bandwidth, 7

backplane, 80
bisection, 89

bandwidth-delay product, 126
barnraising, 550
Basic Linear Algebra Communication Subprograms, 336
Basic Linear Algebra Subprograms, 336
batch job, 374
batch scheduling, 447
Becker, Donald, 49
Benchmarks

Beowulf Performance Suite, 14
bonnie++, 14
halo communication, 274
HPL, 275
I/O, 14
LMbench, 14
memory system, 14
mpptest, 274
NAS parallel benchmarks, 14
netperf, 14
netpipe, 14
ping pong test, 274
SKaMPI, 275
STREAM, 14
Unix, 14

BeoMPI Web site, 243
beoserv, 475
Beowulf Performance Suite, 14
Beowulf-class system, 583
Berkeley Unix, 41
Big Brother, 362
bind, 182
bioinformatics, 195
BIOS, 30

LinuxBIOS, 31
bisection bandwidth, 89
bisection bandwidth, 82
bit, 583
BLACS, 336, 337
BLAS, 275, 336, 348
block devices, 498
blue screen of death, 44
BlueGene/L, 581
bonnie++, 14
Boot

network, 56
Boot time kernel messages, 360
bproc, 471
bps, 583
Bratu problem, 234
broadcast, 228

root, 228
BSP, 268, 269
byte, 583

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
cable management, 148
cache memory, 6
CAVE, 540
central manager, 408
CERT, 369
cfengine, 370
Chaco, 347
channel bonding, 123
CHARISMA project, 496
checkpoint

periodic, 381
restart, 319

checkpoint/restart, 317
Chiba City Imager, 152
children, 246
chkconfig, 65
CIAC, 369
ClassAd, 380, 382

attributes, 382
job, 382
machine, 382

ClassAd attribute
on_exit_hold, 396
on_exit_remove, 396
periodic_hold, 396
periodic_release, 396
periodic_remove, 396
requirements, 395

CLIC, 152
client image, 164
Cluemon, 362
cluster, 583

defined, 3
no homogeneous, 144

cluster security, 94, 128–137
firewalls, 132–137
node level, 128–132
restricting access, 130

clusters
software for, 335

collective operation, 228
root, 228

collisions
Ethernet, 71

command-line
in MPI, 226

commodity cluster, 583
communication context, 327
communicator, 327

intercommunicator, 245
intracommunicator, 245
MPI, 213

compiling of MPI programs, 241
complexity model, 7
compute server, 55
Concentrix, 41
Condor, 379

availability, 379
checkpoint, 381
ClassAd, 382
ClassAd example, 384
DAGMan, 406

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

host-based security, 414
job ClassAd, 382
job submitting, 386
Kerberos security, 414
list of features, 380
machine ClassAd, 382
matchmaking, 416
overview of, 379
periodic checkpoint, 381
policy customization, 415
pool, 408
sample submit description files, 387
submit description file, 386
Universe, 385, 396
X509 security, 414

Condor commands
condor_prio, 393
condor_q, 386, 390, 394
condor_rm, 386, 393
condor_status, 386, 390, 391
condor_submit, 386

Condor Universe
Globus Toolkit, 399
Parallel, 397
PVM, 398
Standard, 400
Vanilla, 397

condor_collector, 409
condor_master, 408
condor_negotiator, 410
condor_schedd, 409
condor_shadow, 409
condor_startd, 409
condor_starter, 409
configuration, 369
configuration file and MPI compile scripts, 241
configuration macro

CONTINUE, 417
DAEMON_LIST, 418, 422, 424
DedicatedScheduler, 418
Department, 424
FULL_HOSTNAME, 413
HOSTNAME, 413
KILL, 418
LOCAL_CONFIG_FILE, 413
OPSYS, 413
PREEMPTION_RANK, 418
PREEMPTION_REQUIREMENTS, 418
PREEMPT, 417
RANK, 417, 423
RELEASE_DIR, 413
Rank, 423, 424
SHADOW_LOG, 395
START, 417
SUSPEND, 417
TILDE, 413
WANT_SUSPEND, 417
WANT_VACATE, 417, 418

configuration of Maui scheduler, 428
connect, 185
connection oriented, 98
connnectionless, 97
constellation, 583
contention, 7
context

PETSc, 233
CONTINUE macro, 417
copyleft, 46
Cosmic Cube, 580
COW, 583
Cox, Alan, 49
CPlant project, 544

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cray SHMEM, 268
cron, 66
Cumulvs, 331
cycle stealing, 439

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
daemon

condor_collector, 409
condor_master, 408
condor_negotiator, 410
condor_schedd, 409
condor_shadow, 409
condor_startd, 409
condor_starter, 409
PBS, 465
pbs_mom, 451, 463
pbs_sched, 451, 464
pbs_server, 451

DAEMON_LIST macro, 418, 422, 424
daemons, 179
DAG Man, 400
data buffer, 211
data migration

in PVFS2, 530
data representation, 266
data shipping, 502
data sieving, 520
datagrams, 84
DedicatedScheduler macro, 418
delivery

ordered, 84
reliable, 84, 98
unordered, 97
unreliable, 97

denial of service attack, 55
dense systems, 335
Department macro, 424
derived datatypes in MPI, 257
destination

message, 213
DHCP, 154

DHCPDISCOVER, 154, 166
directed acyclic graph, 406
disabling services, 129–131
Disk Imaging

primitive dd, 162
disk-directed I/O, 504
diskless nodes, 147
distributed job scheduler

Condor, 379
distribution

Linux, 44
dmesg, 358
DNS, 102
domain decomposition, 9
Domain Name Service, see DNS
double buffering, 220
drivers

network, 83
DSM, 583
dynamic process management, 245
dynamic parallel programs, 315

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
eigenvalue problems, 343
eigenvalues

Arpack routines, 344
embarassingly parallel, 7
EPIC, 26
epoch

MPI RMA, 269
Ethernet, 78, 545, 583

Gigabit, 124, 546, 573
etype, 265
exec, 175
execute machine, 463
EXT2, 60
EXT3, 61

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
FAI, 152, 157
failure monitoring, 318, 319
failure recovery, 317
fairness

in job scheduling, 432
in message passing, 220

fairshare in job scheduling, 434
Fast Ethernet, 583
fault tolerance, 4, 198, 249, 315
FFTs, 335, 346
FFTW, 346
file

locks, 498
file for Condor's submit description, 386
file formats

netcdf, 234
file sharing, 102–103
file system

CXFS, 499
EXT2, 60
EXT3, 61
Galley, 503
GPFS, 501
JFS, 61
journaling, 60
Lustre, 506
MSDOS, 54
PVFS, 505
PVFS2, 525
ReiserFS, 61
XFS, 61

file view, 265, 266
filetype, 265
filtering packets, 108–109, 134–137
firewalls, 55, 132–137

configuration, 135–137
definition, 132
hardware firewalls, 137
Linux iptables, 108–109, 134–137
placement, 133

flow control, 85
Fluent, 349
fork, 175
fragmentation, 84
frames

Ethernet, 124
jumbo, 97, 123–125

Frangipani, 499
Front Side Bus, 27
fsck, 60
ftp, 181
FULL_HOSTNAME macro, 413

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
G5, 25
Galley, 503
Ganglia, 362
gateway address, 100, 101, 105–106
Gaussian, 348
Gaussian elimination, 335, 340
GFS, 366, 500
ghost cells, 223
ghost points, 201
Gigabit Ethernet, 124, 583
Globus Toolkit, 243, 399, 449
GNU, 583
golden node, 153
GPFS, 366, 501
GPL, 46, 583
grain size, 231
green threads, 404
groups

'/etc/group', 101, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
halo, 201
halo cells, 223
HDF, 583
hdparm, 517
heat equation

with PVM, 301
hello world

with MPI, 208
with PVM, 283

high availability, 528
Holy Grail eigensolver, 344
home directory, 108
host address, 99
HOSTNAME macro, 413
hostnames, 100–101, 105–106

localhost, 101
HPF, 449
HPL, 275
hubs

network, 79
HyperTransport, 26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
I/O

benchmarks, 14
I/O access patterns, 496
IBM SP, 544
immediate operations, 252
inetd, 63
Infiniband, 78, 580, 583
intelligent I/O servers, 503
intercommunicator, 245
Internet Protocol, see IP
interrupt coalescing, 125–126

latency effects, 125
interrupts, 87
intracommunicator, 245
IP, 97

packets, 97, 108
routing, 97, 99

IP addresses, 99–100
gateway address, 100, 101, 105–106
host portion, 99
netmask, 99
network broadcast address, 99
network portion, 99
non-routable, 100

iperf, 127, 138, 141
iPSC 1, 580
iptables, 108–109, 134–137

configuration, 135–137
iptables, 109
ISA, 23
Itanium, 26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
Jacobi, 200
Jacobi method, 222

scalability analysis, 254
Java, 400
JFS, 61
job

accounting, 467
analysis, 394
completion, 395
not running, 394, 454
policy, 396
priority, 393
usage, 467

job scheduler for Condor, 379
job scheduling, 447
jobs

migrating, 484
jumbo frames, 97, 123–125
Jumpshot, 242
Jumpstart, 152, 157

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
kernel, 52

source code, 53
kernel module, 53
keys

SSH, 104, 110–113
Kickstart, 152, 155

example, 117
KILL macro, 418

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
LAM Web site, 243
LAN, 583
latency, 7
LCFG, 152
LED, 29
libraries

MPI, 231
license

GPL, 46
linear solvers

in ScaLAPACK, 339
Linux, 583

version numbers, 49
Linux distributions, 48
Linux kernel, 358
listen, 182
LMbench, 14
load balancing, 347

services, 120–122
Loadleveler, 427
local group, 245
LOCAL_CONFIG_FILE macro, 413
localhost, 101
locking subsystem, 498
locks, 509
LogCheck, 361
LogDog, 361
logrotate, 361
LogSentry, 361
loopback device, 101
LS-DYNA, 349
Lustre, 506
LVM, 501

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
MAC, 153
machine

central manager, 451
execute, 463
PBS server, 451
scheduler, 464

manager/worker, 302, 311, 319
manager/worker approach, 215
Mandrake, 45
matrix-matrix multiplication, 219

in MPI, 219
matrix-matrix multiply

with PVM, 295
matrix-vector multiplication, 216
Maui scheduler, 427
maximum segment size, see MSS
maximum transmission unit, see MTU
Mbps, 583
Mega, 583
Memory, 26
memory

as requirement, 4
cache, 6
virtual, 6

mesh
ghost cells, 223
regular, 221

message
allocating memory for, 214
destination, 213
size, 214
source, 213

message box, 331
message latency, 254
message passing, 171, 207, 331
Message Passing Interface, 207
message tags, 296
messages

ordered, 214
metadata, 583
migrating jobs, 484
Miller, David, 49
module

kernel loadable, 53
MPI for Fortran 90, 272

monitoring, 361, 376
PBS, 466

Moore's law, 580
motherboard, 28
mount, 116
MP-MPICH Web site, 243
MPD, 236, 555
MPE, 242
MPI, 207, 271, 583

implementations, 243
mixed-mode programming, 537

MPI Forum, 207
MPI jobs under Condor, 397
MPI-1, 207
MPI-2, 207

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MPI-IO, 495
semantics, 511

MPI-Madeleine Web site, 243
MPI/GAMMA Web site, 243
MPI/Pro Web Site, 243
MPI::Comm::Clone, 272
MPI_Accumulate, 269
MPI_Allgather, 261
MPI_Allgatherv, 263
MPI_ANY_SOURCE, 213
MPI_ANY_TAG, 214
MPI_ARGV_NULL, 248
MPI_Bcast, 228, 231
MPI_Cart_coords, 266
MPI_Cart_create, 266
MPI_Comm_accept, 248
MPI_Comm_connect, 248
MPI_Comm_dup, 259
MPI_Comm_free, 248
MPI_Comm_get_parent, 246
MPI_Comm_rank, 209
MPI_COMM_SELF, 248, 265
MPI_Comm_size, 209
MPI_Comm_spawn, 246
MPI_Comm_split, 259
MPI_COMM_WORLD, 213
MPI_ERRCODES_IGNORE, 248
MPI_File_close, 266
MPI_File_open, 264
MPI_File_set_view, 265
MPI_File_write, 266
MPI_File_write_all, 268
MPI_Finalize, 208
MPI_Get, 269
MPI_Get_count, 214
MPI_Get_processor_name, 211
MPI_INFO_NULL, 248
MPI_Init, 208
MPI_Init_thread, 273
MPI_Intercomm_merge, 246
MPI_Irecv, 252
MPI_MODE_WRONLY, 268
MPI_ORDER_C, 268
MPI_ORDER_FORTRAN, 268
MPI_Pack, 256
MPI_PACKED, 256
MPI_Probe, 214, 214
MPI_PROC_NULL, 225
MPI_Put, 269
MPI_Recv, 211
MPI_Reduce, 228, 231
MPI_Request, 252
MPI_Send, 211
MPI_Sendrecv, 225
MPI_STATUS_IGNORE, 266
MPI_STATUS_SIZE, 273
MPI_THREAD_FUNNELED, 273
MPI_THREAD_MULTIPLE, 273
MPI_THREAD_SERIALIZED, 273
MPI_THREAD_SINGLE, 273

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MPI_Type_commit, 257
MPI_Type_create_struct, 257
MPI_Type_create_subarray, 266
MPI_Type_free, 257
MPI_Type_indexed, 257
MPI_Type_vector, 257
MPI_Unpack, 256
MPI_Wait, 252
MPI_Waitall, 253
MPI_Win_create, 269
MPI_Win_fence, 269
MPI_Win_free, 269
MPI_Win_lock, 270
MPI_Win_unlock, 270
MPI_Wtime, 229
MPI_WTIME_IS_GLOBAL, 229
MPICH, 520

installing, 236
license, 47

MPICH and MPICH2, 236
MPICH Web site, 243
MPICH-G2 Web site, 243
MPICH-GM Web site, 243
MPICH-V Web site, 243
MPICH2, 210
mpiexec, 210
mpirun, 210
MPP, 583
mpptest, 274
MSS, 98
MTBF, 316
MTU, 97, 124

discovery, 98
Ethernet, 97

multiple networks, 122–123
multithreaded, 207
MVAPBCH, 580
MVAPICH Web site, 243
MVICH Web site, 243
Myricom, 583
Myrinet, 545
MySQL, 559

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
Nagios, 362
NAMD, 349
name resolution, 101–102, 107

'/etc/hosts', 101, 107
'/etc/resolv.conf', 107
DNS, 102
NIS, 101

namespace in MPI, 271
NAS parallel benchmarks, 14
Nastran, 349
NAT, 100
neighbor exchange, 224
nested-strided access, 497
netCDF, 234
netfilter, 134
netmask, 99
netpipe, 127
netpipe, 14
NetSaint, 362
netstat, 138
network, 583

cluster, 3
network address, 99
network address translation, 100
Network Booting, 56
network broadcast address, 99
network design, 93–96

examples, 94
fully connected, 94
hidden cluster, 95
hidden nodes, 95
single system image, 95

Network File System, see NFS
Network Information Service, see NIS
network interface

configuration, 106
network interface card, 78
network performance, 94, 120–128

bandwidth-delay product, 126
channel bonding, 123
interrupt coalescing, 125–126
jumbo frames, 123–125
multiple networks, 122–123
netperf, 14
netpipe, 14
offloading services, 120–122
problems, 141–142
socket buffers, 126–128
technology specific optimizations, 123–126

Network Queueing System, 447
network topologies

administrative, see network design
network troubleshooting, 137–142

diagnosing problems, 138
example, 139
tools, 138–139

NFS, 61, 102–103
'/etc/exports', 116
'/etc/fstab', 117
configuration, 116–117
performance, 120–122
problems, 108–109

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root, 57
root account, 108
semantics, 510
services

netfs, 117
nfs, 116

shared libraries, 102
synchronization, 62
unsuitable for parallel file access, 6

NIC, 78, 583
channel bonding, 123

NIS, 67, 101, 367
'/etc/nsswitch.conf', 115
configuration, 114–116
problems, 108–109
root account, 108
services

ypbind, 115
yppasswdd, 114–116
ypserv, 114–115
yxfrd, 114–115

SSH issues, 116
yppasswd, 116

nmap, 139
node

appliance, 155
compute, 144
defined, 3
frontend, 146
golden, 153
head, 146
login, 144

node level security, 128–132
nodes, 460
nonblocking communication, 252
Norton Ghost, 152
notification, 318
NOW, 583
NPACI ROCKS, 49
NPACI Rocks, 150
NQS, 447
numerical software for clusters, 335
NWChem, 349
nX, 41

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
octet, 99
offloading services, 120–122
offset, 265
one-sided communication, 268
open source, 46
Open Source Cluster Application Resource, 161
OpenMP, 273
OpenPBS, 427, 448
OpenSSH, 104

configuration, 110–113
OPSYS macro, 413
Opteron, 26
ordered delivery, 84
ordered messages, 214
origin of MPI RMA, 270
OSCAR, 49, 150, 161
overhead, 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
packets

filtering, 108–109, 134–137, 137
IP, 97, 108

PAPI, 70
Paragon, 580
Parallel I/O

with MPI, 264
parallel performance

HPL, 275
NAS parallel benchmarks, 14

parallel file system, 494, 495
parallel I/O, 493
parallel performance

mpptest, 274
SKaMPI, 275

parameter study, 190
parents, 246
ParMetis, 347
PARMON, 362
partial differential equation, 8
passive target and RMA synchronization, 270
PBS, 447

accounting, 467
API, 457
architecture, 450
benefits, 449
commands, 455
configuration, 458
creating a job, 452
GUI, 455
history, 447
installing, 457
managing, 465
MOM daemon, 451
overview, 449
querying status, 454
scheduler daemon, 451
server daemon, 451
starting, 465
stopping, 465
submitting a job, 453
tracking jobs, 466
trackjob, 466
troubleshooting, 468
using, 451

PBS Pro, 448
PBSPro, 427
PC, 583
PCI, 583
PDE, 8

time marching, 8
PDE solving, 220
pdsh, 371
performance

achievable, 5
achieved, 9
complexity model, 7
memory bandwidth, 9
peak, 11

Performance Co-Pilot, 362
performance counters

PAPI, 70
Rabbit, 70

performance tests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HPL, 275
mpptest, 274
SKaMPI, 275

Perl, 185
persistent messages, 331
Personal Computer or PC, 583
Petal, 499
PETSc, 342
pi

Monte Carlo, 229
numerical integration for, 226

ping, 126, 138
PLAPACK, 339

Holy Grail eigensolver in, 344
Poisson equation, 220
Poisson problem, 199
policy enforcement, 375
PolyServe, 366
pool of machines, 408
port, 182
POSIX 1003.2d, 448, 450
POSIX I/O

implementing, 509
semantics, 508

PowerCockpit, 152
PowerPC, 25
PowerQuest Drive Image, 152
PREEMPT macro, 417
preemption in job scheduling, 439
PREEMPTION_RANK macro, 418
PREEMPTION_REQUIREMENTS macro, 418
priority of a job, 393
process, 175
process id

global, 471
processors, 23

Alpha, 25
Athlon, 25
G5, 25
hyperthreading, 24
Itanium, 26
Opteron, 26
Pentium 4, 24
Pentium III, 25
PowerPC, 25
SSE, 24
SSE2, 24

profiling library, 242
program, 175
program counter, 175
programming model

message-passing, 207
one-sided, 268
shared nothing, 201

protocols
IP, 97
TCP, 98–99
UDP, 97

PVFS, 35, 505, 583
aggregate bandwidth, 518
file descriptors, 515
handling disk failures, 515
MPI-IO hints, 521
multiple file systems, 514
semantics, 512
strip size, 519
tuning, 516
upgrading, 515
using with ROMIO, 519

pvfs-ping, 514

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pvfs-ping, 514
pvfs-test, 518
PVFS2, 525

data migration, 530
PVM, 279, 315, 583

computing model, 281
console, 312
group functions, 295, 296
grouping tasks, 282
hostfile, 310
language support, 282
message handler functions, 328
message handlers, 328
multicast, 296
setup, 308
shutdown, 310
starting programs, 311
startup, 309

pvm_barrier, 295
pvm_initsend, 287
pvm_parent, 286
pvm_spawn, 323
PXE, 31
Python, 185

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QBank, 436, 576
QSW, 583
Quadrics, 583
queue, 374
queuing, 374

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
Rabbit, 70
rack unit, 148
RAID, 365
RAM, 26
RAM disk, 483
random number generator, 229
rank in MPI, 209
RANK macro, 417, 423
Rank macro, 423, 424
Raymond, Eric, 46
rcp, 180
rcp, 103
rdist, 181
realtime, 3
Red Hat, 45
Red Hat Package Manager, 457
Red Storm, 26, 581
Redhat

Anaconda Installer, 155
Kickstart Description, 155

ReiserFS, 61
RELEASE_DIR macro, 413
reliability, 316
reliable delivery, 84, 98
remote access, 103–104
remote group, 245
remote memory access, 268
remote shell

fails, 139
remote system call, 381
reporting, 377
reservations

in Maui scheduler, 435
resource management, 377, 447
resource monitoring, 376
reverse communication, 345
RISC, 25
Ritchie, Dennis, 41
rlogin, 103
RMA, 268

synchronization, 270
window object, 269

ROCKS, 49
Rocks, 150

rocks-dist, 156
ROMIO, 278, 519, 520, 583

data sieving, 520
hints, 521
optimizations, 520
two-phase I/O, 521

root, 228
routing, 97, 99
RPM, 155, 156
RPM format, 457
rsh, 178
rsh, 103

problems, 139

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rsync, 181
RTT, 126
running

MPI programs, 210
running multiple programs

under Condor, 388
RWCP, 583

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
SAN, 583
sanity/cfg, 370
scalability analysis, 219, 254
Scalable Systems Software, 581
Scalable Unix Tools, 555
ScaLAPACK, 336

eigenvalue routines, 343
ScaMPI Web site, 243
Scheduler, 583
scheduler in Condor, 379
scheduling, 375, 447
SCore, 150
scp, 180
scp, 104, 110
scripting language

Perl, 185
Python, 185

Scyld, 150
secure shell, 110
Seitz, Chuck, 580
select, 188
self-scheduling, 216
sequential access, 496
server

compute, 55
servers

Web, 4
setup

by description, 152
by disk imaging, 152

sftp, 181
SGE, 378
SHADOW_LOG macro, 395
shared libraries, 102

NFS, 102
shared nothing, 201
shared storage architecture, 498
shell

secure, 110
SHMEM, 268, 269
single system image, 471
single threaded, 207
SKaMPI, 275
slocate, 66
slogin, 104
SMP, 3, 583
socket buffers, 126–128

'/proc' entries, 127–128
sockets, 181
Sojourner, 43
sonification, 55
Soupercomputer, xxvii
source

message, 213
spanning tree, 228
sparse matrices, 340
sparse systems, 335

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spawning tasks, 285, 322
speedup

analysis, 218
superlinear, 11

SPRNG, 229
SQL, 559

used in Rocks, 157, 159
SSE, 24, 25
SSH, 104

agent, 113
configuration, 110–113
FTP, 104
host based authentication, 111–112
host keys, 104, 110–111
problems, 108–109, 116, 139
scp, 104, 110
slogin, 104
ssh, 104, 110
ssh-add, 113
ssh-agent, 113
ssh-keygen, 113
ssh-keyscan, 110
sshd, 110
user keys, 104, 112–113

ssh, 178
ssh, 104, 110

problems, 139
ssh-add, 113
ssh-agent, 113
ssh-keygen, 113
ssh-keyscan, 110
sshd, 110

configuration, 111
sshd, 360
Stallman, Richard, 46
START macro, 417
static scheduling, 172
status

MPI, 214
status of queued jobs, 390
STREAM, 14
stream-based I/O, 505
stride

in memory, 257
strided access, 497
strip, 519
superlinear speedup, 11
SuperLU, 340
Supermon, 363
SuSE, 45
SUSPEND expression, 417
SUSPEND macro, 417
swatch, 361
switches

network, 79
symmetric multiprocessor, 3
synchronization

active target, 270
NFS, 62
passive target, 270
RMA, 270

syslog, 358
syslog-ng, 361
System Imager, 163
system monitoring, 376
System service messages, 360
SystemImager, 152

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
T3D and T3E, 268
tag in MPI, 214
target

MPI RMA, 270
task parallelism, 215
TCP, 98–99

tuning for Linux, 69
telnet, 103, 139
TFTP, 56
Thompson, Ken, 41
thread, 207
thread-safety

MPI, 273
throttling in job scheduling, 433
throughput, 4
TILDE macro, 413
time-marching

PDE, 8
Torvalds, Linus, 41
TotalView, 240
tracking PBS jobs, 466
Transmission Control Protocol, see TCP
Trilinos, 341
troubleshooting in PBS, 468
turnkey system, 3
Tux, 41
Tweedie, Stephen, 49
two-phase I/O, 502, 521

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
U

unit of a rack, 148
UDP, 97
Unix

Berkeley, 41
unordered delivery, 97
unreliable delivery, 97
uptime, 4
usage policy, 375
User Datagram Protocol, see UDP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
Veridian, 448
virtual block device, 498
virtual memory, 6
visualization

performance, 242

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
wall-clock time, 229
WAN, 583
WANT_SUSPEND macro, 417
WANT_VACATE macro, 417, 418
Web servers, 4
wild card

MPI, 214
PVM, 291

window object
MPI, 269

workload management, 447, 448

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X
XCAT, 150
XENIX, 41
XFS, 61
xinetd, 63
xinetd, 360
XML

used in Rocks, 157
xpbs, 455
xpbsmon, 466
XPVM, 310

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Y
YaST, 152, 157
ypbind, 115
yppasswd, 116
yppasswdd, 114–116
ypserv, 114–115
yxfrd, 114–115

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Z
Zoltan, 348

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: So You Want to Use a Cluster
Figure 1.1: Sample decomposition of a 3-D mesh. The upper right corner box has been pulled out to show that the mesh has
been subdivided along the x, y, and z axes.

Chapter 2: Node Hardware
Figure 2.1: Block diagram of a motherboard chipset. The chipset consists of the entire diagram excluding the processor and
memory.

Chapter 3: Linux
Figure 3.1: A simple program to touch many pages of memory.

Chapter 4: System Area Networks
Figure 4.1: A simple cluster network.

Figure 4.2: A complex cluster network.

Chapter 5: Configuring and Tuning Cluster Networks
Figure 5.1: Layering of network protocols

Figure 5.2: Diagram showing the configuration of our simple example cluster.

Figure 5.3: Diagram showing compute nodes with multiple interfaces on multiple networks. Notice that the Myrinet network is
entirely internal to the cluster, a common design point since the dedicated network is typically much higher performing than
networks outside the cluster.

Figure 5.4: Above are shown some possible locations one may wish to place a firewall, denoted by the curved dotted lines.

Figure 5.5: Above are shown some of the interesting points through the Linux kernel where network packets are affected.
The letters are points in kernel space where routing decisions are made. Numbered locations are some of the places where
netfilters exist that will determine the fate of packets passing through. A.) incoming packet routing decision. B.) local machine
process space. C.) postrouting decision. 1.) FORWARD netfilter table. 2.) INPUT netfilter table. 3.) OUTPUT netfilter table.

Chapter 6: Setting up Clusters
Figure 6.1: Cable bundles. Wire ties make 8 power cables into a neat and managable group

Figure 6.2: The back of a rack, showing the clean organization of the cables. Note that the fans are unobstructed.

Figure 6.3: Basic RedHat Kickstart file. The RedHat Installer, Anaconda, interprets the contents of the kickstart file to build a
node

Figure 6.4: Description (Kickstart) Graph. This graph completely describes all of the appliances of a Rocks Cluster.

Figure 6.5: Description Graph Detail. This illustrates how two modules 'standalone.xml' and 'base.xml' share base
configuration and also differ in other specifics

Figure 6.6: The ssh.xml module includes the ssh packages and configures the service in the Kickstart post section.

Figure 6.7: The 'base.xml' module configures the main section of the Kickstart file.

Chapter 7: An Introduction to Writing Parallel Programs for Clusters
Figure 7.1: Schematic of a general manager-worker system

Figure 7.2: A simple server in C

Figure 7.3: A simple client in C

Figure 7.4: A simple server in Python

Figure 7.5: A simple client in Python

Figure 7.6: A simple server in Perl

Figure 7.7: A simple client in Perl

Figure 7.8: A Python server that uses select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.9: A Python client

Figure 7.10: Matrix-matrix multiply program

Figure 7.11: Manager for parameter study

Figure 7.12: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration

Figure 7.13: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration, including the communication
of ghost points. Note the changes in the declarations for U and UNEW.

Figure 7.14: LU Factorization code. The factors L and U are computed in-place; that is, they are stored over the input matrix
a.

Chapter 8: Parallel Programming with MPI
Figure 8.1: Simple "Hello World" program in MPI.

Figure 8.2: A more interesting version of "Hello World".

Figure 8.3: A more complex "Hello World" program in MPI. Only process 0 writes to stdout; each process sends a message
to process 0.

Figure 8.4: Using MPI_Probe to find the size of a message before receiving it.

Figure 8.5: Framework of the matrix-vector multiply program.

Figure 8.6: The matrix-vector multiply program, manager code.

Figure 8.7: The matrix-vector multiply program, worker code.

Figure 8.8: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson problem.

Figure 8.9: A simple version of the neighbor exchange code. See the text for a discussion of the limitations of this routine.

Figure 8.10: A better version of the neighbor exchange code.

Figure 8.11: Computing π using collective operations.

Figure 8.12: — Computing π using the Monte Carlo method.

Figure 8.13: A parallel Poisson solver that exploits two libraries written with MPI.

Figure 8.14: The main program in a high-level program to solve a nonlinear partial differential equation using PETSc.

Figure 8.15: Jumpshot displaying message traffic.

Chapter 9: Advanced Topics in MPI Programming
Figure 9.1: Dynamic process matrix-vector multiply program, manager part.

Figure 9.2: Dynamic process matrix-vector multiply program, worker part.

Figure 9.3: Fault-tolerant manager.

Figure 9.4: Nonblocking exchange code for the Jacobi example.

Figure 9.5: A 12 x 12 computational mesh, divided into 4×4 domains, for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

Figure 9.6: Locations of mesh points in ulocal for a two-dimensional decomposition.

Figure 9.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the mesh.

Figure 9.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in the MPI_Recv calls (from [48]).

Figure 9.9: Schematic representation of collective data movement in MPI.

Figure 9.10: Using MPI_Allgather and MPI_Allgatherv.

Figure 9.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output step; if output of
multiple steps of the Jacobi method are needed, the arguments to MPI_File_set_view must be modified.

Figure 9.12: C program for writing a distributed array that is also noncontiguous in memory because of a ghost area (derived
from an example in [50]).

Figure 9.13: Neighbor exchange using MPI remote memory access.

Figure 9.14: Simple MPI program in C++.

Chapter 10: Parallel Virtual Machine
Figure 10.1: PVM used to create a Grid of clusters.

Figure 10.2: PVM program 'hello.c'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.2: PVM program 'hello.c'.

Figure 10.3: PVM program 'hello_other.c'.

Figure 10.4: Output of fork/join program.

Chapter 14: Cluster Workload Management
Figure 14.1: Activities performed by a workload management system.

Chapter 15: Condor: A Distributed Job Scheduler
Figure 15.1: Examples of ClassAds in Condor.

Figure 15.2: Condor jobmonitor tool.

Figure 15.3: A sample Java submit file.

Figure 15.4: Remote System calls in the Standard Universe.

Figure 15.5: A directed acyclic graph with four nodes.

Figure 15.6: Daemon layout of an idle Condor pool.

Figure 15.7: Daemon layout when a job submitted from Machine 2 is running.

Figure 15.8: CondorView displaying machine usage.

Chapter 18: Scyld Beowulf
Figure 18.1: Evolution of Beowulf System Image.

Figure 18.2: Migration of processes using bproc.

Chapter 19: Parallel I/O and the Parallel Virtual File System
Figure 19.1: Parallel I/O System Components

Figure 19.2: Nested-Strided Example

Figure 19.3: Frangipani and Petal File System Architecture

Figure 19.4: GPFS Architecture Using Storage Area Network

Figure 19.5: Galley Architecture

Figure 19.6: PVFS File System Architecture

Figure 19.7: Concurrent Writes and NFS

Figure 19.8: Two-Phase Write Steps

Figure 19.9: PVFS2 Software Architecture

Figure 19.10: Migrating Storage Objects

Figure 19.11: Examples of Data Distributions

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz
Figure 20.1: Chiba City schematic.

Figure 20.2: A Chiba City town.

Figure 20.3: The Chiba City Ethernet.

Figure 20.4: One of two rows of Chiba City.

Figure 20.5: Node image management.

Figure 20.6: OS image management.

Figure 20.7: Serial infrastructure.

Figure 20.8: Power infrastructure.

Figure 20.9: Argonne's Jazz Cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Tables

Chapter 3: Linux
Table 3.1: Some companies or groups that release Linux distributions.

Chapter 5: Configuring and Tuning Cluster Networks
Table 5.1: Some example services with descriptions and category of external systems that should have access to them.

Chapter 8: Parallel Programming with MPI
Table 8.1: The most common MPI datatypes. C and Fortran types on the same row are often but not always the same type.
The type MPI_BYTE is used for raw data bytes and does not correspond to any particular datatype. The type MPI_PACKED
is used for data that was incrementally packed with the routine MPI_Pack. The C++ MPI datatypes have the same name as
the C datatypes but without the MPI_prefix, for example, MPI::INT.

Table 8.2: Accessing the source and tag after an MPI_Recv.

Table 8.3: Some MPI implementations for Linux.

Chapter 9: Advanced Topics in MPI Programming
Table 9.1: A sampling of libraries that use MPI. See Chapter 12 for a more thorough list.

Chapter 12: Numerical and Scientific Software for Clusters
Table 12.1: Support routines for numerical linear algebra. LINALG is a collection of software that is available but too varied
to describe.

Table 12.2: Direct solvers for systems of linear equations.

Table 12.3: Sparse direct solvers.

Table 12.4: Sparse eigenvalue solvers.

Table 12.5: Sparse iterative solvers.

Chapter 13: Cluster Management
Table 13.1: Most useful system log files.

Chapter 15: Condor: A Distributed Job Scheduler
Table 15.1: List of user commands.

Table 15.2: Commands reserved for the administrator.

Chapter 16: Maui Scheduler: A High Performance Cluster Scheduler
Table 16.1: Maui priority components.

Chapter 17: PBS: Portable Batch System
Table 17.1: Qsub options.

Table 17.2: PBS resources.

Table 17.3: PBS user commands.

Table 17.4: qmgr commands.

Table 17.5: PBS node attributes.

Table 17.6: Default scheduling policy parameters.

Table 17.7: Job-tracking commands.

Chapter 18: Scyld Beowulf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 18.1: Environment variables used when starting MPI jobs.

Table 18.2: Scyld libraries.

Table 18.3: Common configuration files.

Table 18.4: Parameters for building Scyld kernels.

Table 18.5: Scyld command line programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
Use of Beowulf clusters (collections of off-the-shelf commodity computers programmed to act in concert
resulting in super-computer performance at a fraction of the cost) has spread far and wide in the
computational science community. Many application groups are assembling and operating their own private
supercomputers rather than relying on centralized computing centers. Such clusters are used in climate
modeling, computational biology, astrophysics, and materials science, as well as non-traditional areas such
as financial modeling and entertainment. Much of this new popularity can be attributed to the growth of the
open-source movement.

The second edition of Beowulf Cluster Computing with Linux has been completely updated; all three stand-
alone sections have important new material. The introductory material in the first part now includes a new
chapter giving an overview of the book and background on cluster-specific issues, including why and how
to choose a cluster, as well as new chapters on cluster initialization systems (including ROCKS and OSCAR)
and on network setup and tuning. The information on parallel programming in the second part now
includes chapters on basic parallel programming and available libraries and programs for clusters. The third
and largest part of the book, which describes software infrastructure and tools for managing cluster
resources, has new material on cluster management and on the Scyld system.

About the Editors

William Groop is an Associate Division Director and Senior Computer Scientist and Ewing Lusk is Senior
Computer Scientist, MCS Division, both at Argonne National Laboratory. Thom Sterling is Senior Staff
Scientist in the High Performance Computing Systems Group at he Jet Propulsion Laboratory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beowulf Cluster Computing with Linux, Second Edition
Edited by William Gropp,
Ewing Lusk, and
Thomas Sterling
The MIT Press
Cambridge , Massachusetts London, England

Copyright © 2002, 2003 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including
photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Beowulf Cluster Computing with Linux / edited by William Gropp, Ewing Lusk, and
 Thomas Sterling.—2nd ed.
 p. cm.—(Scientific and engineering computation)
 Includes bibliographical references and index.

ISBN 0-262-69292-9 (pbk. : alk. paper)

1. Parallel computers. 2. Beowulf clusters (Computer systems) 3. Linux. I. Gropp, William. II. Lusk, Ewing. III. Sterling, Thomas
Lawrence. IV. Series.

QA76.58.B46 2003

004'.35-dc22 2003059364

Dedicated with respect and appreciation to the memory of Seymour R. Cray

1925–1996

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Series Foreword
Computing is one of the fastest changing areas of technology. Keeping up with these changes is hard, making the practical use of
the most advanced algorithms, technology, and methods difficult. The Scientific and Engineering Computation series focuses on
rapid advances in computing technologies, with the aim of facilitating transfer of these technologies to applications in science and
engineering. It includes books on theories, methods, and original applications in such areas as parallel computing, large-scale
simulations, and scientific software.

The series is intended to help scientists and engineers understand the current world of advanced computation and to anticipate
future developments that will affect their computing environments and open up new capabilities and modes of computation.

This volume in the series describes the highly successful distributed/parallel system called Beowulf. A Beowulf is a cluster of PCs
interconnected by network technology and employing the message-passing model for parallel computation. Key advantages of
this approach are high performance for low price, system scalability, and rapid adjustment to new technological advances.

This book covers how to build, program, and operate a Beowulf system based on the Linux operating system. The second edition
is a complete update of the book, with new material in every chapter and several new chapters on cluster setup, management,
and programming.

Beowulf hardware, operating system software, programming approaches and libraries, and machine management software are all
covered here. The book can be used as a textbook as well as a practical guide for designing, implementing, and operating a
Beowulf for those in science and industry who need a powerful system but are reluctant to purchase an expensive massively
parallel processor or vector computer.

William Gropp and Ewing Lusk, Editors

Janusz Kowalik, Founding Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foreword
Supercomputers! What computer scientist would not want one? After all, when I was growing up (in the dark ages), everything
good was "Super." Superman, Supergirl, Superdog, Supersize ... everyone and everything wanted to be "Super." And so, with the
work of a lot of very intelligent people, the Supercomputer was born. People like Seymour Cray, who expended much money, time
and effort in creating machines that could solve problems very quickly.

Unfortunately these Supercomputers were also Supercostly. Often built by hand, they would cost millions of dollars (and that was
when a million dollars was a lot of money) to design and build, then a relatively few systems were produced. In addition, these
systems tended to be handmade, or at least produced in relatively small qualities, which also drove the production costs up.
Finally, each style of supercomputer (whether it be a Cray, a CDC Cyber, an ECL or others) would have a different instruction set,
and run a different operating system, which caused the people writing software for them to learn this new operating system, and
write their applications to it. Likewise a lot of the software tools for writing applications (compilers, debuggers, profilers, etc.) had to
be created for each line, if not each model, of supercomputer. This made these software tools and operating systems costly to
develop and maintain.

As general-purpose computers started getting more and more prevalent, the ability to manufacture machines of increasing speed
and size at lower and lower prices made the lifetime of supercomputers shorter and shorter. After all, the purpose of purchasing
and using a supercomputer was to be able to run your application in the shortest possible time. When this speed transitioned from
the previously purchased supercomputer to the latest mass-produced "mainframe" or "super-mini," the justification for running a
supercomputer became more difficult.

Because of these and other financial issues, a lot of the supercomputing companies started to go out of business. This was bad
for a lot of reasons. First of all, we need supercomputers, or at least we need to have the ability to solve large problems quickly.
Whether it is trying to prospect for natural resources, or trying to protect the environment; whether it is analyzing aerial
photographs for weapons of mass destruction or trying to predict the weather precisely for a shuttle launch; whether it is
generating real time computer graphics or analyzing a mammogram to determine if a woman has cancer or not, the time needed
to analyze the problem can mean the difference between success or failure, life or death. Too long in analysis, and you miss the
window for the answer to do you any good. For iterative processes, you may find that your competitor, who is using a faster
computer, comes up with a better answer or a better product faster than you do.

A good example of this is the computer industry itself. In designing a CPU, a lot of simulation of the new chip is done by already
existing computers. The faster the simulation can be done, or the faster a checkout of the finished design can be accomplished,
the faster the next iteration of the design can be started. This is why, for years, many chips were designed by supercomputers,
even if those supercomputers were from rival chip manufacturers.

As the fortune of supercomputer companies declined, the need for high-speed computing still continued to grow. Two people in
NASA, Dr. Thomas Sterling and Dr. Donald Becker, realized that something had to be done. They hypothesized that using
inexpensive, off the shelf computer systems (COTS) hooked together with high-speed networking (even with speeds as low as 10
Mbit/sec Ethernet) could duplicate the power of supercomputers, particularly applications that could be converted into highly
parallelized threads of execution. They theorized that the price/performance of these COTS systems would more than make up for
the overhead of having to send data between the different nodes to have that additional computing done, and sooner or later this
concept became known as "Beowulf clusters," or just "Beowulfs."

At first these systems were built from individual PCs built from individual boxes, mounted on commodity racks (and sometimes just
stacked on the floor), but as time went on various small companies started to sell pre-packaged, pre-built units in ever-smaller
packages with more and more CPUs in them. Boxes kept getting smaller and smaller so you could put more boxes in each rack,
and customers were able to order pre-built and pre-wired systems. And because these Beowulfs were made with high-volume
manufactured chips, the cost was often one-fortieth that of a conventional supercomputer. Over time even the larger
manufacturers such as HP and IBM began building rack-mounted Beowulf systems to order.

Of course there were a few other problems to think about, such as the time it took to send the data back and forth (usually called
"latency"), sizing the system, or coordination of the flow of data and instructions to the many, many nodes that might be required.
And these were just the beginning of the issues. As the number of COTS nodes increased, so did the amount of power needed,
the amount of air conditioning, and even the amount of floor space and floor loading needed to support that many individual units.

These systems were made up of what we call "commodity architectures." While some of these "commodity architectures" were
made up of relatively low volume Alpha chips, or SPARC chips, the majority of the Beowulfs were 32-bit Intel chips. And finally,
the bulk of the systems used a newly developed operating system called "Linux." The combination of a commodity architecture
with a free and high-volume operating system allowed supercomputing to have a volume binary interface for the first time.
Applications that worked on a single CPU Intel system running Linux would also work on a Beowulf.

Linux was royalty free, and came with all the source code needed to create it, which allowed people to change the kernel to help
make it work better on a Beowulf cluster. People wrote new libraries, and contributed to changing existing libraries to make them
work better in the new environment. Compilers were made more efficient, and newer interconnects were developed that had
higher throughput, lower latency, and lower overhead than the original ones. New algorithms allowed applications that could not
utilize Beowulfs before to utilize the new technique. However, the open source nature of Linux and these compilers and libraries
allowed a pseudo-standard for Beowulf systems to emerge. For the first time we could think about mass-produced
supercomputers ... units that could duplicate the power of a supercomputer for less than one-fortieth of the price.

Still, a lot of people did not foresee how Beowulf systems would change the face of computing. It was only when certain projects
happened that people began to realize the excitement generated by affordable supercomputers.

The first project came from Oak Ridge National Labs, where a "mistake in planning" left a project without budgeted money for
computing. By going to their colleagues who had recently had upgrades to their desktop systems, the project managers were able
to collect forty-eight cast-off units and make the Beowulf needed to do their calculations. They called it the "Soupercomputer" after
the old story of "Stone Soup" and the man who fed a village by making a soup only out of water, fire and a white stone. After all,
they had made their soupercomputer at "no cost" to the facility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second success was a CD-ROM made by Red Hat Software in conjunction with NASA, more as a marketing gimmick than
anything else. Declaring the Beowulf software on the CD-ROM as "rocket science," the CD-ROM that was expected to sell as a
sleeper flew off the shelves of Red Hat, and became one of their largest sellers. Whether the CD-ROM was ever installed or not
made no difference, everyone wanted to have supercomputing software on their bookshelf, particularly for the low, low price of a
Linux CD.

Another success started happening in high schools and small colleges. These schools never dreamed of owning a traditional
supercomputer before, but with the concept of Beowulf systems, either with donated "Stone Soup" computers or new ones bought
through a small grant, the schools were able to create that computing power. This was important to not only the computer science
department, but to areas such as chemistry, biology, animation, music, physics, and other areas needing high performance
computations for real-time visualizations and simulations.

As the use of Beowulf systems grew into other areas such as bio-informatics and genome research, new uses for supercomputers
were derived that had never been considered before. A major financial company had to maintain a certain amount of monetary
reserve as required by the SEC. Since this company was so large, the amount of money that it had in this reserve at any one time
took over twelve hours to calculate. Since it took so long to come up with a correct answer (which by definition was no longer
correct), they had to keep a significant buffer to meet a potential audit. By purchasing a Beowulf system, they were able to
calculate the amount of reserve accurately in fifteen minutes, and therefore calculated it every fifteen minutes of the day. This
allowed them to reduce their reserve, and with the reclaimed money re-invested, they were able to make fifteen million dollars in
profits the first year. This (of course) paid for their Beowulf system many times over.

There are other points to programming these Beowulf systems. The techniques used in programming them (message passing,
parallel threads of execution, memory locks, and latency speeds) are all considerations of programming what are known as
"workstation farms," which these days are simply desktop PCs hooked together with Ethernet. One moment these machines could
be used as a high school or college computing laboratory. But within a few moments and with the right operating system software
you could have a "horizontal Beowulf" capable of solving anything that a dedicated, rack-mounted Beowulf could solve.

A hospital, for instance, could use the nurses and doctors stations standing idle between accesses to do the analysis of a
mammogram, something that was modeled using a Beowulf, and which reduced the analysis time from twenty hours on a single
SPARCstation 20 to ten minutes on a 160 unit Intel Beowulf. By utilizing the excess cycles of idle PCs throughout the hospital, the
hospital was not required to buy a Beowulf system for this speedup in mammogram analysis. They simply utilized the idle CPU
cycles that they already had.

We are entering into a new age of computing. Sixty-four bit computers made out of commodity chips will allow us to more easily
solve problems of almost any size. Pulling together hundreds, if not thousands, of CPUs in various configurations (SMP, Beowulf,
and NUMA) will allow us to tackle problems where we could not have afforded the solutions ten years ago. Use of the Grid will use
a lot, if not all, of the same programming and systems administration techniques that are used in the classic Beowulf system.

Finally, I believe that all of the programming techniques used in Beowulf systems are relevant to even single-CPU desktop
machines today. Multi-threaded, distributed programming should be the normal way of thinking about programming, not the
exception. Therefore I think that every high school and college computer science student should at one time or another learn how
to program a Beowulf system, and the sooner the better.

This book is an excellent place to start.

Carpe Diem.

Jon "maddog" Hall, President
Linux International
Amherst, NH, USA
July 4th, 2003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface to the Second Edition
The purpose of this book is to help you understand the Beowulf approach to parallel computing. We describe here how to select
the hardware components of computers and networks, how to configure and install the necessary system software, how to write
parallel programs to take advantage of your new machine, and how to manage it for use by others.

This book concentrates on the concepts of Beowulf computing, since computing changes too fast for any detailed "Beowulf
manual" to stay up to date for long. Many concepts are common to multiple generations of systems, and provide the basic for
understanding the changing details of assembling, configuring, using, and managing a cluster.

We don't take a purely abstract approach, however. We give detailed examples drawn from current systems, which will be
immediately useful. This book can thus serve as a practical guide to the current state of Beowulf computing as well as a map to
the central issues, an understanding of which will have long-lasting value.

Since the first edition appeared, Beowulf computing has expanded rapidly, at all ranges of cluster sizes. The continuing drop in
prices of both computers and networks has meant that more and more users are acquiring small and medium-sized systems for
departmental and even personal use. At the high end, clusters are now amply represented in the Top500 list of the most capable
machines in the world. Clusters available from cluster hardware vendors such as Dell and Linux Networx are even in the top 25.

Another development contributing to the expansion of the Beowulf community has been the emergence of effective automated
cluster setup software. We survey some current systems in Chapter 6.

The fact that both pre-packaged cluster hardware and cluster software are available greatly simplifies the effort required to get a
cluster up and running. Of course it is also possible (and common) for clusters to be assembled "by hand." This book will help you
build your Beowulf yourself if that is your choice, and to understand both its hardware and software structure well even if you let
others attend to the hardware construction and systems software installation.

About the Second Edition
Many additions and updates to the first edition make this second edition timely and more complete.

1. A new introductory chapter explains what sorts of applications Beowulf clusters are good for and provides a
"road map" for reading the book.

2. The chapter on PVFS has been entirely rewritten to cover parallel file systems for clusters, including the three
systems that are hot in the Beowulf community: GPFS, Lustre, and PVFS.

3. A new chapter on managing clusters covers the issues faced by systems administrators.

4. A new chapter on tuning networks for clusters includes information on network security. As Linux has matured,
the typical Linux distribution has been optimized for interacting with the Internet, which requires strict security
policies. This new chapter discusses how to configure your cluster for performance while retaining a secure
system.

5. A new chapter describes the Scyld environment, which provides an illusion of a single system image to the user
and the administrator.

6. A new chapter describes library and application software for numerical applications. Using a Beowulf no longer
requires writing programs; there are already many available applications. Even if it is necessary to write
software, existing powerful parallel libraries make it relatively easy to write many kinds of parallel applications. A
new section in Chapter 8 shows how libraries written in MPI may be used to write programs that have no explicit
use of MPI. Two sample programs that solve a linear and a nonlinear system of equations in parallel illustrate
this approach.

7. A new chapter on parallel programming covers both the basic terms and ideas and presents some simple
programming methods based on the manager/worker approach and using powerful scripting languages such as
perl and python.

8. The MPI chapters now emphasize the new version of MPICH2 that supports all of MPI-1 and MPI-2, including
the use of mpiexec (recommended in the MPI-2 standard) over mpirun.

9. As the software for Beowulfs matures, changes are inevitable. Each chapter has been updated to cover the
current state of the software. Cluster hardware changes even faster than the software, and hence the hardware
chapters have been rewritten, covering new processors and networks.

The high-level structure of the book breaks the huge topic of cluster computing into three parts.
Part I, Enabling Technologies describes the components, both hardware and software, that go into a Beowulf.

Part II, Parallel Programming shows how to write application programs for clusters, either by using functions built
into Linux or by using any of a number of both general and special-purpose libraries.

Part III. Managing Clusters covers administration of clusters large and small, and includes a case study of a
specific large cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments for the Second Edition
We thank first the authors of the chapters contributed to this book:

Peter H. Beckman, Argonne National Laboratory

Ralph Butler, Middle Tennessee State University

Narayan Desai, Argonne National Laboratory

Jack Dongarra, University of Tennessee

Victor Eijkhout, University of Tennessee

Remy Evard, Argonne National Laboratory

Al Geist, Oak Ridge National Laboratory

David B. Jackson, University of Utah

James Patton Jones, Altair Engineering

Jim Kohl, Oak Ridge National Laboratory

David Lifka, Cornell Theory Center

Walt Ligon, Clemson University

Miron Livny, University of Wisconsin

Karen Miller, University of Wisconsin

John-Paul Navarro, Argonne National Laboratory

Bill Nitzberg, Altair Engineering

Daniel Nurmi, University of California, Santa Barbara

Philip Papadopoulos, University of California, San Diego

Erik Paulson, University of Wisconsin

Rob Ross, Argonne National Laboratory

Dan Stanzione, Jr., Clemson University

Brian Toonen, Argonne National Laboratory

Todd Tannenbaum, University of Wisconsin

Derek Wright, University of Wisconsin

Many other people helped in various ways to put this book together. Thanks are due to Philip Carns, Anthony Chan, Andreas
Dilger, Michele Evard, Tramm Hudson, Rob Latham, Andrew Lusk, Richard Lusk, Neill Miller, Bill Nickless, Craig Stacey, Rick
Stevens, and Edward Thornton.

Don Becker, Tom Quinn, and the people of Scyld Computing Corporation provided particular help with Chapter 18 on the Scyld
approach to Beowulf.

Special thanks go to Karen Toonen for her tremendous help in making the network tuning chapter more understandable. Gail
Pieper, technical writer in the Mathematics and Computer Science Division at Argonne, once again improved every chapter's style
and readability.

William Gropp

Ewing Lusk

Thomas Sterling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface to the First Edition
Within the past three years, there has been a rapid increase in the deployment and application of computer clusters to expand the
range of available system capabilities beyond those of conventional desktop and server platforms. By leveraging the development
of hardware and software for these widely marketed and heavily used mainstream computer systems, clusters deliver order of
magnitude or more scaling of computational performance and storage capacity without incurring significant additional R&D costs.
Beowulf-class systems, which exploit mass-market PC hardware and software in conjunction with cost-effective commercial
network technology, provide users with the dual advantages of unprecedented price/performance and configuration flexibility for
parallel computing. Beowulf-class systems may be implemented by the end users themselves from available components. But
with their growth in popularity, so has evolved industry support for commercial Beowulf systems. Today, depending on source and
services, Beowulf systems can be installed at a cost of between one and three dollars per peak megaflops and of a scale from a
few gigaflops to half a teraflops. Equally important is the rapid growth in diversity of application. Originally targeted to the scientific
and technical community, Beowulf-class systems have expanded in scope to the broad commercial domain for transaction
processing and Web services as well as to the entertainment industry for computer-generated special effects. Right now, the
largest computer under development in the United States is a commodity cluster that upon completion will be at a scale of 30
teraflops peak performance. It is quite possible that, by the middle of this decade, commodity clusters in general and Beowulf-
class systems in particular may dominate middle and high-end computing for a wide range of technical and business workloads. It
also appears that for many students, their first exposure to parallel computing is through hands-on experience with Beowulf
clusters.

The publication of How to Build a Beowulf by MIT Press marked an important milestone in commodity computing. For the first
time, there was an entry-level comprehensive book showing how to implement and apply a PC cluster. The initial goal of that
book, which was released almost two years ago, was to capture the style and content of the highly successful tutorial series that
had been presented at a number of conferences by the authors and their colleagues. The timeliness of this book and the almost
explosive interest in Beowulf clusters around the world made it the most successful book of the MIT Press Scientific and
Engineering Computation series last year. While other books have since emerged on the topic of assembling clusters, it still
remains the most comprehensive work teaching hardware, software, and programming methods. Nonetheless, in spite of its
success, How to Build a Beowulf addressed the needs of only a part of the rapidly growing commodity cluster community. And
because of the rapid evolution in hardware and software, aspects of its contents have grown stale in a very short period of time.
How to Build a Beowulf is still a very useful introduction to commodity clusters and has been widely praised for its accessibility to
first-time users. It has even found its way into a number of high schools across the country. But the community requires a much
more extensive treatment of a topic that has changed dramatically since that book was introduced.

In addition to the obvious improvements in hardware, over the past two years there have been significant advances in software
tools and middleware for managing cluster resources. The early Beowulf systems ordinarily were employed by one or a few
closely associated workers and applied to a small easily controlled workload, sometimes even dedicated to a single application.
This permitted adequate supervision through direct and manual intervention, often by the users themselves. But as the user base
has grown and the nature of the responsibilities for the clusters has rapidly diversified, this simple "mom-and-pop" approach to
system operations has proven inadequate in many commercial and industrial-grade contexts. As one reviewer somewhat unkindly
put it, How to Build a Beowulf did not address the hard problems. This was, to be frank, at least in part true, but it reflected the
state of the community at the time of publication. Fortunately, the state of the art has progressed to the point that a new snapshot
of the principles and practices is not only justified but sorely needed.

The book you are holding is far more than a second addition of the original How to Build a Beowulf; it marks a major transition
from the early modest experimental Beowulf clusters to the current medium- to large-scale, industrial-grade PC-based clusters in
wide use today. Instead of describing a single depth-first minimalist path to getting a Beowulf system up and running, this new
reference work reflects a range of choices that system users and administrators have in programming and managing what may be
a larger user base for a large Beowulf clustered system. Indeed, to support the need for a potentially diverse readership, this new
book comprises three major parts. The first part, much like the original How to Build a Beowulf, provides the introductory material,
underlying hardware technology, and assembly and configuration instructions to implement and initially use a cluster. But even
this part extends the utility of this basic-level description to include discussion and tutorial on how to use existing benchmark
codes to test and evaluate new clusters. The second part focuses on programming methodology. Here we have given equal
treatment to the two most widely used programming frameworks: MPI and PVM. This part stands alone (as do the other two) and
provides detailed presentation of parallel programming principles and practices, including some of the most widely used libraries
of parallel algorithms. The largest and third part of the new book describes software infrastructure and tools for managing cluster
resources. This includes some of the most popular of the readily available software packages for distributed task scheduling, as
well as tools for monitoring and administering system resources and user accounts.

To provide the necessary diversity and depth across a range of concepts, topics, and techniques, I have developed a
collaboration among some of the world's experts in cluster computing. I am grateful to the many contributors who have added their
expertise to the body of this work to bring you the very best presentation on so many subjects. In many cases, the contributors are
the original developers of the software component being described. Many of the contributors have published earlier works on
these or other technical subjects and have experience conveying sometimes difficult issues in readable form. All are active
participants in the cluster community. As a result, this new book is a direct channel to some of the most influential drivers of this
rapidly moving field.

One of the important changes that has taken place is in the area of node operating system. When Don Becker and I developed
the first Beowulf-class systems in 1994, we adopted the then-inchoate Linux kernel because it was consistent with other Unix-like
operating systems employed on a wide range of scientific compute platforms from workstations to supercomputers and because it
provided a full open source code base that could be modified as necessary, while at the same time providing a vehicle for
technology transfer to other potential users. Partly because of these efforts, Linux is the operating system of choice for many
users of Beowulf-class systems and the single most widely used operating system for technical computing with clusters. However,
during the intervening period, the single widest source of PC operating systems, Microsoft, has provided the basis for many
commercial clusters used for data transaction processing and other business-oriented workloads. Microsoft Windows 2000
reflects years of development and has emerged as a mature and robust software environment with the single largest base of
targeted independent software vendor products. Important path-finding work at NCSA and more recently at the Cornell Theory
Center has demonstrated that scientific and technical application workloads can be performed on Windows-based systems. While
heated debate continues as to the relative merit of the two environments, the market has already spoken: both Linux and
Windows have their own large respective user base for Beowulf clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a result of attempting to represent the PC cluster community that clearly embodies two distinct camps related to the node
operating system, my colleagues and I decided to simultaneously develop two versions of the same book. Beowulf Cluster
Computing with Linux and Beowulf Cluster Computing with Windows are essentially the same book except that, as the names
imply, the first assumes and discusses the use of Linux as the basis of a PC cluster while the second describes similar clusters
using Microsoft Windows. In spite of this marked difference, the two versions are conceptually identical. The hardware
technologies do not differ. The programming methodologies vary in certain specific details of the software packages used but are
formally the same. Many but not all of the resource management tools run on both classes of system. This convergence is
progressing even as the books are in writing. But even where this is not true, an alternative and complementary package exists
and is discussed for the other system type. Approximately 80 percent of the actual text is identical between the two books.
Between them, they should cover the vast majority of PC clusters in use today.

On behalf of my colleagues and myself, I welcome you to the world of low-cost Beowulf cluster computing. This book is intended
to facilitate, motivate, and drive forward this rapidly emerging field. Our fervent hope is that you are able to benefit from our efforts
and this work.

Acknowledgments
I thank first the authors of the chapters contributed to this book:

Peter H. Beckman, Turbolinux

Remy Evard, Argonne National Laboratory

Al Geist, Oak Ridge National Laboratory

William Gropp, Argonne National Laboratory

David B. Jackson, University of Utah

James Patton Jones, Altair Grid Technologies

Jim Kohl, Oak Ridge National Laboratory

Walt Ligon, Clemson University

Miron Livny, University of Wisconsin

Ewing Lusk, Argonne National Laboratory

Karen Miller, University of Wisconsin

Bill Nitzberg, Altair Grid Technologies

Rob Ross, Argonne National Laboratory

Daniel Savarese, University of Maryland

Todd Tannenbaum, University of Wisconsin

Derek Wright, University of Wisconsin

Many other people helped in various ways to put this book together. Thanks are due to Michael Brim, Philip Carns, Anthony Chan,
Andreas Dilger, Michele Evard, Tramm Hudson, Andrew Lusk, Richard Lusk, John Mugler, Thomas Naughton, John-Paul
Navarro, Daniel Savarese, Rick Stevens, and Edward Thornton.

Jan Lindheim of Caltech provided substantial information related to networking hardware. Narayan Desai of Argonne provided
invaluable help with both the node and network hardware chapters. Special thanks go to Rob Ross and Dan Nurmi of Argonne for
their advice and help with the cluster setup chapter.

Paul Angelino of Caltech contributed the assembly instructions for the Beowulf nodes. Susan Powell of Caltech performed the
initial editing of several chapters of the book.

The authors would like to respectfully acknowledge the important initiative and support provided by George Spix, Svetlana
Verthein, and Todd Needham of Microsoft that were critical to the development of this book. Dr. Sterling would like to thank
Gordon Bell and Jim Gray for their advice and guidance in its formulation.

Gail Pieper, technical writer in the Mathematics and Computer Science Division at Argonne, was an indispensable guide in
matters of style and usage and vastly improved the readability of the prose.

Thomas Sterling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: So You Want to Use a Cluster

Overview
William Gropp

What is a "Beowulf Cluster" and what is it good for? Simply put, a Beowulf Cluster is a supercomputer that anyone can build and
use. More specifically, a Beowulf Cluster is a parallel computer built from commodity components. This approach takes advantage
of the astounding performance now available in commodity personal computers. By many measures, including computational
speed, size of main memory, available disk space and bandwidth, a single PC of today is more powerful than the supercomputers
of the past. By harnessing the power of tens to thousands of such low-cost but powerful processing elements, you can create a
powerful supercomputer. In fact, the number 5 machine on the "Top500" list of the world's most powerful supercomputers is a
Beowulf Cluster.

A Beowulf cluster is a form of parallel computer, which is nothing more than a computer that uses more than one processor. There
are many different kinds of parallel computer, distinguished by the kinds of processors they use and the way in which those
processors exchange data. A Beowulf cluster takes advantage of two commodity components: fast CPUs designed primarily for
the personal computer market and networks designed to connect personal computers together (in what is called a local area
network or LAN). Because these are commodity components, their cost is relatively low. As we will see later in this chapter, there
are some performance consequences, and Beowulf clusters are not suitable for all problems. However, for the many problems for
which they do work well, Beowulf clusters provide an effective and low-cost solution for delivering enormous computational power
to applications and are now used virtually everywhere. This raises the following question: If Beowulf clusters are so great, why
didn't they appear earlier?

Many early efforts used clusters of smaller machines, typically workstations, as building blocks in creating low-cost parallel
computers. In addition, many software projects developed the basic software for programming parallel machines. Some of these
made their software available for all users, and emphasized portability of the code, making these tools easily portable to new
machines. But the project that truly launched clusters was the Beowulf project at the NASA Goddard Space Flight center. In 1994,
Thomas Sterling, Donald Becker, and others took an early version of the Linux operating system, developed Ethernet driver
software for Linux, and installed PVM (a software package for programming parallel computers) on 16 100MHz Intel 80486-based
PCs. This cluster used dual 10-Mbit Ethernet to provide improved bandwidth in communications between processors, but was
otherwise very simple—and very low cost.

Why did the Beowulf project succeed? Part of the answer is that it was the right solution at the right time. PCs were beginning to
become competent computational platforms (a 100MHz 80486 has a faster clock than the original Cray 1, a machine considered
one of the most important early supercomputers). The explosion in the size of the PC market was reducing the cost of the
hardware through economies of scale. Equally important, however, was a commitment by the Beowulf project to deliver a working
solution, not just a research testbed. The Beowulf project worked hard to "dot the i's and cross the t's," addressing many of the
real issues standing in the way of widespread adoption of cluster technology for commodity components. This was a critical
contribution; making a cluster solid and reliable often requires solving new and even harder problems; it isn't just hacking. The
contribution of the community to this effort, through contributions of software and general help to others building clusters, made
Beowulf clustering exciting.

Since the early Beowulf clusters, the use of commodity-off-the-shelf (COTS) components for building clusters has mushroomed.
Clusters are found everywhere, from schools to dorm rooms to the largest machine rooms. Large clusters are an increasing
percentage of the Top500 list. You can still build your own cluster by buying individual components, but you can also buy a
preassembled and tested cluster from many vendors, including both large and well-established computer companies and
companies formed just to sell clusters.

This book will give you an understanding of what Beowulfs are, where they can be used (and where they can't), and how they
work. To illustrate the issues, specific operations, such as installation of a software package are described. However, this book is
not a cookbook; software and even hardware change too fast for that to be practical. The best use of this book is to read it for
understanding; to build a cluster, then go out and find the most up-to-date information on the web about the hardware and
software.

Each of the areas discussed in this book could have its own book. In fact, many do, including books in the same MIT Press series.
What this book does is give you the basic background so that you can understand Beowulf Clusters. For those areas that are
central to your interest in Beowulf computing, we recommend that you read the relevant books. Some of these are described in
Appendix B. For the others, this book provides a solid background for understanding how to specify, build, program, and manage
a Beowulf cluster.

We begin by defining what a cluster is and why a cluster can be a good computing platform. Since not all applications are
appropriate for clusters, Section 1.3 introduces techniques for estimating the performance of an application on a cluster, with an
illustration drawn from technical computing. With this background, the next two sections provide two different ways to read this
book. Section 1.4 provides a procedural approach, from choosing which components will constitute the cluster to determining how
applications can be tuned on the cluster. Section 1.5 provides a topical approach, such as how to program it, run jobs on it, or
specify a cluster's components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 What Is a Cluster?
Before we talk about cluster computing, we need to define our terms. For the purposes of this book, a cluster is a parallel
computer that is constructed of commodity components and runs (as its system software) commodity software. A cluster is made
up of nodes, each containing one or more processors, memory that is shared by all of the processors in (and only in) the node,
and additional peripheral devices (such as disks), connected by a network that allows data to move between the nodes.

Nodes come in many flavors but are usually built from processors designed for the PC or desktop market. Chapter 2 describes
processor choices in detail. If a node contains more than one processor, it is called an SMP (symmetric multiprocessor) node.

Networks also come in many flavors. These range from very simple (and relatively low-performance) networks based on Ethernet
to high-performance networks designed for clusters. Chapter 4 describes network choices in detail.

Clusters can also be divided into two types: do-it-yourself and prepackaged. A do-it-yourself cluster is assembled by the user out
of commodity parts that are purchased separately. A prepackaged cluster (sometimes called a turnkey system) is assembled by a
cluster vendor, either before or after shipping it to the customer's location. Which you choose depends on your budget, need for
outside help, and facility with computer hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Why Use a Cluster?
Why use a cluster instead of a single computer? There are really two reasons: performance and fault tolerance. The original
reason for the development of Beowulf clusters was to provide cost-effective computing power for scientific applications, that is, to
address the needs of applications that required greater performance than was available from single (commodity) processors or
affordable multiprocessors. An application may desire more computational power for many reasons, but the following three are the
most common:

Real-time constraints, that is, a requirement that the computation finish within a certain period of time. Weather
forecasting is an example. Another is processing data produced by an experiment; the data must be processed (or
stored) at least as fast as it is produced.

Throughput. A scientific or engineering simulation may require many computations. A cluster can provide the
resources to process many related simulations. On the other hand, some single simulations require so much
computing power that a single processor would require days or even years to complete the calculation. An example
of using a Linux Beowulf cluster for throughput is Google [13], which uses over 15,000 commodity PCs with fault-
tolerant software to provide a high-performance Web search service.

Memory. Some of the most challenging applications require huge amounts of data as part of the simulation. A
cluster provides an effective way to provide even terabytes (1012 bytes) of program memory for an application.

Clusters provide the computational power through the use of parallel programming, a technique for coordinating the use of many
processors for a single problem. Part II (Parallel Programming) discusses this approach in detail. What clusters are not good for is
accelerating calculations that are neither memory intensive nor processing-power intensive or (in a way that will be made precise
below) that require frequent communication between the processors in the cluster.

Another reason for using clusters is to provide fault tolerance, that is, to ensure that computational power is always available.
Because clusters are assembled from many copies of the same or similar components, the failure of a single part only reduces
the cluster's power. Thus, clusters are particularly good choices for environments that require guarantees of available processing
power, such as Web servers and systems used for data collection.

We note that fault tolerance can be interpreted in several ways. For a Web server or data handling, the cluster can be considered
up as long as enough processors and network capacity are available to meet the demand. A well-designed cluster can provide a
virtual guarantee of availabilty, short of a disaster such as a fire that strikes the whole cluster. Such a cluster will have virtually
100% uptime. For scientific applications, the interpretation of uptime is often different. For clusters used for scientific applications,
however, particularly ones used to provide adequate memory, uptime is measured relative to the minimum size of cluster (e.g.,
number of nodes) that allows the applications to run. In many cases, all or nearly all of the nodes in the cluster must be available
to run these applications.

Of course, many uses of clusters are a blend of these two approaches. Part III describes tools for sharing a cluster among users
and, in many cases, providing support for both performance-oriented and fault-tolerant computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 Understanding Application Requirements
In order to know what applications are suitable for cluster computing and what tradeoffs are involved in designing a cluster, one
needs to understand the requirements of applications.

1.3.1 Computational Requirements

The most obvious requirement (at least in scientific and technical applications) is the number of floating-point operations needed
to perform the calculation. For simple calculations, estimating this number is relatively easy; even in more complex cases, a rough
estimate is usually possible. Most communities have a large body of literature on the floating-point requirements of applications,
and these results should be consulted first. Most textbooks on numerical analysis will give formulas for the number of floating-
point operations required for many common operations. For example, the solution of a system of n linear equations; solved with
the most common algorithms, takes 2n3/3 floating-point operations. Similar formulas hold for many common problems.

You might expect that by comparing the number of floating-point operations with the performance of the processor (in terms of
peak operations per second), you can make a good estimate of the time to perform a computation. For example, on a 2 GHz
processor, capable of 2 × 109 floating-point operations per second (2 GFLOPS), a computation that required 1 billion floating-point
operations would take only half a second. However, this estimate ignores the large role that the performance of the memory
system plays in the performance of the overall system. In many cases, the rate at which data can be delivered to the processor is
a better measure of the achievable performance of an application (see [45, 60] for examples).

Thus, when considering the computational requirements, it is imperative to know what the expected achievable performance will
be. In some cases this may be estimated by using standard benchmarks such as LINPACK [34] and STREAM [71], but it is often
best to run a representative sample of the application (or application mix) on a candidate processor. After all, one of the
advantages of cluster computing is that the individual components, such as the processor nodes, are relatively inexpensive.

1.3.2 Memory

The memory needs of an application strongly affect both the performance of the application and the cost of the cluster. As
described in Section 2.1, the memory on a compute node is divided into several major types. Main memory holds the entire
problem and should be chosen to be large enough to contain all of the data needed by an application (distributed, of course,
across all the nodes in the cluster). Cache memory is smaller but faster memory that is used to improve the performance of
applications. Some applications will benefit more from cache memory than others; in some cases, application performance can be
very sensitive to the size of cache memory. Virtual memory is memory that appears to be available to the application but is
actually mapped so that some of it can be stored on disk; this greatly enlarges the available memory for an application for low
monetary cost (disk space is cheap). Because disks are electromechanical devices, access to memory that is stored on disk is
very slow. Hence, some high-performance clusters do not use virtual memory.

1.3.3 I/O

Results of computations must be placed into nonvolatile storage, such as a disk file. Parallel computing makes it possible to
perform computations very quickly, leading to commensurate demands on the I/O system. Other applications, such as Web
servers or data analysis clusters, need to serve up data previously stored on a file system.

Section 5.3.4 describes the use of the network file system (NFS) to allow any node in a cluster to access any file. However, NFS
provides neither high performance nor correct semantics for concurrent access to the same file (see Section 19.3.2 for details).
Fortunately, a number of high-performance parallel file systems exist for Linux; the most mature is described in Chapter 19. Some
of the issues in choosing I/O components are covered in Chapter 2.

1.3.4 Other Requirements

A cluster may need other resources. For example, a cluster used as a highly-available and scalable Web server requires good
external networking. A cluster used for visualization on a tiled display requires graphics cards and connections to the projectors. A
cluster that is used as the primary computing resource requires access to an archival storage system to support backups and
user-directed data archiving.

1.3.5 Parallelism

Parallel applications can be categorized in two major classes. One class is called embarassingly (or sometimes pleasingly)
parallel. These applications are easily divided into smaller tasks that can be executed independently. One common example of
this kind of parallel application is a parameter study, where a single program is presented with different initial inputs. Another
example is a Web server, where each request is an independent request for information stored on the web server. These
applications are easily ported to a cluster; a cluster provides an easily administered and fault-tolerant platform for executing such
codes.

The other major class of parallel applications comprise those that cannot be broken down into independent subtasks. Such
applications must usually be written with explicit (programmer-specified) parallelism; in addition, their performance depends both
on the performance of the individual compute nodes and on the network that allows those nodes to communicate. To understand
whether an application can be run effectively on a cluster (or on any parallel machine), we must first quantify the node and
communication performance of typical cluster components. The key terms are as follows:

latency: The minimum time to send a message from one process to another.

overhead: The time that the CPU must spend to perform the communication. (Often included as part of the
latency.)

bandwidth: The rate at which data can be moved between processes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contention: The performance consequence of communication between different processes sharing some
resource, such as network wires.

With these terms, we can discuss the performance of an application on a cluster. We begin with the simplest model, which
includes only latency and bandwith terms. In this model, the time to send n bytes of data between two processes can be
approximated by

(1.1)

where s is the latency and r is the inverse of the bandwidth. Typical numbers for Beowulf clusters range from 5 to 100
microseconds for s and from 0.01 to 0.1 microseconds/byte for r. Note that a 2 GHz processor can begin a new floating-point
computation every 0.0005 microseconds.

One way to think about the time to communicate data is to make the latency and bandwidth terms nondimensional in terms of the
floating-point rate. For example, if we take a 2 GHz processor and typical choices of network for a Beowulf cluster, the ratio of
latency to floating-point rate ranges from 10,000 to 200,000! What this tells us is that parallel programs for clusters must involve a
significant amount of work between communication operatoins. Fortunately, many applications have this property.

The simple model is adequate for many uses. A slightly more sophisticated model, called logP [31], separates the overhead from
the latency.

Chapter 7 contains more discussion on complexity models. Additional examples appear throughout this book. For example,
Section 8.2 discusses the performance of a master/worker example that uses the Message-Passing Interface (MPI) as the
programming model.

1.3.6 Estimating Application Requirements

What does all of the above mean for choosing a cluster? Let's look at a simple partial differential equation (PDE) calculation,
typical of many scientific simulations.

Consider a PDE in a three-dimensional cube, discretized with a regular mesh with N points along a side, for a total of N3 points.
(An example of a 2-D PDE approximation is presented in Section 8.3.) We will assume that the solution algorithm uses a simple
time-marching scheme involving only six floating-point operations per mesh point. We also assume that each mesh point has only
four values (either three coordinate values and an unknown or four unknowns). This problem seems simple until we put in the
numbers. Let N = 1024, which provides adequate (though not exceptional) resolution for many problems. For our simple 3-D
problem, this then gives us

Data size = 2 × 4 × (1024)3 = 8 GWords = 64 GBytes

Work per step = 6 × (1024)3 = 6 GFlop

This assumes that two time steps must be in memory at the same time (previous and current) and that each floating-point value is
8 bytes.

From this simple computation, we can see the need for parallel computing:
1. The total memory size exceeds that available on most single nodes. In addition, since only 4 GBytes of memory

are directly addressable by 32-bit processors, solving this problem on a single node requires either a 64-bit
processor or specialized out-of-core techniques.

2. The amount of work seems reasonable for a single processor, many of which are approaching 6 GFlops (giga
floating-point operations per second). However, as we will see below, the actual rate of computation for this
problem will be much smaller.

Processors are advertised with their clock rate, with the implication that the processor can perform useful work at this rate. For
example, a 2 GHz processor suggests that it can perform 2 billion operations per second. What this ignores is whether the
processor can access data fast enough to keep the processor busy. For example, consider the following code, where the
processor is multiplying two vectors of floating-point numbers together and storing the result:
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];

This requires two loads of a double and a store for each element. To perform 2 billion of these per second requires that the
memory system move 3 × 8 × 109 = 24 GBytes/sec. However, no commodity nodes possess this kind of memory system
performance. Typical memory system rates are in the range of 0.2 to 1 GBytes/second (see Section 2.3). As a result, for
computations that must access data from main memory, the achieved (or observed) performance is often a small fraction of the
peak performance. In this example, the most common nodes could achieve only 1–4% of the peak performance.

Depending on the application, the memory system performance may be a better indicator of the likely achievable performance. A
good measure of the memory-bandwidth performance of a node is the STREAM [71] benchmark. This measures the achieved
performance of the memory system, using a simple program, and thus is more likely to measures the performance available to the
user than any number based on the basic hardware.

For our example PDE application, the achieved performance will be dominated by the memory bandwidth rather than the raw CPU
performance. Thus, when selecting nodes, particularly for a low-cost cluster, the price per MByte/sec, rather than the price per
MFlop/sec, can be a better guide.

We can parallelize this application by breaking the mesh into smaller pieces, with each node processing a single piece as shown
in Figure 1.1. This process is called domain decomposition. However, the pieces are not independent; to compute the values for
the next time step, values from the neighboring pieces are needed (see Section 8.3 for details). As a result, we must now consider
the cost to communicate the data between nodes as well as the computational cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.1: Sample decomposition of a 3-D mesh. The upper right corner box has been pulled out to show that the mesh
has been subdivided along the x, y, and z axes.

For this simple problem, using the communication model above, we can estimate the time for a single step, using p nodes, as

(1.2)

The first term is the floating-point work, which decreases proportionally with an increase in the number of processors p. The
second term gives the cost of communicating each of the six faces to the neighboring processors, and includes both a term
independent of the number of processors, and a term that scales as p2/3, which comes from dividing the original domain into p
cubes, each with N/p1/3 along a side. Note that even for an infinite number of nodes, the time for a step is at least 6s (the
minimum time or latency to communicate with each of the six neighbors). Thus it makes no sense to use an unlimited number of
processors. The actual choice depends on the goal of the cluster:

Minimize cost: In this case, you should choose nodes so that each subdomain fits on a node. In our example, if
each node had 2 GBytes of memory, we would need at least 32 nodes (probably more, to leave room for the
operating system and other parts of the application).

Achieve a real-time constraint such as steps per second: In this case, T is specified and Equation 1.2 is solved for
p, the number of nodes. Beware of setting T very small; as a rule of thumb, the floating-point work (the N3 f/p term)
should be large compared to the communication terms. In this case, as p becomes large, and since

in order to make the communication a smaller part of the overall time than that computation, we must have

For the typical values of s/f and for N = 1024, this bound is not very strong and limits p to a only few thousand
nodes. For smaller N, however, this limit can be severe. For example, if N = 128 instead and if fast Ethernet is used
for the network, this formula implies that p < 10.

Some notes on this example:

We chose a three-dimensional calculation. Many two-dimensional calculations are best carried out on a single
processor (consider this an exercise for the reader!).

The total memory space exceeds that addressable by a 32-bit processor. But because we are using a cluster, we
can still use 32-bit processors, as long as we use enough of them.

The expected performance is likely to be a small fraction of the "peak" performance. We don't care; the cost of the
cluster is low.

If there are enough nodes, the problem may fit within the much faster cache memory (though this would require
thousands of nodes for this example). In that case, the computing rate can be as much as an order of magnitude
higher—even before factoring in the benefits of parallelism! This is an example of superlinear speedup: speedup
that is greater than p on p processors. This is a result of the nonlinear behavior of performance on memory size and
is not paradoxical.

Latency here has played a key role in determining performance. In other computations, however, including ones for
PDEs that use different decompositions, the bandwidth term may be the dominant communication term.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since each time step generates 64 GBytes of data, a high-performance I/O system is required to keep the I/O times
from dominating everything else. Fortunately, Beowulf clusters can provide high I/O performance through the use of
parallel file systems, such as PVFS, discussed in Chapter 19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Building and Using a Cluster
In this section we review the issues in configuring, building, and using a cluster and provide references to the corresponding
sections of this book. Section 1.5 provides an alternate view of this book, organized around particular tasks, such as programming
or managing a cluster.

1.4.1 Choosing a Cluster

When choosing the components for a cluster, or selecting from a prebuilt cluster, you must focus on the applications that will be
run on the cluster. The following list covers some of the issues to consider.

1. Understanding the needs of your application. Some of this has been covered above; you will find more on
understanding the performance of applications in Part II.

2. Decide the number and type of nodes. Based on the application needs, select a node type (e.g., uni-processor
or SMP), processor type, and memory system. Chapter 2 covers node hardware. As described above, raw CPU
clock rate is not always a good guide to performance, so make sure that you have a good understanding of the
applications. Other issues to consider when choosing the processor type include whether you will run prebuilt
applications that require a particular type of processor, whether you need 64-bit or 32-bit addressing, or whether
your codes are integer or floating-point intensive.

3. Decide on the network. Determine whether your applications require low latency and/or high bandwidth in the
network. If not, for example, running a throughput cluster with embarassingly parallel applications, then simple
fast Ethernet with low-cost switches may be adequate. Otherwise, you may need to invest in a high-performance
cluster network. These network choices are covered in more detail in Chapter 4. Note that the cost of a fast
Ethernet network is very low while a high performance network can double the cost of a cluster.

4. Determine the physical infrastructure needs. How much floor space, power, and cooling will you need. Is noise a
factor?

5. Determine the operating system (OS) that you will use. Since you bought this book, you have probably selected
Linux. Chapter 3 will help you select a particular distribution of Linux as well as understand how to tune Linux for
your cluster. The choice of cluster setup software may also influence which distribution of Linux you can use;
this is covered in Chapter 6. In choosing the operating system, consider the following:

Do your applications run on the chosen system? Many applications and programming models
(Part II) run under many operating systems, including Windows, Linux, and other forms of Unix.

Do you have expertise with a particular operating system?

Are there license issues (cost of acquiring or leasing) software, including the operating system
and compilers?

6. Cost tradeoffs. The cost of a node is not linearly related to the performance of that node. The fastest nodes are
more expensive per flop (and usually per MByte/sec of memory bandwidth) than are lower-cost nodes. The
question is then: Should a cluster use the fastest available nodes regardless of cost, or should it use mid-range
or even low-range nodes? The answer depends, as always, on your needs:

If price is no object, go with the fastest nodes. This approach will reduce the number of nodes
needed for any given amount of computing power, and thus the amount of parallel overhead.

If total computing power over time is the goal, then go with mid- or low-end nodes, but replace
them frequently (say, every 18 months to two years) with newer nodes. This strategy exploits the
rapid advances in node performance; buying two low-end nodes every two years will often give
you a greater amount of computing power (integrated over time) than spending the same amount
every four years on a high-end node.

If a targeted amount of computing power (e.g., for a specific application) is the goal, then analyze
the tradeoffs between a greater number of slower (but possibly much cheaper) nodes and a
smaller number of faster but individually less cost-efficient nodes.

1.4.2 Setting Up a Cluster

Once you have specified your cluster, you need to assemble the components and set up the initial software. Chapters 2 and 4
cover some of the issues in assembling the hardware for both the nodes and the network. Chapter 20 discusses cluster setup in
the context of two generations of clusters used at Argonne National Laboratory.

In the past few years, great strides have been made in simplifying the process of initializing the software environment on a cluster.
Chapter 6 covers the most popular packages and provides advice on setting up your new cluster.

At this point, you may wish to benchmark your cluster. Since such benchmarking will require running a parallel program,
information on this topic is provided in Part II, Sections 9.10 and 9.10.3. Alternatively, you may prefer to run a prepackaged
performance suite, such as the Beowulf Performance Suite (BPS), available at www.plogic.com/bps. BPS contains both single
node and parallel performance tests, including the following:

bonnie++: I/O (disk) performance; www.coker.com.au/bonnie++

Stream: Memory system performance; www.cs.virginia.edu/stream

netperf: General network performance; www.netperf.org/netperf/NetperfPage.html

netpipe: A more detailed network performance benchmark;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

netpipe: A more detailed network performance benchmark;
www.scl.ameslab.gov/Projects/ClusterCookbook/nprun.html

unixbench: General Unix benchmarks; www.linuxdoc.org/HOWTO/Benchmarking-HOWTO.html

LMbench: Low-level benchmarks; www.bitmover.com/lmbench

NAS parallel benchmarks: A suite of parallel benchmarks derived from some important applications;
www.nas.nasa.gov/Software/NPB

1.4.3 Developing New Applications

Before deciding to develop new applications, check out what is already available for clusters. Chapter 12 provides a guide to
software that is already available, either as full programs or as libraries that can be used to build new applications with little or no
explicitly parallel programming. New applications are constantly being developed, so check the web and the Beowulf mailing lists
before starting to develop your own application. If what you need is not yet available, then Part II provides an introduction to
parallel programming, covering both the most popular tools for building embarrassingly parallel applications as well as the two
most popular libraries for parallel programming, MPI (Chapters 8 and 9) and PVM (Chapters 10 and 11). These chapters also
contain information on tuning and testing applications. Section 9.10 covers the most common cluster performance benchmarks,
including High Performance LINPACK (Section 9.10.3).

1.4.4 Operating a Cluster

Once your cluster is up and running, you (or someone) will need to operate it. Chapter 13 covers the basics of system
management for clusters, including account administration, security, monitoring, and file system backups. Chapter 19 discusses
parallel I/O in general and the systems administration issues for the Parallel Virtual File System (PVFS) in particular.

One of the biggest decisions is whether the cluster will allow provide interactive use, batch use, or a mixture of both. Since batch
use is a common way to use clusters, Chapter 14 provides an overview of the issues and many of the available batch systems.
This chapter is followed by chapters on individual batch systems.

1.4.5 Getting Help

Many resources are available to which you can turn for help. One of the best is the Beowulf mailing list. To subscribe, visit
www.beowulf.org/mailman/listinfo/beowulf. The Beowulf Web site, www.beowulf.org, also provides much valuable information.

A major strength of Linux is the community. The Beowulf mailing list (<beowulf@beowulf.org>) is a good place to go for answers
to all kinds of questions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Another Way to Read This Book
This book may also be used as an introduction to the various areas of Beowulf computing. Each part, and to some extent, each
chapter may be read independently of the others. This section makes recommendations based on how you intend to use your
cluster, providing a different persective on the book than that presented in the preceding section. Additional information on all of
these topics may be found in the reading list in Appendix B and the URLs in Appendix C.

1.5.1 Using a Cluster Operated by Someone Else

If you are using a cluster that someone else is operating, you need only learn how to program and run applications.

Part II covers programming clusters. Even if you do not intend to develop your own parallel applications, we recommend reading
Chapter 7, which provides an overview of the technologies. For a deeper understanding of the parallel programming technologies,
read the chapters on MPI (Chapters 8 and 9) and PVM (Chapters 10 and 11). Even if you plan to write your own parallel software,
you should read Chapter 12 on parallel software and libraries. You may find that what you need has already been written!

Once you have your application, you will need to run your program. Part III covers tools for managing and using a cluster. Many
clusters will use some kind of workload management system to mediate use of the cluster among the user community. Chapter 14
provides an overview of the concepts and capabilities of these systems. You should also read the chapter that corresponds to the
workload system that is used on your cluster: Condor (Chapter 15), Maui (Chapter 16), PBS (Chapter 17), or Scyld (Chapter 18). If
your application requires a high-performance, parallel I/O system, read Chapter 19 on the Parallel Virtual File System. These
chapters cover information of interest to both the system administrator and the cluster user, so skip over material that doesn't
apply to you.

1.5.2 Choosing Cluster Components

First, re-read this chapter and pay close attention to the discussion of application requirements. These requirements will guide you
in your choice of cluster components. Chapters 2 and 4 describe the choices of processor, network, and other hardware. Even if
you plan to buy a preassembled cluster, these chapters will help you understand the various choices of components and aid you
in understanding the specifications of a cluster. Chapter 2 also covers some of the issues of assembling your own cluster.

1.5.3 Operating a Cluster

Operating a cluster requires an understanding of the operating system. Chapter 3 provides a brief introduction along with a
discussion of cluster-specific issues. Chapter 6 describes tools for setting up a cluster. An introduction to managing a cluster from
the point of view of the system administrator is presented in Chapter 13. Chapter 14 provides an overview of the concepts and
capabilities of these systems. The chapters on the individual systems provide information on both the use and management of
workload management systems: Condor (Chapter 15), Maui (Chapter 16), PBS (Chapter 17), or Scyld (Chapter 18). Once the
cluster is up and running, you may need to tune the network and operating system. Chapter 3 provides some information on
tuning the OS; Chapter 5 discusses techniques for tuning the network and communication systems. Finally, Chapter 20 provides a
case study of two generations of a major cluster system, illustrating particular choices and best practices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Enabling Technologies
Chapter List

Chapter 2: Node Hardware

Chapter 3: Linux

Chapter 4: System Area Networks

Chapter 5: Configuring and Tuning Cluster Networks

Chapter 6: Setting up Clusters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Node Hardware

Highlights
Narayan Desai and Thomas Sterling

Few technologies in human civilization have experienced such a rate of growth as that of the digital computer and its culmination
in the PC. Its low cost, ubiquity, and sometimes trivial application often obscure its complexity and precision as one of the most
sophisticated products derived from science and engineering. In a single human lifetime over the fifty-year history of computer
development, performance and memory capacity have grown by a factor of almost a million. Where once computers were
reserved for the special environments of carefully structured machine rooms, now they are found in almost every office and home.
A personal computer today outperforms the world's greatest supercomputers of two decades ago at less than one ten-thousandth
the cost. It is the product of this extraordinary legacy that Beowulf harnesses to open new vistas in computation.

A Beowulf cluster is a network of nodes, with each node a low-cost personal computer. Its power and simplicity are derived from
exploiting the capabilities of the mass-market systems that provide both the processing and the communication. This chapter
explores the hardware elements related to computation and storage. The choice of node hardware, along with the choice of a
system area network, will determine the basic performance properties of the Beowulf for its entire operational lifetime. Neither of
these choices should be taken lightly; tremendous variation exists among instances of all components involved. This chapter
discusses the components included in a cluster node, their function in a system, and their effects on node performance.
Communication hardware is discussed in detail in Chapter 4.

The purpose of a Beowulf cluster is to perform parallel computations. This is accomplished by running applications across a
number of nodes simultaneously. These applications may perform in parallel; that is, they may need to coordinate during
execution. On the other hand, they may be performing an embarrassingly parallel task, or a large group of serial tasks. One key
factor in application performance in all cases is local node performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Node Hardware Overview
A cluster node is responsible for all activities and capabilities associated with executing an application program and supporting a
sophisticated software environment. The process of application involves a large number of components. An application is actually
executed on the main CPU. The CPU loads data from its cache and main memory into registers. All applications use peripherals,
such as persistent storage or network transmission, for noncomputational tasks. All peripherals load data into or process data
from main memory, where it can be accessed by the system CPU. Applications can be characterized in terms of these three basic
operations:

Instruction execution: operating on data in registers, storing the results in term in registers. This operation is
implemented entirely by the CPU.

Register loading: loading data from main memory or processor cache into processor registers to facilitate instruction
execution. This operation involves the CPU, front-side bus, and system memory.

Peripheral usage: copying data across an I/O bus into or out of main memory to allow for a noncomputational task
to occur. This operation involves the peripheral, the I/O bus, and the interface from the I/O bus into system memory,
and system memory itself.

The system CPU is the main processor, on which most code is executed. A node may have more than one of these, operating in
SMP (symmetric multiprocessing) mode. This processor will have some amount of cache. Cache is used for fast access to data in
main memory. Cache is typically ten times faster than main memory, so it is advantageous to load data into cache before using it.
Main memory is the location where running programs, including the operating system, store all data. It is not persistent; data that
should survive beyond a reboot is copied to some persistent medium, such as a hard disk. An I/O bus connects main memory with
all peripherals. The peripherals (disk controllers, network controllers, video cards, etc.) operate by manipulating data from main
memory. For example, a disk write will occur by copying data across the I/O bus to the disk controller. The disk controller will then
actually write the data to disk.

In detail, when an application is executed, it is loaded from disk or some other persistent storage into main memory. When
execution actually begins, parts of the application are copied into processor cache. From here, the data is written into on-
processor registers, where the processor can directly access it. When the processor is done with this data, it is copied back out to
main memory. When the application is dependent on data from a peripheral (e.g., data read from hard disk, or data received on a
network interface) loading data into registers becomes much more complex. For example, a kernel call will result in a disk
controller's reading of data from hard disk into local storage on the controller. The controller will copy the data across the I/O bus
to system main memory, from which it can be loaded into registers for the processor to operate on. Each of these steps is faster
than the proceeding step; indeed, there are several orders of magnitude difference between the speeds of the first step and the
last step. All applications can be characterized in terms of these basic three types of activities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Microprocessor
A microprocessor (also referred to as the CPU or processor) is at the heart of any computer. It is the single component that
implements instruction execution. Processors vary in a number of ways; we focus on the more important characteristics. The
lowest-level binary encoding of the instructions and the actions they perform are dictated by the microprocessor instruction set
architecture (ISA). The most common ISA used for cluster node CPU is IA32, or X86. This family of processors includes all
generations of the Pentium processor and the Athlon family. A shared ISA doesn't imply an identical instruction set; newer
processors have extra features that old processors do not. For example, SSE and SSE2 are numerical instruction sets that were
added in Pentium III and Pentium 4 processors, respectively. The earliest clusters were composed of 486 processors, which
implement this ISA.

A processor runs at a particular clock rate. That is, it can execute instructions at a particular frequency, measured in terms of
megahertz or gigahertz. For example, a 2.4 GHz processor can execute a rate of 2.4 billion instructions per second. Note that a
processor's clock rate is not a direct measure of performance. Frequently, processors with different clock rates can perform
equivalently for some tasks; likewise, two processors with the same clock rate can perform quite differently for some tasks.
Current clock rates range from 1 GHz to slightly over 3 GHz.

Any processor has a theoretical peak speed. Theoretical peak is the maximum rate of instruction execution a processor can
achieve. This is determined by the clock rate, ISA, and components included in the processor itself. This rate is measured in
floating-point operations per second, or flops. A current generation processor will have a theoretical peak of 3–5 gigaflops. As one
might guess from the name, theoretical peak is just that, theoretical. A processor rarely, if ever, runs at that rate while executing a
real user application.

Both the instructions and the data upon which they act are stored in and loaded from the node's random access memory (RAM).
The speed of a processor is often measured in megahertz, indicating that its clock ticks so many million times per second. RAM
runs at a much slower clock rate, usually measured in hundreds of megahertz. Thus, the processor often waits for memory, and
the overall rate at which programs run is usually governed as much by the memory system as by the processor's clock speed.

The slow rate at which data can be copied from RAM is mitigated by a processor's cache. The cache is a small amount of fast
memory usually co-located on the CPU. When data is copied from main memory, it is also stored in cache. If the same data is
accessed again, it can be read from cache. This is highly advantageous: applications can be optimized to access memory in
patterns that take the best possible advantage of cache speed. The quicker access to memory in cache leads to better processor
utilization; the processor spends less time waiting for data from memory. Processor caches vary in size from kilobytes on some
processors to upwards of four to eight megabytes on processors specified to provide good floating point performance. Obviously,
the larger the cache is, the easier it is to reuse entries stored in it.

2.2.1 IA32

IA32 is the most common ISA used in clusters today, and for the foreseeable future. This is caused by the enormous economies
of scale at work. Processors implementing this ISA are used in the majority of desktop PCs sold. IA32 is a 32-bit instruction set. It
is treated as a binary compatibility specification. Multiple processors, implemented in vastly different ways, all implement the same
instruction set to allow for application portability. The three most common processors used in clusters today are the Pentium III
and 4 processors, manufactured by Intel, and AMD's Athlon processor. Recent additions to the IA32 ISA include SSE and its
successor SSE2. (Streaming SIMD Extensions) SSE and SSE2 are instruction set extensions that define instructions that can be
performed in parallel on multiple data elements; these are not necessarily implemented in all instances of IA32 processors. These
features can yield substantially improved performance, so care should be taken when choosing the processor for a new system.
Hyperthreading is another feature recently added to the IA32 ISA. It allows multiple threads of execution per physical CPU. This
feature typically impacts application performance negatively and can be disabled, so it really isn't a decision point when choosing
a CPU, as SSE and SSE2 are.

Pentium 4. The Pentium 4 implements the IA32 instruction set but uses an internal architecture that diverges substantially from
the old P6 architecture. The internal architecture is geared for high clock speeds; it produces less computing power per clock
cycle but is capable of extremely high frequencies. This architecture is also the only IA32 processor family that implements the
SSE2 instruction set, providing a substantial performance benefit for some applications. This is also the only architecture that
implements hyperthreading, but (as was mentioned previously) this feature is not terribly important for computational applications
typically run on clusters.

Pentium III. The Pentium III is based on the older Pentium Pro architecture. It is a minor upgrade from the Pentium II; it includes
SSE for three-dimensional instructions and has moved the L2 cache onto the chip, making it synchronized with the processor's
clock. The Pentium III can be used within an SMP node with two processors; a more expensive variant, the Pentium III Xeon, can
be used in four-processor SMP nodes.

Athlon. The AMD Athlon platform is similar to the Pentium III in its processor architecture but similar to the Compaq Alpha in its
bus architecture. It has two large 64 KByte L1 caches and a 256 KByte L2 cache that run at the processor's clock speed. The
performance is a little better than that of the Pentium III and Pentium 4 in general at similar clock rates, but either can be faster
depending on the application. The Athlon supports dual-processor SMP nodes. Newer Athlon processors support SSE, but not
SSE2.

2.2.2 Other Processor Types

HP Alpha 21264. The Compaq (now HP and originally DEC) Alpha processor is a true 64-bit architecture. For many years, the
Alpha held the lead in many benchmarks, including the SPEC benchmarks, and was used in many of the fastest supercomputers,
including the Cray T3D and T3E, as well as the Compaq SC family. Alpha are still popular with some users, but since the Alpha
processor line is no longer being developed and the current Alpha processor will be the last, Alphas are rarely chosen for new
systems. However, a few large clusters make use of Alphas, including the ASCI Q system at Los Alamos National Laboratory;
ASCI Q is one of the fastest systems in the world, according to the Top500 list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Alpha uses a Reduced Instruction Set Computer (RISC) architecture, distinguishing it from Intel's Pentium processors. RISC
designs, which have dominated the workstation market of the past decade, eschew complex instructions and addressing modes,
resulting in simpler processors running at higher clock rates, but executing somewhat more instructions to complete the same
task.

PowerPC G5. The IBM PowerPC is an processor architecture used in products from IBM and from Apple. The newest processor
is the G5, a sophisticated 64-bit processor capable of running at speeds of up to 2GHz. Other features include a 1GHz frontside
bus and multiple functional units, allowing the G5 to perform multiple operations in each clock cycle. Apple sells Macs with the G5
processor, and a number of groups have built clusters using Macs, running Mac OS X (a Unix-like operating system).

IA64. The IA64 is Intel's first 64-bit architecture. This is an all-new design, with a new instruction set, new cache design, and new
floating-point processor design. With clock rates approaching 1 GHz and multiway floating-point instruction issue, Itanium should
be the first implementation to provide between 1 and 2 Gflops peak performance. The first systems with the Itanium processor
were released in the middle of 2001 and have delivered impressive results. For example, the HP Server rx4610, using a single
800 MHz Itanium, delivered a SPECfp2000 of 701, comparable to recent Alpha-based systems. More recent results with a 1.5
GHz Itanium 2 in an HP rx2600 server gave a SPECfp2000 of 2119. The IA64 architecture does, however, require significant help
from the compiler to exploit what Intel calls EPIC (explicitly parallel instruction computing).

Opteron. Another 64-bit architecture is AMD's Opteron. Unlike the Intel IA64 architecture, the Opteron supports both the IA32
instruction set as well as a new 64-bit extension, allowing users to continue to use their existing 32-bit applications while taking
advantage of a 64-bit instruction set for applications that require easy access to more than 4 GB of memory. The Opteron includes
an integrated DDR memory controller and a high-performance interconnect called "HyperTransport" that provides up to 6.4
GB/sec bandwidth per link; each Opteron may have three HyperTransport links. Early Opterons have delivered a SPECfp2000 of
1154. The AMD Opteron is used in the Cray "Red Storm," that will use over 10,000 processors and have a peak performance of
over 40 Teraflops.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Memory
A system's random access memory (RAM, or memory) is a temporary storage location used to store instructions and data.
Instructions are the actual operations a processor executes. The data comes from a variety of sources. It may be data supplied by
some peripheral, such as a hard disk or network controller. It may be intermediary results generated during program execution.
Instructions and data are both required for the processor to compute a meaningful result. Hence, the processor constantly is
issuing commands to load or store data from memory across the memory bus. Memory buses operate at rates between 100 MHz
and 800 MHz. This bus is also referred to as the front side bus, or FSB.

Because of the constant usage of system RAM and the large gap between processor clock rate and memory bus rate, the
memory bus is one of the largest impediments to achieving theoretical peak. Memory bus performance is measured in terms of
two characteristics. The first is peak memory bandwidth, the burst rate that data can be copied between the DRAM chips in main
memory and the CPU. The FSB must be fast enough to support this high burst rate. In the case of some proprietary systems,
memory accesses are pipelined to improve aggregate memory bandwidth. In this case, data is bursted from multiple groups of
DRAM chips. However, this technique is not used in PC systems. The second characteristic is memory latency, the amount of
time it takes to move data between RAM and the CPU. RAM bandwidth ranges from one to four gigabytes per second. RAM
latency has fallen to under 6 nanoseconds.

Except for very carefully designed applications, a program's entire dataset must reside in RAM. The alternative is to use disk
storage either explicitly (out-of-core calculations) or implicitly (virtual memory swapping), but this usually entails a severe
performance penalty. Thus, the size of a node's memory is important in parameter in system design. It determines the size of
problem that can practically be run on the node. Engineering and scientific applications often obey a rule of thumb that says that
for every floating-point operation per second, one byte of RAM is necessary. This is a gross approximation at best, and actual
requirements can vary by many orders of magnitude, but it provides some guidance; for example, a 1 GHz processor capable of
sustaining 200 Mflops should be equipped with approximately 200 MBytes of RAM.

Two main types of RAM are used in current commodity systems. SDRAM has been in use for several years. RDRAM is a newer
standard used only in Pentium 4-based systems. RDRAM tends to be faster and more expensive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 I/O Channels
I/O channels are buses that connect peripherals with main memory. These peripherals will range from disk and network
controllers to video controllers, and USB and firewire. Machines will have several of these buses, each connected by a bridge
(also referred to as the PCI chipset) into main memory. Because I/O is one of the most common tasks on computers, this
subsystem is an integral part of any system.

2.4.1 PCI and PCI-X

The most common I/O channel in commodity hardware is the PCI bus. Every machine sold today has at least one; many have
multiples of these buses. Many flavors of PCI exist; these buses have been included in commodity hardware since 1994. Earlier
versions of the PCI bus were 32-bit, 33 MHz buses. The theoretical maximum rate of data transmission on these buses is 132
MB/s. Good implementations of the PCI chipset are able to provide nearly this rate; maximum observed bus rates greater than
125 MB/s are not uncommon.

Newer revisions of PCI buses are 64-bit buses, running at 66 MHz or higher. These buses have become quite common over the
last three to four years. The theoretical maximum rate for these is upwards of 500 MB/s. Good implementations of this PCI chipset
provide between 400 and 500 MB/s of read and write bandwidth. Good PCI-X implementations, running at 133 MHz, provide
upwards on 900 MB/s of read and write bandwidth.

2.4.2 AGP

AGP is a port used for high-speed graphics adapters. It is connected closely with main memory, providing better peak bandwidth
than that offered by PCI or PCI-X. AGP devices are able to directly use data out of main memory. AGP is not a bus, like PCI. It is
only able to support one device, and systems only have one port. AGP 2.0 provided a peak bandwidth over 1 GB/s to main
memory. The successor to this, AGP 3.0, provides upwards of 2.1 GB/s to main memory.

2.4.3 Legacy Buses

Older machines will also have other buses. The ISA bus is an 8 or 16-bit bus, commonly used in older machines. Vesa local bus is
a 24-bit bus, common in some generations of 486 machines. EISA is an extension to ISA that was common in older servers. All of
these buses should be avoided if possible: They are slow, and peripheral choice is non-existent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 Motherboard
The motherboard is a printed circuit board that contains most of the active electronic components of the PC node and their
interconnection. The motherboard provides the logical and physical infrastructure for integrating the subsystems of a cluster node
and determines the set of components that may be used. The motherboard defines the functionality of the node, the range of
performance that can be exploited, the maximum capacities of its storage, and the number of subsystems that can be
interconnected. With the exception of the microprocessor itself, the selection of the motherboard is the most important decision in
determining the qualities of the PC node to be used as the building block of the system. It is certainly the most obvious piece of a
node other than the case or packaging in which it is enclosed.

The motherboard integrates all of the electronics of the node in a robust and configurable package. Sockets and connectors on
the motherboard include the following:

Microprocessor(s)

Memory

Peripheral controllers on the PCI-X bus

AGP port

Floppy disk cables

ATA or SCSI cables for hard disk and CD-ROM

Power

Front panel LEDs, speakers, switches, and so forth.

External I/O for mouse, keyboard, joystick, serial line, sound, USB, and so forth.

Other chips on the motherboard provide

the system bus that links the processor(s) to memory,

the interface between the peripheral buses and the system bus, and

programmable read-only memory (PROM) containing the BIOS software.

As the preceding lists show, motherboards are an amalgamation of all of the buses and many peripherals in a cluster node. The
memory bus is contained within the motherboard. All I/O buses a system supports are also included here. As data movement is
the most serious impediment to achieving peak processor performance, the motherboard is one of the single most important
components in a system.

We note that the motherboard restricts as well as enables functionality. In selecting a motherboard as the basis for a cluster node,
one should consider several requirements including

processor family,

processor clock speed,

number of processors,

memory capacity,

memory type,

disk interface,

required I/O slots

number and types of I/O buses

2.5.1 Chipsets

Chipsets are a combination of all of the logic on a motherboard. Typically included are the memory bus, PCI, PCI-X and AGP
bridges. In many cases, integrated peripherals are also part of the chipset. This may include disk controllers and USB controllers.
Because the chipset combines all of these components, performance properties of single components are often attributed to the
chipset itself.

The chipset is split into two logical portions. The north bridge connects the front side bus, which connects the processor, the
memory bus, and AGP. AGP is located on the north bridge so as to have special access to main memory. The south bridge
contains I/O bus bridges and any integrated peripherals that may be included, like disk and USB controllers. This provides
controllers for all of the simple devices mentioned later in the peripherals section.

2.5.2 BIOS

The BIOS is the software that initializes all system hardware into a state such that the operating system can boot. BIOSes are not
universal; that is, the BIOS included with a motherboard is specifically tailored to that motherboard. The BIOS is the first software
that runs after the system is powered up. The BIOS will start by running a power on self test (POST) that includes this ubiquitous
memory test. POST also checks other major systems. The BIOS runs initialization code present on peripherals, including
controller-specific code that initializes SCSI or IDE buses. Once these steps are completed, the BIOS locates a drive to boot from,
and does so.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.1: Block diagram of a motherboard chipset. The chipset consists of the entire diagram excluding the processor and
memory.

PXE (Pre-execution environment) is a system by which nodes can boot based on a network-provided configuration and boot
image. The system is implemented as a combination of two common network services. First, a node will DHCP for an address.
The DHCP server will return an offer and lease with extra PXE data. This extra data contains an IP address of a tftp server, a
boot image filename (that is served from the server), and an extra configuration string that is passed to the boot image. Most new
machines support this, and accordingly many cluster management software systems use this feature for installations. This feature
is implemented by the BIOS in motherboards with integrated ethernet controllers, and in the on-card device initialization code on
add-on ethernet controllers.

LinuxBIOS is a BIOS implementation based on the Linux kernel. It can perform all important tasks needed for an operating
system to boot. These tasks are largely the same as proprietary BIOSes, but some of these steps have been streamlined in such
a way that all operating systems do not function properly when booted from LinuxBIOS. At this point, Linux and Windows 2000 are
supported. Work is under way to supply all BIOS features necessary to run other operating systems as well. This approach offers
several benefits. Since source code is available for LinuxBIOS, the potential exists for users to fix BIOS bugs. LinuxBIOS is also
performs far better than proprietary BIOSes in terms of boot time. This reduction has yielded boot times under five seconds. This
speed is far better than times in the ten to ninety second range seen with proprietary BIOSes. This performance increase doesn't
affect user applications, as most user applications don't require node reboots.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 Persistent Storage
With the exception of BIOS code and configuration, all data stored in memory is lost when power cycles occur. In order to store
data persistently, non-volatile storage medium is required. Specifically, data from a system's main memory is usually stored on
some sort of disk when applications are not using it. It is then loaded when the application needs it again.

2.6.1 Local Hard Disks

Most clusters have a hard disk on each node for some storage. This is usually used in addition to a central data storage facility.
Hard disks are magnetic storage media that interface with some sort of storage bus. A hard drive will contain several platters. Data
is read off of these platters as they rotate. Logic in the drive optimizes read and write requests based on the geometry of the disk
to provide better collective performance. This logic also contains memory cache, which is used to prevent the need for multiple
reads of the same data.

Disks also have an interface to any of a number of disk buses. The three most common buses currently in use for commodity
disks are IDE (or EIDE or ATA), SCSI, and Serial ATA. IDE disks are the most common. Controllers are integrated into nearly
every motherboard sold today. These controllers support two devices per bus and typically include two buses, for a total of four
devices. The fastest of these buses, UDMA133 (Ultra DMA 133), run at rates up to 133 MB/s. IDE devices are typically
implemented with less logic on each drive, leading to higher host CPU utilization during I/O when compared with SCSI.

SCSI disks are typically used in servers. Everything but the bus interface logic is nearly identical in many disks, regardless of disk
interface bus. Many vendors sell multiple versions of many of their drives, one for each bus type. That said, the major difference
between IDE and SCSI disks is the obvious one: the data bus. SCSI buses support many more devices and run at higher speeds.
Current SCSI buses support up to fifteen devices and the controller, which functions as a SCSI device as well. Current-generation
SCSI buses operate at rates up to 320 MB/s. This higher data rate is needed because of the larger quantities of devices sharing a
single bus. The largest differentiating characteristic between IDE and SCSI disks is the cost at this point; SCSI disks are more
expensive.

Serial ATA, or SATA, is the newest commodity disk standard. New, high-end motherboards are beginning to incorporate
controllers. Nominally, Serial ATA is similar to IDE/ATA. Those older standards are now referred to collectively as Parallel ATA, or
PATA. SATA is poised to take over the market segment of PATA; drives are not quite price competitive at this time, but their
prices are close enough that in the next few months, they should drop to PATA levels. Serial ATA, as the name suggests, is a
serial bus as opposed to the parallel buses used PATA and SCSI. Hence, the cables attached to drives are smaller and run faster:

current SATA connections function at . Because SATA buses are only used by two devices, the aggregate data
rate doesn't need to be as high as those on parallel buses to perform comparably. Because of the serial nature of SATA, bus
speeds will increase rapidly, when compared with parallel buses like PATA and SCSI. SATA is natively hot-pluggable, and its
cables are far smaller than the ribbon cables used by PATA and SCSI. The increased speed of SATA buses doesn't provide a
real benefit at this point; most drives don't function at speeds high enough to congest a high-speed PATA controller.

The same basic disk technology is used in disks using any of the three previously mentioned buses. Hence, the basic measures
of performance are the same as well. The platters in disks spin at a variety of rates. The faster the platters spin, the faster data
can be read off of the disk, and data on the far end of the platters will become available sooner. Rotational speeds range from
5,400 RPM to 15,000 RPM. The faster the platters rotate, the lower latency and higher bandwidth are. The other main indicator of
performance of a disk is the amount of cache included in the on-disk controller. As was mentioned previously, this cache is used
to avoid disk reads when particular blocks on the disk are requested multiple times.

2.6.2 RAID

RAID, or Redundant Array of Inexpensive Disks, is a mechanism by which the performance and storage properties of individual
disks can be aggregated. Aggregation may be done for a variety of reasons. Simplification of disk layout is the most common.
Basically, the group of disks appear to be a single larger disk. This approach is commonly used when disks are in use that are not
as large as the data that will be stored. Performance is another common reason. Multiple disks will perform better than single
disks. The last reason RAID is used is to guard against hardware failure. When multiple disks are used in a RAID set, data can be
stored in multiple places. This approach allows the system to continue functioning with no loss of data after disk faults. These
solutions can be implemented in software, usually as an operating system driver, or in hardware, typically consisting of disk
controllers, a processor that handles RAID functions, and a host connection. Hardware solutions tend to be more expensive but
also tend to perform better without impacting host CPU utilization. Software solutions typically allow more flexibility, but the
computational overhead of some RAID levels can consume large amounts of computational resources.

A variety of allocation schemes are used in RAID systems. With RAID0, or striping, data is striped across multiple disks. The
result of this striping is a logical storage device that has the capacity of each of the disks times the number of disks present in the
array. This array performs differently from a single larger disk. Reads are accelerated; each byte of data can be read from multiple
locations, so interleaving reads between disks can double read performance. Write performance is similarly accelerated, as
actually disk write performance is improved compared with that of a single disk.

With RAID1, or mirroring, complete copies of the data are stored in multiple locations. The capacity of one of these RAID sets will
be half of its raw capacity. In this configuration, reads are accelerated in a similar manner to RAID0, but writes are slowed, as new
data needs to be transmitted multiple times, to both parts of the mirror.

The third common RAID level is RAID5. It works similarly to RAID0, in that data is spread across multiple disks, with one addition.
One disk is used to store parity information. This means for any block of data stored across the N-1 drives in an array, a parity
checksum is computed and stored on the last disk. This allows the array to continue functioning in case of drive failure, as the
parity checksum can be used in the place of a block off of any one of the data disks. Read performance on RAID5 volumes tend
to be quite good, but write performance lags behind mirrors because of the overhead of checksum computation. This overhead
can cause performance problems when using software RAID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RAID is typically used on storage nodes in clusters. The reasons for this are the performance and capacity differences when
compared to standalone disks. These disk I/O characteristics are not of prime import on compute nodes, so RAID is not typically
configured there.

2.6.3 Nonlocal Storage

Nonlocal storage is used in similar ways to local storage. Data that needs to survive system power cycles is stored there. The
physical medium on which data is stored is similar, if not identical, to the hard disk technology described in the preceding sections:
the difference lies in the data transport layer. In the case of nonlocal storage, the storage device bus traffic is transmitted across a
network to a central depot of storage. This network may or may not be dedicated to storage; standards exist for protocols of both
types.

ISCSI is a protocol that encapsulates SCSI commands and data inside IP packets. These are typically transmitted over ethernet.
It allows a single network to be used for disk I/O and regular network traffic, however, this can form a serious performance
bottleneck. Fiberchannel is similar to ISCSI in character, but uses a dedicated network and data protocol.

Network filesystems are most common in clusters. Examples of this include NFS and PVFS. (PVFS is discussed in detail in
Section 19) Network filesystems transmit persistent data across a network, but differ from the previous two storage types in the
nature of the data being transmitted. Network filesystems transmit data with filesystem semantics across the network; the previous
two protocols transmit block-based data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 Video
Video devices are the part of computers that users are most familiar with. A computer's video card renders the current state of the
computer into a user interface displayed on a monitor. Because users don't interact with clusters in the same way, video cards on
clusters are typically used for visualization. That is, a graphical representation is developed for the purposes of user interaction.
Most video or graphics devices are currently connected with AGP (see Section 2.4.2). Previous generations of graphics adapters
were connected with PCI (see Section 2.4.1), but the PCI bus did not adequately provide bandwidth for video-intensive
applications.

The main usage scenario for graphics adapters in clusters is the driving of tiled displays. Tiled displays are large installations
wherein the output of multiple video cards are used in parallel to provide higher resolution than would be possible with a single
device. These displays are generally used for displaying regions of 3D visualizations, so a graphics adapter's performance in this
area is important. Many gaming web sites post reviews of current video adapters. As this is an area where new hardware is
released from week to week, these sites are the sources of the best, up to date information. In most clusters, where visualizations
are not displayed on local hardware, the particular graphics adapter present in a system is not important; it is most likely used to
debug hardware problems and update BIOS settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8 Peripherals
In this section, we discuss most of the miscellaneous ports that haven't been discussed in preceding sections. We give only a
cursory description because these components aren't generally used in cluster configurations.

USB and Firewire are peripheral buses. Devices can be connected into these buses. The bus controller bridges the devices onto
the primary I/O bus (in most cases, some flavor of PCI) so that the devices can be used. USB keyboards and mice are common;
other than these two cases, it is unlikely that any USB or firewire devices will be used in these systems. Generally, devices of
these types are consumer electronics, such as cameras, printers, and handheld devices.

The other major group of peripherals is quite old; all have been included in all PCs sold in the last 15 years. Included in this group
are dedicated keyboard and mouse ports. These are typically used to debug problems, as setting up a keyboard and mouse for
every node in a cluster isn't a particularly space-efficient decision to make. Also, all machines have serial (RS232) and parallel
ports. These were historically used for peripherals, much like USB and firewire; however, in modern clusters, RS232 is used for a
hard-wired system console, and parallel ports aren't used at all.

Since these devices have little to no bearing on cluster manageability or performance, they don't enter into any decisions in the
node hardware specification process. If a choice is offered between nodes with 2 or 6 USB ports it doesn't matter which is chosen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.9 Packaging
"Packaging" refers to the container into which a computer is installed. Packaging ranges from cases that sit vertically beside a
desk to high-density rack-mounted units. As space is frequently a key design constraint, choice of packaging is instrumental in
determining a maximum cluster size. The decision can affect both the type of storage a cluster will use and the overall cluster
storage density.

Desktop cases are the most common example of packaging. Also referred to as pizza box cases, they are typically twelve to
sixteen inches wide, four to six inches tall and twelve to sixteen inches deep. The earliest clusters were build out of these. Another
common type of packaging are the tower cases that many consumer-level computers and built from. They typically stand one to
three feet tall, six inches wide, and one to two feet deep. Because of the large size, cooling is usually not a serious problem with
this type of machine. On the other hand, shape and design of desktops make rack mounting relatively difficult, and leads to a
lower density than can be achieved with other designs. Laptops are occasionally used to construct low-profile clusters. These lead
to small clusters, but are typically low-performance as well.

Rack-mounted cases are low-profile cases usually marketed to businesses for use in locations with large numbers of machines.
These cases are designed to be mounted into a rack unit about six feet tall, and are almost universally nineteen inches wide. The
machines are typically mounted on sliding rails, making service on an individual node a matter of sliding it out of the rack. These
cases range in size from one to four rack units tall. One rack unit is 1.75 inches. Some manufacturers have even managed to fit
complete machines with commodity parts into cases less than one rack unit in volume. Rack-mounted machines provide high
machine density and good serviceability. However, because of the high density, care must be taken to provide adequate cooling.

The final option in node packaging is blade servers. These are machines that have been packed into cases as tightly as feasible.
In many cases, common parts such as power supplies are shared between machines. This configuration provides extremely high
machine density. The disadvantage is that blade server hardware is still somewhat specialized, and nodes, similarly, are not
necessarily expandable.

Packaging is clearly an important decision point when choosing a cluster. Typically, this decision involves considering space
constraints, along with cost and serviceability concerns. Generally, desktop machines are the least expensive, followed by rack
mount machines, and then blade servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.10 Node Choice and Cluster Construction
When building a cluster, a variety of issues must be considered. A choice of hardware suitable to the goal must be chosen. A
vendor must be chosen. Environmental issues, such as availability of space, cooling, and power must be considered. Extra
services, like hardware and software maintenance can be opted for. See Chapter 6 for a discussion of post-purchase cluster
setup. A variety of paths to this goal can be taken, each with pros and cons.

2.10.1 Cluster Vendors

A common approach to building clusters is to find a vendor that provides integrated solutions. Many large system vendors now
have products in the cluster space. They are experienced with the problems that customers will have in the initial stages of cluster
setup, and know the questions that should be asked initially. These vendors are able to ship integrated solutions. In many cases,
the cluster can be powered on when delivered, and be running applications in hours. Experienced cluster vendors optionally offer
on-site hardware and software support. This approach is certainly the simplest, but can be more expensive than the following
options; all of the extra services provided by the vendors cost money to provide. However, in many cases, the extra cost is well
worth it.

2.10.2 White Boxes

Another common approach to building clusters is to find a vendor that builds custom computers, but has no cluster expertise. The
vendor builds machines to the customer's specifications. This allows the customer to specify the exact parts the cluster should be
assembled from. While on-site hardware maintenance may be available, software maintenance isn't. Experienced cluster builders
may choose to take this route, as the difference between white box vendors and cluster vendors largely consists of help with
cluster specific issues.

2.10.3 DIY

The final approach taken to building clusters is to do everything yourself. Every detail of system configuration is controllable; from
the type of power supply to cables, and fans used for cooling. Hundreds of boxes will be delivered containing each of the parts
required for each cluster node. Nodes must be assembled, and software can then be installed. This approach provides the most
flexibility, but also has the highest potential for pitfalls.

2.10.4 Pitfalls

Many problems can manifest themselves during the construction and operation of a cluster. Some can be avoided by making
proper decisions during the specification process. These problems can make clusters virtually unusable, so they should be taken
seriously. Problems mentioned here could be treated as a laundry list of issues to be checked before a cluster is setup.

It should be verified that enough power and cooling exist to properly operate the cluster. Underpowered or overheating clusters
rarely perform well, and in many cases exhibit strange problems that can consume days, weeks, or months of administrator time
to properly debug.

The use of some sort of console solution should be employed. Many hardware errors are displayed during the BIOS boot
sequence. Whether the BIOS supports a serial console or not, the hardware needed to see these errors should be available. The
simplest solution for this problem is a crash cart. This consists of a single keyboard, monitor and mouse on a cart that can be
connected to machines in case of problems. More elaborate solutions can be constructed using serial concentrators to provide
usable consoles on each machine, or KVM switches.

Real profiling of target applications should be performed. Performance on artificial benchmarks is better information than no
information at all, however, these results aren't important unless the primary application run on a cluster will be benchmarks.

Finally, remember that everything is harder when it needs to be done multiple times. While it is an easy process to assemble a
single new machine, assembling 32, 64, 96, or 128 machines is a much harder process. Remember that time has value. Cutting
corners for the sake of small amounts of money almost always causes problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Linux
Peter H. Beckman

Since the original AT&T and Berkeley Unix operating systems of the early 1970s, many variants of the operating system have
been launched. Some have prospered, while others have fallen into obscurity. Have you ever heard of Concentrix or nX? Many
customized Unix derivatives are no doubt still occupying obsolete Winchester drives and 8-inch floppies in the dusty storage
rooms of businesses and laboratories, right there next to the paper tape readers and acoustic modem couplers. Even Microsoft
tried its hand and sold a Unix back in 1980, when it released XENIX.

3.1 What Is Linux?
Simply put, Linux™ is a flavor (clone) of the original Unix™ operating systems. While Linux is relatively new on the operating
system scene, arriving about two decades after Ken Thompson and Dennis Ritchie of AT&T presented the first Unix paper at a
Purdue University symposium in 1973, it has rapidly become one of the most widely known and used Unix derivatives. Ever since
Linus Torvalds, the creator of Linux, released it in October 1991, developers from all over the world have been improving,
extending, and modifying the source code. Linus has remained the godfather of the Linux source code, ensuring that it does not
get overwhelmed with useless features, code bloat, and bad programming. As a result, Linux has become one of the most popular
operating systems in world.

3.1.1 Why Use Linux for a Beowulf?

Linux users tend to be some of the most fervent, inspired, and loyal computer users in the world—probably in the same league as
Apple Macintosh users. Both groups of users are likely to rebut any criticism with a prolonged, sharp-tongued defense of the
capabilities of their system. For scientific computational clusters, however, a cute penguin named Tux and lots of enthusiasm are
insufficient; some pragmatism is required.

Linux is the most popular open source operating system in the world. Its success is the result of many factors, but its stability,
maturity, and straightforward design have certainly been keys to its growth and market share. The stability and availability of Linux
have also created a booming commercial marketplace for products, unmatched by any other open source operating system.
Companies such as IBM, Fujitsu, NEC, HP, and Dell have all incorporated Linux into their business model, creating a marketplace
around a distribution of kernel source code that is free. Other companies are simply using Linux because it makes practical
business sense.

The enthusiastic backing of multibillion dollar companies is certainly a vote of confidence for Linux, but it is by no means sufficient
for deciding to choose Linux. Probably the most important reason for using Linux to build a Beowulf is its flexibility. Because Linux
is open source, it can easily be modified, rearranged, and tweaked for whatever the task. Some individuals may grow pale at the
idea of modifying the operating system, but never fear: Linux is actually very friendly. Because of the distributed development
environment that has helped it become so successful, it is also easily modified and tweaked. Later in this chapter, some simple
instructions will show just how easy modifying Linux can be.

Does Linux really need to be modified before you can use it to build a Beowulf? Well, no. However, scientists are generally by
their very nature extremely curious, and even though a wonderfully fast and easy-to-use Beowulf can be constructed with "stock"
kernels, most cluster builders will soon give in to the nearly irresistible urge to roll up their sleeves and pop the hood to see what is
really inside their Linux system. Be warned: many a plasma physicist or molecular biologist, fully intending to spend all of her time
solving the mysteries of the universe and writing technical papers, has instead become completely drawn into the wonderful and
creative release that comes from modifying the source code. You can often see these expatriates roaming the HPC and Beowulf
mailing lists answering questions about the latest kernel and support for new chip sets or features.

Another reason to choose Linux is that you will not be alone. The available talent pool for knowledgeable system administrators
that have Linux experience and actually enjoy working with Linux is large. System administrators are scrambling to find excuses
for building a Beowulf with Linux. The same cannot often be said for other operating systems. Furthermore, remote administration
has been a part of all Unix derivatives for decades. Many simple interfaces are available for updating the configuration of remote
machines and organizing a room full of servers. The talent pool of Beowulf builders is enourmous. Linux clusters are popping up in
every nook and cranny, from small departments on campus to the world's most prestigious laboratories. A quick look at the
Top500 list (www.top500.org) shows that Linux is extremely popular. In fact, about one out of every 6 teraflop computers in the
world are running Linux.

Google (www.google.com), one of the most popular and acclaimed search engines, is using thousands and thousands of servers
running Linux to index and provide advanced searching capabilities for the web. While Google is not a scientific computing cluster,
its size demonstrates the flexibility and adaptability of Linux. From an embedded palm-sized computer to running on clusters with
thousands of nodes, Linux has demonstrated its utility and stability for nearly any task. There are even real-time versions of the
Linux operating system. No legacy operating system can even come close to such flexibility and dominance among the largest
clusters in the world.

Another reason to choose Linux is its support for many types of processors. Alpha, PowerPC, IA32, IA64, Opteron, and many
others are all supported in Linux. You can choose to build your Beowulf from the fastest Apple Macintosh servers or IBM pSeries
servers, or you can buy the biggest and hottest (literally) chip on the market, the Intel IA64. As an example of the flexibility and
speed with which the Linux community ports to new hardware, take a quick look at the Intel IA64 or the AMD Opeteron. Both are
already available in many places, and the operating system of choice is Linux. Several distributions have already been released,
and for many users, removing Linux and installing a legacy 32-bit OS for their 64-bit system is certainly not in their plans.

Finally, many people choose Linux for what it does not have, or what can be removed. Linux is a sophisticated multitasking virtual
memory kernel. However, it can be trimmed down to a very small set of functions representing the bare necessities. In fact, Linux
can easily be compiled to use as little as 600 KBytes of compressed disk space on a floppy. Linux can be made small. It can fit on
embedded devices. Although counterintuitive to some legacy PC operating system software companies, where adding a new
feature and urging all the users to upgrade are the status quo, smaller and simpler is better when it comes to operating system
kernels for a Beowulf. The first reason that smaller is better comes from decades of experience with source code development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kernels for a Beowulf. The first reason that smaller is better comes from decades of experience with source code development
and stability. Whenever a line of code is added to a source tree, the probability increases that a hidden bug has been introduced.
For a kernel that controls the memory system and precious data on disk, robustness is vital. Having fewer functions running in
privileged mode makes for a more stable environment. A small kernel is a kernel that is more likely to be stable. Although it did not
run Linux, the NASA Sojourner that traveled to Mars was also designed with the "smaller and simpler is better" mantra. The
Sojourner sported a 2 MHz CPU and less than 1 MByte of combined RAM and nonvolatile data storage. While NASA certainly
could have afforded a larger computer, as well as a large commercial operating system, simpler was better. Making a service call
to Mars to press Ctrl-Alt-Del was not an option.

More down to earth, although nearly as cold, the NSF-funded Anubis project used Linux machines to monitor seismic conditions at
unmanned monitoring stations on Antartica [3]. The stations upload their data via ARGOS satellite transmitters. The average
annual temperature for the stations is -28 degrees Celsius to -54 degrees Celsius. Linux was chosen for its stability, robustness,
and the ease with which it could be modified for the task. Traveling hundreds of miles across an ice sheet to repair a blue screen
of death was not seriously considered.

The second reason for a small kernel is that the most stable code path is the most used code path. Bugs (and programmers) tend
to congregate in poorly lit out-of-the-way locations, away from the well-worn code paths. The smaller the kernel, the fewer the
hidden and rarely tested code paths. Finally, smaller is better when it comes to kernel memory and CPU cycles on a Beowulf. For
scientific computing, nearly every instruction not being performed by the scientific application, usually in the form of a floating-point
operation, is overhead. Every unnecessary kernel data structure that is walked by the kernel pollutes the precious cache values
intended for the scientific application. Because kernel operations such as task switching are run extremely often, even a small
amount of additional kernel overhead can noticeably impact application performance. Linux's heritage of development on small
machines forced developers to pay extremely close attention to performance issues. For Beowulfs, a small kernel is
advantageous.

With its modular and easy-to-modify code base, support for a wide variety of the hottest CPUs on the planet, and incredibly
enthusiastic talent pool, Linux is a winner for building Beowulfs.

3.1.2 A Kernel and a Distribution

The term "Linux" is most correctly applied to the name for the Unix-like kernel, the heart of an operating system that directly
controls the hardware and provides true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write
executables, TCP/IP networking, and file systems. The kernel is lean and mean. It contains neither an integrated Web browser
nor a graphic windowing system. Linux, in keeping with its Unix heritage, follows the rule that smaller and simpler should be
applied to every component in the system and that components should be easily replaceable and composable. However, the term
"Linux" has also been applied in a very general way to mean the entire system, the Linux kernel combined with all of the other
programs that make the system easy to use, such as the graphic interface, the compiler tools, the e-mail programs, and the
utilities for copying and naming files. Strictly speaking, Linux is the kernel. Nevertheless, most users refer to a "Linux system" or
"Linux CD-ROM" or "Linux machine" when they really mean the Linux kernel packaged up with all of the free software tools and
components that work with the kernel—a distribution.

A Linux distribution packages up all the common programs and interfaces that most users think of when they imagine Linux, such
as the desktop icons or the Apache Web server or, more important, for scientific users, compilers, performance monitoring tools,
and the like. Many Linux distribution companies exist. They take the freely available Linux kernel and add an "installer" and all the
other goodies just described. In fact, those companies (Red Hat, Mandrake, SuSE, and a host of smaller companies) have the
freedom to customize, optimize, support, and extend their Linux distribution to satisfy the needs of their users. There are also
companies that supply integrated hardware and software Beowulf solutions. They deliver their Beowulfs with Linux installed. They
derive the Linux used on their systems from a standard distribution, such as Red Hat, then add their own utilities, reconfigure
many of the basic software packages for scientific computing, and preinstall it on the cluster. Since these companies are adding
value via integration, their customized Linux distribution is generally not available without purchasing their cluster.

There are also several volunteer efforts to bundle up all the software packages with the kernel and release a distribution.
Understanding how the Linux kernel and Linux distributions are developed and maintained is key to understanding how to get
support and how to get a Beowulf cluster up and running on the network as quickly as possible.

3.1.3 Open Source and Free Software

Of course, before getting very far in any discussion about the Linux kernel or Linux CD-ROM distributions, some time must be
spent on the topic of open source and free software. Several well-written books on the topic have already been published. The
book Open Sources [33] details the many intertwined and fascinating stories of how the code bases that began as research
projects or simply hobby tinkering become the fundamental standards that are the lifeblood of the Internet. It is important,
however, to understand some of the basic concepts of freely distributable software for building a Beowulf with Linux. Of course,
the most important reason for understanding some of the fundamental licensing issues surrounding the Linux kernel is so that
they can be adhered to. Even though the term "free" is cavalierly used within the community, there can often be strict rules and
practices that must be followed. Another reason why it is important to understand these basic issues is so that you can understand
how the code base came to exist in the form it is today and how you can contribute back to the community that provided the
software for your use.

The open source software movement has gathered both publicity and credibility over the past couple of years. Richard Stallman
began work in 1984 on creating a free, publicly available set of Unix-compatible tools. He uses the term "free software" to describe
the freedom users have to modify it, not the price. Several years later, the GNU General Public License (GPL) was released. The
GPL (sometimes called the "copyleft") became the license for all of the GNU products, such as gcc (a C compiler) and emacs (a
text editor). The GPL strives to ensure that nobody can restrict access to the original source code of GPL licensed software or can
limit other rights to using the software. Anyone may sell a copy of GPL software for as much as people are willing to pay (without
any obligation to give money back to the original author), but nothing prevents the person who bought the software from doing the
same. Moreover, all users must be given a copy of the source code so that those users are able to fix and enhance the software
to suit their needs. However, probably the most important aspect of the GPL is that any modifications to GPLed source code must
also be GPLed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For most Beowulf users, the strict rules for how free software may be distributed will never come up. However, if code licensed
under the GPL is modified, its binary-only distribution is forbidden under the license. For example, if a Beowulf user extends or
patches one of Donald Becker's Ethernet drivers or uses it as the basis for writing a new driver, that driver cannot be redistributed
in binary-only form. The Linux kernel also uses a clarified GPL license. Therefore, modifying the Linux kernel for private use is
fine, but users may not modify the kernel and then make binary-only versions of the kernel for distribution. Instead, they must
make the source code available if they intend to share their changes with the rest of the world.

More recently, Eric Raymond and others coined the term "open source" to refer to freely distributable software
(www.opensource.org). There are, however, differences between the two monikers associated with freely distributable software.
GPLed source code cannot be the basis for a privately developed set of enhancements that are then sold in binary-only shrink-
wrapped form. Derived software must remain essentially free. On the other hand, licenses that follow the open source definition
but are not the GPL are not so restricted. An open source-compliant license that is not using the GPL permits programmers and
users greater flexibility in what they do with the code. They are free to use the source code however they wish. They may develop
private, "closed" code repositories and then sell products that may be distributed in binary-only form.

Many licenses conform to the open source definition: Mozilla Public License (Netscape), MIT License (used for the X-Windows
Consortium), and the amended BSD License. A company can enhance an open source-licensed program that is not using the
GPL and then sell a binary-only version. In fact, software developed by the X-Windows Consortium and the BSD project was
commercialized and used as the basis for a wide range of products. For the Beowulf user, this means that code licensed with a
BSD or X-Windows-style license give the users the freedom to use the software in whatever manner they see fit. Specifically, the
MPICH version of MPI, available from Argonne National Laboratory and explained in greater detail in Chapter 8 of this book, is
licensed using a non-GPL open source license. Beowulf users may make changes to the source code and distribute binary-only
versions, or even create products based on the work done by the original authors. Many people believe the careful choice of
license for the MPICH project helped make the MPI standard as successful as it is today.

Of course "giving back" to the community that has worked collectively to provide the sophisticated toolset that makes Beowulf
computation possible is part of the scientific process and is highly encouraged by the authors of this book regardless of what kind
of license a particular piece of software uses. The scientific process demands repeatability, and the freely distributable nature of
most Beowulf software provides an ideal environment for extending and corroborating other scientists results. Whenever possible,
changes to the source code should be sent back to the authors or maintainers, so the code can continue to grow and improve.

3.1.4 A Linux Distribution

A Linux distribution generally arrives on several CD-ROMs or a DVD, with the Linux kernel actually using a very small portion of
that CD-ROM. Since a distribution can be fashioned around a Linux kernel in practically any manner, Linux distributions can vary
quite widely in form and function. Since the Linux kernel is probably the most portable kernel on the planet, it is running on an
amazing array of CPUs and devices, everything from handheld devices such as the HP iPAQ and the IBM Linux wrist watch to the
IBM S390, a large corporate enterprise server getting a new lease on life with Linux. With such an incredible range of users and
hardware devices that can run Linux comes a plethora of distributions built around those kernels and their target users. It can be
quite daunting to choose among the dozens of popular (and hundreds of specialized) Linux distributions. Linux Web sites list
dozens of distributions created with the Linux kernel. Of course, not all such distributions are suitable for use in a Beowulf. Many
are designed for the embedded market, while others are built for a single-purpose appliance server, such as a firewall or a
file/print server.

One of the first steps to using Linux to build your Beowulf Linux cluster is to pick a distribution and get comfortable with it. While it
is beyond the scope of this book to help you become a rabid Linux user, there are plenty of books on the topic that can help guide
you through the different installers and different graphic desktops optimized for each distribution. Table 3.1 shows some of the
most popular Linux distribution companies or groups and where to find more information about them.

Table 3.1: Some companies or groups that release Linux distributions.

Company URL

Red hat www.redhat.com

Turbolinux www.turbolinux.com

Mandrake www.mandrake.com

Debian www.debian.org

SuSE www.suse.com

Slackware www.slackware.com

Which distribution is best for building a Beowulf? Unfortunately, there is no easy answer. Usually, the choice comes down to three
factors: support, language, and ease of use. While the core of all Linux distributions are, by nature of the GPL, available for free
and may downloaded from the Internet, the question of support is very important, especially to the new user. Most commercial
distributions include access to either phone or e-mail support. Some include the option of purchasing additional support. Some
integrate software that is not freely distributable.

Local familiarity and popularity can be a factor in your choice. If everyone else in your office or on your campus or at your
laboratory is using the same Linux distribution, getting their help when things go awry may be easiest if you share a common
distribution. Another consideration is support for your native language and e-mail support in that language. The SuSE distribution
is very popular in Germany, and naturally has very good support for the German language. Certainly, you can e-mail your
questions in German to their support staff. Likewise, the Turbolinux distribution is very popular in Japan and China and supports
double-byte characters and special input methods for typing in Japanese or Chinese. Your choice of distribution may also be
influenced by what the hardware company can preload on your Beowulf nodes if you are not building them from scratch. Having
your nodes arrive preloaded with a Linux distribution can save a lot of time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are also several rebundled distributions designed especially for cluster use. These systems start with a basic Linux
distribution, usually from Red Hat, and then add a cluster installer and cluster-specific software packages. The cluster installer
makes remote, network-based installation easier. Essentially, these cluster distribtions, such as NPACI ROCKS
(rocks.npaci.edu) and OSCAR (www.openclustergroup.org are sets of "diffs" to a basic installation, replacing some of the
packages and adding new ones. For the beginner, they can be an excellent place to start with a standard configuration.

Another key detail for building a Beowulf with Linux is the licensing of the distribution. Almost every commercial vendor, has, at
times, included software that could not be freely distributed. In some cases, a portion of the purchase price is used to pay royalties
for the software that is not freely distributable. Using such a distribution to install 16 nodes would violate the licensing unless you
actually purchased 16 copies. Luckily, most distribution companies try to make it very clear whether their distribution can be freely
distributed and, in many cases, offer a freely distributable version of the distribution on the Web site.

3.1.5 Version Numbers and Development Methods

The Linux kernel, Linux applications, and even the Linux distributions have different development models, different version
numbers, and different schedules. While picking a Linux distribution for your Beowulf, a basic understanding of version numbers
and distribution versions is required. A relatively small team of core developers develops the Linux kernel. Yes, many many
people from around the world, representing more than fifty different countries, have contributed to the Linux kernel, but its stability
and the organized introduction of new features are made possible by a well-coordinated band of core programmers. With Linus
Torvalds sometimes called the "benevolent dictator," core developers such as Donald Becker, Alan Cox, Stephen Tweedie, and
David Miller maintain and extend sections of the kernel with the help of hundreds of programmers who send in contributions to the
kernel. This hierarchical model is clearly more efficient than everyone sending Linus their patches and new ideas for how the
kernel can be extended (not that they don't try). Of course, not all patches and extensions are included in the main line, or "stock"
kernel, no matter who sent them. Significant restraint and conservatism are used for most sections of the code. Some
programmers must lobby Linus or other code developers for extended periods of time before their improvements are incorporated.
In some cases, the suggestions are never accepted and are therefore made available only as a patch and not part of the "official"
kernel tree.

Your Linux distribution will, of course, arrive with a Linux kernel, but upgrading the kernel is one of the most common ways to
update a Beowulf node, and will be discussed later. It is important to understand that the version number of the kernel and the
version number of the distribution are in no way related. At any point in time the Linux kernel has two most-up-to-date kernels: the
"stable" release and the "development" release. Stable kernels use an even minor kernel number, such as 2.2 or 2.4. Similarly,
development kernels use odd minor kernel numbers, such as 2.1, 2.3, or 2.5. As work on a development kernel becomes more
stable, the rate of change begins to slow, and finally the core kernel developers stop adding new features. There exists no
definitive set of tests that indicate when a development kernel is ready for general use, but at some point, Linus will "release" a
new stable kernel. After that, patches and updates take the form of incremental versions, such as 2.4.9 or 2.4.11. With few
exceptions, a kernel that is part of a popular CD-ROM distribution comes from the "stable" kernel releases. Of course, nothing
prevents a would-be Beowulf builder from using the latest, most unstable versions of the development kernel. However, the main
kernel developers take the stability of the Linux kernel very seriously, and it would be wise to be conservative in choosing a kernel.

Linux distributions, on the other hand, can create version numbers for their distribution however they please. Red Hat 9.0 simply
means that it is newer than Red Hat 8.0. Since distribution companies are separate, they use completely different versioning
schemes. Red Hat 9.0 is not necessarily any newer, or better, than SuSE 8.2. In fact, because it is clearly to their advertising
advantage, don't be surprised to find out that the distribution on the shelf with the highest version number is in fact not the most
recent release. Furthermore, distributions are free to use whatever basic version of the Linux kernel they believe will make their
end-users most satisfied. Then, they often add in a couple more changes to the kernel that may not be in the mainline kernel. For
example, a hardware company working with a distribution company may ask for some special drivers or special options be added
to the kernel, so their hardware can work well with Linux. While certainly common practice, it can lead to some confusion in
infrequent cases because upgrading the kernel for such a distribution may not always work unless the upgraded kernel came from
the distribution's Web site and therefore contained the special additions, or the special additions are added to the basic main-line
kernel that can be downloaded from www.kernel.org.

For the Beowulf user, this situation means that getting help with kernel issues may involve some investigation. Generally, the
distribution companies support their product. However, that does not mean they wrote the code or are on a first-name basis with
the person who did. The commercial support company can certainly provide front-line support, but what the industry often calls
level-3 support requires some extra work. Generally, open source programmers such as Donald Becker make a portion of their
time available to answer questions about the code they authored. However, the author of the code could also have moved on to
other endeavors, leaving the source code behind. Kernel and Beowulf mailing lists help, but the burden can often be on you to find
the problem or find the person who can help you. When trying to track down what you believe to be a kernel or driver issue,
please follow these guidelines:

1. Read the documentation. Because Linux support has traditionally been ad hoc in nature, a large number of
HOWTO documents have been written, ranging from ones that are probably very important to you like the
'Kernel-HOWTO', the 'Beowulf-HOWTO', and the 'Parallel-Processing-HOWTO', to more specific ones like
the 'Slovenian-HOWTO', the 'Kodak-Digitalcam-HOWTO', the 'Quake-HOWTO', and the 'Coffee-mini-
HOWTO'. These documents are located in the directory '/usr/doc/HOWTO' on most distributions.

2. Second, search the Web. Modern search engines such as Google www.google.com are amazing. Many a
perplexing, nasty bug or software incompatibility has been easily solved with fifteen or twenty minutes of Web
surfing.

3. Get some help from local Linux users. Often, there is a very simple answer or widely known work-around for a
problem. Talking to someone can also help you better understand the problem, so Google can once again be
queried or intelligent e-mail sent.

4. Read the relevant mailing lists, and search for your topic of interest on the mailing list. Several archives of Linux-
specific mailing lists exist, such as can be found at marc.theaimsgroup.com.

5. After the difficulty has been narrowed down to a very clear, reproducible example, mail the appropriate mailing
list, and ask for help. To make your bug report useful to the readers (and get you a fix much faster), follow the
guidelines given in the kernel sources as 'REPORTING-BUGS', 'Documentation/BUG-HUNTING', and
'Documentation/oops-tracing'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'Documentation/oops-tracing'.

6. If you don't make any progress, try looking at the source code and mailing the author directly. Naturally, this
should be used as a last resort. Authors of key portions can often get dozens or hundreds of e-mail messages a
day about their code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 The Linux Kernel
As mentioned earlier, for the Beowulf user, a smaller, faster, and leaner kernel is a better kernel. This section describes the
important features of the Linux kernel for Beowulf users and shows how a little knowledge about the Linux kernel can make the
cluster run faster and more smoothly.

What exactly does the kernel do? Its first responsibility is to be an interface to the hardware and provide a basic environment for
processes and memory management. When user code opens a file, requests 30 megabytes of memory for user data, or sends a
TCP/IP message, the kernel does the resource management. If the Linux server is a firewall, special kernel code can be used to
filter network traffic. In general, there are no additives to the Linux kernel to make it better for scientific clusters—usually, making
the kernel smaller and tighter is the goal. However, sometimes a virtual memory management algorithm can be twiddled to
improve cache locality, since the memory access patterns of scientific applications are often much different from the patterns
common Web servers and desktop workstations, the applications for which Linux kernel parameters and algorithms are generally
tuned. Likewise, occasionally someone creates a TCP/IP patch that makes message passing for Linux clusters work a little better.
Before going that deep into Linux kernel tuning, however, the kernel must first simply be compiled.

3.2.1 Compiling a Kernel

Almost all Linux distributions ship with a kernel build environment that is ready for action. The transcript below shows how you can
learn a bit about the kernel running on the system.
% ls -l /proc/version
-r--r--r-- 1 root root 0 Jun 19 13:49 /proc/version
% cat /proc/version
Linux version 2.5.67 (root@terra.mcs.anl.gov) (gcc version 2.96 20000731
(Red Hat Linux 7.3 2.96-110)) #4 SMP Fri Apr 18 09:36:21 CDT 2003

% cd /usr/src
% ls -ld linux
lrwxrwxrwx 1 root root 21 Apr 22 07:19 linux -> /usr/src/linux-2.5.67

The '/proc' file system is not really a file system in the traditional meaning. It is not used to store files on the disk or some other
secondary storage; rather, it is a pseudo-file system that is used as an interface to kernel data structures—a window into the
running kernel. Linus likes the file system metaphor for gaining access to the heart of the kernel. Therefore, the '/proc' file
system does not really have disk filenames but the names of parts of the system that can be accessed. In the example above, we
read from the handle '/proc/version' using the Unix cat command. Notice that the file size is meaningless, since it is not really
a file with bytes on a disk but a way to ask the kernel "What version are you currently running?" We can see the version of the
kernel and some information about how it was built.

The source code for the kernel is often kept in '/usr/src'. Usually, a symbolic link from '/usr/src/linux' points to the kernel
currently being built. Generally, if you want to download a different kernel and recompile it, it is put in '/usr/src', and the symlink
'/usr/src/linux' is changed to point to the new directory while you work on compiling the kernel. If there is no kernel source in
'/usr/src/linux', you probably did not select "kernel source" when you installed the system for the first time, so in an effort to
save space, the source code was not installed on the machine. The remedy is to get the software from the company's Web site or
the original installation CD-ROM.

The kernel source code often looks something like the following:
% cd /usr/src/linux
% ls
COPYING Makefile crypto init mm sound
CREDITS README drivers ipc net usr
Documentation REPORTING-BUGS fs kernel scripts
MAINTAINERS arch include lib security

If your Linux distribution has provided the kernel source in its friendliest form, you can recompile the kernel, as it currently is
configured, simply by typing
% make clean ; make bzImage

The server will then spend anywhere from a few minutes to twenty or more minutes depending on the speed of the server and the
size of the kernel. When it is finished, you will have a kernel.
% ls -l /usr/src/linux-2.2.14/arch/i386/boot/bzImage
-rw-r--r-- 1 root root 906584 Jun 19 00:13
 /usr/src/linux-2.5.67/arch/i386/boot/bzImage

3.2.2 Loadable Kernel Modules

For most kernels shipped with Linux distributions, the kernel is built to be modular. Linux has a special interface for loadable
kernel modules, which provides a convenient way to extend the functionality of the kernel in a dynamic way, without retaining the
code in memory all the time, and without requiring the kernel be recompiled every time a new or updated module arrives. Modules
are most often used for device drivers, file systems, and special kernel features. For example, Linux can read and write MSDOS
file systems. However, that functionality is usually not required at all times. Most often, it is required when reading or writing from
an MSDOS floppy disk. The Linux kernel can dynamically load the MSDOS file system kernel module when it detects a request to
mount an MSDOS file system. The resident size of the kernel remains small until it needs to dynamically add more functionality.
By moving as many features out of the kernel core and into dynamically loadable modules, the legendary stability of Linux
compared with legacy operating systems is achieved.

Linux distributions, in an attempt to support as many different hardware configurations and uses as possible, ship with as many
precompiled kernel modules as possible. It is not uncommon to receive five hundred or more precompiled kernel modules with the
distribution. In the example above, the core kernel was recompiled. This does not automatically recompile the dynamically
loadable modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.3 The Beowulf Kernel Diet

It is beyond the scope of this book to delve into the inner workings of the Linux kernel. However, for the Beowulf builder, slimming
down the kernel into an even leaner and smaller image can be beneficial and, with a little help, is not too difficult.

In the example above, the kernel was simply recompiled, not configured. In order to slim down the kernel, the configuration step is
required. There are several interfaces to configuring the kernel. The 'README' file in the kernel source outlines the steps required
to configure and compile a kernel. Most people like the graphic interface and use make xconfig to edit the kernel configuration
for the next compilation.

Removing and Optimizing
The first rule is to start slow and read the documentation. Plenty of documentation is available on the Internet that discusses the
Linux kernel and all of the modules. However, probably the best advice is to start slow and simply remove a couple unneeded
features, recompile, install the kernel, and try it. Since each kernel version can have different configuration options and module
names, it is not possible simply to provide the Beowulf user a list of kernel configuration options in this book. Some basic
principles can be outlined, however.

Think compute server: Most compute servers don't need support for amateur radio networking. Nor do most
compute servers need sound support, unless of course your Beowulf will be used to provide a new type of parallel
sonification. The list for what is really needed for a compute server is actually quite small. IrDA (infrared), quality of
service, ISDN, ARCnet, Appletalk, Token ring, WAN, AX.25, USB support, mouse support, joysticks, and telephony
are probably all useless for a Beowulf.

Optimize for your CPU: By default, many distributions ship their kernels compiled for the first-generation Pentium
CPUs, so they will work on the widest range of machines. For your high-performance Beowulf, however, compiling
the kernel to use the most advanced CPU instruction set available for your CPU can be an important optimization.

Optimize for the number of processors: If the target server has only one CPU, don't compile a symmetric
multiprocessing kernel, because this adds unneeded locking overhead to the kernel.

Remove firewall or denial-of-service protections: Since Linux is usually optimized for Web serving or the
desktop, kernel features to prevent or reduce the severity of denial-of-services attacks are often compiled into the
kernel. Unfortunately, an extremely intense parallel program that is messaging bound can flood the interface with
traffic, often resembling a denial-of-service attack. Indeed, some people have said that many a physicist's MPI
program is actually a denial-of-service attack on the Beowulf cluster. Removing the special checks and detection
algorithms can make the Beowulf more vulnerable, but the hardware is generally purchased with the intent to
provide the most compute cycles per dollar possible, and putting it behind a firewall is relatively easy compared with
securing and hampering every node's computation to perform some additional security checks. Section 5.6.2
discusses the use of firewalls with Beowulf clusters in more detail.

Other Considerations
Many Beowulf users slim down their kernel and even remove loadable module support. Since most hardware for a Beowulf is
known, and scientific applications are very unlikely to require dynamic modules be loaded and unloaded while they are running,
many administrators simply compile the required kernel code into the core. Particularly careful selection of kernel features can trim
the kernel from a 1.5-megabyte compressed file with 10 megabytes of possible loadable modules to a 600-kilobyte compressed
kernel image with no loadable modules. Some of the kernel features that should be considered for Beowulfs include the following:

NFS: While NFS does not scale to hundreds of node, it is very convenient for small clusters.

Serial console: Rather than using KVM (Keyboard, Video, Mouse) switches or plugging a VGA (video graphics
array) cable directly into a node, it is often very convenient to use a serial concentrator to aggregate 32 serial
consoles into one device that the system administrator can control.

Kernel IP configuration: This lets the kernel get its IP address from BOOTP or DHCP, often convenient for initial
deployment of servers.

NFS root: Diskless booting is an important configuration for some Beowulfs. NFS root permits the node to mount
the basic distribution files such as '/etc/passwd' from an NFS server.

Special high-performance network drivers: Often, an extreme performance Beowulf will use high-speed networking,
such as Gigabit Ethernet or Myrinet. Naturally, those specialized drivers as well as the more common 100BT
Ethernet driver can be compiled into the kernel.

A file system: Later in this chapter a more thorough discussion of file systems for Linux will be presented. It is
important the kernel is compiled to support the file system chosen for the compute nodes

Network Booting
Because of the flexibility of Linux, many options are available to the cluster builder. While certainly most clusters are built using a
local hard drive for booting the operating system, it is certainly not required. Network booting permits the kernel to be loaded from
a network-attached server. Generally, a specialized network adapters or system BIOS is required. Until recently, there were no
good standards in place for networking booting commodity hardware. Now, however, most companies are offering network boot-
capable machines in their high-end servers. The most common standard is the Intel PXE 2.0 net booting mechanism. On such
machines, the firmware boot code will request a network address and kernel from a network attached server, and then receive the
kernel using TFTP (Trivial File Transfer Protocol). Unfortunately, the protocol is not very scalable, and attempting to boot more
than a dozen or so nodes simultaneously will yield very poor results. Large Beowulfs attempting to use network boot protocols
must carefully consider the number of simultaneously booting nodes or provide multiple TFTP servers and separate Ethernet
collision domains. For a Linux cluster, performing a network boot and then mounting the local hard drive for the remainder of the
operating system does not seem advantageous; it probably would have been much simpler to store the kernel on hard drive.
However, network booting can be important for some clusters if it is used in conjunction with diskless nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.4 Diskless Operation

Some applications and environments can work quite well without the cost or management overhead of a hard drive. For example,
in secure or classified computing environments, secondary storage can require special, labor-intensive procedures. In some
environments, operating system kernels and distributions may need to be switched frequently, or even between runs of an
application program. Reinstalling the operating system on each compute node to switch over the system is generally difficult, as
would maintaining multiple hard disk partitions with different operating systems or configurations. In such cases, building the
Beowulf without the operating system on the local hard drive, if it even exists, can be a good solution. Diskless operation also has
the added benefit of making it possible to maintain only one operating system image, rather than having to propagate changes
across the system to all of the Beowulf nodes.

For diskless operations, naturally, Linux can accommodate where other systems may not be so flexible. A complete explanation of
network booting and NFS-root mechanisms is beyond the scope of this book (but they are documented in the 'Diskless-HOWTO'
and 'Diskless-root-NFS-HOWTO') and certainly is a specialty area for Beowulf machines. However, a quick explanation of the
technology will help provide the necessary insight to guide your decision in this regard.

In addition to hardware that is capable of performing a network boot and a server to dole out kernels to requesting nodes, a
method for accessing the rest of the operating system is required. The kernel is only part of a running machine. Files such as
'/etc/passwd' and '/etc/resolv.conf' also need to be available to the diskless server. In Linux, NFS root provides this
capability. A kernel built with NFS root capability can mount the root file system from a remote machine using NFS. Operating
system files such as dynamic libraries, configuration files, and other important parts of the complete operating system can be
accessed transparently from the remote machine via NFS. As with network booting, there are certain limitations to the scalability
of NFS root for a large Beowulf. In Section 3.2.6, a more detailed discussion of NFS scalability is presented. In summary, diskless
operation is certainly an important option for a Beowulf builder but remains technically challenging.

3.2.5 Downloading and Compiling a New Kernel

For most users, the kernel shipped with their Linux distribution will be adequate for their Beowulf. Sometimes, however, there are
advantages to downloading a newer kernel. Occasionally a security weakness has been solved, or some portion of TCP/IP has
been improved, or a better, faster, more stable device driver arrives with the new kernel. Downloading and compiling a new kernel
may seem difficult but is really not much harder than compiling the kernel that came with the distribution.

The first step is to download a new kernel from www.kernel.org. The importance of reading the online documents, readme files,
and instructions cannot be overstated. As mentioned earlier, sticking with a "stable" (even minor version) kernel is recommended
over the "development" (odd minor version) kernel for most Beowulf users. It is also important to understand how far forward you
can move your system simply by adding a new kernel. The kernel is not an isolated piece of software. It interfaces with a myriad of
program and libraries. For example, the Linux mount command file system interfaces to the kernel; should significant changes to
the kernel occur, a newer, compatible mount command may also need to be upgraded. Usually, however, the most significant link
between the kernel and the rest of the operating system programs occurs with what most people call libc. This is a library of
procedures that must be linked with nearly every single Linux program. It contains everything from the printf function to routines
to generate random numbers. The library libc is tied very closely to the kernel version, and since almost every program on the
system is tied closely to libc, the kernel and LibC must be in proper version synchronization. Of course, all of the details can be
found at www.kernel.org, or as a link from that site.

The next step is to determine whether you can use a "stock" kernel. While every major distribution company uses as a starting
point a stock kernel downloaded from kernel.org, companies often apply patches or fixes to the kernel they ship on the CD-
ROM. These minor tweaks and fixes are done to support the market for which the distribution is targeted or to add some special
functionality required for their user base or to distinguish their product. For example, one distribution company may have a special
relationship with a RAID device manufacturer and include a special device driver with their kernel that is not found in the stock
kernel. Or a distribution company may add support for a high-performance network adapter or even modify a tuning parameter
deep in the kernel to achieve higher performance over the stock kernels. Since the distribution company often modifies the stock
kernel, several options are available for upgrading the kernel:

Download the kernel from the distribution company's Web site instead of kernel.org. In most cases, the
distribution company will make available free, upgraded versions of the kernel with all of their distribution-specific
modifications already added.

Download the kernel from kernel.org, and simply ignore the distribution-dependent modifications to the kernel.
Unless you have a special piece of hardware not otherwise supported by the stock kernel, it is usually safe to use
the stock kernel. However, any performance tuning performed by the distribution company would not have been
applied to the newly download kernel.

Port the kernel modification to the newer kernel yourself. Generally, distribution companies try to make it very clear
where changes have been made. Normally, for example, you could take a device driver from the kernel that
shipped with your distribution and add it to the newer stock kernel if that particular device driver was required.

Of course, all of this may sound a little complicated to the first-time Beowulf user. However, none of these improvements or
upgrades are required. They are by the very nature of Linux freely available to users to take or leave as they need or see fit.
Unless you know that a new kernel will solve some existing problem or security issue, it is probably good advice to simply trim the
kernel down, as described earlier, and use what was shipped with your distribution.

3.2.6 Linux File Systems

Linux supports an amazing number of file systems. Because of its modular kernel and the virtual file system interface used within
the kernel, dynamically loaded modules can be loaded and unloaded on the fly to support whatever file system is being mounted.
For Beowulf, however, simplicity is usually a good rule of thumb. Even through there are a large number of potential file systems
to compile into the kernel, most Beowulf users will require only one or two.

The de facto standard file system on Linux is the second extended file system, commonly called EXT2. EXT2 has been
performing well as the standard file system for years. It is fast and extremely stable. Every Beowulf should compile the EXT2 file
system into the kernel. It does, unfortunately, have one drawback, which can open the door to including support for (and ultimately
choosing) another file system. EXT2 is not a "journaling" file system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Journaling File Systems
The idea behind a journaling file system is quite simple: Make sure that all of the disk writes are performed in such a way as to
ensure the disk always remains in a consistent state or can easily be put in a consistent state. That is usually not the case with
nonjournaling file systems like EXT2. Flipping off the power while Linux is writing to an EXT2 file system can often leave it in an
inconsistent state. When the machine reboots, a file system check, or fsck, must be run to put the disk file system back into a
consistent state. Performing such a check is not a trivial matter. It is often very time consuming. One rule of thumb is that it
requires one hour for every 100 gigabytes of used disk space. If a server has a large RAID array, it is almost always a good idea
to use a journaling file system, to avoid the painful delays that can occur when rebooting from a crash or power outage. However,
for a Beowulf compute node, the choice of a file system is not so clear.

Journaling file systems are slightly slower than nonjournaling file systems for writing to the disk. Since the journaling file system
must keep the disk in a consistent state even if the machine were to suddenly crash (although not likely with Linux), the file system
must write a little bit of extra accounting information, the "journal," to the disk first. This information enables the exact state of the
file system to be tracked and easily restored should the node fail. That little bit of extra writing to the disk is what makes journaling
file systems so stable, but it also slows them down a little bit.

If a Beowulf user expects many of the programs to be disk-write bound, it may be worth considering simply using EXT2, the
standard nonjournaling file system. Using EXT2 will eke out the last bit of disk performance for a compute node's local file writes.
However, as described earlier, should a node fail during a disk write, there is a chance that the file system will be corrupt or
require an fsck that could take several minutes or several hours depending on the size of the file system. Many parallel programs
use the local disk simply as a scratch disk to stage output files that then must be copied off the local node and onto the
centralized, shared file system. In those cases, the limiting factor is the network I/O to move the partial results from the compute
nodes to the central, shared store. Improving disk-write performance by using a nonjournaling file system would have little
advantage in such cases, while the improved reliability and ease of use of a journaling file system would be well worth the effort.

Which Journaling File System?
Once again, unlike other legacy PC operating systems, Linux is blessed with a wide range of journaling file systems from which to
choose. The most common are EXT3, ReiserFS, IBM's JFS, and SGI's XFS. EXT3 is probably the most convenient file system for
existing Linux to tinker with. EXT3 uses the well-known EXT2 file formatting but adds journaling capabilities; it does not improve
upon EXT2, however. ReiserFS, which was designed and implemented using more sophisticated algorithms than EXT2, is being
used in the SuSE distribution. It generally has better performance characteristics for some operations, especially systems that
have many, many small files or large directories. IBM's Journaling File System (JFS) and SGI's XFS files systems had widespread
use with AIX and IRIX before being ported to Linux. Both file systems not only do journaling but were designed for the highest
performance achievable when writing out large blocks of data from virtual memory to disk. For the user not highly experienced
with file systems and recompiling the kernel, the final choice of journaling file system should be based not on the performance
characteristics but on the support provided by the Linux distribution, local Linux users, and the completeness of Linux
documentation for the software.

Networked and Distributed File Systems
While most Linux clusters use a local file system for scratch data, it is often convenient to use network-based or distributed file
systems to share data. A network-based file system allows the node to access a remote machine for file reads and writes. Most
common and most popular is the network file system, NFS, which has been around for about two decades. An NFS client can
mount a remote file system over an IP (Internet Protocol) network. The NFS server can accept file access requests from many
remote clients and store the data locally. NFS is also standardized across platforms, making it convenient for a Linux client to
mount and read and write files from a remote server, which could be anything from a Sun desktop to a Cray supercomputer.

Unfortunately, NFS does have two shortcomings for the Beowulf user: scalability and synchronization. Most Linux clusters find it
convenient to have each compute node mount the user's home directory from a central server. In this way, a user in the typical
edit, compile, and run development loop can recompile the parallel program and then spawn the program onto the Beowulf, often
with the use of an mpiexec or PBS command, which are covered in Chapters 8 and 17, respectively. While using NFS does
indeed make this operation convenient, the result can be a B3 (big Beowulf bottleneck). Imagine for a moment that the user's
executable was 5 megabytes, and the user was launching the program onto a 256-node Linux cluster. Since essentially every
single server node would NFS mount and read the single executable from the central file server, 1,280 megabytes would need to
be sent across the network via NFS from the file server. At 50 percent efficiency with 100-baseT Ethernet links, it would take
approximately 3.4 minutes simply to transfer the executable to the compute nodes for execution. To make matters worse, NFS
servers generally have difficulty scaling to that level of performance for simultaneous connections. For most Linux servers, NFS
performance begins to seriously degrade if the cluster is larger than 64 nodes. Thus, while NFS is extremely convenient for
smaller clusters, it can become a serious bottleneck for larger machines. Synchronization is also an issue with NFS. Beowulf
users should not expect to use NFS as a means of communicating between the computational nodes. In other words, compute
nodes should not write or modify small data files on the NFS server with the expectation that the files can be quickly disseminated
to other nodes. This is discussed more fully in Section 19.3.2.

The best technical solution would be a file system or storage system that could use a tree-based distribution mechanism and
possibly use available high-performance network adapters such as Myrinet or Gigabit Ethernet to transfer files to and from the
compute nodes. Unfortunately, while several such systems exist, they are research projects and do not have a pervasive user
base. Other solutions such as shared global file systems, often using expensive fiber channel solutions, may increase disk
bandwidth but are usually even less scalable. For generic file server access from the compute nodes to a shared server, NFS is
currently the most common option.

Experimental parallel file systems are available, however, that address many of the shortcomings described earlier. Chapter 19
discusses PVFS, the Parallel Virtual File System. PVFS is different from NFS because it can distribute parts of the operating
system to possibly hundreds of Beowulf nodes. When done properly, the bottleneck is no longer an Ethernet adapter or hard disk.
Furthermore, PVFS provides parallel access, so many readers or writers can access file data concurrently. You are encouraged to
explore PVFS as an option for distributed, parallel access to files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Pruning Your Beowulf Node
Even if recompiling your kernel, downloading a new one, or choosing a journaling file system seems too adventuresome at this
point, you can some very simple things to your Beowulf node that can increase performance and manageability. Remember that
just as the kernel, with its nearly five hundred dynamically loadable modules, provides drivers and capabilities you probably will
never need, so too your Linux distribution probably looks more like a kitchen sink than a lean and mean computing machine.
While you may now be tired of the Linux Beowulf adage "a smaller operating system is a better operating system," it must be once
again applied to the auxiliary programs often run with a conventional Linux distribution. If we look at the issue from another
perspective, every single CPU instruction performed by the kernel or operating system daemon not directly contributed to the
scientific calculation is a wasted CPU instruction.

The starting point for pruning your Beowulf node will be what the Linux distribution installer set up. Many distributions have options
during installation for "workstation" or "server" or "development" configurations. As a general rule of thumb, "server" installations
make a good starting point. Workstation configurations often have windowing systems running by default, and a myriad of
background tasks to make Linux as user-friendly as possible to the desktop user. Fortunately, with Linux you can understand and
modify any daemon or process as you convert your kitchen sink of useful utilities and programs into a designed-for-computation
roadster. For a Beowulf, eliminating useless tasks delivers more megaflop per dollar to the end user.

The first step to pruning the operating system daemons and auxiliary programs is to find out what is running on the system. For
most Linux systems there are at least two standard ways to start daemons and other processes, which may waste CPU resources
as well as memory bandwidth (often the most precious commodity on a cluster).

inetd: This is the "Internet superserver". Many Linux distributions use a newer version of the program, which has
essentially the same functionality called xinetd. Both programs basic function is to wait for connections on a set
of ports and then spawn and hand off the network connection to the appropriate program when an incoming
connection is made. The configuration for what ports inetd or xinetd listening to, as well as what will get
spawned can been determined by looking at '/etc/inetd.conf' and '/etc/services' or '/etc/xinetd.
conf' and '/etc/xinetd.d' respectively.

/etc/rc.d/init.d: This special directory represents the scripts that are run during the booting sequence and that often
launch daemons that will run until the machine is shut down.

3.3.1 inetd.conf
The file 'inetd.conf' is a simple configuration file. Each line in the file represents a single service, including the port associated
with that service and the program to launch when a connection to the port is made. Below are some simple examples:
ftp stream tcp nowait root /usr/sbin/tcpd in.proftpd
finger stream tcp nowait root /usr/sbin/tcpd in.fingerd
talk dgram udp wait root /usr/sbin/tcpd in.talkd

The first column provides the name of the service. The file '/etc/services' maps the port name to the port number, for
example,
% grep ^talk /etc/services
talk 517/udp # BSD talkd(8)

To slim down your Beowulf node, get rid of the extra services in 'inetd.conf'; you probably will not require the /usr/bin/talk
program on each of the compute nodes. Of course, what is required will depend on the computing environment. In many very
secure environments, where ssh is run as a daemon and not launched from 'inetd.conf' for every new connection,
'inetd.conf' has no entries. In such extreme examples, the inetd process that normally reads 'inetd.conf' and listens on
ports, ready to launch services, can even be eliminated.

3.3.2 /etc/rc.d/init.d
The next step is to eliminate any daemons or processes that are normally started at boot. While occasionally Linux distributions
differ in style, the organization of the files that launch daemons or run scripts during the first phases of booting up a system are
very similar. For most distributions, the directory '/etc/rc.d/init.d' contains scripts that are run when entering or leaving a
run level. Below is an example:
% cd /etc/rc.d/init.d
% ls
anacron functions kdcrotate nfslock sendmail wine
apachectl gpm keytable nscd single xfs
apmd halt killall ntpd snmpd xinetd
arpwatch http_sanity kudzu portmap snmptrapd ypbind
atd http_sanity~ lpd radvd sshd yppasswdd
autofs identd netfs random syslog ypserv
crond ipchains network rawdevices vncserver ypxfrd
cups iptables nfs rhnsd winbind

However, the presence of the script does not indicate it will be run. Other directories and symlinks control which scripts will be run.
Most systems now use the convenient chkconfig interface for managing all the scripts and symlinks that control when they get
turned on or off. Not every script spawns a daemon. Some scripts just initialize hardware or modify some setting.

A convenient way to see all the scripts that will be run when entering run level 3 is the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% chkconfig --list | grep '3:on'
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
lpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off
httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sshd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
named 0:off 1:off 2:off 3:on 4:on 5:on 6:off
dhcpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
inet 0:off 1:off 2:off 3:on 4:on 5:on 6:off
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfsfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
random 0:off 1:off 2:on 3:on 4:on 5:on 6:off
keytable 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off
ntpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off
serial 0:off 1:off 2:on 3:on 4:on 5:on 6:off
squid 0:off 1:off 2:off 3:on 4:on 5:on 6:off
tltime 0:off 1:off 2:off 3:on 4:off 5:on 6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Remember that not all of these spawn cycle-stealing daemons that are not required for Beowulf nodes. The "serial" script, for
example, simply initializes the serial ports at boot time; its removal is not likely to reduce overall performance. However, in this
example many things could be trimmed. For example, there is probably no need for lpd, mysql, httpd, named, dhcpd,
sendmail, or squid on a compute node. It would be a good idea to become familiar with the scripts and use the chkconfig
command to turn off unneeded scripts. With only a few exceptions, an X-Windows server should not be run on a compute node.
Starting an X session takes ever-increasing amounts of memory and spawns a large set of processes. Except for special
circumstances, run level 3 will be the highest run level for a compute node.

3.3.3 Other Processes and Daemons

In addition to 'inetd.conf' and the scripts in '/etc/rc.d/init.d', there are other common ways for a Beowulf node to waste
CPU or memory resources. The cron program is often used to execute programs at scheduled times. For example, cron is
commonly used to schedule a nightly backup or an hourly cleanup of system files. Many distributions come with some cron
scripts scheduled for execution. The program slocate is often run as a nightly cron to create an index permitting the file system
to be searched quickly. Beowulf users may be unhappy to learn that their computation and file I/O are being hampered by a
system utility that is probably not useful for a Beowulf. A careful examination of cron and other ways that tasks can be started will
help trim a Beowulf compute node.

The ps command can be invaluable during your search-and-destroy mission.
% ps -eo pid,pcpu,sz,vsize,user,fname --sort=vsize

This example command demonstrates sorting the processes by virtual memory size.

The small excerpt below illustrates how large server processes can use memory. The example is taken from a Web server, not a
well-tuned Beowulf node.
 PID %CPU SZ VSZ USER COMMAND
26593 0.0 804 3216 web httpd
26595 0.0 804 3216 web httpd
 3574 0.0 804 3216 web httpd
 506 0.0 819 3276 root squid
 637 0.0 930 3720 root AgentMon
 552 0.0 1158 4632 dbenl postmast
13207 0.0 1213 4852 root named
13209 0.0 1213 4852 root named
13210 0.0 1213 4852 root named
13211 0.0 1213 4852 root named
13212 0.0 1213 4852 root named
 556 0.0 1275 5100 dbenl postmast
 657 0.0 1280 5120 dbenl postmast
 557 0.0 1347 5388 dbenl postmast
 475 0.0 2814 11256 mysql mysqld
 523 0.0 2814 11256 mysql mysqld
 524 0.0 2814 11256 mysql mysqld
 507 0.0 3375 13500 squid squid

In this example the proxy cache program squid is using a lot of memory (and probably some cache), even though the CPU
usage is negligible. Similarly, the ps command can be used to locate CPU hogs. Becoming familiar with ps will help quickly find
runaway processes or extra daemons competing for cycles with the scientific applications intended for your Beowulf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Scalable Services
Modern operating systems take network connectivity for granted, and are almost always configured by default to rely on basic
network services for everything from the correct time of day to DNS name resolution. This can cause performance bottlenecks for
large clusters. Consider a 1024 node cluster launching a job yet configured to use the campus-wide DNS server for resolving
names. Often, as TCP connections are made nodes are configured to do a reverse lookup. This could result in thousands of near-
simultaneous requests to a server that could scale poorly. As mentioned earlier, NFS can also fall in to this category, usually
scaling only to about 64 nodes. NIS can be another potential bottleneck. NIS, the Network Information System is often used to
provide network-shared configuration data, such as password files. Every time a user logs into a node, the computer consults the
remote NIS server. Naturally, spending a few moments to examine the remote services the operating system uses can be
important. Many Beowulf builders simply eliminate, wherever possible, the use of remote services such as NIS for synchronizing
accounts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 Other Considerations
You can explore several other basic areas in seeking to understand the performance and behavior of your Beowulf node running
the Linux operating system. Many scientific applications need just four things from a node: CPU cycles, memory, networking
(message passing), and disk I/O. Trimming down the kernel and removing unnecessary processes can free up resources from
each of those four areas.

Because the capacity and behavior of the memory system are vital to many scientific applications, it is important that memory be
well understood. One of the most common ways an application can get into trouble with the Linux operating system is by using too
much memory. Demand-paged virtual memory, where memory pages are swapped to and from disk on demand, is one of the
most important achievements in modern operating system design. It permits programmers to transparently write applications that
allocate and use more virtual memory than physical memory available on the system. The performance cost for declaring
enormous blocks of virtual memory and letting the clever operating system sort out which virtual memory pages in fact get
mapped to physical pages, and when, is usually very small. Most Beowulf applications will cause memory pages to be swapped in
and out at very predictable points in the application. Occasionally, however, the worst can happen. The memory access patterns
of the scientific application can cause a pathological behavior for the operating system.

The crude program in Figure 3.1 demonstrates this behavior.

#include <stdlib.h>
#include <stdio.h>
#define MEGABYTES 300
main() {
 int *x, *p, t=1, i, numints = MEGABYTES*1024*1024/sizeof(int);
 x = (int *) malloc(numints*sizeof(int));
 if (!x) { printf("insufficient memory, aborting\n"); exit(1); }
 for (i=1; i<=5; i++) {
 printf("Loop %d\n",i);
 for (p=x; p<x+numints-1; p+=1024) {
 *p = *p + t;
 }
 }
}

Figure 3.1: A simple program to touch many pages of memory.

On a Linux server with 256 megabytes of memory, this program—which walks through 300 megabytes of memory, causing
massive amounts of demand-paged swapping—can take about 5 minutes to complete and can generate 377,093 page faults. If,
however, you change the size of the array to 150 megabytes, which fits nicely on a 256-megabyte machine, the program takes
only a half a second to run and generates only 105 page faults.

While this behavior is normal for demand-paged virtual memory operating systems such as Linux, it can lead to sometimes
mystifying performance anomalies. A couple of extra processes on a node using memory can push the scientific application into
swapping. Since many parallel applications have regular synchronization points, causing the application to run as slow as the
slowest node, a few extra daemons or processes on just one Beowulf node can cause an entire application to halt. To achieve
predictable performance, you must prune the kernel and system processes of your Beowulf.

3.5.1 TCP Messaging

Another area of improvement for a Beowulf can be standard TCP messaging. As mentioned earlier, most Linux distributions come
tuned for general-purpose networking. For high-performance compute clusters, short low-latency messages and very long
messages are common, and their performance can greatly affect the overall speed of many parallel applications. Linux is not
generally tuned for messages at the extremes. However, once again, Linux provides you the tools to tune it for nearly any
purpose.

The older 2.2 kernels benefited from a set of patches to the TCP stack. A series of in-depth performance studies from NASA
ICASE [68] detail the improvements that can be made to the 2.2 kernel for Beowulf-style messaging. In their results, significant
and marked improvement could be achieved with some simple tweaks to the kernel. However, most people report that the 2.4
series kernels work well without modification to the TCP stack.

Other kernel modifications that improve performance of large messages over highspeed adapters such as Myrinet have also been
made available on the Web. Since modifications and tweaks of that nature are very dependent on the kernel version and network
drivers and adapters, they are not outlined here. You are encouraged to browse the Beowulf mailing lists and Web sites and use
the power of the Linux source code to improve the performance of your Beowulf.

3.5.2 Hardware Performance Counters

Most modern CPUs have built-in performance counters. Each CPU design measures and counts metrics corresponding to its
architecture. Several research groups have attempted to make portable interfaces for the hardware performance counters across
the wide range of CPU architectures. One of the best known is PAPI: A Portable Interface to Hardware Performance Counters
[75]. Another interface, Rabbit [53], is available for Intel or AMD CPUs. Both provide access to performance counter data from the
CPU. Such low-level packages require interaction with the kernel; they are extensions to its basic functionality. In order to use any
of the C library interfaces, either support must be compiled directly into the kernel, or a special hardware performance counter
module must be built and loaded. Beowulf builders are encouraged to immediately extend their operating system with support for
hardware performance counters. Users find this low-level CPU information, especially with respect to cache behavior, invaluable
in their quest for better node-OS utilization. Three components will be required: the kernel extensions (either compiled in or built
as a module), a compatible version of the Linux kernel, and the library interfaces that connect the user's code to the kernel
interfaces for the performance counters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Final Tuning with /proc
As mentioned earlier, the '/proc' file system is not really a file system at all, but a window on the running kernel. It contains
handles that can be used to extract information from the kernel or, in some cases, change parameters deep inside the kernel. In
this section, we discuss several of the most important parameters for Beowulfs. A multitude of Linux Web pages are dedicated to
tuning the kernel and important daemons, with the goal of serving a few more Web pages per second. A good place to get started
is linuxperf.nl.linux.org. Many Linux users take it as a personal challenge to tune the kernel sufficiently so their machine
is faster than every other operating system in the world.

However, before diving in, some perspective is in order. Remember that in a properly configured Beowulf node, nearly all of the
available CPU cycles and memory are devoted to the scientific application. As mentioned earlier, the Linux operating system will
perform admirably with absolutely no changes. Trimming down the kernel and removing unneeded daemons and processes
provides slightly more room for the host application. Tuning up the remaining very small kernel can further refine the results.
Occasionally, a performance bottleneck can be dislodged with some simple kernel tuning. However, unless performance is awry,
tinkering with parameters in '/proc' will more likely yield a little extra performance and a fascinating look at the interaction
between Linux and the scientific application than incredible speed increases.

Now for a look at the Ethernet device:
% cat /proc/net/dev
Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes
packets errs drop fifo colls carrier compressed
lo:363880104 559348 0 0 0 0 0 0 363880104 559348 0 0 0 0 0 0
eth0:1709724751 195793854 0 0 357 0 0 0 4105118568 202431445
0 0 0 0 481 0
brg0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It is a bit hard to read, but the output is raw columnar data. A better formatting can be seen with '/sbin/ifconfig'. One set of
important values is the total bytes and the total packets sent or received on an interface. Sometimes a little basic scientific
observation and data gathering can go a long way. Are the numbers reasonable? Is application traffic using the correct interface?
You may need to tune the default route to use a high-speed interface in favor of a 10-baseT Ethernet. Is something flooding your
network? What is the size of the average packet? Another key set of values is for the collisions (colls), errs, drop, and frame. All of
those values represent some degree of inefficiency in the Ethernet. Ideally, they will all be zero. A couple of dropped packets is
usually nothing to fret about. But should those values grow at the rate of several per second, some serious problems are likely.
The "collisions" count will naturally be nonzero if traffic goes through an Ethernet hub rather than an Ethernet switch. High collision
rates for hubs are expected; that's why they are less expensive.

Tunable kernel parameters are in '/proc/sys'. Network parameters are generally in '/proc/sys/net'. Many parameters can be
changed. Some administrators tweak a Beowulf kernel by modifying parameters such as tcp_sack, tcp_-timestamps,
tcp_window_scaling, rmem_default, rmem_max, wmem_default, or wmem_max. The exact changes and values depend on
the kernel version and networking configuration, such as private network, protected from denial of service attacks or a public
network where each node must guard against SYN flooding and the like. You are encouraged to peruse the documentation
available at www.linuxhq.com and other places where kernel documentation or source is freely distributed, to learn all the details
pertaining to their system. Section 5.5 discusses some of these networking parameters in more detail.

With regard to memory, the meminfo handle provides many useful data points:
% cat /proc/meminfo
MemTotal: 1032828 kB
MemFree: 24916 kB
Buffers: 114836 kB
Cached: 436588 kB
SwapCached: 58796 kB
Active: 720008 kB
Inactive: 210888 kB
HighTotal: 130496 kB
HighFree: 2016 kB
LowTotal: 902332 kB
LowFree: 22900 kB
SwapTotal: 530136 kB
SwapFree: 389816 kB
Dirty: 64 kB
Writeback: 0 kB
Mapped: 390116 kB
Slab: 57136 kB
Committed_AS: 761696 kB
PageTables: 7636 kB
ReverseMaps: 202527

In the example output, the system has 1 gigabyte of RAM, about 114 megabytes allocated for buffers and 25 megabytes of free
memory. The handles in '/proc/sys/ vm' can be used to tune the memory system, but their use depends on the kernel, since
handles change frequently.

Like networking and virtual memory, there are many '/proc' handles for tuning or probing the file system. A node spawning many
tasks can use many file handles. A standard ssh to a remote machine, where the connection is maintained, and not dropped,
requires four file handles. The number of file handles permitted can be displayed with the command
% cat /proc/sys/fs/file-max
4096

The command for a quick look at the current system is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat /proc/sys/fs/file-nr
1157 728 4096

This shows the high-water mark (in this case, we have nothing to worry about), the current number of handles in use, and the
max.

Once again, a simple echo command can increase the limit:
% echo 8192 > /proc/sys/fs/file-max

The utility '/sbin/hdparm' is especially handy at querying, testing, and even setting hard disk parameters:
% /sbin/hdparm -I /dev/hda

/dev/hda:

 Model=DW CDW01A0 A , FwRev=500.B550, SerialNo=DWW-AMC1211431 9
 Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq }
 RawCHS=16383/16/63, TrkSize=57600, SectSize=600, ECCbytes=40
 BuffType=3(DualPortCache), BuffSize=2048kB, MaxMultSect=16, MultSect=8
 DblWordIO=no, maxPIO=2(fast), DMA=yes, maxDMA=0(slow)
 CurCHS=17475/15/63, CurSects=16513875, LBA=yes
 LBA CHS=512/511/63 Remapping, LBA=yes, LBAsects=19541088
 tDMA={min:120,rec:120}, DMA modes: mword0 mword1 mword2
 IORDY=on/off, tPIO={min:120,w/IORDY:120}, PIO modes: mode3 mode4
 UDMA modes: mode0 model *mode2 }

Using a Beowulf builder and a simple disk test,
% /sbin/hdparm -t /dev/hdal

/dev/hdal:
Timing buffered disk reads: 64 MB in 20.05 seconds = 3.19 MB/sec

you can understand whether your disk is performing as it should, and as you expect.

Finally, some basic parameters of that kernel can be displayed or modified. '/proc/sys/kernel' contains structures. For some
message-passing codes, the key may be '/proc/sys/kernel/shmmax'. It can be used to get or set the maximum size of
shared-memory segments. For example,
% cat /proc/sys/kernel/shmmax
33554432

shows that the largest shared-memory segment available is 32 megabytes. Especially on an SMP, some messaging layers may
use shared-memory segments to pass messages within a node, and for some systems and applications 32 megabytes may be
too small.

All of these examples are merely quick forays into the world of '/proc'. Naturally, there are many, many more statistics and
handles in '/proc' than can be viewed in this quick overview. You are encouraged to look on the Web for more complete
documentation and to explore the Linux source—the definitive answer to the question "What will happen if I change this?" A
caveat is warranted: You can make your Beowulf node perform worse as a result of tampering with kernel parameters. Good
science demands data collection and repeatability. Both will go a long way toward ensuring that kernel performance increases,
rather than decreases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 Conclusions
Linux is a flexible, robust node operating system for Beowulf computational clusters. Stability and adaptability set it apart from the
legacy operating systems that dominate desktop environments. While not a "cancer" like some detractors have labeled Linux, it
has spread quickly from its humble beginnings as a student's hobby project to a full-featured server operating system with
advanced features and legendary stability. And while almost any Linux distribution will perform adequately as a Beowulf node
operating system, a little tuning and trimming will skinny down the already lean Linux kernel, leaving more compute resources for
scientific applications. If this chapter seems a little overwhelming, we note that there are companies that will completely configure
and deliver Beowulf systems, including all the aforementioned tweaks and modifications to the kernel. There are also revolutionary
systems such as the Beowulf software from Scyld Computing Corporation (www.sycld.com). The software from Scyld combines a
custom Linux kernel and distribution with a complete environment for submitting jobs and administering the cluster. With its
extremely simple single-system image approach to management, the Scyld software can make Beowulfs very easy indeed.
Chapter 18 is devoted to a discussion of the Scyld approach.

One final reminder is in order. Many Beowulf builders became acquainted with Linux purely out of necessity. They started
constructing their Beowulf saying, "Every OS is pretty much like every other, and Linux is free... free is good, right?". On the back
of restaurant napkins, they sketched out their improved price/performance ratios. After the hardware arrived, the obligatory
LINPACK report was sent to the Top500 list, and the real scientific application ran endlessly on the new Beowulf. Then it
happened. Scientists using Linux purely as a tool stopped and peered inquisitively at the tool. They read the source code for the
kernel. Suddenly, the simulation of the impending collision of the Andromeda galaxy with our own Milky Way seemed less
interesting. Even though the two galaxies are closing at a rate of 300,000 miles per hour and we have only 5 billion years to wait,
the simulation simply seemed less exciting than improving the virtual memory paging algorithm in the kernel source, sending Linus
Torvalds the patch, and reading all the kernel mailing list traffic. Beware. Even the shortest of peeks down the rabbit's hole can
sometimes lead to a wonderland much more interesting than your own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: System Area Networks

Overview
Narayan Desai and Thomas Sterling

Clusters are groups of machines, meant to be harnessed to perform a task or tasks in parallel. In order for a group to coordinate
itself and efficiently perform a task, the individual nodes in the cluster must be able to communicate with one another. As these
messages are used for synchronization in many cases, the pace of the continued progress of the computation is dependent on
the performance of the communication network.

Networks are among the most important components of clusters. A network is a group of peers that share an interconnection
fabric. These peers are able to use this fabric to communicate with one another. The peers are usually hosts with network
interfaces, and the fabric consists of devices that help to deliver network traffic to the intended receiver.

System area networks vary with respect to bandwidth, latency, scalability, and cost. Network performance determines cluster
performance for many applications. Therefore, the initial choice of a network will affect the usability of a cluster for its entire
operational lifespan.

Another type of network, a storage area network, might also be connected to nodes in a cluster. These networks carry I/O traffic to
remote storage resources. Unfortunately, these networks carry the same acronym as system area networks, leading to some
confusion. Storage area networks are discussed in Chapter 19; we concern ourselves only with system area networks, although
these networks share many characteristics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Network Hardware
Networks are composed of a several types of components. First, there are the nodes (or peers) on the network. Each of these will
have one or more network interface card on its I/O buses. The term "card" is figurative in some cases; network interfaces have
been integrated into many motherboards in recent years. Every interface will be connected to the network fabric by a network link.
The network fabric is composed of some number of network devices, interconnected into some topology. The functionality and
performance of networks are composites of particular components used.

4.1.1 Host Interfaces

All peers in a network must have an interface into the network itself. These interfaces usually take the form of add-on network
peripherals. These network interface cards (NICs) are usually I/O boards that plug into the system. On PC hardware, the most
common bus type is PCI (or its newer replacement, PCI-X).

The function of these NICs is to allow nodes on the network to send and receive messages on the network. In order to support
these operations, NICs have several parts. One component is hardware that interfaces with the physical layer of the network, the
wires that carry data in a network. This hardware will work with either copper or fiber physical layers. It can convert messages from
data used on the NIC and in the host stack to wire format messages for transmission, and provides the reverse functionality for
message receipt.

Another portion of the NIC performs a similar task for the I/O bus. For the purpose of simplicity, we will assume the NIC in
question is PCI based. In order for applications running under the host operating system to transmit a message, the message data
needs to be copied to the NIC from the application so that the actual message can be prepared for transmission. This copy is
done over the PCI bus from the system's main memory. So this second part of the NIC is responsible for collecting data from the
PCI bus for network transmission and transmitting data received off the network over the PCI bus to the system main memory.

All network access on a peer will go through a NIC. This means the rate at which data can be transmitted is limited by the rate at
which data can be copied into and out of the NIC via the I/O bus, and it is also limited by the rate at which the NIC can transmit
and receive data from the network. In the days of 100 Mbps Ethernet, the link speed of links connecting nodes to the network
were typically the limiting factor in hardware performance. At this point, high-end network vendors are able to nearly saturate even
the fastest of I/O buses available.

4.1.2 Network Links

Network links are the channels connecting interfaces to devices and interconnecting devices. The link medium affects several
other properties. Fiber and copper are typical link media. Link speeds vary widely; 10 and 100 Mb (Megabit, not to be confused
with MB, or MegaByte) Ethernet is still in common use, running at 10 and 100 Mb/s, respectively. Current-generation high-end
interconnect links function at rates in excess of 2–3 Gb/s. Emerging technologies, like 10Gb Ethernet and 4X Infiniband feature
link speeds near 10 Gb/s.

Some network links are full duplex. If a link is full duplex, no action of two devices on the network segment can cause a collision
on the link. If a link is half-duplex, or not full duplex, multiple hosts' simultaneous transmission can cause a collision. Collisions
cause a few types of performance degradation. First, the average latency of messages varies with the overall usage of the
network, since messages will frequently need to be retransmitted, or will have to wait before transmission can occur. Second, the
aggregate bandwidth available to the entire network is lower because of the cost of collision detection and retransmission. Also, in
a network featuring half-duplex links there will typically exist a single collision domain. This means that the amount of bandwidth
available to all hosts is that of a single link. This is undesirable when compared with switched, full-duplex network that provide up
to full bandwidth of all links.

We note that the ability to operate in either full or half duplex mode for any link in a network is governed by the devices at either
end. Some devices are limited in terms of supported operational modes. Hubs are unable to function in full-duplex environments
due their basic design. Some Ethernet interfaces are unable to run in full-duplex mode. All Ethernet devices, by specification are
able to run in half-duplex mode.

4.1.3 Network Devices

A network device is hardware that interconnects some number of network links. The network device uses one of a number of
algorithms to process and forward the traffic between hosts. The style of traffic forwarding affects the properties of the whole
network greatly; different algorithms yield different behavior of the network under load. These devices also vary widely in terms of
media, performance, and price.

The two main classifications of network devices are hubs and switches. Hubs implicitly contain a single broadcast domain. That is,
any traffic received on any port is transmitted to all other ports on the switch. All links connected to these devices are half-duplex.
These are typically among the least expensive network devices. They were most common in the days of 10 and 100 Mbps
Ethernet. Gigabit hubs are unheard of. Hubs will only function with network link types that allow for contention. Ethernet does this,
though many other networks currently in use do not. This sort of contention detection and correction come at some cost. When all
of the links connected to a hub are suffering from contention simultaneously, the aggregate bandwidth available to clients drops to
about 35%. As we mentioned previously, hubs cannot use full-duplex links, due to their basic design. For this reason, hubs are
less desirable in the cluster environment.

Switches have become the standard network device in the last few years. This has occurred because of their plummeting cost and
performance benefit. Ethernet switches maintain network state information that maps known Ethernet hardware addresses to the
port they were last seen on. This means that when a packet is processed by the switch, the switch will have only have to flood
(broadcast on all links) the first packet; the client's response will cause an entry to be created in the MAC address table of the
switch and all subsequent packets will be directly forwarded to the proper port. This approach is extremely effective in small
environments. A relatively small number of packets are flooded allowing all links to be used efficiently. The switch is able to cache
near complete network state and the network can be near-optimally used. In more complex networks, the simplicity of this
approach makes it difficult to get as good performance as one might want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many switches have limitations in terms of the quantity of traffic they can process. This limit is described in one of two ways. The
term backplane bandwidth is used to describe the aggregate amount of bandwidth a switch can handle at once. For example, a
switch that has a backplane bandwidth of 16 Gbps is able to process the load generated by 16 clients each with a 1Gbps NIC.
The other way this capacity is described in specifications is in packets per second, or PPS. Also, a switch may be said to be non-
blocking. This means that any configuration of clients that can be connected can be supported by the switch without packet loss
because of internal bandwidth limitations. The backplane bandwidth in these cases is higher than the sum of the individual
bandwidths of all links in the network.

In complex networks, many network switches will be interconnected. This is required because of the bandwidth and port counts of
single switches. In large configurations, multiple switches must be used in conjunction to provide enough capacity. All clients on
one switch will be limited to the link speed of the connecting link when communicating with clients on another switch. For this
reason, switches are typically connected with multiple links. This allows for more packets to be exchanged by clients on different
switches. This is referred to as trunking, or link aggregation.

The algorithm used to forward packets in Ethernet switches has been modified to allow for multiple link channels. These channels
are treated like normal links. A variety of hashing algorithms are used to distribute the network traffic across the underlying links.
Many of these algorithms use peer configuration information, like IP address or NIC hardware address. Many of these hashing
algorithms do not work very well in cluster environments because of the uniformity in hardware and software. In most clusters,
hosts are configured with sequential IP addresses. Also, most clusters also have homogeneous hardware. It is not uncommon for
cluster nodes to have sequential, or at least very similar NIC hardware addresses. Both of these facts make many hashing
algorithms suboptimal in clusters. Round-robin hashing algorithms distribute traffic well, but tend to cause packet reordering to
occur. This causes problems in higher layers of the network software. Because of these problems, Ethernet switch complexes
tend to be reserved for network-intensive tasks in smaller environments. In small environments, clients will have good connectivity
to a large fraction of the system because of a shared switch. In larger configurations, inter-client connectivity is diminished
because inter-switch connectivity is typically poor.

In order to address these sorts of problems in large switch complexes, some vendors, such as Myricom, use source routing. This
means that each packet handled by the network will contain a complete route to its destination. If packets contain this information,
the switch needs to simply use the stored route to forward the packet to the next hop in the stored route. This is a more scalable
approach, because the switches process traffic identically whether there are 2 or 1024 nodes in the network. On the other hand,
the clients need to do a lot more work. Each client needs to maintain a set of routes to all other clients in the network. This can be
a complicated task; it involves complete knowledge of the whole network topology. However, it allows more flexibility for the clients
of the system. This leads to better network performance overall, especially on large systems.

4.1.4 Topology

Many small cluster networks are extremely simple, consisting of a single network device and a number of clients. This
configuration is advantageous in the following way. A single network device, by definition, needs to connect to other devices in the
network. This means that all hosts are equally well connected to all other hosts in the system. There are no issues of traffic
distribution as discussed previously. The MAC address-based forwarding scheme described previously for Ethernet switches
works beautifully. Hardware performance in these configurations is typically governed by the performance of the single switch.

Once multiple switches become involved, things become more complicated. Hosts on the same switch enjoy lower latency to one
another than hosts on different switches do. All of the switches need to be inter-connected. Depending on the network topology,
packets may be handled by multiple switches during delivery. Depending on the particular case, packets may even by handled by
all switches.

Multiple network links may be aggregated in order to improve connectivity between switches. Traffic needs to be distributed across
these links. If these switches are multiply-interconnected, the path from any given host on the network may not be fixed any more.

The topology of the system will impact the overall performance of the network for clients. The primary metric of this is bisection
bandwidth. Bisection bandwidth is the maximum amount of bandwidth that an arbitrary half of nodes on the network can use to
communicate with the other half. In simpler networks, this is usually determined by finding the limiting factor in communication
between two regions in the network. In a single switch case, this is usually the backplane bandwidth of the switch. In a multiple
Ethernet switch case, this is usually the set of uplinks between switches.

Complex networks are usually built in order to provide full bisection bandwidth to cluster nodes. This means that any half of the
network can communicate with its conjugate at line rate; i.e., the network itself doesn't limit communication between any set of
nodes in the system. In small configurations, this task can be achieved with a single switch. Once the network outgrows a single
switch, topology becomes more complicated. These configurations are composed of two types of switches. Some switches
connect clients to switches. Others only connect switches to other switches. On any switch connected directly to clients, one port
must be connected to another switch for each port connected to a client. This is required to allow data to flow between clients
connected to different switches. Switches connected only to switches are used to distribute traffic between the switches connected
to clients. As these configurations get larger, the second category of switches grows in size quickly. In larger configurations, half or
more of the ports available on switches are used as inter-switch links, not as client ports.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Example Networks
The networks used in clusters vary greatly based on the users' particular needs. The following are example networks (from a
hardware perspective). The first example is an inexpensive Ethernet network for use in a small cluster (< 32 nodes). The second
example is an Ethernet network with moderate bisection bandwidth.

4.2.1 Single Switch Ethernet Network

In Figure 4.1, we show a simple cluster network, consisting of a single switch and 8 cluster nodes. This is probably the most
common network configuration for clusters. The performance is generally governed by a combination of network link speed, and
aggregate backplane bandwidth of the switch.

Figure 4.1: A simple cluster network.

4.2.2 Multiple Switch Ethernet Network

In Figure 4.2, we show a slightly more complicated cluster network, consisting of two switches and 16 cluster nodes evenly
distributed across the switches. The performance of this configuration is dependent on more factors than the previous example. In
this case, it is limited by a combination of link speeds, backplane bandwidth of both switches, and the effectiveness of the hashing
algorithm used to aggregate the 4 uplinks between switches. This may seem like a similar performance limit to the previous
example, but in these multi-stage switch networks, single switch limitation are aggregated non-linearly based on system usage.

Figure 4.2: A complex cluster network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Network Software
In order for applications to use the network, applications need to access the network via a set of software. This software stack will
provide a range of functionality, and will exist in a number of forms. At the highest level, there are communication libraries, for
example, MPI implementations. These are typically used by applications because they provide a transport and platform
independent interface to communication. (These libraries won't be discussed in detail in this chapter; see Chapters 8–11 for
details.) At a slightly lower level, protocol stacks are used. These protocol stacks provide transport properties like reliable
message delivery, ordered message delivery, message framing, and flow control. The lowest level of network software is the
driver layer. Network drivers interact directly with network interfaces to control transmission and receipt of packets on the network.

4.3.1 Network Protocols

Network protocols are a series of procedures used to setup and conduct data transmissions between a group of machines. Such
protocols abstract the physical transmission medium to provide some portability to applications. Protocols are used to provide
various properties to network communications sessions. Note that not all protocols provide all of these properties, and the
following list is by no means exhaustive.

Media contention: work around collisions and other physical errors.

Addressing: A station addressing scheme that is network layer independent.

Fragmentation: A means to break down messages into smaller pieces (called datagrams) for transmission, and
reassemble them at the receiver.

Reliable delivery: A means for the client to determine if transmission completed properly or an error has occurred.

Ordered delivery: Messages are delivered in order to the application from end to end.

Flow control: Transmission can be slowed to improve performance or prevent the exhaustion of resources at the
destination or along the route to the destination.

Most applications will actually use a combination of network protocols in the course of communications. This means that all
protocols do not need to provide all of the above properties. For example, the IP protocol only provides an addressing scheme
and message fragmentation: the IP protocol provides an addressing scheme that allows a message to be delivered to another end
station and that it is fragmented and reassembled if necessary. Most IP applications also use either TCP or UDP. TCP is used
when reliability and ordered delivery are desired. The following are descriptions of a number of common network protocols and the
properties they implement.

Ethernet provides media collision detection and avoidance. The Ethernet protocol also provides an addressing scheme. Each
client uses a 48-bit address, assigned by the vendor of its network interface.

IP is a protocol that provides the features of addressing and fragmentation. Addressing is implemented in the following way. Each
client address has a 32 bit address, broken into a network address and a host address. Network addresses are used to route
packages from one network segment to another. Fragmentation is implemented using a identification field in the header. IP also
includes a header field that specifies the transport layer protocol as well. This will in most cases be either TCP or UDP, but other
protocols can be used as well.

The IP protocol must be adapted to the underlying physical network type. IP addresses must be able to be mapped to physical
network addresses. In the case where IP is used on top of Ethernet, the address resolution protocol (ARP) is used to determine
the Ethernet address of the intended recipient. This process consists of a broadcasted query for the MAC address of an IP
address. The owner of that IP address will respond with the MAC address. This value is cached. At this point, IP can be used on
top of Ethernet transparently. See Section 5.2 for a more detailed discussion of IP, TCP and UDP.

TCP specifies a set of steps required to establish a communication session. Once this is established, it provides reliable, in-order
delivery of messages.

UDP provides about the same functionality as IP. It is generally used so that an application can implement its own network
protocol for reliable delivery of messages. UDP is also used in cases where reliable message delivery is not as important as low
latency or jitter. UDP is frequently used for streaming audio and video.

GM is the driver, firmware, and user-space library used to access Myrinet interfaces. It provides all of the properties necessary to
use the network for reliable communications. Addressing is implemented in GM using interface hardware addresses and a routing
table that exists on each node. This routing table has a set of source routes for all nodes on the network. Fragmentation is not
necessary, as GM messages are not limited in size. GM also implements reliable, in-order message delivery. Because of the
switched nature of myrinet switch complexes, media contention is not an issue.

The kernel driver providing support for GM on Myrinet interfaces also provides Ethernet emulation. This means that protocols like
Ethernet and IP (TCP and UDP) can be run over Myrinet hardware.

4.3.2 Network Protocol Stacks

Network protocol stacks are the software implementations of the network protocols mentioned in the previous subsection. These
implementations are typically operating system specific. Many of these are implemented inside of the kernel, but this is not
universally the case. These stacks provide a syscall interface for user-space programs. The most common example of this
interface is the socket interface used by all IP-based protocols. An application will set up a socket, and then send and receive data
using this socket. All of these function calls are implemented as system calls. The network stack uses network drivers to actually
send and receive data. The purpose of the syscall layer is to provide portability between different implementations of facilities
provided by the kernel. This layer is tightly coupled with network drivers, as it is the sole consumer of their functions.

4.3.3 Network Drivers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network drivers are the software that allows network interface hardware to be used by the kernel, network protocol stacks, and
ultimately user applications. Network drivers have a few responsibilities. First, the driver will initialize the network card, so that it
can be enabled. This setup consists of internal setup like on-card register initialization, but also includes external setup like link
auto-negotiation. After these steps are complete, the network hardware should be initialized. This does not mean the interface is
completely configured, as some configuration processes like DHCP use the network interface itself to configure settings like IP
addresses.

The driver also provides functions necessary to send and receive packets via the network. The send functions are typically called
from a protocol stack. The set of transmission steps is as follows: an application makes a system call, providing data to be sent.
This data is processed by the network protocol stack. The protocol stack calls functions provided by the driver to copy the data
across the I/O bus and actually transmit the data.

When receiving data, the network interface will receive data from the network. It will then do some amount of processing of the
data. This processing varies from card to card. Some cards implement parts of the protocol stack in hardware in order to improve
performance. When the card is finished processing the packets received from the network, it causes an interrupt. This causes the
kernel to call functions defined in the network interface driver. These functions are called interrupt handlers. An interrupt handler
will copy the data from the network interface to system main memory, via the I/O bus. At this point, the network protocol stack
finishes processing the packets, and copies the data out to the application.

The process of servicing interrupts is very invasive; it typically causes other operations to be preempted. Under high network
receive load, this causes the primary computational task of the system to be frequently stopped. As context switches are not free,
this constant switch comes at a high performance price. In order to address this issue, most high-end (gigabit and custom
network) NIC manufacturers have implemented interrupt mitigation, or coalescing strategies. This means that the NIC will buffer
some number of processed packets before issuing an interrupt. This means that instead of interrupting after every packet is
processed, the NIC may only issue an interrupt after 10 or 100 packets. This allows the spend less time switching between the
network and computational task, and more time executing the user's application. See Sections 5.5.4 and 5.5.5 for more
information about driver performance settings and techniques.

4.3.4 Network Software In Action

In general, cluster use is characterized by the execution of parallel applications. These applications consist of many instances of
the same application, running on multiple cluster nodes simultaneously. These instances of the application use the system area
network to communicate. These messages are typically used for coordination between instances of the parallel application.

When communication occurs, a complex series of actions is performed. First, the application makes a library call to initiate
message transfer. This call usually does a variety of things; it will frame the message and potentially split the message into
multiple packets if the message size is too large. At this point, the packet is passed to the network driver stack. The data is
transferred across the I/O bus to the NIC.

The network controller transmits the packets to the network controller on the intended recipient. The packet reaches receiving
network controller, where it is processed by the hardware and processed by the network driver stack. These packets are
reconstituted into the original message by the protocol stack, and this message is passed to the application when if calls a receive
function in its messaging library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Performance
As was mentioned earlier, clusters are built in most cases to harness the resources of many machines to solve a single problem.
In order for any problem to be solved on many hosts in a faster time than the single machine execution time, these hosts need to
coordinate.

During application execution, this coordination takes the form of messages transmitted from one node to another. The
communication patterns of these messages vary widely; some programs will spend most of their execution time performing
computation, with very occasional messages reporting results and receiving a new assignment. This sort of program will typically
perform independently of network performance. Other programs are constantly communicating between the parallel processes;
small variances in network performance can cause huge differences in application performance in these cases.

4.4.1 Hardware Performance

Network performance can be characterized in terms of three basic metrics: latency, bandwidth, and topology. Latency is the time
for a message to travel from the sender to a receiver via the network. Bandwidth is the rate at which data can be transmitted. The
topology of the network is the underlying "shape" of the network. These attributes are the key determinants of network-based
application performance for all applications. However, the nature of the application determines which of these attributes, if any,
are important with respect to performance. Section 1.3 introduced the analysis of application performance with respect to latency
and bandwidth in abstract terms; in this section we'll discuss these from the standpoint of the network hardware.

Latency is the measure of time for a message to transit the network from a sender to a receiver. Latency is important to
application performance for a number of reasons. Whenever synchronous communication occurs, the receiver is waiting for
messages to arrive. Fundamentally, this is the speed at which nodes in the cluster can coordinate themselves during a parallel
computation. Application latency can range from upwards of 100 microseconds down to approximately 4 microseconds.

Bandwidth is the most straightforward metric of networks. It is the rate of data transmission. This is also an extremely important
metric, as it governs how fast data can be exchanged between nodes.

There are many types of descriptions of bandwidth in a system, so some clarification is necessary. A network is composed of
nodes with network interfaces, a set of switches, and network links connecting these parts together into some topology. All
components in this system have individual bandwidth limitations, so determining what the actual available network bandwidth can
be tricky. Also, as all of these function as limiting factors, many factors must be considered together in order to form a complete
picture of available network bandwidth.

The most common network bandwidth quoted is the bandwidth of an individual link in the system. For example, gigabit Ethernet
networks are composed of links running at 1 gigabit per second. Current generation single link bandwidths currently range from
100 Mbps (12.5 MB/s) to nearly 4 Gbps (500 MB/s). In the next year, products featuring link speeds between 4–10 Gbps are
expected. It is worth noting that some network interfaces include multiple links in order to increase the available aggregate
bandwidth.

Bandwidth available within network switch complexes also effects the usable bandwidth for nodes on a network. In a network
composed of a single switch, the switch backplane bandwidth is an important factor. Backplane bandwidth is how much traffic the
switch can handle simultaneously. Some switches, typically cheaper ones, are also limited in the number of packets per second
(PPS) they are able to handle. While all of the links will still run at full speed, these two limitations cause packets to get dropped
within the switch itself.

Bisection bandwidth is the other important measure of network bandwidth. Bisection bandwidth is defined as the minimum of the
aggregate bandwidth between any two halves of a system. When communication is occurring between a number of stations on
the network at the same time, contention inside of the switching complex can reduce the bandwidth available to communications
regardless of the speed of links in the network. In many cases, individual links may not be usable because of a lack of available
bisection bandwidth.

4.4.2 Software Performance

Network software is essentially responsible for moving data from system main memory to the NIC for transmission, and vice
versa. This involves translating data into a format suitable for transmission, and translating data back from this formate upon
receipt. Performance in this process is limited by a few factors. The first of these is the use of data copies in libraries and protocol
stacks. In many cases, data starts in the user application, where it is copied into the network stack and processed. After this has
completed, the data is copied across the I/O bus and is transmitted. In the case of inbound messages, data is received on the
NIC, copied across the I/O bus into the network stack, processed, and finally copied into the application's memory.

A more optimized scheme would be to copy data directly from application memory to the NIC for transmission. This would avoid
one of the copies mentioned in the previous scenario for each direction. This has been implemented in two ways. The first is user-
level networking. In this case, all networking code exists in the user application; kernel facilities are used only to access the NIC.
The other way to implement this is to use NICs with hardware network protocol processing support. This allows the NIC to process
packets into an application usable form without involving the kernel at all.

Another performance problem is caused by the network stack's usage of the system CPU for computationally intensive tasks. One
example of this is computation of TCP checksums. The performance of early generation gigabit Ethernet NICs were severely
limited by the ability of the system CPU to compute TCP checksums quickly enough. Moreover, this computation also hampers
the node's ability to perform its primary computational tasks, like the execution of user applications. This problem can only be
solved by the addition of NIC support for network protocol processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As we mentioned previously, performance problems are caused by the frequent generation of interrupts during the usage of high
speed network interfaces. Any time an interrupt is received, the current running task is stopped, causing a context shift. If this
occurs every time a packet is received on the network, the host CPU will spend all of its time context shifting, without
accomplishing much in between. NIC hardware assistance can help with this issue in two ways. Interrupt coalescing helps with
this issue quite a bit. However, even when using interrupt coalescing, interrupt load scales with the number of packets received,
not with the number of messages received. If more network protocol processing can be done in hardware, the host CPU will get
interrupted less often, with more benefit.

Many of these issues have been addressed in both software and hardware. High end NIC manufacturers have begun addressing
these issues, interconnect vendors more so than Ethernet NIC vendors. Myricom already addresses most of these issues in their
software releases, because their hardware already supports these features. More details on tuning network software are
presented in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Network Choice
Choosing the appropriate system area network for a cluster can be complicated process. Two factors weigh heavily in this sort of
decision. The first is cost. Realistically, most clusters are built with a fixed budget. This means that a higher-priced, higher-
performance network will probably come at the cost of needing to purchase a smaller cluster. In many cases, specialized network
interconnects can cost upwards of $1000–2000 per node. At this point, this cost approximates the cost of a high performance
compute node. This means that building a high-performance network can reduce the cluster size by a factor of two, when working
with a fixed budget. As we saw in Section 1.3.6, a high-performance network can be a very reasonable use of resources because
of the greatly improved performance it can provide.

Another important factor is the performance of the network, and accordingly, the cluster itself. Many applications need particular
performance properties to function effectively. Serviceability is a third concern. When the scale of a cluster increases beyond 32
or 64 nodes, many low-cost solutions become quite unwieldy, and result in largely unusable clusters. Fundamentally, all of these
factors are pieces of the same puzzle: how to get the best value out of a cluster for its intended uses.

If a cluster is being built for a small number of applications, thorough application benchmarking is in order. The spectrum of
communication patterns exhibited by application ranges from occasional communication from one node to another, to consistant
communication from all nodes to all other nodes. At one extreme are applications that behave like SetiAtHome, wherein compute
nodes will infrequently query a master node for a work unit to process for hours or days. At the other extreme are many scientific
applications, where nodes will be in constant communication with one or more other nodes and the speed of the computation is
limited by the performance of the slowest performing node. As is obvious from the communication pattern description, basically
any interconnect would perform admirably in the first case, while the fastest interconnect possible is desirable in the second case.

The range of network options available to clusters ranges from the integrated Ethernet that is included with nearly any computer
sold today, to higher speed interconnects with substantially higher costs. Performance varies greatly between these options.
Integrated gigabit Ethernet will typically provide 100 MB/s of bandwidth, with latencies measured in the tens to hundreds of
microseconds. Cluster interconnects generally provide five to ten times the bandwidth, providing latencies in below ten
microseconds. As with many of the technologies described here, the state of the art is a fast moving target. Precise high-end
performance figures would be out of date within months; check online sources for up to data figures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Configuring and Tuning Cluster Networks

Overview
Daniel Nurmi and Brian Toonen

Cluster network configuration is a commonly overlooked aspect of many cluster design issues. Although designers think about
details regarding the required network hardware, they frequently overlook the network design until after the cluster is installed and
users start running code on the system.

The cluster network, the topic of this chapter, is most simply defined as the methods employed to connect various cluster entities
via networks. This high level definition leads us to consider equally high level issues of node connectivity, node visibility, and
cluster networking services. We will quickly discover that these seemingly simple issues encompass more complex topics, such as
how cluster users interact with the machine, how security requirements imposed on the system impact the network design, and
how application performance varies based upon the cluster network design. The methods used to handle these issues are
implemented in the cluster network design, which we define as an administrative network topology imposed on the cluster to
organize security, performance, and usability policies.

This chapter aims to bring the concept of cluster network design and tuning to the forefront of cluster designers' minds during the
design phase. Fundamentally, we hope to leave the reader with the sense that a cluster's network design heavily impacts its core
operation.

The rest of this chapter is arranged in the following manner. First, we will introduce some important issues that face the cluster
designer and show how these issues can be directly affected by the choice of network design. Next, we introduce some
fundamental concepts that will be used throughout the rest of the chapter, such as the Internet protocols and simple Linux
networking concepts. Then, we will construct a simple cluster from the leftmost side of the cluster network design continuum (fully
connected, fully visible). We will cover some of the most fundamental configuration issues involved by taking some machines and
setting up the network and network services so that the machines act as a cluster running parallel codes. We then use this
theoretical system as a vehicle to introduce the concepts of performance and security optimization techniques. We conclude with
a brief discussion of diagnosing and correcting network problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Cluster Network Designs
Just as many styles of node and network hardware exist, so do a wide variety of cluster network designs. To understand why such
variety exists is to understand how the choice of network design directly affects the operation of the cluster as a whole. In general,
the motivation for such variation comes from the striving to achieve a perfect balance of usability, performance, and security. As a
result, the cluster designer has realized that network design impacts all of these in important ways.

5.1.1 Impact of Network Design

Although it would be impossible to fully enumerate how a cluster network design impacts the overall look, feel, and operation of a
cluster, there are some key aspects that are directly and substantially affected.

One of the first issues affected by the cluster network is security. Questions include how secure the system is from outsider
attacks, how we maintain security over time, and how the cluster fits within institutional security requirements. The cluster network
design should directly address all of these issues since the primary security defenses are often implemented inside the
institution's network itself.

The cluster's usability is defined by how users interact with the system and what types of applications will use the cluster.
Application requirements impact every aspect of the cluster design, and the cluster network is no exception. If the cluster is
designed to run a single application, the designers can make very focused decisions about how the user(s) can employ the
machine. If the cluster is meant to be a general resource for students, researchers, etc., then intuitiveness and ease of use must
be considered.

Finally, we cannot overlook the impact of the cluster network design on application performance. The cluster network may impose
bottlenecks that could limit the performance of an application. The designer must be aware that some decisions, while bolstering
the security and usability of the cluster, can seriously impact the performance of applications.

5.1.2 Example Designs

Over time, cluster network designs have evolved from simple networks of desktops and servers. Modern designs focus more on
the specific realm of high performance computing and thus often mirror network designs that large site administrators have been
employing for years. The cluster community has built upon this substantial groundwork to generate a wide variety of network
topologies. As we examine some common network designs, we should remember that the examples are a small subset of the
many possibilities. For each of the following design descriptions, we could imagine a dozen permutations, each having a different
positive or negative impact on overall cluster issues.

The first, and probably the simplest, style of cluster is the fully connected system. In this case, all nodes in the system, as well as
any front end servers or login machines, are simply connected to the Internet the same way as any non-cluster server or
workstation. The major benefit of this design is obvious: very little work is required to initially bring the system online. While the
simplicity of such a design is attractive, the users and administrators of these systems must constantly be aware of all the
implications. Security, for instance, will be a major concern. Although each node is easily accessed by legitimate users and
administrators from anywhere on the Internet, each system is equally accessible to malicious outside attackers.

A simple optimization would be to reduce the number of systems visible to the Internet. Such a system would have a publicly
available front end login machine, with all other nodes hidden behind a firewall and only visible from that front end machine. A
user would log into the front end and then have access to cluster nodes. Although such a design provides tighter system security,
we still have a machine visible to the Internet. Internet visibility is inherently problematic, but certainly does not make the system
impossible to tightly secure. One interesting disadvantage of this design is that users whose work requires compute resources to
be Internet accessible are unable to use such a system.

Going one step further, measures could be taken to completely block all access to compute nodes, even from the user. The user
would log into a cluster front end (login) machine and would perform local operations such as compilation or preliminary testing.
When the user's program is ready to be run on the cluster, it is submitted as a job to the cluster scheduler. When sufficient
compute nodes become available, the scheduler runs the job on the user's behalf. Notice, in this design, the cluster nodes are
never directly accessed by the user. The nodes are therefore completely hidden to all entities except the scheduler and other
cluster services. We further could extend this concept by disallowing users access to the front end machine. Instead, the cluster
would only accept jobs from a meta scheduler.

One interesting design simulates a large multi-processor computer with a single system image on a Linux cluster. By running
custom operating systems, nodes become nearly invisible to users or outside influences. On such a system, users would employ
an OS level mechanism present on the login machine (which may or may not be externally visible) to run processes on the cluster
compute nodes. The biggest advantage of this design is ease of use for the application user. The user interface to a single system
image avoids the common problems of managing remote processes. Disadvantages may arise when a user needs direct access
to the compute nodes, which is prohibited by the nature of the system.

Cluster designers have put tremendous efforts into creating network topologies suited to their individual needs. Many designers
have made their experiences and technologies available for other cluster designers to use. For some real life examples of cluster
designs, see Chapters 6, 18, and 20.

Armed with an awareness of various cluster network configurations, as well as some of the most importantly impacted issues, the
cluster designer can embark on designing a network that optimally addresses individual needs. However, knowing the issues and
possibilities at hand is only the first step. We must understand the simplest case of cluster network designs and some of the
concepts surrounding their construction. In the sections that follow, we introduce customary communication protocols and give a
short overview of Linux networking concepts and services, before delving into the construction of a simple cluster network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Internet Protocol Stack
Simple Beowulf clusters are built with commodity networking hardware, typically Ethernet based, and communicate using standard
networking protocols such as TCP/IP. Before examining UNIX networking concepts and services, as well as the configuration of a
simple cluster, it is important that you understand the protocols involved in network communication. Understanding the protocols
will be necessary when performing advanced configuration, troubleshooting problems or attempting to improve performance.

Networking protocols are built, at least conceptually, in layers. Figure 5.1 depicts the layers involved in TCP and UDP
communication. In the paragraphs that follow, we will describe the layers from the bottom up, focusing on details important to our
later discussions. While a full discussion of IP networking is beyond the scope of this chapter, the interested reader will find that
[28, 110] discuss the topic in great detail. In addition, a more general discussion of network hardware, software, and protocols can
be found in Chapter 4.

Figure 5.1: Layering of network protocols

A combination of the network interface card and the associated driver is responsible for sending frames out to other devices on
the local area network. The maximum amount of data that can be placed in a frame is otherwise known as the maximum
transmission unit (MTU). The MTU for an Ethernet device depends on which specification the device implements, but most
devices have a MTU of 1500 bytes. Some newer Ethernet devices can be configured to send and receive jumbo frames, resulting
in a MTU as large as 9000 bytes. Jumbo frames and their implications will be discussed further in Section 5.5.4.

The Internet Protocol (IP) is the building block for TCP and UDP. IP is a communication protocol for transferring messages known
as datagrams between machines, even machines on different networks. An IP datagram consists of a header plus data. The
header contains, among other things, the addresses for the source and destination machines and the length of the datagram (in
bytes). The destination address is used by special network devices known as routers to forward (or route) the datagram between
networks until the datagram reaches its destination. Section 5.3.1 contains a more detailed discussion of IP addresses and
routing.

The length field of the datagram header is only 16 bits wide. As a result, the combination of the datagram header and data can be
at most 65,535 bytes in length. However, as you might have guessed, IP datagrams are transmitted on the underlying network
using frames, a network whose MTU is generally much smaller 65,535 bytes. To solve this problem, IP datagrams larger than the
MTU are fragmented into a series of IP packets and reassembled by the receiver. In addition, fragmentation may occur if a packet
is routed through any network having a smaller MTU.

IP is what is known as an unreliable, unordered, and connectionless protocol. Unreliable suggests that datagrams sent using IP
may not arrive at their destination. Although the protocol makes every effort to deliver the datagram, network misconfiguration,
resource exhaustion, or outright failure may result in data loss. Unordered indicates that datagrams that do arrive at their
destination may arrive in a different order from the one in which they were sent. And finally, connectionless implies that no state is
maintained at the sender or the receiver between datagrams.

The User Datagram Protocol (UDP) is a thin layer on top of IP. Like IP, UDP is unreliable, unordered and connectionless. The
primary contribution of UDP is the addition of ports. IP only identifies the source and destinations machines, not which application
or service was involved in the communication. The port is an integer identifier that allows multiple flows of communication to exist
between a pair of machines and ensures that the datagrams are delivered to the appropriate application or service.

The Transmission Control Protocol (TCP), also layered on top of IP, is substantially more complex that UDP. TCP provides a
bidirectional connection over which a stream of bytes is reliably communicated. Like UDP, TCP uses ports. A connection is
uniquely identified by a four-tuple (source address, source port, destination address, destination port). Using this four-tuple, the
TCP layer can locate the structures maintaining the state of the connection.

With TCP, data in the stream is divided into segments for transmission. These segments, plus a TCP header, are encapsulated
into an IP datagram. To avoid fragmentation, which can adversely affect performance, the maximum segment size (MSS) is
advertised when the connection is formed so that the segment data plus the TCP and IP headers do not exceed the MTU of the
underlying network. On a local-area network (LAN), the MSS can be computed by subtracting the size of the TCP header from the
network device's MTU.

TCP connections that reach outside of the LAN are more difficult as the MTU of all the networks involved is unknown when the
connection is formed. In this case, most TCP/IP implementations assume an initial MTU of 576 bytes, unless an alternative value
is specified by the system administrator. A discovery process is then employed to determine a MTU that is acceptable for all
networks involved in the connection. Since the primary focus of this chapter is the cluster network, a discussion of wide-area
network MTU discovery is unwarranted. However, the interested reader will find introductions to the topic in [28, 110] and a
detailed discussion in [74].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TCP uses a coupling of positive acknowledgments and a sliding window protocol. Positive acknowledgments and data buffering
along with timeouts and retransmission provide the reliability. The sliding window protocol allows the sender to have multiple
unacknowledged segments outstanding, substantially increase throughput. Additionally, the protocol provides the receiver with the
ability to advertise the amount of buffer space available at its end of the connection. By knowing the amount of available space at
the receiver, the sender can avoid transmitting more data than can be accommodated by the receiver. This is known as flow
control. More detailed discussions of these topics, and TCP as a whole, can be found in [28, 110, 87].

This concludes our high-level overview of the Internet Protocol stack. Building and operating a Beowulf cluster by no means
necessitates mastering these protocols; however, a basic understanding is required. After all, it is these protocols that enable
network communication. In the coming section, we will discuss a series of networking concepts and services which are built upon
these very protocols.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Networking Concepts and Services
Before constructing a cluster, it is important to understand the concepts and services that are involved in UNIX networking. This
section presents the basics in preparation for the step-by-step configuration of a simple cluster coming up in Section 5.4.
Additional information on the topics presented here can be found in [56].

5.3.1 IP addresses

Each node in the cluster must be assigned a unique IP address. IP addresses consist of 32 bits or four octets[1] and are usually
expressed by writing each octet in decimal and separating the octets with a decimal point. This is known as dotted decimal
notation. As an example, 192.168.13.24 is a valid IP address.

A netmask is used to split the IP address into two parts: the network address and the host address. The netmask expresses how
many of the high-end bits of an IP address are part of the network address. The low-end bits of the IP address then form the host
address. Using the previous example address of 192.168.13.24, asserting a netmask of 255.255.255.0 would mean that the
network address is 192.168.13.0 and the host address on that network is 24. Two special host addresses are reserved and
may not be used to identify an actual host. All bits turned off (or zero) is the address of the network, and all bits turned on (or 255
in our example) is the network broadcast address.

Hosts that share the same network address are generally part of the same physical network and can talk directly to each other.
Hosts on different networks require a router to talk to each other. The router uses the network portion of the destination IP
address to determine onto which physical network link to forward the data packet. In complex networks, the data packet may be
forwarded by several routers before it finally reaches the destination network and ultimately the destination host. To begin this
forwarding process, the sending host must know the address of the router on its local network. The address of this router is know
as the gateway address.

Not all IP addresses are routable to the Internet. Three address ranges have been reserved for private (internal) networks:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

These address ranges may be used by clusters that either have no need to communicate with Internet resources or are hidden
behind a firewall that does network address translation (NAT). Discussion of network address translation is beyond the scope of
this chapter; however, the interested reader will find the topic covered in [127].

5.3.2 Hostnames

In addition to an IP address, each node in the cluster will require a unique name. Names generally come in two forms: short and
long. The long name is used when referring to the host from outside of the local domain (or subdomain) in which it is present. The
long name for the first node in our Beowulf cluster might be bc1-001.phy.myu.edu. Notice that the long name is hierarchical. It
refers to the node bc1-001 in the phy (short for the Physics department) subdomain which is part of the myu.edu domain. The
short name, bc1-001, is often used when referring to the node from within the local subdomain, the Physics department.

With clusters, it is common practice to name the cluster nodes after their host addresses. For example, nodes in a 128 node
cluster with IP addresses ranging from 192.168.13.1 through 192.168.13.128 and a netmask of 255.255.255.0 might be
named bc1-001 through bc1-128. Computer scientists who prefer to begin counting their nodes from zero should recall that
host address zero is reserved for the network address (192.168.13.0 in our example). To avoid having the host address and
the node name differ by one, it is best to number nodes starting from one [108].

An additional side effect to starting the node number and host address of the first node at one is that the gateway address must
follow that of the nodes. To allow room for expansion, the gateway address is generally given the maximum available host
address. Remember, that the maximum host address is reserved for the network broadcast address, so the gateway address is
generally assigned the address just prior to the network broadcast address. In our continuing example, the gateway address
would be 192.168.13.254.

5.3.3 Name resolution

Given a set of hostnames and IP addresses for the nodes in the cluster, a mechanism is needed to map from one to the other.
For a small number of nodes, this can be accomplished with a hosts file ('/etc/hosts'). The hosts file will include a line for
each node in the cluster. Each line contains the IP address of the node followed by the names the nodes is known by, usually the
long name first followed by the short.

The hosts file traditionally contains one additional mapping from the names localhost and localhost.phy.myu.edu to
127.0.0.1. The address 127.0.0.1 is tied to the loopback device driver that funnels all messages sent from it back to the
same host. The combination of the loopback device and the mapping in the hosts file allows a host to communicate with itself as
though it were any other host on the network simply by using the name localhost.

One caveat of using a hosts file is that it must be replicated and kept current on every node in the cluster. However, for most
environments, the hosts file does not change that often. A master copy can be kept on one node of our cluster and then pushed to
the other nodes when changes are made. This push operation would be tedious to do by hand, but it is not very difficult to write a
script to copy the hosts file to the other nodes using a program like scp. A brief description of scp can be found in Section 5.3.5.
Chapter 6 describes tools that can handle all of these setup steps for you; the material in this section describes some of the
operations that those tools must perform and provides some background for understanding how those tools work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an alternative, the Network Information Service (NIS) exists to perform this type of replication automatically. NIS allows the
system administrator to manage a single copy of important files like the hosts file on one node designated as the NIS server. The
other nodes, acting as NIS clients, obtain the host information from the NIS server as necessary.

In addition to maintaining a single copy of the hosts file, NIS can also be used to propagate account ('/etc/passwd') and group
('/etc/group') information, as well as other important system files. A more detailed explanation on the capabilities of NIS can
be found in [109]. An example configuration of a NIS server and clients will be shown in Section 5.4.

Another option for avoiding the replication of the hosts file is the Domain Name Service (DNS). DNS differs from NIS in two major
ways. First, its sole purpose is to return information about a host or domain. Second, it performs resolution for hosts outside of the
local domain. DNS is by design a scalable distributed database capable of handling name resolution for the entire Internet.
Further information on DNS and Berkeley's implementation (BIND) can be found in [1].

DNS and NIS are designed to work together. It is not uncommon to use NIS for resolution of local hostnames and DNS for
resolving names external to the local domain (or subdomain).

5.3.4 File sharing

In most networked computing environments, the ability to share files with other machines on the network is extremely useful. Such
a capability allows system administrators to install a software package once an make it accessible to a set of machines. File
sharing also allows users to create a file on one machine and access it from a variety of other machines on the local-area network.
For Linux environments, this file sharing capability is traditionally provided by the Network File System (NFS).

File sharing is useful on Beowulf clusters for the same reasons. Application programs built by users typically reference libraries
from other software packages. If these software packages use shared libraries, ones that are dynamically loaded at runtime, then
those libraries must be accessible on all nodes where the application is being run. Thus the system administrator has two choices:
installing the necessary packages on each of the nodes or using a network based file system like NFS to make the packages
available to each of the nodes.

Likewise, the typical user of a Beowulf cluster will wish to run their application on several nodes, perhaps simultaneously. Most
users find copying their application's executable and input data files to each node before executing the application undesirable.
Instead, they would like to build their application on a single machine, construct any necessary input files on that same machine,
and have the executable and input files automatically available on all nodes of the cluster. Again, a file sharing system like NFS
can help. Using NFS, the users' home directories can be exported from one machine to each of the cluster nodes, allowing access
to these home directories from anywhere in the cluster. A detailed explanation of NFS and its capabilities can be found in [109].

5.3.5 Remote access

The purpose of building a Beowulf cluster is to run user applications. In a networked computing environment, users typically do
not have access to the console of all the compute resources. Even if they did, it is much more convenient to access those
resources from the workstations present on their desktops. Clusters are simply an array of compute resources with which users
wish to interact, execute programs, and share files.

A traditional UNIX system has programs like telnet and rlogin to establish an interactive terminal session with remote
compute resource over the network. In addition, rsh executes commands on the remote resource without user interaction, and
rcp transfers files between a local and remote resource when direct file sharing is not available. The last two commands are
especially powerful because they allow complex remote operations to be scripted and executed without user interaction.

The problem with all of these commands is security. None of the data transferred between the local and remote hosts is
encrypted, thus allowing the data to be easily read if captured by someone monitoring network traffic. While a user might not care
if someone saw their interactions with a remote resource, telnet transmits the user's password over that same unencrypted
channel. All users should care if their passwords are visible to potential outside attackers.

The rsh and rcp commands do not send passwords, making them somewhat more secure. Instead they use host based
authentication. If the host is listed in the system's or user's authorized hosts file on the remote machine, then the command is
allow to proceed. The rlogin command will also use host based authentication if possible; but, if the host is not authorized,
rlogin will ask for the user's password.

Clearly, host based authentication is preferable to sending a password in clear text. However, host based authentication is not
without its problems. First, all hosts on the local network must be strictly controlled. Physical security is important. If a malicious
host is allowed to attach to the local network, it can be configured to appear as an authorized host, thus compromising security.
Second, access to the authorized hosts files must be tightly controlled. If these files can be compromised, so too can the
machines for which they control access. Hence, many system administrators disallow the use of user controlled authorization files
(i.e., '~/.rhosts').

SSH, or the Secure Shell, was designed as a replacement for the previously mentioned remote access tools. However, SSH is
more than a just remote execution shell. It is a suite of tools utilizing public-private key based authentication and modern day
encryption to provide a secure means of remote access. As might be expected, it contains programs like slogin, ssh, and scp
to replace their less secure counterparts. SSH also contains tools for creating and managing authentication keys, the foundation
of its security. In addition, recent implementations like OpenSSH also provide a secure form of FTP.

SSH uses host authentication keys to verify that a host is the expected host and not a malicious decoy. During connection
establishment, these keys are used to verify that the connection is with the expected remote host before vital information, such as
the user's password, is sent. If host based authentication is employed, the connecting host can be verified before authorization is
granted. It is still important to strictly control which hosts are authorized and to disallow user controlled authorization files; but, on a
properly configured system, SSH's use of host authentication keys substantially reduces the security risk associated with host
based authentication.

SSH can also use authentication keys as a replacement for user passwords. The advantages may not be immediately apparent;
however, when combined with the SSH agent, user authentication keys can be very powerful. A more detailed discussion of
authentication keys, both host and user, and the SSH agent will be presented in Section 5.4.6.

[1]An octet is just 8 bits, which is the same as a byte in most modern systems. The term octet is used in networking to specify

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1]An octet is just 8 bits, which is the same as a byte in most modern systems. The term octet is used in networking to specify
precisely 8 bits. Once was a day when machines with 6-bit characters and 36-bit or 60-bit words were common, and the term octet
was coined to ensure that 8 bits were used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Simple Cluster Configuration Walkthrough
Now that we have discussed basic UNIX networking concepts and services, and briefly described the protocols involved in
network communication, it is time to walk through the configuration of a simple cluster. Since we cannot cover the variety of Linux
distributions in existence, we have chosen to use Red Hat Linux 9 for our example. If you are using a different Linux distribution,
the concepts should be same, but the exact commands and files may be different. Note that Chapter 6 describes tools that
automate many of the following steps; we are describing them here to provide an understanding of the steps involved in setting up
a cluster network.

Our example cluster consists of eight nodes. As in our previous examples, to avoid using IP addresses that may belong to an
existing domain, we place the nodes of our cluster on a private network with a network address of 192.168.13.0 and a netmask
of 255.255.255.0. The gateway address to our router is 192.168.13.254, the domain is phy.myu.edu, and our nodes are
named bc1-01 through bc1-08. The cluster configuration is depicted in Figure 5.2.

Figure 5.2: Diagram showing the configuration of our simple example cluster.

When installing Red Hat Linux 9 on each of the eight nodes, we used the standard "Workstation" install with one exception. We
included the NIS server package ypserv on the first node. Later, we will run a NIS server on bc1-01 for the purposes of
propagating system information like accounts and hostname to IP address mappings. Although the NIS hosts map is used for
resolving names local to our cluster, we assume that a DNS server exists at 192.168.1.1 to obtain information about hosts
outside of our cluster network. In addition to NIS, we will also run a NFS server on bc1-01 to provide each user access to a
common home directory accessible from all of the nodes.

5.4.1 Hostname and gateway address

We begin by setting the hostname and gateway address on each of the machines. These parameters may have been set during
the installation of the operating system; in which case, we need only verify that they are correct. Both of these parameters are set
in '/etc/sysconfig/network'. The contents of this file for the first node of our cluster should be as follows.
 NETWORKING=yes
 HOSTNAME=bc1-01.phy.myu.edu
 GATEWAY=192.168.13.254

Alterations made to this file do not take effect immediately; however, the changes should be realized the next time the system is
rebooted. If you had to make changes, it is recommended that you reboot now. This can be accomplished by executing
shutdown -r now.

Notice that the long name is used in the HOSTNAME setting. Use of the short name for this setting is discouraged as doing so
makes it difficult, if not impossible, for applications and libraries to properly identify the local machine in the global namespace.
This can cause some programs to behave incorrectly or fail altogether.

5.4.2 Network interface configuration

Next, we need to configure the IP settings for the network interface on each of the nodes. The network interface settings can be
changed using two different methods. The first is to use a program like netconf; the second is to edit the configuration file
directly. We will edit the configuration file, '/etc/sysconf/network-scripts/ifcfg-eth0', so the exact location of the
settings is clear. The contents of the configuration file for the first node of our cluster should be as follows.
 DEVICE=eth0
 ONBOOT=yes
 BOOTPROTO=static
 IPADDR=192.168.13.1
 NETMASK=255.255.255.0
 NETWORK=192.168.13.0
 BROADCAST=192.168.13.255

The settings on the other nodes are largely the same. Only the IPADDR setting needs to be adjusted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The settings on the other nodes are largely the same. Only the IPADDR setting needs to be adjusted.

Alterations to the network interface configuration file should only be made when the interface is disabled, accomplished by running
ifdown eth0. Once the changes are complete, ifup eth0 can be run to re-enable the interface with the new settings.

5.4.3 Name resolution

For our cluster, the hostname to IP address mappings are as follows.
 127.0.0.1 localhost.phy.myu.edu localhost
 192.168.13.1 bc1-01.phy.myu.edu bc1-01
 192.168.13.2 bc1-02.phy.myu.edu bc1-02
 192.168.13.3 bc1-03.phy.myu.edu bc1-03
 192.168.13.4 bc1-04.phy.myu.edu bc1-04
 192.168.13.5 bc1-05.phy.myu.edu bc1-05
 192.168.13.6 bc1-06.phy.myu.edu bc1-06
 192.168.13.7 bc1-07.phy.myu.edu bc1-07
 192.168.13.8 bc1-08.phy.myu.edu bc1-08
 192.168.13.254 bc1-gw.phy.myu.edu bc1-gw

To avoid a substantial amount of repetitive typing, the complete set of mappings need only be entered into the '/etc/hosts' file
on bc1-01. Later, in Section 5.4.7, we will configure NIS to provide this information to the other seven nodes. The '/etc/hosts'
file on the remaining nodes should consist only of the following entry.
 127.0.0.1 localhost.phy.myu.edu localhost

In addition to the hosts file, we need to configure the service that resolves names (the resolver for short) on each node of the
cluster. The configuration file, '/etc/resolv.conf', must contain the following.
 nameserver 192.168.1.1
 search phy.myu.edu

The resolver configuration file contains two important pieces of information. The first is the IP address of the DNS server used to
resolve names not found in the hosts file or the NIS hosts map; the second is the search list for hostname lookup. If a short or
incomplete hostname is supplied, entries in the search list are individually appended to the hostname. For example, if the system
were attempting to resolve the hostname foo, it would append phy.myu.edu and then perform a DNS query for
foo.phy.myu.edu.

5.4.4 Accounts

At this time, we need to create accounts for the users of our cluster. It is recommended that each user have his own account,
including the system administrator(s). While the administrator already has access to the root account, that account should only be
used to perform administrative tasks. Use of the root account for non-administrative tasks is frowned upon because that account
is unchecked, allowing for unintentional damage to the operating system. For more details on account management, see Section
13.6.

Users may be added to the system with the adduser program. Running adduser <username> creates an entry for the user in
the account information and shadow password files, '/etc/passwd' and '/etc/shadow' respectively. The adduser program
also adds a group for the user in '/etc/group' and creates a home directory for that user in '/home/<username>'. Usage
information about the adduser program can be obtained by running man adduser.

The creation of user accounts and home directories across all of the nodes in the cluster could be handled by running adduser
on each node for each user. However, this repetition is tedious and requires care so that the user and group identifiers are
consistent across all nodes. Alternatively, we could create a script which uses scp to replicate the appropriate system files and
ssh create the necessary home directories on each node. Instead, since we are already using NIS to provide the host map, we
will configure NIS to also provide account and group information to the other seven nodes. Additionally, we will use NFS to make
the '/home' directory on bc1-01 accessible to the remaining nodes. NIS will be configured in Section 5.4.7 and NFS in Section
5.4.8.

By default, adduser creates the account with a bogus password entry; thus effectively disabling the account. To enable the
account, run passwd <username> to set an initial password for the account. Usage information about the passwd program can
be obtained by running man passwd.

Unlike normal user accounts, NIS does not publish account information for the root user, and NFS is not configured to export the
root user's home directory, '/root'. Doing either is considered a security risk as it may allow a malicious user to obtain privileged
information and compromise one or more nodes of the cluster. Instead the root user has a separate entry in '/etc/passwd' and
'/etc/shadow' and a separate home directory on each cluster node. While these restrictions affect the ease with which the root
user can change its password or share files between machines, the security of the cluster as a whole is improved.

5.4.5 Packet filtering

As a security measure, the Linux kernel has the ability to filter IP packets. Among other things, packet filtering allows the system
administrator to control access to services running on a machine. By default, Red Hat Linux 9 uses packet filtering to block remote
access to most services including SSH, NFS and NIS. This default configuration presents a problem for a cluster environment
where remote execution, file sharing and collective system administration are critical.

To allow SSH, NIS and NFS to function, we must add a few new packet filtering rules to each node of our cluster, allowing SSH,
NFS and NIS to function. For Red Hat Linux 9, packet filtering rules are specified in the file '/etc/sysconfig/iptables'. Into
this file, we insert the following rules before the first line that starts with -A INPUT.
 -A INPUT -p tcp -m tcp --dport 22 --syn -j ACCEPT
 -A INPUT -p tcp -s 192.168.13.0/24 -j ACCEPT
 -A INPUT -p udp -s 192.168.13.0/24 -j ACCEPT

Once those changes have been made, the following command must be executed so the changes will take effect.
 /etc/rc.d/init.d/iptables restart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /etc/rc.d/init.d/iptables restart

The first rule we added tells the packet filter to allow new TCP connection requests made to port 22, the port monitored by sshd.
With this rule in place, ssh and scp can be used to access the nodes in our cluster from any other machine on the network,
including those not part of the cluster. If we were using routable addresses and our network was Internet accessible, any machine
on the Internet could attempt to access our cluster nodes. This accessibility might appear to be a security concern; but, the
connecting entity must know the name of an existing account and the associated password to obtain access, both of which SSH
encrypts before transmitting them over the network.

The second and third rules tell the packet filter to accept any packets from any machines on the cluster network. These rules allow
NFS and NIS to function between nodes in the cluster. The rules may seem unnecessarily liberal because they allow all UDP and
TCP packets to pass. However, the NIS services and the network status monitoring service used by NFS are dynamically
assigned ports by the portmap service. Because these port values are not known in advance, they cannot be explicitly specified
in our packet filtering rules. In addition, we don't want to prevent applications running across nodes of the cluster from being able
to communicate with each other. Therefore, we allow packets to freely flow between machines on the cluster network while still
blocking potentially security threatening traffic from the outside.

More information about Linux firewalls and iptables can be found in Section 5.6.2.

5.4.6 Secure shell

The OpenSSH package is installed automatically with Red Hat Linux 9, which means the SSH remote access clients like ssh and
scp are available to users immediately. The SSH service sshd is also available and started by default. Once the packet filtering
rules discussed in Section 5.4.5 have been applied, the root user should be able to remotely access any of the nodes in the
cluster. This ability can be tremendously useful when one needs to replicate configuration files across several nodes of the cluster
or to restart a service without being at the console of the specific node.

Initially, non-root users will only be able to remotely access bc1-01. This restriction is lifted once NIS and NFS have been
configured and enabled, thus providing account information and home directories to other nodes in the cluster. The configuration
of NIS and NFS are discussed in Section 5.4.7 and Section 5.4.8 respectively.

The first time the sshd service is started, authentication keys for the host are generated. The keys for the remote host are used
during the establishment of a SSH session, allowing the client (e.g., ssh) to validate the identity of the remote host. However, the
validation can occur only if the client knows the public key of the remote host to which it is trying to connect. When the public key
of the remote host is unknown, the user is notified that the authenticity of the remote host could not be verified. The connection
process then continues only if the user explicitly authorizes it. If the user agrees to continue establishing the connection, the client
stores the name of the remote host and its public key in '~/.ssh/known_hosts' on the local machine. The stored public key is
used during the establishment of future connections to validate the authenticity of the remote host.

To prevent the user from being questioned about host authenticity, the system administrator can establish a system-wide list of
hosts and their associated public keys. This list is placed in the '/etc/ssh/ssh_known_hosts' file on each of the nodes and
any other machines that are likely to remotely access the nodes. This approach has one other advantage. If a node is rebuilt and
new authentication keys are generated, then the system administrator can update the 'ssh_known_hosts' files. Such updates
can prevent the user from receiving errors about host identification changes and potential man-in-the-middle attacks.

The contents of the 'ssh_known_hosts' file can be generated automatically using ssh-keyscan. To use ssh-keyscan, we
must first create a file containing a list of our cluster nodes. Each line of this file, which we will call 'hosts', should contain the
primary IP address of a node followed by all of the names and addresses associated with that node.
 192.168.13.1 bc1-01.phy.myu.edu,bc1-01,192.168.13.1
 192.168.13.2 bc1-02.phy.myu.edu,bc1-02,192.168.13.2
 192.168.13.3 bc1-03.phy.myu.edu,bc1-03,192.168.13.3
 192.168.13.4 bc1-04.phy.myu.edu,bc1-04,192.168.13.4
 192.168.13.5 bc1-05.phy.myu.edu,bc1-05,192.168.13.5
 192.168.13.6 bc1-06.phy.myu.edu,bc1-06,192.168.13.6
 192.168.13.7 bc1-07.phy.myu.edu,bc1-07,192.168.13.7
 192.168.13.8 bc1-08.phy.myu.edu,bc1-08,192.168.13.8

Once the 'hosts' file has been created, the following command will obtain the public keys from each of the nodes and generate
the 'ssh_known_hosts' file.
 ssh-keyscan -t rsa,dsa,rsal -f hosts >/etc/ssh/ssh_known_hosts

The 'ssh_known_hosts' file needs to exist on each node of the cluster. While the above command could be executed on each of
the nodes, regenerating the contents each time, it is also possible to use scp to copy the file to each of the remaining nodes.

At this point, the client tools are able to validate the identity of the remote host. However, the remote host must still authenticate
the user before allowing the client access to the remote system. By default, users are prompted for their passwords as a means of
authentication. To prevent this from happening when access is from one cluster node to another, host based authentication can
be utilized. Host based authentication, as discussed in Section 5.3.5, allows a trusted client host to vouch for the user. The remote
host uses the public key of the client host, found in the file we just generated, to verify the identity of the client host. Enabling host
based authentication requires a few configuration changes on each of the nodes.

The sshd serv ice must be configured to allow host based authentication by changing, the following parameters in
'/etc/ssh/sshd_config'.
 HostbasedAuthentication yes
 IgnoreUserKnownHosts yes
 IgnoreRhosts no

The first parameter enables host based authentication. The second parameter disables the use of the user maintained known
host file, '~/.ssh/known_hosts', when host based authentication is performed. This change allows the system administrator to
maintain strict control over which hosts can be authenticated and thus authorized. The third parameter allows the user maintained
authorization file, '~/.shosts', to be used when determining whether or not a remote host is authorized to access the system
using host based authentication. This is largely provided for the root user for whom the system maintained file,
'/etc/ssh/shosts.equiv', is not used. While utilizing user authorization files could be considered a security risk, the change to
the IgnoreUserKnownHosts parameter prevents the user from authorizing access to any hosts not listed in the system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the IgnoreUserKnownHosts parameter prevents the user from authorizing access to any hosts not listed in the system
controlled '/etc/ssh/ssh_known_hosts' file. But, if host based authentication is not desired for the root user, then the third
parameter should be left at its default value of "yes".

Once the sshd configuration file has been updated to enable host based authentication, the system authorization file,
'/etc/ssh/shosts.equiv', must be created. That file simply consists of the hostnames of machines trusted by the local host.
For our cluster, the file should contain the following.
 bc1-01.phy.myu.edu
 bc1-02.phy.myu.edu
 bc1-03.phy.myu.edu
 bc1-04.phy.myu.edu
 bc1-05.phy.myu.edu
 bc1-06.phy.myu.edu
 bc1-07.phy.myu.edu
 bc1-08.phy.myu.edu

If host based authentication is to be used to allow a client to vouch for the root user, this same list of hostnames must also be
placed in the root user's authorization file, '/root/.shosts'. Again, scp can be employed to push copies of these files to each of
the nodes.

Now that the sshd service has been configured and the list of authorized hosts properly established, the sshd service must be
restarted. This is accomplished using the following command.
 /etc/rc.d/init.d/sshd restart

In addition to changing the service configuration file, a small change must be made to the client configuration file,
'/etc/ssh/ssh_config'. The following line should be added just after the line containing "Host *".
 HostbasedAuthentication yes

This option tells the client tools that they should attempt to use host based authentication when connecting to a remote host. By
default, they do not.

Users, including the root user, also have the ability to create authentication keys which can be use in place of passwords. Such
keys are generated with the command ssh-keygen -t rsa. By default, the public and private keys are placed in
'~/.ssh/id_rsa.pub' and '~/.ssh/id_rsa' respectively. The contents of the public key can be added to '~/.
ssh/authorized_keys' on any machine, allowing remote access to that machine using the authentication keys.

The ssh-keygen command will allow keys to be generated without a passphrase to protect the private key. Users often generate
unprotected keys simply to avoid having to reenter the passphrase with each remote operation. However, this practice is not
recommended as it substantially weakens the security of any machine allowing public key authentication. Instead of using
unprotected keys, a SSH agent can be established to manage the private key(s) of the user for the duration of a session. The
passphrase need only be typed once when the private key is registered with the agent. Thereafter, remote operations can proceed
without the continual reentry of the passphrase; but, the private key is still protected should a malicious user obtain access to the
file containing it.

From the shell, the agent is often used in the following manner.
 [root@bc1-01 root]# ssh-agent $SHELL
 [root@bc1-01 root]# ssh-add
 Enter passphrase for /root/.ssh/id_rsa:
 Identity added: /root/.ssh/id_rsa (/root/.ssh/id_rsa)
 [root@bc1-01 root]# <various SSH client commands>
 [root@bc1-01 root]# exit

The first command starts the agent and then begins a new shell. The second command adds the root user's private key to the set
of keys managed by the agent. In this case, only one key is managed by the agent, but more could be added through subsequent
invocations of ssh-add. After the agent has been started and the private key has been registered, the root user may execute
various client commands attempting to access to one or more remote machines. If the user's '~/.ssh/authorized_keys' file
on the remote host contains root's public key, the client command will proceed without requesting a password or passphrase. The
final command, exit, causes the shell and thus the agent to terminate.

A general discussion of SSH usage, configuration and protocols can be found in [11], although the details involving OpenSSH are
somewhat out of date. Information specific to OpenSSH commands and configuration can be found in the manual pages installed
with Red Hat Linux 9 and on the OpenSSH website, www.openssh.org. Links to IETF draft documents describing the SSH
protocols can also be found on the OpenSSH website.

5.4.7 Network Information Service

Now that the IP packet filter has been configured in a way that allows our services to function, and we have introduced the finer
points of SSH, we will proceed with configuring NIS. On each of the nodes, the following line must be added to
'/etc/sysconfig/network'.
 NISDOMAIN=bc1.phy.myu.edu

This line tells the NIS services the name of the NIS domain to which our nodes belong. The NIS domain name can be different
than the Internet domain in which the nodes reside (phy.myu.edu). The NIS domain name should identify the group of machines
the domain is servicing. In our case, this NIS domain is used only by our first Beowulf cluster. Therefore, we use the domain name
bc1.phy.myu.edu to avoid conflicts with other NIS domains that might exist on our local network.

Once the NIS domain has been set on each of the nodes, we must prepare bc1-01 to run the NIS server. Before enabling the
server to export information, we must secure the server so that only hosts in our cluster can obtain information from it. Entries in
the '/var/yp/securenets' file accomplish this. For our cluster, this file (on bc1-01) should contain the following entries.
host 127.0.0.1
255.255.255.0 192.168.13.0

Now we are ready to configure and run the NIS server. To begin, we edit the '/var/yp/Makefile' file on bc1-01. We need to
comment out the existing line that begins with "all:" and add the following line before it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

comment out the existing line that begins with "all:" and add the following line before it.
 all: passwd group hosts networks services protocols rpc

This line lists the information sources that we desire NIS to export to the client nodes. NIS maintains a set of databases, known as
maps, separate from the source files. To build the maps, the following commands must be executed on bc1-01.
 echo "loopback 127" >>/etc/networks
 /etc/rc.d/init.d/ypserv start
 /etc/rc.d/init.d/ypxfrd start
 /etc/rc.d/init.d/yppasswdd start
 cd /var/yp
 make

Since '/etc/networks' does not exist on Red Hat Linux 9 installations, the first command creates the file, adding the loopback
network as an entry. The next three commands start the services needed by a NIS server. And the last two commands build the
actual maps.

The previous commands started the necessary NIS services; however, they did not configure the system so the services would be
automatically started at boot time. To accomplish this, we must adjust the runlevel associated with the services. The following
commands tell the system to automatically start the services when booting the system. Remember, these commands should only
be executed on bc1-01, the system running the NIS server.
 chkconfig --level 345 ypserv on
 chkconfig --level 345 ypxfrd on
 chkconfig --level 345 yppasswdd on

Now that we have a running NIS server, it is time to configure the clients. The NIS client service ypbind will be run on all of the
nodes in our cluster, including bc1-01. The following commands start the client service and configure the operating system so the
service is started automatically when the system is booted.
 /etc/rc.d/init.d/ypbind start
 chkconfig --add ypbind
 chkconfig --level 345 ypbind on

To make the operating system use NIS when looking up information, we must update the name service switch configuration file,
'/etc/nsswitch.conf', on each of the nodes. The entries that follow should be modified accordingly.
 passwd: files nis
 group: files nis
 hosts: files nis dns
 networks: files nis
 services: files nis
 protocols: files nis
 rpc: files nis

When the source files on the server are modified, the NIS maps are not automatically updated . Therefore anytime a new account
or group is added or the hosts file is updated, the maps need to be rebuilt. To rebuild the maps, the following commands must be
run on bc1-01.
 cd /var/yp
 make

Once the maps are rebuilt, any updates are available to all nodes in the cluster.

The exception to the maps not being immediately updated is the changing of a user's password. If the password is changed using
the yppasswd program, the yppasswdd service immediately updates both the NIS maps and account files on bc1-01, making
the updated password immediately available to all nodes in the cluster. yppasswd may be run from any node that is part of the
NIS domain.

A small problem exists with regards to the NIS client and the sshd service. If sshd is started before ypbind, as it was in our
example, then sshd will not use NIS services to obtain account information. Therefore users will not be able to remotely access
bc1-02 through bc1-08 until sshd is restarted. The service may be restarted by executing
 /etc/rc.d/init.d/sshd restart

on each of those nodes. A similar problem will occur if bc1-02 through bc1-08 are rebooted and bc1-01 is not online or is not
running the NIS server. The ypbind service will fail causing sshd not to use NIS even if ypbind is started later. So, as a general
rule, if ypbind is manually started, sshd should also be restarted.

5.4.8 Network File System

Now that the NIS server and clients are running, the next task is to configure the NFS server and clients, thus allowing users
access to their home directories from any of the cluster nodes.

We will begin with configuring the server on bc1-01. To export the user home directories, the following line must be added to the
file '/etc/exports'.
 /home 192.168.13.0/24(rw)

This line tells the NFS server that any machine on our cluster network may access the home file system. Once the file has been
modified, the NFS service must be enabled and started using the following commands.
 chkconfig --level 345 nfs on
 /etc/rc.d/init.d/nfs start

Next we need to configure the other seven nodes to mount the '/home' directory on bc1-01. Mounting is the UNIX term for
attaching a file system space, whether it be local or remote, into the local directory structure. To express that we wish to have
'/home' on bc1-01 be mounted as '/home' in the directory structure present on our remaining cluster nodes, we must add the
following line to '/etc/fstab' on all nodes except bcl-01.
 192.168.13.1:/home /home nfs rw,hard,intr,bg,rsize=8192,wsize=8192 0 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 192.168.13.1:/home /home nfs rw,hard,intr,bg,rsize=8192,wsize=8192 0 0

Then we execute the following command on each of those nodes to cause the remote file system to be mounted.
 /etc/rc.d/init.d/netfs restart

You might have noticed that we use the IP address for bc1-01 instead of its host-name when we added the entry to
'/etc/fstab'. The reason is that netfs is started before before ypbind when the operating system is booting. If we were to use
bc1-01 in place of the address, hostname resolution would fail causing the mount to fail.

The options for mounting a file system exported by NFS are numerous. The manual pages, obtained by executing man fstab
and man nfs, provide an explanation of the '/etc/fstab' structure and the available options when mounting file systems via
NFS. Additional information can also be found in [109].

5.4.9 Scripting it

For small clusters, installing the operating system on each node, and performing the previously mention configuration adjustments
might not seem so bad. However, for a larger cluster, the task can be annoyingly repetitive and prone to error. Fortunately, several
solutions exist.

The Kickstart system, part of the Red Hat Linux 9 distribution, is one such solution. When Red Hat Linux 9 is installed, a Kickstart
configuration file is automatically generated during the installation process and stored as '/root/anaconda-ks.cfg'. Starting
with the file on created for bc1-01, we can create a 'ks.cfg' file for the other nodes of the cluster. Below is an example
configuration file for bc1-02.
 install
 lang en_US.UTF-8
 langsupport --default en_US.UTF-8 en_US.UTF-8
 keyboard us
 mouse generic3ps/2 --device psaux
 skipx
 network --device eth0 --bootproto static --ip 192.168.13.2
 --netmask 255.255.255.0 --gateway 192.168.13.254
 --nameserver 192.168.1.1 --hostname bc1-02.phy.myu.edu
 rootpw --iscrypted 1i0.gt4GF$75mVC3kgB2keUwJVgTZo8.
 firewall --medium
 authconfig --enableshadow --enablemd5
 timezone --utc America/Chicago
 bootloader --location=mbr
 clearpart --all --drives=sda
 part /boot --fstype ext3 --size=100 --ondisk=sda
 part / --fstype ext3 --size=1100 --grow --ondisk=sda
 part swap --size=96 --grow --maxsize=192 --ondisk=sda

 %packages
 @ Administration Tools
 @ Development Tools
 @ Dialup Networking Support
 @ Editors
 @ Emacs
 @ Engineering and Scientific
 @ GNOME Desktop Environment
 @ GNOME Software Development
 @ Games and Entertainment
 @ Graphical Internet
 @ Graphics
 @ Office/Productivity
 @ Printing Support
 @ Sound and Video
 @ Text-based Internet
 @ X Software Development
 @ X Window System

 %post

Note the lines containing the network option were broken into three separate lines for printing purposes. The Kickstart
system requires that these three lines exist as a single line in the actual 'ks.cfg' file.

A few changes have been made to the original 'anaconda-ks.cfg' file in creating a 'ks.cfg' for bc1-02. First, the hostname
and IP address, part of the network option, have been updated. Second, the disk partitioning options clearpart and part
have been uncommented informing Kickstart to clear and rewrite the disk partition table with an appropriate set of partitions for
bc1-02. Finally, the ypserv package was removed from packages list as bc1-01 is the only node that needs to run the NIS
server.

Now that we have created a 'ks.cfg' file, we need to place that file on a floppy diskette. Insert a floppy diskette, preferably a
blank one, into the floppy drive and execute the following commands.
 mformat a:
 mcopy ks.cfg a:

The mformat command will destroy any existing files on the diskette, so do not insert a diskette containing files you wish to keep.

Once the 'ks.cfg' file is on the diskette, you should boot the new node with CD-ROM #1 from the Red Hat Linux 9 distribution.
When the Linux boot prompt appears, insert the Kickstart floppy and type the following.
 linux ks=floppy

If the Red Hat Linux 9 installation system has difficulty detecting the graphics chipset or monitor type for your machine, the
following may have to be typed instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 linux ks=floppy text

Since we are installing from CD-ROM, the Red Hat installer will prompt you to change CD-ROMs as necessary. When the process
completes, the operating system has been installed on the new cluster node. However, the adjustments we made throughout this
section must still be made. But, the process of answering several pre-installation questions, partitioning the disk, and selecting
packages has now been eliminated.

Kickstart has a variety of options, many of which we did not use in our example 'ks.cfg'. These options can be used to directly
adjust some of the settings described earlier in this section. In addition, Kickstart has the ability to run a post installation script.
People with knowledge of one or more UNIX scripting environments should be able to create a post install script to automatically
perform the configuration adjustments we made throughout this section. The full set of Kickstart options are described in the
Kickstart Installations chapter of [93].

In [85], the authors describe a set of tools for rapidly building (or rebuilding) a cluster. These tools consist of a set of Kickstart
configuration files and postprocessing scripts. Although their post-processing scripts are run separate from Kickstart, their toolkit is
an excellent example of a simple yet effective means of automating operating system installation and network configuration in a
cluster environment. More sophisticated approaches are described in Chapter 6, including NPACI Rocks, which takes advantage
of Kickstart to setup a cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Improving Performance
The overall performance of a cluster is very difficult to measure because so many disparate resources must be properly tuned for
everything to run at peak performance. Also, different applications may require different tuning parameters to achieve optimal
behavior. The cluster network is probably the subsystem that most influences the performance of parallel scientific applications.

Many network performance benefits can be gained at the individual node level, but more still can be uncovered at the network and
network design level. When deciding on a specific network technology, the designer must think about performance of the system
as well as cost and vendor/OS support. In this section we will discuss some high level network design concepts which increase
overall performance of the cluster. In addition, we delve into some low level details involving the tuning of specific protocol and
network parameters, thereby giving the reader a feeling for the parts of their network that can be modified to potentially improve
application performance.

5.5.1 Offloading Services

One simple method for removing service bottlenecks in a cluster is to offload the service to a dedicated system. In our simple
cluster case, we had no machines dedicated to specific tasks. For small systems primarily used for compute bound applications,
this may work nicely. But as we increase the number of nodes, the number of users and the complexity of the applications,
running services on the compute nodes quickly becomes problematic. Imagine a case where one user's application, running on
the node providing NFS service, is fully utilizing the compute and I/O capabilities of that machine. Along comes another user,
attempting to run a parallel application with moderate NFS requirements. The result is resource contention for the CPU, disk and
network on the NFS server, causing both applications to slow down. If there is one node in a system that has multiple tasks to
perform while others have only one task, the potential exists for wasted cycles. The obvious, and often implemented, solution is to
offload services to a dedicated service machine so that all compute nodes are identical in the resources they provide to
applications. This simple optimization leaves us with a pool of compute nodes distinct from the machine devoted to servicing tasks
such as user login, compilation, NFS service, DNS service, etc. If bottlenecks still appear, services may be further split across
multiple machines, leaving us with several service nodes, each with their own set of balanced tasks. Service offloading is a very
important step towards achieving the goal of maximizing the performance of our cluster. However, the cluster can still have
bottlenecks within a specific service.

While not specific to cluster environment, the idea of service load balancing remains a very important concept for cluster network
designers. Although the idea of load balancing transfers nicely from more traditional UNIX networks, the specific load
characteristics of the same services in a cluster environment can be drastically different. For instance, a traditional UNIX network
may happily operate with a single NFS server and a large number of clients; whereas, a cluster with the same number of clients
could easily overrun the single NFS server because the intensity and frequency of client accesses is radically different. With this
disparity in mind, the cluster network designer should be careful to reevaluate their load balancing experiences with traditional
UNIX networks before applying that knowledge to balancing their cluster services.

The specifics of service offloading vary depending on the particular service, but the idea remains the same: identify service
bottlenecks (where a single service is being overwhelmed by multiple simultaneous requests) and find a way to offload that
specific service to multiple servers so no one server is being overwhelmed. For example, if a NFS home file system server is
being overwhelmed, a simple but effective way to lighten the burden is to bring up a second NFS server. The home file system
can then be split into two volumes with half the homes served by one machine and the other half served by the second machine.
While this technique can work for some services, it can not be used for services that require a synchronized, centralized repository
of data. These types of services often have their own mechanisms for dealing with load balancing and should be researched
thoroughly before attempting to make any adjustments.

Another case where the "splitting data in two" technique fails is when a single job places high demands on a single service,
overloading the associated server. For instance, if a user's job places heavy demands on a single NFS server from many nodes,
that job can overload the server. Since there is only one canonical data source, we cannot employ our "split into two" method
without introducing serious synchronization problems. As it turns out, this case highlights an inherent scalability problem with the
NFS service, which is not easily overcome. In such a situation, we may have to employ more powerful, better scaling solutions to
the problem. To rectify this situation, we would likely move to a parallel file system, such as PVFS (see Chapter 19), which scales
by splitting data requests to multiple servers and therefore eliminates the single server problem with NFS.

Figure 5.3: Diagram showing compute nodes with multiple interfaces on multiple networks. Notice that the Myrinet network
is entirely internal to the cluster, a common design point since the dedicated network is typically much higher performing
than networks outside the cluster.

5.5.2 Multiple Networks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a cluster with high performance requirements, a common network design optimization employs multiple networks to separate
different classes of network traffic. Examples of network traffic classes are application message passing, NFS traffic, cluster
management traffic, etc. If we think about the types of high bandwidth traffic that pass over a cluster network, we can identify
times when the network is saturated by one class, thus reducing the performance of the another class. In most cases, both
classes would be affected, and the overall performance of the system would suffer. We can imagine the situation where a user's
job is simultaneously reading a large file from NFS and attempting to do a collective communication operation, resulting in serious
network resource contention.

Application message passing traffic is probably the most sensitive to network resource contention. Since the performance of the
cluster is often gauged in terms of application performance, application message passing traffic is usually the class that drives the
need for a separate, dedicated network. The concept is fairly straightforward; we would have one network devoted to message
passing, and one devoted to all other traffic. While we can sometimes use a duplicate network technology such as fast Ethernet
for our dedicated network, the performance may not be sufficient. More often, designers invest in a specialized network
technology that will improve network performance for message passing by a large order of magnitude. The drawbacks of installing
a specialized dedicated network include increased cost and administrative complexity. The cost of a specialized network, on a per
host basis, may double the cost of a node.

5.5.3 Channel Bonding

As we stated earlier, cost plays a role in cluster network design. The highest bandwidth networks tend to be emerging
technologies with premium price tags. However, sometimes applications require more capacity than a single channel (link) of a
more suitably priced network can provide. One solution is to bind multiple channels together, thus creating a virtual channel of
higher capacity.

As you might have guessed, channel bonding is no stranger to Beowulf clusters. In the early days of Beowulf clusters, 10Mb
Ethernet was commonplace, but 100Mb Ethernet was still emerging and quite costly. Cluster designers wishing to obtain
additional bandwidth, but unable to afford 100Mb Ethernet, would place multiple 10Mb Ethernet cards in each node and bond
them together so they appeared as a single higher capacity link. The same thing occurred when 100Mb Ethernet became readily
available and gigabit Ethernet was still being sold at a premium price. Now, as the price of gigabit Ethernet hardware drops and
10Gb Ethernet begins to emerge, we are starting to see the bonding of multiple gigabit Ethernet channels appear in Beowulf
clusters.

While channel bonding can be an attractive solution to a bandwidth problem, it is not without its difficulties. For example, channel
bonding may require additional switches, one for each channel, if the switch itself does not support bonding. Also, the
configuration process is somewhat more complex than for a single network interface. More information on channel bonding can be
found in the Linux Ethernet Bonding Driver mini-howto, '/usr/src/linux/Documentation/networking/bonding.txt', as
well as in the mailing list archives on Beowulf.org.

5.5.4 Jumbo Frames

Often techniques for improving network performance spawn directly from the specific network technology deployed. The cluster
designer is encouraged to research their own choice of network technology to determine how best to tune their network. While
many technology specific solutions exist, we focus on one technology in particular, gigabit Ethernet using jumbo frames, as it has
gained a degree of support within the network vendor and user communities.

Historically, the Ethernet standard has specified a frame size of 1518 bytes. Drivers commonly set the MTU (Maximum Transfer
Unit) of the interface to 1500 bytes, leaving space for Ethernet header information in the frame. While this frame size was
appropriate for 10Mb and even 100Mb Ethernet, the introduction of 1000Mb Ethernet (gigabit Ethernet) has caused a great deal of
controversy surrounding the initial choice to stay with 1500/1518 byte MTU/frame sizes. Because gigabit Ethernet network
adapters, running at 1000Mb/s, can transmit far more frames per time unit than before, many modern computer architectures are
having difficulty keeping up with the number of frames, and hence interrupts, that must be serviced from the network. Increasing
the frame size decreases the number of times the network adapter must interrupt the processor, thus freeing CPU cycles for other
tasks when performing large network transfers. The commonly chosen size of this increased MTU/frame size, or jumbo frame, is
approximately 9000 bytes. This size was chosen for its proximity to a base two value (8192) with additional room for headers,
while still being small enough to not compromise Ethernet error detection schemes. The choice of an exact MTU greatly depends
on the largest size supported by both the gigabit Ethernet adapter and the switch hardware. Unfortunately, increasing the size of
MTU creates problems for existing hardware and clients that are configured to use the standard 1500 byte MTU. This disparity
can cause hosts communication problems, switch hardware to drop what it considers to be oversized frames, and various other
problems.

For the sake of simplicity, we will assume that the cluster network is composed entirely of all gigabit Ethernet connected hosts with
no external communication requirements. In other words, the network is a dedicated communication network. With this
assumption, enabling jumbo frames within the cluster just means that we need to set our interface's MTU to 9000 bytes using the
following command. If the reader's adapter/hardware configuration supports a different maximum MTU size, they should substitute
that value for the 9000 value used below.
 ifconfig eth0 mtu 9000 up

This command can be placed in the startup scripts of each node to ensure that the setting will persist across reboots. On Red Hat
systems, we can insert the following line into the '/etc/sysconfig/network-scripts/ifcfg-eth0' file to automatically set
the MTU for device eth0 on boot.
 MTU=9000

When configured correctly, we should see lower CPU utilization when network transfers are active, and higher bandwidth due to
the removal of potential bottlenecks.

5.5.5 Interrupt Coalescing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The primary advantage of jumbo frames is the reduction in the number of interrupts, and thus the CPU utilization, required to
process incoming data. As an alternative, some network cards can be configured to delay interrupting the host until multiple
packets have been sent or received. On the receive side, the interrupt is typically delayed until a specific number of packets have
been received or a specified amount of time has elapsed since the first packet was received after the last interrupt. A similar thing
occurs on the send side. The exact use of packet counts or delay times depends on implementation of the network card.
Regardless of the mechanism causing the interrupt delay, the effect is the coalescing of interrupts.

Network cards that support interrupt coalescing generally have tunable parameters that can be modified when the driver is loaded.
Care must be taken when adjusting these parameters. Increasing the maximum delay or packet count threshold too high can have
negative effects. On the send side, too long of a delay can result in all of the send descriptors being depleted, thus causing a stall.
A stall translates into wasted bandwidth. On the receive side, too long of a delay can result in all of the receive descriptors being
depleted, thus causing incoming packets to be dropped. For TCP, dropped packets means retransmission, wasting bandwidth and
delaying data reception. Frequent retransmission causes the TCP implementation to decide the link is oversubscribed and to
apply its congestion control algorithms. The net effect is a further reduction in available bandwidth for the application(s) attempting
to send data. (For details on TCP congestion control see [28, 110].)

Assuming the parameters are set to values preventing descriptor depletion, interrupt coalescing still impacts performance in
interesting ways. The obvious positive impact is the decrease in the amount of CPU time spent entering and exiting the interrupt
handling code, freeing the CPU to spend more time executing other user or kernel codes. If prior to enabling interrupt coalescing
the CPU was saturated with interrupts, the application may not have been receiving enough cycles to keep the send buffer
sufficiently full or the receive buffer sufficiently empty. Enabling interrupt coalescing may be just what a bandwidth starved
application needs to obtain maximal performance. On the other hand, any delay in triggering the receive interrupt directly affects
latency as the kernel has no knowledge of a packet's arrival until the interrupt occurs. This delay could have a negative effect on
latency sensitive applications.

As you can see, interrupt coalescing has tradeoffs and requires careful tuning to obtain maximal bandwidth while also achieving a
minimal impact on latency. But, when jumbo frames are not an available option, interrupt coalescing may prove important to
meeting the performance needs of your applications.

5.5.6 Socket Buffers

For TCP communication, the size of the send socket buffer determines the maximum window size at the sender. As mentioned in
Section 5.2, the send window controls the amount of unacknowledged data that can be outstanding, thereby affecting the actual
bandwidth achieved over the connection. Your first instinct might be to make the send socket buffer as big as possible; however,
this would unnecessarily consume a shared resource, thus possibly depriving other connections of suitable buffer space.
Additionally, excessively large buffers can result in less than optimal performance. The trick is to determine a suitably sized buffer
that maximizes bandwidth while minimizing the consumption of shared resources. The bandwidth-delay product is used to
compute the minimum necessary buffer size.

For the bandwidth-delay product, bandwidth is defined to be the maximum bandwidth obtainable over the connection. In other
words, it is the maximum possible bandwidth of the slowest network involved in the connection. On most clusters, intra-cluster
communication travels over a system area network for which the bandwidth is generally known, so obtaining the bandwidth figure
should not be difficult.

Delay is measured as the time it takes for the sender to send a packet to the receiver, the receiver to receive the packet and to
send an acknowledge back to the sender (possibly piggybacked on a data packet), and the sender to receive that
acknowledgment. This delay is traditionally known as the round trip time (RTT). RTT is frequently measured using the ping
program. Although ping does not use the same protocol nor have the same processing overheads as TCP, the ping RTT is
usually sufficiently close to the TCP RTT. The best results can be obtained if the size of the packet transmitted by ping is equal
to the MTU of the underlying network. Fortunately, the version of ping provided with most Linux distributions allows the data size
to be specified. For Ethernet, a data size of 1472 bytes plus the ICMP and IP headers will result in the desired MTU of 1500 bytes.

The size of the receive socket buffer determines the amount of data that can be buffered by the receiver while it is waiting for the
application to consume the data. The receive buffer size also impacts how much data the sender may send before being notified
that more buffer space is available on the receiving end. This notification is sent by the receiver along with acknowledgment and
data packets and is therefore impacted by the round trip delay we have already discussed. The implication is that the receive
buffer should be at least as big as the send buffer if maximum bandwidth is to be achieved.

Unfortunately, for high bandwidth, low latency links like those used for a cluster network, the bandwidth-delay product only
computes the lower bound of the needed buffer space. Other factors in the network hardware and software layers, for which the
delay measurements do not account, affect the amount of buffer space required to achieve the maximum obtainable bandwidth. In
fact, even the communication characteristics of the application can affect the buffer sizes required to obtain optimal performance.

The application itself (or a kernel of it) is a the best tool for determining the appropriate socket buffer sizes needed to obtain high
communication performance from that application. Sophisticated applications allow the send and receive buffer sizes to be
specified, either as command line options or through environment variables. Unfortunately, not all applications which use sockets
and TCP to communicate include this ability. And, even if they were included, many users are either unaware of the options or
lack the understanding to set them. Therefore, programs like iperf [59] and NetPIPE [104] must be used by the system
administrator to determine reasonable defaults.

Linux provides a mechanism for the system administrator to manipulate the default socket buffer sizes. The '/proc' file system
entries '/proc/sys/net/core/wmem_default' and '/proc/sys/net/core/rmem_default' correspond to the default send
and receive buffer sizes respectively. The current defaults can be obtained by executing the following commands.
 cat /proc/sys/net/core/wmem_default
 cat /proc/sys/net/core/rmem_default

New defaults can be set by writing the desired buffer sizes to those same '/proc' entries. For example, if send and receive buffer
sizes of 256KB were determined to be appropriate, the following commands could be executed to set those buffer sizes.
 echo 256000 >/proc/sys/net/core/wmem_default
 echo 256000 >/proc/sys/net/core/rmem_default

To automatically apply the settings when then system reboots, the above commands can be added to '/etc/rc.d/rc.local'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The system administrator also has control over the maximum buffer sizes, preventing applications from allocating excessive
amounts of buffer space. The maximum send and receive buffer sizes are set by writing the desired sizes to
'/proc/sys/net/core/wmem_max' and '/proc/sys/net/core/wmem_max' respectively. As before, the current settings can
be obtained by reading those same entries. The maximum buffer sizes should be set so they are at least as large as the defaults.
Again, commands to set these parameters when the system boots may be added to '/etc/rc.d/rc.local'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.6 Protecting Your Cluster
One of the most important issues that face the cluster network designer is that of cluster security. This is not only one of the most
obvious concerns, but security decisions are far reaching and can potentially interfere with the usability and performance of the
system.

In this section we discuss security concerns and delve into the details of techniques that cluster designers can employ to find the
optimal security solution for their own unique requirements.

Briefly, we define 'Protecting Your Cluster' as a series of techniques that range from minimizing a cluster's susceptibility to outsider
attacks to making a hackers life difficult even if they somehow gain login access to internal cluster machines. We will not be
addressing the securing/validation of application or user data via encryption or digital signature techniques.

We approach the concept of security by breaking the realm into two distinct phases: stopping unwanted network packets before
they reach a computer and stopping unwanted network packets once they reach a computer. It should be noted that some cluster
network design schemes will require attention in one or the other phases, but all schemes should probably pay attention to both.
Although this may seem oversimplified, we believe that by thinking of security in this way we can capture the major issues
surrounding cluster network security.

5.6.1 Phase 1: Once the Packets Get There

Since the simplest cluster network design case is one where all machines are openly connected to the Internet, we will first
consider security from the standpoint of how to make sure that individual systems are safeguarded against malicious network
packets once they arrive at the machine. We can imagine this case analogous to a case where a castle is being attacked by an
invading army. Once the invaders have breached the outer defenses, the castle is still far from lost as it could have internal
safeguards to keep the attacking forces at bay. While boiling oil and sharpened sticks will not help us in securing a compute
cluster (generally), we can still use common node securing techniques to keep intruders from damaging the integrity of our
systems once they have breached outer security systems (if such outer security systems exist).

Locking down individual node software
One simple concept, and one that should probably be understood and implemented regardless of a chosen network design, is that
of securing individual machines on a local level. History has shown us that Operating Systems are often times initially installed
with insecure parameters. The reasons for this truth vary, but are most often the cause of the wide range of users that are
installing from a single version of OS media. In our case, the version of Linux we will be installing on nodes was most likely not
meant to be a secure, high performance, optimized for scientific computing, cluster node OS. It was probably designed to be an
out of the box small business server OS or home desktop OS. The default settings, therefore, may not be properly tuned for our
specific application of the OS and must therefore be reconfigured to fit our needs.

Disabling unnecessary services
As a first step towards locking down our systems, we should first take a look at what is running on our systems when nobody is
logged in. Is a web server running? An NFS server? Other various network daemons that we don't necessarily need? Ideally, our
clusters would be running only what is necessary for compute jobs to run. In reality, this is very little, and is mostly software that
does not need to be running with an open port on the system. Historically, popular Linux distributions have been attacked by
security experts because the default OS configuration had almost every conceivable UNIX service process enabled. Although
these services had no known exploits at the time of distribution rollout, malicious entities across the world are continually looking
for service exploits, and inevitably some of the default services were found to be insecure, allowing remote attackers to gain
super-user access to machines. This situation gave rise to many Linux machines being installed that were immediately insecure.
Although the situation has recently improved a great deal (Linux distributions now focus on simple service configuration tools, but
have most of them disabled by default) the lesson is still an important one.

The first step to disabling unnecessary service is to first realize which services are running on the system. As discussed in Section
3.2.3, this information can be gathered using simple ps and netstat commands to examine what processes are running and
what network ports they are listening on respectively. See the man pages of these tools for more information. Another common
tool for examining which network ports a machine is listening on is the nmap tool which is used to show the network ports that are
open on a remote machine.

The second step is to understand the service startup scheme of your systems. This varies from distribution to distribution, but is
usually fairly straightforward using bundled GUI tools or command line interaction.

The last step in shutting off unwanted services, once they have been identified and the process for disabling them is understood,
is insuring that all systems in the cluster have identical configurations. The specifics of synchronizing configuration across
machines in your cluster is beyond the scope of this chapter, but can usually be accomplished via bundled cluster software or
simple shell scripts.

Although it would be generally grand to disable all services that can be remotely exploited, there will inevitably be some services
that must be enabled for proper cluster operation. This being said, since we can't disable the service, we must do our best to
make sure that each enabled service is secure as possible. First, since these network services typically accept remote queries, we
should enumerate the remote entities that need to be able to make connections to our local hosts. By default, most services will
allow connections from any machine on the Internet, a behavior which is most likely more flexible than it needs to be for Linux
cluster services (does a machine in Egypt really need to be able to connect to our local print spool?). For each service, the cluster
designer should be able to enumerate domains that should be able to connect to that service, often times to the IP level. The
cluster operator should make a table of necessary services, and which groups of external machines need to have access to the
service. Table 5.1 summarizes some of the important services.

Table 5.1: Some example services with descriptions and category of external systems that should have access to
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Service Description Allowed

ssh Allows remote users to log into machine securely Entire Internet

nfsd Allows remote machines to share file system volumes over the network Internal cluster nodes

named DNS server, serves name/IP mapping information Internal site machines

httpd Web server, serves cluster information documents, files Internal site machines

scheduler Batch job scheduler Login nodes only

Once we have a clear notion of which remote entities should be able to connect to each of our services, we must identify the
mechanism by which these services restrict access. Most services have their own mechanism for access control, while others may
rely on a uniform access control system. Following is an example of how we use the '/etc/exports' file to control access to an
NFS server process.
 [root@host.myu.edu /root]# cat /etc/exports
 /exports/rootnfs *.myu.edu(rw,no_root_squash)
 /exports/stage *.myu.edu(rw)
 /exports/my *.myu.edu(rw)
 /exports/scratch100 192.168.1.100(rw)
 [root@host.myu.edu /root]#

In this example, we are granting access to all machines in the domain myu.edu to the first three file systems, and only to the
machine which is bound to the IP address 192.168.1.100 for the last file system.

Now that we've disabled unneeded processes and secured everything else as much as possible, it may seem that on a local level,
we have gone as far as possible. However, the one dimension that most frequently creates security problems for UNIX machine
administrators is that of time. Generally, services are not written to be insecure (hopefully) and are not installed on systems with
known security holes. The problem is that over time, flaws are first found, shortly afterwards they are exploited. An attentive
cluster administrator needs to notice when flaws are found by the Internet security community and act to update installed software
in the short time interval between when the flaw is found and when the flaw is exploited. To do this, an administrator must
regularly watch the security websites and mailing lists for the uncovering of exploits, as well as watching the distribution vendors
security pages for notification of updates. Some examples of established and useful security websites are [101] and [23]. The
former has shown to be very fast to respond to new vulnerabilities and often includes proof of concept exploit code in addition to
descriptions fixes to security problems. CERT is a very complete index of vendor supplied problems/patches to security problems
but is sometimes slower to respond to new vulnerabilities.

5.6.2 Phase 2: Before the Packets Get There

In the previous section, we assumed that an attacker has breached a first line of defense and had the ability to make attacks on
individual machine entities in the cluster. To return to our analogy of a castle being attacked, the previous situation implied that our
outer walls had fallen or that we didn't have an outer wall at all. While this is sometimes considered sufficient security, we can use
outer walls in conjunction with local security measures to provide an even safer system.

Previously, we made sure that our local services were configured to reject connections from sources that we knew were not
supposed to be able to access that service but this rejection implicitly assumes that our service is operating properly with regards
to its decisions about incoming traffic. There are cases, however, where a service may have such a serious flaw that a remote
attacker can introduce a service failure to the point where the service is unable to operate properly anymore, making our hard
work of configuring access rules at the service level obsolete. The only way of preventing this from happening is by making sure
malicious network traffic never reaches our systems, a task that firewalls can help us with.

In this section we describe some very simple techniques that can be applied to prohibit unwanted network traffic from ever
reaching individual cluster machines in the form of software and hardware firewalls.

Firewalls Clarified
A firewall, simply put, is some mechanism that allows for the inspection of individual network packets combined with some set of
decisions to make based on where packets originated and where they are destined. Firewalls take many forms, ranging from
hardware devices that sit between a site's uplink to the Internet and all internal machines to kernel level software layers that are
active on each individual machines. Regardless of how a specific firewall is implemented, its job is essentially the same as any
other firewall; inspect a network packet for source and destination information, and decide what to do about it—let it through,
divert it to somewhere else, or throw it away.

By using firewalls, we can very efficiently block network packets from ever reaching nodes that we are certain never will need to
accept said packets. The first decision we must make, however, is that of where to put our firewall in the network chain of events.
The two extremes, as mentioned above, are between a site's uplink and all internal machines, and one firewall per machine. Both
extremes are most likely not ideal for a Linux cluster scenario. Since a cluster will comprise some subset of all machines at a site,
policies for the cluster nodes will not mirror policies for general site machines. This prohibits the use of one site firewall that can
handle all cases. On the other extreme, we would have to maintain one firewall per machine, which can be a potential source of
unneeded complexity. Most likely, the cluster designer would want to place a firewall in front of logical partitions of their cluster,
whether it be the entire cluster, compute nodes only, management nodes only, server nodes only, or some combination of the
above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4: Above are shown some possible locations one may wish to place a firewall, denoted by the curved dotted
lines.

Where a firewall is placed is entirely dependent on the policies set up by the cluster designer, but for simplicity we will assume one
firewall between the cluster uplink and the rest of the Internet (including other site machines). This is to say, all packets that are
destined for any machine inside the cluster must past through our firewall, and any packet originating from the Linux cluster must
also pass through the firewall.

Linux provides a very powerful suite of firewalling software, which we will cover in detail. Later we will briefly explore various
hardware solutions to the same problem.

Linux software firewalling using iptables
The Linux operating system, as of the time of this writing (Linux version 2.4.X), provides a very complete packet filtering and
mangling system that can be used as, among other things, a software firewall. All packet inspection/alteration activity is done via a
kernel subsystem known as netfilter and is controlled by a userspace utility known as iptables. The scenario in which these
subsystems are applicable in our case is when we're using a Linux machine as a network router. Say our cluster machines exist in
the 192.168.13.0/24 address range. We have one Linux machine with two network interfaces (one interface on the
192.168.13.0/24 network and the other on a network that is routed to the rest of the site). We can run routing software (refer to
routed or gated documentation) to cause our machine to forward packets from one interface to the other, thereby creating an
site gateway for our cluster nodes. If one's cluster was using an Internet routable network, the same router setups applies except
the router would now be acting as an Internet gateway instead of a simple gateway between one unroutable site network and the
unroutable cluster network. Once we have set up this routing Linux machine, we can configure it as a very powerful firewall.

The iptables/netfilter subsystem is best understood when considering the path a network packet takes when traveling through a
Linux machine that is acting as a router. Along this path, there are certain predefined inspection points where we can define sets
of tests that the packet must endure. Based on the outcome of the tests, we may allow the packet to continue, we may jump to a
different set of tests, we may alter the packet, or we may throw the packet away forever.

To understand how we might use such a system, we can start by considering two of the predefined checkpoints, or chains in
iptables terminology. One chain is encountered after a packet arrives at the Linux router and the router decides to forward the
packet on to its destination (box 1 in Figure 5.5). The other chain is reached by a packet when a Linux machine (router or
otherwise) decides that the packet is destined for itself (box 2 in Figure 5.5), and moves the packet up into userspace where a
waiting process can handle it. The former, in netfilter terminology is referred to as the FORWARD chain and the latter is the
INPUT chain. Each of these chains contain rules that are of the logical form "if the packet matches <X> then perform action <Y>".
For a given chain, a packet starts at the first rule and continues through the conditionals (assuming it does not match the <X>
criteria) until it reaches the very end. If a packet does match the <X> criteria, a common <Y> action to take would be to accept the
packet (let it continue on past the chain). Each chain has a policy set on what to do once a packet makes it through all the rules in
the chain.

Figure 5.5: Above are shown some of the interesting points through the Linux kernel where network packets are affected.
The letters are points in kernel space where routing decisions are made. Numbered locations are some of the places where
netfilters exist that will determine the fate of packets passing through. A.) incoming packet routing decision. B.) local machine
process space. C.) postrouting decision. 1.) FORWARD netfilter table. 2.) INPUT netfilter table. 3.) OUTPUT netfilter
table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this basic knowledge of what is happening to a inspected packet, we can start to think about how to use this system to
provide reasonable security for our cluster. An old but useful paradigm in firewall policies is to start by blocking all network traffic,
then start allowing only what needs to make it through. For us, this would mean that by default, we would want to set the chain
policy (remember this is the decision that is made when a packet passes through all the rules without matching any of them) to
drop the packet, and then insert rules that look for only the packets we would like to let through and allow them to pass. Generally,
we can expect to be able to set up rules that look at a packets source, its destination, protocol (TCP/UDP), and its service type
based on the port of its destination process. In this way, we can makes rules based on who is sending the packet, who the packet
is supposed to go to, and what service (sshd, httpd, etc) the packet is supposed to be a part of. Following is an example of how
we would set up a simple firewall that all incoming traffic except for that destined for the sshd and httpd processes on cluster
nodes. We do this by using a Linux router that is sitting between our cluster and the Internet.

First we show how to inspect the current state of the default chains (checkpoints).
 [root@host.myu.edu tmp]# iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

 Chain FORWARD (policy ACCEPT)
 target prot opt source destination

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 [root@host.myu.edu tmp]#

We can see that there are no rules defined.

Next we set the policy on the FORWARD chain to DROP, thus insuring that any packet that does not match one of our to be
determined rules will be immediately dropped instead of forwarded on.
 [root@host.myu.edu root]# iptables -P FORWARD DROP

Since our DROP policy will drop packets coming from and heading to the internal cluster machines, we set up a simple rule to let
all traffic originating from the cluster through. In the following, where we needed to continue an input line, we used a backslash at
the end of the line.
 [root@host.myu.edu root]# iptables -A FORWARD \
 -s 192.168.13.0/24 -d 0.0.0.0 -j ACCEPT

Finally we can set up some rules for allowing packets destined for sshd (port 22) or httpd (port 80) to pass from the outside
network to our internal network.
 [root@host.myu.edu root]# iptables -A FORWARD -s 0.0.0.0 \
 --protocol tcp --dport 22 -d 192.168.13.0/24 -j ACCEPT

 [root@host.myu.edu root]# iptables -A FORWARD -s 0.0.0.0 \
 --protocol tcp --dport 80 -d 192.168.13.0/24 -j ACCEPT

Once again, we use the -L flag to view our new firewall setup.
 [root@host.myu.edu root]# iptables -L
 Chain INPUT (policy ACCEPT)
 target prot opt source destination

 Chain FORWARD (policy DROP)
 target prot opt source destination
 ACCEPT all -- 192.168.13.0/24 0.0.0.0
 ACCEPT tcp -- 0.0.0.0 192.168.13.0/24 tcp dpt:22
 ACCEPT tcp -- 0.0.0.0 192.168.13.0/24 tcp dpt:www

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 [root@host.myu.edu root]#

If we wanted to set up rules to block packets arriving at the local machine, we would perform the same style of operations but
instead add rules to the INPUT chain instead of the FORWARD chain.

Setting up a complete firewall will take many rules, and will be different for every site. For more information regarding Linux
firewalls, the reader may wish to consult one of the many books written on the topic, for instance [127].

Hardware firewalls
An alternative to using a Linux machine as a router/firewall between protected machines and the Internet is to use any number of
specialized hardware devices which essentially do the same thing. Many companies have provided embedded systems that are
easy to configure/manage and quite robust. The benefit of these systems are they're relative ease of use (no iptables
commands to learn) and the fact that they have vendor support. The drawbacks are the slower response times to security hole
fixes and of course cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.7 Troubleshooting
Although cluster networks are typically rather robust, they are still sometimes responsible for unexpected behavior in one's cluster.
Some of these problems can be caused by hardware failures, but are more often the result of improper software configuration or
corrupted data in the system. Since the cluster network is not always easily identifiable as the cause of problems, we have chosen
to present some simple techniques which cluster administrators can employ while tracking down various cluster network related
problems. We also wish to illustrate the use of popular network troubleshooting tools by walking the reader through some common
failure/recovery scenarios. For a more complete network troubleshooting handbook, the reader may refer to one of many such
books devoted to the topic [103]. This section is designed to bring some potential pitfalls to the attention of the reader but is more
intended as a starting point for administrators attempting to track down various bugs in the system.

In order to diagnose a cluster network problem, we first must understand the various levels of the cluster and how they might
cause a problem. It is usually good practice to start at the application level, and work our way down through the kernel and logical
network, and finish by checking hardware. An example of an application problem may be a user using an incorrect hostname or
port in their application. OS level problems, which range from service configuration to driver problems, offer a wide variety of
debugging challenges. Logical network problems can be improper firewall rules or routing configurations, and hardware issues
range from bad switch ports to damaged cables. Attacking problems from the top of this chain, we can eliminate higher level
problems before getting lost in lower level details that may not have anything to do with the original problem.

Before we begin the failure scenarios along with solutions, we first need to have a toolkit of utilities that we can use to help us
determine the source of the problem.

ping. The faithful UNIX command ping has proven to be one of the most useful utilities in UNIX history. It uses a
property of the ICMP protocol that specifies that when an echo request packet is sent to a remote machine or
gateway, the remote machine sends back an echo response packet along with some timing metadata. Essentially
we will use ping to give us a first impression of whether a host is alive on the network.

netstat. Linux provides a utility netstat which allows us to inspect the current network connection status of our
machine. We use it to see which ports our machine has open, which remote machines are currently connected to
us, what state our TCP connections are in, etc.

Iperf. The iperf utility is a very complete network performance testing software suite. Being a modern utility for
testing network bandwidth, it supports all standard protocols, includes support for multicast performance testing,
and has IPv6 support.

nmap. The nmap utility is used to probe the network accessibility of a remote machine. It can be used to essentially
"map" a network by finding which machines are alive on the network and what ports they currently have open.

telnet. Although the use of the telnet remote login service is most likely disabled on any reasonable modern
OS (or should be), the client program, telnet, has other useful applications. To telnet we can specify a
hostname and a port to connect to, at which point the client makes a straightforward TCP connection to the remote
host/port and allows us to send and receive character streams to/from the remote host. This usage model can be
quite helpful when testing basic machine connectivity.

User applications. Often times, one of the best tools for finding problems, and sometimes solving them, is the
actual application codes being run on the system. After all, if our users are having no problems, are there actually
any problems?

Now that we have some useful tools in our toolbox, we can examine some problem scenarios and see how we can diagnose, then
attempt to solve them. The reader should bare in mind that real life problems will not mirror our examples exactly, and our
procedures are only meant to illustrate a general process, not a specific solution.

When I try to rsh/ssh to a remote machines, it fails.
Most often this problem is caused by improper software configuration. First, following our own advice, we should quickly check the
sshd/rsh configuration files to see if anything is obviously misconfigured. If the services appear to be configured correctly, we
step down to the OS/network level. For the ssh/rsh tools to function properly, the two machines in question must be visible to
each other on the network (connected), and they must be able to correctly identify each other when a connection is attempted. We
use ping and telnet to determine if both above conditions are satisfied.

log into source machine

ping destination machine

log into destination machine

ping source machine

This process will give us a very crude notion of whether the machines can contact each other over the network. If the above
process fails, skip down to the next scenario ping doesn't seem to be working to try resolving the problem, then return to this
scenario if there is still a problem with rsh/ssh.

Both ssh and rsh use TCP to start up an initial connection. We can test simple TCP connectivity using the telnet command.
Start by logging into the source machine. If a connection is established, one should see the following form of output.
 source.myu.edu % telnet remote.myu.edu 514
 Trying 192.168.13.7...
 Connected to remote.myu.edu.
 Escape character is '^]'.
 Connection closed by foreign host.
 source.myu.edu %

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 source.myu.edu %

For ssh, replace the port number of rshd (514 in the above example) with sshd's port, 22. Current port assignments should be
verified by looking in the machine's '/etc/services' file. If for some reason the two machines we able to ping one another but
not send TCP traffic to specified ports, we would expect the session to look similar to the following.
 source.myu.edu % telnet remote.myu.edu 514
 Trying 192.168.13.7...
 telnet: connect to address 192.168.13.7: Connection refused
 source.myu.edu %

If this occurs, our problem may be related to a routing or firewall problem, refer to the problem situation below entitled "ssh works,
but ... does not" for more details on how to track this down.

If we can ping our remote machine and telnet to the port in question, our problem is most likely a simple configuration file
problem (we're most likely to see an error message reporting a permission problem or similar). Check the utility's documentation to
learn more on how to set up the servers (sshd for ssh problems, inetd/xinetd for rsh problems) to accept remote
logins/commands.

ping doesn't seem to be working.
If our simple ping procedure is failing, either the machines are not properly configured for the network they're connected to, our
name resolution configuration is incorrect, our firewall is improperly configured, or we are having hardware problems.

To confirm that our machines are properly configured to have a presence on their networks, we can attempt to ping some external
machine (the gateway perhaps, some internal web site, etc). If one or the other cannot ping any external machine, there is most
likely a problem with the way the network interface is configured on the machine (see Section 5.4.2) or with bad hardware/cables.
If they are both alive and able to ping a common third machine, then we should try to ping with an IP address as opposed to using
hostnames. Using the ifconfig utility, we can acquire both machine's IP addresses which can then be used instead of
hostnames by a repeat of our ping procedure. If this fails, please refer to the problem scenario below entitled ssh works, but ...
does not.. Now if pinging with IP addresses works, but pinging with hostnames does not, then we know we have a problem with
the way our machines are resolving hostname mappings (or vice versa). We should consider how our systems are supposed to
resolve these mappings ('/etc/hosts', NIS, DNS, all three) and check the appropriate configuration files to make sure both
sides are properly set up to resolve hostnames (refer to Section 5.4.3 for details).

ssh works, but ping/rsh/application/etc does not.
If one finds that some specific application is functioning properly, while others are failing, the problem usually lies in the
misconfiguration of the failing application(s). Great care should be first put into determining if the cause of the failure is specific to
an application. If the failure continues when all configurations appear correct, we should turn our attention to router/firewall based
causes. Remember that just as we can configure a firewall to only allow certain traffic, we can also configure it to deny certain
traffic. We should check to make sure our firewall isn't explicitly denying our service traffic. Another possibility would be that we
have forgotten to include a rule in our firewall that fully allows a service's network requirements to be fulfilled. Often times services
require only one port for an initial connection to be made by a client, but use other ports upon successful connections, and we
must allow connections on all needed ports in order for such services to operate. Note that commonly we only need to allow a
single open port in one direction, but many ports must be unblocked in the other direction. The firewall must be configured to
manage this types of service behaviors.

The user's application is running, but seems like the network is slowing it down.
If everything appears functionally to be operating, but is simply performing poorly or is performance is wildly varying, we can
usually use iperf to quantify the problem. Below is an example of running the simplest test (TCP bandwidth, default window
size) on a set of machines.
 # This is the server command
 remote.myu.edu %, iperf -s

 # This is the client command
 source.myu.edu %, iperf -c remote.myu.edu

Both processes will show that a test has started and after a few seconds each will report the number of seconds taken, size of
total transfer, and calculated bandwidth of the connection. Try running this benchmark a few times, checking to see that whether
your network is supplying the expected performance. On an unloaded system, one should expect to see approximately 95 percent
of total link bandwidth to be reported by iperf, the remaining bandwidth being used by headers and other control traffic. If iperf
is giving you expected measurements, there may be something wrong with the application that is showing poor network
performance. Otherwise, the problem could be a bad port, cable, or even network card driver.

Nothing works!
A good rule of thumb to follow when nothing seems to be working is to follow the chain of commands that should be apparent from
this section. We have application errors, local host service configuration, local name resolution configuration, logical network
failures (firewalls), and hardware failures. Most problems that appear in a cluster network lie in one or many of these steps, and
careful consideration at each step before moving to the next should flush out the problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Setting up Clusters

Overview
Philip Papadopoulos

Your day is starting off well—many boxes of the fastest-ever cluster nodes have arrived on your shipping dock and you are ready
to tear them open, set them up, and start running your favorite code just as soon as you can. The space is planned out, you know
what kinds of nodes you need in terms of login, storage, compute and other types of devices, the electricians finished putting in
the plugs yesterday, and the cooling has been upgraded to keep your cluster nicely chilled. It then dawns up you, you are looking
at literally hundreds of components—computers, power distribution units, networking switches, racks (or tables, or shelves), disks,
and a monitor or two. You need to have a plan for how to layout and organize your cluster for the physical buildout. The harder
part is really deciding on how you are going to get the operating system onto each one of the nodes so that you can get started
computing in the shortest time possible. There isn't a "right way" or a "wrong way" to do this. And, in reality, how you provision
your nodes has quite a bit to do with personal taste and administrative style. There are, however, are two broad issues to keep in
mind—scalability and reproducibility.

Initial setup is closely aligned with management of the cluster (see Chapter 13). Setup is not a one-time task for a few reasons.
First, nodes do break and replacement nodes need to be turned on and provisioned with the latest software. Second, clusters
often incrementally expand requiring you to provision new (and sometimes physically different) nodes over the lifetime of a the
machine. Third, Linux moves quite rapidly—with 3 package updates every two days on the current release of Redhat—at some
point, patching simply won't work and a wholesale re-installation is needed to make the cluster stable and consistent. A real plan
is needed for both management and setup. These two aspects support each other.

This chapter is organized as follows: the challenges of cluster setup are introduced first, some simple but effective tips for
physically organizing your system, an overview of general approaches to cluster setup is given, and finally some detail is given
about two popular approaches to cluster setup: NPACI Rocks's description-based installation, and OSCAR's image-based setup.
This chapter is not meant to be a step-by-step instruction manual for any particular method, but has the primary purpose of giving
the reader some comparisons and motivation for why different teams choose very different approaches.

Before launching into the deep details it is worth noting that this chapter covers traditional Beowulfs where each node has a disk
and contains a local copy of the operating system. Single system image toolkits like Scyld and SCore have their own custom
installers. In particular, Scyld's setup and management are given in Chapter 18. Diskless systems are not covered in this section.

After reading this chapter, the reader should have a good overview of how different provisioning methodologies work. Setup and
ongoing management are intimately connected, and an administrator's style often dictates how a system is provisioned. In the
end, instantiated clusters, whether built with Rocks, OSCAR, SCE, or even other lesser-known systems toolkits, have very similar
functionality. Afterall, each has a basic Linux OS, a queueing system, monitoring, message passing, and I/O subsystems. The key
to evaluating each of these systems for your own use is how does a particular approach reduce your time for administrative issues
and increase your time for actually using the cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Challenges
Initial setup of a cluster is not trivial, but neither is it untenable. Suppose that 68 brand new computers have just arrived. 64 are
slated as compute nodes, two function as login and job launching nodes, and two are dedicated to providing I/O services, often
using plain old NFS. The hardware related challenges revolve around selecting your network setup (see Chapter 5), laying out the
systems in an organized fashion, physically wiring, and getting your electricians to believe just how much power the cluster will
actually consume. For the moment, let's assume that the cluster has been physically constructed and sitting with power turned off
and no software on any system (frontend, storage, compute, etc). It's raw hardware just waiting to be unleashed.

6.1.1 Software Provisioning Challenges—There are No Homogeneous Clusters

This subsection starts with a bold proposition—"There are no homogeneous clusters". Standard Beowulfs have at least two types
of nodes: login and compute, so homogeneity of function is already split. As clusters get larger, some nodes take on specialized
service roles to handle the aggregrate load—system logging nodes, dedicated I/O nodes, additional public login nodes, and
dedicated installation nodes are just a few personalities that might need to be supported. In a tale of two clusters (Chapter 20),
one can see the various node types that make up a real cluster. It's more than just head node and compute. Role specialization
isn't the only way that a model of homogeneity can break—differences in hardware is also quite common at design time and
throughout the life of the cluster. Even though many clusters may start out with compute nodes being of a homogeneous
hardware type, they often don't stay that way. Hardware is simply moving too quickly to expect that future expansions of a cluster
could be identical to current nodes. Equipment breaks and the replacement parts might have different memory types, updated
processors or a different network adapter. Even when all nodes are purchased at the same time in an attempt to insure hardware
homogeneity, small differencess still can get in the way.

Some years ago, the author worked with NT-based clusters. Our team had purchased 64 9.1 GB SCSI drives, all with the same
part number, all with the same specifications. They differed slightly—some had 980 cylinders and some had 981. From the
manufacturers perspective, both provided the advertised space. The problem occurred in the imaging program (ImageCast, in this
case). An image was taken from the 981 cylinder drive. Attempts to re-image the 980 cylinder drives failed beeause of the single
cylinder difference. Image-based programs have certainly improved since then, but these types of small differences can cause
many lost hours. We solved the problem by building the model node on the 980 cylinder disk that just happened to work on the
larger drive. We were lucky, we might have been forced to have two images just because of a one cylinder difference in the local
hard drive. The reality is that in commodity components, small low-level differences exist. Your setup and management
methodology must be able to handle these subtle differences without administrative intervention.

The previous example makes clusters sound ominous, impossible to provision, disorganized and the reader may feel that it is a
hopeless cause to build a real, functioning and stable cluster. That somehow small differences can wreak havoc on the
provisioning stage. Fear not. Clusters are everywhere. They include some of the fastest machines in the world, are stable and can
be provisioned easily to meet the configuration challenges to manage the inhomegeneity at the functional and hardware levels.

Differentiation along Functional Lines
Commonly, several types of functionality are needed to build a working cluster. As clusters grow in the number of nodes,
specialization of particular nodes to perform specific tasks becomes much more prevalent. In the largest clusters, functional
specialization of nodes is a necessity. The specialization is a direct outcome of needing to scale certain services. On a small
cluster, the head node can "do it all" — system logging, ganglia monitoring, function as an installation server, compilation, login,
and serve out home areas. As the cluster grows, these services need to be spread across physical machines so that each can
handle the load.

Any node in the cluster is differentiated by the types of services and software that are configured on it. Nodes can change their
logical functionality just by deploying and configuring a different software stack. A common differentiation in mid-sized clusters has
nodes of the following types (we will henceforth call these appliances):

Head Node/Frontend Node—This node is the public persona of the cluster. This is where users log in, compile, and
submit jobs.

Compute Node— Where most of the work happens

I/O server—Often an NFS server, but aggressive systems like PVFS can be used

Web server

System logging server

Installation server

Grid gateway node

Batch Scheduler and cluster-wide monitoring

When setting up a cluster, decisions are made as to how many I/O servers, how many system logging servers, and how many
installation servers are needed to support a given number of compute nodes. For small- to mid-sized clusters (perhaps up to 128
nodes), the services are all hosted by a single (or small number) of front-end or head nodes, so no real decision has to be made.
However, even in mid-sized clusters, special attention is often paid to improving file handling capability by provisioning a sub-
cluster of nodes dedicated to I/O. Chiba City at Argonne, for example, has different "towns"—visualization, storage, and compute
—that clearly define functional differences.

In common cluster construction, one builds a head node, a set of I/O nodes (collectively, an I/O cluster), and a set of compute
nodes. This chapter assumes that these types of "appliance" classifications have already been made by the cluster designer, but
that at this point, nothing is installed or set up.

6.1.2 System Software Consistency Across the Cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The issue that overshadows all others in cluster setup and management is creating and maintaining a software environment that
is consistent across all nodes and node types. Small anomolies such as different versions of the standard C library can cause
performance and correctness of operations problems. Progamming clusters is challenging enough without users needing to figure
out that nodes are behaving differently because of software version "skew" across the cluster. It is for this reason that cluster
installation and setup is so intimately tied to ongoing management. It simply does no good to install a new node (either expansion
or replacement of a failed node) that differs in software versions or configuration from the running cluster. The new node must be
brought into parity with the rest of cluster. Two popular open-source clustering toolkits, NPACI Rocks and OSCAR, take radically
different approaches to provisioning and management. Both toolkits' perspective on installation will described in some detail in this
chapter.

It is worth noting that diskless clusters often have fewer issues with software skew because all nodes mount a common root file
system over NFS. Even so, diskless clusters are significantly less popular because of the scaling problems of serving all system
software from a central NFS server. Chapters 3 and 20 cover some of the advantages and disadvantages of diskless nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Hardware Provisioning Challenges and Best Practices
Chapters 2 and 4 describe the critical hardware choices that one has to make when constructing a cluster. In this section, we
describe a few "tricks of the trade" that, down the road, can make a huge difference in terms of neatness, maintainability, and,
ultimately, reliability. The watchword is organization. Neat cables aren't just to look pretty, they can significantly improve your
ability to debug some types of problems on the cluster. Labeling cables and nodes is always helpful, but having a regular layout is
essential. For obvious reasons, powers of two (and/or multiples of 8) are natural quantities to deal with in the computing world,
and clusters are no different. There are four key areas to focus on in hardware provisioning

Layout of nodes—Rackmount vs. Workstation Towers vs. Blades

Cable management

Airflow management

Power Management

Paying attention to these issues for that pile of boxes in the corner will make your cluster last longer and be more stable. Building
a cluster is fun and rewarding, take the small amount of time to plan out your physical layout.

Node Layout and Cable Management
Rackmount systems are perhaps the most convenient way to stack nodes into a small space. in Figure 6.2, one can see the front
side and back side of a typical racking system. Cluster nodes themselves are defined in terms of a standard rack unit or "U". One
Rack Unit is 1.75" (4.45cm) and standard height (2 Meter tall) racks have 42U of available space. Rackmount nodes are typically
called servers, but there are plenty of hardware chassis that are rack mountable and take standard motherboards. As one gets
more densely packed such as in a tower full of 1U servers, CAP (Cable, Airflow, and Power) becomes of paramount importance.
We will take some time to detail out these issues for rack-based systems and then make comments on how these can be carried
over to shelves of desktops and newer blade servers.

In cable management, groups of four (4) and eight (8) are the tickets to success. In Figure 6.1, one can see 8 power cables in one
bundle and 4 ethernet cables in another bundle using wire ties available from the local home improvement store. To prebundle the
cables, just lay them out on the floor, and wrap a wire tie every 6–12 inches (15–30 cm). Clip off the excess from each wire tie and
you have taken just a few minutes to create nice, tidy packages. Do this with all of your cables. You will soon discover that a 128
node cluster can be wired with 16 power bundles and 16 ethernet bundles. A bit of pre-planning cable lengths is needed,
especially in the case of workstation towers. In this case you might prebundle a set of cables that contains two each of 5,6,7 and 8
foot long ethernet cables. At one end the cables are even so that they plug easily into the ethernet switch, the others are of the
correct length to plug into a specific server that are sitting in a line next to each other in a shelf configuration. If towers are 6
inches wide, then the 8th tower is about four feet (about 1 meter) further away than the first one. If on the other hand, you have
rackmounted 2U servers then the top server in a "bank" of 8 is only about 15 inches (40cm) away from the first one. In this case,
cabling 8 ethernet cables of the same length often works well.

Figure 6.1: Cable bundles. Wire ties make 8 power cables into a neat and managable group

The power cables are also grouped and bundled. It turns out that power cables are actually quite a headache. They are big, bulky,
heavy and rarely are close to the correct length. What you decide to do with the power cables can have a significant impact on
cooling. Figure 6.2 illustrates how cables are pulled to the sides of the rack allowing for unrestricted airflow. This is really one of
the compelling reasons to bundle cables—neatness improves the ability of the chassis to cool themselves by getting the cables
out of the airflow. Heat kills clusters and blocking the airflow is a common mistake. High-end nodes often dissipate 150–200
Watts, so a rack of 32 such servers is equivalent to 4 hair dryers running at high. As processor speeds improve, power
consumption always goes up before it comes back down as the semiconductor process is improved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.2: The back of a rack, showing the clean organization of the cables. Note that the fans are
unobstructed.

Power consumption of needs means power planning in the number circuits, and the number of power distribution units. In reality,
power is just another network. Take the power consumption seriously—there are many cases of overloaded power strips melting,
or worse, catching fire. There are many rules of thumb for how many machines can go on single circuit. The critical observation is
to not get too close to the max current of your circuit and to use thick enough power cabling. Standard power distribution units
(PDUs) are significantly better than the $2.00 power strip from the clearance table at the local hardware store. PDUs run about
$10.00/outlet and have quality cabling that won't overheat even as the current load increases. Remember, a Beowulf cluster is a
personal supercomputer, it has the electricty appetite to match. Network controlled PDUs generally run at about $50/outlet, and
these enable you to cycle power remotely. This is a very nice convenience for large installations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Different Types of Installation Management
As discussed in the introduction, setup and management of clusters can come down to a personal style choice. However, there
are technical and practical reasons to choose one type of installation method over another. We will describe the tradeoffs of each
type of installation. Popular open-source management systems include: NPACI Rocks, OSCAR, SCore, Scyld, and XCAT. The
Linux space is enormous and cluster toolkit designers have to make some decisions on what types of generalizations are the most
important. In particular, authors have to determine if and how they will scale across distributions and how they will support
different kinds of hardware. None of these toolkits covers the complete space of distributions × hardware.

The Linux distribution space is a moving target and includes (as of this writing) a number of players: RedHat, SuSE, Mandrake,
Debian, United Linux, and more. Each distribution has it's own style, file layout, package format, package definitions, and support
for a variety of hardware. Small differences such as using shadow passwords (or not), using xinetd or inetd, and SysV-
compatible startup differentiate distributions. For cluster software service designers (e.g., PBS, MPICH, Sun Grid Engine,
Ganglia), differences in packaging definitions can cause more headaches, especially in resolving dependencies. Redhat
packages, for example, are put together differently than similarly named SuSE packages. Debian uses dpkg and apt-get. For
the cluster toolkit designer, supporting all these variations is an impossibly large task. As a would-be cluster builder, you have to
choose the distribution and the toolkit. Do pick a toolkit as a starting point for your cluster and become involved in its improvement.
Don't roll your own installation and management from the ground up, as this just becomes a waste of your time in retreading old
ground. You have more important things to do with your time—using your new cluster.

Each of the commercial Linux distributions must do hardware detection to automatically install the right device drivers on the
widest variety of hardware possible. Distributions that don't detect the most common hardware (and support the quickly changing
network device world), simply are discarded by the user community in a classic case of "survival of the fittest." This last point is of
significant importance to cluster builders because of the desire to use the best, fastest, newest, and cheapest. No judgment is
made here as to which distribution is superior—rather it is the fact that these differences exist that is important.

The hardware space gets more complicated each day. Beowulf clusters used to be only IDE disks. Today, IDE (EIDE, UltraATA,
Serial ATA), SCSI, Integrated Drive Arrays, and Storage Area Network (SAN) adapters are de rigeur for cluster builders. High-
speed interconnects including Scali, Myrinet, Quadrics, and Infiniband need to be supported by cluster toolkits. Motherboards,
specialized chipsets, variants of x86, Itanium, and Opteron add more to the hardware mix. Again, none of the toolkits covers all of
this hardware space. You may asking yourself, "What's the problem? Why don't the cluster toolkits support all of these?". It comes
down to practical issues of time, money and resource. Each of the cluster toolkits tests a release on as much hardware as
possible—that collection of hardware is simply too small to cover most cases that users see in the field. The toolkit designers and
implementers must decide on "which disributions" and "what hardware" is supported. Another way to ask the question is

Should the toolkit scale across Linux distributions? or Should the toolkit scale across hardware?

Scaling across both, the obvious answer, is simply not something that the toolkit designers are able to practically accomplish.

The tradeoffs are simple—if you choose to scale across (support) multiple distributions, then one is practically forced to make
some generalizations to fit all the various distributions. The generalization uniformly selected by toolkits that scale across
distributions is to take over the base installation and hardware detection piece from the vendors and make these core pieces of
the cluster toolkit. These approaches don't leverage the installer supplied by the distribution. Instead, they build their own
customized installation programs that can handle a number of different distributions. The advantage is that users have more
choice of specific distributions. The drawback here is that the hardware space is large, and it is quite a job to manage the
hardware detection and customized kernel modules for lots of hardware.

If you choose a single distribution, then you can leverage the installation and hardware detection of the commericial vendor and
worry only about extensions to specific pieces of hardware, such as Myrinet. The clear drawback is that if the distribution does a
poor job of this, then the toolkit suffers the same fate.

What we see in the cluster toolkit space is a dichotomy of approaches—disk imaging and description methods. Disk imaging was
described in the first edition of this book as the practical way to clone a system onto your cluster nodes. Commercial and open-
source tools image-based programs are popular and include: Norton Ghost, PowerQuest Drive Image, SystemImager, Chiba City
Imager, and Power-Cockpit. Complete clustering toolkits that use imaging include OSCAR, Chiba City, and CLIC. Description-
based installers, on the other hand, use text files to provide a list of packages and instructions needed to completely configure a
node. Text-based installers are distribution-specific: Redhat Kickstart, SuSE YaST, and Debian Fully Automatic Installation (FAI).
Most of have their genesis (or, at least, inspiration) from Sun's Jumpstart installer. The text-based installation captures disk
partitioning, package listing, and software configuration. The advantage here is that a reasonably general text description can
work on many different variants of hardware because the distribution's installer is handling all the low-level details of hardware
detection. One popular description-based cluster toolkit is NPACI Rocks. But other examples exist like IBMs partially-open source
XCAT, and the European Data Grid's LCFG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 The Basic Steps
Before you select a toolkit to build your cluster, one needs to understand the basic high-level steps that are required to install your
basic Beowulf. At this point, we assume that the hardware has been physically assembled, cabled, and is ready for power up. The
steps are:

1. Install Head Node

2. Configure Cluster Services on Head Node

3. Define Configuration of a Compute Node

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node

b. Install complete OS onto new node

c. Complete Configuration of new node

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)

Sounds simple enough, and it is. Let's examine the first steps of installation and cluster services on the head node. Some toolkits,
like OSCAR, require the user to set up the Linux configuration separately from installing the cluster toolkit. Others, like Rocks,
combine these two steps into one.

The next step (define configuration of a cluster node) is perhaps where the differences between disk imaging and description
methods are most keenly felt. For disk imaging, a golden node needs to be installed and configured by a savvy administrator.
OSCAR's System Installation Suite (SIS), which is a combination of the Linux Utility for Installation and System Imager (originally
from VA Linux), uses a package list and an elaborate set of GUI's to create a golden image without actually first installing a node
and represents a significant improvement over older methods. (More details on OSCAR Installation will be given in Section 6.6).
Rocks uses an automatically generated text-description of a compute node "appliance" that is quite general across a wide variety
of harware types. (More details about Rocks installation and design will given in Section 6.5).

Once the basic configuration of compute node has either been created by a golden image or defined through a text description,
one must map where nodes are in the cluster. All ethernet interfaces have a unique MAC (Media Access Control) address,
00:50: 8B: D3:47: A5 is an example) and this is used by all tookits to identify particular nodes. When a node boots, it needs
network configuration parameters and usually gets this through a DHCP (Dynamic Host Configration Protocol) request. The node
presents the DHCP server with its MAC address and the server returns IP, Netmask, routing, node name, and other useful
components. (Chapters 2, 18 and 20 give further examples and details) Nearly all toolkits have some function or program to help
detect new MAC addresses (and hence new nodes). Rocks, for example, probes the '/var/log/messages' file for the
appearance of DHCPDISCOVER requests and checks these against a database. If an unknown address appears, the node is
added. OSCAR uses tcpdump to ascertain the same information. Not only do these detect the new addresses, but new node
names are automatically assigned. Once the detection is complete for a node, it does not have to be repeated, and the assigned
IP address is (almost always) permanent.

Installing the OS onto each node is another place where decription and image-based sytems differ. Image-based systems
download the golden image, make some adjustments for differences in disk geometry, IP address and other limited changes, and
then install the image on the compute node disk. Description-based methods download a text-based node description (which
already contains customization information) and use the native installer to drive the installation automatically. The description will
partition the disk, download packages, and perform post configuration of packages. The packages themselves are downloaded
from a distribution server instead of being contained inside of disk image.

It is critical to understand that disk image methods put the bulk of configuration information into the creation of the golden image.
Description-based methods, on the other hand, put configuration information into the text description, which is then applied at
installation time. It is often a matter of style as to which an administrator prefers. But, certain scenarios favor one method over
another.

The final step of node installation is to complete node configuration. Until recently, this was something that had to be done
explicitly by the system administrator after the base images were installed. Current toolkits completely automate this step.

The last step in complete cluster configuration is simply reconfiguring and restarting cluster-wide services like schedulers and
monitors to reflect an updated cluster configuration. Modern toolkits automate this for you.

In the next two sections we describe in some detail the NPACI Rocks Toolkit and the OSCAR Toolkit as two exemplars of
description-based and image-based methods. These sections do not take the place of howto's or installation instructions, but
rather describe the underlying mechanisms for installation and configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 NPACI Rocks
NPACI Rocks clustering software leverages RedHat's Kickstart utility to manage the software and configuration of all nodes. It
fundamentally enables the notion that reals clusters have many node types (hereafter referred to as "appliance types" or
"appliances"). Rocks decomposes the configuration of each appliance into several small single-purpose package and
configuration modules. Further, all site- and machine-specific information is managed in an SQL (MySQL) database as a single
"oracle" of cluster-wide information.

The Rocks configuration modules can be easily shared between cluster nodes and, more importantly, cluster sites. For example, a
single module is used to describe the software components and configuration of the ssh service. Cluster appliance types which
require ssh are built with this module. The configuration is completely transferrable, as is, to all Rocks clusters.

In Rocks, a single object-oriented framework is used to build the configuration/installation module hierarchy, resulting in multiple
cluster appliances being constructed from the same core software and configuration description. This framework is composed of
XML files and a Python engine to convert component descriptions of an appliance into a Redhat-compliant Kickstart file.

Anaconda is RedHat's installer that interprets Kickstart files. The Kickstart file describes what must be done from disk partitioning,
to package installation, and finally post- or site-configuration to create a completely functional node. Figure 6.3 presents a sample
Kickstart file. It has three sections: command, package, and post. The command section contains almost all the answers posed by
an interactive installation (e.g., location of the distribution, disk partitioning parameters and language support). The packages
section lists the names of Redhat packages (RPMs) to be installed on the machine. Finally, the post section contains scripts which
are run during the installation to further configure installed packages. The post section is the most complicated because this is
where site-specific customization is done. Rocks, for example, does not repackage available software—it simply has a mechanism
to easily provide the needed post-configuration.

 url --url http://10.1.1.1/install/1386
 zerombr yes
 clearpart --all
 part / --size 4096
 lang en_US
 keyboard us
 mouse genericps/2
 timezone --utc GMT
 skipx
 install
 reboot

 %packages
 @Base
 pdksh

 %post
 cat > /etc/motd << 'EOF'
 Kickstarted on 'date'
 EOF

Figure 6.3: Basic RedHat Kickstart file. The RedHat Installer, Anaconda, interprets the contents of the kickstart file to build a
node

While a Kickstart file is a text-based description of all the software packages and software configuration to be deployed on a node,
it is both static and monolithic. At best, this requires separate files for each appliance type. At worst, this requires a separate file
for each host. The overwhelming advantage of Kickstart is that it provides a de facto standard for installing software, performing
the system probing required to install and configure the correct device drivers, and automating the selection of these drivers on a
per machine basis. A Kickstart file is quite generic in that references to specific versions of packages are not needed. Neither is
specific identification of ethernet, disk, video, memory, motherboard, or other hardware devices needed.

Because the Kickstart file does not contain package versions, resolution of specific version information must be held somewhere.
For RedHat, this information is kept in a distribution tree. The distribution is simply a collection of RedHat Packages (RPMS) in
particular directory structure and a RedHat-specific index file that maps a generic package name to its fully-qualified version. In
this way, the Kick-start file may list an openssh-clients package, but the Anaconda installer will resolve this to the full name
openssh-clients-3. 1p1-6.i386.rpm by referencing the distribution's index file. Rocks provides some critical software
(rocks-dist) that greatly simplifies the creation of custom distributions. Multiple distributions can sit on a single server and end-
users can easily integrate site-specific software. In addition, distribution can be built with the latest update of packages so that
when a Rocks appliance installs itself, it can apply completely updated software in a single step. This eliminates an install-then-
patch scenario.

It is important to understand that the distribution contains all possible packages that might be installed on a cluster appliance
node. The Kickstart file describes exactly which of these will be installed and how each software subsystem will be configured to
make a particular appliance. Rocks allows a head node to serve out multiple distributions. This facilitates testing of nodes against
new software simply by pointing the installer to new distribution. See Chapter 20 and the Jazz cluster for a real world experience
on the necessity of having test hardware.

Description mechanisms for other distributions and operating systems exist and include SuSE's YaST (and YaST2), Debian FAI
(Fully Automatic Installer), and Sun Solaris Jumpstart. The structure of each of the text descriptions are actually quite similar as
the same problems of hardware probing, software installation, and software post-configuration must be done. The specifics of
package naming, partitioning commmands and other details are quite different among these methods.

6.5.1 Component-based configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key functionality missing from Kickstart to make it the only installation tool needed for clusters is the lack of macro language
and a framework for code re-use. A macro language would improve the programmability of Kickstart and code reuse significantly
ameliorates the problems of software skew across appliances by having shared configuration among appiance types be truly
shared (instead of being copies that require vigilance to keep in sync).

Rocks uses the concept of package and configuration modules as building blocks for creating entire appliances. Rocks modules
are small XML files that encapsulate package names and post-configuration into logical "chunks" of functionality. XML is used by
Rocks because of de facto standard software for parsing data.

Once the functionality of a system is broken into small single-purpose modules, a framework describing the inheritance model is
used to derive the full functionality of complete systems, each of which shares common base configuration. Figure 6.4 is a
representation of such a framework which describes the configuration of all appliances in a Rocks cluster. The framework is a
directed graph—each vertex represents the configuration for a specific service (software package(s), service configuration, local
machine configuration, etc.) Relationships between services are represented with edges. At the top of the graph there are four
vertexes which indicate the configuration of a "laptop", "desktop", "frontend", and "compute" cluster appliance.

Figure 6.4: Description (Kickstart) Graph. This graph completely describes all of the appliances of a Rocks
Cluster.

When a node is built using Rocks, the Kickstart file for a particular node is generated and customized on-the-fly by starting at an
appliance entry node and traversing the graph. The modules (XML Files) are parsed, and customization data is read from the
Rocks SQL database. Figure 6.5 shows some detail of the configuration graph. Two appliance types are illustrated here
—standalone and node. Both share everything that is contained in the base module and hence will be indentically installed and
configured for everything in base and modules below. In this example, a module called c-development is only attached to
standalone. With this type of construction it is quite easy to see (and therefore focus on) the differences between appliances.

Figure 6.5: Description Graph Detail. This illustrates how two modules 'standalone.xml' and 'base.xml' share base
configuration and also differ in other specifics

It is interesting to note that the interconnection graph is a different file from the modules themselves. This means that if a user
desires to have the c-development module as part of the base installation, one simply makes that change in the graph file and
attaches c-development to the base module. Also in Figure 6.5, edges can be annotated with architecture type (i386 and
ia64 in this example). This allows the same generic structure to describe appliances across significant architectural boundaries.
Real differences, such as the grub (for ia32) and elilo (for ia64) boot loaders can be teased out without completely replicating
all of the configuration.

6.5.2 Graph Components

In an earlier section, it was stated that image-based systems put the bulk of their configuration into creating an image, while
description methods put the bulk of their configuration into the description (e.g. Kickstart) file. In Rocks, the modules are small
XML files with simple structures as illustrated in Figures 6.6 and 6.7.

 <?xml version="1.0" standalone="no"?>
 <!DOCTYPE kickstart SYSTEM "dtds/node.dtd"
 [<!ENTITY ssh "openssh">]>
 <kickstart>

 <package>&ssh;</package>
 <package>&ssh;-clients</package>
 <package>&ssh;-server</package>
 <package>&ssh;-askpass</package>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <package>&ssh;-askpass</package>

 <!-- Required for X11 Forwarding -->
 <package>XFree86</package>
 <package>XFree86-libs</package>

 <post>
 <!-- default client setup -->
 cat > /etc/ssh/ssh_config << 'EOF'
 Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
 EOF
 </post>

 </kickstart>

Figure 6.6: The ssh.xml module includes the ssh packages and configures the service in the Kickstart post section.

 <?xml version="1.0" standalone="no"?>
 <!DOCTYPE kickstart SYSTEM "dtds/node.dtd">
 <kickstart>
 <main>
 <lang><var name="Kickstart_Lang"/></lang>
 <keyboard><var name="Kickstart_Keyboard"/></keyboard>
 <mouse><var name="Kickstart_Mouse"/></mouse>
 <timezone><var name="Kickstart_Timezone"/></timezone>
 <rootpw>--iscrypted <var name="RootPassword"/></rootpw>
 <install/>
 <reboot/>
 </main>
 </kickstart>

Figure 6.7: The 'base.xml' module configures the main section of the Kickstart file.

Figure 6.6 shows the XML file for an "ssh" module in the graph. The single purpose of this module is to describe the packages
and configuration associated with the installation of the ssh service and client on a machine. The package and post XML tags map
directly to Kickstart keywords. Figure 6.7 shows how global operations such as the root password and mouse selection similarly
can be described. Rocks also contains options on partitioning hard drives that ranges from a fully-automated scheme (which
works on IDE, SCSI, and RAID Arrays) to completely manual (adminstrator-controlled). The real advantage here is that ssh
configuration policy is done once instead of being replicated across all appliance types.

6.5.3 Putting it all together

Rocks uses a graph structure to create decription files for appliances. In the background is a mySQL database that holds cluster-
wide configuration information. When a node requests an IP address, a dhcp server on the head node replies with a filename
tag that contains a URL for the node's kickstart file. The node contacts the web server and a CGI script is run that 1) looks up the
node and appliance type in the database, and 2) traverses and expands the graph for that appliance and node type to dynamically
create the Kickstart file. Once the decscription is downloaded, the native installer takes over and downloads packages from the
location specified in the kickstart file, installs packages, performs the post installation tasks specified, and then reboots. Rocks
also uses the same structure to bootstrap a head node, except that the kickstart generation framework and Linux distribution is
held on the local boot CD and interactive screens gather the local information. In summary, we annotate the installation steps with
the steps that Rocks takes:

1. Install Head Node—Boot Rocks-augmented CD

2. Configure Cluster Services on Head Node—automatically done in step 1

3. Define Configuration of a Compute Node—Basic setup installed. Can edit graph or nodes to customize further

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node use insert-ethers tool

b. Install complete OS onto new node—Kickstart

c. Complete Configuration of new node—already described in Kickstart file

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)—part of insert-ethers

The key features of Rocks are that it is RedHat-specific, uses descriptions to build appliances, leverages the Redhat Installer to do
hardware detection, and will take hardware with no installed OS to an operating cluster in a short period of time. The description
files are almost completely hardware independent allowing the construction of Beowulfs with different physical nodes to be
handled as easily as homogeneous nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6 The OSCAR Toolkit
The Open Source Cluster Application Resource (OSCAR) uses imaging as its primary method of installing the operating system
on compute nodes of a cluster. Because it is image-based, OSCAR supports a wider array of Linux distributions (Redhat 7.2, 7.3
and Mandrake 8.0 as of this writing) with the with the same cluster tool stack, but is more limited in its hardware support. The
more limited hardware support juxtaposed to supporting more distributions seems to be an oxymoron. One has to examine exactly
how image-based installers actually work to see why this is the case.

6.6.1 How Image-based Installers Work

The most primitive image program is the venerable Unix dd command. With dd, one can save, bit-for-bit, a disk partition or entire
disk and store it as a file. The problem is that restoring such an image in a naive way requires that the new hardware be in
everyway identical. For disks, this level of identity is down to the geometry and cylinder count. Modern image-based installers take
this basic capability, but then add some critical features to significantly increase their utility across hardware.

The first key insight on how imaging works is to treat a disk (or partition) image as file system. Let's digress with an example.
Suppose you have a Linux system with a root partition in '/dev/hdal' and a separate partition (e.g. scratch) with enough free
space to hold a complete image of the root. Then try the following sequence (as root):

dd if=/dev/hdal of=/scratch/root.image

mkdir /mnt/root

mount /scratch/root.image /mnt/root -o loop

ls -l /mnt/root

As you make changes to the '/mnt/root', the contents of '/scratch/root. image' are updated. When you unmount the file
system, those changes are saved in the original image file. So it is really straightforward to take an image of system, save it,
update the image by using standard tools and tricks. Because the entire root file system is available in an image, there are no
limits on what could done to it. Files (like 'fstab', 'hosts', IP configuration, and more) can added, edited or deleted. In fact,
because it is the raw file system, it theoretically doesn't matter if the distribution is Redhat, Mandrake, Debian, or any of the 100's
of Linux distributions that are out there. Practically, the installer most know something about the file layout to be efficient and
therefore only a small subset of distributions is actually supported by any image-based installer. The one key feature that many
admins like about image based techniques is that they can handcraft a configuration and then take a snaphot. Image-based
installers help with the replication of this snapshot.

The second critical piece of image-based management is the customized installer. The installer must download an image from a
server, customize some portions of it for the target node, and then install the updated image on the particular hardware of the
node, taking into account small differences in hardware. An example of necessary customization is changing the network
configuration file which must be be updated to a new node's IP address. If this isn't done properly, then nodes would be are
identical in everyway—even to their IP address—which obviously leads to an unusable cluster. The installer, like System Imager
used in OSCAR can make several changes based upon differences in node hardware. It supports the most common adjustments
without intervention by the administrator: changes in the ethernet driver, changes in disk drive geometry (but not in disk type), and
memory size differences. Because the installer itself is designed to handle a variety of distributions, the onus of basic hardware
detection (e.g. disk geometry, network driver) is in the installer and not on the distribution. Resource constraints in supporting the
imaging software leads to the reality that only a subset of hardware can be supported. In OSCAR, for example, IDE and SCSI
devices are supported by the installer, but IDE and SCSI hardware RAID (e.g. HP Proliant's Integrated Drive Array, '/dev/ida/')
is not understood by the installer and hence not supported. A further constraint is the the installer itself is a specialized program
that runs a customized Linux kernel. The kernel may not have the complete set of device drivers needed to run your hardware,
even if the distribution natively supports your hardware. OSCAR allows users to build customized installation kernels to handle the
case where an administrator can identify manually the needed driver. Even though the above dd-based example is
straightforward, installing and customizing images is actually quite complex: to make configuration changes, the installer must
understand the file system, layout, and location of config files to do localization. Small differences, like choosing inetd over
xinetd, must be dealt with to manage across distributions.

6.6.2 Bootstrapping and Configuration

OSCAR assumes a working head node—which generally is installed "by hand" using the tools of the base distribution (Mandrake
or Redhat). The OSCAR toolset is then installed afterwards and requires additional configuration steps. The core of OSCAR is a
set of tools, all driven by the OSCAR install wizard, to define the set of packages and resources that are needed to create a disk
image. Resources include drive partitioning installation, which MPI libararies to install, and other OSCAR-specific tools. Once the
set of base software (stored as RPMs), is selected a client image is created. If further customization is needed, then the image
can be "edited" using SIS (System Installation Suite) tools. If one wants to create other types of nodes (e.g. an NFS server instead
of compute node) or if nodes of the same type haven't different disk subsytems (IDE and SCSI) the entire process is started again
with a different image name. The case of homogeneous hardware (and node function type) is handled easily by this setup. If your
cluster has heterogenous node types and/or different appliance types, then description-based methods generally provide a
simpler solution.

Once the OSCAR image is built, the wizard will guide you to start integrating new nodes. OSCAR uses a tcpdump to detect
DHCP requests—when a new node is seen, a new name is automatically assigned. The SIS installer kernel starts the process of
downloading the correct image from the server and at this point takes over, doing node customization by looking up node-specific
information in the SIS database. In summary, we annotate the installation steps with the steps that OSCAR takes:

1. Install Head Node—Hand installation. Usually using Distro installer

2. Configure Cluster Services on Head Node—Follow installer setup script

3. Define Configuration of a Compute Node—Use The OSCAR wizard to define a client image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. For each compute node—repeat
a. Detect Ethernet Hardware Address of New Node use OSCAR Wizard

b. Install complete OS onto new node—SIS disk image downloaded and installed

c. Complete Configuration of new node—Most customization already done in the image

5. Restart Services on head node that are cluster-aware (e.g. PBS, Sun Grid Engine)—part of the OSCAR install
wizard

The key features of OSCAR is that it uses disk images and supports multiple distributions, it uses a configuration wizard to create
a client image without first installing a golden client, and supports cluster nodes with no previously installed OS. The images have
some hardware independence, but differences in disk subsystem type require different images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7 Other Important Toolkits
There are a number of other toolkits that might be used. In this section, we give a non-exhaustive description of some of the more
popular kits

6.7.1 SCore

SCore is a single system image abstraction that has traditionally focused on extreme performance. SCore was initially designed
as system for high-performance systems research and the well-known PM messaging layer is one of it's key technologies. PM
works on Myrinet and other low-latency networks (some of which are being developed by the Japanese Consortium that now
maintains and advances SCore). SCore uses a multicast-based image installer to put software onto each of the nodes. Multicast
is used to improve the speed of installation by broadcasting the image to a number of clients. The installer is itself a custom piece
of software and must manage making the multicast transport reliable

6.7.2 LCFG

LFCG is a description-based installer. It differs from Rocks in that inheritance is supported in LCFG through file inclusion (e.g.,
#include). LCFG also employs a proprietary configuration language for their source files and they provide a custom profile
compiler to combine the source files into single XML profile. LCFG doesn't use kickstart to install the operating environment.
Rather it uses its own boot environment to configure the machine (e.g., to detect the hardware, partition the disk, install RPMs).

6.7.3 XCat

XCat uses descriptions to create Kickstart files and just recently has added limited support for SuSE Linux YaST. XCat is quasi
open-source and its specific license is limited for use only on IBM hardware. The generation of descriptions must be generated
beforehand by the system administrator and each node must have it's own install file. XCat provides some structure in creating the
description files, but there is quite a bit of scripting needed to define different node types, add resources and the like. XCat's
strength lies in its integration with IBM's proprietary management processor—allowing administrators to handles BIOS updates,
remote power cycling, and more through remote console access and custom scripts.

6.7.4 Chiba City Toolkit

Chiba City Toolkit is an unsupported collection of tools from Argonne National Laboratory. Chiba, described more fully in Chapter
20, uses an image-based installer and was designed to help US Department Energy researchers investigate systems problems.
The model of operation for system developers is that complete (serial) console access is available to a user so they can install any
operating system image—including Windows. They have developed an image-based installer and a set of tools to interact with
each serial console to tell each node how to boot (e.g. from local hard drive or to download a particular image). Like the SIS suite
included in OSCAR, administrators can edit an image on a server and then push out changes or entire images to a node. Like all
image-based systems, the variation of hardware that the installer supports is limited.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8 When Things go Wrong
For cluster installation there are literally hundreds of small items that can be show-stoppers in getting an installation to work over
the network. In this section, we'll describe some the of common problems that users might encounter. There are many email and
web resources to check if you run into an installation problem including toolkit-specific discussion lists and the general Beowulf
users list. The key thing that makes clusters different is that one relies on a network to enable installation (whether image or
decription).

MAC addresses of new nodes are never detected. There a few things to check here. First, make sure on
motherboards with dual interfaces that you have plugged into the interface that will be labeled eth0. If you are
using PXE, make certain that it is enabled

on this interface. It is non-standard as to which interface is eth0 and sometimes the fix is as simple is switching the
cable. If you are still not seeing DHCPDISCOVER messages on the frontend, attach the frontend to the node with a
standard ethernet cross-over cable. If you do see the DHCPDISCOVER message in the logs (make sure dhcpd is
running), then you have narrowed things down to the network itself. For today's managed switches, you will need to
make certain that broadcast is enabled on the switch itself.

During download of image or packages, the node just freezes. There generally are two possibilities. The device
driver for your network card is buggy or unreliable (this is actually usual when new NICs are introduced) or your
node hardware is simply bad (memory, processor, disk, or more). If the problem affects all nodes, then look for
something that is common (like the network driver). It is also possible that either an image or a package is corrupted
on the server itself. For RPM-based installations, the installer will often tell you on what package things have failed
and using RPM to verify the package on the server is an easy remedy.

My network card isn't supported. This problem is much more common than you might think. NIC manufacturers
use a number of variants of a standard interface (the Intel e1000 has over 6 hardware variants)—and the Linux
driver may not have caught up to the latest versions. You first have to determine exactly what the interface is—if
you can hand-install a version of Linux on the node, you can use lspci to find all about the devices on your PCI
bus. Ethernet controllers will be listed that way and you can look at the specifics of the PCI ID and the text
description in the PCI record. A look at the source code will determine if that variant of a known device is supported.
If is is supported, then you have to work to get a custom installation kernel, boot floppy, or PXE image constructed.
This is toolkit specific and is quite deep into the specifics of a toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9 Summary
This section has described description-based and image based installers. In particular the Rocks and OSCAR toolkits were
discussed in some detail. Readers should recall the physical planning of cluster layout and trunking of cables leads to a more
reliable physical design. Also, real clusters are never homogeneous in function and rarely are they homogeneous in hardware
configuration. Finally, setup and installation is never done just once and is intimately tied to the style of management of the
administrator. Having a solid setup and initial software provisioning plan will allow you to get the more interesting part of clusters—
using them for productive work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Parallel Programming
Chapter List

Chapter 7: An Introduction to Writing Parallel Programs for Clusters

Chapter 8: Parallel Programming with MPI

Chapter 9: Advanced Topics in MPI Programming

Chapter 10: Parallel Virtual Machine

Chapter 11: Fault-Tolerant and Adaptive Programs with PVM

Chapter 12: Numerical and Scientific Software for Clusters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: An Introduction to Writing Parallel Programs for
Clusters

Overview
Ewing Lusk, William Gropp, and Ralph Butler

There are two common kinds of parallelism. The first, the master-worker approach, is the simplest and easiest to implement. It
relies on being able to break the computation into independent tasks. A master then coordinates the solution of these independent
tasks by worker processes. This kind of parallelism is discussed in detail in this Chapter, starting with Section 7.1. This part of the
chapter has three goals:

To present some of the ways parallelism can be introduced into an application.

To describe how to express parallelism using functions built into the operating system. Depending on your target
application, this information may be all you need, and we will show how to access these functions from several
different application-development languages.

To provide some realistic examples of applications illustrating this approach. We include string matching with
applications to computational biology.

The first task in creating a parallel program is to express concurrent work. Section 7.1 then focuses on task parallelism. Section
7.2 describes the use of Linux system calls for task parallelism. Section 7.4 then outlines an example from computational biology
to illustrate the use of task parallelism to carry out a large computation.

The second kind of parallelism is for computations that cannot (or cannot easily) be broken into independent tasks. In this kind of
parallelism, the computation is broken down into communicating, interdependent tasks. One example of this kind of parallelism
was introduced in Section 1.3.6. These parallel programs are more difficult to write, and a number of programming models have
been developed to support this kind of parallel program. The most common, and the one most appropriate for Beowulf clusters, is
message passing. The two most common message-passing systems are MPI (Message Passing Interface) and PVM (Parallel
Virtual Machine), covered in Chapters 8–11. In this chapter, Section 7.5 introduces some of the techniques used in dividing
programs into communicating, interdependent parts. Expressing these ideas as programs is left for the following chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Creating Task Parallelism
The essence of task parallelism is that the task to be accomplished can be executed in parallel. Since we assume that the tasks
are not completely independent (otherwise they are just a collection of ordinary sequential jobs), some sort of coordinating
mechanism must exist. We will call this process the manager, and the processes that carry out the subtasks the workers. (The
manager could even be the human user, who manages the worker processes "by hand," but we will assume that the manager is a
single program that the user causes to be started.) Manager/worker algorithms and execution mechanisms have many variations,
which we survey in the next section; but as we use the term, "task parallelism" always involves the following steps.

1. Divide the task into independent or nearly independent subtasks. By "independent" we mean that while
communication of some sort occurs between the manager and the workers, there is no direct communication
between any two workers.

2. Start the workers. We assume that each worker is represented by an operating system process. In Section 7.2
we will describe Unix processes and how to start them. (Use of threads for workers is atypical for a Beowulf
cluster and will not be described.)

3. Communicate subtask specifications from the manager to the workers.

4. Communicate results from the workers to the manager.

5. Ensure that all results have been collected and that the workers have been shut down.

7.1.1 Variations on Task Parallelism

The scheme just described had many variations; we will discuss a few of them here, and then in the following section we will
illustrate some of these with concrete examples. The variations involve the scheduling algorithm by which the manager assigns
subtasks to the workers, the ways in which the worker processes are started and managed, and the communication mechanism
between manager and workers.

Variations in How Work Is Assigned
For an efficient manager/worker parallel program, the workers should be kept working as much of the total time as possible. If the
total work to be done can be easily divided into arbitrarily sized subtasks, then the scheduling job is easy: if there are n workers,
then divide the work up into n pieces, each of which will take the same amount of time, and give one piece to each worker. This is
called static scheduling.

Although sometimes such scheduling can be done, breaking up the total amount of work into subtasks typically results in subtasks
of widely differing sizes, more subtasks than there are workers, or both. In all of these cases, the manager must organize the
assignment of work to workers more carefully in order to keep the workers working. If some workers are idle when there is still
more work to do, a load balancing problem occurs. Fortunately the general manager/worker algorithms can be used to overcome
this problem when there are substantially more subtasks than there are workers. The idea is for the manager to make an initial
assignment of subtasks to workers and then wait for subtask completion by any worker. At that point the worker can be assigned
another subtask. In this way the master does not need to know ahead of time how much time each subtask will take; it just keeps
all the workers as busy as possible.

Figure 7.1 shows a high-level framework for the manager and worker in a manager/worker system. In this example, n processes
(workers) are started and then each process is sent the data for each task to perform. New processes are started once rather than
for each task, because starting a new process is often a time-consuming operation.

 manager: worker:
 for (i=0; i<n; i++) { receive msg from manager
 start new process while (not exit msg) {
 send work do work
 } send results
 while (not done) { receive next message
 wait for msg from any worker }
 receive results exit
 if (work left) {
 send new work to worker
 }
 else {
 send exit msg to worker
 }
 }

Figure 7.1: Schematic of a general manager-worker system

We note a few points about this algorithm.

A load balancing problem will inevitably occur near the end of the job, as some workers become idle but there is no
more work to be assigned, because all the work that is not done is being worked on by other workers.

To make this period of load imbalance as small as possible, it is a good idea to make the subtasks small. If the
manager can estimate the sizes of the subtasks, then it should assign the larger tasks first and the smaller ones
near the end.

If the subtasks are too small, then the overhead of communication between manager and worker will take up too
much of the total time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Therefore one needs to give some thought to just exactly how to divide up the work. A technique that is sometimes used is to
further subdivide the work units during the computation. In some algorithms, the workers subdivide their own tasks and return the
new subsubtasks to the manager for redistribution to the other workers. An example is the Mandelbrot program described in
Chapter 5 of [48].

Variations in Implementation Mechanisms
Processes can be started in a variety of ways, including shell commands, Unix system calls, remote shell commands of different
kinds, parallel process management systems, and the use of daemons of various kinds. Even Web browsers can be used to
launch remote tasks. We will discuss process startup in Section 7.2, after we have established a deeper understanding of
operating system processes.

Similarly, the communication between manager and worker can be carried out in many ways. One way is to use the file system as
a communication device. This is particularly convenient if all of the workers have access to the same file system. (See Chapter 19
for a discussion of shared file systems.) This mechanism is often used when the manager is programmed as a shell script.

A more flexible and powerful approach to communication among processes uses sockets. Sockets and how to use them in
several programming languages are covered in Section 7.2.5. The use of higher-level communication libraries (MPI and PVM) is
covered in later chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Operating System Support for Parallelism
Although parallel programs can be quite complex, many applications can be made parallel in a simple way to take advantage of
the power of Beowulf clusters. In this section we describe how to write simple programs using features of the Linux operating
system that you are probably already familiar with. We begin with a discussion of processes themselves (the primary unit of
parallelism) and the ways they can be created in Unix environments such as Linux. A good reference on this material is [111].

7.2.1 Programs and Processes

First we review terminology. A program is a set of computer instructions. A computer fetches from its memory the instruction at the
address contained in its program counter and executing that instruction. Execution of the instruction sets the program counter for
the next instruction. This is the basic von Neumann model of computation. A process consists of a program, an area of computer
memory called an address space, and a program counter. (If there are multiple program counters for a single address space, the
process is called a multithreaded process.) Processes are isolated from one another in the sense that no single instruction from
the program associated with one process can access the address space of another process. Data can be moved from the address
space of one process to that of another process by methods that we will describe in this and succeeding chapters. For the sake of
simplicity, we will discuss single-threaded processes here, so we may think of a process as an (address space, program, program
counter) triple.

7.2.2 Local Processes

Where do processes come from? In Unix-based operating systems such as Linux, new processes are created by the fork
system call. This is an efficient and lightweight mechanism that duplicates the process by copying the address space and creating
a new process with the same program. The only difference between the process that executed the fork (called the parent
process) and the new process (called the child process) is that the fork call returns 0 in the child and the process id in the parent.
Based on this different return code from fork, the parent and child processes, now executing independently, can do different
things.

One thing the child process often does is an exec system call. This call changes the program for the process, sets the program
counter to the beginning of the program, and reinitializes the address space. The fork-exec combination, therefore, is the
mechanism by a process create a new, completely different one. The new process is executing on the same machine and
competing for CPU cycles with the original process through the process scheduler in the machine's operating system.

You have experienced this mechanism many times. When you are logged into a Unix system, you are interacting with a shell,
which is just a normal Unix process that prompts you, reads your input commands, and processes them. The default program for
this process is /bin/bash; but depending on the shell specified for your user name in '/etc/passwd', you may be using another
shell. Whenever you run a Unix command, such as grep, the shell forks and execs the program associated with the command.
The command ps shows you all the processes you are running under the current shell, including the ps process itself (strictly
speaking, the process executing the ps program).

Normally, when you execute a command from the shell, the shell process waits for the child process to complete before prompting
you for another command, so that only one process of yours at a time is actually executing. By "executing" we mean that it is in
the list of processes that the operating system will schedule for execution according to its time-slicing algorithm. If your machine
has ony one CPU, of course only one instruction from one process can be executing at a time. By time-slicing the CPU among
processes, however, the illusion of simultaneously executing process on a single machine, even a single CPU, is presented.

The easiest way to cause multiple processes to be scheduled for execution at the same time is to append the '&' character to a
command that you execute in the shell. When you do this, the shell starts the new process (using the fork-exec mechanism)
but then immediately prompts for another command without waiting for the new one to complete. This is called "running a process
in the background." Multiple background processes can be executing at the same time. This situation provides us with our first
example of parallel processes.

To determine whether a file contains a specific string, you can use the Unix command grep. To look in a directory containing mail
files in order to find a message about the Boyer-Moore string-matching algorithm, you can cd to that directory and do
 grep Boyer *

If your mail is divided into directories by year, you can consider search all those directories in parallel. You can use background
processes to do this search in a shell script:
 !# /bin/bash
 echo searching for $1
 for i in 20* ;
 do (cd $i; grep $1 * > $1.out &) ;
 done
 wait
 cat 20*/$1.out > $1.all

and invoke this with Boyer as an argument.

This simple parallel program matches our definition of a manager/worker algorithm, in which the master process executes this
script and the worker processes execute grep. We can compare its properties with the list in Section 7.1:

1. The subtasks, each of which is to run grep over all the files in one directory, are independent.

2. The workers are started by this shell script, which acts as the master.

3. The subtask specifications (arguments to grep) are communicated to the workers on their respective command
lines.

4. The results are written to the file system, one result file in each directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. The wait causes the shell script to wait for all background processes to finish, so that the results can be
collected by the manager (using cat) into one place.

One can make a few further observations about this example:

The first line of the script tells the system which program to use to interpret the script. Here we have used the
default shell for Linux systems, called bash. Other shells may be installed on your system, such as csh, tcsh, or
zsh. Each of these has a slightly different syntax and different advanced features, but for the most part they
provide the same basic functionality.

We could have made the size of the subtask smaller by running each invocation of grep on a single file. This would
have led to more parallelism, but it is of dubious value on a single machine, and we would have been creating
potentially thousands of processes at once.

We could time this script by putting date commands at the beginning and end, or by running it under the shell's
time command:
 time grepmail boyer

where grepmail is the name of this script and boyer is the argument.

7.2.3 Remote Processes

Recall that the way a process is created on a Unix system is with the fork mechanism. Only one process is not forked by
another process, namely the single init process that is the root of the tree of all processes running at any one time.

Thus, if we want to create a new process on another machine, we must contact some existing process and cause it to fork our
new process for us. There are many ways to do this, but all of them use this same basic mechanism. They differ only in which
program they contact to make a fork request to. The contact is usually made over a TCP socket. We describe sockets in detail in
Section 7.2.5.

rsh
The rsh command contacts the rshd process if it is running on the remote machine and asks it to execute a program or script.
To see the contents of the '/tmp' directory on the machine foo.bar.edu, you would do
 rsh foo.bar.edu ls /tmp

The standard input and output of the remote command are routed through the standard input and output of the rsh command, so
that the output of the ls comes back to the user on the local machine. Chapter 5 describes how to set up rsh on your cluster.

ssh
The ssh (secure shell) program behaves much like rsh but has a more secure authentication mechanism based on public key
encryption and encrypts all traffic between the local and remote host. It is now the most commonly used mechanism for starting
remote processes. Nevertheless, rsh is substantially faster than ssh, and is used when security is not a critical issue. A common
example of this situation occurs when the cluster is behind a firewall and rsh is enabled just within the cluster. Setting up ssh is
described in Chapter 5, and a book on ssh has recently appeared [11].

Here is a simple example. Suppose that we have a file called 'hosts' with the names of all the hosts in our cluster. We want to
run a command (in parallel) on all those hosts. We can do so with a simple shell script as follows:
 #! /bin/bash
 for i in 'cat hosts' ;
 do (ssh -x $i hostname &) ;
 done

If everything is working correctly and ssh has been configured so that it does not require a password on every invocation, then we
should get back the names of the hosts in our cluster, although not necessarily in the same order as they appear in the file.

(What is that -x doing there? In this example, since the remotely executed program (hostname) does not use any X windowing
facilities, we turn off X forwarding by using the -x option. To run a program that does use X, the X option must be turned on by the
sshd server at each remote machine and the user should set the DISPLAY environment variable. Then, the connection to the X
display is automatically forwarded in such a way that any X programs started from the shell will go through the encrypted channel,
and the connection to the real X server will be made from the local machine. We note that if you run several X programs at several
different hosts, they will each create a file named '.Xauthority' in your home directory on each of the machines. If the machines
all have the same home directory, for example mounted via NFS, the '.Xauthority' files will conflict with each other.)

Other Process Managers
Programs such as the ones rsh and ssh contact to fork processes on their behalf are often called daemons. These processes
are started when the system is booted and run forever, waiting for connections. You can see whether the ssh daemon is installed
and running on a particular host by logging into that host and doing ps auxw | grep sshd. Other daemons, either run as root
by the system or run by a particular user, can be used to start processes. Two examples are the daemons used to start processes
in resource managers and the mpd's that can be used to start MPI jobs quickly (see Chapter 8).

7.2.4 Files

Having discussed how processes are started, we next tunr to the topic of remote files, files that are local to a remote machine.
Often we need to move files from one host to another, to prepare for remote execution, to communicate results, or even to notify
remote processes of events.

Moving files is not always necessary, of course. On some clusters, certain file systems are accessible on all the hosts through a
system like NFS (Network File System) or PVFS (Parallel Virtual File System). (Chapter 19 describes PVFS in detail.) However,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system like NFS (Network File System) or PVFS (Parallel Virtual File System). (Chapter 19 describes PVFS in detail.) However,
direct remote access can sometimes be slower than local access. In this section we discuss some mechanisms for moving files
from one host to another, on the assumption that the programs and at least some of the files they use are desired to be staged to
a local file system on each host, such as '/tmp'.

rcp
The simplest mechanism is the remote copy command rcp. It has the same syntax as the standard local file copy command cp
but can accept user name and host information from the file name arguments. For example,
 rcp thisfile jeeves.uw.edu:/home/jones/thatfile

copies a local file to a specific location on the host specified by the prefix before the ':'. A remote user can also be added:
 rcp smith@jeeves.uw.edu:/home/jones/thatfile .

The rcp command uses the same authentication mechanism as rsh does, so it will either ask for a password or not depending
on how rsh has been set up. Indeed, rcp can be thought of as a companion program to rsh. The rcp command can handle
"third party" transfers, in which neither the source nor destination file is on the local machine.

scp
Just as ssh is replacing rsh for security reasons, scp is replacing rcp. The scp command is the ssh version of rcp and has a
number of other convenient features, such as a progress indicator, which is handy when large files are being transferred.

The syntax of scp is similar to that for rcp. For example,
 scp jones@fronk.cs.jx.edu:bazz .

will log in to machine fronk.cs.jx.edu as user jones (prompting for a password for jones if necessary) and then copy the
file 'bazz' in user jones's home directory to the file 'bazz' in the current directory on the local machine.

ftp and sftp
Both ftp and sftp are interactive programs, usually used to browse directories and transfer files from "very" remote hosts rather
than within a cluster. If you are not already familiar with ftp, the man page will teach you how to work this basic program. The
sftp program is the more secure, ssh-based version of ftp.

rdist
One can use rdist to maintain identical copies of a set of files across a set of hosts. A flexible 'distfile' controls exactly what
files are updated. This is a useful utility when one wants to update a master copy and then have the changes reflected in local
copies on other hosts in a cluster. Either rsh-style (the default) or ssh-style security can be specified.

rsync
An efficient replacement for rcp is rsync, particularly when an earlier version of a file or directory to be copied already exists on
the remote machine. The idea is to detect the differences between the files and then just transfer the differences over the network.
This is especially effective for backing up large directory trees; the whole directory is specified in the command, but only (portions
of) the changed files are actually copied.

7.2.5 Interprocess Communication with Sockets

The most common and flexible way for two processes on different hosts in a cluster to communicate is through sockets. A socket
between two processes is a bidirectional channel that is accessed by the processes using the same read and write functions
that processes use for file I/O. In this section we show how a process connects to another process, establishing a socket, and
then uses it for communication. An excellent reference for the deep topic of sockets and TCP/IP in general is [111]. Here we just
scratch the surface, but the examples we present here should enable you to write some useful programs using sockets. Since
sockets are typically accessed from programming and scripting languages, we give examples in C, Perl, and Python, all of which
are common languages for programming clusters.

Although once a socket is established, it is symmetric in the sense that communication is bidirectional, the initial setup process is
asymmetric: one process connects; the other one "listens" for a connection and then accepts it. Because this situation occurs in
many client/server applications, we call the process that waits for a connection the server and the process that connects to it the
client, even though they may play different roles after the socket has been established.

We present essentially the same example in three languages. In the example, the server runs forever in the background, waiting
for a socket connection. It advertises its location by announcing its host and "port" (more on ports below), on which it can be
contacted. Then any client program that knows the host and port can set up a connection with the server. In our simple example,
when the server gets the connection request, it accepts the request, reads and processes the message that the client sends it,
and then sends a reply.

Client and Server in C
The server is shown in Figure 7.2. Let us walk through this example, which may appear more complex than it really is. Most of the
complexity surrounds the sockaddr_in data structure, which is used for two-way communication with the kernel.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

main(int argc,char *argv[])
{
 int rc, n, len, listen_socket, talk_socket;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int rc, n, len, listen_socket, talk_socket;
 char buf[1024];
 struct sockaddr_in sin, from;

 listen_socket = socket(AF_INET, SOCK_STREAM, 0);

 bzero(&sin, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = INADDR_ANY;
 sin.sin_port = htons(0);

 bind(listen_socket, (struct sockaddr *) &sin ,sizeof(sin));
 listen(listen_socket, 5);

 getsockname(listen_socket, (struct sockaddr *) &sin, &len);
 printf("listening on port = %d\n", ntohs(sin.sin_port));

 while (1) {
 talk_socket = accept(listen_socket,
 (struct sockaddr *) &from, &len);
 n = read(talk_socket, buf, 1024);
 write(talk_socket, buf, n); /* echo */
 close(talk_socket);
 }
}

Figure 7.2: A simple server in C

First, we acquire a socket with the socket system call. Note that we use the word "socket" both for the connection between the
two processes, as we have used it up to now, and for a single "end" of the socket as it appears inside a program, as here. Here a
socket is a small integer, a file descriptor just like the ones used to represent open files. Our call creates an Internet (AF_INET)
stream (SOCK_STREAM) socket, which is how one specifies a TCP socket. (The third argument is relevant only to "raw" sockets,
which we are not interested in here. It is usually set to zero.) This is our "listening socket," on which we will receive connection
requests. We then initialize the sockaddr_in data structure, setting its field sin_port to 0 to indicate that we want the system
to select a port for us. A port is an operating system resource that can be made visible to other hosts on the network. We bind our
listening socket to this port with the bind system call and notify the kernel that we wish it to accept incoming connections from
clients on this port with the listen call. (The second argument to listen is the number of queued connection requests we want
the kernel to maintain for us. In most Unix systems this will be 5.) At this point clients can connect to this port but not yet to our
actual server process. Also, at this point no one knows what port we have been assigned.

We now publish the address of the port on which we can be contacted. Many standard daemons listen on "well known" ports, but
we have not asked for a specific port, so our listening socket has been assigned a port number that no one yet knows. We
ourselves find out what it is with the getsockname system call and, in this case, just print it on stdout.

At this point we enter an infinite loop, waiting for connections. The accept system call blocks until there is a connection request
from a client. Then it returns a new socket on which we are connected to the client, so that it can continue listening on the original
socket. Our server simply reads some data from the client on the new socket (talk_socket), echoes it back to the client, closes
the new socket, and goes back to listening for another connection.

This example is extremely simple. We have not checked for failures of any kind (by checking the return codes from our system
calls), and of course our server does not provide much service. However, this example does illustrate how to code a common
sequence of system calls (the socket-bind-listen sequence) that is used in nearly all socket setup code.

The corresponding client is shown in Figure 7.3. In order to connect to the server, it must know the name of the host where the
server is running and the number of the port on which it is listening. We supply these here as command-line arguments.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

main(int argc,char *argv[])
{
 int rc, n, talk_socket;
 char buf[1024] = "test msg";
 struct sockaddr_in sin;
 struct hostent *hp;

 talk_socket = socket(AF_INET, SOCK_STREAM, 0);

 hp = gethostbyname(argv[1]);
 bzero((void *)&sin, sizeof(sin));
 bcopy((void *) hp->h_addr, (void *) &sin.sin_addr, hp->h_length);
 sin.sin_family = hp->h_addrtype;
 sin.sin_port = htons(atoi(argv[2]));

 connect(talk_socket,(struct sockaddr *) &sin, sizeof(sin));

 n = write(talk_socket, buf, strlen(buf)+1);
 buf[0] = '\0'; /* empty the buffer */
 n = read(talk_socket, buf, 1024);
 printf("received from server: %s \n",buf);
}

Figure 7.3: A simple client in C

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Again we acquire a socket with the socket system call. We then fill in the sockaddr_in structure with the host and port (first
calling gethostbyname to fill in the hostent structure needed to be placed in sin). Next we call connect to create the socket.
When connect returns, the accept has taken place in the server, and we can write to and read from the socket as a way of
communicating with the server. Here we send a message and read a response, which we print.

Client and Server in Python
Python is an object-oriented scripting language. Implementations exist for Unix and Windows; see www.python.org for details. It
provides an extensive set of modules for interfacing with the operating system. One interesting feature of Python is that the block
structure of the code is given by the indentation of the code, rather than explicit "begin"/ "end" or enclosing braces.

Much of the complexity of dealing with sockets has to do with properly managing the sockaddr data structure. Higher-level
languages like Python and Perl make socket programming more convenient by hiding this data structure. A number of good books
on Python exist that include details of the socket module; see, for example, [14] and [70]. Python uses an exception handling
model (not illustrated here) for error conditions, leading to very clean code that does not ignore errors. The Python version of the
server code is shown in Figure 7.4. Here we use the "well-known port" approach: rather than ask for a port, we specify the one we
want to use. One can see the same socket-bind-listen sequence as in the C example, where now a socket object (s) is returned
by the socket call and bind, listen, and accept are methods belonging to the socket object. The accept method returns
two objects, a socket (conn) and information (addr) on the host and port on the other (connecting) end of the socket. The
methods send and recv are methods on the socket object conn, and so this server accomplishes the same thing as the one in
Figure 7.2.

#! /usr/bin/env python
#echo server program
from socket import *
HOST = '' # symbolic name for local host
PORT = 50007 # arbibrary port
s = socket(AF_INET, SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'connected to by', addr
while 1:
 data = conn.recv(1024)
 if not data:
 break
 conn.send(data)
conn.close()

Figure 7.4: A simple server in Python

The Python code for the corresponding client is shown in Figure 7.5. It has simply hard-coded the well-known location of the
server.

#!/usr/bin/env python
Echo client program
from socket import *
HOST = 'donner.mcs.anl.gov' # the remote host
PORT = 50007
s = socket(AF_INET, SOCK_STREAM)
s.connect((HOST, PORT))
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', 'data'

Figure 7.5: A simple client in Python

Client and Server in Perl
Perl [124] is a powerful and popular scripting language. Versions exist for Unix and for Windows; see www.perl.com for more
information. Perl provides a powerful set of string matching and manipulation operations, combined with access to many of the
fundamental system calls. The man page perlipc has samples of clients and servers that use sockets for communication.

The code for a "time server" in Perl is shown in Figure 7.6. It follows the same pattern as our other servers. The code for the
corresponding client is shown in Figure 7.7.

#!/usr/bin/perl

use strict;
use Socket;
use FileHandle;

my $port = shift || 12345;
my $proto = getprotobyname('tcp');
socket(SOCK, PF_INET, SOCK_STREAM, $proto)
 || die "socket: $!";
SOCK->autoflush();
setsockopt(SOCK, SOL_SOCKET, SO_REUSEADDR, pack("1", 1))
 || die "setsockopt: $! ";
bind(SOCK, sockaddr_in($port, INADDR_ANY))
 || die "bind: $!";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 || die "bind: $!";
listen(SOCK,SOMAXCONN)
 || die "listen: $!";

print "server started on port $port\n";

while (1)
{
 my $paddr = accept(CLIENT,SOCK);
 CLIENT->autoflush();
 my $msg = <CLIENT>;
 print "server: recvd from client: $msg \n";
 print CLIENT "Hello there, it's now ", scalar localtime, "\n";
 close(CLIENT);
}

Figure 7.6: A simple server in Perl

#!/usr/bin/perl -w

use strict;
use Socket;
use FileHandle;

my ($host,$port, $iaddr, $paddr, $proto, $line);

$host = shift || 'localhost';
$port = shift || 12345;

$iaddr = inet_aton($host)
 || die "no valid host specified: $host";
$paddr = sockaddr_in($port, $iaddr); # packed addr

$proto = getprotobyname('tcp');
socket(SOCK, PF_INET, SOCK_STREAM, $proto)
 || die "socket failed: $!";
SOCK->autoflush(); # from FileHandle
connect(SOCK, $paddr)
 || die "connect failed: $!";
print SOCK "hello from client\n";
$line = <SOCK>;
print "client: recvd from server: $line \n";

Figure 7.7: A simple client in Perl

7.2.6 Managing Multiple Sockets with Select

So far our example socket code has involved only one socket open by the server at a time (not counting the listening socket).
Further, the connections have been short lived: after accepting a connection request, the server handled that request and then
terminated the connection. This is a typical pattern for a classical server but may not be efficient for manager/worker algorithms in
which we might want to keep the connections to the workers open rather than reestablish them each time. Unlike the clients in the
examples above, the workers are persistent, so it makes sense to make their connections persistent as well.

What is needed by the manager in this case is a mechanism to wait for communication from any of a set of workers
simultaneously. Unix provides this capability with the select system call. The use of select allows a process to block, waiting
for a change of state on any of a set of sockets. It then "wakes up" the process and presents it with a list of sockets on which there
is activity, such as a connection request or a message to be read. We will not cover all of the many aspects of select here, but
the code in Figure 7.8 illustrates the features most needed for manager/worker algorithms. For compactness, we show this in
Python. A C version would have the same logic. See the select man page or [111] for the details of how to use select in C. It
is also available, of course, in Perl.

#!/usr/bin/env python

from socket import socket, AF_INET, SOCK_STREAM
from select import select

lsock = socket(AF_INET,SOCK_STREAM)
lsock.bind(('',0)) # this host, anonymous port
lsock.listen(5)
lport = lsock.getsockname()[1]
print 'listening on port =', lport

sockets = [lsock]
while 1:
 (inReadySockets, None, None) = select(sockets, [], [])
 for sock in inReadySockets:
 if sock == lsock:
 (tsock,taddr) = lsock.accept()
 sockets.append(tsock)
 else:
 msg = sock.recv(1024)
 if msg:
 print 'recvd msg=', msg
 else:
 sockets.remove(sock)
 sock.close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.8: A Python server that uses select

The first part of the code in Figure 7.8 is familiar. We acquire a socket, bind it to a port, and listen on it. Then, instead of doing an
accept on this socket directly, we put it into a list (sockets). Initially it is the only member of this list, but eventually the list will
grow. Then we call select. The arguments to select are three lists of sockets we are interested in for reading, writing, or other
events. The select call blocks until activity occurs on one of the sockets we have given to it. When select returns, it returns
three lists, each a sublist of the corresponding input lists. Each of the returned sockets has changed state, and one can take some
action on it with the knowledge that the action will not block.

In our case, we loop through the returned sockets, which are now active. We process activity on the listening socket by accepting
the connection request and then adding the new connection to the list of sockets we are interested in. Otherwise we read and print
the message that the client has sent us. If our read attempt yields an empty message, we interpret this as meaning that the worker
has closed its end of the socket (or exited, which will close the socket), and we remove this socket from the list.

We can test this server with the client in Figure 7.9.

#!/usr/bin/env python

from sys import argv, stdin
from socket import socket, AF_INET, SOCK_STREAM

sock = socket(AF_INET,SOCK_STREAM)
sock.connect((argv[1],int(argv[2])))

print 'sock=', sock
while 1:
 print 'enter something:'
 msg = stdin.readline()
 if msg:
 sock.sendall(msg.strip()) # strip nl
 else:
 break

Figure 7.9: A Python client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Parameter Studies
One straightforward application of task parallelism is the "parameter study", in which the same sequential program is run multiple
times with different sets of input parameters. Since the program to be run is sequential, there is no communication among the
workers, and the manager can be a simple script that communicates with the workers by means of the arguments to the
sequential program and its standard output. We can start the workers with ssh and collect the output by using the popen system
call, which returns a file descriptor we can select on and read the remote process's stdout from.

Although both the algorithm we use and its implementation are general, we present here a concrete example. We explore the
parameter space of compiler options for the default Linux C compiler gcc. The man page for gcc conveniently lists in one place
all the options that can be passed to gcc to cause it to produce faster machine code. Here is an excerpt from the man page:
 Optimization Options
 -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
 -fdelayed-branch -felide-constructors
 -fexpensive-optimizations -ffast-math -ffloat-store
 -fforce-addr -fforce-mem -finline-functions
 -fkeep-inline-functions -fmemoize-lookups
 -fno-default-inline -fno-defer-pop
 -fno-function-cse -fno-inline -fno-peephole
 -fomit-frame-pointer -frerun-cse-after-loop
 -fschedule-insns -fschedule-insns2
 -fstrength-reduce -fthread-jumps -funroll-all-loops
 -funroll-loops -0 -02 -03

For the matrix-matrix multiply program we are going to test with, which has no function calls, only some of these look useful. Here
is a subset of the above list containing optimization flags that might have an effect on the speed of the program:
 -fexpensive-optimizations
 -ffast-math
 -ffloat-store
 -fno-peephole
 -fschedule-insns
 -fschedule-insns2
 -fstrength-reduce
 -funroll-all-loops
 -funroll-loops
 -0
 -02
 -03

Since there are twelve switches that can be either present or absent, there are 212 possible combinations. These are not
completely independent, since some switch settings imply others, especially the three -0 flags, but we will ignore thus fact for the
sake of simplifying our example, and just try all 4096 combinations, Indeed, which switch settings are redundant in the presence of
others should be deducible from our results!

Our plan will be to take a simple test program and compile it with all possible switch combinations and run it, reporting back the
times. Since we have 4096 jobs to run, the use of a cluster will make a big difference, even if the individual tasks are short.

For our test program, we will use a straightforward matrix-matrix multiply program, shown in Figure 7.10. It multiples two 300 × 300
matrices, timing the calculation, this may not be the highest performing way to do this, but it will do for our purposes. The program
echoes its command line arguments, which it does not otherwise use; we will use them to help us record the arguments used to
compile the program.

#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#define SIZE 300

main(int argc, char *argv[])
{
 double a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE];
 int i, j, k;
 struct timeval tv;
 double starttime, endtime;

 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 a[i][j] = (double) (i + j);
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 b[i][j] = (double) (i + j);
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 c[i][j] = 0.0;

 gettimeofday(&tv, (struct timezone *) 0);
 starttime = tv.tv_sec + (tv.tv_usec / 1000000.0);
 for (i = 0; i < SIZE; i++) {
 for (j = 0; j < SIZE; j++) {
 for (k = 0; k < SIZE; k++) {
 c[i][j] = c[i][j] + a[i][k] * b [k][j];
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 }
 gettimeofday(&tv, (struct timezone *) 0);
 endtime = tv.tv_sec + (tv.tv_usec / 1000000.0);
 printf("%f seconds for", endtime - starttime);
 for (i = 1; i < argc; i++)
 printf(" %s", argv[i]);
 printf("\n");
}

Figure 7.10: Matrix-matrix multiply program

Our worker programs will just be the sequence
 gcc <flags> -o matmult matmult.c
 matmult

and the manager will start them with ssh, on hosts whose names are in a file. The other argument to our manager is a file of
possible arguments. It contains exactly the twelve lines listed above. The manager just steps through the numbers from 0 up to
the total number of runs (in our case 4096) treating each number as a binary number where a 1 bit represent the presence of the
compiler switch corresponding to that position in the binary number. Thus we will run through all possible combinations.

The overall plan is to loop through the parameter space represented by the binary numbers represented by the binary numbers
from 0 to 212. If there is a free host (no worker is working there) we assign it the next task; if not we select on the sockets that
are open to currently working workers. When one of them reports back, we add it back to the list of free hosts. At the end, after all
the work has been assigned, we still have to wait for the last tasks to complete.

Let us step through the code in Figure 7.11 in detail. First we read in the list of hosts (initial value of the list freeHosts) and the
list of possible arguments (parmList). We initialize the set of sockets to select on to empty since there are no workers yet, and
create an empty Python dictionary (fd2host) where we will keep track of busy hosts and the connections to them. We set
numParmSets to the number of subtasks, which we can calculate from the number of possible compiler flags in the input file.
Then we enter the main loop, which runs until we have assigned all the work and there are no outstanding workers working. If
there is a subtask still to do and a free host to do it on, we construct the parameter list corresponding to the next task (in
ParmSet), and pick the first host from the list of free hosts, temporarily removing it from the list. We then build a string containing
the specification of the subtask. The Popen3 command forks a process that runs the ssh program locally, which runs the gcc-
matmult sequence remotely. The ssh's, and therefore the remote processes, run in parallel.

#!/usr/bin/python

from sys import argv
from popen2 import Popen3
from select import select, error

hostFile = open(argv[1])
parmsFile = open(argv[2])
freeHosts = [line.strip() for line in hostFile.readlines()]
parmList = [line.strip() for line in parmsFile.readlines()]
lenParmList = len(parmList)
socketsToSelect = []
fd2host = {}
numParmSets = 2 ** lenParmList
pcnt = 0
while pcnt < numParmSets or socketsToSelect:
 if pcnt < numParmSets and freeHosts:
 parmSet = []
 for i in range(0,lenParmList):
 bit = 1 << i
 if bit & pcnt:
 parmSet.append(parmList[lenParmList-i-1])
 host = freeHosts[0]
 freeHosts.remove(host)
 cmd = ("ssh -l lusk -x -n %s 'gcc %s -o matmult matmult.c; " +
 "matmult %s'") % (host,' '.join(parmSet),' '.join(parmSet))
 runner = Popen3(cmd)
 runfd = runner.fromchild
 socketsToSelect.append(runfd)
 fd2host[runfd] = host
 pcnt += 1
 else:
 readyFDs = 0
 (readyFDs,None,None) = select(socketsToSelect,[],[],30)
 for fd in readyFDs:
 line = fd.readline()
 if line:
 print '%s on %s' % (line.strip(),fd2host[fd])
 else:
 freeHosts.append(fd2host[fd])
 socketsToSelect.remove(fd)
 fd.close()

Figure 7.11: Manager for parameter study

We set runfd to the stdout of the ssh, which collects the stdout from the matmult. Each line of stdout will contain the time
followed by the compiler flags used. Then we add this fd to the list of sockets available for selecting on and enter into the list
fd2host the host attached to that fd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fd2host the host attached to that fd.

If there are no free hosts or we have already assigned all the subtasks, then we select on the sockets connected to busy workers.
When one those sockets becomes active, it means that the associated worker has set us a line of output. We read it and print it,
or if the read fails (the worker exited, which sends an EOF on the socket), we close that socket, take it out of the list of sockets to
select on, and add the corresponding host to the list of free hosts, since it can mow be assigned another subtask.

The manager exits once all the subtasks have been done and all the workers have completed. If we run this with
 parmstudy.py hostfile parmfile | sort -n

then we will get the best combinations at the top of the list. Try it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Sequence Matching in Computational Biology
One of the most exciting application areas for clusters is bioinformatics. An enormous amount of fundamental data is becoming
available in the form of sequences: either nucleotide sequences (RNA and DNA) or amino acid sequences (proteins). In both
cases the data comes encoded in the form of long strings of characters. Important biological information can be extracted from
this data by matching, either exactly or inexactly, single strings of characters against other strings, or, more commonly, against
large databases of strings in order to find similarities. The process is like a glorified grep.

7.4.1 BLAST

Widely distributed (sequential) tools exist for matching a string, or a small file of strings, against a database of other strings. One
of the most widely used is a program called BLAST [2]. BLAST can deal with both nucleotide and amino acid sequences. Here we
will focus on amino acid sequences, which describe the structure of proteins. BLAST, together with many other tools, uses FASTA
format. Here is a single protein in FASTA format. Each letter in the sequence represents a single amino acid.
>sp|P28469 Alcohol dehydrogenase alpha chain (ADH).
 - Macaca mulatta
MSTAGKVIKCKAAVLWEVMKPFSIEDVEVAPPKAYEVRIKMVTVGICGTDDH
VVSGTMVTPLPVILGHEAAGIVESVGEGVTTVEPGDKVIPLALPQCGKCRI
CKTPERNYCLKNDVSNPRGTLQDGTSRFTCRGKPIHHFLGVSTFSQYTVVD
ENAVAKIDAASPMEKVCLIGCGFSTGYGSAVKVAKVTPGSTCAVFGLGGVG
LSAVMGCKAAGAARIIAVDINKDKFAKAKELGATECINPQDYKKPIQEVLK
EMTDGGVDFSFEVIGRLDTMMASLLCCHEACGTSVIVGVPPDSQNLSINPM
LLLTGRTWKGAVYGGFKSKEDIPKLVADFMAKKFSLDALITHVLPFEKINE
GFDLLRSGKSIRTILTF

Files containing proteins in FASTA format are fed into a program called formatdb to create an indexed database, consisting of
three files, that is structured to facilitate searching for matches. Suppose we have constructed a small database of proteins and
we wish to search for substring similarities between our protein above (P28469) and the proteins in our database (the three files
produced from the file 'homodimer.faa' by formatdb). Then we put our protein in a file that we might call
'homodimerstest.faa' and do:
 blastall -i homodimerstest.faa
 -d homodimer.faa
 -p blastp

The last parameter specifies the standard protein-protein matching algorithm. We get the following output, which lists the proteins
that are similar in some way, sorted in decreasing order of similarity.
Query= sp|P28469 Alcohol dehydrogenase alpha chain (ADH).
- Macaca mulatta (375 letters)

Database: homodimer.faa
 30 sequences; 10,597 total letters

Searching.done
 Score E
Sequences producing significant alignments: (bits) Value

sp|P28469 Alcohol dehydrogenase alpha chain (ADH). ... 721 0.0
sp|P14139 Alcohol dehydrogenase (ADH). - Papio hama... 682 0.0
sp|Q03505 Alcohol dehydrogenase alpha chain (ADH). ... 623 0.0
sp|Q64415 Alcohol dehydrogenase A chain . - Geomys k... 568 e-165
sp|Q64413 Alcohol dehydrogenase A chain . - Geomys b... 568 e-165
sp|P19631 Alcohol dehydrogenase alpha chain (ADH3).... 538 e-156
sp|P80338 Alcohol dehydrogenase I . - Struthio camelus 536 e-155
sp|P49645 Alcohol dehydrogenase I . - Apteryx australis 533 e-155
...

We also get details about just exactly what the similarities were.
>sp|P14139 Alcohol dehydrogenase (ADH). - Papio hamadryas
 Length = 375
 Score = 682 bits (1761), Expect = 0.0
 Identities = 336/375 (89%), Positives = 346/375 (92%)

Query: 1 MSTAGKVIKCKAAVLWEVMKPFSIEDVEVAPPKAYEVRIKMVTVGICGTDDHVVSGTMVT 60
 MSTAGKVIKCKAAVLWEV KPFSIEDVEVAPPKAYEVRIKMV VGIC TDDHVVSG +V+
Sbjct: 1 MSTAGKVIKCKAAVLWEVKKPFSIEDVEVAPPKAYEVRIKMVAVGICRTDDHVVSGNLVS 60

Query: 61 PLPVILGHEAAXXXXXXXXXXXXXXXXDKVIPLALPQCGKCRICKTPERNYCLKNDVSNP 120
 PLP ILGHEAA DKVIPL PQCGKCR+CK+PE NYC+KND+SNP
Sbjct: 61 PLPAILGHEAAGIVESVGEGVTTVKPGDKVIPLFTPQCGKCRVCKSPEGNYCVKNDLSNP 120

...

7.4.2 Running BLAST in Parallel

A single machine is sufficient for running small BLAST jobs, but some of the most important information is extracted by running
jobs involving large numbers of sequences. One widely used database contains roughly 1.4 million sequences. Suppose we want
to compare all the sequences in the database against one another. This is in some sense the largest possible BLAST job, but
many other smaller BLAST jobs are still large.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately, parallelism abounds. Clusters are popular platforms in computational biology precisely because there is so much
parallelism in many biologically significant computations. Moreover, most of them fit the manager/worker structure we have been
discussing in this chapter. Here we will describe one way to carry out a large BLAST computation.

The plan is to use the manager/worker scheme described in the previous section with a number of changes.
1. The database will be distributed ahead of time to all the nodes of the cluster using either rsync or rdist.

2. The workers will run blastall with an input file consisting of some subset of the large number of input
sequences, defined by the manager and referred to here as a chunk of input sequences. Each chunk will be
sent to a worker by the manager over a socket connected to the worker.

3. Each subtask will consist of running blastall with a chunk of input sequences against the database.

4. The workers will be persistent. That is, instead of a new process being started by ssh for each subtask, each
worker will remain running, exchanging messages over a socket with the manager, until the end of the job.

5. When a worker finishes a chunk, the output of the BLAST run will be copied to a directory of output files using
scp.

6. The manager is not responsible for starting the workers. The manager will start off selecting only on his
"listening" socket; as new workers are started (by whatever means) they connect to the manager and their
sockets are added to the "select" list. Thus workers can come and go independently.

7. Individual worker processes can die, or nodes crash altogether, with no impact on the job as long as the
manager keeps running. If a worker dies, it can be replaced by another one, which just connects to the manager
on the manager's advertised listening port and joins the worker pool.

8. The manager keeps track of the chunks that have been assigned to workers, those that have been completed,
and those that have not yet been assigned. Every time this information changes, the manager writes it to a file.
Thus, the whole job can be restarted if the system crashes.

The code is not given here, but can be constructed using the Python code we used in Section 7.2.6.

The combination of allowing the pool of workers to vary in size and keeping track of exactly what work has been done contributes
to the fault tolerance of this scheme: if workers or the machines they are running on fail, they can be replaced; and even if the
manager dies or must be halted due to scheduling constraints, it can be restarted and pick up again where it left off.

We note that a number of useful tools for dealing with FASTA format in Python, and other Python-based tools for computational
biology, can be found at www.biopython.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 Decomposing Programs Into Communicating Processes
Not all problems can be divided into independent tasks. As we saw in Section 1.3.6, some applications are too large, in terms of
their memory or compute needs, for a single processor or even a single SMP node. Solving these problems requires breaking the
task into communicating (rather than independent) processes. In this section we will introduce two examples of decomposing a
single task into multiple communicating processes. Because these programs are usually written using a message-passing
programming model such as MPI or PVM, the details of implementing these examples are left to the chapters on these
programming models.

7.5.1 Domain Decomposition

Many problems, such as the 3-dimensional partial differential equation (PDE) introduced in Section 1.3.6, are described by an
approximation on a mesh of values. This mesh can be structured (also called regular) or unstructured. These meshes can be very
large (as in the example in Chapter 1) and require more memory and computer power than a single processor or node can supply.
Fortunately, the

For simplicity, we consider a two-dimensional example. A simple PDE is the Poisson equation,

∇ 2u = f in the interior,

u = 0 on the boundary

where f is a given function and the problem is to find u. To further simplify the problem, we have chosen Dirichlet boundary
conditions, which just means that the value of u along the boundary is zero. Finally, the domain is the unit square [0, 1] × [0, 1]. A
very simple discretization of this problem uses a finite difference approximation to the derivatives, yielding the approximation

Defining a mesh of points (xi, yj) = (i × h, j × h) with h = 1/n, and using the ui,j to represent the approximation of u(xi, yj), we get

(7.1)

We can now represent this using two dimensional arrays. We'll use Fortran because Fortran has some features that will make
these examples easier to write. We will use U(i, j) as our computed value for ui,j.

To solve this approximation for the Poisson problem, we need to find the the values of U. This is harder than it may seem at first,
because Equation 7.1 must be satisified at all points on the mesh (i.e., all values of i and j) simultaneously. In fact, this equation
leads to a system of simultaneous linear equations. Excellent software exists to solve this problem (see Chapter 12), but we will
use a very simple approach to illustrate how this problem can be parallelized. The first step is to write this problem as an iterative
process

This is the Jacobi iteration, and can be written in Fortran as
 real UNEW(0:n,0:n), U(0:n,0:n), F(1:n-1,1:n-1)
 ... code to initialize U and F
 do iter=1,itermax
 do j=1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

At this point, we can see how to divide this problem across multiple processors. The simplest approach is to divide the mesh into
small pieces, giving each piece to a separate processor. For example, we could divide the original mesh (U(0:n,0:n) in the
code) into two parts: U(0:n,0:n/2) and (U(0:n,n/2+1:n). This approach is called domain decomposition, and is based on
using the decompositions of the physical domain (the unit square in this case) to create parallelism.

Applying this approach for two processors, we have the two code fragments shown in Figure 7.12. Note that each process now

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applying this approach for two processors, we have the two code fragments shown in Figure 7.12. Note that each process now
has only half of the data because each array is declared with only the data "owned" by that processor. This also shows why we
used Fortran; the ability to specify the range of the indices for the arrays in Fortran makes these codes very easy to write.

Code for process zero
 real UNEW(0:n,0:n/2), U(0:n,0:n/2), F(1:n-1,1:n/2)
 ... code to initialize u and f
 do iter=1,itermax
 do j=1,n/2
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Code for process one
 real UNEW(0:n,n/2+1:n), U(0:n,n/2+1:n), F(1:n-1,n/2+1:n-1)
 ... code to initialize u and f
 do iter=1,itermax
 do j=n/2+1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Figure 7.12: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration

However, unlike the decompositions into independent tasks in the first part of this chapter, this decomposition does not produce
indepentent tasks. Consider the case of j=n/2 in the original code. Process zero in Figure 7.12 computes the values of
UNEW(i,n/2). However, to do this, it needs the values of U(i,n/2+1). This data is owned by processor one. In order to make
this code work, we must communicate the data owned by processor one (the values of U(i,n/2+1) for i=1,...,n-1) to
processor zero. We must also allocate another row of storage to hold these values; this extra row is often called a ghost points or
a halo. The resulting code is shown in Figure 7.13.

Code for process zero
 real UNEW(0:n,0:n/2+1), U(0:n,0:n/2+1), F(1:n-1,1:n/2)
 ... code to initialize u and f
 do iter=1,itermax
 ... code to Get u(i,n/2+1) from process one
 do j=1,n/2
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Code for process one
 real UNEW(0:n,n/2:n), U(0:n,n/2:n), F(1:n-1,n/2+1:n-1)
 ... code to initialize u and f
 do iter=1,itermax
 ... code to Get u(i,n/2) from process zero
 do j=n/2+1,n-1
 do i=1,n-1
 UNEW(i,j) = 0.25 * (U(i+1,j)+U(i-1,j) + &
 U(i,j+1)+U(i,j-1) - F(i,j))
 enddo
 enddo
 ... code to determine if the iteration has converged
 enddo

Figure 7.13: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration, including the
communication of ghost points. Note the changes in the declarations for U and UNEW.

Note also that although both processes have variables named UNEW and i, these are different variables. This kind of parallel
programming model is sometimes called a shared-nothing model because no data (variables or instructions) are shared between
the processes. Instead, explicit communication is required to move data from one process to another. Section 8.3 discusses this
example in detail, using the Message Passing Interface (MPI) to implement the communication of data between the processors,
using code written in C.

There are more complex and powerful domain decomposition techniques, but they all start from dividing the domain (usually the
physical domain of the problem) into a number of separate pieces. These pieces must communicate along their edges at each
step of the computation. As described in Section 1.3.6, a decomposition into squares (in two-dimensions) or cubes (in three
dimensions) reduces the amount of data that must be communicated because those shapes maximize the volume to surface area
ratio for rectangular solids.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5.2 Data Structure Decomposition

Not all problems have an obvious decomposition in terms of a physical domain. For these problems, a related approach that
decomposes the data-structures in the application can be applied. An example of this kind of application is the solution of a
system of linear equations Ax = b, where the equations are said to be dense. This simply means that most of the elements of the
matrix describing the problem are non-zero. A good algorihm for solving this problem is called LU factorization, because it involves
first computing a lower trianular matrix L and an upper triangular matrix U such that the original matrix A is given by the product
LU. Because an lower (resp. upper) triangular matrix has only zero elements below (resp. above) the diagonal, it is easy to find
the solution x once L and U are known. This is the algorithm used in the LINPACK [34] benchmark. A parallel verison of this is
used in the High-Performance Linpack benchmark, and this section will sketch out some of the steps used in parallelizing this kind
of problem.

The LU factorization algorithm looks something like the code shown in Figure 7.14, an n × n matrix A represented by the Fortran
array a(n,n).

real a(n,n)
do i=i, n
 do k=1,i-1
 sum = 0
 do j=1,k-1
 sum = sum + a(i,j)*a(j,k)
 enddo
 a(i,k) = (a(i,k) - sum) / a(k,k)
 enddo
 do k=1,i
 sum = 0
 do j=1,k-1
 sum = sum + a(k,j)*a(j,i)
 enddo
 a(k,i) = a(k,i) - sum
 enddo
enddo

Figure 7.14: LU Factorization code. The factors L and U are computed in-place; that is, they are stored over the input matrix
a.

An obvious way to decompose this problem, following the domain decomposition discussion, is to divide the matrix into groups of
rows (or groups of columns):

However, this will yield an inefficient program. Because of the outer-loop over the rows of the matrix (the loop over i), once i
reaches n/4 in the case of four processors, processor zero has no work left to do. As the computation proceeds, fewer and fewer
processors can help with the computation. For this reason, more complex decompositions are used. For example, the
ScaLAPACK library uses the two-dimensional block-cyclic distribution shown here:

This decomposition ensures that most processors are in use until the very end of the algorithm.

Just as in the domain decomposition example, communication is required to move data from one processor to another. In this
example, data from the ith row must be communicated from the processors that hold that data to the processors holding the data
needed for the computations (the loops over j). We do not show the communication here; see the literature on solving dense
linear systems in parallel for details on these algorithms.

The technique of dividing the data structure among processors is a general one. Chosing the decomposition to use requires
balancing the issues of load balance, communication, and algorithm complexity. Addressing these may suggest algorithmic
modifications to provide better parallel performance. For example, certain variations of the LU factorization method described
above may perform the floating-point operations in a different order. Because floating-point arithmetic is not associative, small
differences in the results may occur. Other variations may produce answers that are equally valid as approximations but give
results that are slightly different. Care must be exercised here, however, because some approximations are better behaved than
others. Before changing the algorithm, make sure that you understand the consequences of any change. Consult with a numerical
analysist or read about stability and well-posedness in any textbook on numerical computing.

7.5.3 Other Approaches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many techniques for creating parallel algorithms. Most involve dividing the problem into separate tasks that may need to
communicate. For an effective decomposition for a Beowulf cluster, the amount of computation must be large relative to the
amount of communication. Examples of these kinds of problems include sophisticated search and planning algorithms, where the
results of some tests are used to speed up other tests (for example, a computation may discover that a subproblem has already
been solved.).

Some computations are implemented as master/worker applications, where each worker is itself a parallel program (e.g., because
of the memory needs or the requirement that the computation finish within a certain amount of time, such as overnight).
Master/worker algorithms can also be made more sophisticated, guiding the choice and order of worker tasks by previous results
returned by the workers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Parallel Programming with MPI

Overview
William Gropp and Ewing Lusk

Chapter 7 described how parallel computation on a Beowulf is accomplished by dividing a computation into parts, making use of
multiple processes and executing each on a separate processor. Sometimes an ordinary program can be used by all the
processes, but with distinct input files or parameters. In such a situation, no communication occurs among the separate tasks.
When the power of a parallel computer is needed to attack a large problem with a more complex structure, however, such
communication is necessary.

One of the most straightforward approaches to communication is to have the processes coordinate their activities by sending and
receiving messages, much as a group of people might cooperate to perform a complex task. This approach to achieving
parallelism is called message passing.

In this chapter and the next, we show how to write parallel programs using MPI, the Message Passing Interface. MPI is a
message-passing library specification. All three parts of the following description are significant.

MPI addresses the message-passing model of parallel computation, in which processes with separate address
spaces synchronize with one another and move data from the address space of one process to that of another by
sending and receiving messages. [1]

MPI specifies a library interface, that is, a collection of subroutines and their arguments. It is not a language; rather,
MPI routines are called from programs written in conventional languages such as Fortran, C, and C++.

MPI is a specification, not a particular implementation. The specification was created by the MPI Forum, a group of
parallel computer vendors, computer scientists, and users who came together to cooperatively work out a
community standard. The first phase of meetings resulted in a release of the standard in 1994 that is sometimes
referred to as MPI-1. Once the standard was implemented and in wide use a second series of meetings resulted in
a set of extensions, referred to as MPI-2. MPI refers to both MPI-1 and MPI-2.

As a specification, MPI is defined by a standards document, the way C, Fortran, or POSIX are defined. The MPI standards
documents are available at www.mpi-forum.org and may be freely downloaded. The MPI-1 and MPI-2 standards are available as
journal issues [72, 73] and in annotated form as books in this series [105, 46]. Implementations of MPI are available for almost all
parallel computers, from clusters to the largest and most powerful parallel computers in the world. In Section 8.9 we summarizes
the most popular cluster implementations.

A goal of the MPI Forum was to create a powerful, flexible library that could be implemented efficiently on the largest computers
and provide a tool to attack the most difficult problems in parallel computing. It does not always do the simplest tasks in the
simplest way but comes into its own as more complex functionality is needed. As a result, many tools and libraries have been built
on top of MPI (see Table 9.1 and Chapter 12). To get the flavor of MPI programming, in this chapter and the next we work through
a set of examples, starting with the simplest.

[1]Processes may be single threaded, with one program counter, or multithreaded, with multiple program counters. MPI is for
communication among processes rather than threads. Signal handlers can be thought of as executing in a separate thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Hello World in MPI
To see what an MPI program looks like, we start with the classic "hello world" program. MPI specifies only the library calls to be
used in a C, Fortran, or C++ program; consequently, all of the capabilities of the language are available. The simplest "Hello
World" program is shown in Figure 8.1.

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello World\n");
 MPI_Finalize();
 return 0;
}

Figure 8.1: Simple "Hello World" program in MPI.

All MPI programs must contain one call to MPI_Init (or MPI_Init_thread, described in Section 9.9) and one to
MPI_Finalize. All other[2] MPI routines must be called after MPI_Init and before MPI_Finalize. All C and C++ programs
must also include the file 'mpi.h'; Fortran programs must either use the MPI module or include mpif.h.

The simple program in Figure 8.1 is not very interesting. In particular, all processes print the same text. A more interesting version
has each process identify itself. This version, shown in Figure 8.2, illustrates several important points. Of particular note are the
variables rank and size. Because MPI programs are made up of communicating processes, each process has its own set of
variables. In this case, each process has its own address space containing its own variables rank and size (and argc, argv,
etc.). The routine MPI_Comm_size returns the number of processes in the MPI job in the second argument. Each of the MPI
processes is identified by a number, called the rank, ranging from zero to the value of size minus one. The routine
MPI_Comm_rank returns in the second argument the rank of the process. The output of this program might look something like
the following:
 Hello World from process 0 of 4
 Hello World from process 2 of 4
 Hello World from process 3 of 4
 Hello World from process 1 of 4

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("Hello World from process %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Figure 8.2: A more interesting version of "Hello World".

Note that the output is not ordered from processes 0 to 3. MPI does not specify the behavior of other routines or language
statements such as printf; in particular, it does not specify the order of output from print statements. However, there are tools,
built using MPI, that can provide ordered output of messages.

8.1.1 Compiling and Running MPI Programs

The MPI standard does not specify how to compile and link programs (neither do C or Fortran). However, most MPI
implementations provide tools to compile and link programs.

For example, one popular implementation, MPICH, provides scripts to ensure that the correct include directories are specified and
that the correct libraries are linked. The script mpicc can be used just like cc to compile and link C programs. Similarly, the scripts
mpif77, mpif 90, and mpicxx may be used to compile and link Fortran 77, Fortran, and C++ programs.

If you prefer not to use these scripts, you need only ensure that the correct paths and libraries are provided. The MPICH
implementation provides the switch -show for mpicc that shows the command lines used with the C compiler and is an easy way
to find the paths. Note that the name of the MPI library may be 'libmpich.a', 'libmpi.a', or something similar and that
additional libraries, such as 'libsocket.a' or 'libgm.a', may be required. The include path may refer to a specific
installation of MPI, such as '/usr/include/local/mpich2-1.0/include'.

Running an MPI program (in most implementations) also requires a special program, particularly when parallel programs are
started by a batch system as described in Chapter 14. Many implementations provide a program mpirun that can be used to start
MPI programs. For example, the command
 mpirun -np 4 helloworld

runs the program helloworld using four processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runs the program helloworld using four processes.

The name and command-line arguments of the program that starts MPI programs were not specified by the original MPI standard,
just as the C standard does not specify how to start C programs. However, the MPI Forum did recommend, as part of the MPI-2
standard, an mpiexec command and standard command-line arguments to be used in starting MPI programs. A number of MPI
implementations including the all-new version of MPICH, called MPICH2, now provide mpiexec. The name mpiexec was
selected because no MPI implementation was using it (many are using mpirun, but with incompatible arguments). The syntax is
almost the same as for the MPICH version of mpirun; instead of using -np to specify the number of processes, the switch -n is
used:
 mpiexec -n 4 helloworld

The MPI standard defines additional switches for mpiexec; for more details, see Section 4.1, "Portable MPI Process Startup," in
the MPI-2 standard. For greatest portability, we recommend that the mpiexec form be used; if your preferred implementation
does not support mpiexec, point the maintainers to the MPI-2 standard.

Most MPI implementations will attempt to run each process on a different processor; most MPI implementations provide a way to
select particular processors for each MPI process.

8.1.2 Adding Communication to Hello World

The code in Figure 8.2 does not guarantee that the output will be printed in any particular order. To force a particular order for the
output, and to illustrate how data is communicated between processes, we add communication to the "Hello World" program. The
revised program implements the following algorithm:
 Find the name of the processor that is running the process
 If the process has rank > 0, then
 send the name of the processor to the process with rank 0
 Else
 print the name of this processor
 for each rank,
 receive the name of the processor and print it
 Endif

This program is shown in Figure 8.3. The new MPI calls are to MPI_Send and MPI_Recv and to MPI_Get_processor_name.
The latter is a convenient way to get the name of the processor on which a process is running. MPI_Send and MPI_Recv can be
understood by stepping back and considering the two requirements that must be satisfied to communicate data between two
processes:

1. Describe the data to be sent or the location in which to receive the data

2. Describe the destination (for a send) or the source (for a receive) of the data.

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int numprocs, myrank, namelen, i;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 char greeting[MPI_MAX_PROCESSOR_NAME + 80];
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Get_processor_name(processor_name, &namelen);

 sprintf(greeting, "Hello, world, from process %d of %d on %s",
 myrank, numprocs, processor_name);

 if (myrank == 0) {
 printf("%s\n", greeting);
 for (i = 1; i < numprocs; i++) {
 MPI_Recv(greeting, sizeof(greeting), MPI_CHAR,
 i, 1, MPI_COMM_WORLD, &status);
 printf("%s\n", greeting);
 }
 }
 else {
 MPI_Send(greeting, strlen(greeting) + 1, MPI_CHAR,
 0, 1, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return 0;
}

Figure 8.3: A more complex "Hello World" program in MPI. Only process 0 writes to stdout; each process sends a message
to process 0.

In addition, MPI provides a way to tag messages and to discover information about the size and source of the message. We will
discuss each of these in turn.

Describing the Data Buffer
A data buffer typically is described by an address and a length, such as "a,100," where a is a pointer to 100 bytes of data. For
example, the Unix write call describes the data to be written with an address and length (along with a file descriptor). MPI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, the Unix write call describes the data to be written with an address and length (along with a file descriptor). MPI
generalizes this to provide two additional capabilities: describing noncontiguous regions of data and describing data so that it can
be communicated between processors with different data representations. To do this, MPI uses three values to describe a data
buffer: the address, the (MPI) datatype, and the number or count of the items of that datatype. For example, a buffer a containing
four C ints is described by the triple "a, 4, MPI_INT." There are predefined MPI datatypes for all of the basic datatypes
defined in C, Fortran, and C++. The most common datatypes are shown in Table 8.1.

Table 8.1: The most common MPI datatypes. C and Fortran types on the same row are often but not always the same
type. The type MPI_BYTE is used for raw data bytes and does not correspond to any particular datatype. The type
MPI_PACKED is used for data that was incrementally packed with the routine MPI_Pack. The C++ MPI datatypes
have the same name as the C datatypes but without the MPI_prefix, for example, MPI::INT.

C Fortran
 MPI type MPI type

int MPI_INT INTEGER MPI_INTEGER
double MPI_DOUBLE DOUBLE PRECISION MPI_DOUBLE_PRECISION
float MPI_FLOAT REAL MPI_REAL
long MPI_LONG

char MPI_CHAR CHARACTER MPI_CHARACTER
 LOGICAL MPI_LOGICAL
— MPI_BYTE — MPI_BYTE
— MPI_PACKED — MPI_PACKED

Describing the Destination or Source
The destination or source is specified by using the rank of the process. MPI generalizes the notion of destination and source rank
by making the rank relative to a group of processes. This group may be a subset of the original group of processes. Allowing
subsets of processes and using relative ranks make it easier to use MPI to write component-oriented software (more on this in
Section 9.4). The MPI object that defines a group of processes (and a special communication context that will be discussed in
Section 9.4) is called a communicator. Thus, sources and destinations are given by two parameters: a rank and a communicator.
The communicator MPI_COMM_WORLD is predefined and contains all of the processes started by mpirun or mpiexec. As a
source, the special value MPI_ANY_SOURCE may be used to indicate that the message may be received from any rank of the MPI
processes in this MPI program.

Selecting among Messages
The "extra" argument for MPI_Send is a nonnegative integer tag value. This tag allows a program to send one extra number with
the data. MPI_Recv can use this value either to select which message to receive (by specifying a specific tag value) or to use the
tag to convey extra data (by specifying the wild card value MPI_ANY_TAG). In the latter case, the tag value of the received
message is stored in the status argument (this is the last parameter to MPI_Recv in the C binding). This is a structure in C, an
integer array in Fortran, and a class in C++. The tag and rank of the sending process can be accessed by referring to the
appropriate element of status as shown in Table 8.2.

Table 8.2: Accessing the source and tag after an MPI_Recv.

C Fortran C++

status.MPI_SOURCE status(MPI_SOURCE) status.Get_source()
status.MPI_TAG status(MPI_TAG) status.Get_tag()

Determining the Amount of Data Received
The amount of data received can be found by using the routine MPI_Get_count. For example,
 MPI_Get_count(&status, MPI_CHAR, &num_chars);

returns in num_chars the number of characters sent. The second argument should be the same MPI datatype that was used to
receive the message. (Since many applications do not need this information, the use of a routine allows the implementation to
avoid computing num_chars unless the user needs the value.)

Our example provides a maximum-sized buffer in the receive. It is also possible to find the amount of memory needed to receive a
message by using MPI_Probe, as shown in Figure 8.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char *greeting;
 int num_chars, src;
 MPI_Status status;
 ...
 MPI_Probe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status);
 MPI_Get_count(&status, MPI_CHAR, &num_chars);
 greeting = (char *)malloc(num_chars);
 src = status.MPI_SOURCE;
 MPI_Recv(greeting, num_chars, MPI_CHAR,
 src, 1, MPI_COMM_WORLD, &status);

Figure 8.4: Using MPI_Probe to find the size of a message before receiving it.

MPI guarantees that messages are ordered, that is, that messages sent from one process to another arrive in the same order in
which they were sent and that an MPI_Recv after an MPI_Probe will receive the message that the probe returned information on
as long as the same message selection criteria (source rank, communicator, and message tag) are used. Note that in this
example, the source for the MPI_Recv is specified as status.MPI_SOURCE, not MPI_ANY_SOURCE, to ensure that the message
received is the same as the one about which MPI_Probe returned information.

[2]There are a few exceptions, including MPI_Initialized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Manager/Worker Example
We now begin a series of examples illustrating approaches to parallel computations that accomplish useful work. While each
parallel application is unique, a number of paradigms have emerged as widely applicable, and many parallel algorithms are
variations on these patterns.

One of the most universal is the "manager/worker" or "task parallelism" approach. The idea is that the work that needs to be done
can be divided by a "manager" into separate pieces and the pieces can be assigned to individual "worker" processes. Thus the
manager executes a different algorithm from that of the workers, but all of the workers execute the same algorithm. Most
implementations of MPI (including MPICH2) allow MPI processes to be running different programs (executable files), but it is often
convenient (and in some cases required) to combine the manager and worker code into a single program with the structure shown
in Figure 8.5.

#include "mpi.h"

int main(int argc, char *argv[])
{
 int numprocs, myrank;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 if (myrank == 0) /* manager process */
 manager_code (numprocs);
 else /* worker process */
 worker_code ();
 MPI_Finalize();
 return 0;
}

Figure 8.5: Framework of the matrix-vector multiply program.

Sometimes the work can be evenly divided into exactly as many pieces as there are workers, but a more flexible approach is to
have the manager keep a pool of units of work larger than the number of workers and assign new work dynamically to workers as
they complete their tasks and send their results back to the manager. This approach, called self-scheduling, works well in the
presence of tasks of varying sizes or workers of varying speeds.

We illustrate this technique with a parallel program to multiply a matrix by a vector. (A Fortran version of this same program can
be found in [48].) This program is not a particularly good way to carry out this operation, but it illustrates the approach and is
simple enough to be shown in its entirety. The program multiplies a square matrix a by a vector b and stores the result in c. The
units of work are the individual dot products of the rows of a with the vector b. Thus the manager, code for which is shown in
Figure 8.6, starts by initializing a. The manager then sends out initial units of work, one row to each worker. We use the MPI tag
on each such message to encode the row number we are sending. Since row numbers start at 0 but we wish to reserve 0 as a tag
with the special meaning of "no more work to do," we set the tag to one greater than the row number. When a worker sends back
a dot product, we store it in the appropriate place in c and send that worker another row to work on. Once all the rows have been
assigned, workers completing a task are sent a "no more work" message, indicated by a message with tag 0.

#define SIZE 1000
#define MIN(x, y) ((x) < (y) ? x : y)

void manager_code(int numprocs)
{
 double a[SIZE][SIZE], c[SIZE];

 int i, j, sender, row, numsent = 0;
 double dotp;
 MPI_Status status;

 /* (arbitrary) initialization of a */
 for (i = 0; i < SIZE; i++)
 for (j = 0; j < SIZE; j++)
 a[i][j] = (double) j;

 for (i = 1; i < MIN(numprocs, SIZE); i++) {
 MPI_Send(a[i-1], SIZE, MPI_DOUBLE, i, i, MPI_COMM_WORLD);
 numsent++;
 }
 /* receive dot products back from workers */
 for (i = 0; i < SIZE; i++) {
 MPI_Recv(&dotp, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 sender = status.MPI_SOURCE;
 row = status.MPI_TAG - 1;
 c[row] = dotp;
 /* send another row back to this worker if there is one */
 if (numsent < SIZE) {
 MPI_Send(a[numsent], SIZE, MPI_DOUBLE, sender,
 numsent + 1, MPI_COMM_WORLD);
 numsent++;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 else /* no more work */
 MPI_Send(MPI_BOTTOM, 0, MPI_DOUBLE, sender, 0,
 MPI_COMM_WORLD);
 }
}

Figure 8.6: The matrix-vector multiply program, manager code.

The code for the worker part of the program is shown in Figure 8.7. A worker initializes b, receives a row of a in a message,
computes the dot product of that row and the vector b, and then returns the answer to the manager, again using the tag to identify
the row. A worker repeats this until it receives the "no more work" message, identified by its tag of 0.

void worker_code(void)
{
 double b[SIZE], c[SIZE];
 int i, row, myrank;
 double dotp;
 MPI_Status status;

 for (i = 0; i < SIZE; i++) /* (arbitrary) b initialization */
 b[i] = 1.0;

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 if (myrank <= SIZE) {
 MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 while (status.MPI_TAG > 0) {
 row = status.MPI_TAG - 1;
 dotp = 0.0;
 for (i = 0; i < SIZE; i++)
 dotp += c[i] * b[i];
 MPI_Send(&dotp, 1, MPI_DOUBLE, 0, row + 1,
 MPI_COMM_WORLD);
 MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 }
 }
}

Figure 8.7: The matrix-vector multiply program, worker code.

This program requires at least two processes to run: one manager and one worker. Unfortunately, adding more workers is unlikely
to make the job go faster. We can analyze the cost of computation and communication mathematically and see what happens as
we increase the number of workers. Increasing the number of workers will decrease the amount of computation done by each
worker, and since they work in parallel, this should decrease total elapsed time. On the other hand, more workers mean more
communication, and the cost of communicating a number is usually much greater than the cost of an arithmetical operation on it.
The study of how the total time for a parallel algorithm is affected by changes in the number of processes, the problem size, and
the speed of the processor and communication network is called scalability analysis. We analyze the matrix-vector program as a
simple example.

First, let us compute the number of floating-point operations. For a matrix of size n, we have to compute n dot products, each of
which requires n multiplications and n - 1 additions. Thus the number of floating-point operations is n × (n + (n - 1)) = n×(2n-1) =
2n2-n. If Tcalc is the time it takes a processor to do one floating-point operation,[3] then the total computation time is (2n2 - n) ×
Tcalc. Next, we compute the number of communications, defined as sending one floating-point number. (We ignore for this simple
analysis the effect of message lengths; following Section 1.3, we could model these as s + rn, where Tcomm ≈ r.) Leaving aside
the cost of communicating b (perhaps it is computed locally in a preceding step), we have to send each row of a and receive back
one dot product answer. So the number of floating-point numbers communicated is (n × n) + n = n2 + n. If Tcomm is the time to
communicate one number, we get (n2 + n) × Tcomm for the total communication time. Thus the ratio of communication time to
computation time is

In many computations the ratio of communication to computation can be reduced almost to 0 by making the problem size larger.
Our analysis shows that this is not the case here. As n gets larger, the term on the left approaches 1/2. Thus we can expect
communication costs to prevent this algorithm from showing good speedups, even on large problem sizes.

The situation is better in the case of matrix-matrix multiplication, which could be carried out by a similar algorithm. We would
replace the vectors b and c by matrices, send the entire matrix b to the workers at the beginning of the computation, and then
hand out the rows of a as work units, just as before. The workers would compute an entire row of the product, consisting of the dot
products of the row of a with all of the column of b, and then return a row of c to the manager.

Let us now do the scalability analysis for the matrix-matrix multiplication. Again we ignore the initial communication of b. The
number of operations for one dot product is n + (n + 1) as before, and the total number of dot products calculated is n2. Thus the
total number of operations is n2 × (2n - 1) = 2n3 - n2. The number of numbers communicated has gone up to (n × n) + (n × n) =
2n2. So the ratio of communication time to computation time has become

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which does tend to 0 as n gets larger. Thus, for large matrices the communication costs play less of a role.

Two other difficulties with this algorithm might occur as we increase the size of the problem and the number of workers. The first is
that as messages get longer, the workers waste more time waiting for the next row to arrive. A solution to this problem is to
"double buffer" the distribution of work, having the manager send two rows to each worker to begin with, so that a worker always
has some work to do while waiting for the next row to arrive.

Another difficulty for larger numbers of processes can be that the manager can become overloaded so that it cannot assign work
in a timely manner. This problem can most easily be addressed by increasing the size of the work unit, but in some cases it is
necessary to parallelize the manager task itself, with multiple managers handling subpools of work units.

A more subtle problem has to do with fairness: ensuring that all worker processes are fairly serviced by the manager. MPI
provides several ways to ensure fairness; see [48, Section 7.1.4].

[3]The symbol f was used in Section 1.3; we use Tcalc here because of the more prominent role of floating point in this analysis.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Two-Dimensional Jacobi Example with One-Dimensional Decomposition
A common use of parallel computers in scientific computation is to approximate the solution of a partial differential equation
(PDE). One of the most common PDEs, at least in textbooks, is the Poisson equation (here shown in two dimensions):

(8.1)

(8.2)

This equation is used to describe many physical phenomena, including fluid flow and electrostatics. The equation has two parts: a
differential equation applied everywhere within a domain F (8.1) and a specification of the value of the unknown u along the
boundary of Γ (the notation ∂ Γ means "the boundary of Γ "). For example, if this equation is used to model the equilibrium
distribution of temperature inside a region, the boundary condition g(x, y) specifies the applied temperature along the boundary,
f(x, y) is zero, and u(x, y) is the temperature within the region. To simplify the rest of this example, we will consider only a simple
domain Γ consisting of a square (see Figure 8.8).

Figure 8.8: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson problem.

To compute an approximation to u(x, y), we must first reduce the problem to finite size. We cannot determine the value of u
everywhere; instead, we will approximate u at a finite number of points (xi,yj) in the domain, where xi = i × h and yj = j × h. (Of
course, we can define a value for u at other points in the domain by interpolating from these values that we determine, but the
approximation is defined by the value of u at the points (xi,yj).) These points are shown as black disks in Figure 8.8. Because of
this regular spacing, the points are said to make up a regular mesh. At each of these points, we approximate the partial
derivatives with finite differences. For example,

If we now let ui,j stand for our approximation to solution of Equation 8.1 at the

point (xi, yj), we have the following set of simultaneous linear equations for the values of u:

(8.3)

For values of u along the boundary (e.g., at x = 0 or y = 1), the value of the boundary condition g is used. If h = l/(n + 1) (so there
are n × n points in the interior of the mesh), this gives us n2 simultaneous linear equations to solve.

Many methods can be used to solve these equations. In fact, if you have this particular problem, you should use one of the
numerical libraries described in Section 12.2. In this section, we describe a very simple (and inefficient) algorithm because, from a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

numerical libraries described in Section 12.2. In this section, we describe a very simple (and inefficient) algorithm because, from a
parallel computing perspective, it illustrates how to program more effective and general methods. The method that we use is
called the Jacobi method for solving systems of linear equations. The Jacobi method computes successive approximations to the
solution of Equation 8.3 by rewriting the equation as follows:

(8.4)

Each step in the Jacobi iteration computes a new approximation to in terms of the surrounding values of uN:

(8.5)

This is our algorithm for computing the approximation to the solution of the Poisson problem. We emphasize that the Jacobi
method is a poor numerical method but that the same communication patterns apply to many finite difference, volume, or element
discretizations solved by iterative techniques.

In the uniprocessor version of this algorithm, the solution u is represented by a two-dimensional array u[max_n] [max_n], and
the iteration is written as follows:
 double u[NX+2][NY+2], u_new[NX+2][NY+2], f[NX+2][NY+2];
 int i, j;
 ...
 for (i=1;i<=NX;i++)
 for (j=1;j<=NY;j++)
 u_new[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] +
 u[i][j+1] + u[i][j-l] - h*h*f[i][j]);

Here, we let u[0][j], u[n+1][j], u[i][0], and u[i][n+1] hold the values of the boundary conditions g (these correspond
to u(0,y), u(1, y), u(x, 0), and u(x, 1) in Equation 8.1). To parallelize this method, we must first decide how to decompose the data
structure u and u_new across the processes. Many possible decompositions exist. One of the simplest is to divide the domain into
strips as shown in Figure 8.8.

Let the local representation of the array u be ulocal; that is, each process declares an array ulocal that contains the part of u
held by that process. No process has all of u; the data structure representing u is decomposed among all of the processes. The
code that is used on each process to implement the Jacobi method is
 double ulocal_new[NLOCAL][NY+2];
 ...
 for (i=i_start;i<=i_end;i++)
 for (j=1;j<=NY;j++)
 ulocal_new[i-i_start][j] =
 0.25 * (ulocal[i-i_start+1][j] + ulocal[i-i_start-1][j] +
 ulocal[i-i_start][j+1] + ulocal[i-i_start][j-1] -
 h*h*flocal[i-i_start][j]);

where i_start and i_end describe the strip on this process (in practice, the loop would be from zero to i_end-i_start; we
use this formulation to maintain the correspondence with the uniprocessor code). We have defined ulocal so that ulocal[0]
[j] corresponds to u[i_start][j] in the uniprocessor version of this code. Using variable names such as ulocal that make it
obvious which variables are part of a distributed data structure is often a good idea.

From this code, we can see what data we need to communicate. For i=i_start we need the values of u[i_start-1][j] for j
between 1 and NY, and for i=i_end we need u[i_end+1][j] for the same range of j. These values belong to the adjacent
processes and must be communicated. In addition, we need a location in which to store these values. We could use a separate
array, but for regular meshes the most common approach is to use ghost or halo cells, where extra space is set aside in the
ulocal array to hold the values from neighboring processes. In this case, we need only a single column of neighboring data, so
we will let u_local[1][j] correspond to u[i_start][j]. This changes the code for a single iteration of the loop to
 exchange_nbrs(ulocal, i_start, i_end, left, right);
 for (i_local=1; i_local<=i_end-i_start+1; i_local++)
 for (j=1; j<=NY; j++)

 ulocal_new[i_local][j] =
 0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +
 ulocal[i_local][j+1] + ulocal[i_local][j-1] -
 h*h*flocal[i_local][j]);

where we have converted the i index to be relative to the start of ulocal rather than u. All that is left is to describe the routine
exchange_nbrs that exchanges data between the neighboring processes. A very simple routine is shown in Figure 8.9.

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status status;
 int c;

 /* Send and receive from the left neighbor */
 MPI_Send(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD);
 MPI_Recv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &status);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MPI_COMM_WORLD, &status);

 /* Send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Send(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD);
 MPI_Recv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &status);
}

Figure 8.9: A simple version of the neighbor exchange code. See the text for a discussion of the limitations of this
routine.

We note that ISO/ANSI C (unlike Fortran) does not allow runtime dimensioning of multidimensional arrays. To keep these
examples simple in C, we use compile-time dimensioning of the arrays. An alternative in C is to pass the arrays as one-
dimensional arrays and compute the appropriate offsets.

The values left and right are used for the ranks of the left and right neighbors, respectively. These can be computed simply by
using the following:
 int rank, size, left, right;
 ...

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 left = rank - 1;
 right = rank + 1;
 if (left < 0) left = MPI_PROC_NULL;
 if (right >= size) right = MPI_PROC_NULL;

The special rank MPI_PROC_NULL indicates the edges of the mesh. If MPI_PROC_NULL is used as the source or destination rank
in an MPI communication call, the operation is ignored. MPI also provides routines to compute the neighbors in a regular mesh of
arbitrary dimension and to help an application choose a decomposition that is efficient for the parallel computer.

The code in exchange_nbrs will work with most MPI implementations for small values of n but, as described in Section 9.3, is
not good practice (and will fail for values of NY greater than an implementation-defined threshold). A better approach in MPI is to
use the MPI_Sendrecv routine when exchanging data between two processes, as shown in Figure 8.10.

/* Better exchange code. */
void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status status;
 int c;

 /* Send and receive from the left neighbor */
 MPI_Sendrecv(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 &ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &status);

 /* Send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Sendrecv(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &status);
}

Figure 8.10: A better version of the neighbor exchange code.

In Sections 9.3 and 9.7, we discuss other implementations of the exchange routine that can provide higher performance. MPI
support for more scalable decompositions of the data is described in Section 9.3.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Collective Operations
A collective operation is an MPI function that is called by all processes belonging to a communicator. (If the communicator is
MPI_COMM_WORLD, this means all processes, but MPI allows collective operations on other sets of processes as well.) Collective
operations involve communication and also sometimes computation, but since they describe particular patterns of communication
and computation, the MPI implementation may be able to optimize them beyond what is possible by expressing them in terms of
MPI point-to-point operations such as MPI_Send and MPI_Recv. The patterns are also easier to express with collective
operations.

Here we introduce two of the most commonly used collective operations and show how the communication in a parallel program
can be expressed entirely in terms of collective operations with no individual MPI_Sends or MPI_Recvs at all. The program
shown in Figure 8.11 computes the value of π by numerical integration. Since

#include "mpi.h"
#include <stdio.h>
#include <math.h>
double f(double a) { return (4.0 / (1.0 + a*a)); }

int main(int argc,char *argv[])
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 double startwtime = 0.0, endwtime;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 if (myid == 0) {
 startwtime = MPI_Wtime();
 n = atoi(argv[1]);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += f(x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 if (myid == 0) {
 endwtime = MPI_Wtime();
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 printf("wall clock time = %f\n", endwtime-startwtime);
 }
 MPI_Finalize();
 return 0;
}

Figure 8.11: Computing π using collective operations.

we can compute π by integrating the function f(x) = 4/(l + x2) from 0 to 1. We compute an approximation by dividing the interval
[0,1] into some number of subintervals and then computing the total area of these rectangles by having each process compute the
areas of some subset. We could do this with a manager/worker algorithm, but here we preassign the work. In fact, each worker
can compute its set of tasks, and so the "manager" can be a worker, too, instead of just managing the pool of work. The more
rectangles there are, the more work there is to do and the more accurate the resulting approximation of π is. To experiment, let us
make the number of subintervals a command-line argument. (Although the MPI standard does not guarantee that any process
receive command-line arguments, in most implementations, especially for Beowulf clusters, one can assume that at least the
process with rank 0 can use argc and argv, although they may not be meaningful until after MPI_Init is called.) In our

example, process 0 sets n, the number of subintervals, to argv[1]. Once a process knows n, it can claim approximately of
the work by claiming every nth rectangle, starting with the one numbered by its own rank. Thus, process j computes the areas of
rectangles j , j + n , j + 2n, and so on.

Not all MPI implementations make the command-line arguments available to all processes, however, so we start by having
process 0 send n to each of the other processes. We could have a simple loop, sending n to each of the other processes one at a
time, but this is inefficient. If we know that the same message is to be delivered to all the other processes, we can ask the MPI
implementation to do this in a more efficient way than with a series of MPI_Sends and MPI_Recvs.

Broadcast (MPI_Bcast) is an example of an MPI collective operation. A collective operation must be called by all processes in a
communicator. This allows an implementation to arrange the communication and computation specified by a collective operation
in a special way. In the case of MPI_Bcast, an implementation is likely to use a tree of communication, sometimes called a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in a special way. In the case of MPI_Bcast, an implementation is likely to use a tree of communication, sometimes called a
spanning tree, in which process 0 sends its message to a second process, then both processes send to two more, and so forth. In
this way most communication takes place in parallel, and all the messages have been delivered in log2 n steps.

The precise semantics of MPI_Bcast is sometimes confusing. The first three arguments specify a message with (address, count,
datatype) as usual. The fourth argument (called the root of the broadcast) specifies which of the processes owns the data that is
being sent to the other processes. In our case it is process 0. MPI_Bcast acts like an MPI_Send on the root process and like an
MPI_Recv on all the other processes, but the call itself looks the same on each process. The last argument is the communicator
that the collective call is over. All processes in the communicator must make this same call. Before the call, n is valid only at the
root; after MPI_Bcast has returned, all processes have a copy of the value of n.

Next, each process, including process 0, adds up the areas of its rectangles into the local variable mypi. Instead of sending these
values to one process and having that process add them up, however, we use another collective operation, MPI_Reduce.
MPI_Reduce performs not only collective communication but also collective computation. In the call
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);

the sixth argument is again the root. All processes call MPI_Reduce, and the root process gets back a result in the second
argument. The result comes from performing an arithmetic operation, in this case summation (specified by the fifth argument), on
the data items on all processes specified by the first, third, and fourth arguments.

Process 0 concludes by printing out the answer, the difference between this approximation and a previously computed accurate
value of π , and the time it took to compute it. This illustrates the use of MPI_Wtime.

MPI_Wtime returns a double-precision floating-point number of seconds. This value has no meaning in itself, but the difference
between two such values is the wall-clock time between the two calls. Note that calls on two different processes are not
guaranteed to have any relationship to one another, unless the MPI implementation promises that the clocks on different
processes are synchronized (see MPI_WTIME_IS_GLOBAL in any of the MPI books).

The routine MPI_Allreduce computes the same result as MPI_Reduce but returns the result to all processes, not just the root
process. For example, in the Jacobi iteration, it is common to use the two-norm of the difference between two successive
iterations as a measure of the convergence of the solution.
 ...
 norm2local = 0.0;
 for (ii=1; ii<i_end-i_start+1; ii++)
 for (jj=1; jj<NY; jj++)
 norm2local += ulocal[ii][jj] * ulocal[ii][jj];
 MPI_Allreduce(&norm2local, &norm2, 1, MPI_DOUBLE,
 MPI_COMM_WORLD, MPI_SUM);
 norm2 = sqrt(norm2);

Note that MPI_Allreduce is not a routine for computing the norm of a vector. It merely combines values contributed from each
process in the communicator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Parallel Monte Carlo Computation
One of the types of computation that is easiest to parallelize is the Monte Carlo family of algorithms. In such computations, a
random number generator is used to create a number of independent trials. Statistics done with the outcomes of the trials provide
a solution to the problem.

We illustrate this technique with another computation of the value of π . If we select points at random in the unit square [0, 1] × [0,

1] and compute the percentage of them that lies inside the quarter circle of radius 1, then we will be approximating . (See [48]
for a more detailed discussion together with an approach that does not use a parallel random number generator.) We use the
SPRNG parallel random number generator (sprng.cs.fsu.edu). The code is shown in Figure 8.12.

#include "mpi.h"
#include <stdio.h>
#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /* use MPI */
#include "sprng.h" /* SPRNG header file */
#define BATCHSIZE 1000000

int main(int argc, char *argv[])
{
 int i, j, numin = 0, totalin, total, numbatches, rank, numprocs;
 double x, y, approx, pi = 3.141592653589793238462643;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0) {
 numbatches = atoi(argv[1]);
 }
 MPI_Bcast(&numbatches, 1, MPI_INT, 0, MPI_COMM_WORLD);
 for (i = 0; i < numbatches; i++) {
 for (j = 0; j < BATCHSIZE; j++) {
 x = sprng(); y = sprng();
 if (x * x + y * y < 1.0)
 numin++;
 }
 MPI_Reduce(&numin, &totalin, 1, MPI_INT, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (rank == 0) {
 total = BATCHSIZE * (i + 1) * numprocs;
 approx = 4.0 * ((double) totalin / total);
 printf("pi = %.16f; error = %.16f, points = %d\n",
 approx, pi - approx, total);
 }
 }
 MPI_Finalize();
 return 0;
}

Figure 8.12: — Computing π using the Monte Carlo method.

The defaults in SPRNG make it extremely easy to use. Calls to the sprng function return a random number between 0.0 and 1.0,
and the stream of random numbers on the different processes is independent. We control the grain size of the parallelism by the
constant BATCHSIZE, which determines how much computation is done before the processes communicate. Here a million points
are generated, tested, and counted before we collect the results to print them. We use MPI_Bcast to distribute the command-line
argument specifying the number of batches, and we use MPI_Reduce to collect at the end of each batch the number of points
that fell inside the quarter circle, so that we can print the increasingly accurate approximations to π .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 MPI Programming without MPI
One of the major strengths of MPI is the support that MPI provides for building libraries of useful software. These libraries often
eliminate the need for explicit programming in MPI; in cases where no suitable library exists, MPI's design encourages the use of
modern software engineering techniques in creating application-specific support libraries. Some of the available libraries are
shown in Table 9.1; Chapter 12 discusses some of the more important libraries in more detail. To illustrate the power of libraries in
MPI, this section shows several programs that solve partial differential equations without the explicit use of MPI. These are still
MPI programs, however, and must be run using mpiexec just like other MPI programs.

8.6.1 A Poisson Solver

Section 8.3 presented an MPI code that implemented the Jacobi method for solving a simple partial differential equation. This
example provided a good introduction to MPI but is not meant as an example of how to solve differential equations in parallel with
MPI. For that task, one or more parallel libraries should be used. Figure 8.13 shows a short code for solving two-dimentional
Poisson problems on a regular mesh. This code makes very heavy use of two libraries:

PETSc [9, 10, 8] is a library designed to solve in parallel linear and nonlinear equations that arise from PDEs.
PETSc uses MPI.

"regmesh" is an application-specific library written to simplify the use of PETSc for regular mesh discritizations of
elliptic partial differential equations. This library makes no explicit MPI calls; instead, all parallelism is handled
through PETSc.

#include <math.h>
#include "petsc.h"
#include "regmesh.h"

/* This function is used to define the right-hand side of the
 Poisson equation to be solved */
double func(double x, double y)
{
 return sin(x)*sin(y);
}

int main(int argc, char *argv[])
{
 SLES sles;
 RegMesh g;
 Mat m;
 Vec b, x;
 Viewer viewer;
 int its;

 PetscInitialize(&argc, &argv, 0, 0);

 g = Create2dDistributedArray(n, n, 0.0, 1.0, 0.0, 1.0);
 m = ApplyStencilTo2dDistributedArray(g, REGMESH_LAPLACIAN);
 b = SetVectorFromFunction(g, (RegMeshFunc)func);
 VecDuplicate(b, &x);
 SLESCreate(PETSC_COMM_WORLD, &sles);
 SLESSetOperators(sles, m, m, DIFFERENT_NONZERO_PATTERN);
 SLESSetFromOptions(sles);
 SLESSolve(sles, b, x, &its);
 PetscViewerNetcdfOpen(PETSC_COMM_WORLD, "solution.nc",
 PETSC_NETCDF_CREATE, &viewer);
 MeshDAView(g, viewer);
 RegMeshDestroy(g); MatDestroy(m); VecDestroy(b); VecDestroy(x);
 SLESDestroy(sles);
 PetscFinalize();
 return 0;
}

Figure 8.13: A parallel Poisson solver that exploits two libraries written with MPI.

The routines in this example perform the following operations:
PetscInitialize — Initialize the PETSc library

Create2dDistributedArray — Create a handle (g) to a structure that defines a two-dimensional mesh of size
n×n on the unit square. This mesh is distributed across all processes. This routine is from regmesh.

ApplyStencilTo2dDistributedArray — Create the sparse matrix (returned as the value m) by applying a
disretization stencil to the mesh g. The discretization is predefined and is the same one described in Section 8.3.
This routine is from regmesh but returns a handle to a PETSc matrix.

SetVectorFromFunction — Return the vector representing the right-hand side of the problem by applying a
function func to the mesh g. This routine is from regmesh but returns a handle to a PETSc vector.

SLESCreate — Create a PETSc context for solving a linear system of equations. This is a handle for the internal
structure that PETSc uses to hold all of the information, such as the choice of algorithm, used to solve a linear
system of equations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SLESSetOperators — Define the linear system to solve by specifying the matrices. This routine allows several
variations of specification; this example uses the most common.

SLESSetFromOptions — Set the various parameter choices from the command line and a defaults file. This lets
the user choose the iterative method and pre-conditioner at run time by using command-line arguments.

SLESSolve — Solve the linear system Ax = b, returning the solution in the PETSc vector x. This is a PETSc
routine.

PetscViewerNetcdfOpen — Create a "viewer" by which a PETSc vector can be written to a file (here
'solution.nc') using the community-standard NetCDF format [95]. This is a PETSc routine.

MeshDAView — Output the solution using the viewer. This makes use of the PETSc "distributed array" structure as
well as other data from the regmesh g.

xxxDestroy — Free the space used by the mesh, vector, and matrix structures, as well as the linear equation
solver.

An advantage of this approach to writing parallel programs is that it allows the application programmer to take advantage of the
best numerical algorithms and parallel tools. For example, the command-line
 mpiexec -n 64 poisson -pc_type=ilu -ksp_type=gmres

runs this example on 64 processors, using the GMRES iterative method with a block incomplete factorization preconditioner.
Changing the choice of iterative method or preconditioner is accomplished by simply changing the command-line arguments.

In addition, this example includes output of the solution, using parallel I/O into a file (when supported by a parallel file system such
as PVFS, described in Chapter 19). Further, this file is written in a standard format called NetCDF; a wide variety of tools exist for
postprocessing this file, including programs to display the contents graphically.

Regmesh is a specialized library designed to simplify the creation of parallel programs that work with regular meshes. More
importantly, Regmesh is an example of structuring an application so that the important operations are organized into logical units.

8.6.2 Solving a Nonlinear Partial Differential Equation

To further illustrate the power of MPI libraries, Figure 8.14 shows the main program for solving the problem

#include "petsc.h"
/* User-defined data describing the problem */
typedef struct {
 DA da; /* distributed array data structure */
 double param; /* test problem parameter */
} AppCtx;
extern int FormFunctionLocal(DALocalInfo*,double**,double**,AppCtx*);
extern int FormJacobianLocal(DALocalInfo*,double**,Mat,AppCtx*);
int main(int argc,char *argv[])
{
 SNES snes; /* nonlinear solver */
 Vec x,r; /* solution, residual vectors */
 Mat A,J; /* Jacobian matrix */
 AppCtx user; /* user-defined work context */
 int its; /* iterations for convergence */

 PetscInitialize(&argc,&argv,(char *)0,help);
 user.param = 6.0;
 SNESCreate(PETSC_COMM_WORLD,&snes);
 DACreate2d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,
 -4,-4,PETSC_DECIDE,PETSC_DECIDE,
 1,1,PETSC_NULL,PETSC_NULL,&user.da);
 DACreateGlobalVector(user.da,&x);
 VecDuplicate(x,&r);
 DASetLocalFunction(user.da,(DALocalFunction1)FormFunctionLocal);
 DASetLocalJacobian(user.da,(DALocalFunction1)FormJacobianLocal);
 SNESSetFunction(snes,r,SNESDAFormFunction,&user);
 DAGetMatrix(user.da,MATMPIAIJ,&J);
 A = J;
 SNESSetJacobian(snes,A,J,SNESDAComputeJacobian,&user);
 SNESSetFromOptions(snes);
 FormInitialGuess(&user,x);
 SNESSolve(snes,x,&its);
 PetscPrintf(PETSC_COMM_WORLD,"Number of Newton iterations = %d\n",its);

 MatDestroy(J); VecDestroy(x); VecDestroy(r); SNESDestroy(snes);
 DADestroy(user.da);
 PetscFinalize();
 return 0;
}

Figure 8.14: The main program in a high-level program to solve a nonlinear partial differential equation using
PETSc.

∇ 2u = -λeu on Ω = [0, 1] × [0, 1]

u = 0 on the boundary of Ω .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This problem is the Bratu problem. This code uses only PETSc and, as a result, is somewhat longer. Not included in this figure are
some of the routines for computing the Jacobian elements, evaluating the function, setting the initial guess, or checking for errors.
A complete version of this example is included as 'src/snes/examples/tutorials/ex5.c' in the PETSc distribution. Even
this program is only a few hundred lines, including extensive comments.

These two examples show that tools are available that make writing parallel programs using MPI relatively easy, as long as high-
quality libraries are available for the operations needed by an application. Fortunately, in many areas of science and engineering,
such libraries are available, and more are added all the time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7 Installing MPICH2 under Linux
The MPICH implementation of MPI [47] is one of the most popular versions of MPI. Recently, MPICH was completely rewritten;
the new version is called MPICH2 and includes all of MPI, both MPI-1 and MPI-2. In this section we describe how to obtain, build,
and install MPICH2 on a Beowulf cluster. We then describe how to set up an MPICH2 environment in which MPI programs can be
compiled, executed, and debugged. We recommend MPICH2 for all Beowulf clusters. Original MPICH is still available but is no
longer being developed.

8.7.1 Obtaining and Installing MPICH2

The current version of MPICH2 is available at www.mcs.anl.gov/mpi/mpich.[4] From there one can download a gzipped tar file
containing the complete MPICH2 distribution, which contains

all source code for MPICH2;

configure scripts for building MPICH2 on a wide variety of environments, including Linux clusters;

simple example programs like the ones in this chapter;

MPI compliance test programs; and

the MPD parallel process management system.

MPICH2 is architected so that a number of communication infrastructures can be used. These are called "devices." The device
that is most relevant for the Beowulf environment is the channel device (also called "ch3" because it is the third version of the
channel approach for implementing MPICH); this supports a variety of communication methods and can be built to support the
use of both TCP over sockets and shared memory. In addition, MPICH2 uses a portable interface to process management
systems, providing access both to external process managers (allowing the process managers direct control over starting and
running the MPI processes) and to the MPD scalable process manager that is included with MPICH2. To run your first MPI
program, carry out the following steps (assuming a C-shell):

1. Download mpich2.tar.gz from www.mcs.anl.gov/mpi/mpich or from
ftp://ftp.mcs.anl.gov/pub/mpi/mpich2.tar.gz

2. tar xvfz mpich2.tar.gz ; cd mpich2-1.0

3. configure <configure options> >& configure.log. Most users should specify a prefix for the
installation path when configuring:
 configure --prefix=/usr/local/mpich2-1.0 >& configure.log

By default, this creates the channel device for communication with TCP over sockets.

4. make >& make.log

5. make install >& install.log

6. Add the '<prefix>/bin' directory to your path; for example, for tcsh, do
 setenv PATH <prefix>/bin:$PATH
 rehash

7. cd examples

8. make cpi

9. Before running your first program, you must start the mpd process manager. To run on a single node, you need
only do mpd -d &. See Section 8.7.3 for details on starting mpd on multiple nodes.

10. mpiexec -n 4 cpi (if '.' is not in your path, you will need to use mpiexec -n 4 ./cpi).

8.7.2 Building MPICH2 for SMP Clusters

To build MPICH2 to support SMP clusters and to use shared-memory to communicate data between processes on the same
node, configure MPICH2 with the additional option --with-device=ch3:ssm, as in
 configure --with-device=ch3:ssm --prefix=/usr/local/mpich2-1.0

In a system that contains both SMP nodes and uniprocessor nodes, or if you want an executable that can run on both kinds of
nodes, use this version of the ch3 device.

8.7.3 Starting and Managing MPD

Running MPI programs with the MPD process manager assumes that the mpd daemon is running on each machine in your
cluster. In this section we describe how to start and manage these daemons. The mpd and related executables are built when you
build and install MPICH2 with the default process manager. The code for the MPD demons are found in '<prefix-
directory>/bin', which you should ensure is in your path. A set of MPD daemons can be started with the command
 mpichboot <file> <num>

where file is the name of a file containing the host names of your cluster and num is the number of daemons you want to start.
The startup script uses ssh to start the daemons, but if it is more convenient, they can be started in other ways. The first one can
be started with mpd -t. The first daemon, started in this way, will print out the port it is listening on for new mpds to connect to it.
Each subsequent mpd is given a host and port to connect to. The mpichboot script automates this process. At any time you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each subsequent mpd is given a host and port to connect to. The mpichboot script automates this process. At any time you can
see what mpds are running by using mpdtrace.

An mpd is identified by its host and a port. A number of commands are used to manage the ring of mpds:
mpdhelp prints a short description of the available mpd commands.

mpdcleanup cleans up mpd if a problem occurred. For example, it can repair the local Unix socket that is used to
communicate with the MPD system if the MPD ring crashed.

mpdtrace causes each mpd in the ring to respond with a message identifying itself and its neighbors.

mpdallexit causes all mpds to exit gracefully.

mpdlistjobs lists active jobs for the user managed by mpds in ring. With the command-line option -a or --all,
lists the jobs for all user4s.

mpdkilljob job_id kills all of the processes of the specified job.

mpdsigjob sigtype job_id delivers the specified signal to the specified job. Signals are specified using the
name of the signal, e.g., SIGSTOP.

Several options control the behavior of the daemons, allowing them to be run either by individual users or by root without
conflicts. The most important is

-d background or "daemonize"; this is used to start an mpd daemon that will run without being connected to a
terminal session.

8.7.4 Running MPICH2 Jobs under MPD

MPICH2 jobs are run under the MPD process manager by using the mpiexec command. MPD's mpiexec is consistent with the
specification in the MPI standard and also offers a few extensions, such as passing of environment variables to individual MPI
processes. An example of the simplest way to run an MPI program is
 mpiexec -n 32 cpi

which runs the MPI program cpi with 32 processes and lets the MPD process manager choose which hosts to run the processes
on. Specific hosts and separate executables can be specified:
 mpiexec -n 1 -host node0 manager : -n 1 -host nodel worker

A configuration file can be used when a command line in the above format would be too long:
 mpiexec -configfile multiblast.cfg

where the file 'multiblast.cfg' contains
 -n 1 -host node0 blastmanager
 -n 1 -host nodel blastworker
 ...
 -n 1 -host node31 blastworker

One can use
 mpiexec -help

to discover all the possible command-line arguments for mpiexec.

The program mpiexec runs in a separate (non-MPI) process that starts the MPI processes running the specified executable. It
serves as a single-process representative of the parallel MPI processes in that signals sent to it, such as ^Z and ^C are conveyed
by the MPD system to all the processes. The output streams stdout and stderr from the MPI processes are routed back to the
stdout and stderr of mpiexec. As in most MPI implementations, mpirun's stdin is routed to the stdin of the MPI process
with rank 0.

8.7.5 Debugging MPI Programs

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only to the usual kinds of bugs but also to
new kinds having to do with timing and synchronization errors. Often, the program "hangs," for example when a process is waiting
for a message to arrive that is never sent or is sent with the wrong tag. Parallel bugs often disappear precisely when you add code
to try to identify the bug, a particularly frustrating situation. In this section we discuss three approaches to parallel debugging.

The printf Approach
Just as in sequential debugging, you often wish to trace interesting events in the program by printing trace messages. Usually you
wish to identify a message by the rank of the process emitting it. This can be done explicitly by putting the rank in the trace
message. As noted above, using the "line labels" option (-l) with mpirun in the ch_p4mpd device in MPICH adds the rank
automatically.

Using a Commercial Debugger
The TotalView© debugger from Etnus, Ltd. [119] runs on a variety of platforms and interacts with many vendor implementations of
MPI, including MPICH on Linux clusters. For the ch_p4 device you invoke TotalView with
 mpirun -tv <other arguments>

and with the ch_p4mpd device you use
 totalview mpirun <other arguments>

That is, again mpirun represents the parallel job as a whole. TotalView has special commands to display the message queues of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That is, again mpirun represents the parallel job as a whole. TotalView has special commands to display the message queues of
an MPI process. It is possible to attach TotalView to a collection of processes that are already running in parallel; it is also
possible to attach to just one of those processes.

Check the documentation on how to use Totalview with mpiexec in MPICH2, or with other implementations of MPI.

8.7.6 Other Compilers

MPI implementations are usually configured and built by using a particular set of compilers. For example, the configure script in
the MPICH implementation determines many of the characteristics of the compiler and the associated runtime libraries. As a
result, it can be difficult to use a different C or Fortran compiler with a particular MPI implementation. This can be a problem for
Beowulf clusters because several different compilers are commonly used.

The compilation scripts (e.g., mpicc) accept an argument to select a different compiler. For example, if MPICH is configured with
gcc but you want to use pgcc to compile and build an MPI program, you can use
 mpicc -cc=pgcc -o hellow hellow.c
 mpif77 -fc=pgf77 -o hellowf hellowf.f

This works as long as both compilers have similar capabilities and properties. For example, they must use the same lengths for
the basic datatypes, and their runtime libraries must provide the functions that the MPI implementation requires. If the compilers
are similar in nature but require slightly different libraries or compiler options, then a configuration file can be provided with the -
config=name option:
 mpicc -config=pgcc -o hellow hellow.c

Details on the format of the configuration files can be found in the MPICH installation manual.

The same approach can be used with Fortran as for C. If, however, the Fortran compilers are not compatible (for example, they
use different values for Fortran .true. and .false.), then you must build new libraries. MPICH2 provides a way to build just the
necessary Fortran support. See the MPICH2 installation manual for details.

[4]As this chapter is being written, the current version of MPICH2 is 0.93, and the current verison of MPICH is 1.2.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.8 Tools for MPI Programs
A number of tools are available for developing, testing, and tuning MPI programs. In this section, we describe some of the tools
that are available from www.mcs.anl.gov/mpi. These tools work with most MPI implementations, not just MPICH2.

8.8.1 Profiling Libraries

The MPI Forum decided not to standardize any particular tool but rather to provide a general mechanism for intercepting calls to
MPI functions, which is the sort of capability that tools need. The MPI standard requires that any MPI implementation provide two
entry points for each MPI function: its normal MPI_ name and a corresponding PMPI version. This strategy allows a user to write a
custom version of MPI_Send, for example, that carries out whatever extra functions might be desired, calling PMPI_Send to
perform the usual operations of MPI_Send. When the user's custom versions of MPI functions are placed in a library and the
library precedes the usual MPI library in the link path, the user's custom code will be invoked around all MPI functions that have
been replaced.

Three such "profiling libraries" and some tools for creating more are provided in the MPE tools. MPE is available at
ftp://ftp.mcs.anl.gov/pub/mpi/mpe.tar.gz.

8.8.2 Visualizing Parallel Program Behavior

The detailed behavior of a parallel program is surprisingly difficult to predict. It is often useful to examine a graphical display that
shows the exact sequence of states that each process went through and what messages were exchanged at what times and in
what order. The data for such a tool can be collected by means of a profiling library. One tool for looking at such log files is
Jumpshot [126]. A screenshot of Jumpshot in action is shown in Figure 8.15.

Figure 8.15: Jumpshot displaying message traffic.

The horizontal axis represents time, and there is a horizontal line for each process. The states that processes are in during a
particular time interval are represented by colored rectangles. Messages are represented by arrows. It is possible to zoom in for
microsecond-level resolution in time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.9 MPI Implementations for Clusters
Many implementations of MPI are available for clusters; Table 8.3 lists some of the available implementations. These range from
commercially supported software to supported, freely available software to distributed research project software.

Table 8.3: Some MPI implementations for Linux.

Name URL

BeoMPI www.scyld.com

LAM/MPI www.lam-mpi.org

MPICH www.mcs.anl.gov/mpi/mpich

MPICH-GM www.myricom.com

MPICH-G2 www.niu.edu/mpi

MPICH-Madeleine dept-info.labri.u-bordeaux.fr/~mercier/mpi.html

MPICH-V www.lri.fr/~gk/MPICH-V/

MPI/GAMMA www.disi.unige.it/project/gamma/mpigamma/

MPI/Pro www.mpi-softtech.com

MP-MPICH www.lfbs.rwth-aachen.de/mp-mpich/

MVABICH nowlab.cis.ohio-state.edu/projects/mpi-iba/

MVICH www.nersc.gov/research/ftg/mvich/

ScaMPI www.scali.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Advanced Topics in MPI Programming
William Gropp and Ewing Lusk

In this chapter we continue our exploration of parallel programming with MPI. We describe capabilities that are more specific to
MPI than to part of the message-passing programming model in general. We cover the more advanced features of MPI, such as
dynamic process management, parallel I/O, and remote memory access. These features are often described as MPI-2 because
they were added to the MPI standard in a second round of specification; however, MPI means both the original (MPI-1) and new
(MPI-2) features. We will use the term "MPI-2" to emphasize that a feature was added to MPI in the second round.

9.1 Dynamic Process Management in MPI
A new feature of MPI is the ability of an MPI program to create new MPI processes and communicate with them. (In the original
MPI specification, the number of processes was fixed at startup.) MPI calls this capability (together with related capabilities such
as connecting two independently started MPI jobs) dynamic process management. Three main issues are introduced by this
collection of features:

maintaining simplicity and flexibility;

interacting with the operating system, a parallel process manager, and perhaps a job scheduler; and

avoiding race conditions that could compromise correctness.

The key to avoiding race conditions is to make creation of new processes a collective operation, over both the processes creating
the new processes and the new processes being created. Using a collective operation in creating new processes also provides
scalability and addresses these other issues.

9.1.1 Intercommunicators

Recall that an MPI communicator consists of a group of processes together with a communication context. Strictly speaking, the
communicators we have dealt with so far are intracommunicators. There is another kind of communicator, called an
intercommunicator. An intercommunicator binds together a communication context and two groups of processes, called (from the
point of view of a particular process) the local group and the remote group. Processes are identified by rank in group, but ranks in
an intercommunicator always refer to the processes in the remote group. That is, an MPI_Send using an intercommunicator
sends a message to the process with the destination rank in the remote group of the intercommunicator. Collective operations are
also defined for intercommunicators; see [50, Chapter 7] for details.

9.1.2 Spawning New MPI Processes

We are now in a position to explain exactly how new MPI processes are created by an already running MPI program. The MPI
function that creates these processes is MPI_Comm_spawn. Its key features are the following.

It is collective over the communicator of processes initiating the operation (called the parents) and also collective
with the calls to MPI_Init in the processes being created (called the children). That is, MPI_Comm_spawn does
not return in the parents until it has been called in all the parents and MPI_Init has been called in all the children.

It returns an intercommunicator in which the local group contains the parents and the remote group contains the
children.

The new processes, which must call MPI_Init, have their own MPI_COMM_WORLD, consisting of all the processes
created by this one collective call to MPI_Comm_spawn.

The function MPI_Comm_get_parent, called by the children, returns an intercommunicator with the children in the
local group and the parents in the remote group.

The collective function MPI_Intercomm_merge may be called by parents and children to create a normal
(intra)communicator containing all the processes, both old and new, but for many communication patterns this is
not necessary.

9.1.3 Revisiting Matrix-Vector Multiplication

Here we illustrate the use of MPI_Comm_spawn by revisiting the matrix-vector multiply program of Section 8.2. Instead of starting
with a fixed number of processes, we compile separate executables for the manager and worker programs, start the manager with
 mpiexec -n 1 manager <number-of-workers>

and then let the manager create the worker processes dynamically. We assume that only the manager has the matrix a and the
vector b and broadcasts them to the workers after the workers have been created. The program for the manager is shown in
Figure 9.1 and the code for the workers is shown in Figure 9.2.

#include "mpi.h"
#include <stdio.h>
#define SIZE 10000

int main(int argc, char *argv[])
{
 double a[SIZE][SIZE], b[SIZE], c[SIZE];
 int i, j, row, numworkers;
 MPI_Status status;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MPI_Status status;
 MPI_Comm workercomm;

 MPI_Init(&argc, &argv);
 if (argc != 2 || !isnumeric(argv[1]))
 printf("usage: %s <number of workers>\n", argv[0]);
 else
 numworkers = atoi(argv[1]);

 MPI_Comm_spawn("worker", MPI_ARGV_NULL, numworkers,
 MPI_INFO_NULL,
 0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);
 ...
 /* initialize a and b */
 ...
 /* send b to each worker */
 MPI_Bcast(b, SIZE, MPI_DOUBLE, MPI_ROOT, workercomm);
 ...
 /* then normal manager code as before*/
 ...
 MPI_Finalize();
 return 0;
}

Figure 9.1: Dynamic process matrix-vector multiply program, manager part.

#include "mpi.h"

int main(int argc, char *argv[])
{
 int numprocs, myrank;
 double b[SIZE], c[SIZE];
 int i, row, myrank;
 double dotp;
 MPI_Status status;
 MPI_Comm parentcomm;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 MPI_Comm_get_parent(&parentcomm);

 MPI_Bcast(b, SIZE, MPI_DOUBLE, 0, parentcomm);

 ...
 /* same as worker code from original matrix-vector multiply */
 ...

 MPI_Comm_free(&parentcomm);
 MPI_Finalize();
 return 0;
}

Figure 9.2: Dynamic process matrix-vector multiply program, worker part.

Let us consider in detail the call in the manager that creates the worker processes.
 MPI_Comm_spawn("worker", MPI_ARGV_NULL, numworkers,
 MPI_INFO_NULL,
 0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);

It has eight arguments. The first is the name of the executable to be run by the new processes. The second is the null-terminated
argument vector to be passed to all of the new processes; here we are passing no arguments at all, so we specify the special
value MPI_ARGV_NULL. Next is the number of new processes to create. The fourth argument is an MPI "Info" object, which can
be used to specify special environment- and/or implementation-dependent parameters, such as the names of the nodes to start
the new processes on. In our case we leave this decision to the MPI implementation or local process manager, and we pass the
special value MPI_INFO_NULL. The next argument is the "root" process for this call to MPI_Comm_spawn; it specifies which
process in the communicator given in the following argument is supplying the valid arguments for this call. The communicator we
are using consists here of just the one manager process, so we pass MPI_COMM_SELF. Next is the address of the new
intercommunicator to be filled in, and finally an array of error codes for examining possible problems in starting the new
processes. Here we use MPI_ERRCODES_IGNORE to indicate that we will not be looking at these error codes.

Code for the worker processes that are spawned is shown in Figure 9.2. It is essentially the same as the worker subroutine in the
preceding chapter but is an MPI program in itself. Note the use of intercommunicator broadcast in order to receive the vector b
from the parents. We free the parent intercommunicator with MPI_Comm_free before exiting.

9.1.4 More on Dynamic Process Management

For more complex examples of the use of MPI_Comm_spawn, including how to start processes with different executables or
different argument lists, see [50, Chapter 7]. MPI_Comm_spawn is the most basic of the functions provided in MPI for dealing with
a dynamic MPI environment. By querying the attribute MPI_UNIVERSE_SIZE, you can find out how many processes can be
usefully created. Separately started MPI computations can find each other and connect with MPI_Comm_connect and
MPI_Comm_accept. Processes can exploit non-MPI connections to "bootstrap" MPI communication. These features are
explained in detail in [50].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Fault Tolerance
Communicators are a fundamental concept in MPI. Their sizes are fixed at the time they are created, and the efficiency and
correctness of collective operations rely on this fact. Users sometimes conclude from the fixed size of communicators that MPI
provides no mechanism for writing fault-tolerant programs. Now that we have introduced intercommunicators, however, we are in
a position to discuss how this topic might be addressed and how you might write a manager-worker program with MPI in such a
way that it would be fault tolerant. In this context we mean that if one of the worker processes terminates abnormally, instead of
terminating the job you will be able to carry on the computation with fewer workers, or perhaps dynamically replace the lost
worker.

The key idea is to create a separate (inter)communicator for each worker and use it for communications with that worker rather
than use a communicator that contains all of the workers. If an implementation returns "invalid communicator" from an MPI_Send
or MPI_Recv call, then the manager has lost contact only with one worker and can still communicate with the other workers
through the other, still-intact communicators. Since the manager will be using separate communicators rather than separate ranks
in a larger communicator to send and receive message from the workers, it might be convenient to maintain an array of
communicators and a parallel array to remember which row has been last sent to a worker, so that if that worker disappears, the
same row can be assigned to a different worker. Figure 9.3 shows these arrays and how they might be used. What we are doing
with this approach is recognizing that two-party communication can be made fault tolerant, since one party can recognize the
failure of the other and take appropriate action. A normal MPI communicator is not a two-party system and cannot be made fault
tolerant without changing the semantics of MPI communication. If, however, the communication in an MPI program can be
expressed in terms of intercommunicators, which are inherently two-party (the local group and the remote group), then fault
tolerance can be achieved.

 /* highly incomplete */

 MPI_Comm worker_comms[MAX_WORKERS];
 int last_row_sent[MAX_WORKERS];

 rc = MPI_Send(a[numsent], SIZE, MPI_DOUBLE, 0, numsent+1,
 worker_comms[sender]);
 if (rc != MPI_SUCCESS) {
 /* Check that error class is one we can recover from */
 ...
 MPI_Comm_spawn("worker" , ...);

Figure 9.3: Fault-tolerant manager.

Note that while the MPI standard, through the use of intercommunicators, makes it possible to write an implementation of MPI that
encourages fault-tolerant programming, the MPI standard itself does not require MPI implementations to continue past an error.
This is a "quality of implementation" issue and allows the MPI implementor to trade performance for the ability to continue after a
fault. As this section makes clear, however, nothing in the MPI standard stands in the way of fault tolerance, and the two primary
MPI implementations for Beowulf clusters, MPICH2 and LAM/MPI, both endeavor to support some style of fault tolerance for
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Revisiting Mesh Exchanges
The discussion of the mesh exchanges for the Jacobi problem in Section 8.3 concentrated on the algorithm and data structures,
particularly the ghost-cell exchange. In this section, we return to that example and cover two other important issues: blocking and
nonblocking communications and communicating noncontiguous data.

9.3.1 Blocking and Nonblocking Communication

Consider the following simple code (note that this is similar to the simple version of exchange_nbrs in Section 8.3):
 if (rank == 0) {
 MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);
 }
 else if (rank == 1) {
 MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 }

What happens with this code? It looks like process 0 is sending a message to process 1 and that process 1 is sending a message
to process 0. But more is going on here. Consider the steps that the MPI implementation must take to make this code work:

1. Copy the data from the MPI_Send into a temporary, system-managed buffer.

2. Once the MPI_Send completes (on each process), start the MPI_Recv. The data that was previously copied
into a system buffer by the MPI_Send operation can now be delivered into the user's buffer (rbuf in this case).

This approach presents two problems, both related to the fact that data must be copied into a system buffer to allow the
MPI_Send to complete. The first problem is obvious: any data motion takes time and reduces the performance of the code. The
second problem is more subtle and important: the amount of available system buffer space always has a limit. For values of n in
the above example that exceed the available buffer space, the above code will hang: neither MPI_Send will complete, and the
code will wait forever for the other process to start an MPI_Recv. This is true for any message-passing system, not just MPI. The
amount of buffer space available for buffering a message varies among MPI implementations, ranging from many megabytes to
as little as 128 bytes.

How can we write code that sends data among several processes and that does not rely on the availability of system buffers? One
approach is to carefully order the send and receive operations so that each send is guaranteed to have a matching receive. For
example, we can swap the order of the MPI_Send and MPI_Recv in the code for process 1:
 if (rank == 0) {
 MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);
 MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);
 }
 else if (rank == 1) {
 MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }

This can be awkward to implement, however, particularly for more complex communication patterns; in addition, it does not
address the extra copy that may be performed by MPI_Send.

The approach used by MPI, following earlier message-passing systems as well as nonblocking sockets (see [48, Chapter 9]), is to
split the send and receive operations into two steps: one to initiate the operation and one to complete the operation. Other
operations, including other communication operations, can be issued between the two steps. For example, an MPI receive
operation can be initiated by a call to MPI_Irecv and completed with a call to MPI_Wait. Because the routines that initiate these
operations do not wait for them to complete, they are called nonblocking operations. The "I" in the routine name stands for
"immediate"; this indicates that the routine may return immediately without completing the operation. The arguments to
MPI_Irecv are the same as for MPI_Recv except for the last (status) argument. This is replaced by an MPI_Request value; it
is a handle that is used to identify an initiated operation. To complete a nonblocking operation, the request is given to MPI_Wait,
along with a status argument; the status argument serves the same purpose as status for an MPI_Recv. Similarly, the
nonblocking counterpart to MPI_Send is MPI_Isend; this has the same arguments as MPI_Send with the addition of an
MPI_Request as the last argument (in C). Using these routines, our example becomes the following:
 if (rank == 0) {
 MPI_Request req1, req2;
 MPI_Isend(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req1);
 MPI_Irecv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req2);
 MPI_Wait(&req1, &status);
 MPI_Wait(&req2, &status);
 }
 else if (rank == 1) {
 MPI_Request req1, req2;
 MPI_Irecv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req1);
 MPI_Isend(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req2);
 MPI_Wait(&req1, &status);
 MPI_Wait(&req2, &status);
 }

The buffer sbuf provided to MPI_Isend must not be modified until the operation is completed with MPI_Wait. Similarly, the
buffer rbuf provided to MPI_Irecv must not be modified or read until the MPI_Irecv is completed.

The nonblocking communication routines allow the MPI implementation to wait until the message can be sent directly from one
user buffer to another (e.g., from sbuf to rbuf) without requiring any copy or using any system buffer space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user buffer to another (e.g., from sbuf to rbuf) without requiring any copy or using any system buffer space.

Because it is common to start multiple nonblocking operations, MPI provides routines to test or wait for completion of any one, all,
or some of the requests. For example, MPI_Waitall waits for all requests in an array of requests to complete. Figure 9.4 shows
the use of nonblocking communication routines for the Jacobi example.[1]

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,
 int left, int right)
{
 MPI_Status statuses[4];
 MPI_Request requests[4];
 int c;

 /* Begin send and receive from the left neighbor */
 MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[0]);
 MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[1]);

 /* Begin send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[2]);
 MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[3]);

 /* Wait for all communications to complete */
 MPI_Waitall(4, requests, statuses);
}

Figure 9.4: Nonblocking exchange code for the Jacobi example.

MPI nonblocking operations are not the same as asynchronous operations. The MPI standard does not require that the data
transfers overlap computation with communication. MPI specifies only the semantics of the operations, not the details of the
implementation choices. The MPI nonblocking routines are provided primarily for correctness (avoiding the limitations of system
buffers) and performance (avoiding copies).

9.3.2 Communicating Noncontiguous Data in MPI

The one-dimensional decomposition used in the Jacobi example (Section 8.3) is simple but does not scale well and can lead to
performance problems. We can analyze the performance of the Jacobi following the discussion in Section 8.2. Let the time to
communicate n bytes be

Tcomm = s + rn,

where s is the latency and r is the (additional) time to communicate one byte. The time to compute one step of the Jacobi method,
using the one-dimensional decomposition in Section 8.3, is

where f is the time to perform a floating-point operation and p is the number of processes. Note that the cost of communication is
independent of the number of processes; eventually, this cost will dominate the calculation. Hence, a better approach is to use a
two-dimensional decomposition, as shown in Figure 9.5.

Figure 9.5: A 12 x 12 computational mesh, divided into 4×4 domains, for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

The time for one step of the Jacobi method with a two-dimensional decomposition is just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is faster than the one-dimensional decomposition as long as

(assuming p ≥ 16). To implement this decomposition, we need to communicate data to four neighbors, as shown in Figure 9.6.

Figure 9.6: Locations of mesh points in ulocal for a two-dimensional decomposition.

The left and right edges can be sent and received by using the same code as for the one-dimensional case. The top and bottom
edges have noncontiguous data.

For example, the top edge needs to send the tenth, sixteenth, and twenty-second element. There are four ways to move this data:
1. Each value can be sent separately. Because of the high latency of message passing, this approach is inefficient

and normally should not be used.

2. The data can be copied into a temporary buffer by using a simple loop, for example,
 for (i=0; i<3; i++) {
 tmp[i] = u_local[i][6];
 }
 MPI_Send(tmp, 3, MPI_DOUBLE, ..);

This is a common approach and, for some systems and MPI implementations, may be the most efficient.

3. MPI provides two routines to pack and unpack a buffer. These routines are MPI_Pack and MPI_Unpack. A
buffer created with these routines should be sent and received with MPI datatype MPI_PACKED. We note,
however, that these routines are most useful for complex data layouts that change frequently within a program.

4. MPI provides a way to construct new datatypes representing any data layout. These routines can be optimized
by the MPI implementation, in principle providing better performance than the user can achieve using a simple
loop [120]. In addition, using these datatypes is crucial to achieving high performance with parallel I/O.

MPI provides several routines to create datatypes representing common patterns of memory. These new datatypes are called
derived datatypes. For this case, MPI_Type_vector is what is needed to create a new MPI datatype representing data values
separated by a constant stride. In this case, the stride is NY+2, and the number of elements is i_end-i_start+1.
 MPI_Type_vector(i_end - i_start + 1, 1, NY+2,
 MPI_DOUBLE, &vectype);
 MPI_Type_commit(&vectype);

The second argument is a block count and is the number of the basic datatype items (MPI_DOUBLE in this case); this is useful
particularly in multicomponent PDE problems. The routine MPI_Type_commit must be called to commit the MPI datatype; this
call allows the MPI implementation to optimize the datatype (the optimization is not included as part of the routines that create MPI
datatypes because some complex datatypes are created recursively from other derived datatypes).

Using an MPI derived datatype representing a strided data pattern, we can write a version of exchange_nbr for a two-
dimensional decomposition of the mesh; the code is shown in Figure 9.7. Note that we use the same derived datatype vectype
for the sends and receives at the top and bottom by specifying the first element into which data is moved in the array u_local in
the MPI calls.

void exchange_nbrs2d(double ulocal[][NY+2],
 int i_start, int i_end, int j_start, int j_end,
 int left, int right, int top, int bottom,
 MPI_Datatype vectype)
{
 MPI_Status statuses[8];
 MPI_Request requests[8];
 int c;

 /* Begin send and receive from the left neighbor */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Begin send and receive from the left neighbor */
 MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[0]);
 MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,
 MPI_COMM_WORLD, &requests[1]);

 /* Begin send and receive from the right neighbor */
 c = i_end - i_start + 1;
 MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[2]);
 MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,
 MPI_COMM_WORLD, &requests[3]);

 /* Begin send and receive from the top neighbor */
 MPI_Isend(&ulocal[1][NY], 1, vectype, top, 0,
 MPI_COMM_WORLD, &requests[4]);
 MPI_Irecv(&ulocal[1][NY+1], 1, vectype, top, 0,
 MPI_COMM_WORLD, &requests[5]);

 /* Begin send and receive from the bottom neighbor */
 MPI_Isend(&ulocal[1][1], 1, vectype, bottom, 0,
 MPI_COMM_WORLD, &requests[6]);
 MPI_Irecv(&ulocal[1][0], 1, vectype, bottom, 0,
 MPI_COMM_WORLD, &requests[7]);

 /* Wait for all communications to complete */
 MPI_Waitall(8, requests, statuses);
}

Figure 9.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the mesh.

When a derived datatype is no longer needed, it should be freed with MPI_Type_free. Many other routines are available for
creating datatypes; for example, MPI_Type_indexed is useful for scatter-gather patterns, and MPI_Type_create_struct can
be used for an arbitrary collection of memory locations.

Early implementations of derived datatypes did not achieve good performance, trading simplicity of implementation for
performance. More recent implementations provide better performance, sometimes greater than is possible with straightforward
user code. See [49, 120, 20] for some examples.

[1]On many systems, calling MPI_Isend before MPI_Irecv will improve performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Motivation for Communicators
Communicators in MPI serve two purposes. The most obvious purpose is to describe a collection of processes. This feature
allows collective routines, such as MPI_Bcast or MPI_Allreduce, to be used with any collection of processes. This capability is
particularly important for hierarchical algorithms. It also facilitates dividing a computation into subtasks, each of which has its own
collection of processes. For example, in the manager-worker example in Section 8.2, it may be appropriate to divide each task
among a small collection of processes, particularly if this causes the problem description to reside only in the fast memory cache.
MPI communicators are perfect for this; the MPI routine MPI_Comm_split is the only routine needed when creating new
communicators. Using ranks relative to a communicator for specifying the source and destination of messages also facilitates
dividing parallel tasks among smaller but still parallel subtasks, each with its own communicator.

A more subtle but equally important purpose of the MPI communicator involves the communication context that each
communicator contains. This context is essential for writing software libraries that can be safely and robustly combined with other
code, both other libraries and user-specific application code, to build complete applications. Used properly, the communication
context guarantees that messages are received by appropriate routines even if other routines are not so careful. Consider the
example in Figure 9.8 (taken from [48, Section 6.1.2]). In this example, two routines are provided by separate libraries or software
modules. One, SendRight, sends a message to the right neighbor and receives from the left. The other, SendEnd, sends a
message from process 0 (the leftmost) to the last process (the rightmost). Both of these routines use MPI_ANY_SOURCE instead
of a particular source in the MPI_Recv call. As Figure 9.8 shows, the messages can be confused, causing the program to receive
the wrong data. How can we prevent this situation? Several approaches will not work. One is to avoid the use of
MPI_ANY_SOURCE. This fixes the example, but only if both SendRight and SendEnd follow this rule. The approach may be
adequate (though fragile) for code written by a single person or team, but it isn't adequate for libraries. For example, if SendEnd
was written by a commercial vendor and did not use MPI_ANY_SOURCE, but SendRight, written by a different vendor or an
inexperienced programmer, did use MPI_ANY_SOURCE, then the program would still fail, and it would look like SendEnd was at
fault (because the message from SendEnd was received first).

Figure 9.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in the MPI_Recv calls (from
[48]).

Another approach that does not work is to use message tags to separate messages. Again, this can work if one group writes all of
the code and is very careful about allocating message tags to different software modules. However, using MPI_ANY_TAG in an
MPI receive call can still bypass this approach. Further, as shown in Figure 6.5 in [48], even if MPI_ANY_SOURCE and
MPI_ANY_TAG are not used, separate code modules still can receive the wrong message.

The communication context in an MPI communicator provides a solution to these problems. The routine MPI_Comm_dup creates
a new communicator from an input communicator that contains the same processes (in the same rank order) but with a new
communication context. MPI messages sent in one communication context can be received only in that context. Thus, any
software module or library that wants to ensure that all of its messages will be seen only within that library needs only to call
MPI_Comm_dup at the beginning to get a new communicator. All well-written libraries that use MPI create a private communicator
used only within that library.

Enabling the development of libraries was one of the design goals of MPI. In that respect MPI has been very successful. Many
libraries and applications now use MPI, and, because of MPI's portability, most of these run on Beowulf clusters. Table 9.1
provides a partial list of libraries that use MPI to provide parallelism. More complete descriptions and lists are available at
www.mcs.anl.gov/mpi/libraries and at sal.kachinatech.com/C/3. Chapter 12 discusses software, including MPI libraries and
programs, in more detail.

Table 9.1: A sampling of libraries that use MPI. See Chapter 12 for a more thorough list.

Library Description URL

PETSc Linear and nonlinear solvers for PDEs www.mcs.anl.gov/petsc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aztec Parallel iterative solution of sparse linear systems www.cs.sandia.gov/CRF/aztec1.html

Cactus Framework for PDE solutions www.cactuscode.org

FFTW Parallel FFT www.fftw.org

PPFPrint Parallel print www.llnl.gov/CASC/ppf/

HDF Parallel I/O for Hierarchical Data Format (HDF) files hdf.ncsa.uiuc.edu/Parallel_HDF

NAG Numerical library www.nag.co.uk/numeric/fd/FDdescription.asp

ScaLAPACK Parallel linear algebra www.netlib.org/scalapack

SPRNG Scalable pseudorandom number generator sprng.cs.fsu.edu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5 More on Collective Operations
One of the strengths of MPI is its collection of scalable collective communication and computation routines. Figure 9.9 shows the
capabilities of some of the most important collective communication routines. To illustrate their utility, we consider a simple
example.

Figure 9.9: Schematic representation of collective data movement in MPI.

Suppose we want to gather the names of all of the nodes that our program is running on, and we want all MPI processes to have
this list of names. This is an easy task with MPI_Allgather:
 char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];
 MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,
 all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

This code assumes that no hostname is longer than MAX_LEN characters (including the trailing null). A better code would check
this fact:
 char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];
 int my_name_len, max_name_len;
 ...
 my_name_len = strlen(my_hostname) + 1;

 MPI_Allreduce(&my_name_len, &max_name_len, 1, MPI_INT, MPI_MAX,
 MPI_COMM_WORLD);
 if (max_name_len > MAX_LEN) {
 printf ("Error: names too long (%d)\n", max_name_len);

 }
 MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,
 all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

Both of these approaches move more data than necessary, however. An even better approach is to first gather the size of each
processor's name and then gather exactly the number of characters needed from each processor. This uses the "v" (for vector)
version of the allgather routine, MPI_Allgatherv, as shown in Figure 9.10. The array all_lens is used to hold the length of
the name of the process with rank i in the ith location. From this information, the array displs is calculated, where the ith

element is the offset into the character array all_names where the name for the process with rank i begins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int all_lens[MAX_PROCS], displs[MAX_PROCS], totlen;
 char all_names[MAX_NAMES];
 ...
 /* Gather the names lengths from all of the processes */
 mylen = strlen(my_hostname) + 1; /* Include the trailing null */
 MPI_Allgather(&mylen, 1, MPI_INT, all_lens, 1, MPI_INT,
 MPI_COMM_WORLD);
 /* Compute the displacement (displs) of each string in the
 result array all-names and total length of all strings */
 totlen = all_lens[size-1];
 for (i=0; i<size-1; i++) {
 displs[i+1] = displs[i] + all_lens[i];
 totlen += all_lens[i];
 }
 all_names = (char *)malloc(totlen);
 if (!all names) MPI_Abort(MPI_COMM_WORLD, 1);
 /* Gather the names from each process, where the name from
 process i is all_lens[i] long and is placed into
 all names[displs[i]] */
 MPI_Allgatherv(my_hostname, mylen, MPI_CHAR,
 all_names, all_lens, displs, MPI_CHAR,
 MPI_COMM_WORLD);
 /* Hostname for the jth process is &all names[displs[j]] */

Figure 9.10: Using MPI_Allgather and MPI_Allgatherv.

This example provides a different way to accomplish the action of the example in Section 8.3. Many parallel codes can be written
with MPI collective routines instead of MPI point-to-point communication; such codes often have a simpler logical structure and
can benefit from scalable implementations of the collective communications routines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.6 Parallel I/O
MPI provides a wide variety of parallel I/O operations, more than we have space to cover here. See [50, Chapter 3] for a more
thorough discussion of I/O in MPI. These operations are most useful when combined with a high-performance parallel file system,
such as PVFS, described in Chapter 19.

The fundamental idea in MPI's approach to parallel I/O is that a file is opened collectively by a set of processes that are all given
access to the same file. MPI thus associates a communicator with the file, allowing a flexible set of both individual and collective
operations on the file.

This approach can be used directly by the application programmer, as described below. An alternative is to use libraries that are
designed to provide efficient and flexible access to files, described in a standard format. Two such libraries are parallel NetCDF
[66] and HDF5 [25].

9.6.1 A Simple Example

We first provide a simple example of how processes write contiguous blocks of data into the same file in parallel. Then we give a
more complex example, in which the data in each process is not contiguous but can be described by an MPI datatype.

For our first example, let us suppose that after solving the Poisson equation as we did in Section 8.3, we wish to write the solution
to a file. We do not need the values of the ghost cells, and in the one-dimensional decomposition the set of rows in each process
makes up a contiguous area in memory, which greatly simplifies the program. The I/O part of the program is shown in Figure 9.11.

 MPI_File outfile;
 size = NX * (NY + 2);
 MPI_File_open(MPI_COMM_WORLD, "solutionfile",
 MPI_MODE_CREATE | MPI_MODE_WRONLY,
 MPI_INFO_NULL, &outfile);
 MPI_File_set_view(outfile,
 rank * (NY+2) * (i_end - i_start) * sizeof(double),
 MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);
 MPI_File_write(outfile, &ulocal[1][O], size, MPI_DOUBLE,
 MPI_STATUS_IGNORE);
 MPI_File_close(&outfile);

Figure 9.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output step; if output of
multiple steps of the Jacobi method are needed, the arguments to MPI_File_set_view must be modified.

Recall that the data to be written from each process, not counting ghost cells but including the boundary data, is in the array
ulocal[i] [j] for i=i_start to i_end and j=0 to NY+1.

Note that the type of an MPI file object is MPI_File. Such file objects are opened and closed much the way normal files are
opened and closed. The most significant difference is that opening a file is a collective operation over a group of processes
specified by the communicator in the first argument of MPI_File_open. A single process can open a file by specifying the single-
process communicator MPI_COMM_SELF. Here we want all of the processes to share the file, and so we use MPI_COMM_WORLD.

In our discussion of dynamic process management, we mentioned MPI_Info objects. An MPI info object is a collection of
key=value pairs that can be used to encapsulate a variety of special-purpose information that may not be applicable to all MPI
implementations. In this section we will use MPI_INFO_NULL whenever this type of argument is required, since we have no
special information to convey. For details about MPI_Info, see [50, Chapter 2].

The part of the file that will be seen by each process is called the file view and is set for each process by a call to
MPI_File_set_view. In our example the call is
 MPI_File_set_view(outfile, rank * (NY+2) * (...),
 MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL)

The first argument identifies the file; the second is the displacement (in bytes) into the file of where the process's view of the file is
to start. Here we simply multiply the size of the data to be written by the process's rank, so that each process's view starts at the
appropriate place in the file. The type of this argument is MPI_Offset, which can be expected to be a 64-bit integer on systems
that support large files.

The next argument is called the etype of the view; it specifies the unit of data in the file. Here it is just MPI_DOUBLE, since we will
be writing some number of doubles. The next argument is called the filetype; it is a flexible way of describing noncontiguous views
in the file. In our case, with no noncontiguous units to be written, we can just use the etype, MPI_DOUBLE. In general, any MPI
predefined or derived datatype can be used for both etypes and filetypes. We explore this use in more detail in the next example.

The next argument is a string defining the data representation to be used. The native representation says to represent data on
disk exactly as it is in memory, which provides the fastest I/O performance, at the possible expense of portability. We specify that
we have no extra information by providing MPI_INFO_NULL for the final argument.

The call to MPI_File_write is then straightforward. The data to be written is a contiguous array of doubles, even though it
consists of several rows of the (distributed) matrix. On each process it starts at &ulocal [0] [1] so the data is described in
(address, count, datatype) form, just as it would be for an MPI message. We ignore the status by passing MPI_STATUS_IGNORE.
Finally we (collectively) close the file with MPI_File_close.

9.6.2 A More Complex Example

Parallel I/O requires more than just calling MPI_File_write instead of write. The key idea is to identify the object (across
processes), rather than the contribution from each process. We illustrate this with an example of a regular distributed array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code in Figure 9.12 writes out an array that is distributed among processes with a two-dimensional decomposition. To
illustrate the expressiveness of the MPI interface, we show a complex case where, as in the Jacobi example, the distributed array
is surrounded by ghost cells. This example is covered in more depth in Chapter 3 of Using MPI-2 [50], including the simpler case
of a distributed array without ghost cells.

/* no. of processes in vertical and horizontal dimensions
 of process grid */
dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);
/* global indices of the first element of the local array */

/* no. of rows and columns in global array*/
gsizes[0] = m; gsizes[1] = n;

lsizes[0] = m/dims[0]; /* no. of rows in local array */
lsizes[1] = n/dims[1]; /* no. of columns in local array */

start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];
MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
 MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(comm, "/pfs/datafile",
 MPI_MODE_CREATE | MPI_MODE_WRONLY,
 MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
 MPI_INFO_NULL);

/* create a derived datatype that describes the layout of the local
 array in the memory buffer that includes the ghost area. This is
 another subarray datatype! */
memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */
memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */
start_indices[0] = start_indices[1] = 4;
/* indices of the first element of the local array in the
 allocated array */
MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,
 MPI_ORDER_C, MPI_FLOAT, &memtype);
MPI_Type_commit(&memtype);
MPI_File_write_all(fh, local_array, 1, memtype, &status) ;
MPI_File_close(&fh);

Figure 9.12: C program for writing a distributed array that is also noncontiguous in memory because of a ghost area (derived
from an example in [50]).

This example may look complex, but each step is relatively simple.
1. Set up a communicator that represents a virtual array of processes that matches the way that the distributed

array is distributed. This approach uses the MPI_Cart_create routine and uses MPI_Cart_coords to find
the coordinates of the calling process in this array of processes. This particular choice of process ordering is
important because it matches the ordering required by MPI_Type_create_subarray.

2. Create a file view that describes the part of the file that this process will write to. The MPI routine
MPI_Type_create_subarray makes it easy to construct the MPI datatype that describes this region of the
file. The arguments to this routine specify the dimensionality of the array (two in our case), the global size of the
array, the local size (that is, the size of the part of the array on the calling process), the location of the local part
(start_indices), the ordering of indices (column major is MPI_ORDER_FORTRAN, and row major is
MPI_ORDER_C), and the basic datatype.

3. Open the file for writing (MPI_MODE_WRONLY), and set the file view with the datatype we have just constructed.

4. Create a datatype that describes the data to be written. We can use MPI_Type_create_subarray here as
well to define the part of the local array that does not include the ghost points. If there were no ghost points, we
could instead use MPI_FLOAT as the datatype with a count of lsizes [0] *lsizes [1] in the call to
MPI_File_write_all.

5. Perform a collective write to the file with MPI_File_write_all, and close the file.

By using MPI datatypes to describe both the data to be written and the destination of the data in the file with a collective file write
operation, the MPI implementation can make the best use of the I/O system. The result is that file I/O operations performed with
MPI I/O can achieve hundredfold improvements in performance over using individual Unix I/O operations [116].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.7 Remote Memory Access
The message-passing programming model requires that both the sender and the receiver (or all members of a communicator in a
collective operation) participate in moving data between two processes. An alternative model where one process controls the
communication, called one-sided communication, can offer better performance and in some cases a simpler programming model.
MPI-2 provides support for this one-sided approach. The MPI-2 model was inspired by the work on the bulk synchronous
programming (BSP) model [54] and the Cray SHMEM library used on the massively parallel Cray T3D and T3E computers [30].

In one-sided communication, one process may put data directly into the memory of another process, without that process using an
explicit receive call. For this reason, this is also called remote memory access (RMA).

Using RMA involves four steps:
1. Describe the memory into which data may be put.

2. Allow access to the memory.

3. Begin put operations (e.g., with MPI_Put).

4. Complete all pending RMA operations.

The first step is to describe the region of memory into which data may be placed by an MPI_Put operation (also accessed by
MPI_Get or updated by MPI_Accumulate). This is done with the routine MPI_Win_create:
 MPI_Win win;
 double ulocal[MAX_NX][NY+2];

 MPI_Win_create(ulocal, (NY+2)*(i_end-i_start+3)*sizeof(double),
 sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

The input arguments are, in order, the array ulocal, the size of the array in bytes, the size of a basic unit of the array (sizeof
(double) in this case), a "hint" object, and the communicator that specifies which processes may use RMA to access the array.
MPI_Win_create is a collective call over the communicator. The output is an MPI window object win. When a window object is
no longer needed, it should be freed with MPI_Win_free.

RMA operations take place between two sentinels. One begins a period where access is allowed to a window object, and one
ends that period. These periods are called epochs.[2] The easiest routine to use to begin and end epochs is MPI_Win_fence.
This routine is collective over the processes that created the window object and both ends the previous epoch and starts a new
one. The routine is called a "fence" because all RMA operations before the fence complete before the fence returns, and any
RMA operation initiated by another process (in the epoch begun by the matching fence on that process) does not start until the
fence returns. This may seem complex, but it is easy to use. In practice, MPI_Win_fence is needed only to separate RMA
operations into groups. This model closely follows the BSP and Cray SHMEM models, though with the added ability to work with
any subset of processes.

Three routines are available for initiating the transfer of data in RMA. These are MPI_Put, MPI_Get, and MPI_Accumulate. All
are nonblocking in the same sense MPI point-to-point communication is nonblocking (Section 9.3.1). They complete at the end of
the epoch that they start in, for example, at the closing MPI_Win_fence. Because these routines specify both the source and
destination of data, they have more arguments than do the point-to-point communication routines. The arguments can be easily
understood by taking them a few at a time.

1. The first three arguments describe the origin data, that is, the data on the calling process. These are the usual
"buffer, count, datatype" arguments.

2. The next argument is the rank of the target process. This serves the same function as the destination of an
MPI_Send. The rank is relative to the communicator used when creating the MPI window object.

3. The next three arguments describe the destination buffer. The count and datatype arguments have the same
meaning as for an MPI_Recv, but the buffer location is specified as an offset from the beginning of the memory
specified to MPI_Win_create on the target process. This offset is in units of the displacement argument of the
MPI_Win_create and is usually the size of the basic datatype.

4. The last argument is the MPI window object.

Note that there are no MPI requests; the MPI_Win_fence completes all preceding RMA operations. MPI_Win_fence provides a
collective synchronization model for RMA operations in which all processes participate. This is called active target
synchronization.

With these routines, we can create a version of the mesh exchange that uses RMA instead of point-to-point communication.
Figure 9.13 shows one possible implementation.

void exchang_nbrs(double u_local[][NY+2], int i_start, int i_end,
 int left, int right, MPI_Win win)
{
 MPI_Aint left_ghost_disp, right_ghost_disp;
 int c;

 MPI_Win_fence(0, win);
 /* Put the left edge into the left neighbors rightmost
 ghost cells. See text about right_ghost_disp */
 right_ghost_disp = 1 + (NY+2) * (i_end-i-start+2);
 MPI_Put(&u_local[1][1], NY, MPI_DOUBLE,
 left, right_ghost_disp, NY, MPI_DOUBLE, win);
 /* Put the right edge into the right neighbors leftmost ghost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Put the right edge into the right neighbors leftmost ghost
 cells */
 left_ghost_disp = 1;
 c = i_end - i_start + 1;
 MPI_Put(&u_local[c][1], NY, MPI_DOUBLE,
 right, left_ghost_disp, NY, MPI_DOUBLE, win);

 MPI_Win_fence(0, win)
}

Figure 9.13: Neighbor exchange using MPI remote memory access.

Another form of access requires no MPI calls (not even a fence) at the target process. This is called passive target
synchronization. The origin process uses MPI_Win_lock to begin an access epoch and MPI_Win_unlock to end the access
epoch.[3] Because of the passive nature of this type of RMA, the local memory (passed as the first argument to
MPI_Win_create) should be allocated with MPI_Alloc_mem and freed with MPI_Free_mem. For more information on passive
target RMA operations, see [50, Chapter 6]. Also note that as of 2003, not all MPI implementations support passive target RMA
operation. Check that your implementation fully implements passive target RMA operations before using them.

A more complete discussion of remote memory access can be found in [50, Chapters 5 and 6]. Note that MPI implementations
are just beginning to provide the RMA routines described in this section. Most current RMA implementations emphasize
functionality over performance. As implementations mature, however, the performance of RMA operations will also improve.

[2]MPI has two kinds of epochs for RMA: an access epoch and an exposure epoch. For the example used here, the epochs occur
together, and we refer to both of them as just epochs.

[3]The names MPI_Win_lock and MPI_Win_unlock are really misnomers; think of them as begin-RMA and end-RMA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.8 Using C++ and Fortran 90
MPI-1 defined bindings to C and Fortran 77. These bindings were very similar; the only major difference was the handling of the
error code (returned in C, set through the last argument in Fortran 77). In MPI-2, a binding was added for C++, and an MPI
module was defined for Fortran 90.

The C++ binding provides a lightweight model that is more than just a C++ version of the C binding but not a no-holds-barred
object-oriented model. MPI objects are defined in the MPI namespace. Most MPI objects have corresponding classes, such as
Datatype for MPI_Datatype. Communicators and requests are slightly different. There is an abstract base class Comm for
general communicators with four derived classes: Intracomm, Intercomm, Graphcomm, and Cartcomm. Most communicators
are Intracomms; GraphComm and CartComm are derived from Intracomm. Requests have two derived classes: Prequest for
persistent requests and Grequest for generalized requests (new in MPI-2). Most MPI operations are methods on the appropriate
objects; for example, most point-to-point and collective communications are methods on the communicator. A few routines, such
as Init and Finalize, stand alone. A simple MPI program in C++ is shown in Figure 9.14.

#include "mpi.h"
#include <iostream.h>

int main(int argc, char *argv[])
{
 int data;
 MPI::Init();

 if (MPI::COMM_WORLD.Get_rank() == 0) {
 // Broadcast data from process 0 to all others
 cout << "Enter an int" << endl;
 data << cin;
 }
 MPI::COMM_WORLD.Bcast(data, 1, MPI::INT, 0);

 MPI::Finalize();
 return 0;
}

Figure 9.14: Simple MPI program in C++.

The C++ binding for MPI has a few quirks. One is the C++ analogue to MPI_Comm_dup. In the C++ binding, MPI::Comm is an
abstract base class (ABC). Since it is impossible to create an instance of an abstract base class, there can be no general "dup"
function that returns a new MPI::Comm. Since it is possible in C++ to create a reference to an ABC, however, MPI defines the
routine (available only in the C++ binding) MPI::Clone that returns a reference to a new communicator.

Two levels of Fortran 90 support are provided in MPI. The basic support provides an 'mpif.h' include file. The extended support
provides an MPI module. The module makes it easy to detect the two most common errors in Fortran MPI programs: forgetting to
provide the variable for the error return value and forgetting to declare status as an array of size MPI_STATUS_SIZE. There are a
few drawbacks. Fortran derived datatypes cannot be directly supported (the Fortran 90 language provides no way to handle an
arbitrary type). Often, you can use the first element of the Fortran 90 derived type. Array sections should not be used in receive
operations, particularly nonblocking communication (see Section 10.2.2 in the MPI-2 standard for more information). Another
problem is that while Fortran 90 enables the user to define MPI interfaces in the MPI module, a different Fortran 90 interface file
must be used for each combination of Fortran datatype and array dimension (scalars are different from arrays of dimension one,
etc.). This leads to a Fortran 90 MPI module library that is often (depending on the Fortran 90 compiler) far larger than the entire
MPI library. However, particularly during program development, the MPI module can be very helpful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.9 MPI, OpenMP, and Threads
The MPI standard was carefully written to be a thread-safe specification. That means that the design of MPI doesn't include
concepts such as "last message" or "current pack buffer" that are not well defined when multiple threads are present. MPI
implementations can choose whether to provide thread-safe implementations. Allowing this choice is particularly important
because thread safety usually comes at the price of performance due to the extra overhead required to ensure that internal data
structures are not modified inconsistently by two different threads. Most early MPI implementations were not thread safe.

MPI-2 introduced four levels of thread safety that an MPI implementation could provide. The lowest level, MPI_THREAD_SINGLE,
allows only single threaded programs. The next level, MPI_THREAD_FUNNELED, allows multiple threads provided that all MPI calls
are made in a single thread; most MPI implementations provide MPI_THREAD_FUNNELED. The next level,
MPI_THREAD_SERIALIZED, allows many user threads to make MPI calls, but only one thread at a time. The highest level of
support, MPI_THREAD_MULTIPLE, allows any thread to call any MPI routine. The level of thread support can be requested by
using the routine MPI_Init_thread; this routine returns the level of thread support that is available.

Understanding the level of thread support is important when combining MPI with approaches to thread-based parallelism.
OpenMP [83] is a popular and powerful language for specifying thread-based parallelism. While OpenMP provides some tools for
general threaded parallelism, one of the most common uses is to parallelize a loop. If the loop contains no MPI calls, then
OpenMP may be combined with MPI. For example, in the Jacobi example, OpenMP can be used to parallelize the loop
computation:
 exchange_nbrs(u_local, i_start, i_end, left, right);
 #pragma omp for
 for (i_local=1; i<=i_end-i_start+1; i++)
 for (j=1; j<=NY; j++)
 ulocal_new[i_local][j] =
 0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +
 ulocal[i_local][j+1] + ulocal[i_local][j-1] -
 h*h*flocal[i_local][j]);

This exploits the fact that MPI was designed to work well with other tools, leveraging improvements in compilers and threaded
parallelism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.10 Measuring MPI Performance
Many tools have been developed for measuring performance. The best test is always your own application, but a number of tests
are available that can give a more general overview of the performance of MPI on a cluster. Measuring communication
performance is actually quite tricky; see [51] for a discussion of some of the issues in making reproducible measurements of
performance. That paper describes the methods used in the mpptest program for measuring MPI performance.

9.10.1 mpptest

The mpptest program allows you to measure many aspects of the performance of any MPI implementation. The most common
MPI performance test is the Ping-Pong test; this test measures the time it takes to send a message from one process to another
and then back. The mpptest program provides Ping-Pong tests for the different MPI communication modes, as well as providing
a variety of tests for collective operations and for more realistic variations on point-to-point communication, such as halo
communication (like that in Section 8.3) and communication that does not reuse the same memory locations (thus benefiting from
using data that is already in memory cache). The mpptest program can also test the performance of some MPI-2 functions,
including MPI_Put and MPI_Get.

Using mpptest
The mpptest program is distributed with MPICH and MPICH2 in the directory 'examples/perftest'. You can also download it
separately from www.mcs.anl.gov/mpi/perftest. Building and using mpptest is very simple:
% tar zxf perftest.tar.gz
% cd perftest-1.2.1
% ./configure --with-mpich
% make
% mpiexec -n 2 ./mpptest -logscale
% mpiexec -n 16 ./mpptest -bisect
% mpiexec -n 2 ./mpptest -auto

To run with LAM/MPI, simply configure with the option --with-lammpi. The 'README' file contains instructions for building with
other MPI implementations.

9.10.2 SKaMPI

The SKaMPI test suite [94] is a comprehensive test of MPI performance, covering virtually all of the MPI-1 communication
functions.

One interesting feature of the SKaMPI benchmarks is the online tables showing the performance of MPI implementations on
various parallel computers, ranging from Beowulf clusters to parallel vector supercomputers.

9.10.3 High Performance LINPACK

Perhaps the best-known benchmark in technical computing is the LINPACK benchmark. The version of this benchmark that is
appropriate for clusters is the High Performance LINPACK (HPL). Obtaining and running this benchmark are relatively easy,
though getting good performance can require a significant amount of effort. In addition, while the LINPACK benchmark is widely
known, it tends to significantly overestimate the achieveable performance for many applications because it involves n3

computation on n2 data and is thus relatively insensitive to the performance of the node memory system.

The HPL benchmark depends on another library, the basic linear algebra subroutines (BLAS), for much of the computation. Thus,
to get good performance on the HPL benchmark, you must have a high-quality implementation of the BLAS. Fortunately, several
sources of these routines are available. You can often get implementations of the BLAS from the CPU vendor directly, sometimes
at no cost. Another possibility is to use the ATLAS implementation of the BLAS.

ATLAS
ATLAS is available from math-atlas.sourceforge.net. If prebuilt binaries fit your system, you should use those. Note that ATLAS is
tuned for specific system characteristics including clock speed and cache sizes; if you have any doubts about whether your
configuration matches that of a prebuilt version, you should build ATLAS yourself.

To build ATLAS, first download ATLAS from the Web site and then extract it. This will create an 'ATLAS' directory into which the
libraries will be built, so extract this where you want the libraries to reside. A directory on a local disk (such as '/tmp') rather than
on on an NFS-mounted disk can help speedup ATLAS.
% cd /tmp
% tar zxf atlas3.4.1.tgz
% cd ATLAS

Check the 'errata.html' file at math-atlas.sourceforge.net/errata.html for updates. You may need to edit various
files (no patches are supplied for ATLAS). Pay particular attention to the items that describe various possible ways that the install
step may fail; you may choose to update values such as ATL_nkflop before running ATLAS. Next, have ATLAS configure itself.
Select a compiler; note that you should not use the Portland Group compiler here.
% make config CC=gcc

Answer yes to most questions, including threaded and express setup, and accept the suggested architecture name. Next, make
ATLAS. Here, we assume that the architecture name was Linux-PIIISSE2:
% make install arch=Linux-PIIISSE2 >&make.log

Note that this is not an "install" in the usual sense; the ATLAS libraries are not copied to '/usr/local/lib' and the like by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that this is not an "install" in the usual sense; the ATLAS libraries are not copied to '/usr/local/lib' and the like by the
install. This step may take as long as several hours, unless ATLAS finds a precomputed set of parameters that fits your machine.
ATLAS is also sensitive to variations in runtimes, so try to use a machine that has no other users. Make sure that it is the exact
same type of machine as your nodes (e.g., if you have login nodes that are different from your compute nodes, make sure that
you run ATLAS on the compute nodes).

At the end of the "make install" step, the BLAS are in 'ATLAS/lib/Linux-PIIISSE2'. You are ready for the next step.

HPL
Download and unpack the HPL package from www.netlib.org/benchmark/hpl:
% tar zxf hpl.tgz
% cd hpl

Create a 'Make.<archname>' in the 'hpl' directory. Consider an archname like Linux_PIII_CBLAS_gm for a Linux system on
Pentium III processors, using the C version of the BLAS constructed by ATLAS, and using the gm device from the MPICH
implementation of MPI. To create this file, look at the samples in the 'hpl/setup' directory, for example,
% cp setup/Make.Linux_PII_CBLAS_gm Make.Linux_PIII_CBLAS_gm

Edit this file, changing ARCH to the name you selected (e.g., Linux_PIII_CBLAS_gm), and set LAdir to the location of the
ATLAS libraries. Then do the following:
% make arch=<thename>
% cd bin/<thename>
% mpiexec -n 4 ./xhpl

Check the output to make sure that you have the right answer. The file 'HPL.dat' controls the actual test parameters. The version
of 'HPL.dat' that comes with the hpl package is appropriate for testing hpl. To run hpl for performance requires modifying
'HPL.dat'. The file 'hpl/TUNING' contains some hints on setting the values in this file for performance. Here are a few of the
most important:

1. Change the problem size to a large value. Don't make it too large, however, since the total computational work
grows as the cube of the problem size (doubling the problem size increases the amount of work by a factor of
eight). Problem sizes of around 5,000–10,000 are reasonable.

2. Change the block size to a modest size. A block size of around 64 is a good place to start.

3. Change the processor decomposition and number of nodes to match your configuration. In most cases, you
should try to keep the decomposition close to square (e.g., P and Q should be about the same value), with P ≥
Q.

4. Experiment with different values for RFACT and PFACT. On some systems, these parameters can have a
significant effect on performance. For one large cluster, setting both to right was preferable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.11 MPI-2 Status
MPI-2 is a significant extension of the MPI-1 standard. Unlike the MPI-1 standard, where complete implementations of the entire
standard were available when the standard was released, complete implementations of all of MPI-2 have been slow in coming. As
of June 2003, few complete implementations of MPI-2 exist for Beowulf clusters. Most MPI implementations include the MPI-IO
routines, in large part because of the ROMIO implementation of these routines, and at least some of the RMA routines (typically
the active-target operations MPI_Put and MPI_Get, along with MPI_Win_fence). Progress continues in both the completeness
and performance of MPI-2 implementations, and we expect more full MPI-2 implementations to appear by the end of 2003. One of
these is the MPICH2 implementation of MPI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Parallel Virtual Machine

Overview
Al Geist

PVM (Parallel Virtual Machine) was first released in the early 1990s as an outgrowth of an ongoing computing research project
involving Oak Ridge National Laboratory, the University of Tennessee, and Emory University. The general goals of this project are
to investigate issues in, and develop solutions for, heterogeneous distributed computing. PVM was one of the solutions. PVM was
designed to be able to combine computers having different operating systems, different data representations (both number of bits
and byte order), different architectures (multiprocessor, single processor, and even supercomputers), different languages, and
different networks and have them all work together on a single computational problem.

PVM existed before Beowulf clusters were invented and in fact was the software used to run applications on the first Beowulf
clusters. Today, both PVM and MPICH are often included in software distributions for Beowulf clusters.

The basic idea behind PVM was to create a simple software package that could be loaded onto any collection of computers that
would make the collection appear to be a single, large, distributed-memory parallel computer. PVM provides a way for aggregating
the power and memory of distributed compute resources. Today this is called Grid computing. In the early 1990s PVM was used
to do a number of early Grid experiments, including creating the first international Grid by combining supercomputers in the United
Kingdom with supercomputers in the United States, creating a Grid that combined 53 Cray supercomputers across the United
States into a single super-supercomputer, and connecting the two largest parallel computers in the world into a 4,000-processor
system to solve a nanotechnology problem that eventually led to the high-capacity hard drives used in today's PCs. In 1990 PVM
was used for an application in high-temperature superconductivity; the application won a Gordon Bell Prize in supercomputing—
the first of many Gordon Bell prizes won by researchers using PVM.

But PVM's real contribution to science and computing is not in supercomputing. PVM's reliability and ease of use made this
software package very popular for hooking together a network of workstations or a pile of PCs into a virtual parallel computer that
gave PVM users several times more power than they would have otherwise. With tens of thousands of users, PVM was so
popular that it became a de facto standard for heterogeneous distributed computing worldwide.

PVM still remains popular, particularly for applications that require fault tolerance. For example, PVM is used to provide fault
tolerance to the Globus Toolkit Grid Information Services for the DOE Science Grid. PVM is also used on clusters running the
Genomics Integrated Supercomputer Toolkit to provide 24/7 availability despite faults in the clusters.

The tiny 1.5 Mbyte PVM software package is an integrated set of software tools and libraries that emulates a general-purpose,
dynamic, heterogeneous parallel computing environment on a set of computers that are connected by a network. The network can
be the Internet (Grid computing) or a dedicated local network (cluster). One use of PVM today is to combine multiple Beowulf
clusters at a site into a Grid of clusters as shown in Figure 10.1.

Figure 10.1: PVM used to create a Grid of clusters.

The PVM library includes functions to add computers to the parallel virtual machine, spawn tasks on these computers, and
exchange data between tasks through message passing. This chapter provides detailed descriptions and examples of the basic
concepts and methodologies involved in using PVM on clusters as well as its use as a means to combine multiple clusters into a
Grid of clusters. The next chapter details the special functions in PVM for use in fault tolerant and dynamic environments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 The PVM System
The PVM system is composed of two parts. The first part is a daemon, called pvmd3 and sometimes abbreviated pvmd, that must
be installed on all the computers making up the virtual machine. (An example of a daemon program is the mail program that runs
in the background and handles all the incoming and outgoing electronic mail on a computer.) The daemon pvmd3 is designed so
any user with a valid login can install this daemon on a machine. To run a PVM application, you first create a virtual machine by
starting up PVM (Section 10.3.2 details how this is done). Multiple users can configure virtual machines that overlap the same
cluster nodes, and each user can execute several applications simultaneously on his own virtual machine.

The second part of the system is a library of PVM interface routines. It contains a functionally complete repertoire of primitives that
are needed for cooperation between tasks of an application. This library contains user-callable routines for fault detection,
message passing, spawning processes, coordinating tasks, and modifying the virtual machine.

The Parallel Virtual Machine computing environment is based on the following concepts:

User-configured host pool: The application's parallel tasks execute on a set of machines that are selected by the
user for a given run of the PVM program. The host pool may be altered by adding and deleting machines at any
time (an important feature for fault tolerance). When PVM is used on Beowulf clusters, the nodes within a cluster
and/or nodes spanning multiple clusters make up the host pool. There is no restriction on the number of parallel
tasks that can exist in a given virtual machine. If the number of tasks exceeds the number of processors in the
cluster, then PVM will run multiple tasks per processor.

Translucent access to hardware: Application programs may view the hardware environment as a transparent
computing resource or may exploit the capabilities of specific machines in the host pool by positioning certain tasks
on the most appropriate computers. On large clusters, for example, I/O nodes may run the monitoring tasks and
compute nodes may get the bulk of the computing load.

Explicit message-passing: PVM provides basic blocking and nonblocking send, receive, and collective
communication operations. For performance, PVM uses the native message-passing facilities on multiprocessors to
take advantage of the underlying hardware. For example, on the IBM SP, PVM transparently uses IBM's MPI to
move data. On the SGI multiprocessor, PVM uses shared memory to move data. On Linux clusters PVM typically
uses a mixture of UDP and TCP/IP to move data.

Dynamic program model: The PVM system supports a dynamic programming model where hosts and tasks can
come and go at any time. PVM tasks are dynamic. New ones can be spawned and existing ones killed at any time
by the application or manually from any host in the virtual machine. The virtual machine monitors its state and
automatically adapts to such changes.

Dynamic Groups: In some applications it is natural to think of a group of tasks. And there are cases where you
would like to identify your tasks by the numbers 0 to (p - 1), where p is the number of tasks. PVM includes the
concept of user-named groups. When a task joins a group, it is assigned a unique "instance" number in that group.
Instance numbers start at 0 and count up (similar to an MPI "rank"). In keeping with the dynamic programming
model in PVM , the group functions are designed to be very general and transparent to the user. For example, any
PVM task can join or leave any group at any time without having to inform any other task in the affected groups,
groups can overlap, and tasks can broadcast messages to groups of which they are not a member. To use any of
the group functions, a program must be linked with 'libgpvm3.a'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Writing PVM Applications
The PVM system currently supports many languages. C, C++, and Fortran languages are supported in the standard distribution.
Third-party groups have created freely available Java, Perl, Python, S, Matlab, TCL/TK, and IDL interfaces to PVM. All these are
downloadable from the PVM Web site (www.csm.ornl.gov/pvm). PVM is designed so that an application can be composed of
tasks written in any mixture of these languages and the tasks will still be able to exchange data and to synchronize with each
other.

The general paradigm for application programming with PVM is as follows. You write one or more sequential programs that
contain embedded calls to the PVM library. Each program corresponds to a task making up the application. These programs are
compiled for each architecture in the host pool, and the resulting object files are placed at a location accessible from machines in
the host pool. To execute an application, you typically start one copy of one task (typically the "manager" or "initiating" task) by
hand from a machine within the host pool. This process subsequently spawns other PVM tasks, eventually resulting in a collection
of active tasks that then compute on the cluster and exchange messages with each other to solve the problem.

The C and C++ language bindings for the PVM user interface library are implemented as functions, following the general
conventions used by most C systems. To elaborate, function arguments are a combination of value parameters and pointers as
appropriate, and function result values indicate the outcome of the call. In addition, macro definitions are used for system
constants, and global variables such as errno and pvm_errno are the mechanism for discriminating between multiple possible
outcomes. Application programs written in C and C++ access PVM library functions by linking against an archival library
('libpvm3.a') that is part of the standard distribution.

Fortran language bindings are implemented as subroutines rather than as functions. This approach was taken because some
compilers on the supported architectures would not reliably interface Fortran functions with C functions. One immediate
implication of this is that an additional argument is introduced into each PVM library call for status results to be returned to the
invoking program. Moreover, library routines for the placement and retrieval of typed data in message buffers are unified, with an
additional parameter indicating the datatype. Apart from these differences (and the standard naming prefixes pvm_ for C, and
pvmf for Fortran), a one-to-one correspondence exists between the two language bindings. Fortran interfaces to PVM are
implemented as library stubs that in turn invoke the corresponding C routines, after casting and/or dereferencing arguments as
appropriate. Thus, Fortran applications are required to link against the stubs library ('libfpvm3.a') as well as the C library.

All PVM tasks are identified by an integer task identifier tid. Messages are sent to tids and received from tids. Since tids must be
unique across the entire virtual machine, they are supplied by the local pvmd and are not user chosen. Although PVM encodes
information into each tid to improve performance, the user is expected to treat the tids as opaque integer identifiers. PVM contains
several routines that return tid values so that the user application can identify other tasks in the system.

As mentioned earlier, tasks interact through explicit message passing, identifying each other with a system-assigned, opaque tid.

Shown in Figure 10.2 is the body of the PVM program 'hello.c', a simple example that illustrates the basic concepts of PVM
programming. This program is intended to be invoked manually; after printing its task id (obtained with pvm_mytid()), it initiates
a copy of another program called 'hello_other.c' using the pvm_spawn() function. A successful spawn causes the program
to execute a blocking receive using pvm_recv. After the message is received, it is unpacked into a format the receiving computer
understands using pvm_upkstr. Then the program prints the message as well its task id. The final pvm_exit call dissociates the
program from the PVM system.

#include "pvm3.h"

main()
{
 int cc, tid, msgtag;
 char buf [100];

 printf("i'm t%x\n", pvm_mytid());

 cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid);

 if (cc == 1) {
 msgtag = 1;
 pvm_recv(tid, msgtag);
 pvm_upkstr(buf);
 printf("from t%x: %s\n", tid, buf);
 } else
 printf("can't start hello_other\n");

 pvm_exit();
}

Figure 10.2: PVM program 'hello.c'.

Figure 10.3 is a listing of the hello_other program. Its first PVM action is to obtain the task id of its parent using the pvm_parent
call. This program then obtains its hostname and transmits it to the parent using the three-call sequence: pvm_initsend to
initialize the (transparent) send buffer; pvm_pkstr to place a string in a strongly typed and architecture-independent manner into
the send buffer; and pvm_send to transmit it to the destination process specified by ptid, "tagging" the message with the number
1.

#include "pvm3.h"

main()
{
 int ptid, msgtag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int ptid, msgtag;
 char buf[100];

 ptid = pvm_parent();

 strcpy(buf, "hello, world from ");
 gethostname(buf + strlen(buf), 64);
 msgtag = 1;
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(buf);
 pvm_send(ptid, msgtag);

 pvm_exit();
}

Figure 10.3: PVM program 'hello_other.c'.

Message tags are user-defined identifiers put on a message by the sender so that the receiving task can selectively get a
particular message from the many that may have arrived. The receiver does not have to, nor may it be able to, know the tag put
on a message. It is possible in PVM to probe for what tags have arrived so far. It is also possible to ignore the tag and simply
receive the messages in the order they arrive at the receiving task. Message tags will become necessary as we explore more
complicated PVM examples.

The next example, 'forkjoin.c', demonstrates spawning a parallel application from one cluster node. We then show PVM
used in a Fortran dot product program PSDOT.F and a matrix multiply example that demonstrates the use of groups. Lastly, we
show an example of a master/worker PVM application that calculates heat diffusion through a wire.

10.2.1 fork/join

The fork/join example demonstrates how to spawn off PVM tasks and synchronize with them. The program spawns the number of
tasks specified by the user during startup. The children then synchronize by sending a message to their parent task. The parent
receives a message from each of the spawned tasks and prints out information about the message from the child tasks.

This program contains the code for both the parent and the child tasks. Let's examine it in more detail. The first action the
program takes is to call pvm_mytid(). In fork/join we check the value of mytid; if it is negative, indicating an error, we call
pvm_perror() and exit the program. The pvm_perror() call will print a message indicating what went wrong with the last PVM
call. In this case the last call was pvm_mytid(), so pvm_perror() might print a message indicating that PVM hasn't been
started on this machine. The argument to pvm_perror() is a string that will be prepended to any error message printed by
pvm_perror(). In this case we pass argv[0], which is the name of the program as it was typed on the command-line. The
pvm_perror() function is modeled after the Unix perror() function.

Assuming we obtained a valid result for mytid, we now call pvm_parent(). The pvm_parent() function will return the tid of
the task that spawned the calling task. Since we run the initial forkjoin program from a command prompt, this initial task will not
have a parent; it will not have been spawned by some other PVM task but will have been started manually by the user. For the
initial fork/join task the result of pvm_parent() will not be any particular task id but an error code, PvmNoParent. Thus we can
distinguish the parent fork/join task from the children by checking whether the result of the pvm_parent() call is equal to
PvmNoParent. If this task is the parent, then it must spawn the children. If it is not the parent, then it must send a message to the
parent.

Let's examine the code executed by the parent task. The number of tasks is taken from the command-line as argv[1]. If the
number of tasks is not legal, then we exit the program, calling pvm_exit() and then returning. The call to pvm_exit() is
important because it tells PVM this program will no longer be using any of the PVM facilities. (In this case the task exits and PVM
will deduce that the dead task no longer needs its services. Regardless, it is good style to exit cleanly.) If the number of tasks is
valid, fork/join will then attempt to spawn the children.

The pvm_spawn() call tells PVM to start ntask tasks named argv[0]. The second parameter is the argument list given to the
spawned tasks. In this case we don't care to give the children any particular command-line arguments, so this value is null. The
third parameter to spawn, PvmTaskDefault, is a flag telling PVM to spawn the tasks in the default method. The default method
is to distribute the tasks round robin to all the cluster nodes in the virtual machine. Had we been interested in placing the children
on a specific machine or a machine of a particular architecture, we would have used PvmTaskHost or PvmTaskArch for this flag
and specified the host or architecture as the fourth parameter. Since we don't care where the tasks execute, we use
PvmTaskDefault for the flag and null for the fourth parameter. Finally, ntask tells spawn how many tasks to start, and the
integer array child will hold the task ids of the newly spawned children. The return value of pvm_spawn() indicates how many
tasks were successfully spawned. If info is not equal to ntask, then some error occurred during the spawn. In case of an error,
the error code is placed in the task id array, child, instead of the actual task id; forkjoin loops over this array and prints the task
ids or any error codes. If no tasks were successfully spawned, then the program exits.

For each child task, the parent receives a message and prints out information about that message. The pvm_recv() call receives
a message from any task as long as the tag for that message is JOINTAG. The return value of pvm_recv() is an integer
indicating a message buffer. This integer can be used to find out information about message buffers. The subsequent call to
pvm_bufinfo() does just this; it gets the length, tag, and task id of the sending process for the message indicated by buf. In
forkjoin the messages sent by the children contain a single integer value, the task id of the child task. The pvm_upkint() call
unpacks the integer from the message into the mydata variable. As a sanity check, forkjoin tests the value of mydata and the
task id returned by pvm_bufinfo(). If the values differ, the program has a bug, and an error message is printed. Finally, the
information about the message is printed, and the parent program exits.

The last segment of code in forkjoin will be executed by the child tasks. Before data is placed in a message buffer, the buffer
must be initialized by calling pvm_initsend(). The parameter PvmDataDefault indicates that PVM should do whatever data
conversion is needed to ensure that the data arrives in the correct format on the destination processor. In some cases this may
result in unnecessary data conversions. If you are sure no data conversion will be needed because the destination machine uses
the same data format, then you can use PvmDataRaw as a parameter to pvm_initsend(). The pvm_pkint() call places a
single integer, mytid, into the message buffer. It is important to make sure the corresponding unpack call exactly matches the
pack call. Packing an integer and unpacking it as a float is an error. There should be a one-to-one correspondence between pack
and unpack calls. Finally, the message is sent to the parent task using a message tag of JOINTAG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and unpack calls. Finally, the message is sent to the parent task using a message tag of JOINTAG.
 pvm_perror("calling pvm_initsend"); pvm_exit(); return -1;
 }
 info = pvm_pkint(&mytid, 1, 1);
 if (info < 0) {
 pvm_perror("calling pvm_pkint"); pvm_exit(); return -1;
 }
 info = pvm_send(myparent, JOINTAG);
 if (info < 0) {
 pvm_perror("calling pvm_send"); pvm_exit(); return -1;
 }
 pvm_exit();
 return 0;
}

Figure 10.4 shows the output of running fork/join. Notice that the order the messages were received is nondeterministic. Since the
main loop of the parent processes messages on a first-come first-served basis, the order of the prints are determined simply by
the time it takes messages to travel from the child tasks to the parent.

/*
 Fork Join Example
 Demonstrates how to spawn processes and exchange messages
*/
 /* defines and prototypes for the PVM library */
 #include <pvm3.h>

 /* Maximum number of children this program will spawn */
 #define MAXNCHILD 20
 /* Tag to use for the joing message */
 #define JOINTAG 11

 int
 main(int argc, char* argv[])
 {

 /* number of tasks to spawn, use 3 as the default */
 int ntask = 3;
 /* return code from pvm calls */
 int info;
 /* my task id */
 int mytid;
 /* my parents task id */
 int myparent;
 /* children task id array */
 int child[MAXNCHILD];
 int i, mydata, buf, len, tag, tid;

 /* find out my task id number */
 mytid = pvm_mytid();

 /* check for error */
 if (mytid < 0) {
 /* print out the error */
 pvm_perror(argv[0]);
 /* exit the program */
 return -1;
 }
 /* find my parent's task id number */
 myparent = pvm_parent();

 /* exit if there is some error other than PvmNoParent */
 if ((myparent < 0) && (myparent != PvmNoParent)
 && (myparent != PvmParentNotSet)) {
 pvm_perror(argv[0]);
 pvm_exit ();
 return -1;
 }
 /* if i don't have a parent then i am the parent */
 if (myparent == PvmNoParent || myparent == PvmParentNotSet) {
 /* find out how many tasks to spawn */
 if (argc == 2) ntask = atoi(argv[l]) ;

 /* make sure ntask is legal */
 if ((ntask < 1) || (ntask > MAXNCHILD)) { pvm_exit(); return 0; }

 /* spawn the child tasks */
 info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault, (char*)0,
 ntask, child);
 /* print out the task ids */
 for (i = 0; i < ntask; i++)
 if (child[i] < 0) /* print the error code in decimal*/
 printf(" %d", child[i]);
 else /* print the task id in hex */
 printf("t%x\t", child[i]);
 putchar('\n');

 /* make sure spawn succeeded */
 if (info == 0) { pvm_exit(); return -1; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* only expect responses from those spawned correctly */
 ntask = info;

 for (i = 0; i < ntask; i++) {
 /* recv a message from any child process */
 buf = pvm_recv(-1, JOINTAG);
 if (buf < 0) pvm_perror("calling recv");
 info = pvm_bufinfo(buf, &len, &tag, &tid);
 if (info < 0) pvm_perror("calling pvm_bufinfo");
 info = pvm_upkint(&mydata, 1, 1);
 if (info < 0) pvm_perror("calling pvm_upkint");
 if (mydata != tid) printf("This should not happen!\n");
 printf("Length %d, Tag %d, Tid t%x\n", len, tag, tid);
 }
 pvm_exit();
 return 0;
 }

 /* i'm a child */
 info = pvm_initsend(PvmDataDefault);
 if (info < 0) {
 % forkjoin
 t10001c t40149 tc0037
 Length 4, Tag 11, Tid t40149
 Length 4, Tag 11, Tid tc0037
 Length 4, Tag 11, Tid t10001c
 % forkjoin 4
 t10001e t10001d t4014b tc0038
 Length 4, Tag 11, Tid t4014b
 Length 4, Tag 11, Tid tc0038
 Length 4, Tag 11, Tid t10001d
 Length 4, Tag 11, Tid t10001e

Figure 10.4: Output of fork/join program.

10.2.2 Dot Product

Here we show a simple Fortran program, PSDOT, for computing a dot product. The program computes the dot product of two
arrays, X and Y. First PSDOT calls PVMFMYTID() and PVMFPARENT(). The PVMFPARENT call will return PVMNOPARENT if the task
wasn't spawned by another PVM task. If this is the case, then PSDOT task is the master and must spawn the other worker copies
of PSDOT.PSDOT then asks the user for the number of processes to use and the length of vectors to compute. Each spawned
process will receive n/nproc elements of X and Y, where n is the length of the vectors and nproc is the number of processes being
used in the computation. If nproc does not divide n evenly, then the master will compute the dot product on the extra elements.
The subroutine SGENMAT randomly generates values for X and Y. PSDOT then spawns nproc-1 copies of itself and sends each
new task a part of the X and Y arrays. The message contains the length of the subarrays in the message and the subarrays
themselves. After the master spawns the worker processes and sends out the subvectors, the master then computes the dot
product on its portion of X and Y. The master process then receives the other local dot products from the worker processes.
Notice that the PVMFRECV call uses a wild card (-1) for the task id parameter. This indicates that a message from any task will
satisfy the receive. Using the wild card in this manner results in a race condition. In this case the race condition does not cause a
problem because addition is commutative; in other words, it doesn't matter in which order we add up the partial sums from the
workers. However, unless one is certain that the race will not affect the program adversely, race conditions should be avoided.

Once the master receives all the local dot products and sums them into a global dot product, it then calculates the entire dot
product locally. These two results are then subtracted, and the difference between the two values is printed. A small difference
can be expected because of the variation in floating-point roundoff errors.

If the PSDOT program is a worker, then it receives a message from the master process containing subarrays of X and Y. It
calculates the dot product of these subarrays and sends the result back to the master process. In the interests of brevity we do not
include the SGENMAT and SDOT subroutines.
 PROGRAM PSDOT
*
* PSDOT performs a parallel inner (or dot) product, where the vectors
* X and Y start out on a master node, which then sets up the virtual
* machine, farms out the data and work, and sums up the local pieces
* to get a global inner product.
*
* .. External Subroutines ..
 EXTERNAL PVMFMYTID, PVMFPARENT, PVMFSPAWN, PVMFEXIT, PVMFINITSEND
 EXTERNAL PVMFPACK, PVMFSEND, PVMFRECV, PVMFUNPACK, SGENMAT
*
* .. External Functions ..
 INTEGER ISAMAX
 REAL SDOT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 REAL SDOT
 EXTERNAL ISAMAX, SDOT
*
* .. Intrinsic Functions ..
 INTRINSIC MOD
*
* .. Parameters ..
 INTEGER MAXN
 PARAMETER (MAXN = 8000)
 INCLUDE 'fpvm3.h'
*
* .. Scalars ..
 INTEGER N, LN, MYTID, NPROCS, IBUF, IERR
 INTEGER I, J, K
 REAL LOOT, GDOT
*
* .. Arrays ..
 INTEGER TIDS(0:63)
 REAL X(MAXN), Y(MAXN)
*
* Enroll in PVM and get my and the master process' task ID number
*
 CALL PVMFMYTID(MYTID)
 CALL PVMFPARENT(TIDS(0))
*
* If I need to spawn other processes (I am master process)
*
 IF (TIDS(0) EQ. PVMNOPARENT) THEN
*
* Get starting information
*
 WRITE(*,*) 'How many processes should participate (1-64)?'
 READ(*,*) NPROCS
 WRITE(*,2000) MAXN
 READ(*,*) N
 TIDS(0) = MYTID
 IF (N GT. MAXN) THEN
 WRITE(*,*) 'N too large. Increase parameter MAXN to run'//
 $ 'this case.'
 STOP
 END IF
*
* LN is the number of elements of the dot product to do
* locally. Everyone has the same number, with the master
* getting any left over elements. J stores the number of
* elements rest of procs do.
*
 J = N / NPROCS
 LN = J + MOD(N, NPROCS)
 I = LN + 1
*
* Randomly generate X and Y
* Note: SGENMAT() routine is not provided here
*
 CALL SGENMAT(N, 1, X, N, MYTID, NPROCS, MAXN, J)
 CALL SGENMAT(N, 1, Y, N, I, N, LN, NPROCS)
*
* Loop over all worker processes
*
 DO 10 K = 1, NPROCS-1
*
* Spawn process and check for error
*
 CALL PVMFSPAWN('psdot', 0, 'anywhere', 1, TIDS(K), IERR)
 IF (IERR .NE. 1) THEN
 WRITE(*,*) 'ERROR, could not spawn process #',K,
 $ '. Dying . . .'
 CALL PVMFEXIT(IERR)
 STOP
 END IF
*
* Send out startup info
*
 CALL PVMFINITSEND(PVMDEFAULT, IBUF)
 CALL PVMFPACK(INTEGER4, J, 1, 1, IERR)
 CALL PVMFPACK(REAL4, X(I), J, 1, IERR)
 CALL PVMFPACK(REAL4, Y(I), J, 1, IERR)
 CALL PVMFSEND(TIDS(K), 0, IERR)
 I = I + J
 10 CONTINUE
*
* Figure master's part of dot product
* SDOT() is part of the BLAS Library (compile with -lblas)
*
 GDOT = SDOT(LN, X, 1, Y, 1)
*
* Receive the local dot products, and
* add to get the global dot product
*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

*
 DO 20 K = 1, NPROCS-1
 CALL PVMFRECV(-1, 1, IBUF)
 CALL PVMFUNPACK(REAL4, LDOT, 1, 1, IERR)
 GDOT = GDOT + LDOT
 20 CONTINUE
*
* Print out result
*
 WRITE(*,*) ' '
 WRITE(*,*) '<x,y> = ',GDOT
*
* Do sequential dot product and subtract from
* distributed dot product to get desired error estimate
*
 LDOT = SDOT(N, X, 1, Y, 1)
 WRITE(*,*) '<x,y> : sequential dot product. <x,y>^ : '//
 $ 'distributed dot product.'
 WRITE(*,*) '| <x,y> - <x,y>^ | = ' ,ABS(GDOT - LDOT)
 WRITE(*,*) 'Run completed.'
*
* If I am a worker process (i.e. spawned by master process)
*
 ELSE
*
* Receive startup info
*
 CALL PVMFRECV(TIDS(0), 0, IBUF)
 CALL PVMFUNPACK(INTEGER4, LN, 1, 1, IERR)
 CALL PVMFUNPACK(REAL4, X, LN, 1, IERR)
 CALL PVMFUNPACK(REAL4, Y, LN, 1, IERR)
*
* Figure local dot product and send it in to master
*
 LDOT = SDOT(LN, X, 1, Y, 1)
 CALL PVMFINITSEND(PVMDEFAULT, IBUF)
 CALL PVMFPACK(REAL4, LDOT, 1, 1, IERR)
 CALL PVMFSEND(TIDS(0), 1, IERR)
 END IF
*
 CALL PVMFEXIT(0)
*
1000 FORMAT(I10,' Successfully spawned process #' ,I2,', TID =',I10)
2000 FORMAT('Enter the length of vectors to multiply (1 -',I7,'):')
 STOP
*
* End program PSDOT
*
 END

10.2.3 Matrix Multiply

In this example we program a matrix multiply algorithm described by Fox et al. in [39]. The mmult program can be found at the
end of this section. The mmult program will calculate C = AB where C, A, and B are all square matrices. For simplicity we assume
that m × m tasks are used to calculate the solution. Each task calculates a subblock of the resulting matrix C. The block size and
the value of m are given as a command-line argument to the program. The matrices A and B are also stored as blocks distributed
over the m2 tasks. Before delving into the details of the program, let us first describe the algorithm at a high level.

In our grid of m x m tasks, each task (tij, where 0 ≤ i, j < m), initially contains blocks Cij, Aij, and Bij. In the first step of the algorithm
the tasks on the diagonal (tij where i = j) send their block Aii to all the other tasks in row i. After the transmission of Aii, all tasks
calculate Aii × Bij and add the result into Cij. In the next step, the column blocks of B are rotated. That is, tij sends its block of B to
t(i-1)j. (Task t0j sends its B block to t(m-1)j.) The tasks now return to the first step, Ai(i+1) is multicast to all other tasks in row i, and
the algorithm continues. After m iterations, the C matrix contains A × B, and the B matrix has been rotated back into place.

Let us now go over the matrix multiply as it is programmed in PVM. In PVM there is no restriction on which tasks may
communicate with which other tasks. However, for this program we would like to think of the tasks as a two-dimensional
conceptual torus. In order to enumerate the tasks, each task joins the group mmult. Group ids are used to map tasks to our torus.
The first task to join a group is given the group id of zero. In the mmult program, the task with group id zero spawns the other
tasks and sends the parameters for the matrix multiply to those tasks. The parameters are m and bklsize, the square root of the
number of blocks and the size of a block, respectively. After all the tasks have been spawned and the parameters transmitted,
pvm_barrier() is called to make sure all the tasks have joined the group. If the barrier is not performed, later calls to
pvm_gettid() might fail because a task may not have yet joined the group.

After the barrier, the task ids for the other tasks are stored in the row in the array myrow. Specifically, the program calculates
group ids for all the tasks in the row, and we ask PVM for the task id for the corresponding group id. Next the program allocates
the blocks for the matrices using malloc(). (In an actual application program we would expect that the matrices would already
be allocated.) Then the program calculates the row and column of the block of C it will be computing; this calculation is based on
the value of the group id. The group ids range from 0 to m - 1 inclusive. Thus, the integer division of (mygid/m) will give the task's
row and (mygid mod m) will give the column if we assume a row major mapping of group ids to tasks. Using a similar mapping, we
calculate the group id of the task directly above and below in the torus and store their task ids in up and down, respectively.

Next the blocks are initialized by calling InitBlock(). This function simply initializes A to random values, B to the identity matrix,
and C to zeros. This will allow us to verify the computation at the end of the program by checking that A = C.

Finally we enter the main loop to calculate the matrix multiply. First the tasks on the diagonal multicast their block of A to the other
tasks in their row. Note that the array myrow actually contains the task id of the task doing the multicast. Recall that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tasks in their row. Note that the array myrow actually contains the task id of the task doing the multicast. Recall that
pvm_mcast() will send to all the tasks in the tasks array except the calling task. This approach works well in the case of mmult
because we don't want to have to needlessly handle the extra message coming into the multicasting task with an extra
pvm_recv(). Both the multicasting task and the tasks receiving the block calculate the AB for the diagonal block and the block of
B residing in the task.

After the subblocks have been multiplied and added into the C block, we now shift the B blocks vertically. Specifically, the block of
B is packed into a message and sent to the up task id; then a new B block is received from the down task id.

Note that we use different message tags for sending the A blocks and the B blocks as well as for different iterations of the loop.
We also fully specify the task ids when doing a pvm_recv(). It's tempting to use wild cards for the fields of pvm_recv();
however, such use can be dangerous. For instance, had we incorrectly calculated the value for up and used a wild card for the
pvm_recv() instead of down, we would be sending messages to the wrong tasks without knowing it. In this example we fully
specify messages, thereby reducing the possibility of receiving a message from the wrong task or the wrong phase of the
algorithm.

Once the computation is complete, we check to see that A = C, just to verify that the matrix multiply correctly calculated the values
of C. This step would not be done in a matrix-multiply library routine, for example.

You do not have to call pvm_lvgroup() because PVM will automatically detect that the task has exited and will remove it from
the group. It is good form, however, to leave the group before calling pvm_exit(). The reset command from the PVM console
will reset all the PVM groups. The pvm_gstat command will print the status of any groups that currently exist.
/*
 Matrix Multiply
*/

/* defines and prototypes for the PVM library */
#include <pvm3.h>
#include <stdio.h>

/* Maximum number of children this program will spawn */
#define MAXNTIDS 100
#define MAXROW 10

/* Message tags */
#define ATAG 2
#define BTAG 3
#define DIMTAG 5

void
InitBlock(float *a, float *b, float *c, int blk, int row, int col)
{
 int len, ind;
 int i,j;

 srand(pvm_mytid());
 len = blk*blk;
 for (ind = 0; ind < len; ind++)
 { a[ind] = (float)(rand()%1000)/100.0; c[ind] = 0.0; }
 for (i = 0; i < blk; i++) {
 for (j = 0; j < blk; j++) {
 if (row == col)
 b[j*blk+i] = (i==j)? 1.0 : 0.0;
 else
 b[j*blk+i] = 0.0;
 }
 }
}

void
BlockMult(float* c, float* a, float* b, int blk)
{
 int i,j,k;
 for (i = 0; i < blk; i++)
 for (j = 0; j < blk; j ++)
 for (k = 0; k < blk; k++)
 c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]);
}

int
main(int argc, char* argv[])
{

 /* number of tasks to spawn, use 3 as the default */
 int ntask = 2;
 /* return code from pvm calls */
 int info;
 /* my task and group id */
 int mytid, mygid;
 /* children task id array */
 int child[MAXNTIDS-1];
 int i, m, blksize;
 /* array of the tids in my row */
 int myrow[MAXROW];
 float *a, *b, *c, *atmp;
 int row, col, up, down;

 /* find out my task id number */
 mytid = pvm_mytid();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mytid = pvm_mytid();
 pvm_setopt(PvmRoute, PvmRouteDirect);

 /* check for error */
 if (mytid < 0) {
 /* print out the error */
 pvm_perror(argv[0]);
 /* exit the program */
 return -1;
 }

 /* join the mmult group */
 mygid = pvm_joingroup("mmult");
 if (mygid < 0) {
 pvm_perror(argv[0]); pvm_exit(); return -1;
 }

 /* if my group id is 0 then I must spawn the other tasks */
if (mygid == 0) {
 /* find out how many tasks to spawn */
 if (argc == 3) {
 m = atoi(argv[1]);
 blksize = atoi(argv[2]);
 }
 if (argc < 3) {
 fprintf(stderr, "usage: mmult m blk\n");
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

 /* make sure ntask is legal */
 ntask = m*m;
 if ((ntask < 1) || (ntask >= MAXNTIDS)) {
 fprintf(stderr, "ntask = %d not valid.\n", ntask);
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }
 /* if there is more than one task spawn them*/
 if (ntask > 1) {

 /* spawn the child tasks */
 info = pvm_spawn("mmult", (char**)0, PvmTaskDefault, (char*)0,
 ntask-1, child);

 /* make sure spawn succeeded */
 if (info != ntask-1) {
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

 /* send the matrix dimension */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&m, 1, 1);
 pvm_pkint(&blksize, 1, 1);
 pvm_mcast(child, ntask-1, DIMTAG);
 }
 }
else {
 /* recv the matrix dimension */
 pvm_recv(pvm_gettid("mmult", 0), DIMTAG);
 pvm_upkint(&m, 1, 1);
 pvm_upkint(&blksize, 1, 1);
 ntask = m*m;
 }
/* make sure all tasks have joined the group */

info = pvm_barrier("mmult",ntask);
if (info < 0) pvm_perror(argv[0]);

/* find the tids in my row */
for (i = 0; i < m; i++)
 myrow[i] = pvm_gettid("mmult", (mygid/m)*m + i);

/* allocate the memory for the local blocks */
a = (float*)malloc(sizeof(float)*blksize*blksize);
b = (float*)malloc(sizeof(float)*blksize*blksize);
c = (float*)malloc(sizeof(float)*blksize*blksize);
atmp = (float*)malloc(sizeof(float)*blksize*blksize);
/* check for valid pointers */
if (!(a && b && c && atmp)) {
 fprintf(stderr, "%s: out of memory!\n", argv[0]);
 free(a); free(b); free(c); free(atmp);
 pvm_lvgroup("mmult"); pvm_exit(); return -1;
 }

/* find my block's row and column */
row = mygid/m; col = mygid % m;
/* calculate the neighbor's above and below */
up = pvm_gettid("mmult", ((row)?(row-1):(m-1))*m+col);
down = pvm_gettid("mmult", ((row == (m-1))?col:(row+1)*m+col));

/* initialize the blocks */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* initialize the blocks */
InitBlock(a, b, c, blksize, row, col);

/* do the matrix multiply */
for (i = 0; i < m; i++) {
 /* mcast the block of matrix A */
 if (col == (row + i)%m) {
 pvm_initsend(PvmDataDefault);
 pvm_pkfloat(a, blksize*blksize, 1);
 pvm_mcast(myrow, m, (i+1)*ATAG);
 BlockMult(c,a,b,blksize);
 }
 else {
 pvm_recv(pvm_gettid("mmult", row*m + (row +i)%m), (i+1)*ATAG);
 pvm_upkfloat(atmp, blksize*blksize, 1);
 BlockMult(c,atmp,b,blksize);
 }
 /* rotate the columns of B */
 pvm_initsend(PvmDataDefault);
 pvm_pkfloat(b, blksize*blksize, 1);
 pvm_send(up, (i+1)*BTAG);
 pvm_recv(down, (i+1)*BTAG);
 pvm_upkfloat(b, blksize*blksize, 1);
 }

 /* check it */
 for (i = 0 ; i < blksize*blksize; i++)
 if (a[i] != c[i])
 printf("Error a[%d] (%g) != c[%d] (%g) \n", i, a[i],i,c[i]);

 printf("Done.\n");
 free(a); free(b); free(c); free(atmp);
 pvm_lvgroup("mmult");
 pvm_exit();
 return 0;
}

10.2.4 One-Dimensional Heat Equation

Here we present a PVM program that calculates heat diffusion through a substrate, in this case a wire. Consider the one-
dimensional heat equation on a thin wire,

(10.1)

and a discretization of the form

(10.2)

giving the explicit formula

(10.3)

The initial and boundary conditions are

A(t, 0) = 0, A(t, 1) = 0 for all t

A(0, x) = sin(π x) for 0 ≤ x ≤ 1.

The pseudocode for this computation is as follows:
 for i = 1:tsteps-1;
 t = t+dt;
 a(i+1,1)=0;
 a(i+1,n+2)=0;
 for j = 2:n+1;
 a(i+1,j)=a(i,j) + mu*(a(i,j+1)-2*a(i,j)+a(i,j-1));
 end;
 end

For this example we use a master/worker programming model. The master, 'heat.c', spawns five copies of the program
heatslv. The workers compute the heat diffusion for subsections of the wire in parallel. At each time step the workers exchange
boundary information, in this case the temperature of the wire at the boundaries between processors.

Let's take a closer look at the code. In 'heat.c' the array solution will hold the solution for the heat diffusion equation at each
time step. First the heatslv tasks are spawned. Next, the initial dataset is computed. Notice that the ends of the wires are given
initial temperature values of zero.

The main part of the program is then executed four times, each with a different value for Δ t. A timer is used to compute the
elapsed time of each compute phase. The initial datasets are sent to the heatslv tasks. The left and right neighbor task ids are
sent along with the initial dataset. The heatslv tasks use these to communicate boundary information. Alternatively, we could

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sent along with the initial dataset. The heatslv tasks use these to communicate boundary information. Alternatively, we could
have used the PVM group calls to map tasks to segments of the wire. By using that approach we would have avoided explicitly
communicating the task ids to the slave processes.

After sending the initial data, the master process waits for results. When the results arrive, they are integrated into the solution
matrix, the elapsed time is calculated, and the solution is written to the output file.

Once the data for all four phases have been computed and stored, the master program prints out the elapsed times and kills the
slave processes.
/*
heat.c

 Use PVM to solve a simple heat diffusion differential equation,
 using 1 master program and 5 slaves.

 The master program sets up the data, communicates it to the slaves
 and waits for the results to be sent from the slaves.
 Produces xgraph ready files of the results.
*/

#include "pvm3.h"
#include <stdio.h>
#include <math.h>
#include <time.h>
#define SLAVENAME "heatslv"
#define NPROC 5
#define TIMESTEP 100
#define PLOTINC 10
#define SIZE 1000

int num_data = SIZE/NPROC;

main()
{ int mytid, task_ids[NPROC], i, j;
 int left, right, k, 1;
 int step = TIMESTEP;
 int info;

 double init[SIZE], solution[TIMESTEP][SIZE];
 double result[TIMESTEP*SIZE/NPROC], deltax2;
 FILE *filenum;
 char *filename [4] [7] ;
 double deltat[4];
 time_t t0;
 int etime [4] ;

 filename[0][0] = "graph1";
 filename[1][0] = "graph2";
 filename[2][0] = "graph3";
 filename[3][0] = "graph4";

 deltat[0] = 5.0e-1;
 deltat[1] = 5.0e-3;
 deltat[2] = 5.0e-6;
 deltat[3] = 5.0e-9;

/* enroll in pvm */
 mytid = pvm_mytid();

/* spawn the slave tasks */
 info = pvm_spawn(SLAVENAME,(char **)0,PvmTaskDefault,"",
 NPROC,task_ids);
/* create the initial data set */
 for (i = 0; i < SIZE; i++)
 init[i] = sin(M_PI * ((double)i / (double)(SIZE-1)));
 init[0] = 0.0;
 init[SIZE-1] = 0.0;

/* run the problem 4 times for different values of delta t */
 for (1 = 0; 1 < 4; 1++) {
 deltax2 = (deltat[1]/pow(1.0/(double)SIZE,2.0));
 /* start timing for this run */
 time(&t0);
 etime[1] = t0;
/* send the initial data to the slaves. */
/* include neighbor info for exchanging boundary data */
 for (i = 0; i < NPROC; i++) {
 pvm_initsend(PvmDataDefault);
 left = (i == 0) ? 0 : task_ids[i-1];
 pvm_pkint(&left, 1, 1);
 right = (i == (NPROC-1)) ? 0 : task_ids[i+1];
 pvm_pkint(&right, 1, 1);
 pvm_pkint(&step, 1, 1);
 pvm_pkdouble(&deltax2, 1, 1);
 pvm_pkint(&num_data, 1, 1);
 pvm_pkdouble(&init[num_data*i], num_data, 1);
 pvm_send(task_ids[i], 4);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* wait for the results */
 for (i = 0; i < NPROC; i++) {
 pvm_recv(task_ids[i], 7);
 pvm_upkdouble(&result[0], num_data*TIMESTEP, 1);
/* update the solution */
 for (j = 0; j < TIMESTEP; j++)
 for (k = 0; k < num_data; k++)
 solution[j][num_data*i+k] = result[wh(j,k)];
 }

/* stop timing */
 time(&t0);
 etime[1] = t0 - etime[l];

/* produce the output */
 filenum = fopen(filename[1][0], "w");
 fprintf(filenum,"TitleText: Wire Heat over Delta Time: %e\n",
 deltat[1]);
 fprintf(filenum,"XUnitText: Distance\nYUnitText: Heat\n");
 for (i = 0; i < TIMESTEP; i = i + PLOTINC) {
 fprintf(filenum,"\"Time index: %d\n",i);
 for (j = 0; j < SIZE; j++)
 fprintf(filenum,"%d %e\n",j, solution[i][j]);
 fprintf(filenum,"\n");
 }
 fclose (filenum);
 }

/* print the timing information */
 printf("Problem size: %d\n",SIZE);
 for (i = 0; i < 4; i++)
 printf("Time for run %d: %d sec\n",i,etime[i]);

/* kill the slave processes */
 for (i = 0; i < NPROC; i++) pvm_kill(task_ids[i]);
 pvm_exit();
}

int wh(x, y)
int x, y;
{
 return(x*num_data+y);
}

The heatslv programs do the actual computation of the heat diffusion through the wire. The worker program consists of an
infinite loop that receives an initial dataset, iteratively computes a solution based on this dataset (exchanging boundary
information with neighbors on each iteration), and sends the resulting partial solution back to the master process. As an alternative
to using an infinite loop in the worker tasks, we could send a special message to the worker ordering it to exit. Instead, we simply
use the infinite loop in the worker tasks and kill them off from the master program. A third option would be to have the workers
execute only once, exiting after processing a single dataset from the master. This would require placing the master's spawn call
inside the main for loop of 'heat.c'. While this option would work, it would needlessly add overhead to the overall
computation.

For each time step and before each compute phase, the boundary values of the temperature matrix are exchanged. The left-hand
boundary elements are first sent to the left neighbor task and received from the right neighbor task. Symmetrically, the right-hand
boundary elements are sent to the right neighbor and then received from the left neighbor. The task ids for the neighbors are
checked to make sure no attempt is made to send or receive messages to nonexistent tasks.
/*

heatslv.c

 The slaves receive the initial data from the host,
 exchange boundary information with neighbors,
 and calculate the heat change in the wire.
 This is done for a number of iterations, sent by the master.

*/

#include "pvm3.h"
#include <stdio.h>

int num_data;

main()
{
 int mytid, left, right, i, j, master;
 int timestep;

 double *init, *A;
 double leftdata, rightdata, delta, leftside, rightside;

/* enroll in pvm */
 mytid = pvm_mytid();
 master = pvm_parent();

/* receive my data from the master program */
 while(1) {
 pvm_recv(master, 4);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvm_recv(master, 4);
 pvm_upkint(&left, 1, 1);
 pvm_upkint(&right, 1, 1);
 pvm_upkint(×tep, 1, 1);
 pvm_upkdouble(&delta, 1, 1);
 pvm_upkint(&num_data, 1, 1);
 init = (double *) malloc(num_data*sizeof(double));
 pvm_upkdouble(init, num_data, 1);

/* copy the initial data into my working array */
 A = (double *) malloc(num_data * timestep * sizeof(double));
 for (i = 0; i < num_data; i++) A[i] = init[i];

/* perform the calculation */

 for (i = 0; i < timestep-1; i++) {
 /* trade boundary info with my neighbors */
 /* send left, receive right */
 if (left != 0) {
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[wh(i,0)],1,1);
 pvm_send(left, 5);
 }
 if (right != 0) {
 pvm_recv(right, 5);
 pvm_upkdouble(&rightdata, 1, 1);
 /* send right, receive left */
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[wh(i,num_data-1)],1,1);
 pvm_send(right, 6);
 }
 if (left != 0) {
 pvm_recv(left, 6);
 pvm_upkdouble(&leftdata,1,1);
 }

/* do the calculations for this iteration */

 for (j = 0; j < num_data; j++) {
 leftside = (j == 0) ? leftdata : A[wh(i,j-1)];
 rightside = (j == (num_data-1)) ? rightdata : A[wh(i,j+1)];
 if ((j==0)&&(left==0))
 A[wh(i+1,j)] = 0.0;
 else if ((j==(num_data-1))&&(right==0))
 A[wh(i+1,j)] = 0.0;
 else
 A[wh(i+1,j)]=
 A[wh(i,j)]+delta*(rightside-2*A[wh(i,j)]+leftside);
 }
 }

/* send the results back to the master program */

 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&A[0],num_data*timestep,1);
 pvm_send(master,7);
 }

/* just for good measure */
 pvm_exit();
}

int wh(x, y)
int x, y;
{
 return(x*num_data+y);
}

In this section we have given a variety of example programs written in both Fortran and C. These examples demonstrate various
ways of writing PVM programs. Some divide the application into two separate programs, while others use a single program with
conditionals to handle spawning and computing phases. These examples show different styles of communication, both among
worker tasks and between worker and master tasks. In some cases messages are used for synchronization, and in others the
master processes simply kill off the workers when they are no longer needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 Installing PVM
This section describes how to set up the PVM software package, how to configure a simple virtual machine, and how to compile
and run the example programs supplied with PVM. The first part describes the straightforward use of PVM and the most common
problems in setting up and running PVM. The latter part describes some of the more advanced options available for customizing
your PVM environment.

10.3.1 Setting Up PVM

One of the reasons for PVM's popularity is that PVM is simple to set up and use. It does not require special privileges to be
installed. Anyone with a valid login on the hosts can do so. In addition, only one person at an organization needs to get and install
PVM for everyone at that organization to use it.

PVM uses two environment variables when starting and running. Each PVM user needs to set these two variables to use PVM.
The first variable is PVM_ROOT, which is set to the location of the installed pvm3 directory. The second variable is PVM_ARCH,
which tells PVM the architecture of this host and thus what executables to pick from the PVM_ROOT directory.

Because of security concerns many sites no longer allow any of their computers, including those in clusters, to use rsh, which is
what PVM uses by default to add hosts to a virtual machine. It is easy to configure PVM to use ssh instead. Just edit the file
'PVM_ROOT/conf/PVM_ARCH.def' and replace rsh with ssh then recompile PVM and your applications.

If PVM is already installed at your site, you can skip ahead to "Creating Your Personal PVM." The PVM source comes with
directories and makefiles for Linux and most architectures you are likely to have in your cluster. Building for each architecture type
is done automatically by logging on to a host, going into the PVM_ROOT directory, and typing make. The 'makefile' will
automatically determine which architecture it is being executed on, create appropriate subdirectories, and build pvmd3,
libpvm3.a, and libfpvm3.a, pvmgs, and libgpvm3.a. It places all these files in 'PVM_ROOT/lib/PVM_ARCH' with the
exception of pvmgs, which is placed in 'PVM_ROOT/bin/PVM_ARCH'.

Setup Summary
Set PVM_ROOT and PVM_ARCH in your '.cshrc' file.

Build PVM for each architecture type.

Create an '.rhosts' file on each host listing all the hosts.

Create a '$HOME/.xpvm_hosts' file listing all the hosts prepended by an "&".

10.3.2 Creating Your Personal PVM

Before we go over the steps to compile and run parallel PVM programs, you should be sure you can start up PVM and configure a
virtual machine. On any host on which PVM has been installed you can type
% pvm

and you should get back a PVM console prompt signifying that PVM is now running on this host. You can add hosts to your virtual
machine by typing at the console prompt
pvm> add hostname

You also can delete hosts (except the one you are on) from your virtual machine by typing
pvm> delete hostname

If you get the message "Can't Start pvmd," PVM will run autodiagnostics and report the reason found.

To see what the present virtual machine looks like, you can type
pvm> conf

To see what PVM tasks are running on the virtual machine, you can type
pvm> ps -a

Of course, you don't have any tasks running yet. If you type "quit" at the console prompt, the console will quit, but your virtual
machine and tasks will continue to run. At any command prompt on any host in the virtual machine, you can type
% pvm

and you will get the message "pvm already running" and the console prompt. When you are finished with the virtual machine you
should type
pvm> halt

This command kills any PVM tasks, shuts down the virtual machine, and exits the console. This is the recommended method to
stop PVM because it makes sure that the virtual machine shuts down cleanly.

You should practice starting and stopping and adding hosts to PVM until you are comfortable with the PVM console. A full
description of the PVM console and its many command options is given in the documentation that comes with the PVM software.

If you don't wish to type in a bunch of hostnames each time, there is a hostfile option. You can list the hostnames in a file one per
line and then type
% pvm hostfile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% pvm hostfile

PVM will then add all the listed hosts simultaneously before the console prompt appears. Several options can be specified on a
per host basis in the hostfile, if you wish to customize your virtual machine for a particular application or environment.

PVM may also be started in other ways. The functions of the console and a performance monitor have been combined in a
graphical user interface called XPVM, which is available from the PVM Web site. If XPVM has been installed at your site, then it
can be used to start PVM. To start PVM with this interface, type
% xpvm

The menu button labeled "hosts" will pull down a list of hosts you can add. If you click on a hostname, it is added, and an icon of
the machine appears in an animation of the virtual machine. A host is deleted if you click on a hostname that is already in the
virtual machine. On startup XPVM reads the file '$HOME/. xpvm_hosts', which is a list of hosts to display in this menu. Hosts
without leading "&" are added all at once at startup.

The quit and halt buttons work just like the PVM console. If you quit XPVM and then restart it, XPVM will automatically display
what the running virtual machine looks like. Practice starting and stopping and adding hosts with XPVM. If any errors occur, they
should appear in the window where you started XPVM.

10.3.3 Running PVM Programs

This section describes how to compile and run the example programs supplied with the PVM software. These example programs
make useful templates on which to base your own PVM programs.

The first step is to copy the example programs into your own area:
% cp -r $PVM_ROOT/examples $HOME/pvm3/examples
% cd $HOME/pvm3/examples

The examples directory contains a 'Makefile.aimk' and 'Readme' file that describe how to build the examples. PVM supplies
an architecture-independent make, aimk, that automatically determines PVM_ARCH and links any operating system-specific
libraries to your application. when you placed the 'cshrc.stub' in your '.cshrc' file, aimk was automatically added to your
$PATH. Using aimk allows you to leave the source code and makefile unchanged as you compile across different architectures.

The master/worker programming model is the most popular model used in cluster computing. To compile the master/slave C
example, type
% aimk master slave

If you prefer to work with Fortran, compile the Fortran version with
% aimk fmaster fslave

Depending on the location of PVM_ROOT, the INCLUDE statement at the top of the Fortran examples may need to be changed. If
PVM_ROOT is not 'HOME/pvm3', then change the include to point to '$PVM_ROOT/include/f pvm3.h'. Note that PVM_ROOT
is not expanded inside the Fortran, so you must insert the actual path.

The makefile moves the executables to '$HOME/pvm3/bin/PVM_ARCH', which is the default location where PVM will look for
them on all hosts. If your file system is not common across all your cluster nodes, then you will have to copy these executables on
all your nodes.

From one window start up PVM and configure some hosts. These examples are designed to run on any number of hosts,
including one. In another window, cd to the location of the PVM executables and type
% master

The program will ask about the number of tasks. This number does not have to match the number of hosts in these examples. Try
several combinations.

The first example illustrates the ability to run a PVM program from a prompt on any host in the virtual machine. This is how you
would run a serial a.out program on a front console of a cluster. The next example, which is also a master/slave model called
codehitc, shows how to spawn PVM jobs from the PVM console and also from XPVM.

The model hitc illustrates dynamic load balancing using the pool of tasks paradigm. In this paradigm, the master program
manages a large queue of tasks, always sending idle slave programs more work to do until the queue is empty. This paradigm is
effective in situations where the hosts have very different computational powers because the least-loaded or more powerful hosts
do more of the work and all the hosts stay busy until the end of the problem. To compile hitc, type
% aimk hitc hitc_slave

Since hitc does not require any user input, it can be spawned directly from the PVM console. Start the PVM console, and add
some cluster nodes. At the PVM console prompt, type
pvm> spawn -> hitc

The "->" spawn option causes all the print statements in hitc and in the slaves to appear in the console window. This can be a
useful feature when debugging your first few PVM programs. You may wish to experiment with this option by placing print
statements in 'hitc.f' and 'hitc_slave.f' and recompiling.

10.3.4 PVM Console Details

The PVM console, called pvm, is a standalone PVM task that allows you to interactively start, query, and modify the virtual
machine. The console may be started and stopped multiple times on any of the hosts in the virtual machine without affecting PVM
or any applications that may be running.

When the console is started, pvm determines whether PVM is already running and, if not, automatically executes pvmd on this
host, passing pvmd the command-line options and hostfile. Thus, PVM need not be running to start the console.
 pvm [-n<hostname>] [hostfile]

The -n option is useful for specifying another name for the master pvmd (in case hostname doesn't match the IP address you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The -n option is useful for specifying another name for the master pvmd (in case hostname doesn't match the IP address you
want). This feature becomes very useful with Beowulf clusters because the nodes of the cluster sometime are on their own
network. In this case the front-end node will have two hostnames: one for the cluster and one for the external network. The -n
option lets you specify the cluster name directly during PVM startup.

Once started, the console prints the prompt
pvm>

and accepts commands from standard input. The available commands are as follows:
add followed by one or more hostnames (cluster nodes), adds these hosts to the virtual machine.

alias defines or lists command aliases.

conf lists the configuration of the virtual machine including hostname, pvmd task ID, architecture type, and a
relative speed rating.

delete followed by one or more hostnames, deletes these hosts from the virtual machine. PVM processes still
running on these hosts are lost .

echo echoes arguments.

halt kills all PVM processes including console and then shuts down PVM. All daemons exit.

help can be used to get information about any of the interactive commands. The help command may be followed
by a command name that will list options and flags available for this command.

id prints console task id.

jobs lists running jobs.

kill can be used to terminate any PVM process.

mstat shows status of specified hosts.

ps -a lists all processes currently on the virtual machine, their locations, their task IDs, and their parents' task IDs.

pstat shows status of a single PVM process.

quit exits the console, leaving daemons and PVM jobs running.

reset kills all PVM processes except consoles, and resets all the internal PVM tables and message queues. The
daemons are left in an idle state.

setenv displays or sets environment variables.

sig followed by a signal number and tid, sends the signal to the task.

spawn starts a PVM application. Options include the following:
-count shows the number of tasks; default is 1

-(host) spawn on host; default is any

-(PVM_ARCH) spawn of hosts of type PVM_ARCH

-? enable debugging

-> redirect task output to console

->file redirect task output to file

->>file redirect task output append to file

-@ trace job; display output on console

-@file trace job; output to file

unalias undefines command alias.

version prints version of PVM being used.

PVM supports the use of multiple consoles. It is possible to run a console on any host in an existing virtual machine and even
multiple consoles on the same machine. It is possible to start up a console in the middle of a PVM application and check on its
progress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Fault-Tolerant and Adaptive Programs with PVM

Overview
Al Geist and Jim Kohl

A number of factors must be considered when you are developing applications for Beowulf clusters. In the preceding chapters the
basic methods of message passing were illustrated so that you could create your own parallel programs. This chapter describes
the issues and common methods for making parallel programs that are fault tolerant and adaptive.

Fault tolerance is the ability of an application to continue to run or make progress even if a hardware or software problem causes
a node in the cluster to fail. It is also the ability to tolerate failures within the application itself. For example, one task inside a
parallel application may get an error and abort, but the rest of the tasks are able to carry on the calculation. Because Beowulf
clusters are built from commodity components that are designed for the desktop rather than heavy-duty computing, failures of
components inside a cluster are higher than in a more expensive multiprocessor system that has an integrated RAS (Reliability,
Availability, Serviceability) system.

While fault-tolerant programs can be thought of as adaptive, the term "adaptive programs" is used here more generally to mean
parallel (or serial) programs that dynamically change their characteristics to better match the application's needs and the available
resources. Examples include an application that adapts by adding or releasing nodes of the cluster according to its present
computational needs and an application that creates and kills tasks based on what the computation needs.

In later chapters you will learn about Condor and other resource management tools that automatically provide some measure of
fault tolerance and adaptability to jobs submitted to them. This chapter teaches the basics of how to write such tools yourself.

PVM is based on a dynamic computing model in which cluster nodes can be added and deleted from the computation on the fly
and parallel tasks can be spawned or killed during the computation. PVM doesn't have nearly as rich a set of message-passing
features as MPI; but, being a virtual machine model, PVM has a number of features that make it attractive for creating dynamic
parallel programs. For this reason, PVM will be used to illustrate the concepts of fault tolerance and adaptability in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Considerations for Fault Tolerance
A computational biologist at Oak Ridge National Laboratory wants to write an parallel application that runs 24/7 on his Beowulf
cluster. The application involves analysis of the human genome and is driven by a constant stream of new data arriving from
researchers all around the world. The data is not independent because new data helps refine and extend previously calculated
sequences. How can he write such a program?

A company wants to write an application to process a constant stream of sales orders coming in from the Web. The program
needs to be robust because down time costs not only the lost revenue stream but also wages of workers who are idle. The
company has recently purchased a Beowulf cluster to provide a reliable, cost-effective solution. But how does a company write the
fault-tolerant parallel program to run on the cluster?

When you are developing algorithms that must be reliable the first consideration is the hardware. The bad news is that your
Beowulf cluster will have failures; it will need maintenance. It is not a matter of whether some node in the cluster will fail but when.
Experience has shown that the more nodes the cluster has, the more likely one will fail within a given time.

How often a hardware failure occurs varies widely between clusters. It depends on the quality of the components used by the
manufacturer. It depends on the room the cluster is set up in. Is it adequately cooled? Is ventilation good? It is possible to have a
cool room but have the cluster nodes stacked so close together that the inner nodes get hot and begin to have component
failures. It is possible to have the hot air from one node blow into the cool air intake of another node. Hardware failure also
depends on the applications being run on the nodes. Some parallel applications do intense sustained calculations that cause the
floating point chips to generate much more heat. Other applications read and write intensely to memory, thereby increasing the
probability of having a memory fault.

Some clusters have failures every week; others run for months. It is not uncommon for several nodes to fail at about the same
time with similar hardware problems. Evaluate your particular cluster under a simulated load for a couple of weeks to get data on
expected mean time between failures (MTBF). If the MTBF is many times longer than your average application run time, then it
may not make sense to restructure the application to be fault tolerant. In most cases it is more efficient simply to rerun a failed
application if it has a short run time.

The second consideration is the fault tolerance of the underlying software environment. If the runtime system is not robust, then
the hardware is the least of your problems. The PVM system sits between the operating system and the application and, among
other things, monitors the state of the virtual machine. The PVM runtime system is designed to be fault tolerant and to reconfigure
itself automatically when a failure is detected. (It doesn't help your fault-tolerant application if the underlying failure detection
system crashes during a failure!) The PVM failure detection system is responsible for detecting problems and notifying running
applications about the problem. The PVM runtime system keeps track of and automatically reconfigures itself around failed nodes
and tasks. It makes no attempt to recover a parallel application automatically.

The third consideration is the application. Not every parallel application can recover from a failure; recovery depends on the
design of the application and the nature of the failure. For example, in the manager/worker programs of the preceding chapters, if
the node that fails was running a worker, then recovery is possible; but if the node was running the manager, then key data may
be lost that can't be recovered.

At the least, any parallel program can be made fault tolerant by restarting it automatically from the beginning if a failure in
detected. The most common form of fault tolerance in use today is a variation of this approach, called checkpoint/restart. Instead
of starting from the beginning, an application periodically stops calculating and sending messages and writes out its partial results
to disk as a checkpoint. When a failure occurs, the runtime system kills the parallel application and automatically restarts it from
the last checkpoint. The time lost in this technique is the time from the last checkpoint and the time it takes to write out all the
checkpoints during the entire run.

This technique works for MPI, PVM, shared-memory paradigms, and most other programming paradigms. The application
developer has to write two routines. One collects and writes out the checkpoint information from all the parallel tasks. The other
checks whether the application is restarting, reads in the checkpoint data, and distributes the data to the parallel tasks. While
writing these two routines is not trivial, failure recovery without stopping the application can get much more complicated.

On-the-fly recovery of parallel programs is complicated because data in messages may be in flight when the recovery begins.
Hence, a race condition arises. If the data does not arrive, then it will need to be resent as part of the recovery. But if the data
manages to be received just before the recovery, then there isn't an outstanding receive call, and the data shouldn't be resent.

File I/O is another problem that complicates recovery. File pointers may need to be reset to the last checkpoint to avoid getting a
repeated set of output data in the file.

Despite all these issues, a few common methods can be used to improve the fault tolerance of many parallel applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Building Fault-Tolerant Parallel Applications
From the application's view, three steps must be performed for fault tolerance: detection, notification, and recovery.

The first step is being able to detect that something has gone wrong. Detection is typically the job of the runtime environment; but
when the runtime envoronment does not provide this capability, application developers can create their own set of monitoring
tasks to oversee an application.

The PVM runtime system has a monitoring and notification capability built into it. Any or all tasks in an application can ask to be
notified of specific events. These events include the failure of a task, the failure of a cluster node, or the availability of new nodes
into the application.

The second step in building fault-tolerant applications is notification. The PVM task(s) requesting notification can specify a
particular task or set of tasks to be monitored. Or it can ask to be notified if any task within the application fails. The notification
message contains the ID of the task that failed.

Unlike many detection systems, PVM's monitoring system is not based on the detection of a broken communication channel
between the monitored and notifed task. Thus there is no need for the notified task and the failed task ever to have communicated
in order to detect the failure. This approach provides more robustness in the first step of detection.

The failure or deletion of a node in the cluster is another notify event that can be requested. Again the requesting application task
can specify a particular node, set of nodes, or all nodes. And, as before, the notification message returns the ID of the failed
node(s).

The addition of one or more cluster nodes to the application's computational environment is also an event that PVM can notify an
application about. In this case no ID can be specified, and the notification message returns the ID of the new node(s).
int info = pvm_notify(int EventType, int msgtag, int cnt, int *ids)

The EventType options are PvmTaskExit, PvmHostDelete, or PvmHostAdd. A separate notify call must be made for each
event type that the application wishes to be notified about. The msgtag argument specifies what message tag the task will be
using to listen for events. The cnt argument is the number of tasks or node IDs in the ids list for which notification is requested.

Given the flexibility of the pvm_notify command, there are several options for how the application can be designed to receive
notification from the PVM system. The first option is designing a separate watcher task. One or more of these watcher tasks are
spawned across the cluster and often have the additional responsibility of managing the recovery phase of the application. The
advantage of this approach is that the application code can remain cleaner. Note that in the manager/worker scheme the manager
often assumes the additional duty as watcher.

A second option is for the application tasks to watch each other. A common method is to have each task watch its neighbor in a
logical ring. Thus each task just watches one or two other tasks. Another common, but not particularly efficient, method is to have
every task watch all the other tasks. Remember that the PVM system is doing the monitoring, not the application tasks. So the
monitoring overhead is the same with all these options. The difference is the number of notification messages that get sent in the
event of a failure.

Recovery is the final step in building fault-tolerant programs. Recovery depends heavily on the type of parallel algorithm used in
the application. The most commonly used options are restart from the beginning, roll back to the last checkpoint, or reassign the
work of a failed task.

The first option is the simplest to implement but the most expensive in the amount of calculation that must be redone. This option
is used by many batch systems because it requires no knowledge of the application. It guarantees that the application will
complete even if failures occur, although it does not guarantee how long this will take. On average the time is less than twice the
normal run time. For short-running applications this is the best option.

For longer-running applications, checkpointing is a commonly used option. With this option you must understand the parallel
application and modify it so that the application can restart from an input data file. You then have to modify the application to write
out such a data file periodically. In the event of a failure, only computations from the last checkpoint are lost. The application
restarts itself from the last successful data file written out. How often checkpoints are written out depends on the size of the restart
file and how long the application is going to run. For large, scientific applications that run for days, checkpointing is typically done
every few hours.

Note that if a failure is caused by the loss of a cluster node, then the application cannot be restarted until the node is repaired or is
replaced by another node in the cluster. The restart file is almost always written out assuming that the same number of nodes is
available during the restart.

In the special case where an application is based on a manager/worker scheme, it is often possible to reassign the job sent to the
failed worker to another worker or to spawn a replacement worker to take its place. Manager/worker is a very popular parallel
programming scheme for Beowulf clusters, so this special case arises often. Below is an example of a fault-tolerant
manager/worker program.
/* Fault Tolerant Manager / Worker Example
 * using notification and task spawning.
 * example1.c
 */

#include <stdio.h>
#include <math.h>
#include <pvm3.h>

#define NWORK 4
#define NPROB 10000
#define MSGTAG 123

int main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int main()
{
 double sum = 0.0, result, input = 1.0;
 int tids[NWORK], numt, probs[NPROB], sent=0, recvd=0;
 int aok=0, cc, bufid, done=0, i, j, marker, next, src;

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Spawn NWORK Worker Tasks */
 numt = pvm_spawn("example1", (char **) NULL, PvmTaskDefault,
 (char *) NULL, NWORK, tids);

 /* Set Up Notify for Spawned Tasks */
 pvm_notify(PvmTaskExit, MSGTAG, numt, tids);

 /* Send Problem to Spawned Workers */
 for (i=0 ; i < NPROB ; i++) probs[i] = -1;
 for (i=0 ; i < numt ; i++) {
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */
 input = (double) (i + 1);
 pvm_pkdouble(&input, 1, 1);
 pvm_send(tids[i], MSGTAG);
 probs[i] = i; sent++; /* Next Problem */
 }

 /* Collect Results / Handle Failures */
 do {
 /* Receive Result */
 bufid = pvm_recv(-1, MSGTAG);
 pvm_upkint(&marker, 1, 1);

 /* Handle Notify */
 if (marker > 0) {
 /* Find Failed Task Index */
 for (i=0, next = -1 ; i < numt ; i++)
 if (tids[i] == marker)
 /* Find Last Problem Sent to Task */
 for (j=(sent-1) ; j > 0 ; j--)
 if (probs[j] == i) {
 /* Spawn Replacement Task */
 if (pvm_spawn("example1", (char **) NULL,
 PvmTaskDefault, (char *) NULL, 1,
 &(tids[i])) == 1) {
 pvm_notify(PvmTaskExit, MSGTAG, 1,
 &(tids[i]));
 next = i; sent--;
 }
 probs[j] = -1; /* Reinsert Prob */
 break;
 }
 } else {
 /* Get Source Task & Accumulate Solution */
 pvm_upkdouble(&result, 1, 1);
 sum += result;
 recvd++;
 /* Get Task Index */
 pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);
 for (i=0 ; i < numt ; i++)
 if (tids[i] == src) next = i;
 }

 /* Send Another Problem */
 if (next >= 0) {
 for (i=0, input = -1.0 ; i < NPROB ; i++)
 if (probs[i] < 0) {
 input = (double) (i + 1);
 probs [i] = next; sent++; /* Next Problem */
 break;
 }
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */
 pvm_pkdouble(&input, 1, 1);
 pvm_send(tids[next], MSGTAG);
 if (input < 0.0) tids[next] = -1;
 }

 } while (recvd < sent);

 printf("Sum = %lf\n", sum);
 }

 /* If I am a Worker Task */
 else if (cc > 0) {
 /* Notify Me If Manager Fails */
 pvm_notify(PvmTaskExit, MSGTAG, 1, &cc);
 /* Solve Problems Until Done */
 do {
 /* Get Problem from Master */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Get Problem from Master */
 pvm_recv(-1, MSGTAG);
 pvm_upkint(&aok, 1, 1);
 if (aok > 0) /* Master Died */
 break;
 pvm_upkdouble(&input, 1, 1);
 if (input > 0.0) {
 /* Compute Result */
 result = sqrt((2.0 * input) - 1.0);
 /* Send Result to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&aok, 1, 1); /* Ask for more... */
 pvm_pkdouble(&result, 1, 1);
 pvm_send(cc, MSGTAG);
 } else
 done = 1;
 } while (!done);
 }

 pvm_exit();

 return(0);
}

This example illustrates another useful function: pvm_spawn(). The ability to spawn a replacement task is a powerful capability in
fault tolerance. It is also a key function in adaptive programs, as we will see in the next section.
int numt = pvm_spawn(char *task, char **argv, int flag,
 char *node, int ntasks, int *tids)

The routine pvm_spawn() starts up ntasks copies of an executable file task on the virtual machine. The PVM virtual machine
is assumed to be running on the Beowulf cluster. Here argv is a pointer to an array of arguments to task with the end of the
array specified by NULL. If task takes no arguments, then argv is NULL. The flag argument is used to specify options and is a
sum of the following options:

PvmTaskDefault: has PVM choose where to spawn processes

PvmTaskHost: uses a where argument to specify a particular host or cluster node to spawn on

PvmTaskArch: uses a where argument to specify an architecture class to spawn on

PvmTaskDebug: starts up these processes under debugger

PvmTaskTrace: uses PVM calls to generate trace data

PvmMppFront: starts process on MPP front-end/service node

PvmHostComp: starts process on complementary host set

For example, flag = PvmTaskHost + PvmHostCompl spawns tasks on every node but the specified node (which may be the
manager, for instance).

On return, numt is set to the number of tasks successfully spawned or an error code if no tasks could be started. If tasks were
started, then pvm_spawn() returns a vector of the spawned tasks' tids. If some tasks could not be started, the corresponding
error codes are placed in the last (ntask - numt) positions of the vector.

In the example above, pvm_spawn() is used by the manager to start all the worker tasks and also is used to replace workers who
fail during the computation. This type of fault-tolerant method is useful for applications that run continuously with a steady stream
of new work coming in, as was the case in our two initial examples. Both used a variation on the above PVM example code for
their solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Adaptive Programs
In this section, we use some more of the PVM virtual machine functions to illustrate how cluster programs can be extended to
adapt not only to faults but also to many other metrics and circumstances. The first example demonstrates a parallel application
that dynamically adapts the size of the virtual machine through adding and releasing nodes based on the computational needs of
the application. Such a feature is used every day on a 128-processor Beowulf cluster at Oak Ridge National Laboratory that is
shared by three research groups.
int numh = pvm_addhosts(char **hosts, int nhost, int *infos)
int numh = pvm_delhosts(char **hosts, int nhost, int *infos)

The PVM addhosts and delhosts routines add or delete a set of hosts in the virtual machine. In a Beowulf cluster this
corresponds to adding or deleting nodes from the computation; numh is returned as the number of nodes successfully added or
deleted. The argument infos is an array of length nhost that contains the status code for each individual node being added or
deleted. This allows you to check whether only one of a set of hosts caused a problem, rather than trying to add or delete the
entire set of hosts again.
/*
 * Adaptive Host Allocation Example adds and removes cluster nodes
 * from computation on the fly for different computational phases
 */

#include <stdio.h>
#include <pvm3.h>

static char *host_set_A[] = { "node1", "node2", "node3" };
static int nhosts_A = sizeof(host_set_A) / sizeof(char **);

static char *host_set_B[] = { "node10", "node12" };
static int nhosts_B = sizeof(host_set_B) / sizeof(char **);

#define MAX_HOSTS 255
#define MSGTAG 123

double phase1(int prob) {
 return((prob == 1) ? 1 : ((double) prob * phase1(prob - 1))); }

double phase2(int prob) {

int main(int argc, char **argv)
{
 double sum1 = 0.0, sum2 = 0.0, result;
 int status[MAX_HOSTS], prob, cc, i;
 char *args[3], input[16];

 /* If I am the Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Phase #1 of computation - Use Host Set A */
 pvm_addhosts(host_set_A, nhosts_A, status);

 /* Spawn Worker Tasks - One Per Host */
 args[0] = "phase1"; args[1] = input; args[2] = (char *) NULL;
 for (i=0, prob=0 ; i < nhosts_A ; i++)
 if (status[i] > 0) { /* Successful Host Add */
 sprintf(input, "%d", prob++);
 pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,
 host_set_A[i], 1, (int *) NULL);
 }
 /* Collect Results */
 for (i=0 ; i < prob ; i++) {
 pvm_recv(-1, MSGTAG);
 pvm_upkdouble(&result, 1, 1);
 sum1 += result;
 }

 /* Remove Host Set A after Phase #1 */
 for (i=0 ; i < nhosts_A ; i++)
 if (status[i] > 0) /* Only Delete Successful Hosts */
 pvm_delhosts(&(host_set_A[i]), 1, (int *) NULL);

 /* Phase #2 of Computation - Use Host Set B */
 pvm_addhosts(host_set_B, nhosts_B, status);

 /* Spawn Worker Tasks - One Per Host (None Locally) */
 args[0] = "phase2";
 for (i=0, prob=0 ; i < nhosts_B ; i++)
 if (status[i] > 0) { /* Successful Host Add */
 sprintf(input, "%d", prob++);
 pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,
 host_set_B[i], 1, (int *) NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 host_set_B[i], 1, (int *) NULL);
 }
 /* Collect Results */
 for (i=0 ; i < prob ; i++) {
 pvm_recv(-1, MSGTAG);
 pvm_upkdouble(&result, 1, 1);
 sum2 += result;
 }

 /* Remove Host Set B from Phase #2 */
 for (i=0 ; i < nhosts_B ; i++)
 if (status[i] > 0) /* Only Delete Successful Hosts */
 pvm_delhosts(&(host_set_B[i]), 1, (int *) NULL);

 /* Done */
 printf("sum1 (%lf) / sum2 (%lf) = %lf\n", sum1, sum2, sum1/sum2);
 }

 /* If I am a Worker Task */
 else if (cc > 0) {
 /* Compute Result */
 prob = atoi(argv[2]);
 if (!strcmp(argv[1], "phase1"))
 result = phase1(prob + 1);
 else if (!strcmp(argv[1], "phase2"))
 result = phase2(100 * (prob + 1));
 /* Send Result to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&result, 1, 1);
 pvm_send(cc, MSGTAG);
 }

 pvm_exit();

 return(0);
}

One of the main difficulties of writing libraries for message-passing applications is that messages sent inside the application may
get intercepted by the message-passing calls inside the library. The same problem occurs when two applications want to
cooperate, for example, a performance monitor and a scientific application or an airframe stress application coupled with an
aerodynamic flow application. Whenever two or more programmers are writing different parts of the overall message-passing
application, there is the potential that a message will be inadvertently received by the wrong part of the application. The solution to
this problem is communication context. As described earlier in the MPI chapters, communication context in MPI is handled cleanly
through the MPI communicator.

In PVM 3.4, pvm_recv() requests a message from a particular source with a user-chosen message tag (either or both of these
fields can be set to accept anything). In addition, communication context is a third field that a receive must match on before
accepting a message; the context cannot be specified by a wild card. By default a base context is predefined, which is similar to
the default MPI_COMM_WORLD communicator in MPI.

PVM has four routines to manage communication contexts.
 new_context = pvm_newcontext()
 old_context = pvm_setcontext(new_context)
 info = pvm_freecontext(context)
 context = pvm_getcontext()

Pvm_newcontext() returns a systemwide unique context tag generated by the local daemon (in a way similar to the way the
local daemon generates systemwide unique task IDs). Since it is a local operation, pvm_newcontext is very fast. The returned
context can then be broadcast to all the tasks that are cooperating on this part of the application. Each of the tasks calls
pvm_setcontext, which switches the active context and returns the old context tag so that it can be restored at the end of the
module by another call to pvm_setcontext. Pvm_freecontext and pvm_getcontext are used to free memory associated
with a context tag and to get the value of the active context tag, respectively.

Spawned tasks inherit the context of their parent. Thus, if you wish to add context to an existing parallel routine already written in
PVM, you need to add only four lines to the source:
 int mycxt, oldcxt;
 /* near the beginning of the routine set a new context */
 mycxt = pvm_newcontext();
 oldcxt = pvm_setcontext(mycxt);

 /* spawn slave tasks to help */
 /* slave tasks require no source code change */
 /* leave all the PVM calls in master unchanged */

 /* just before exiting the routine restore previous context */
 mycxt = pvm_setcontext(oldcxt);
 pvm_freecontext(mycxt);

 return;

PVM has always had message handlers internally, which were used for controlling the virtual machine. In PVM 3.4 the ability to
define and delete message handlers was raised to the user level so that parallel programs can be written that can add new
features while the program is running.

The two new message handler functions are
 mhid = pvm_addmhf(src, tag, context, *function);
 pvm_delmhf(mhid);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvm_delmhf(mhid);

Once a message handler has been added by a task, whenever a message arrives at this task with the specified source, message
tag, and communication context, the specified function is executed. The function is passed the message so that it may unpack the
message if desired. PVM places no restrictions on the complexity of the function, which is free to make system calls or other PVM
calls. A message handler ID is returned by the add routine, which is used in the delete message handler routine.

There is no limit on the number of handlers you can set up, and handlers can be added and deleted dynamically by each
application task independently.

By setting up message handlers, you can now write programs that can dynamically change the features of the underlying virtual
machine. For example, message handlers can be added that implement active messages; the application then can use this form
of communication rather than the typical send/receive. Similar opportunities exist for almost every feature of the virtual machine.

The ability of the application to adapt features of the virtual machine to meet its present needs is a powerful capability that has yet
to be fully exploited in Beowulf clusters.
/* Adapting available Virtual Machine features with
 * user redefined message handlers.
 */
#include <stdio.h>
#include <pvm3.h>

#define NWORK 4
#define MAIN_MSGTAG 123
#define CNTR_MSGTAG 124
int counter = 0;

int handler(int mid) {
 int ack, incr, src;

 /* Increment Counter */
 pvm_upkint(&incr, 1, 1);
 counter += incr;
 printf("counter = %d\n", counter);

 /* Acknowledge Counter Task */
 pvm_bufinfo(mid, (int *) NULL, (int *) NULL, &src);
 pvm_initsend(PvmDataDefault);
 ack = (counter > 1000) ? -1 : 1;
 pvm_pkint(&ack, 1, 1);
 pvm_send(src, CNTR_MSGTAG);

 return(0);
}

int main(int argc, char **argv)
{
 int ack, cc, ctx, bufid, incr=1, iter=1, max, numt, old, value=1, src;
 char *args[2];

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Generate New Message Context for Counter Task messages */
 ctx = pvm_newcontext();

 /* Register Message Handler Function for Independent Counter */
 pvm_addmhf(-1, CNTR_MSGTAG, ctx, handler);

 /* Spawn 1 Counter Task */
 args[0] = "counter"; args[1] = (char *) NULL;
 old = pvm_setcontext(ctx); /* Set Message Context for Task */
 if (pvm_spawn("example3", args, PvmTaskDefault,
 (char *) NULL, 1, (int *) NULL) != 1)
 counter = 1001; /* Counter Failed to Spawn, Trigger Exit */
 pvm_setcontext(old); /* Reset to Base Message Context */

 /* Spawn NWORK Worker Tasks */
 args[0] = "worker";
 numt = pvm_spawn("example3", args, PvmTaskDefault,
 (char *) NULL, NWORK, (int *) NULL);

 /* Increment & Return Worker Values */
 do {
 /* Get Value */
 bufid = pvm_recv(-1, MAIN_MSGTAG);
 pvm_upkint(&value, 1, 1);
 max = (value > max) ? value : max;
 printf("recvd value = %d\n", value);

 /* Send Reply */
 pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);
 if (counter <= 1000) value += iter++;
 else { value = -1; numt--; } /* Tell Workers to Exit */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&value, 1, 1);
 pvm_send(src, MAIN_MSGTAG);
 } while (numt > 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("Max Value = %d\n", max);
 }

 /* If I am a Worker Task */
 else if (cc > 0 && !strcmp(argv[1], "worker")) {
 /* Grow Values Until Done */
 do {
 /* Send Value to Master */
 value *= 2;
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&value, 1, 1);
 pvm_send(cc, MAIN_MSGTAG);
 /* Get Incremented Value from Master */
 pvm_recv(cc, MAIN_MSGTAG);
 pvm_upkint(&value, 1, 1);
 } while (value > 0);
 }
 /* If I am a Counter Task */
 else if (cc > 0 && !strcmp(argv[1], "counter")) {
 /* Grow Values Until Done */
 do {
 /* Send Counter Increment to Master */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&incr, 1, 1);
 pvm_send(cc, CNTR_MSGTAG);
 incr *= 2;
 /* Check Ack from Master */
 pvm_recv(cc, CNTR_MSGTAG);
 pvm_upkint(&ack, 1, 1);
 } while (ack > 0);
 }

 pvm_exit();

 return(0);
}

In a typical message-passing system, messages are transient, and the focus is on making their existence as brief as possible by
decreasing latency and increasing bandwidth. But in a growing number of situations in the parallel applications seen today,
programming would be much easier if one could have persistent messages. This is the purpose of the Message Box feature in
PVM.

The Message Box is an simple key/value database in the virtual machine. The key is a user-specified name, and the value is any
valid PVM message. Given that there are no restrictions on the complexity or size of a PVM message, the database is simple, but
remarkably flexible.

Four functions make up the Message Box:
 index = pvm_putinfo(name, msgbuf, flag)
 pvm_recvinfo(name, index, flag)
 pvm_delinfo(name, index, flag)
 pvm_getmboxinfo(pattern, matching_names, info)

Tasks can use regular PVM pack routines to create an arbitrary message and then use pvm_putinfo() to place this message
into the Message Box with an associated name. Copies of this message can be retrieved by any PVM task that knows the name.
If the name is unknown or is changing dynamically, then pvm_getmboxinfo () can be used to find the list of names active in
the Message Box. The flag defines the properties of the stored message, such as who is allowed to delete this message, whether
this name allows multiple instances of messages, and whether a put to the same name can overwrite the message.

The Message Box has been used for many other purposes. For example, the dynamic group functionality in PVM is implemented
in the new Message Box functions; the Cumulvs computational steering tool uses the Message Box to query for the instructions
on how to attach to a remote distributed simulation; and performance monitors leave their findings in the Message Box for other
tools to use.

The capability to have persistent messages in parallel computing opens up many new application possibilities not only in high-
performance computing but also in collaborative technologies.
/* Example using persistent messages to adapt to change
 * Monitor tasks are created and killed as needed
 * Information is exchanged between these tasks using persistent messages
 */

#include <stdio.h>
#include <sys/time.h>
#include <pvm3.h>

#define MSGBOX "load_stats"

int main()
{
 int cc, elapsed, i, index, load, num;
 struct timeval start, end;
 double value;

 /* If I am a Manager Task */
 if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

 /* Periodically Spawn Load Monitor, Check Current System Load */
 do {
 /* Spawn Load Monitor Task */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Spawn Load Monitor Task */
 if (pvm_spawn("example4", (char **) NULL, PvmTaskDefault,
 (char *) NULL, 1, (int *) NULL) != 1) {
 perror("spawning load monitor"); break;
 }
 sleep(1);

 /* Check System Load (Microseconds Per Megaflop) */
 for (i=0, load=0.0, num=0 ; i < 11 ; i++)
 if (pvm_recvinfo(MSGBOX, i, PvmMboxDefault) >= 0) {
 pvm_upkint(&elapsed, 1, 1);
 load += elapsed; num++;
 }
 if (num)
 printf("Load Avg = %lf usec/Mflop\n",
 (double) load / (double) num);
 sleep(5);
 } while (1);
 }

 /* If I am a Load Monitor Task */
 else if (cc > 0) {
 /* Time Simple Computation */
 gettimeofday(&start, (struct timezone *) NULL);
 for (i=0, value=1.0 ; i < 1000000 ; i++)
 value *= 1.2345678;
 gettimeofday(&end, (struct timezone *) NULL);
 elapsed = (end.tv_usec - start.tv_usec)
 + 1000000 * (end.tv_sec - start.tv_sec);

 /* Dump Into Next Available Message Mbox */
 pvm_initsend(PvmDataDefault);
 pvm_pkint(&elapsed, 1, 1);
 index = pvm_putinfo(MSGBOX, pvm_getsbuf(),
 PvmMboxDefault | PvmMboxPersistent
 | PvmMboxMultiInstance | PvmMboxOverWritable);

 /* Free Next Mbox Index for Next Instance (Only Save 10) */
 pvm_delinfo(MSGBOX, (index + 1) % 11, PvmMboxDefault);
 }

 pvm_exit();

 return(0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: Numerical and Scientific Software for Clusters

Overview
Victor Eijkhout and Jack Dongarra

In this chapter we discuss numerical software for clusters. We focus on some of the most common numerical operations: linear
system solving, eigenvalue computations, and fast Fourier transform.

Numerical operations such as linear system solving and eigenvalue calculations can be applied to two different kinds of matrix:
dense and sparse. In dense systems, essentially every matrix element is nonzero; in sparse systems, a sufficiently large number
of matrix elements is zero that a specialized storage scheme is warranted; for an introduction to sparse storage, see [12].
Because the two classes are so different, usually different numerical libraries apply to them. For dense systems, we discuss
ScaLAPACK and PLAPACK as the choices for both system solving and eigenvalue computations. For sparse systems, we
discuss Arpack for eigenvalue problems. There exist two classes of algorithms for solving sparse linear systems: direct methods
and iterative methods. We will discuss SuperLU as an example of a direct solver and PETSc and Aztec as examples of iterative
solvers.

Fast Fourier transforms (FFTs) typically are applied many times to different data. For FFTs we discuss the FFTW package
(Section 12.4), which is probably better optimized than any other free FFT package.

In addition to numerical software operations, we discuss the issue of load balancing. We focus on two software packages,
ParMetis and Chaco, which can be used in the above-mentioned sparse packages.

We conclude this chapter with a brief list of some popular science applications that run on Linux clusters, as well as a list of
software for linear algebra that is freely available on the Web.

A practical point. Some of these packages are written in Fortran, some in C. While calling a Fortran package from C is relatively
easy by observing linker naming conventions, the reverse direction can be difficult unless the package was designed to be called
from Fortran. We will remark on the implementation language of each package, and the ease with which it can be interfaced to
other languages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 Dense Linear System Solving
The problem in solving linear systems is: Given a square matrix A and a vector b, find a vector x such that Ax = b. In the most
general case, the matrix is stored as a distributed array, and the system is solved by Gaussian elimination. This is the basic
algorithm in ScaLAPACK and PLAPACK, the two packages we discuss for solving a linear system with a distributed dense
coefficient matrix. (Sparse systems are discussed in Section 12.2.)

On a single processor, the algorithm for dense linear system solving is fairly obvious, although a good deal of optimization is
needed for high performance (see Section 12.6.) In a distributed context, achieving high performance—especially performance
that scales up with increasing processor numbers—requires radical rethinking about the basic data structures. Both ScaLAPACK
and PLAPACK use block-cyclic data distributions. In Section 11.2.1, we focus on how to specify data in this distribution in
ScaLAPACK, since it is the more widely used package; we then briefly compare PLAPACK's calling style.

12.1.1 ScaLAPACK

ScaLAPACK is a parallel version of LAPACK, both in function and in software design. Like the earlier package, ScaLAPACK
targets linear system solution and eigenvalue calculation for dense and banded matrices. Note that, while sparse matrices are
often of banded form, use of the band storage is usually not an efficient way of dealing with sparse systems; other software
packages are better suited to that. In particular, one should use SuperLU (section 12.2.1) for sparse linear systems and Arpack
(section 12.3.2) for eigenvalue computations.

In a way, ScaLAPACK is the culmination of a line of linear algebra packages that started with LINPACK and EISPACK. The
coding of those packages was fairly straightforward, using at most Basic Linear Algebra Subprograms (BLAS) Level-1 operations
as an abstraction level. LAPACK [4, 63] attains high efficiency on a single processor (or a small number of shared-memory
processors) through the introduction of blocked algorithms and the concomitant use of BLAS Level-3 operations. ScaLAPACK
uses these blocked algorithms in a parallel context to attain scalably high performance on parallel computers.

The seemingly contradictory demands of portability and efficiency are realized in ScaLAPACK through confining the relevant parts
of the code to two subroutine libraries: the BLAS for the computational kernels and the BLACS (Basic Linear Algebra
Communication Subprograms) for communication kernels. While the BLACS come with ScaLAPACK, the user is to supply the
BLAS library; see Section 12.6.

ScaLAPACK is written in Fortran, as are the examples in this section. The distribution has no C prototypes, but interfacing to a C
program is simple, observing the usual name conversion conventions.

ScaLAPACK Parallel Initialization
ScaLAPACK relies for its communications on the BLACS, (Basic Linear Algebra Communication Subprograms) (Basic Linear
Algebra Communication Subprograms) which offers an abstraction layer over MPI. Its main feature is the ability to communicate
submatrices, rather than arrays, and of both rectangular and trapezoidal shape. The latter is of obvious value in factorization
algorithms. We will not go into the details of the BLACS here; instead, we focus on the aspects that come into play in the program
initialization phase.

Suppose you have divided your cluster into an approximately square grid of nprows by npcols processors. The following two
calls set up a BLACS processor grid - its handle is returned as ictxt - and return the current processor number (by row and
column) in it:
 call sl_init(ictxt,nprows,npcols)
 call blacs_gridinfo(ictxt,nprows,npcols,myprow,mypcol)

Correspondingly, at the end of your code you need to release the grid by
 call blacs_gridexit(ictxt)

ScaLAPACK Data Format
Creating a matrix in ScaLAPACK is, unfortunately, not simple, even though none of the indirect addressing problems of sparse
storage concern us here. The difficulty lies in the fact that for scalably high performance on factorization algorithms, a storage
mode called "two-dimensional block-cyclic" storage is used. The blocking is what enables the use of BLAS Level-3 routines; the
cyclic storage is needed for scalable parallelism.

Specifically, the block-cyclic storage implies that a global (i, j) coordinate in the matrix gets mapped to a triplet of (p, l, x) for both
the i and the j directions, where p is the processor number, l the block, and x the offset inside the block.

The block size has to be decided by the user; 64 is usually a safe bet. For generality, let us assume that block sizes bs_i and
bs_j have been chosen. First we determine how much storage is needed for the local part of the matrix:
 mlocal = numroc(mglobal,bs_i,myprow,0,nprows)
 nlocal = numroc(nglobal,bs_j,mypcol,0,npcols)

where numroc is a library function. (The m and n sizes of the matrix need not be equal, since ScaLAPACK also has routines for
QR factorization and such.)

Filling in a matrix requires the conversion from (i, j) coordinates to (p, l, x) coordinates. It is best to use conversion functions
 p_of_i(i,bs,p) = mod(int((i-1)/bs),p)
 l_of_i(i,bs,p) = int((i-1)/(p*bs))
 x_of_i(i,bs,p) = mod(i-1,bs)+1

that take i or j as input, as well as the block size and the number of processors in that direction. The global matrix element (i, j) is
then mapped to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pi = p_of_i(i,bs_i,nprows)
 li = l_of_i(i,bs_i,nprows)
 xi = x_of_i(i,bs_i,nprows)

 pj = p_of_i(j,bs_j,npcols)
 lj = l_of_i(j,bs_j,npcols)
 xj = x_of_i(j,bs_j,npcols)

 mat(li*bs_i+xi,lj*bs_j+xj) = mat_global(i,j)

if the current processor is (pi, pj).

Calling ScaLAPACK Routines
ScaLAPACK routines adhere to the LAPACK naming scheme: PXYYZZZ, where P indicates parallel; X is the "precision," meaning
single or double, real or complex; YY is the shape, with GE for rectangular and TR for triangular; and ZZZ denotes the function.

For most functions there is a "simple driver" (for instance, SV for system solving), which makes the routine name in our example
PDGESV for double precision, as well as an "expert driver," which has X attached to the name, PDGESVX in this example. The
expert driver usually has more input options and usually returns more diagnostic information.

In the call to a ScaLAPACK routine, information about the matrix has to be passed by way of a descriptor:
 integer desca(9)
 call descinit(desca,
 > mglobal,nglobal, bs_i,bs_j, 0,0,ictxt,lda,ierr)
 call pdgesv(nglobal,1, mat_local,1,1, desca,ipiv,
 > rhs_local,1,1, descb, ierr)

where lda>mlocal is the allocated first dimension of a.

Linear System Solution Routines
ScaLAPACK linear solver routines support dense and banded matrices. The drivers for solving a linear system are PxyySV,
where yy=GE or GB for dense and band, respectively. We do not discuss here other cases such as positive definite band, nor do
we discuss band matrices, which are stored by using a variant of the scheme described above. The reader is referred to the
ScaLAPACK Users' Guide [15] for details. The input matrix A of the system is on output overwritten with the LU factorization, and
the right-hand side B is overwritten with the solution. Temporary storage is needed only for the (integer) pivot locations.

12.1.2 PLAPACK

PLAPACK [86] is a package with functionality similar to that of ScaLACK but with a different calling style. It also relies on
optimized BLAS routines and is therefore able to achieve a high performance. Whereas ScaLAPACK uses a calling style that is
similar to Fortran, to stay close to its LAPACK roots PLAPACK uses a more object-oriented style. Its interface is similar in
philosophy to that of the PETSc package (discussed later in this chapter).

As an illustration of this object-oriented handling of matrices and vectors, here are matrix-vector multiply and triangular system
solve calls:
 PLA_Gemv(PLA_NO_TRANS, one, A, x, zero, b);
 PLA_Trsv(PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE,
 PLA_UNIT_DIAG, A, b);

The distribution of the matrix over the processors is induced as a "distribution template" declared by the user and is passed to the
matrix creation call:
 PLA_Matrix_create(datatype, size, size,
 templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A);

PLAPACK wins over ScaLAPACK in user-friendliness in filling in the matrix. As in PETSc, matrix elements can be specified
anywhere; and instead of being written directly into the data structure, they are passed by a
PLA_API_axpy_matrix_to_global call. On the other hand, PLAPACK lacks ScaLAPACK's sophistication of simple and
expert drivers and pays less attention to the issue of numerical stability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 Sparse Linear System Solving
For sparse matrices, more economical storage can be used, but the most foolproof algorithm is still Gaussian elimination. This is
the principle behind SuperLU (Section 12.2.1). In certain applications, especially physics-based ones, the matrix has favorable
properties that allow so-called iterative solution methods, which can be much more efficient than Gaussian elimination. The Aztec
and PETSc packages are built around such iterative methods (Sections 12.2.2 and 12.2.3).

12.2.1 SuperLU

SuperLU [67, 112] is one of the foremost direct solvers for sparse linear system. It is available in single-processor, multithreaded,
and parallel versions.

One of the aims of SuperLU is obtaining a high computational efficiency. To this end it finds cliques in the matrix graph.
Eliminating these reduces the cost of the graph algorithms used; and since cliques lead to dense submatrices, it enables the use
of higher-level BLAS routines.

The sequential and threaded versions of SuperLU use partial pivoting for numerical stability. Partial pivoting is avoided in the
parallel version, however, because it would lead to large numbers of small messages. Instead, "static pivoting" is used, with repair
of zero pivots during run time. To compensate for these numerically suboptimal strategies, the solution process uses iterative
refinement to obtain the full available precision.

Like ScaLAPACK, SuperLU has both simple drivers and expert drivers; the latter give the user opportunity for further steering,
return more detailed information, and are more sophisticated in terms of numerical precision.

While SuperLU accepts the user's matrix data structure (it must be in compressed column format), this is not a critical feature as it
is in our discussion of the relative merits of PETSc (Section 12.2.3) and Aztec (Section 12.2.2), for the following reason. SuperLU,
being a direct method, generates large amounts of data for the factorization, making the savings from reusing the user data and
the extra matrix storage in the parallel case relatively unimportant.

ScaLAPACK accepts two input modes: one where the matrix is distributed and the other where the matrix is replicated on every
processor. The former mode is less efficient because it requires more data redistribution.

SuperLU is written in C and cannot easily be used from Fortran. The standard installation comes with its own collection of BLAS
routines; one can edit the makefile to ensure that an optimized version of the BLAS library is used.

12.2.2 Aztec and Trilinos

The Aztec package [57, 6] has as its main focus linear system solving. While it is not so sophisticated as PETSc, it has two
advantages:

It has far fewer routines, so the learning curve is conceivably shorter.

It uses the user's matrix data structure and thus is easier to integrate in existing applications and to avoid
duplication of storage. (See Section 12.2.3 for a discussion of this issue in PETSc.)

Thus, Aztec is an attractive choice for supplying matrix-vector product and linear system solution routines for use in Arpack
(Section 12.3.2).

Aztec is written in C but supports a full set of Fortran interfaces.

Aztec supports a few parallel sparse matrix formats, in particular a parallel form of compressed row storage. The user first
partitions the matrix over the parallel processors using the global numbering for the element indices; Aztec then transforms the
matrix to a local (on-processor) indexing scheme.

The following code illustrates the gist of an Aztec iterative solution program:
 AZ_transform(proc_config,&external, idx,mat_el,update,
 &update_index,&extern_index,&data_org, n_update,
 index,bpntr,rpntr,&cpntr,AZ_MSR_MATRIX);
 AZ_defaults(options,params);
 options[AZ_conv] = AZ_r0;
 params[AZ_tol] = rtol;
 options[AZ_solver] = AZ_bicgstab;
 options[AZ_precond] = AZ_Jacobi;
 options[AZ_max_iter] = maxit;
 AZ_reorder_vec(invec,data_org,update_index,rpntr);
 AZ_solve(outvec,invec, options,params,
 index,idx,rpntr,cpntr,bpntr,mat_el,data_org,
 status,proc_config);
 iterations = status[AZ_its];
 convergence = (status[AZ_why]==AZ_normal);

Aztec is no longer under development but has been incorporated in a larger Sandia project, Trilinos [122],[1] that includes linear
and nonlinear solvers, with time-stepping methods and eigensolvers planned.

Trilinos is based on an object-oriented design with matrix/vector classes and an abstract solver interface that are specified pure
virtual. A linear algebra library called Epetra implements this interface, but the user can write a matrix and vector class, thereby
using the Trilinos algorithms on the user data structures.

Apart from the Epetra lower layer, Trilinos contains the algorithms of Aztec, plus (among others) Belos (a block Krylov package),
IFPACK (which has Schwarz preconditioners with local ILU), and the ML algebraic multilevel package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.3 PETSc

PETSc is a library for the solution of partial differential equations. It features tools for manipulating sparse matrix data structures, a
sizable repertoire of iterative linear system solvers and preconditioners, and nonlinear solvers and time-stepping methods.
Although it is written in C, it includes Fortran and F90 interfaces.

PETSc differs from other libraries in a few aspects. First, it is usable as a tool box: many low-level routines can be used to
implement new methods. In particular, PETSc provides tools for parallel computation (VecScatter objects) that offer an
abstraction layer over straight MPI communication.

Second, PETSc's approach to parallelism is very flexible. Many routines operate on local matrices as easily as on distributed
ones. Impressively, during the construction of a matrix any processor can specify the value of any matrix element. This approach,
for instance, facilitates writing parallel FEM codes because, along processor boundaries, elements belonging to different
processors will contribute to the value of the same matrix element.

A third difference between PETSc and other packages (often counted as a disadvantage) is that its data structures are internal
and not explicitly documented. Unlike Aztec (Section 12.2.2), which accepts the user's matrix, PETSc has its own data structure,
built up by passing matrix elements through function calls.
 MatCreate(comm,...,&A);
 for (i=...)
 for (j= ...)
 MatSetValue(A,...,i,j,value,...);

Thus, the user faces the choice of maintaining duplicate matrices (one in the native user format and one in PETSc format) with
the resulting storage overhead or of using PETSc throughout the code. However, because PETSc provides a large set of
operations, many applications can be written using PETSc for all matrix operations. In this case, there is no duplicate storage
because the only storage is within the PETSc routines. In addition, PETSc provides a way, though what are called "shell" objects,
to make direct use of application data structures. This provides a modular alternative to the "reverse communication" approach
used by Arpack.

Once PETSc data objects have been built, they are used in an object-oriented manner, where the contents and the exact nature
of the object are no longer visible:
 MatMult(A,X,Y);

Likewise, parameters to the various objects are kept internal:
 PCSetType(pc,PCJACOBI);

Of particular relevance in the current context is that after the initial creation of an object, its parallel status is largely irrelevant.

[1]As of this writing, a first public release of Trilinos is scheduled for the second half of 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 Eigenvalue Problems
Eigenvalue problems involve the following: Given a matrix A, find the numbers λ and vectors x such that Ax = λx, or more
generally, Ax = λMx, where M is another matrix. The distinction between sparse and dense matrices does not play so large a role
as it does in systems solving; for eigenvalues the main distinction is whether one wants all the possible λ values and attendant x
vectors, or just a subset, typically the few largest or smallest. ScaLAPACK and PLAPACK are packages that start with a dense
matrix to calculate all or potentially part of the spectrum (Section 12.3.1), while Arpack (Section 12.3.2) is preferable when only
part of the spectrum is wanted; since it uses reverse communication, Arpack can handle matrices in sparse format.

12.3.1 Eigenvalue Computations in ScaLAPACK and PLAPACK

In addition to the linear system solvers mentioned above, ScaLAPACK has eigenvalue routines. For the symmetric eigenvalue
problem there are driver routines; for the nonsymmetric (non-Hermitian) problem, you need to call individual computational
routines.

For the single- and double-precision real symmetric eigenvalue problem, there are simple drivers PSSYEV and
PDSYEV, respectively, as well as expert drivers with X appended.

For the complex Hermitian problem there are only expert drivers: PCHEEVX and PZHEEVX for single and double
precision, respectively.

The nonsymmetric eigenvalue problem is tackled in two steps: reduction to upper Hessenberg form by PxGEHERD,
followed by reduction of the Hessenberg matrix to Schur form by PxLAHQR.

ScaLAPACK has routines for the generalized eigenvalue problem only in the symmetric (Hermitian) definite case:
PxSYGST (with x=S,D), and PxHEGST (with x=C,Z).

PLAPACK version 3.2 (announced for release in late 2003) contains an implementation of the "Holy Grail" eigensolver, which is
also present in LAPACK. The functionality of the PLAPACK eigensolvers is twofold. First, there is a parallel eigensolver for
tridiagonal symmetric matrices extending the algorithm presented by Dhillon and Parlett [32]; this routine allows the computation
of all or a subset of the eigenvalues and eigenvectors with a given number of processors. This is claimed to be the fastest parallel
tridiagonal eigensolver available. Second, the tridiagonal eigensolver is merged with a routine to reduce a dense symmetric matrix
to tridiagonal form and with a routine for the backtransformation, thus obtaining a dense eigensolver for symmetric matrices. Large
problems (n > 100,000) can be tackled with this routine on a 256-processor machine.

12.3.2 Eigenvalue Computations in Arpack

Often, in eigenvalue computations, not all eigenvalues or eigenvectors are needed. In such cases One is typically interested in the
largest or smallest eigenvalues of the spectrum, or eigenvalues clustered around a certain value.

While ScaLAPACK has routines that can compute a full spectrum, Arpack focuses on the computation of a small number of
eigenvalues and corresponding eigenvectors. It is based on the Arnoldi method. [2]

The Arnoldi method is unsuitable for finding eigenvalues in the interior of the spectrum, so such eigenvalues are found by "shift-
invert": Given some σ close to the eigenvalues being sought, one solves the eigenvalue equation (A - σ)-1 x = μx, since
eigenvalues of A close to σ will become the largest eigenvalues of (A - σ)-1.

Reverse Communication Program Structure
The Arnoldi method has the attractive property of accessing the matrix only through the matrix-vector product operation. However,
finding eigenvalues other than the largest requires solving linear systems with the given matrix or one derived from it.

Since the Arnoldi method can be formulated in terms of the matrix-vector product operation, Arpack (strictly speaking) never
needs access to individual matrix elements. To take advantage of this fact, Arpack uses a technique called "reverse
communication," which dispenses with the need for the user to pass the matrix to the library routines. Thus, Arpack can work with
any user data structure or even with matrices that are only operatively defined.

With reverse communication, whenever a matrix operation is needed, control is passed back to the user program, with a return
parameter indicating what operation is being requested. The user then satisfies this request, with input and output in arrays that
are passed to the library, and calls the library routine again, indicating that the operation has been performed.

Thus, the structure of a routine using Arpack will be along the following lines:
 ido = 0
10 continue
 call dsaupd(ido,)
 if (ido.eq.-1 .or. ido.eq.1) then
C perform matrix vector product
 goto 10
 end if

For the case of shift-invert or the generalized eigenvalue problem, the conditional has more clauses, but the structure stays the
same.

Arpack can be used in a number of different modes, covering the regular and generalized eigenvalue problem, symmetry of the
matrix A (and possibly M), and various parts of the spectrum to be computed. Rather than explaining these modes, we refer the
reader to the excellent example drivers provided in the Arpack distribution.

Practical Aspects of Using Arpack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arpack is written in Fortran. No C prototypes are given, but the package is easily interfaced to a C code, observing the usual linker
naming conventions for Fortran and C routines. The parallel version of Arpack, PArpack, can be based on either MPI or the
BLACS, the communication layer of Scalapack; see Section 12.1.1. Arpack uses LAPACK and, unfortunately, relies on an older
version than the current. While this version is included in the distribution, it cannot easily be replaced by a vendor-optimized
version.

The flip side of the data independence obtained by reverse communication is that the user must provide a matrix-vector product, a
task that—especially in the parallel case—is not trivial. Also, in the shift-invert case the user must provide a linear system solver.
We recommend the use of a package such as Aztec [57] (see Section 12.2.2), or PETSc [8] (see Section 12.2.3).

[2]In fact, the pure Arnoldi method would have prohibitive memory demands; what is used here is the "implicitly restarted Arnoldi
method" [106].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4 FFTW
FFTW [40, 37], the "Faster Fourier Transform in the West," is arguably the best public-domain FFT package available. It features
both real and complex multidimensional transforms and is available in sequential, multithreaded, and parallel versions.[3] FFTW
uses runtime optimization of the desired transform to adapt to the runtime platform. Furthermore, it claims that the optimizer will
become more sophisticated over time.

Since Fourier transforms are typically executed many times on different data, FFTW has separate create/destroy and execute
calls. A notable feature of the create call is a flag with values FFTW_ESTIMATE and FFTW_MEASURE, which determines the
dynamic choice of a suitable implementation of the desired transform. With the former value, the package picks an
implementation at essentially no cost, but probably with suboptimal performance. The latter value instructs FFTW to run and
measure the execution time of several FFTs in order to find the best way to compute the desired transform. This process may
take several seconds, depending on the platform and the size of the transform. Further flags FFTW_PATIENT and
FFTW_EXHAUSTIVE can give even "more optimal" performance. Transform implementations found through this search
mechanism are stored in a datatype fftw_plan; plans can be exported and imported between runs in a mechanism called
"wisdom."

Also influencing the speed of FFTW is the fact that it can take advantage of SIMD instructions, such as SSE/SSE2 (Intel), 3DNow!
(AMD), and Altivec (PowerPC). The user must align data correctly, as described in the manual.

FFTW is written in C, but wrapper code is provided to facilitate an interface to Fortran.

[3]As of this writing, version 3 of the package does not yet support MPI parallelism, but version 2 does. The two versions have
slightly different calling conventions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5 Load Balancing
Many applications can be distributed in more than one way over a parallel architecture. Even if one distribution is the natural result
of one component of the computation (for instance, setup of a grid and generation of the matrix), a subsequent component (for
instance, an eigenvalue calculation) may be so labor intensive that the cost of a full data redistribution may be outweighed by
resulting gains in parallel efficiency.

In this section we discuss two packages for graph partitioning: ParMetis and Chaco. These packages aim at finding a partitioning
of a graph that assigns roughly equally sized subgraphs to processors, thereby balancing the work load, while minimizing the size
of the separators and the consequent communication cost.

12.5.1 ParMetis

ParMetis [99, 84] is a parallel package for mesh or graph partitioning for parallel load balancing. It is based on a three-step
coarsening/partitioning/uncoarsening algorithm that the authors claim is faster than multiway spectral bisection. It can be used in
several modes, for instance, repartitioning graphs from adaptively refined meshes or partitioning graphs from multiphysics
simulations.

The input format of ParMetis, in its serial form, is a variant on compressed matrix storage. The adjacency of each element is
stored consecutively (excluding the diagonal, but for each pair u, v storing both (u, v) and (v, u)), with a pointer array indicating
where each element's data starts and ends. Both vertex and edge weights can be specified optionally. The parallel version of the
graph input format takes blocks of consecutive nodes and allocates these to subsequent processors. An array that is identical on
each processor then indicates which range of variables each processor owns. The distributed format uses global numbering of the
nodes.

The output of ParMetis is a mapping of node numbers to processors. No actual redistribution is performed.

12.5.2 Chaco

The Chaco [24] package comprises several algorithms for graph partitioning, including inertial, spectral, Kernighan-Lin, and
multilevel algorithms. It can be used in two modes:

stand-alone In this mode, input and output are done through files.

library Chaco can be linked to C or Fortran codes, and all data is passed through arrays.

Unlike ParMetis, Chaco runs only sequentially.

Zoltan [128] is a package for dynamic load balancing that builds on top of Chaco. Thanks to an object-oriented design, it is data
structure neutral, so it can be interfaced by using existing user data structures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6 Support Libraries
The packages in this chapter rely on two very common support libraries: MPI and BLAS. Since you are reading this book, we
assume that you have an MPI library somewhere.

The Basic Linear Algebra Subprograms [64] are fairly simple linear algebra kernels that you can easily code yourself in a few
lines. You can also download the source and compile the library [16]. Doing so, however, is unlikely to give good performance, no
matter the level of sophistication of your compiler. The recommended way is to use vendor libraries that are available on a number
of platforms, for instance, in the ESSL library on IBM machines and the mkl on Intel. On platforms without such vendor libraries (or
sometimes even if they are present) we recommend that you install the ATLAS [125] (for Automatically Tuned Linear Algebra
Software) package, which gives a library tuned to your specific machine. In a nutshell, ATLAS has a search algorithm that
generates many implementations of each kernel, saving the one with the highest performance. This will far outperform anything
you can write by hand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.7 Scientific Applications
In the preceding sections we described numerical libraries, that is, software that can be linked to application programs that you
write. In this section we list some stand-alone scientific applications that can run on Linux clusters. Such applications typically take
an input file of model parameters and specifications and output another file containing the results of the calculation. The following
list is obviously incomplete: for each application area there are several applications with similar functionality, and more
applications are released all the time.

Gaussian [42] is a connected system of programs for performing semi-empirical and ab initio molecular orbital
quantum chemical calculations. It can be used to study molecules and reactions under a wide range of conditions,
including both stable species and compounds that are difficult or impossible to observe experimentally, such as
short-lived intermediates and transition structures. It is currently available for Unix/Linux, MS Windows, and Mac OS
X platforms.

Fluent [38] is a computational fluid dynamics package, used for such applications as environmental control
systems, rotor-airframe interactions, propulsion, reactor modeling, airflow around buildings, rotating cavities, fan
noise modeling, and vortex shedding. It is available for Unix/Linux and MS Windows clusters.

MSC/Nastran [77] is a computer aided engineering / structural finite element application developed by NASA. It is
available for Unix/Linux platforms, MS Windows, and vector machines such as Fujitsu and NEC.

LS-DYNA [69] is a general-purpose transient dynamic finite element program. LS-DYNA is optimized for shared-
and distributed-memory Unix, Linux, and Windows-based platforms. LS-DYNA Applications include
crashworthiness, occupant safety, metal forming, biomedical, fluid-structure interaction, and earthquake
engineering.

NAMD [76] is a molecular dynamics code, available for workstation clusters with Unix/Linux, MS Windows, or Mac
OS X.

NWChem [81] provides many methods to compute the properties of molecular and periodic systems using standard
quantum mechanical descriptions of the electronic wavefunction or density. In addition, NWChem can perform
classical molecular dynamics and free energy simulations. It is available free of charge (certain countries
embargoed), with support for various Unix/Linux clusters, MS Windows, and vector computers such as the Fujitsu
VPP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.8 Freely Available Software for Linear Algebra on the Web
Tables 12.1-12.5 present a list of freely available software for the solution of linear algebra problems. The interest is in software
for high-performance computers that is available in "open source" form on the web for solving problems in numerical linear
algebra, specifically dense, sparse direct and iterative systems and sparse iterative eigenvalue problems.

Additional pointers to software can be found at:
www.nhse.org/rib/repositories/nhse/catalog/\hyper@hash{}Numerical_Programs_and_Routines. A survey of Iterative Linear
System Solver Packages can be found at: www.netlib.org/utk/papers/iterative-survey.

Notes for Tables 12.1-12.5:
Type: Real for Real arithmetic and Complex for Complex arithmetic

Support: An email address where you can send questions and bug reports.

Language: f77(may also mean Fortran 95), C, C++

Mode: Seq for Sequential, vector and/or SMP/multithreaded versions

Dist for distributed memory message passing (M = MPI, P = PVM)

Dense: Dense, triangular, banded, tridiagonal matrices

Sparse: A sparse matrix representation is used to contain the data.

Direct: A direct approach is used to factor and solve the system.

SPD: The matrix is symmetric and positive definite

Gen: The matrix is general

Iterative: An iterative method is used to solve the system.

P: when used in a column labeled "Sparse Iterative," indicates preconditioners

Sparse eigenvalue: An iterative method is used to find some of the eigenvalues

Sym: The matrix is symmetric (Hermitian in the complex case)

Table 12.1: Support routines for numerical linear algebra. LINALG is a collection of software that is available but too varied to
describe.

Package Support Type Language Mode Dense Sparse
Direct

Sparse
Iterative

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen

ATLAS yes X X X X X X

BLAS yes X X X X X X

FLAME yes X X X X X X

LINALG * ?

MTL yes X X X X

NETMAT yes X X X X

NIST S-
BLAS

yes X X X X X X X X X

PSBLAS yes X X X X X M X X X X

SparseLib++ yes X X X X X X X X X

Table 12.2: Direct solvers for systems of linear equations.

Package Support Type Language Mode Dense Sparse
Iterative

Sparse
Eigenvalue

 Real Complex f77 c c++ Seq Dist SPD Gen Sym Gen

LAPACK yes X X X X X X

LAPACK95 yes X X 95 X X

NAPACK yes X X X X X X

PLAPACK yes X X X X M X

PRISM yes X X X M X

ScaLAPACK yes X X X X M/P X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 12.3: Sparse direct solvers.

Package Support Type Language Mode Dense Sparse
Direct

Sparse
Iterative

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen

HSL yes X X X X X X

MFACT yes X X X X

MP_SOLVE yes X X X M X

MUMPS yes X X X X X M X X

PSPASES yes X X X M X

SPARSE yes X X X X X X

SPARSEQR yes X X X X X X

SPOOLES yes X X X X M X X X X

SuperLU yes X X X X X M X X

TAUCS yes X X X X X X X X

UMFPACK yes X X X X X X

Y12M ? X X X X X

Table 12.4: Sparse eigenvalue solvers.

Package Support Type Language Mode Sparse Eigenvalue

Real Complex f77 c c++ Seq Dist Sym Gen

LZPACK yes X X X X M/P X

LASO ? X X X X

P_ARPACK yes X X X X X X M/P X X

PLANSO yes X X X M X

TRLAN yes X X X M X

Table 12.5: Sparse iterative solvers.

Package Support Type Language Mode Sparse
Direct

Sparse
Iterative

Sparse
Eigenvalue

 Real Complex f77 c c++ Seq Dist SPD Gen SPD Gen Sym

AZTEC yes X X X M X X

BILUM yes X X X X X

BlockSolve95 ? X X X X M X X

BPKIT yes X X X X P P

CERFACS yes X X X X X X

HYPRE yes X X X X M P P

IML++ ? X X X X X X X

ISIS++ yes X X M X X

ITL yes X X X X X

ITPACK ? X X X X X

LASPack yes X X X X X

LSQR yes X X X X X

pARMS yes X X X X M X X

PARPRE yes X X M P P

PCG yes X X X X P X

PETSc yes X X X X X M X X

P-SparsLIB yes X X M X

PSPASES yes X X X X M X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QMRPACK ? X X X X X X X

SLAP ? X X X X

SPAI yes X X X M X X

SPLIB ? X X X X X

SPOOLES ? X X X X M X X X X

SYMMLQ yes X X X X X

Templates yes X X X X X X

Reading List
Linear systems. The literature on linear system solving, like the research in this topic, is mostly split along the lines
of direct versus iterative solvers. An introduction that covers both (as well as eigenvalue methods) is the book by
Dongarra et al. [35]. A very practical book about linear system solving by iterative methods is the Templates book
[12], which in addition to the mathematical details contains sections on sparse data storage and other practical
matters. More in depth and less software oriented is the book by Saad [98].

Eigensystems. Along the lines of the Templates book for linear systems is a similar book for eigenvalues problems
[7].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Managing Clusters
Chapter List

Chapter 13: Cluster Management

Chapter 14: Cluster Workload Management

Chapter 15: Condor: A Distributed Job Scheduler

Chapter 16: Maui Scheduler: A High Performance Cluster Scheduler

Chapter 17: PBS: Portable Batch System

Chapter 18: Scyld Beowulf

Chapter 19: Parallel I/O and the Parallel Virtual File System

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz

Chapter 21: Conclusions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: Cluster Management

Overview
J. P. Navarro

In Section I we covered the enabling technologies that make up a cluster's hardware and software components. As we presented
node hardware (Chapter 2), the Linux kernel (Chapter 3), cluster networks (Chapter 4), network configuration and tuning (Chapter
5), and cluster setup (Chapter 6) we presented the most significant concepts to consider in selecting cluster hardware and the
major operating system installation and configuration activities necessary to deploy a cluster.

After completing basic hardware and operating system installation a cluster administrator will configure cluster wide file systems,
install and configure scheduling and resource management software, and install compilers, application libraries, and other
software packages needed by cluster users.

With these activities complete a cluster should be ready for productive use. From this point forward cluster management will
include activities focused on: 1) detecting, investigating, and recovering from hardware and software failures; and 2) adapting to
changing requirements that drive changes to cluster hardware, software, and usage patterns.

This chapter is organized around these two major aspects of cluster management. First we will cover monitoring, logging,
backups, configuration management, and the broader set of activities that surround detecting and recovering from failures.
Second we will discuss activities like software upgrades and account management that are primarily driven by changing cluster
requirements.

We will finally wrap up by discussing the differences between systems management and cluster management which constitute the
most significant cluster management challenges.

After making a cluster available to users it will not take long for someone to report a failure. Perhaps a hardware component like a
hard disk, node memory, or an interconnect adapter that had passed initial functionality tests during installation will fail under real
application load, or perhaps a software library or service that appeared to work initially will fail when used by a real user or
application. These are but two of the many possible reasons why a cluster component can fail.

Investigating a failure to determine a root cause can be a challenge. Problems may be clearly hardware related, software related,
or in some cases not clearly either. In the following sections we will discuss cluster management activities used by cluster
administrators to investigate failures, find the root cause of those failures, and ensure a smooth return to a functional state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Logging
Logging is the process by which almost every aspect of machine and cluster operation can be recorded for future reference. In a
cluster, just like in a stand-alone Linux machine, the operating system and system services will normally be configured to log
significant event information. At a higher level, workload management software, application libraries, and even user applications
can and often do generate logging information.

Many techniques are available for logging, but in the Linux environment a service called syslog, and its associated library
functions (see the syslog man page) is the standard way used by system logging services. While logging performed using
syslog may be the most common, any application or service can use any technique it wishes for logging. The most simple
logging technique is opening a file and writing textual event or error messages to it.

Just as logging techniques can be very different, log file locations can also vary. The most common location where Linux
distributions place log files is in the '/ var/log' directory.

Managing clusters, and especially reviewing activity and failures, requires in-depth knowledge of all the available log files and the
information commonly stored in them. The following sections describe the major types of logging that cluster administrators should
be familiar with.

13.1.1 Kernel logging

The Linux kernel records log messages to a special memory location called the ring buffer. Two major categories of information
logged to the ring buffer are kernel and driver initialization information and significant and unrecoverable hardware failures or other
unexpected kernel state information..

The kernel provides its own logging capability using this in-memory ring buffer because it needs to have logging capability
independent of any other system services. To view the ring buffer use the dmesg command.
Linux version 2.4.18-3smp (bhcompile@daffy.perf.redhat.com) (gcc version 2.96
20000731 (Red Hat Linux 7.3 2.96-110)) #1 SMP Thu Apr 18 07:27:31 EDT 2002
BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 000000000009f400 (usable)
 BIOS-e820: 000000000009f400 - 00000000000a0000 (reserved)
 BIOS-e820: 00000000000d8000 - 00000000000e0000 (reserved)
 BIOS-e820: 00000000000e4000 - 0000000000100000 (reserved)
 BIOS-e820: 0000000000100000 - 000000003fef0000 (usable)
 BIOS-e820: 000000003fef0000 - 000000003fefc000 (ACPI data)
 BIOS-e820: 000000003fefc000 - 000000003ff00000 (ACPI NVS)
 BIOS-e820: 000000003ff00000 - 000000003ff80000 (usable)
 BIOS-e820: 000000003ff80000 - 0000000040000000 (reserved)
 BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)
 BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)
 BIOS-e820: 00000000ff800000 - 00000000ffc00000 (reserved)
 BIOS-e820: 00000000fff00000 - 0000000100000000 (reserved)
127MB HIGHMEM available.
found SMP MP-table at 000f6760
hm, page 000f6000 reserved twice.
hm, page 000f7000 reserved twice.
hm, page 0009f000 reserved twice.
hm, page 000a0000 reserved twice.
On node 0 totalpages: 262016
zone(0): 4096 pages.
zone(1): 225280 pages.
zone(2): 32640 pages.
...

With some Linux distributions ring buffer contents are saved to the file '/var/ log/dmesg' at boot time, in effect preserving all
the kernel initialization log information. This is valuable because, as the name implies, the ring buffer is circular. When this fixed-
size buffer fills up, messages wrap around to the beginning and start overwriting the oldest messages. If you are concerned about
preserving all ring buffer messages you should configure a regular cron job to write ring buffer contents to a '/var/log' file.

If you ever suspect a kernel-related issue the first place to look is in dmesg output or in files containing dmesg output in the
'/var/log/' directory.

The following is an example of a kernel crash (also called an "oops") that would be logged to the ring buffer. The line starting with
the label "Process" identifies the active process when the kernel crash occured.
Oops: 0000
CPU: 0
EIP: 0010:[journal_dirty_metadata+98/368] Not tainted
EIP: 0010:[<c015fcc2>] Not tainted
EFLAGS: 00010206
eax: 0a60c4ed ebx: 00000000 ecx: 00000bb8 edx: dfc32a40
esi: d53ccd40 edi: dfee4800 ebp: c8c2b8e0 esp: dfc35c4c
ds: 0018 es: 0018 ss: 0018
Process nfsd (pid: 727, stackpage=dfc35000)
Stack: dfb31480 dfc32a40 00000001 c8c2b8e0 c0158ff
...

13.1.2 System service logging

Most of the useful facilities on a machine are provided by system services or daemons. Examples include, sshd, the ssh server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most of the useful facilities on a machine are provided by system services or daemons. Examples include, sshd, the ssh server
daemon, xinetd/inetd, the extended Internet service daemons, cron for executing scheduled commands, and others. These
and most other system services log using the syslog facility to files in the '/var/log' directory.

The most common and useful system service log files that a cluster administrator should be familiar with are:

Table 13.1: Most useful system log files.

File Contents

'/var/log/messages' Many common system service messages like sshd, automount, ntp, and some kernel
messages

'/var/log/auth.log' security and authorization messages

'/var/log/kern.log' kernel boot time messages (dmesg)

'/var/log/daemon.log' system service messages

13.1.3 Workload Logging

Whether you are running PBS, Maui, Condor, or any other scheduling or resource management software, you will probably have
log files produced by these software packages. OpenPBS or PBSPro, for example, default to logging in the '/var/ spool/pbs'
(or '/var/spool/PBS'). You should check the documentation of your workload management software for information on logfile
locations and become familiar with the contents of those files.

13.1.4 Syslog capabilities and limitations

The syslog utility has the ability to both record events to the log files described earlier and to forward the events to other
machines. In a cluster environment a common and recommended practice is to designate a central machine where the most
commonly referenced log messages get collected and to configure this machine to receive and log syslog messages from other
machines.

If you have configured a central syslog server you will encounter a significant architectural limitation from the standard syslog
software. Because it uses unreliable data network packets (UDP), under high syslog traffic syslog messages may be lost.
Fortunately where there is a need there is an open-source tool to address the need. One useful tool that overcomes this scalability
challenge is syslog-ng. For additional information and to download syslog-ng visit:

http://www.balabit.com/products/syslog_ng/.

When a machine stays up for a long time the contents of the '/var/log' directory can grow large. This is especially true on the
central machine where you collect logging for the entire cluster. Many Linux distribution automatically run log rotation cron jobs
that periodically rename and compress the contents of '/var/log' files. Log rotation often also includes automatic deletion of the
oldest rotated log files. Whether your distribution has pre-configured logrotate capability or not you should review all the
logging files generated by system services and scheduling and resource management services to ensure that log files are rotated,
compressed, and retained based on your particular requirements.

13.1.5 Tools to Monitor Log Files

When failures happen you will often need to investigate them using log files. As you become more familiar with the most frequent
failures and the log entries than accompany them you may find yourself wanting to take automated corrective action, or at a
minimum wanting automated e-mail notification that the failure occured. Both of these are possible thanks to a class of tools
called log watchers that can constantly watch log files for configurable log entry strings and take configurable action.

The following are several examples of log-watching tools:

LogCheck, http://www.psionic.com/abacus/logcheck/

swatch, http://swatch.sourceforge.net/

LogSentry, http://www.linux-sxs.org/files/psionic/

LogDog, http://caspian.dotconf.net/menu/Software/LogDog/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Monitoring, or Measuring Cluster Health
Monitoring involves watching the many performance and operational variables that establish whether a cluster is running correctly
and as efficiently as possible. Correct operation involves looking at all hardware and software components and determining that
they are available and operating as expected.

For example, to establish that all the expected hardware components are available one would need to ensure that all the CPUs,
memory, disks, and network interfaces were detected by the operating system at boot time, and that all the other devices in a
cluster that aren't part of a host, such as network devices, power controllers, terminal servers, and network storage devices are
detected by the components that use them.

Similarly one can monitor the collection of software services than need to be running correctly for a cluster to be operational.
Services such as schedulers, resource managers, and node monitoring daemons themselves need to be up and operational for
the various user or operational activities on a cluster to function.

Sometimes, even though hardware and software components are detected and operational they may be operating in a degraded
state, affecting efficient operation of the a cluster. Monitoring for degraded operation is often neglected; strictly speaking,
applications may work correctly, but not at the expected level of performance. Monitoring for degraded performance can
sometimes help predict components that are likely to fail completely in the near future. Some examples are network cables that
may be producing packet loss, a disk that is very close to full, or system processes with higher-than-expected memory
consumption, indicating a probable memory leak bug.

When you combine all of possible hardware and software monitoring elements and multiply them by the number of components
you may find yourself needing to monitor 1000s of operational elements just to answer the basic question of to what degree a
cluster is running normally.

13.2.1 Monitoring Tools

Fortunately, monitoring has been an important element of systems management so a plethora of both commercial and open-
source products are available to assist with this task. Whether you want to monitor systems, networks, or both, and whether you
want to use protocols like SNMP or not, many tools are useful for monitoring clusters. Some of the most common non-commercial
cluster monitoring tools are:

Big Brother, http://bb4.com/

Cluemon, http://clumon.ncsa.uiuc.edu/

Ganglia, http://ganglia.sourceforge.net/

Nagios (was NetSaint), http://www.nagios.org/

PARMON, http://www.cs.mu.oz.au/~raj//parmon/

Performance Co-Pilot, http://oss.sgi.com/projects/pcp/

Supermon, http://www.acl.lanl.gov/supermon/

We do not discuss these and other monitoring tools here, since many articles, papers, and discussions on cluster monitoring are
available. Our main point is that these tools can be useful for measuring cluster health and summarizing cluster operational status.

13.2.2 What to Monitor

Monitoring Workload
Most workload management tools, including the Condor, Maui, and PBS discussed in this book, offer monitoring capability.
Cluster managers should be very familiar with the monitoring capabilities in these tools as they summarize the most visible cluster
state information: whether the nodes used by applications appear to be functional from a workload perspective, how active or busy
is the cluster currently, and what the workload backlog looks like.

From a monitoring perspective, the node state information offered by workload management tools is an excellent indicator of
overall cluster state and health since it indicates both that the workload management services are running and reachable on each
node, and that basic monitoring implemented by these workload management services do not detect any type of node fault.

Monitoring for Degraded Performance
Both monitoring tools and logging files may at times detect or record failure situations. If you don't want to constantly have to look
at these log files you can use tools designed to detect trigger strings that represent failures and report them via e-mail or other
methods.

Resource Usage Monitoring
When cluster resources, such as file system space, machine memory and swap, and network or file I/O bandwidth are exhausted
the entire cluster may be affected. One possible effect is the literal failure of a component, for example a machine with exhausted
memory and swap is likely to crash or terminate the application exhausting memory. Another and more difficult-to-detect effect is
degraded performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3 Hardware Failure and Recovery
One of the most burdensome responsibilities in cluster management is dealing with the consequences of hardware failures. The
impact of hardware failures can vary drastically based on how much of the cluster depends on the failing component.

Of highest impact are failures like the loss of the file-servers serving user file-systems or the loss of infrastructure components like
management nodes, nodes where scheduling and resource management services run, and the loss of commodity networking or
interconnect components like switches and routers. If any of these components fails, the entire cluster may be unusable.

At the opposite end of the impact spectrum are failures that do not affect any other cluster component, for example the loss of a
single compute node. When a single compute node fails, only the users active on that node will be affected and other activities on
other nodes may proceed unaffected.

Given the broad impact spectrum that a particular failure can have and that the failing component can be as minor as a single disk
or as major as an entire cluster network one can't write a single procedure for recovering from hardware failures. In a general
sense though, the following outline should be used. Recovery from a hardware failure involves:

1. Isolating the failed component to make sure no additional cluster activities are impacted.

2. If the failure has a major impact you may want to find existing hardware that can temporarily be used to fill in for
the failing component so you can recover immediately. For example, if you lose a disk, controller, or server
serving critical file-systems, and you have some other server with available capacity, you can start immediate
recovery to an alternate server.

3. Getting the hardware serviced.

4. And finally, fixed hardware must be integrated back into the cluster. If the failed component included data, like a
disk containing the operating system or user data the recovery will involve recovering the required contents to
the new disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4 Software Failure
Although software failures may be similar to hardware failures in their ability to bring an entire machine down, they are also quite
different in several respects.

Software failures sometimes do not have a fix. If nobody has detected the failure or bug then a new version or patch may not be
available. When this happens the only solution is to avoid the conditions that trigger the fault, report the failure to software
supplier, and either wait for the fix or try to fix the problem yourself.

Regardless of what type of software failure you are dealing with, kernel, distribution, scheduling and resource management, or
application support library, the best practices for avoiding software failures are:

Keep an eye out for new software versions and bug fixes.

Perform careful testing and verification prior to upgrading to new software versions.

Whenever possible give yourself a way to return to previous software in case an upgrade has major problems.

Maintain good records of unresolved failures, such as the ones that disappear after a reboot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5 File System Failure and Recovery
If a hardware component or software service fails, the most a user will normally lose is the intermediate results from running
applications. The user will normally lose a few hours of work at most and can easily recover by restarting jobs. If, on the other
hand, a home file system containing months of work results is lost, the impact on users from data loss could be huge.

For this reason, no cluster component is more critical than the storage and file systems that hold users' applications and data.

Regardless of hardware or software used to provide home file systems the first line of defense consists of regularly scheduled
backups. Backups also offer the added advantage that they can be used to recover data lost through human error.

Besides backups the following hardware and software options offer improved protection from hardware and software failures.

Use of RAID 0, 3, or 5 file systems that protect from individual disk failures.

Use of journaled file systems that protect from file system corruption and provide fast recovery in the case of
crashes.

Use of parallel file systems that protect from the loss of a file server by providing access to the file system through
multiple machines. Commercial file systems in this category include GPFS from IBM, GFS from Systina, and
PolyServe.

Adapting to Changing Requirements
In previous sections of this chapter we focused on cluster management activities surrounding investigating and recovering from
failures. Sometimes the recovery process will drive a change in the base hardware or software configuration. The most common
example is upgrading a software package in order to fix a bug in an older version.

Even when a cluster is fully functional, the world around it is constantly evolving. Application developers enhance their code to use
new compiler or library features, new users need to use the cluster, potential security vulnerabilities are revealed that if not fixed
could make a cluster susceptible. These are just some examples of the changes that surround a cluster. All of these make it
necessary to iterate through a careful change-management process.

Examples of changes driven by changing requirements include:

Adding more disk to expand storage capacity

Upgrading the RAM or processors in nodes to increase throughput

Applying security updates to system services

Upgrading to new and improved compilers or application libraries

New user account requests

Workload management

In the following sections we will discuss cluster management activities driven by changes like these. Many factors can influence a
change of requirements, but the most common are the evolving needs of existing users, the needs of new users, hardware
changes driven by failures or changing capacity requirements, and the software life cycle. Collectively these changes alter the
base state of a cluster and the definition of operational.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6 Account Management
The Linux environment offers many techniques for maintaining a coherent set of accounts across a collection of machines. The
most common and easiest to administer involve the use of network based account management services. When these techniques
are employed, individual machines query a central authorization and authentication service of account information. These
techniques are easier to manage because maintenance of account and authorization information is maintained in a central
location. Examples include NIS and LDAP.

Using NIS involves maintenance of a central copy of password, group, and other security related files in a ypserver. Individual
machine needing to reference these security files are configured as yp clients and automatically query a ypserver for data from
the security files.

Another technique for maintaining security information involves updating security information on the machines in a cluster through
a distributed push, pull, or update. The primary advantages of using this technique are performance and reliability of authorization
and authentication queries. The main disadvantages include the need to initiate distributed security update procedures. Updates
can become complicated if a machine is down during the update process. To overcome this a combination of push, pull, and boot
time and in between job refresh must be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7 Workload Management
The next several chapters introduce cluster workload management concepts and present in detail three specific software
packages, Condor, Maui, and PBS, which are commonly used to manage the workload on Beowulf clusters.

Managing the workload on a Beowulf cluster is one of the most visible cluster management activities since its purpose is to run
user applications. The following are examples of workload management activities that are critical to cluster management:

Managing node availability

Configuring node attributes important to the workload

Managing user/group/project fair usage quotas

Configuring and tuning scheduling policy

Managing dedicated or maintenance reservations

Tracking user/group/project usage history

After selecting and installing workload management software, a cluster administrator will perform these activities to ensure that a
cluster usage is consistent with its goals.

Every cluster has a different set of goals, and how to implement an appropriate workload management policy for those goals
depends on the software packages in use. You should consult Condor, Maui, PBS, or other workload management software
documentation for details on options available to implement the policies you need.

Regardless of what workload management tools you use you should try to find out how to perform the following activities to assist
in failure investigation and recovery.

1. Taking a node off line so it is not considered for future jobs.

2. Placing a system or individual user or project reservation on a node so the node is not available to everyone but
still available for investigating a hardware or software failure.

3. Modifying the properties or attributes of a node to reflect a change in the availability of a failing component (like
the interconnect), or to reflect that it has a test operating system or collection of software.

4. Adding or removing individual nodes from the list of known nodes.

5. Suspending all job execution without losing previously queued jobs.

6. Canceling running jobs.

7. Placing a hold on a queued job to ensure that it doesn't run and trigger some type of harmful failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8 Software upgrades
Whoever coined the saying that only death and taxes are certain was definitely not a system or cluster administrator. As certain as
death and taxes are software upgrades. How many software packages that continue to be useful don't change? Even when a
package is stable, the environment around it constantly changes, making new versions necessary to fix new issues derived from
this evolving environment.

The scope of the impact of a software upgrade can vary tremendously. At the low end are upgrades that do not affect other
software packages on the system, such as the version of a particular numerical library. At the high-impact end are distribution
upgrades that change the version of libc, the standard C library, which can have a ripple effect through many of the software
packages on a system, and a large set of in-between upgrades that can affect a varying number of users and applications.

Upgrading software on an individual cluster machine is similar to upgrading software on non-cluster machines. In many respects
clusters should be managed like non-cluster machines. If you are dealing with a production cluster that servers a large user
community, then all the standard practices should be followed, such as pre-change testing and a carefully planned and
communicated migration path.

One of the most critical reasons to upgrade cluster software is to address security vulnerabilities. If your cluster is reachable by the
world at large or by potential hackers you should keep a close eye out for security advisories for your kernel, system services, and
any other software component that could be used to compromise a system. Some of the most useful resources to keep an eye on
for software vulnerability and fix information are:

1. the vendor supplying the kernel and distribution you use,

2. the U.S. Department of Energy Computer Incident Advisory Capability, also known as CIAC, which can be found
at http://www.ciac.org/ciac/, and

3. the CERT Coordination Center: a federally funded Internet security research and development center which can
be found at http://www.cert.org/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9 Configuration Management
Configuring management refers to the activities performed on a machine that adapt it to a particular organization, its network
services, security policies, management policies, access policy, etc. In other words, it is the set of activities that integrate a
machine into the cluster and organization.

Why would configuration management need to be mentioned in the context of Beowulf clusters? First, because it's a critical
aspect of making a Beowulf cluster functional, and secondly because it can be a challenge if one doesn't follow a carefully
designed configuration management process.

Most Beowulf clusters have a variety of machine configurations that share many common characteristics, but also vary in
important ways. For example, management nodes, login nodes, file-servers, and computer nodes all may need to be configured
similarly to set and maintain accurate clocks, but they all have a slightly different access policy and collection of configured and
available software services.

Describing configuration information and propagating it to machines is often performed by the cluster installation software.
Chapter 6 describes cluster setup using various tools. Each of these cluster installation tools provides some type of configuration
management capability. In some cases the capability is the basic capability you would use on stand-alone machines.

Regardless of which tool you use, an important aspect of cluster management is maintaining a central repository of the
configuration information used in a cluster. Without this information, whenever a machine fails and needs to be rebuilt,
determining what configuration information was applied to make the machine functional may be difficult to ascertain. Every time
you rebuild a compute node you would rather not have to look at other compute nodes to remember which files contain important
configuration information that must be applied to the rebuilt machine, and then go through a diff process comparing it to other
nodes to make sure you remembered everything.

The important point to remember is that the most effective way to deal with configuration management is to maintain some type of
central repository from which you push configuration changes. If this repository can be organized by node types or some other
organizational approach, all the better. That way when you need to change something on all compute nodes, or all login nodes, or
every node on the cluster, you don't have to update a centrally managed file for every node, but just the files from the appropriate
classes of nodes.

If you need additional functionality in this respect that is not a part of your cluster distribution or installation suite you may find one
of the following tools helpful:

cfengine, http://www.cfengine.org/

sanity/cfg, http://www-unix.mcs.anl.gov/systems/software/msys/

and various proprietary vendor solutions

Administration Challenges Unique to Clusters
One appealing way to think of cluster management is as management of a collection of individual machines. This approach is
appealing since it sidesteps the complexity of the whole by focusing on the management of the individual components. Although
managing a cluster this way may work at a basic level, it isn't very effective and doesn't consider the intended architecture and
usage model of a cluster.

The Linux cluster's claim to fame is in its ability to produce supercomputer class results at a fraction of the cost. This means,
among other things, that the collection of components at a practical level needs to be usable by applications and manageable by
administrators as a single machine.

This is where the cluster management challenge begins. To overcome this challenge, cluster administrators must approach
cluster management at the cluster level and therefore need tools for logging, monitoring, build and configuration management,
workload management, and so forth that are aware of, and operate at, the cluster level.

Today we have many cluster management tools that make it easier to work with the entire cluster. But there is still significant room
for improvement. One example is in the area of fault detection, analysis, and recovery. The major supercomputer vendors have
worked for decades to make their machines fault tolerant. By contrast, today's cluster management tools for the most part ignore
the issue of fault detection and recovery. This deficiency undoubtedly constitutes the greatest cluster management challenge.

An approach used to bridge the gap between cluster level management and machine specific administration tools is scripting or
automation. The premise behind this approach is to make scriptable interfaces to all the actions performed at the machine level
and to use cluster-level tools to automatically iterate the same action over many components or machines. While this concept
sounds simple and achievable, it is unfortunately not always possible since hardware and software at the machine level is often
not designed for complete hands-off administration.

One of the most basic and useful tools for invoking a scriptable command on a group of machines is the "parallel distributed shell"
or pdsh. This tool is the cluster aware equivalent of rsh or ssh. With it you can define various sets of nodes and perform
operation on those collections in parallel. For example, to verify the uptime and load across an entire cluster with pdsh use the
command:
 pdsh -a uptime

For download or learn about pdsh visit: http://www.llnl.gov/linux/pdsh/pdsh.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.10 Conclusion
Cluster management, although based on many of the same procedures and practices used to manage individual machines, is
strongly influenced by the unique challenges derived from administering a group of machines that need to operate as a single
entity for the application and user.

Cluster management is fundamentally about keeping a machine running. For cluster administrators to do this effectively they must
use a set of tools and techniques that operate at the cluster level. In this chapter we have discussed both basic system
administration tools and the techniques available to administrators to help them effectively manage the cluster at the cluster level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14: Cluster Workload Management

Overview
James Patton Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum

A Beowulf cluster is a powerful (and attractive) tool. But managing the workload can present significant challenges. It is not
uncommon to run hundreds or thousands of jobs or to share the cluster among many users. Some jobs may run only on certain
nodes because not all the nodes in the cluster are identical; for instance, some nodes have more memory than others. Some
nodes temporarily may not be functioning correctly. Certain users may require priority access to part or all of the cluster. Certain
jobs may have to be run at certain times of the day or only after other jobs have completed. Even in the simplest environment,
keeping track of all these activities and resource specifics while managing the ever-increasing web of priorities is a complex
problem. Workload management software attacks this problem by providing a way to monitor and manage the flow of work
through the system, allowing the best use of cluster resources as defined by a supplied policy.

Basically, workload management software maximizes the delivery of resources to jobs, given competing user requirements and
local policy restrictions. Users package their work into sets of jobs, while the administrator (or system owner) describes local use
policies (e.g., Tom's jobs always go first). The software monitors the state of the cluster, schedules work, enforces policy, and
tracks usage.

A quick note on terminology: Many terms have been used to describe this area of management software. All of the following topics
are related to workload management: distributed resource management, batch queuing, job scheduling, and resource and task
scheduling.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1 Goal of Workload Management Software
The goal of workload management software is to make certain the submitted jobs ultimately run to completion by utilizing cluster
resources according to a supplied policy. But in order to achieve this goal, workload management systems usually must perform
some or all of the following activities:

Queuing

Scheduling

Monitoring

Resource management

Accounting

The typical relationship between users, resources, and these workload management activities is depicted in Figure 14.1. As
shown in this figure, workload management software sits between the cluster users and the cluster resources. First, users submit
jobs to a queue in order to specify the work to be performed. (Once a job has been submitted, the user can request status
information about that job at any time.) The jobs then wait in the queue until they are scheduled to start on the cluster. The
specifics of the scheduling process are defined by the policy rules. At this point, resource management mechanisms handle the
details of properly launching the job and perhaps cleaning up any mess left behind after the job either completes or is aborted.
While all this is going on, the workload management system is monitoring the status of system resources and accounting for
which users are using what resources.

Figure 14.1: Activities performed by a workload management system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2 Workload Management Activities
Now let us take a look in more detail at each of the major activities performed by a cluster workload management system.

14.2.1 Queueing

The first of the five aspects of workload management is queuing, or the process of collecting together "work" to be executed on a
set of resources. This is also the portion most visible to the user.

The tasks the user wishes to have the computer perform, the work, is submitted to the workload management system in a
container called a "batch job." The batch job consists of two primary parts: a set of resource directives (such as the amount of
memory or number of CPUs needed) and a description of the task to be executed. This description contains all the information the
workload management system needs in order to start a user's job when the time comes. For instance, the job description may
contain information such as the name of the file to execute, a list of data files required by the job, and environment variables or
command-line arguments to pass to the executable.

Once submitted to the workload management system, the batch jobs are held in a "queue" until the matching resources (e.g., the
right kind of computers with the right amount of memory or number of CPUs) become available. Examples of real-life queues are
lines at the bank or grocery store. Sometimes you get lucky and there's no wait, but usually you have to stand in line for a few
minutes. And on days when the resources (clerks) are in high demand (like payday), the wait is substantially longer.

The same applies to computers and batch jobs. Sometimes the wait is very short, and the jobs run immediately. But more often
(and thus the need for the workload management system) resources are oversubscribed, and so the jobs have to wait.

One important aspect of queues is that limits can be set that restrict access to the queue. This allows the cluster manager greater
control over the usage policy of the cluster. For example, it may be desirable to have a queue available for short jobs only,
analogous to the "ten items or fewer express lane" at the grocery store, providing a shorter wait for "quick tasks."

Each of the different workload management systems discussed later in this volume offers a rich variety of queue limits and
attributes.

14.2.2 Scheduling

The second area of workload management is scheduling, which is simply the process of choosing the best job to run. Unlike in our
real-life examples of the bank and grocery store (which employ a simple first-come, first-served model of deciding who's next),
workload management systems offer a variety of ways by which the best job is identified.

As we have discussed earlier, however, best can be a tricky goal. It depends on the usage policy set by local management, the
available workload, the type and availability of cluster resources, and the types of application being run on the cluster. In general,
however, scheduling can be broken into two primary activities: policy enforcement and resource optimization.

Policy encapsulates how the cluster resources are to be used, addressing such issues as priorities, traffic control, and capability
vs. high throughput. Scheduling is then the act of enforcing the policy in the selection of jobs, ensuring that priorities are met and
policy goals are achieved.

While implementing and enforcing the policy, the scheduler has a second set of goals. These are resource optimization goals,
such as "pack jobs efficiently" or "exploit underused resources."

The difficult part of scheduling, then, is balancing policy enforcement with resource optimization in order to pick the best job to run.

Logically speaking, one can think of a scheduler as performing the following loop:
1. Select the best job to run, according to policy and available resources.

2. Start the job.

3. Stop the job and/or clean up after a completed job.

4. Repeat.

The nuts and bolts of scheduling is, of course, choosing and tuning the policy to meet your needs. Although different workload
management systems each have their own idiosyncrasies, they typically all provide ways in which their scheduling policy can be
customized. Subsequent chapters of this book discuss the various scheduling policy mechanisms available in several popular
workload management systems.

14.2.3 Monitoring

Resource monitoring is the third part of any cluster workload management system. It provides necessary information to
administrators, users and the scheduling system itself on the status of jobs and resources. Resource monitoring comes into play
in three critical times:

1. When nodes are idle, to verify that they are in working order before starting another job on them.

2. When nodes are busy running a job. Users and administrators may want to check memory, CPU, network, I/O,
and utilization of other system resources. Such checks often are useful in parallel programming when users wish
to verify that they have balanced their workload correctly and are effectively using all the nodes they've been
allocated.

3. When a job completes. Here, resource monitoring is used to ensure that no processes remain from the
completed job and that the node is still in working order before starting another job on it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workload management systems query the compute resources at these times and use the information to make informed decisions
about running jobs. Much of the information is cached so that it can be reported quickly in answer to status requests. Some
information is saved for historical analysis purposes. Still other information is used in the enforcement of local policy. The method
of collection may differ in different workload management systems, but the general purposes are the same.

14.2.4 Resource Management

The fourth area, resource management, is essentially responsible for the starting, stopping, and cleaning up after jobs that are run
on cluster nodes. In a batch system resource management involves running a job for a user, under the identity of the user, on the
resources the user was allocated, in such a way that the user need not be present at that time.

Many cluster workload management systems provide mechanisms to ensure the successful startup and cleanup of jobs and to
maintain node status data internally, so that jobs are started only on nodes that are available and functioning correctly.

In addition, limits may need to be placed on the job and enforced by the workload management system. These limits are yet
another aspect of policy enforcement, in addition to the limits on queues and those enacted by the scheduling component.

Resource management also includes removing or adding compute resources to the available pool of systems. Clusters are rarely
static; systems go down, or new nodes are added. The "registration" of new nodes and the marking of nodes as unavailable are
both additional aspects of resource management.

14.2.5 Accounting

The fifth aspect of workload management is accounting and reporting. Workload accounting is the process of collecting resource
usage data for the batch jobs that run on the cluster. Such data includes the job owner, resources requested by the job, and total
amount of resources consumed by the job. Other data about the job may also be available, depending on the specific workload
managment system in use.

Cluster workload accounting data can used for a variety of purposes, such as

producing weekly system usage reports,

preparing monthly per user usage reports,

enforcing per project allocations,

tuning the scheduling policy,

calculating future resource allocations,

anticipating future computer component requirements, and

determining areas of improvement within the computer system.

The data for these purposes may be collected as part of the resource monitoring tasks or may be gathered separately. In either
case, data is pulled from the available sources in order to meet the objectives of workload accounting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3 Conclusions
Workload management is all about utilizing cluster resources according to a supplied policy. The five activies of workload
management—queueing, scheduling, monitoring, resource manangement, and accounting—interact to produce the system usage
results desired by the site.

The next few chapters of this book discuss in detail two complete workload management systems (Condor and PBS) and the Maui
job scheduler. Details of using the features of each system are provided in the specific chapters. In addition to the systems
discussed in this book, there are several others that are popular with Beowulf clusters. One that has recently become popular is
the Sun Grid Engine (SGE) wwws.sun.com/software/gridware/sge.html. Another system that contains aspects of a workload
management system is Scyld, discussed in Chapter 18.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15: Condor: A Distributed Job Scheduler

Overview
Todd Tannenbaum, Derek Wright, Karen Miller, Erik Paulson, and Miron Livny

Condor is a sophisticated and unique distributed job scheduler developed by the Condor research project at the University of
Wisconsin-Madison Department of Computer Sciences.

Condor is open-source software, under the very liberal Condor Public License. The program binaries, documentation, and source
code may all be found on the Condor project's Web site at www.cs.wisc.edu/condor. Support contracts are available from several
different sources; for additional information see www.cs.wisc.edu/condor/condor-support. The Condor Public License permits
installation, use, reproduction, display, modification and redistribution of Condor, with or without modification, in source and binary
forms.

This chapter introduces all aspects of Condor, from its ability to satisfy the needs and desires of both submitters and resource
owners, to the management of Condor on clusters. Following an overview of Condor and Condor's ClassAd mechanism is a
description of Condor from the user's perspective. The architecture of the software is presented along with overviews of
installation and management. The chapter ends with configuration scenarios specific to clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1 Introduction to Condor
Condor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, Condor
provides a job queuing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users
submit their jobs to Condor, and Condor places them into a queue, chooses when and where to run them based upon a policy,
monitors their progress, and ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queuing system, Condor's novel architecture allows it to
succeed in areas where traditional scheduling systems fail. Condor can be used to manage a cluster of dedicated Beowulf nodes.
In addition, several unique mechanisms enable Condor to effectively harness wasted CPU power from otherwise idle desktop
workstations. Condor can be used to seamlessly combine all of your organization's computational power into one resource.

Condor is the product of the Condor Research Project at the University of Wisconsin-Madison (UW-Madison) and was first
installed as a production system in the UW-Madison Department of Computer Sciences nearly ten years ago. This Condor
installation has since served as a major source of computing cycles to UW-Madison faculty and students. Today, just in our
department alone, Condor manages more than one thousand workstations, including the department's 500-CPU Linux Beowulf
cluster. On a typical day, Condor delivers more than 650 CPU-days to UW researchers. Additional Condor installations have been
established over the years across our campus and the world. Hundreds of organizations in industry, government, and academia
have used Condor to establish compute environments ranging in size from a handful to hundreds of workstations.

15.1.1 Features of Condor

Condor's features are extensive. Condor provides great flexibility for both the user submitting jobs and for the owner of a machine
that provides CPU time toward running jobs. The following list summarizes some of Condor's capabilities.

ClassAds: The ClassAd mechanism in Condor provides an extremely flexible and expressive framework for
matching resource requests (jobs) with resource offers (machines). Jobs can easily state both job requirements and
job preferences. Likewise, machines can specify requirements and preferences about the jobs they are willing to
run. These requirements and preferences can be described in powerful expressions, resulting in Condor's
adaptation to nearly any desired policy.

Distributed submission: There is no single, centralized submission machine. Instead, Condor allows jobs to be
submitted from many machines, and each machine contains its own job queue. Users may submit to a cluster from
their own desktop machines.

User priorities: Administrators may assign priorities to users using a flexible mechanism that enables a policy of
fair share, strict ordering, fractional ordering, or a combination of policies.

Job priorities: Users can assign priorities to their submitted jobs in order to control the execution order of the jobs.
A "nice-user" mechanism requests the use of only those machines that would have otherwise been idle.

Job dependency: Some sets of jobs require an ordering because of dependencies between jobs. "Start job X only
after jobs Y and Z successfully complete" is an example of a dependency. Enforcing dependencies is easily
handled.

Support for multiple job models: Condor handles both serial jobs and parallel jobs incorporating PVM, dynamic
PVM, and MPI.

Job checkpoint and migration: With certain types of jobs, Condor can transparently take a checkpoint and
subsequently resume the application. A checkpoint is a snapshot of a job's complete state. Given a checkpoint, the
job can later continue its execution from where it left off at the time of the checkpoint. A checkpoint also enables the
transparent migration of a job from one machine to another machine. Condor will take a checkpoint of a job when it
schedules the resource to a different job or the resource returns to the owner. Condor will also periodically produce
a checkpoint for a job. This provides a form of fault tolerance and safeguards the accumulated computation time of
a job. It reduces the loss in the event of a system failure such as the machine being shut down or hardware failure.

Job suspend and resume: Based on policy rules, Condor can ask the operating system to suspend and later
resume a job.

Remote system calls: Despite running jobs on remote machines, Condor can often preserve the local execution
environment via remote system calls. Users do not need to make data files available or even obtain a login account
on remote workstations before Condor executes their programs there. The program behaves under Condor as if it
were running as the user that submitted the job on the workstation where it was originally submitted, regardless of
where it really executes.

Authentication and authorization: Administrators have fine-grained control of access permissions, and Condor
can perform strong network authentication using a variety of mechanisms including Kerberos and X.509 public key
certificates.

Heterogeneous platforms: In addition to Linux, Condor has been ported to most of the other primary flavors of
Unix as well as Windows NT. A single pool can contain multiple platforms. Jobs to be executed under one platform
may be submitted from a different platform. As an example, an executable that runs under Windows 2000 may be
submitted from a machine running Linux.

Pools of machines working together: Flocking allows jobs to be scheduled across multiple Condor pools. It can
be done across pools of machines owned by different organizations that impose their own policies.

Grid computing: Condor incorporates many of the emerging grid-based computing methodologies and protocols.
Condor can submit jobs into resources managed via other scheduling systems such as PBS using the Globus
Toolkit. Condor also includes all of the necessary software to receive jobs from other sites using the Globus Toolkit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1.2 Understanding Condor ClassAds

The ClassAd is a flexible representation of the characteristics and constraints of both machines and jobs in the Condor system.
Matchmaking is the mechanism by which Condor matches an idle job with an available machine. Understanding this unique
framework is the key to harness the full flexibility of the Condor system. ClassAds are employed by users to specify which
machines should service their jobs. Administrators use them to customize scheduling policy.

Conceptualizing Condor ClassAds: Just Like the Newspaper
Condor's ClassAds are analogous to the classified advertising section of the newspaper. Sellers advertise specifics about what
they have to sell, hoping to attract a buyer. Buyers may advertise specifics about what they wish to purchase. Both buyers and
sellers list constraints that must be satisfied. For instance, a buyer has a maximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rank requests to their own advantage. Certainly a seller would rank one offer
of $50 higher than a different offer of $25. In Condor, users submitting jobs can be thought of as buyers of compute resources and
machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM memory, CPU type and speed, virtual memory
size, current load average, current time and date, and other static and dynamic properties. This machine ClassAd also advertises
under what conditions it is willing to run a Condor job and what type of job it prefers. These policy attributes can reflect the
individual terms and preferences by which the different owners have allowed their machines to participate in the Condor pool.

After a job is submitted to Condor, a job ClassAd is created. This ClassAd includes attributes about the job, such as the amount of
memory the job uses, the name of the program to run, the user who submitted the job, and the time it was submitted. The job can
also specify requirements and preferences (or rank) for the machine that will run the job. For instance, perhaps you are looking for
the fastest floating-point performance available. You want Condor to rank available machines based on floating-point
performance. Perhaps you care only that the machine has a minimum of 256 MBytes of RAM. Or, perhaps you will take any
machine you can get! These job attributes and requirements are bundled up into a job ClassAd.

Condor plays the role of matchmaker by continuously reading all the job ClassAds and all the machine ClassAds, matching and
ranking job ads with machine ads. Condor ensures that the requirements in both ClassAds are satisfied.

Structure of a ClassAd
A ClassAd is a set of uniquely named expressions. Each named expression is called an attribute. Each attribute has an attribute
name and an attribute value. The attribute value can be a simple integer, string, or floating-point value, such as
 Memory = 512
 OpSys = "LINUX"
 NetworkLatency = 7.5

An attribute value can also consist of a logical expression that will evaluate to TRUE, FALSE, or UNDEFINED. The syntax and
operators allowed in these expressions are similar to those in C or Java, that is, == for equals, ! = for not equals, && for logical
and, | | for logical or, and so on. Furthermore, ClassAd expressions can incorporate attribute names to refer to other attribute
values. For instance, consider the following small sample ClassAd:
 MemoryInMegs = 512
 MemoryInBytes = MemoryInMegs * 1024 * 1024
 Cpus = 4
 BigMachine = (MemoryInMegs > 256) && (Cpus >= 4)
 VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8)
 FastMachine = BigMachine && SpeedRating

In this example, BigMachine evaluates to TRUE and VeryBigMachine evaluates to FALSE. But, because attribute
SpeedRating is not specified, FastMachine would evaluate to UNDEFINED.

Condor provides meta-operators that allow you to explicitly compare with the UNDEFINED value by testing both the type and
value of the operands. If both the types and values match, the two operands are considered identical; =?= is used for meta-equals
(or, is-identical-to) and =!= is used for meta-not-equals (or, is-not-identical-to). These operators always return TRUE or FALSE
and therefore enable Condor administrators to specify explicit policies given incomplete information.

A complete description of ClassAd semantics and syntax is documented in the Condor manual.

Matching ClassAds
ClassAds can be matched with one another. This is the fundamental mechanism by which Condor matches jobs with machines.
Figure 15.1 displays a ClassAd from Condor representing a machine and another representing a queued job. Each ClassAd
contains a MyType attribute, describing what type of resource the ad represents, and a TargetType attribute. The TargetType
specifies the type of resource desired in a match. Job ads want to be matched with machine ads and vice versa.

Job ClassAd Machine ClassAd

MyType = "Job" MyType = "Machine"

TargetType = "Machine" TargetType = "Job"

Requirements = ((Arch== "INTEL" && Op-Sys=="LINUX") &&
Disk > DiskUsage)

Requirements = Start

Rank = TARGET. Department==MY. Department

Rank = (Memory * 10000) + KFlops Activity = "Idle"

Args = "-ini ./ies.ini" Arch = "INTEL"

ClusterId = 680 ClockDay = 0

Cmd = "/home/tannenba/bin/sim-exe" ClockMin = 614

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Department = "CompSci" CondorLoadAvg = 0.000000

DiskUsage = 465 Cpus = 1

StdErr = "sim.err" CurrentRank = 0.000000

ExitStatus = 0 Department = "CompSci"

FileReadBytes = 0.000000 Disk = 3076076

FileWriteBytes = 0.000000 EnteredCurrentActivity = 990371564

ImageSize = 465 EnteredCurrentState = 990330615

StdIn = "/dev/null" FileSystemDomain = "cs.wisc.edu"

Iwd = "/home/tannenba/sim-m/run_55" Islnstructional = FALSE

JobPrio = 0 KeyboardIdle = 15

JobStartDate = 971403010 KFlops = 145811

JobStatus = 2 LoadAvg = 0.220000

StdOut = "sim.out" Machine = "nostos.cs.wisc.edu"

Owner = "tannenba" Memory = 511

ProcId = 64 Mips = 732

QDate = 971377131 OpSys = "LINUX"

RemoteSysCpu = 0.000000 Start = (LoadAvg <= 0.300000) && (KeyboardIdle
> (15 * 60))RemoteUserCpu = 0.000000

RemoteWallClockTime = 2401399.000000 State = "Unclaimed"

TransferFiles = "NEVER" Subnet = "128.105.165"

WantCheckpoint = FALSE TotalVirtualMemory = 787144

WantRemoteSyscalls = FALSE ⋮

⋮

Figure 15.1: Examples of ClassAds in Condor.

Each ClassAd engaged in matchmaking specifies a Requirements and a Rank attribute. In order for two ClassAds to match, the
Requirements expression in both ads must evaluate to TRUE. An important component of matchmaking is the Requirements
and Rank expression can refer not only to attributes in their own ad but also to attributes in the candidate matching ad. For
instance, the Requirements expression for the job ad specified in Figure 15.1 refers to Arch, OpSys, and Disk, which are all
attributes found in the machine ad.

What happens if Condor finds more than one machine ClassAd that satisfies the constraints specified by Requirements? That is
where the Rank expression comes into play. The Rank expression specifies the desirability of the match (where higher numbers
mean better matches). For example, the job ad in Figure 15.1 specifies
 Requirements = ((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage)
 Rank = (Memory * 100000) + KFlops

In this case, the job requires a computer running the Linux operating system and more local disk space than it will use. Among all
such computers, the user prefers those with large physical memories and fast floating-point CPUs (KFlops is a metric of floating-
point performance). Since the Rank is a user-specified metric, any expression may be used to specify the perceived desirability of
the match. Condor's matchmaking algorithms deliver the best resource (as defined by the Rank expression) while satisfying other
criteria.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.2 Using Condor
The road to using Condor effectively is a short one. The basics are quickly and easily learned.

15.2.1 Roadmap to Using Condor

The following steps are involved in running jobs using Condor:

Prepare the Job to Run Unattended. An application run under Condor must be able to execute as a batch job.
Condor runs the program unattended and in the background. A program that runs in the background will not be able
to perform interactive input and output. Condor can redirect console output (stdout and stderr) and keyboard
input (stdin) to and from files. You should create any needed files that contain the proper keystrokes needed for
program input. You should also make certain the program will run correctly with the files.

Select the Condor Universe. Condor has five runtime environments from which to choose. Each runtime
environment is called a Universe. Usually the Universe you choose is determined by the type of application you are
asking Condor to run. There are six job Universes in total: two for serial jobs (Standard and Vanilla), one for parallel
PVM jobs (PVM), one for parallel MPI jobs (Parallel), one for Grid applications (Globus), and one for meta-
schedulers (Scheduler). Section 15.2.4 provides more information on each of these Universes.

Create a Submit Description File. The details of a job submission are defined in a submit description file. This file
contains information about the job such as what executable to run, which Universe to use, the files to use for
stdin, stdout, and stderr, requirements and preferences about the machine which should run the program,
and where to send e-mail when the job completes. You can also tell Condor how many times to run a program; it is
simple to run the same program multiple times with different data sets.

Submit the Job. Submit the program to Condor with the condor_submit command.

Once a job has been submitted, Condor handles all aspects of running the job. You can subsequently monitor the job's progress
with the condor_q and condor_status commands. You may use condor_prio to modify the order in which Condor will run
your jobs. If desired, Condor can also record what is being done with your job at every stage in its lifecycle, through the use of a
log file specified during submission.

When the program completes, Condor notifies the owner (by e-mail, the user-specified log file, or both) the exit status, along with
various statistics including time used and I/O performed. You can remove a job from the queue at any time with condor_rm.

15.2.2 Submitting a Job

To submit a job for execution to Condor, you use the condor_submit command. This command takes as an argument the name
of the submit description file, which contains commands and keywords to direct the queuing of jobs. In the submit description file,
you define everything Condor needs to execute the job. Items such as the name of the executable to run, the initial working
directory, and command-line arguments to the program all go into the submit description file. The condor_submit command
creates a job ClassAd based on the information, and Condor schedules the job.

The contents of a submit description file can save you considerable time when you are using Condor. It is easy to submit multiple
runs of a program to Condor. To run the same program 500 times on 500 different input data sets, the data files are arranged
such that each run reads its own input, and each run writes its own output. Every individual run may have its own initial working
directory, stdin, stdout, stderr, command-line arguments, and shell environment.

The following examples illustrate the flexibility of using Condor. We assume that the jobs submitted are serial jobs intended for a
cluster that has a shared file system across all nodes. Therefore, all jobs use the Vanilla Universe, the simplest one for running
serial jobs. The other Condor Universes are explored later.

Example 1

Example 1 is the simplest submit description file possible. It queues up one copy of the program 'foo' for execution by Condor. A
log file called 'foo.log' is generated by Condor. The log file contains events pertaining to the job while it runs inside of Condor.
When the job finishes, its exit conditions are noted in the log file. We recommend that you always have a log file so you know
what happened to your jobs. The queue statement in the submit description file tells Condor to use all the information specified so
far to create a job ClassAd and place the job into the queue. Lines that begin with a pound character (#) are comments and are
ignored by condor_submit.
 # Example 1 : Simple submit file
 universe = vanilla
 executable = foo
 log = foo.log
 queue

Example 2

Example 2 queues two copies of the program 'mathematica'. The first copy runs in directory 'run_1', and the second runs in
directory 'run_2'. For both queued copies, 'stdin' will be 'test.data', 'stdout' will be 'loop.out', and 'stderr' will
be 'loop.error'. Two sets of files will be written, since the files are each written to their own directories. This is a convenient
way to organize data for a large group of Condor jobs.
 # Example 2: demonstrate use of multiple
 # directories for data organization.
 universe = vanilla
 executable = mathematica
 # Give some command line args, remap stdio

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # Give some command line args, remap stdio
 arguments = -solver matrix
 input = test.data
 output = loop.out
 error = loop.error
 log = loop.log

 initialdir = run_1
 queue
 initialdir = run_2
 queue

Example 3

The submit description file for Example 3 queues 150 runs of program 'foo'. This job requires Condor to run the program on
machines that have greater than 128 megabytes of physical memory, and it further requires that the job not be scheduled to run
on a specific node. Of the machines that meet the requirements, the job prefers to run on the fastest floating-point nodes currently
available to accept the job. It also advises Condor that the job will use up to 180 megabytes of memory when running. Each of the
150 runs of the program is given its own process number, starting with process number 0. Several built-in macros can be used in
a submit description file; one of them is the $ (Process) macro which Condor expands to be the process number in the job cluster.
This causes files 'stdin', 'stdout', and 'stderr' to be 'in.0', 'out.0', and 'err.0' for the first run of the program,
'in.1', 'out.1', and 'err.1' for the second run of the program, and so forth. A single log file will list events for all 150 jobs in
this job cluster.
 # Example 3: Submit lots of runs and use the
 # pre-defined $(Process) macro.
 universe = vanilla
 executable = foo
 requirements = Memory > 128 && Machine != "server-node.cluster.edu"
 rank = KFlops
 image_size = 180

 Error = err.$(Process)
 Input = in.$(Process)
 Output = out.$(Process)
 Log = foo.log

 queue 150

Note that the requirements and rank entries in the submit description file will become the requirements and rank attributes of
the subsequently created ClassAd for this job. These are arbitrary expressions that can reference any attributes of either the
machine or the job; see Section 15.1.2 for more on requirements and rank expressions in ClassAds.

15.2.3 Overview of User Commands

Once you have jobs submitted to Condor, you can manage them and monitor their progress. Table 15.1 shows several commands
available to the Condor user to view the job queue, check the status of nodes in the pool, and perform several other activities.
Most of these commands have many command-line options; see the Command Reference chapter of the Condor manual for
complete documentation. To provide an introduction from a user perspective, we give here a quick tour showing several of these
commands in action.

Table 15.1: List of user commands.

Command Description

condor_analyze Troubleshoot jobs that are not being matched

condor_checkpoint Checkpoint jobs running on the specified hosts

condor_compile Create a relinked executable for submission to the Standard Universe

condor_glidein Add a Globus resource to a Condor pool

condor_history View log of Condor jobs completed to date

condor_hold Put jobs in the queue in hold state

condor_prio Change priority of jobs in the queue

condor_qedit Modify attributes of a previously submitted job

condor_q Display information about jobs in the queue

condor_release Release held jobs in the queue

condor_reschedule Update scheduling information to the central manager

condor_rm Remove jobs from the queue

condor_run Submit a shell command-line as a Condor job

condor_status Display status of the Condor pool

condor_submit_dag Manage and queue jobs within a specified DAG for interjob dependencies.

condor_submit Queue jobs for execution

condor_userlog Display and summarize job statistics from job log files

condor_version Display version number of installed software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When jobs are submitted, Condor will attempt to find resources to service the jobs. A list of all users with jobs submitted may be
obtained through condor_status with the -submitters option. An example of this would yield output similar to the following:
% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

 RunningJobs IdleJobs HeldJobs

 ballard@cs.wisc.edu 0 11 0
 jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
 wright@cs.wisc.edu 1 1 0

 Total 7 516 5

Checking on the Progress of Jobs
The condor_q command displays the status of all jobs in the queue. An example of the output from condor_q is
% condor_q

-- Schedd: uug.cs.wisc.edu : <128.115.121.12:33102>
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 55574.0 jane 6/23 11:33 4+03:35:28 R 0 25.7 seycplex seymour.d
 55575.0 jane 6/23 11:44 0+23:24:40 R 0 26.8 seycplexpseudo sey
 83193.0 jane 3/28 15:11 48+15:50:55 R 0 17.5 cplexmip test1.mp
 83196.0 jane 3/29 08:32 48+03:16:44 R 0 83.1 cplexmip test3.mps
 83212.0 jane 4/13 16:31 41+18:44:40 R 0 39.7 cplexmip test2.mps

 5 jobs; 0 idle, 5 running, 0 held

This output contains many columns of information about the queued jobs. The ST column (for status) shows the status of current
jobs in the queue. An R in the status column means the the job is currently running. An I stands for idle. The status H is the hold
state. In the hold state, the job will not be scheduled to run until it is released (via the condor_release command). The
RUN_TIME time reported for a job is the time that job has been allocated to a machine as DAYS+HOURS+MINS+SECS.

Another useful method of tracking the progress of jobs is through the user log. If you have specified a log command in your
submit file, the progress of the job may be followed by viewing the log file. Various events such as execution commencement,
checkpoint, eviction, and termination are logged in the file along with the time at which the event occurred. Here is a sample
snippet from a user log file
000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>
...
001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>
...
005 (8135.000.000) 05/25 19:13:06 Job terminated.
 (1) Normal termination (return value 0)
 Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage
 Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage
 Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage
 9624 - Run Bytes Sent By Job
 7146159 - Run Bytes Received By Job
 9624 - Total Bytes Sent By Job
 7146159 - Total Bytes Received By Job

...

The condor_jobmonitor tool parses the events in a user log file and can use the information to graphically display the progress
of your jobs. Figure 15.2 contains a screenshot of condor_jobmonitor in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.2: Condor jobmonitor tool.

You can locate all the machines that are running your job with the condor_status command. For example, to find all the
machines that are running jobs submitted by breach@cs.wisc.edu, type
% condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type
% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w
amul.cs.wi INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
anfrom.cs. INTEL LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
aura.cs.wi INTEL LINUX 0.996 nice-user.condor@cs. chevre.cs.wisc.
balder.cs. INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

Removing a Job from the Queue
You can remove a job from the queue at any time using the condor_rm command. If the job that is being removed is currently
running, the job is killed without a checkpoint, and its queue entry is removed. The following example shows the queue of jobs
before and after a job is removed.
% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
 132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Changing the Priority of Jobs
In addition to the priorities assigned to each user, Condor provides users with the capability of assigning priorities to any submitted
job. These job priorities are local to each queue and range from -20 to +20, with higher values meaning better priority.

The default priority of a job is 0. Job priorities can be modified using the condor_prio command. For example, to change the
priority of a job to -15, type
% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 jobs; 1 idle, 0 running, 0 held
% condor_prio -p -15 126.0
% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

We emphasize that these job priorities are completely different from the user priorities assigned by Condor. Job priorities control
only which one of your jobs should run next; there is no effect whatsoever on whether your jobs will run before another user's jobs.

Determining Why a Job Does Not Run
A specific job may not run for several reasons. These reasons include failed job or machine constraints, bias due to preferences,
insufficient priority, and the preemption throttle that is implemented by the condor_negotiator to prevent thrashing. Many of
these reasons can be diagnosed by using the -analyze option of condor_q. For example, the following job submitted by user
jbasney had not run for several days.
% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Running condor_q's analyzer provided the following information:
% condor_q 125.0 -analyze

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

125.000: Run analysis summary. Of 323 resource offers,
 323 do not satisfy the request's constraints
 0 resource offer constraints are not satisfied by this request
 0 are serving equal or higher priority customers
 0 are serving more preferred customers
 0 cannot preempt because preemption has been held
 0 are available to service your request

WARNING: Be advised:
 No resources matched request's constraints
 Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&
 Disk >= ExecutableSize && VirtualMemory >= ImageSize

The Requirements expression for this job specifies a platform that does not exist. Therefore, the expression always evaluates to
FALSE.

While the analyzer can diagnose most common problems, there are some situations that it cannot reliably detect because of the
instantaneous and local nature of the information it uses to detect the problem. The analyzer may report that resources are
available to service the request, but the job still does not run. In most of these situations, the delay is transient, and the job will run
during the next negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, the job may begin to run but immediately terminates and
return to the idle state. Viewing the job's error and log files (specified in the submit command file) and Condor's SHADOW_LOG file
may assist in tracking down the problem. If the cause is still unclear, you should contact your system administrator.

Job Completion
When a Condor job completes (either through normal means or abnormal means), Condor will remove it from the job queue
(therefore, it will no longer appear in the output of condor_q) and insert it into the job history file. You can examine the job history
file with the condor_history command. If you specified a log file in your submit description file, then the job exit status will be
recorded there as well.

By default, Condor will send you an e-mail message when your job completes. You can modify this behavior with the
condor_submit "notification" command. The message will include the exit status of your job or notification that your job
terminated abnormally.

Job Policy
Condor provides several expressions to control your job while it is in the queue. Condor periodically evaluates these expressions
and may perform actions on your behalf, reducing the tedium of managing running jobs.

Condor provides five of these expressions: periodic_hold, periodic_release, periodic_remove, on_exit_hold, and
on_exit_remove. The periodic expressions are evaluated every 20 seconds, and the on_exit expressions are evaluated when
your job completes, but before the job is removed from the queue. The periodic expressions take precedence over the on_exit
requirements, and the hold expressions take precedence over the remove expressions. The periodic expressions are ClassAd
expressions, just like the requirements expression introduced in Section 15.1.2. They are added to the job ClassAd via the submit
file.

You can use these expressions to automate many common actions. For example, suppose you know that your job will never run
for more than an hour, and if it is running for more than an hour, something is probably wrong and will need investigating. Instead
leaving your job running on the cluster needlessly, Condor can place your job on hold with the following added to the submit file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 periodic_hold = (ServerStartTime - JobStartDate) > 3600
Or suppose you have a job that occasionally segfaults but you know if you run it again on the same data, chances are it will finish
successfully. You can get this behavior by adding this line to the submit file:
on_exit_remove = (ExitBySignal == True) && (ExitSignal != 11)
The above expression will not let the job leave the queue if it exited by a signal and that signal number was 11 (representing
segmentation fault). In any other case of the job exting, it will leave the queue.

15.2.4 Submitting Different Types of Jobs: Choosing a Universe

A Universe in Condor defines an execution environment. Condor supports the following Universes on Linux:

Vanilla

Parallel

PVM

Globus

Scheduler

Java

Standard

The Universe attribute is specified in the submit description file. If the Universe is not specified, it will default to Standard.

Vanilla Universe
The Vanilla Universe is used to run serial (nonparallel) jobs. The examples provided in the preceding section use the Vanilla
Universe. Most Condor users prefer to use the Standard Universe to submit serial jobs because of several helpful features of the
Standard Universe. However, the Standard Universe has several restrictions on the types of serial jobs supported. The Vanilla
Universe, on the other hand, has no such restrictions. Any program that runs outside of Condor will run in the Vanilla Universe.
Binary executables as well as scripts are welcome in the Vanilla Universe.

A typical Vanilla Universe job relies on a shared file system between the submit machine and all the nodes in order to allow jobs to
access their data. However, if a shared file system is not available, Condor can transfer the files needed by the job to and from the
execute machine. See Section 15.2.5 for more details on this.

Parallel Universe
The Parallel Universe allows parallel programs written with MPI to be managed by Condor. To submit an MPI program to Condor,
specify the number of nodes to be used in the parallel job. Use the machine_count attribute in the submit description file to
specify the number of resources to claim, as in the following example:
Submit file for an MPI job which needs 8 large memory nodes
universe = parallel
executable = my-parallel-job
requirements = Memory >= 512
machine_count = 8
queue

Further options in the submit description file allow a variety of parameters, such as the job requirements or the executable to use
across the different nodes.

The start up of parallel jobs can be a complicated procedure, and each parallel library is different. The Condor parallel universe
tries to provide enough flexibility to allow jobs linked with any parallel library to be scheduled and launched. Jobs under the parallel
universe are allowed to run a script before a process is started on any node, and Condor provides tools to start processes on
other nodes. Condor includes all the necessary scripts to support the most common MPI implementations, such as MPICH,
MPICH2 and LAM. By default, Condor expects a parallel job to be linked with the MPICH implementation of MPI configured with
the ch_p4 device. For other parallel libraries, the Condor manual contains directions on how to write the necessary scripts.

If your Condor pool consists of both dedicated compute machines (that is, Beowulf cluster nodes) and opportunistic machines
(that is, desktop workstations), by default Condor will schedule MPI jobs to run on the dedicated resources only.

PVM Universe
Several different parallel programming paradigms exist. One of the more common is the "master/worker" or "pool of tasks"
arrangement. In a master/worker program model, one node acts as the controlling master for the parallel application and sends
out pieces of work to worker nodes. The worker node does some computation and sends the result back to the master node. The
master has a pool of work that needs to be done, and it assigns the next piece of work out to the next worker that becomes
available.

The PVM Universe allows master/worker style parallel programs written for the Parallel Virtual Machine interface (see Chapter 10)
to be used with Condor. Condor runs the master application on the machine where the job was submitted and will not preempt the
master application. Workers are pulled in from the Condor pool as they become available.

Specifically, in the PVM Universe, Condor acts as the resource manager for the PVM daemon. Whenever a PVM program asks
for nodes via a pvm_addhosts() call, the request is forwarded to Condor. Using ClassAd matching mechanisms, Condor finds a
machine in the Condor pool and adds it to the virtual machine. If a machine needs to leave the pool, the PVM program is notified
by normal PVM mechanisms, for example, the pvm_notify() call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by normal PVM mechanisms, for example, the pvm_notify() call.

A unique aspect of the PVM Universe is that PVM jobs submitted to Condor can harness both dedicated and nondedicated
(opportunistic) workstations throughout the pool by dynamically adding machines to and removing machines from the parallel
virtual machine as machines become available.

Writing a PVM program that deals with Condor's opportunistic environment can be a tricky task. For that reason, the MW
framework has been created. MW is a tool for making master-worker style applications in Condor's PVM Universe. For more
information, see the MW Home page online at www.cs.wisc.edu/condor/mw.

Submitting to the PVM Universe is similar to submitting to the MPI Universe, except that the syntax for machine_count is
different to reflect the dynamic nature of the PVM Universe. Here is a simple sample submit description file:
Require Condor to give us one node before starting
the job, but we'll use up to 75 nodes if they are
available.
universe = pvm
executable = master.exe
machine_count = 1..75
queue

By using machine_count = <min>..<max>, the submit description file tells Condor that before the PVM master is started,
there should be at least <min> number of machines given to the job. It also asks Condor to give it as many as <max> machines.

More detailed information on the PVM Universe is available in the Condor manual as well as on the Condor-PVM home page at
URL www.cs.wisc.edu/condor/pvm.

Globus Universe
The Globus Toolkit® is available from www.globus.org and is the most popular (although not the only) collection of middleware to
build computational grids. The Globus universe in Condor is intended to provide the standard Condor interface to users who wish
to submit jobs to machines being managed by Globus. Instead of the jobs executing in the Condor pool, jobs in the Globus
universe specify which resource the user wants and has authorization to use. The benefits for running Globus jobs in Condor are
that all the Condor job management, such as persistent logging, file management, and the DAGMan (15.2.6) meta-scheduler are
available.

The Globus universe is not the only way to share resources in Condor. The Condor manual has a section entitled "Grid
Computing" that describes Condor Flocking, Condor Glide-in, and the Globus universe in much more detail.

Scheduler Universe
The Scheduler Universe is used to submit a job that will immediately run on the submit machine, as opposed to a remote
execution machine. The purpose is to provide a facility for job meta-schedulers that desire to manage the submission and removal
of jobs into a Condor queue. Condor includes one such meta-scheduler that utilizes the Scheduler Universe: the DAGMan
scheduler, which can be used to specify complex interdependencies between jobs. See Section 15.2.6 for more on DAGMan.

Java Universe
There is growing interest in writing scientific programs in Java, and Condor provides special support for running Java programs in
a pool. Java programs are not loaded directly by the operating system and run on the processor. Instead, they are loaded by the
Java Virtual Machine(JVM) and interpreted. This allows the same Java program to run on any operating system and hardware
combination at the cost of reduced performance.

One inelegant way to run Java programs in a Condor pool is to submit the JVM to the Standard or Vanilla universe, and give the
Java program to be run as an argument. This is deficient in two ways. For one, it puts considerable burdens on users who want to
take advantage the platform independence that Java provides. Additionally, it is difficult to determine the cause of errors when a
job fails, as the error may be from the JVM or from the Java program running on the JVM.

The Java Universe changes the abstraction of a remote resource from a Linux machine to a Java environment. If a resource has a
JVM installed, Condor advertises facts about the JVM such as versions and performance benchmarks. When a Java universe job
is matched with a resource, Condor assumes responsibility of running the Java program. This allows specialized JVMs to be
deployed by the resource administrator and removes the burden of providing a suitable execution environment from the submitter.
If an error occurs, Condor can detect if the error occurred in the job or in the JVM. If the error is from the JVM, Condor
automatically retries the job. If the error is from the job, Condor can report directly into the job logfile what the exception was and
where it occurred. A sample Java submit file appears in Figure 15.3.

Submit file for an Java job which prefers the fastest JVM in the pool
universe = java
executable = my-java-sim.class
jar_files = simulation_library.jar
arguments = -x 100 -y 100
output = simulation.out
log = simulation.log
rank = JavaMFlops * 100
queue

Figure 15.3: A sample Java submit file.

Standard Universe
The Standard Universe requires minimal extra effort on the part of the user but provides a serial job with the following highly
desirable services:

Transparent process checkpoint and restart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transparent process migration

Remote system calls

Configurable file I/O buffering

On-the-fly file compression/inflation

Process Checkpointing in the Standard Universe
A checkpoint of an executing program is a snapshot of the program's current state. It provides a way for the program to be
continued from that state at a later time. Using checkpoints gives Condor the freedom to reconsider scheduling decisions through
preemptive-resume scheduling. If the scheduler decides to rescind a machine that is running a Condor job (for example, when the
owner of that machine returns and reclaims it or when a higher-priority user desires the same machine), the scheduler can take a
checkpoint of the job and preempt the job without losing the work the job has already accomplished. The job can then be resumed
later when the Condor scheduler allocates it a new machine. Additionally, periodic checkpoints provide fault tolerance. Normally,
when performing long-running computations, if a machine crashes or must be rebooted for an administrative task, all the work that
has been done is lost. The job must be restarted from the beginning, which can mean days, weeks, or even months of wasted
computation time. With checkpoints, Condor ensures that progress is always made on jobs and that only the computation done
since the last checkpoint is lost. Condor can be take checkpoints periodically, and after an interruption in service, the program can
continue from the most recent snapshot.

To enable taking checkpoints, you do not need to change the program's source code. Instead, the program must be relinked with
the Condor system call library (see below). Taking the checkpoint of a process is implemented in the Condor system call library as
a signal handler. When Condor sends a checkpoint signal to a process linked with this library, the provided signal handler writes
the state of the process out to a file or a network socket. This state includes the contents of the process's stack and data
segments, all CPU state (including register values), the state of all open files, and any signal handlers and pending signals. When
a job is to be continued using a checkpoint, Condor reads this state from the file or network socket, restoring the stack, shared
library and data segments, file state, signal handlers, and pending signals. The checkpoint signal handler then restores the CPU
state and returns to the user code, which continues from where it left off when the checkpoint signal arrived. Condor jobs
submitted to the Standard Universe will automatically perform a checkpoint when preempted from a machine. When a suitable
replacement execution machine is found (of the same architecture and operating system), the process is restored on this new
machine from the checkpoint, and computation is resumed from where it left off.

By default, a checkpoint is written to a file on the local disk of the submit machine. A Condor checkpoint server is also available to
serve as a repository for checkpoints.

Remote System Calls in the Standard Universe
One hurdle to overcome when placing an job on a remote execution workstation is data access. In order to utilize the remote
resources, the job must be able to read from and write to files on its submit machine. A requirement that the remote execution
machine be able to access these files via NFS, AFS, or any other network file system may significantly limit the number of eligible
workstations and therefore hinder the ability of an environment to achieve high throughput. Therefore, in order to maximize
throughput, Condor strives to be able to run any application on any remote workstation of a given platform without relying upon a
common administrative setup. The enabling technology that permits this is Condor's Remote System Calls mechanism. This
mechanism provides the benefit that Condor does not require a user to possess a login account on the execute workstation.

When a Unix process needs to access a file, it calls a file I/O system function such as open(), read(), or write(). These
functions are typically handled by the standard C library, which consists primarily of stubs that generate a corresponding system
call to the local kernel. Condor users link their applications with an enhanced standard C library via the condor_compile
command. This library does not duplicate any code in the standard C library; instead, it augments certain system call stubs (such
as the ones that handle file I/O) into remote system call stubs. The remote system call stubs package the system call number and
arguments into a message that is sent over the network to a condor_shadow process that runs on the submit machine.
Whenever Condor starts a Standard Universe job, it also starts a corresponding shadow process on the initiating host where the
user originally submitted the job (see Figure 15.4). This shadow process acts as an agent for the remotely executing program in
performing system calls. The shadow then executes the system call on behalf of the remotely running job in the normal way. The
shadow packages up the results of the system call in a message and sends it back to the remote system call stub in the Condor
library on the remote machine. The remote system call stub returns its result to the calling procedure, which is unaware that the
call was done remotely rather than locally. In this fashion, calls in the user's program to open(), read(), write(), close(),
and all other file I/O calls transparently take place on the machine that submitted the job instead of on the remote execution
machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.4: Remote System calls in the Standard Universe.

Relinking and Submitting for the Standard Universe
To convert a program into a Standard Universe job, use the condor_compile command to relink with the Condor libraries. Place
condor_compile in front of your usual link command. You do not need to modify the program's source code, but you do need
access to its unlinked object files. A commercial program that is packaged as a single executable file cannot be converted into a
Standard Universe job.

For example, if you normally link your job by executing
% cc main.o tools.o -o program

You can relink your job for Condor with
% condor_compile cc main.o tools.o -o program

After you have relinked your job, you can submit it. A submit description file for the Standard Universe is similar to one for the
Vanilla Universe. However, several additional submit directives are available to perform activities such as on-the-fly compression
of data files. Here is an example:
Submit 100 runs of my-program to the Standard Universe universe = standard
executable = my-program.exe
Each run should take place in a separate subdirectory: run0, run1, ...
initialdir = run$(Process)
Ask the Condor remote syscall layer to automatically compress
on-the-fly any writes done by my-program.exe to file data.output
compress_files = data.output
queue 100

Standard Universe Limitations
Condor performs its process checkpoint and migration routines strictly in user mode; there are no kernel drivers with Condor.
Because Condor is not operating at the kernel level, there are limitations on what process state it is able to checkpoint. As a
result, the following restrictions are imposed upon Standard Universe jobs:

1. Multiprocess jobs are not allowed. This includes system calls such as fork(), exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared memory.

3. Network communication must be brief. A job may make network connections using system calls such as
socket(), but a network connection left open for long periods will delay checkpoints and migration.

4. Multiple kernel-level threads are not allowed. However, multiple user-level threads (green threads) are allowed.

5. All files should be accessed read-only or write-only. A file that is both read and written to can cause trouble if a
job must be rolled back to an old checkpoint image.

6. On Linux, your job must be statically linked. Dynamic linking is allowed in the Standard Universe on some other
platforms supported by Condor, and perhaps this restriction on Linux will be removed in a future Condor release.

15.2.5 Giving Your Job Access to Its Data Files

Once your job starts on a machine in your pool, how does it access its data files? Condor provides several choices.

If the job is a Standard Universe job, then Condor solves the problem of data access automatically using the Remote System call
mechanism described above. Whenever the job tries to open, read, or write to a file, the I/O will actually take place on the submit
machine, whether or not a shared file system is in place.

Condor can use a shared file system, if one is available and permanently mounted across the machines in the pool. This is usually
the case in a Beowulf cluster. But what if your Condor pool includes nondedicated (desktop) machines as well? You could specify
a Requirements expression in your submit description file to require that jobs run only on machines that actually do have access
to a common, shared file system. Or, you could request in the submit description file that Condor transfer your job's data files
using the Condor File Transfer mechanism.

When Condor finds a machine willing to execute your job, it can create a temporary subdirectory for your job on the execute
machine. The Condor File Transfer mechanism will then send via TCP the job executable(s) and input files from the submitting
machine into this temporary directory on the execute machine. After the input files have been transferred, the execute machine
will start running the job with the temporary directory as the job's current working directory. When the job completes or is kicked
off, Condor File Transfer will automatically send back to the submit machine any output files created or modified by the job. After
the files have been sent back successfully, the temporary working directory on the execute machine is deleted.

Condor's File Transfer mechanism has several features to ensure data integrity in a nondedicated environment. For instance,
transfers of multiple files are performed atomically.

Condor File Transfer behavior is specified at job submission time using the submit description file and condor_submit. Along
with all the other job submit description parameters, you can use the following File Transfer commands in the submit description
file:

transfer_input_files = < file1, file2, file... >: Use this parameter to list all the files that should be transferred into
the working directory for the job before the job is started.

transfer_output_files = < file1, file2, file... >: Use this parameter to explicitly list which output files to transfer back
from the temporary working directory on the execute machine to the submit machine. Most of the time, however,
there is no need to use this parameter. If transfer_output_files is not specified, Condor will automatically
transfer in the job's temporary working directory all files that have been modified or created by the job.

transfer_files = <ONEXIT | ALWAYS | NEVER>: If transfer_files is set to ONEXIT, Condor will transfer the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transfer_files = <ONEXIT | ALWAYS | NEVER>: If transfer_files is set to ONEXIT, Condor will transfer the
job's output files back to the submitting machine only when the job completes (exits). Specifying ALWAYS tells
Condor to transfer back the output files when the job completes or when Condor kicks off the job (preempts) from a
machine prior to job completion. The ALWAYS option is specifically intended for fault-tolerant jobs that periodically
write out their state to disk and can restart where they left off. Any output files transferred back to the submit
machine when Condor preempts a job will automatically be sent back out again as input files when the job restarts.

15.2.6 The DAGMan Scheduler

The DAGMan scheduler within Condor allows the specification of dependencies between a set of programs. A directed acyclic
graph (DAG) can be used to represent a set of programs where the input, output, or execution of one or more programs is
dependent on one or more other programs. The programs are nodes (vertices) in the graph, and the edges (arcs) identify the
dependencies. Each program within the DAG becomes a job submitted to Condor. The DAGMan scheduler enforces the
dependencies of the DAG.

An input file to DAGMan identifies the nodes of the graph, as well as how to submit each job (node) to Condor. It also specifies
the graph's dependencies and describes any extra processing that is involved with the nodes of the graph and must take place
just before or just after the job is run.

A simple diamond-shaped DAG with four nodes is given in Figure 15.5.

Figure 15.5: A directed acyclic graph with four nodes.

A simple input file to DAGMan for this diamond-shaped DAG may be
file name: diamond.dag
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

The four nodes are named A, B, C, and D. Lines beginning with the keyword Job identify each node by giving it a name, and they
also specify a file to be used as a submit description file for submission as a Condor job. Lines with the keyword PARENT identify
the dependencies of the graph. Just like regular Condor submit description files, lines with a leading pound character (#) are
comments.

The DAGMan scheduler uses the graph to order the submission of jobs to Condor. The submission of a child node will not take
place until the parent node has successfully completed. No ordering of siblings is imposed by the graph, and therefore DAGMan
does not impose an ordering when submitting the jobs to Condor. For the diamond-shaped example, nodes B and C will be
submitted to Condor in parallel.

Each job in the example graph uses a different submit description file. An example submit description file for job A may be
 # file name: A.condor
 executable = nodeA.exe
 output = A.out
 error = A.err
 log = diamond.log
 universe = vanilla
 queue

An important restriction for submit description files of a DAG is that each node of the graph use the same log file. DAGMan uses
the log file in enforcing the graph's dependencies.

The graph for execution under Condor is submitted by using the Condor tool condor_submit_dag. For the diamond-shaped
example, submission would use the command
condor_submit_dag diamond.dag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3 Condor Architecture
A Condor pool comprises a single machine that serves as the central manager and an arbitrary number of other machines that
have joined the pool. Conceptually, the pool is a collection of resources (machines) and resource requests (jobs). The role of
Condor is to match waiting requests with available resources. Every part of Condor sends periodic updates to the central
manager, the centralized repository of information about the state of the pool. The central manager periodically assesses the
current state of the pool and tries to match pending requests with the appropriate resources.

15.3.1 The Condor Daemons

In this subsection we describe all the daemons (background server processes) in Condor and the role each plays in the system.
condor_master: This daemon's role is to simplify system administration. It is responsible for keeping the rest of
the Condor daemons running on each machine in a pool. The master spawns the other daemons and periodically
checks the timestamps on the binaries of the daemons it is managing. If it finds new binaries, the master will restart
the affected daemons. This allows Condor to be upgraded easily. In addition, if any other Condor daemon on the
machine exits abnormally, the condor_master will send e-mail to the system administrator with information about
the problem and then automatically restart the affected daemon. The condor_master also supports various
administrative commands to start, stop, or reconfigure daemons remotely. The condor_master runs on every
machine in your Condor pool.

condor_startd: This daemon represents a machine to the Condor pool. It advertises a machine ClassAd that
contains attributes about the machine's capabilities and policies. Running the startd enables a machine to
execute jobs. The condor_startd is responsible for enforcing the policy under which remote jobs will be started,
suspended, resumed, vacated, or killed. When the startd is ready to execute a Condor job, it spawns the
condor_starter, described below.

condor_starter: This program is the entity that spawns the remote Condor job on a given machine. It sets up
the execution environment and monitors the job once it is running. The starter detects job completion, sends back
status information to the submitting machine, and exits.

condor_schedd: This daemon represents jobs to the Condor pool. Any machine that allows users to submit jobs
needs to have a condor_schedd running. Users submit jobs to the condor_schedd, where they are stored in the
job queue. The various tools to view and manipulate the job queue (such as condor_submit, condor_q, or
condor_rm) connect to the condor_schedd to do their work.

condor_shadow: This program runs on the machine where a job was submitted whenever that job is executing.
The shadow serves requests for files to transfer, logs the job's progress, and reports statistics when the job
completes. Jobs that are linked for Condor's Standard Universe, which perform remote system calls, do so via the
condor_shadow. Any system call performed on the remote execute machine is sent over the network to the
condor_shadow. The shadow performs the system call (such as file I/O) on the submit machine and the result is
sent back over the network to the remote job.

condor_collector: This daemon is responsible for collecting all the information about the status of a Condor
pool. All other daemons periodically send ClassAd updates to the collector. These ClassAds contain all the
information about the state of the daemons, the resources they represent, or resource requests in the pool (such as
jobs that have been submitted to a given condor_schedd). The condor_collector can be thought of as a
dynamic database of ClassAds. The condor_status command can be used to query the collector for specific
information about various parts of Condor. The Condor daemons also query the collector for important information,
such as what address to use for sending commands to a remote machine. The condor_collector runs on the
machine designated as the central manager.

condor_negotiator: This daemon is responsible for all the matchmaking within the Condor system. The
negotiator is also responsible for enforcing user priorities in the system.

15.3.2 The Condor Daemons in Action

Within a given Condor installation, one machine will serve as the pool's central manager. In addition to the condor_master
daemon that runs on every machine in a Condor pool, the central manager runs the condor_collector and the
condor_negotiator daemons. Any machine in the installation that should be capable of running jobs should run the
condor_startd, and any machine that should maintain a job queue and therefore allow users on that machine to submit jobs
should run a condor_schedd.

Condor allows any machine simultaneously to execute jobs and serve as a submission point by running both a condor_startd
and a condor_schedd. Figure 15.6 displays a Condor pool in which every machine in the pool can both submit and run jobs,
including the central manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.6: Daemon layout of an idle Condor pool.

The interface for adding a job to the Condor system is condor_submit, which reads a job description file, creates a job ClassAd,
and gives that ClassAd to the condor_schedd managing the local job queue. This triggers a negotiation cycle. During a
negotiation cycle, the condor_negotiator queries the condor_collector to discover all machines that are willing to perform
work and all users with idle jobs. The condor_negotiator communicates in user priority order with each condor_schedd that
has idle jobs in its queue, and performs matchmaking to match jobs with machines such that both job and machine ClassAd
requirements are satisfied and preferences (rank) are honored.

Once the condor_negotiator makes a match, the condor_schedd claims the corresponding machine and is allowed to make
subsequent scheduling decisions about the order in which jobs run. This hierarchical, distributed scheduling architecture
enhances Condor's scalability and flexibility.

When the condor_schedd starts a job, it spawns a condor_shadow process on the submit machine, and the condor_startd
spawns a condor_starter process on the corresponding execute machine (see Figure 15.7). The shadow transfers the job
ClassAd and any data files required to the starter, which spawns the user's application.

Figure 15.7: Daemon layout when a job submitted from Machine 2 is running.

If the job is a Standard Universe job, the shadow will begin to service remote system calls originating from the user job, allowing
the job to transparently access data files on the submitting host.

When the job completes or is aborted, the condor_starter removes every process spawned by the user job, and frees any
temporary scratch disk space used by the job. This ensures that the execute machine is left in a clean state and that resources
(such as processes or disk space) are not being leaked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4 Configuring Condor
This section describes how to configure and customize Condor for your site. It discusses the configuration files used by Condor,
describes how to configure the policy for starting and stopping jobs in your pool, and recommends settings for using Condor on a
cluster.

A number of configuration files facilitate different levels of control over how Condor is configured on each machine in a pool. The
top-level or global configuration file is shared by all machines in the pool. For ease of administration, this file should be located on
a shared file system. In addition, each machine may have multiple local configuration files allowing the local settings to override
the global settings. Hence, each machine may have different daemons running, different policies for when to start and stop
Condor jobs, and so on.

All of Condor's configuration files should be owned and writable only by root. It is important to maintain strict control over these
files because they contain security-sensitive settings.

The Condor project's website at www.cs.wisc.edu/condor has detailed installation instructions. For some Linux distributions,
Condor is available in the native packaging format. For Linux distributions that Condor is not natively packaged for, it is available
as a tarfile. A perl script is included to help install Condor and customize the configuration.

15.4.1 Location of Condor's Configuration Files

Condor has a default set of locations it uses to try to find its top-level configuration file. The locations are checked in the following
order:

1. The file specified in the CONDOR_CONFIG environment variable.

2. '/etc/condor/condor_config', if it exists.

3. If user condor exists on your system, the 'condor_config' file in this user's home directory.

If a Condor daemon or tool cannot find its global configuration file when it starts, it will print an error message and immediately
exit. Once the global configuration file has been read by Condor, however, any other local configuration files can be specified with
the LOCAL_CONFIG_FILE macro.

This macro can contain a single entry if you want only two levels of configuration (global and local). If you need a more complex
division of configuration values (for example, if you have machines of different platforms in the same pool and desire separate
files for platform-specific settings), LOCAL_CONFIG_FILE can contain a list of files.

Condor provides other macros to help you easily define the location of the local configuration files for each machine in your pool.
Most of these are special macros that evaluate to different values depending on which host is reading the global configuration file:

HOSTNAME: The hostname of the local host.

FULL_HOSTNAME: The fully qualified hostname of the local host.

TILDE: The home directory of the user condor on the local host.

OPSYS: The operating system of the local host, such as "LINUX," "WINNT4" (for Windows NT), or "WINNT5" (for
Windows 2000). This is primarily useful in heterogeneous clusters with multiple platforms.

RELEASE_DIR: The directory where Condor is installed on each host. This macro is defined in the global
configuration file and is set by Condor's installation program.

By default, the local configuration file is defined as
LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local

15.4.2 Recommended Configuration File Layout for a Cluster

Ease of administration is an important consideration in a cluster, particularly if you have a large number of nodes. To make
Condor easy to configure, we highly recommend that you install all of your Condor configuration files, even the per-node local
configuration files, on a shared file system. That way, you can easily make changes in one place.

You should use a subdirectory in your release directory for holding all of the local configuration files. By default, Condor's release
directory contains an 'etc' directory for this purpose.

You should create separate files for each node in your cluster, using the hostname as the first half of the filename, and ".local" as
the end. For example, if your cluster nodes are named "n01," "n02," and so on, the files should be called 'n01.local',
'n02.local', and so on. These files should all be placed in your 'etc' directory.

In your global configuration file, you should use the following setting to describe the location of your local configuration files:
LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$(HOSTNAME).local

The central manager of your pool needs special settings in its local configuration file. These attributes are set automatically by the
Condor installation program. The rest of the local configuration files can be left empty at first.

Having your configuration files laid out in this way will help you more easily customize Condor's behavior on your cluster. We
discuss other possible configuration scenarios at the end of this chapter.

Note We recommend that you store all of your Condor configuration files under a version control system, such as CVS.
While this is not required, it will help you keep track of the changes you make to your configuration, who made them,
when they occurred, and why. In general, it is a good idea to store configuration files under a version control system,
since none of the above concerns are specific to Condor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4.3 Configuring Security in Condor

Condor has a rich and highly-configurable security implementation. Condor separates security into two parts: Authentication and
Authorization. Authentication identifies the client requesting an action, and does not pass judgment on if that client is allowed to
perform that action. Condor can use many different methods for authentication, including Kerberos, X.509 Public/Private keys,
and TCP/IP hostnames. Authentication levels and methods are automatically negotiated by Condor. Authentication can be
Required, Preferred, Optional, or Never. Given the distributed nature of the daemons that implement Condor, access to these
daemons is naturally host based, and is currently the default. However, host-based security is fairly easy to defeat. In any sort of
untrusted environment, we strongly recommend using a more sophisticated authentication method such as X.509.

Authorization builds on top of authentication by specifying who is allowed to do what. There are four different classes of access
levels: Read, Write, Administrator, and Config. Each level may require a different strength of authentication, and have a different
set of clients who are allowed to perform that action. For example, it is very common to allow anyone who can authenticate as
being from a local subnet to read information about Condor resources and jobs. At the same time, only a few people be might
allowed to administer a machine, and these people may be required to identify themselves using Kerberos. The four access levels
are described below:

Read: allows a client to obtain information from Condor. Examples of information that may be read are the status of
the pool and the contents of the job queue.

Write: allows a client to provide information to Condor, such as submit a job or join the pool. Note that Write access
does not imply Read access.

Administrator: allows a client to affect privileged operations such as changing a user's priority level or starting and
stopping the Condor system from running.

Config: allows a client to change Condor's configuration settings remotely using the condor_config_val tool's -
set and -rset options. This has very serious security implications, so we recommend that you not enable Config
access to any hosts.

The defaults during installation give all machines in the pool read and write access. The central manager is also given
administrator access. You will probably wish to change these defaults for your site. Read the Condor Administrator's Manual for
details on authentication and authorization in Condor and how to customize it for your site.

15.4.4 Customizing Condor's Policy Expressions

Certain configuration expressions are used to control Condor's policy for executing, suspending, and evicting jobs. Their
interaction can be somewhat complex. Defining an inappropriate policy impacts the throughput of your cluster and the happiness
of its users. If you are interested in creating a specialized policy for your pool, we recommend that you read the Condor
Administrator's Manual. Only a basic introduction follows.

All policy expressions are ClassAd expressions and are defined in Condor's configuration files. Policies are usually poolwide and
are therefore defined in the global configuration file. If individual nodes in your pool require their own policy, however, the
appropriate expressions can be placed in local configuration files.

The policy expressions are treated by the condor_startd as part of its machine ClassAd (along with all the attributes you can
view with condor_status -long). They are always evaluated against a job ClassAd, either by the condor_negotiator when
trying to find a match or by the condor_startd when it is deciding what to do with the job that is currently running. Therefore, all
policy expressions can reference attributes of a job, such as the memory usage or owner, in addition to attributes of the machine,
such as keyboard idle time or CPU load.

Most policy expressions are ClassAd Boolean expressions, so they evaluate to TRUE, FALSE, or UNDEFINED. UNDEFINED
occurs when an expression references a ClassAd attribute that is not found in either the machine's ClassAd or the ClassAd of the
job under consideration. For some expressions, this is treated as a fatal error, so you should be sure to use the ClassAd meta-
operators, described in Section 15.1.2 when referring to attributes which might not be present in all ClassAds.

An explanation of policy expressions requires an understanding of the different stages that a job can go through from initially
executing until the job completes or is evicted from the machine. Each policy expression is then described in terms of the step in
the progression that it controls.

The Lifespan of a Job Executing in Condor
When a job is submitted to Condor, the condor_negotiator performs matchmaking to find a suitable resource to use for the
computation. This process involves satisfying both the job and the machine's requirements for each other. The machine can
define the exact conditions under which it is willing to be considered available for running jobs. The job can define exactly what
kind of machine it is willing to use.

Once a job has been matched with a given machine, there are four states the job can be in: running, suspended, graceful
shutdown, and quick shutdown. As soon as the match is made, the job sets up its execution environment and begins running.

While it is executing, a job can be suspended (for example, because of other activity on the machine where it is running). Once it
has been suspended, the job can resume execution or can move on to preemption or eviction.

All Condor jobs have two methods for preemption: graceful and quick. Standard Universe jobs are given a chance to produce a
checkpoint with graceful preemption. For the other universes, graceful implies that the program is told to get off the system, but it
is given time to clean up after itself. On all flavors of Unix, a SIGTERM is sent during graceful shutdown by default, although users
can override this default when they submit their job. A quick shutdown involves rapidly killing all processes associated with a job,
without giving them any time to execute their own cleanup procedures. The Condor system performs checks to ensure that
processes are not left behind once a job is evicted from a given node.

Condor Policy Expressions
Various expressions are used to control the policy for starting, suspending, resuming, and preempting jobs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

START: when the condor_startd is willing to start executing a job.

RANK: how much the condor_startd prefers each type of job running on it. The RANK expression is a floating-
point instead of a Boolean value. condor_startd will preempt the job it is currently running if there is another job
in the system that yields a higher value for this expression.

WANT_SUSPEND: controls whether the condor_startd should even consider suspending this job or not. In effect,
it determines which expression, SUSPEND or PREEMPT, should be evaluated while the job is running.
WANT_SUSPEND does not control when the job is actually suspended; for that purpose, you should use the
SUSPEND expression.

SUSPEND: when the condor_startd should suspend the currently running job. If WANT_SUSPEND evaluates to
TRUE, SUSPEND is periodically evaluated whenever a job is executing on a machine. If SUSPEND becomes TRUE,
the job will be suspended.

CONTINUE: if and when the condor_startd should resume a suspended job. The CONTINUE expression is
evaluated only while a job is suspended. If it evaluates to TRUE, the job will be resumed, and the condor_startd
will go back to the Claimed/Busy state.

PREEMPT: when the condor_startd should preempt the currently running job. This expression is evaluated
whenever a job has been suspended. If WANT_SUSPEND evaluates to FALSE, PREEMPT is checked while the job is
executing.

WANT_VACATE: whether the job should be evicted gracefully or quickly if Condor is preempting a job (because the
PREEMPT expression evaluates to TRUE). If WANT_VACATE is FALSE, the condor_startd will immediately kill the
job and all of its child processes whenever it must evict the application. If WANT_VACATE is TRUE, the
condor_startd performs a graceful shutdown, instead.

KILL: when the condor_startd should give up on a graceful preemption and move directly to the quick
shutdown.

PREEMPTION_REQUIREMENTS: used by the condor_negotiator when it is performing matchmaking, not by the
condor_startd. While trying to schedule jobs on resources in your pool, the condor_negotiator considers the
priorities of the various users in the system (see Section 15.5.3 for more details). If a user with a better priority has
jobs waiting in the queue and no resources are currently idle, the matchmaker will consider preempting another
user's jobs and giving those resources to the user with the better priority. This process is known as priority
preemption. The PREEMPTION_REQUIREMENTS expression must evaluate to TRUE for such a preemption to take
place.

PREEMPTION_RANK: a floating-point value evaluated by the condor_negotiator. If the matchmaker decides it
must preempt a job due to user priorities, the macro PREEMPTION_RANK determines which resource to preempt.
Among the set of all resources that make the PREEMPTION_REQUIREMENTS expression evaluate to TRUE, the one
with the highest value for PREEMPTION_RANK is evicted.

15.4.5 Customizing Condor's Other Configuration Settings

In addition to the policy expressions, you will need to modify other settings to customize Condor for your cluster.
DAEMON_LIST: the comma-separated list of daemons that should be spawned by the condor_master. As
described in Section 15.3.1 discussing the architecture of Condor, each host in your pool can play different roles
depending on which daemons are started on it. You define these roles using the DAEMON_LIST in the appropriate
configuration files to enable or disable the various Condor daemons on each host.

DedicatedScheduler: the name of the dedicated scheduler for your cluster. This setting must have the form
DedicatedScheduler = "DedicatedScheduler@full.host.name.here"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.5 Administration Tools
Condor has a rich set of tools for the administrator. Table 15.2 gives an overview of the Condor commands typically used solely
by the system administrator. Of course, many of the "user-level" Condor tools summarized in Table 15.2 can be helpful for cluster
administration as well. For instance, the condor_status tool can easily display the status for all nodes in the cluster, including
dynamic information such as current load average and free virtual memory.

Table 15.2: Commands reserved for the administrator.

Command Description

condor_checkpoint Checkpoint jobs running on the specified hosts

condor_config_val Query or set a given Condor configuration variable

condor_fetch_log Retrieve daemon logs from a remote machine

condor_master_off Shut down Condor and the condor_master
condor_off Shut down Condor daemons

condor_on Start up Condor daemons

condor_reconfig Reconfigure Condor daemons

condor_restart Restart the condor_master
condor_stats Display historical information about the Condor pool

condor_userprio Display and manage user priorities

condor_vacate Vacate jobs that are running on the specified hosts

15.5.1 Remote Configuration and Control

All machines in a Condor pool can be remotely managed from a centralized location. Condor can be enabled, disabled, or
restarted remotely using the condor_on, condor_off, and condor_restart commands, respectively. Additionally, any aspect
of Condor's configuration file on a node can be queried or changed remotely via the condor_config_val command. Of course,
not everyone is allowed to change your Condor configuration remotely. Doing so requires proper authorization, which is set up at
installation time.

Many aspects of Condor's configuration, including its scheduling policy, can be changed on the fly without requiring the pool to be
shut down and restarted. This is accomplished by using the condor_reconfig command, which asks the Condor daemons on a
specified host to reread the Condor configuration files and take appropriate action—on the fly if possible.

15.5.2 Accounting and Logging

Condor keeps many statistics about what is happening in the pool. Each daemon can be asked to keep a detailed log of its
activities; Condor will automatically rotate these log files when they reach a maximum size as specified by the administrator.

In addition to the condor_history command, which allows users to view job ClassAds for jobs that have previously completed,
the condor_stats tool can be used to query for historical usage statistics from a poolwide accounting database. This database
contains information about how many jobs were being serviced for each user at regular intervals, as well as how many machines
were busy. For instance, condor_stats could be asked to display the total number of jobs running at five-minute intervals for a
specified user between January 15 and January 30.

The condor_view tool takes the raw information obtainable with condor_stats and converts it into HTML, complete with
interactive charts. Figure 15.8 shows a sample display of the output from condor_view in a Web browser. The site administrator,
using condor_view, can quickly put detailed, real-time usage statistics about the Condor pool onto a Web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.8: CondorView displaying machine usage.

15.5.3 User Priorities in Condor

The job queues in Condor are not strictly first-in, first-out. Instead, Condor implements priority queuing. Different users will get
different-sized allocations of machines depending on their current user priority, regardless of how many jobs from a competing
user are "ahead" of them in the queue. Condor can also be configured to perform priority preemption if desired. For instance,
suppose user A is using all the nodes in a cluster, when suddenly a user with a superior priority submits jobs. With priority
preemption enabled, Condor will preempt the jobs of the lower-priority user in order to immediately start the jobs submitted by the
higher-priority user.

Starvation of the lower-priority users is prevented by a fair-share algorithm, which attempts to give all users the same amount of
machine allocation time over a specified interval. In addition, the priority calculations in Condor are based on ratios instead of
absolutes. For example, if Bill has a priority that is twice as good as that of Fred, Condor will not starve Fred by allocating all
machines to Bill. Instead, Bill will get, on average, twice as many machines as will Fred because Bill's priority is twice as good.

The condor_userprio command can be used by the administrator to view or edit a user's priority. It can also be used to
override Condor's default fair-share policy and explicitly assign users a better or worse priority in relation to other users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.6 Cluster Setup Scenarios
This section explores different scenarios for how to configure your cluster. Five scenarios are presented, along with a basic idea of
what configuration settings you will need to modify or what steps you will need to take for each scenario:

1. A uniformly owned, dedicated compute cluster, with a single front-end node for submission, and support for MPI
applications.

2. A cluster of multiprocessor nodes.

3. A cluster of distributively owned nodes. Each node prefers to run jobs submitted by its owner.

4. Desktop submission to the cluster.

5. Expanding the cluster to nondedicated (desktop) computing resources.

Most of these scenarios can be combined. Each scenario builds on the previous one to add further functionality to the basic
cluster configuration.

15.6.1 Basic Configuration: Uniformly Owned Cluster

The most basic scenario involves a cluster where all resources are owned by a single entity and all compute nodes enforce the
same policy for starting and stopping jobs. All compute nodes are dedicated, meaning that they will always start an idle job and
they will never preempt or suspend until completion. There is a single front-end node for submitting jobs, and dedicated MPI jobs
are enabled from this host.

In order to enable this basic policy, your global configuration file must contain these settings:
START = True
SUSPEND = False
CONTINUE = False
PREEMPT = False
KILL = False
WANT_SUSPEND = True
WANT_VACATE = True
RANK = Scheduler =?= $(DedicatedScheduler)
DAEMON_LIST = MASTER, STARTD

The final entry listed here specifies that the default role for nodes in your pool is execute-only. The DAEMON_LIST on your front-
end node must also enable the condor_schedd. This front-end node's local configuration file will be
DAEMON_LIST = MASTER, STARTD, SCHEDD

15.6.2 Using Multiprocessor Compute Nodes

If any node in your Condor pool is a symmetric multiprocessor machine, Condor will represent that node as multiple virtual
machines (VMs), one for each CPU. By default, each VM will have a single CPU and an even share of all shared system
resources, such as RAM and swap space. If this behavior satisfies your needs, you do not need to make any configuration
changes for SMP nodes to work properly with Condor.

Some sites might want different behavior of their SMP nodes. For example, assume your cluster was composed of dual-processor
machines with 1 gigabyte of RAM, and one of your users was submitting jobs with a memory footprint of 700 megabytes. With the
default setting, all VMs in your pool would only have 500 megabytes of RAM, and your user's jobs would never run. In this case,
you would want to unevenly divide RAM between the two CPUs, to give half of your VMs 750 megabytes of RAM. The other half
of the VMs would be left with 250 megabytes of RAM.

There is more than one way to divide shared resources on an SMP machine with Condor, all of which are discussed in detail in
the Condor Administrator's Manual. The most basic method is as follows. To divide shared resources on an SMP unevenly, you
must define different virtual machine types and tell the condor_startd how many virtual machines of each type to advertise.
The simplest method to define a virtual machine type is to specify what fraction of all shared resources each type should receive.

For example, if you wanted to divide a two-node machine where one CPU received one-quarter of the shared resources, and the
other CPU received the other three-quarters, you would use the following settings:
VIRTUAL_MACHINE_TYPE_1 = 1/4
VIRTUAL_MACHINE_TYPE_2 = 3/4
NUM_VIRTUAL_MACHINES_TYPE_1 = 1
NUM_VIRTUAL_MACHINES_TYPE_2 = 1

If you want to divide certain resources unevenly but split the rest evenly, you can specify separate fractions for each shared
resource. This is described in detail in the Condor Administrator's Manual.

15.6.3 Scheduling a Distributively Owned Cluster

Many clusters are owned by more than one entity. Two or more smaller groups might pool their resources to buy a single, larger
cluster. In these situations, the group that paid for a portion of the nodes should get priority to run on those nodes.

Each resource in a Condor pool can define its own RANK expression, which specifies the kinds of jobs it would prefer to execute. If
a cluster is owned by multiple entities, you can divide the cluster's nodes up into groups, based on ownership. Each node would
set Rank such that jobs coming from the group that owned it would have the highest priority.

Assume there is a 60-node compute cluster at a university, shared by three departments: astronomy, math, and physics. Each
department contributed the funds for 20 nodes. Each group of 20 nodes would define its own Rank expression. The astronomy
department's settings, for example, would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rank = Department == "Astronomy"

The users from each department would also add a Department attribute to all of their job ClassAds. The administrators could
configure Condor to add this attribute automatically to all job ads from each site (see the Condor Administrator's Manual for
details).

If the entire cluster was idle and a physics user submitted 40 jobs, she would see all 40 of her jobs start running. If, however, a
user in math submitted 60 jobs and a user in astronomy submitted 20 jobs, 20 of the physicist's jobs would be preempted, and
each group would get 20 machines out of the cluster.

If all of the astronomy department's jobs completed, the astronomy nodes would go back to serving math and physics jobs. The
astronomy nodes would continue to run math or physics jobs until either some astronomy jobs were submitted, or all the jobs in
the system completed.

15.6.4 Submitting to the Cluster from Desktop Workstations

Most organizations that install a compute cluster have other workstations at their site. It is usually desirable to allow these
machines to act as front-end nodes for the cluster, so users can submit their jobs from their own machines and have the
applications execute on the cluster. Even if there is no shared file system between the cluster and the rest of the computers,
Condor's remote system calls and file transfer functionality can enable jobs to migrate between the two and still access their data
(see Section 15.2.5 for details on accessing data files).

To enable a machine to submit into your cluster, run the Condor installation program and specify that you want to setup a submit-
only node. This will set the DAEMON_LIST on the new node to be
DAEMON_LIST = MASTER, SCHEDD

The installation program will also create all the directories and files needed by Condor.

Note that you can have only one node configured as the dedicated scheduler for your pool. Do not attempt to add a second
submit node for MPI jobs.

15.6.5 Expanding the Cluster to Nondedicated (Desktop) Computing Resources

One of the most powerful features in Condor is the ability to combine dedicated and opportunistic scheduling within a single
system. Opportunistic scheduling involves placing jobs on nondedicated resources under the assumption that the resources might
not be available for the entire duration of the jobs. Opportunistic scheduling is used for all jobs in Condor with the exception of
dedicated MPI applications.

If your site has a combination of jobs and uses applications other than MPI, you should strongly consider adding all of your
computing resources, even desktop workstations, to your Condor pool. With checkpointing and process migration, suspend and
resume capabilities, opportunistic scheduling and matchmaking, Condor can harness the idle CPU cycles of any machine and put
them to good use.

To add other computing resources to your pool, run the Condor installation program and specify that you want to configure a node
that can both submit and execute jobs. The default installation sets up a node with a policy for starting, suspending, and
preempting jobs based on the activity of the machine (for example, keyboard idle time and CPU load). These nodes will not run
dedicated MPI jobs, but they will run jobs from any other universe, including PVM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.7 Conclusion
Condor is a powerful tool for scheduling jobs across platforms, both within and beyond the boundaries of your Beowulf clusters.
Through its unique combination of both dedicated and opportunistic scheduling, Condor provides a unified framework for high-
throughput computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Maui Scheduler: A High Performance Cluster
Scheduler
David B. Jackson

In this chapter we describe the Maui scheduler, a job-scheduling component that coordinates activities among Grid scheduling,
resource management, and allocation management services, which can provide advanced scheduling services for most major
resource managers.

16.1 Overview
Over the years, Maui has become the standard in high-performance cluster job scheduling. It is capable of operating with and
extending the functionality of virtually all major resource management systems, including OpenPBS, PBSPro, SGE, LSF,
Loadleveler, SSS, and BProc. From its origins, Maui has been designed to empower a given site to maximize the use of the
cluster. It does this by allowing translation of local mission policies into scheduling behavior, optimizing scheduling decisions, and
intelligently minimizing resource contention. In doing so, it allows sites not only to gain greater return on investment from their
cluster but also to improve end-user satisfaction and reduce administrative overhead required to manage the cluster.

At a high level, the role of a job scheduler is to direct the actions of the resource manager, indicating when, where, and how jobs
are to be started, preempted, canceled, and otherwise managed. It is also responsible for coordinating actions with other systems
such as a Grid scheduler, allocation manager, or information service. In fulfilling these roles, Maui adds a unique suite of
scheduling services including advance reservations, backfill, fairshare, dynamic job prioritization, quality of service support, and
metascheduling.

Maui's design allows sites to maintain consistently high levels of cluster performance and support for advanced scheduling
features regardless of the local resource manager used. With Maui, sites are not locked into a single resource manager but may
freely select and interchange resource managers according to need. Further, Maui allows end users the choice of using the
command and GUI interfaces of Maui or the commands of the underlying resource manager. Thus, sites can roll Maui in and out
with no end-user training; end users can continue using familiar job management commands, GUIs, and job submission
languages. If sites wish to introduce end users to new advanced Maui features and commands, they can. If not, the users can
operate successfully without even knowing Maui is installed on the system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2 Installation and Initial Configuration
The Maui scheduler is available in the most popular cluster-building toolkits, including OSCAR and Rocks. The most recent
versions of Maui can also be downloaded from the Maui home page at http://supercluster.org/maui. This site contains online
documentation, FAQs, links to the Maui users mailing list, other standard open source utilities, and contact information for
obtaining support and other services. Building the code consists of the standard configure, make, and make install process.

16.2.1 Basic Configuration

The configure script will set up the basic build environment and initial configuration files including the master config file,
'maui.cfg'. This master config file is a flat text file that includes information regarding resource manager interface configuration,
scheduling optimizations, usage limits, and cluster usage objectives. In most cases, the initial configuration done by the
configure command is adequate to allow Maui to be used immediately with no further changes. Maui is extremely configurable,
with hundreds of parameters available. Rarely, however, do sites need to use more than a fraction of the available services to
meet their specific needs. Maui's highly modularized design allows sites to accept the initial defaults and focus only on configuring
those aspect of scheduling pertinent to their environment.

Among the parameters detected and set by the configure script are RMCFG, SCHEDCFG, and ADMIN. The initial settings of these
values can be checked and modified by editing the 'maui.cfg' file. Alternatively, once the scheduler is running, Maui can be
configured dynamically by using text- or GUI-based commands. For text-based configuration, the schedctl command can be
used with the '-l' flag to list the value of any parameter whether explicitly set or not, while the '-m' flag can be used to
dynamically modify parameter values. The online parameters documentation provides details about all Maui parameters,
including format, default values, usage, examples, and links to related sections of the admin manual.

16.2.2 Simulation and Testing

Often, after the initial configuration is verified, sites choose to test the scheduler to become familiar with its capabilities and to
verify basic functionality. Maui can be run in a completely safe manner by setting the MODE attribute of the SCHEDCFG parameter
to TEST, that is, SCHEDCFG[orion] MODE=TEST PORT=40559. In test mode, Maui contacts the resource manager to obtain up-
to-date configuration, node, and job information; however, in this mode, Maui's ability to start or modify these jobs is disabled.
Once the needed parameter changes have been made, Maui can be started by issuing the command maui. At this point,
commands such as showq, showstate, and checknode may be used to verify proper scheduler-resource manager
communication and scheduler functionality. Details on the full suite of Maui commands are available online or in the man-page
documentation included with the distribution.

16.2.3 Production Scheduling

Once evaluation is complete, the scheduler can be placed in production mode by disabling the default resource manager
scheduler and setting the scheduler MODE attribute to NORMAL. Information on disabling the default resource manager scheduler is
provided in the resource manager's documentation and in the online Maui migration guides located at
http://supercluster.org/documentation/maui. Running in normal mode allows Maui to start, modify, and cancel jobs according to
the specified scheduling policies. The default configuration of Maui enables basic scheduling services, providing first-in, first-out
scheduling with backfill.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.3 Advanced Configuration
Maui's real power is unleashed when the defaults are replaced with more advanced configuration. Specifically, sites can map
mission objectives into scheduling policies: selecting how resources are to be used, how users are to be treated, and how jobs are
to be scheduled. To this end, Maui can be thought of as an integrated scheduling toolkit providing a number of capabilities that
may be used individually or in concert to obtain the desired system behavior. These capabilities include

job prioritization,

node allocation policies,

throttling policies,

fairshare,

reservations,

allocation management,

quality of service,

backfill,

node sets, and

preemption policies.

Most capabilities are disabled by default; thus, a site need configure only the features of interest. In the following subsections, we
describe each of these capabilities. While our description will be adequate for configuring these capabilities, the online Maui
Administrators Manual should be consulted for full details.

16.3.1 Assigning Value: Job Prioritization and Node Allocation

In general, prioritization is the process of determining which of many options best fulfills overall goals. In the case of scheduling, a
site often has multiple, independent goals such as maximizing system utilization, giving preference to users in specific projects, or
making certain that no job sits in the queue for more than a given period of time. The most common approach to representing a
multifaceted set of site goals is to assign to each objective an overall weight (value or priority) that can be associated with each
potential scheduling decision. With the jobs prioritized, the scheduler can roughly fulfill site objectives by starting the jobs in priority
order.

Maui allows component and subcomponent weights to be associated with many aspects of a job. In order to realize this fine-
grained control, a simple priority-weighting hierarchy is used in which the contribution of priority components is calculated as
PRIORITY-FACTOR-VALUE * SUBFACTORWEIGHT * FACTORWEIGHT. Component and subcomponent weights are listed in
Table 16.1. Values for all weights may be set in the 'maui.cfg' file by using the associated component-weight parameter
specified as the name of the weight followed by the string WEIGHT (e.g., SERVICEWEIGHT or PROCWEIGHT).

Table 16.1: Maui priority components.

Component Subcomponent

SERVICE (Level of Service) QUEUETIME (Current queue time in minutes)
XFACTOR (Current expansion factor)
BYPASS (Number of times jobs were bypassed via backfill)

TARGET (Proximity to Service
Target - Exponential)

TARGETQUEUETIME (Delta to queue-time target in minutes)
TARGETXFACTOR (Delta to Xfactor target)

RESOURCE (Resources Requested) PROC (Processors)
MEM (Requested memory in MBytes)
SWAP (Requested virtual memory in MBytes)
DISK (Requested local disk in MBytes)
NODE (Requested number of nodes)
WALLTIME (Requested wall time in seconds)
PS (Requested processor-seconds)
PE (Requested processor-equivalents)

FS (Fairshare) FSUSER (User fairshare percentage)
FSGROUP (Group fairshare percentage)
FSACCOUNT (Account fairshare percentage)
FSCLASS (Class fairshare percentage)
FSQOS (QoS fairshare percentage)

CRED (Credential) USER (User priority)
GROUP (Group priority)
ACCOUNT (Account priority)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ACCOUNT (Account priority)
CLASS (Class priority)
QOS (QoS priority)

By default, Maui prioritizes jobs exclusively on their submission time. By using priority components, however, a site can
incorporate additional information, such as current level of service, quality of service targets, resources requested, and historical
usage. The contribution of any single component can be limited by specifying a priority component cap, such as RESCAP, which
prevents the contribution of a single component from exceeding the specified value. In the end, a job's priority is equivalent to the
sum of all enabled priority components.

Each component or subcomponent may be used for different purposes. For example, WALLTIME can be used to favor (or
disfavor) jobs based on their duration; ACCOUNT can be used to favor jobs associated with a particular project; QUEUETIME can be
used to favor those jobs that have been waiting the longest. By mixing and matching priority weights, sites can obtain the desired
job-start behavior. To aid in tuning job priority, Maui provides the diagnose -p command, which summarizes the impact of the
current priority-weight settings on idle jobs.

While most subcomponents are metric based (i.e., number of seconds queued or number of nodes requested), the credential
subcomponents are based on priorities specified by the administrator. Maui allows use of the *CFG parameters to rank jobs by
individual job credentials. For example, to favor jobs submitted by users bob and john and members of the group staff, a site
might specify the following:
 USERCFG[bob] PRIORITY=100
 USERCFG[john] PRIORITY=500
 GROUPWEIGHT[staff] PRIORITY=1000
 USERWEIGHT 1
 GROUPWEIGHT 1
 CREDWEIGHT 1

Note that both component and subcomponent weights are specified to enable these credential priorities to take effect. Further
details about the use of these component factors, as well as anecdotal usage information, are available in the Maui Administrators
Manual.

Complementing the specification of job prioritization is that of node allocation. When the scheduler selects a job to run, it must
also determine which resources to allocate to the job. Depending on the use of the cluster, different allocation policies can be
specified using NODEALLOCATIONPOLICY. Parameter values include the following:

MINRESOURCE: This algorithm selects the nodes with the minimum configured resources that still meet the
requirements of the job. The algorithm leaves more richly endowed nodes available for other jobs that may
specifically request these additional resources.

LASTAVAILABLE: This algorithm is particularly useful when making reservations for backfill. It determines the
earliest time a job can run and then selects the resources available at a time such that, whenever possible,
currently idle resources are left unreserved and are thus available for backfilling.

PRIORITY: This policy allows a site to create its own node allocation prioritization scheme, taking into account
issues such as installed software, jobs currently running on the node, available processors, or other local node
configurations. This allocation policy requires specification of the PRIORITYF attribute of the NODECFG parameter.
For example, to base node allocation priority on available node memory load, historical utilization, and machine
speed, a site may specify something like NODECFG [DEFAULT] PRIORITYF='AMEM - 10*USAGE + SPEED'.

CPULOAD: This policy attempts to allocate the most lightly loaded nodes first.

16.3.2 Fairness: Throttling Policies and Fairshare

The next issue often confronting sites is the management of fairness. At first glance, fairness seems like a simple concept, but in
actual practice it can be very difficult to map onto a cluster. Should all users get to run the same number of jobs or use the same
number of nodes? Do these usage constraints cover the present time only or a specified time frame? If historical information is
used, what is the metric of consumption? What is the time frame? Does fair consumption necessarily mean equal consumption?
How should resources be allocated if user X bought two-thirds of the nodes and user Y purchased the other third? Is fairness
based on a static metric, or is it conditional on current resource demand?

While Maui is not able to address all these issues, it does provide some flexible tools that help with 90 percent of the battle.
Specifically, these tools are throttling policies and fairshare used to control immediate and historical usage, respectively.

Throttling Policies
The term "throttling policies" is collectively applied to a set of policies that constrain real-time resource consumption. Maui
supports limits on the number of processors, nodes, proc-seconds, jobs, and processor equivalents allowed at any given time.
Limits may be applied on a per user, group, account, QoS, or queue basis via the *CFG set of parameters. For example,
specifying USERCFG[bob] MAXJOB=3 MAXPROC=32 will constrain user bob to running no more than 3 jobs and 32 total
processors at any given time. Specifying GROUPCFG [DEFAULT] MAXNODE=64 will limit each group to using no more than 64
nodes simultaneously unless overriding limits for a particular group are specified. ACCOUNTCFG, QOSCFG, and CLASSCFG round
out the *CFG family of parameters providing a means to throttle instantaneous use on accounts, QoS's, and classes, respectively.

With each of the parameters, hard and soft limits can be used to apply a form of demand-sensitive limits. While hard limits cannot
be violated under any conditions, soft limits may be violated if no other jobs can run. For example, specifying
USERCFG[DEFAULT] MAXNODE=16,24 will allow each user to cumulatively allocate up to 16 nodes while jobs from other users
can use available resources. If no other jobs can use these resources, a user may run on up to 24 nodes simultaneously.

Throttling policies are effective in preventing cluster "hogging" by an individual user or group. They also provide a simple
mechanism of fairness and cycle distribution. Such policies may lead to lower overall system utilization, however. For instance,
resources might go unused if these policies prevent all queued jobs from running. When possible, throttling policies should be set
to the highest feasible level, and the cycle distribution should be managed by tools such as fairshare, allocation management
systems, and QoS-based prioritization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fairshare
Fairshare algorithms attempt to distribute resources over time according to specified usage targets. As noted earlier, however, this
general statement leaves much to interpretation, including the distribution usage metric and the monitored time frame.

The Maui parameter FSPOLICY specifies the usage metric allowing sites to determine how resource distribution is to be
measured. The parameters FSINTERVAL, FSDEPTH, and FSDECAY control how historical usage information is to be weighted.

To control resource distribution, Maui uses fairshare targets that can be applied to users, groups, accounts, queues, and QoS
mechanisms with both default and specific targets available. Each target may be one of four different types: target, floor, ceiling,
or cap. In most cases, Maui adjusts job priorities to meet fairshare targets. With the standard target, Maui attempts to adjust
priorities at all times in an attempt to meet the target. In the case of floors, Maui will increase job priority only to maintain at least
the targeted usage. With ceilings, the converse occurs. Finally, with fairshare caps, job eligibility rather than job priority is adjusted
to prevent jobs from running if the cap is exceeded during the specified fairshare interval.

The example below shows a possible fairshare configuration.
 # maui.cfg
 FSPOLICY DEDICATEDPS
 FSDEPTH 7
 FSINTERVAL 24:00:00
 FSDECAY 0.80

 USERCFG[DEFAULT] FSTARGET=10.0
 USERCFG[john] FSTARGET=25.0+
 GROUPCFG[staff] FSTARGET=20.0-

In this case, fairshare usage will track delivered system processor seconds over a seven-day period with a 0.8 decay factor. All
users will have a fairshare target of 10 percent of these processor seconds—with the exception of john, who will have a floor of
25 percent. Also, the group staff will have a fairshare ceiling of 20 percent. At any time, the status of fairshare can be examined
by using the diagnose -f command.

16.3.3 Managing Resource Access: Reservations, Allocation Managers, and Quality of Service

In managing any cluster system, half of the administrative effort involves configuring it to handle the steady-state situation. The
other half encompasses the handling of the vast array of special one-time requests. Maui provides two features, advance
reservations and QoS, which greatly ease the handling of these special requests.

Advance Reservations
Reservations allow a site to set aside a block of resources for various purposes such as cluster maintenance, special user
projects, or benchmarking nodes. In general, a reservation consists of time frame, and resource lists, and an access control list.
The time frame can be specified as a simple start and end time while the resource list can consist of either a list of specific hosts
or a general resource description. The access control list indicates who or what will be allowed to use the specified resources
during the reservation time frame. Reservations can be created dynamically by scheduler administrators using the setres
command or managed directly by Maui via config file parameters.

For example, to reserve nodeA and nodeB for a four-hour maintenance window starting at 2:30 P.M., one could issue the
following command:
 > setres -s 14:30 -d 4:00:00 'node[AB]'

For reservations requesting allocation of a given quantity of resources, the TASK keyword can be used in the resource description.
For example, the following reservation allocates 20 processors with the feature fast to users john and sam starting on April 14
at 5:00 P.M.
 > setres -u john:sam -f fast -s 17:00_04/14 TASKS==20
With no duration or end time specified, this reservation will default to an infinite length and will remain in place until removed by a
scheduler administrator using the releaseres command.

Access to reservations is controlled by an access control list (ACL). Reservation access is based on job credentials, such as user
or group, and job attributes, such as wall time requested. Reservation ACLs can include multiple access types and individuals. For
example, a reservation might reserve resources for users A and B, jobs in class C, and jobs that request less than 30 minutes of
wall time. Reservations may also overlap each other if desired, in which case access is granted only if the job meets the access
policies of all active reservations.

At many sites, reservations are used on a permanent or periodic basis. In such cases, it is best to use standing reservations.
Standing reservations allow a site to apply reservations as an ongoing part of cluster policies. The attributes of the SRCFG
parameter are used to configure standing reservations. For example, to specify the periodicity of a given reservation, the SRCFG
PERIOD attribute can be set to DAY, WEEK, or INFINITE. Additional parameter attributes are available to determine what time of
the day or week the reservation should be enabled. To demonstrate, the following configuration can be used to create a
reservation named development that, during primetime hours, will set aside 16 nodes for exclusive use by jobs requiring less
than 30 minutes.
 SRCFG[development] PERIOD=DAY DAYS=MON, TUE, WED, THU, FRI
 SRCFG[development] STARTTIME=8:00:00 ENDTIME=17:00:00
 SRCFG[development] TASKCOUNT=16 TIMELIMIT=00:30:00

Occasionally, a site may want to allow access to a set of resources only if there are no other resources available. Maui enables
this conditional usage through reservation affinity. When any reservation access list is specified, each access value can be
associated with positive, negative, or neutral affinity by using the "+", "-", or "=" characters. If nothing is specified, positive affinity is
assumed. For example, consider the following reservation line:
 SRUSERLIST[special] bob john steve= bill-

With this specification, bob's and john's jobs receive the default positive affinity and are essentially attracted to the reservation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this specification, bob's and john's jobs receive the default positive affinity and are essentially attracted to the reservation.
For these jobs, Maui will attempt to use resources in the special reservation first, before considering any other resources. Jobs
belonging to steve, on the other hand, can use these resources but are not attracted to them. Finally, bill's jobs will use
resources in the special reservation only if no other resources are available. Detailed information about reservations can be
obtained by using the showres and diagnose -r commands.

Allocation Managers
Allocation management systems allow a site to control total resource access in real time. While interfaces to support other
systems exist, the allocation management system most commonly used with the Maui scheduler is QBank [92], provided by
Pacific Northwest National Laboratory. This system and others like it allow sites to provide distinct resource allocations much like
the creation of a bank account. As jobs run, the resources used are translated into a charge and debited from the appropriate
account. In the case of QBank, expiration dates may be associated with allocations, private and shared accounts maintained, per
machine allocations created, and so forth.

Within Maui, the allocation manager interface is controlled through the AMCFG parameter such as in the example below:
 AMCFG[qbank] TYPE=QBANK HOST=bank.univ.edu
 AMCFG[qbank] CHARGEPOLICY=DEBITSUCCESSFULWC DEFERJOBONFAILURE=TRUE
 AMCFG[qbank] FALLBACKACCOUNT=freecycle

This configuration enables a connection to an allocation manager located on bank.univ.edu using the QBank interface. The
unit of charge is configured to be dedicated processor-seconds, and users are charged only if their job completes successfully. If
the job does not have adequate allocations in the specified account, Maui will attempt to redirect the job to use allocations in the
freecycle account. In many cases, a fallback account is configured so as to be associated with lower priorities and/or additional
limitations. If the job is not approved by the allocation manager, Maui will defer the job for a period of time and try it again later.

Quality of Service
Maui's Quality of Service (QoS) feature allows sites to control access to special functions, resources, and service levels. Each
QoS consists of an access control list controlling which users, groups, accounts, and job queues can access the QoS privileges.
Associated with each QoS are special service-related priority weights and service targets. Additionally, each QoS can be
configured to span resource partitions, preempt other jobs, and the like.

Maui also enables a site to charge a premium rate for the use of some QoS services. For example, the following configuration will
cause user john's jobs to use QoS hiprio by default and allow members of the group bio to access it by request:
 USERCFG[john] QLIST=hiprio:normal QDEF=hiprio
 GROUPCFG[bio] QLIST=hiprio:medprio:development QDEF=medprio
 QOSCFG[hiprio] PRIORITY=50 QTTARGET=30 FLAGS=PREEMPTOR
 QOSCFG[hiprio] OMAXJOB=20 MAXPROC=150

Jobs using QoS hiprio receive the following privileges and constraints:

A priority boost of 50 * QOSWEIGHT * CREDWEIGHT

A queue-time target of 30 minutes

The ability to preempt lower-priority PREEMPTEE jobs

The ability to override MAXJOB policy limits defined elsewhere

A cumulative limit of 150 processors allocated to QoS hiprio jobs

A site may have dozens of QoS objects described and may allow users access to any number of these. Depending on the type of
service desired, users may then choose the QoS that best meets their needs.

16.3.4 Optimizing Usage: Backfill, Node Sets, and Preemption

The Maui scheduler provides several features to optimize performance in terms of system utilization, job throughput, and average
job turnaround time.

Backfill
Backfill is a now common method used to improve both system utilization and average job turnaround time by running jobs out of
order. Backfill, simply put, enables the scheduler to run any job so long as it does not delay the start of jobs of higher priority.
Generally, the algorithm prevents delay of high-priority jobs through some form of reservation. Backfill can be thought of as a
process of filling in the resource holes left by the high priority jobs. Since holes are being filled, it makes sense that the jobs most
commonly backfilled are the ones requiring the least time and/or resources. With backfill enabled, sites typically report system
utilization improvements of 10 to 25% and slight improvement in average job response time.

At installation, backfill scheduling is enabled in Maui, but this is configurable with the parameter BACKFILLPOLICY. While the
default configuration generally is adequate, sites may want to adjust the job selection policy, the reservation policy, the depth of
reservations, or other aspects of backfill scheduling. The online documentation indicates the general effects of changing the
backfill algorithm or any of the associated backfill parameters.

Allocation Based on Node Set
While backfill can improve the scheduler's performance in terms of job selection, other facilities can be used to further optimize
scheduling decisions. At a high level, the efficiency of a cluster, in terms of actual work accomplished, is a function of both
scheduling performance and individual job efficiency. In many clusters, job efficiency can vary widely based on the two key
factors, node selection, and node mix. Node selection reflects the impact of how well a single task of a job executes on a single
node while node mix accounts for performance changes resulting from communication issues or disparities in node performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since most parallel jobs written in popular languages such as MPI or PVM do not internally load balance their workload, they often
run only as fast as the slowest node allocated. Consequently, these jobs run most effectively on homogeneous sets of nodes.
While many clusters start out as homogeneous, they quickly evolve as new generations of compute nodes are integrated into the
system. Research has shown that this integration, while improving scheduling performance because of increased scheduler
selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without specifying exactly what resources are
required. Node set policy can be specified globally or on a per job basis and can be based on node processor speed, memory,
network interfaces, or locally defined node attributes. In addition to forcing jobs onto homogeneous nodes, these policies may also
be used to guide jobs to one or more types of nodes on which a particular job performs best, similar to job preferences available in
other systems. For example, an I/O-intensive job may run best on a certain range of processor speeds, running slower on slower
nodes while wasting cycles on faster nodes. A job may specify ANYOF:PROCSPEED:450:500:650 to request nodes with
processors speeds in the range of 450 to 650 MHz. Alternatively, if a simple procspeed-homogeneous node set is desired,
ONEOF:PROCSPEED may be specified. On the other hand, a communication-sensitive job may request a network-based node set
with the configuration ONEOF:NETWORK:VIA:MYRINET:ETHERNET, in which case Maui will first attempt to locate adequate
nodes where all nodes contain VIA network interfaces. If such a set cannot be found, Maui will look for sets of nodes containing
the other specified network interfaces. In highly heterogeneous clusters, the use of node sets has been found to improve job
throughput by 10 to 15 percent.

Preemption
Many sites possess workloads of varying importance. While some jobs may required resources immediately, other jobs are less
time sensitive but have an insatiable hunger for compute cycles. These latter jobs often have turnaround times on the order of
weeks or months. The concept of cycle stealing, popularized by systems such as Condor, handles such situations well and
enables systems to run low-priority preemptible jobs whenever something more pressing is not running. These other systems are
often employed on compute farms of desktops where the jobs must vacate whenever interactive system use is detected.

Maui's QoS-based preemption system allows a dedicated, noninteractive cluster to be used in much the same way. Certain QoS
objects may be marked with the flag PREEMPTOR and others with the flag PREEMPTEE. With this configuration, low-priority
"preemptee" jobs can be started whenever idle resources are available. These jobs will be allowed to run until a "preemptor" job
arrives, at which point the preemptee job will be checkpointed if possible and vacated. This strategy allows almost immediate
resource access for the preemptor job. Using this approach, a cluster can maintain nearly 100 percent system utilization while still
delivering excellent turnaround time to the jobs of greatest value.

Use of the preemption system is not be limited to controlling low-priority jobs. Site can use this feature to support optimistic backfill
scheduling, enable deadline based scheduling, and provide QoS guarantees.

16.3.5 Evaluating System Performance: Diagnostics, Profiling, Testing, and Simulation

High-performance computing clusters are complicated. First, such clusters have an immense array of attributes that affect overall
system performance, including processor speed, memory, networks, I/O systems, enterprise services, and application and system
software. Second, each of these attributes is evolving over time, as is the usage pattern of the system's users. Third, sites are
presented with an equally immense array of buttons, knobs, and levers which they can push, pull, kick, and otherwise manipulate.
How does one evaluate the success of a current configuration? And how does one establish a causal effect between pushing one
of the many provided buttons and improved system performance when the system is constantly changing in multiple simultaneous
dimensions?

To help alleviate this problem, Maui offers several useful features.

Diagnostics
Maui possesses many internal diagnostic functions that both locate problems and present system state information. For example,
the priority diagnostic aggregates priority relevant information, presenting configuration settings and their impact on the current
idle workload; administrators can see the contribution associated with each priority factor on a per job and systemwide average
basis. The node diagnostic presents significant node-relevant information together with messages regarding any unexpected
conditions. Other diagnostics are available for jobs, reservations, QoS, fairshare, priorities, fairness policies, users, groups, and
accounts.

Profiling Current and Historical Usage
Maui maintains internal statistics and records detailed information about each job as it completes. The showstats command
provides detailed usage information for users, groups, accounts, nodes, and the system as a whole. The showgrid command
presents scheduler performance statistics in a job size/duration matrix to aid in analyzing the effectiveness of current policies.

The completed job statistics are maintained in a flat file located in the 'stats' directory. These statistics are useful for two primary
purposes: driving simulations (described later) and profiling actual system usage. The profiler command allows the processing
of these historical scheduler statistics and generation of usage reports for specific time frames or for selected users, groups,
accounts, or types of jobs.

Testing
Maui supports a scheduling mode called test. In this mode, the scheduler initializes, contacts the resource manager and other
peer services, and conducts scheduling cycles exactly as it would if running in NORMAL or production mode. Job are prioritized,
reservations created, policies and limits enforced, and admin and end-user commands enabled. Using the fact that test mode
disables Maui's ability to impact the system, a site can safely verify scheduler operation and validate new policies and constraints.
In fact, Maui can be run in test mode on a production system while another scheduler or even another version of Maui is running
on the same system. This unique ability can allow new versions and configurations to be fully tested without any exposure to
potential failures and with no cluster downtime.

To run Maui in test mode, simply set the MODE attribute of the SCHEDCFG parameter to TEST and start Maui. Normal scheduler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To run Maui in test mode, simply set the MODE attribute of the SCHEDCFG parameter to TEST and start Maui. Normal scheduler
commands can be used to evaluate configuration and performance. Diagnostic commands can be used to look for any potential
issues. Further, the Maui log file can be used to determine which jobs Maui attempted to start and which resources Maui
attempted to allocate.

In addition to test mode, Maui supports a mode known as interactive. This mode also allows for evaluation of new versions and
configurations using a different approach. Instead of disabling all resource and job control functions, however, Maui sends the
desired change request to the screen and asks for permission to complete it. The administrator must specifically accept each
command request before Maui will execute it.

If another instance of Maui is running in production mode and a site wishes to evaluate a different configuration or new version
using one of the above evaluation modes, this is easily done, but care should be taken to avoid conflicts with the primary
scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user interface ports. One of the easiest ways to
avoid these conflicts is to create a new "test" directory with its own log and stats subdirectories. The new 'maui.cfg' file can be
created from scratch or based on the existing 'maui.cfg' file already in use. In either case, make certain that the SCHEDCFG
PORT attribute parameter differs from that used by the production scheduler. If testing is being done with the production binary
executable, the MAUIHOMEDIR environment variable should be set to point to the new test directory in order to prevent Maui from
loading the production 'maui.cfg' file.

Simulation
The Maui simulation facility allows a site to evaluate cluster performance in an almost arbitrary environment. This is done by
creating a resource and workload tracefile to specify the desired cluster and workload to be evaluated. These traces, specified via
the SIMWORKLOADTRACEFILE and SIMRESOURCETRACEFILE, can accurately and reproducibly replicate the workload and
resources recorded at the site or may represent an entirely new cluster and workload. In order to run a simulation, an adjusted
'maui.cfg' file is created with the policies of interest in place and the MODE attribute of the SCHEDCFG parameter set to
SIMULATION. Once started, Maui can be stepped through simulated time using the schedctl -S command. In the simulation,
all Maui commands continue to function as before, allowing interactive querying of status, adjustment of parameters, or even
submission or cancellation of jobs.

This feature enables sites to analyze the impact of different scheduling policies on their own workload and system configuration.
The effects of new reservations or job prioritizations can be evaluated in a zero-exposure environment, allowing sites to determine
ideal policies without experimenting on a production system. Sites can also evaluate the impact of additional or modified
workloads or changes in available resources. What impact will removing a block of resources for maintenance have on average
queue time? How much benefit will a new reservation dedicated exclusively to development jobs have on development job
turnaround time? How much pain will it cause nondevelopment jobs? Using simulation makes it easier and safer to obtain
answers to such questions.

This same simulation feature can also be used to test a new algorithm against workload and resource traces from various
supercomputing centers. Moreover, with the simulator, sites can create and plug in modules to emulate the behavior of various job
types on different hardware platforms, across bottlenecking networks, or under various data migration conditions.

Further information on the capabilities and use of simulation is given in the Maui Administrators Manual.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.4 Steering Workload and Improving Quality of Information
A good scheduler can improve the use of a cluster significantly, but its effectiveness is limited by the scheduling environment in
which it must operate and the quality of information it receives. Often, a cluster is underutilized because users overestimate a job's
resource requirements. Other times, inefficiencies crop up when users request job constraints in terms of job duration or
processors required that are not easily packed onto the cluster. Maui provides tools to allow fine tuning of job resource
requirement information and steering of cluster workload so as to allow maximum utilization of the system.

One such tool is the feedback interface, which allows a site to report detailed job usage statistics to users. This interface provides
information about the resources requested and those actually used. With the FEEDBACKPROGRAM parameter, local scripts can be
executed that use this information to help users improve resource requirement estimates. For example, a site with nodes of
various memory configurations may choose to create a script such as the following that automates the mailing of notices at job
completion:
Job 1371 completed successfully. Note that it requested nodes
with 512 MBytes of RAM yet used only 112 MBytes. Had the job provided a
more accurate estimate, it would have, on average, started 02:27:16
earlier.

While such notices can be used to improve memory, disk, processor, and wall-time estimates, they may be freely ignored by the
end user. A more forceful approach is to use the allocation manager charge policy so as to charge users for requested resources
rather than used resources. This approach quickly motivates end users to evaluate their true job needs and adjust their job
requests accordingly.

Another realm of feedback involves steering jobs to use currently available resources. The showbf command is designed to help
users tailor jobs to request resources that are free for immediate use. This command allows users to incorporate specific
information about what they need and who needs it, allowing all scheduling policies and resource availability information to be
integrated into the response. Users may specify details about the prospective job including user, group, queue, and memory
requirements, and the command returns information regarding the quantity of available nodes and the duration of their availability.

A third area of user feedback is job scaling. Often, users will submit parallel jobs that only moderately scale, hoping that by
requesting more processors, their job will run faster and provide results sooner. A job's completion time is simply the sum of its
queue time plus its execution time. Users often fail to realize that a larger job may be more difficult to schedule, resulting in a
longer queue time, and may run less efficiently, with a sublinear speedup. The increased queue-time delay, together with the
limitations in execution time improvements, generally results in larger jobs having a greater average turnaround time than smaller
jobs performing the same work. Maui commands such as showgrid can provide real-time job efficiency and average queue-time
statistics correlated to job attributes such as job size. The output of the mprof command can also be used to provide per user job
efficiency and average queue time correlated by job size and can alert administrators and users to this problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.5 Troubleshooting
Maui's diagnostic commands provide a good start for troubleshooting any scheduling issues. The diagnose command together
with checknode and checkjob provides detailed state information about the scheduler, including its various facilities, nodes,
and jobs. In addition to state information, these commands can also trigger extensive internal sanity checks for the scheduling
realm of interest. For example, if the job priorities do not appear to properly reflect site objectives, the diagnose -p command
can be used to display the priorities of all jobs and the contributions of the various priority components and subcomponents. This
command will also look for invalid priority values and summarize overall priority contributions of each component. At a glance, it
will help administrators determine whether parameters need to be adjusted and, if so, by how much. Other diagnostic commands
assist in both problem resolution and system tuning in areas such as throttling policies, reservations, fairshare, Grid scheduling,
and job management. If any diagnostic command uncovers a potential problem, the issue is reported in the form of WARNING
messages appended to the normal command output. Use of these commands typically identifies or resolves the vast majority of
all scheduling issues.

If additional information is required, Maui writes out detailed logging information in a logfile specified by the LOGFILE parameter
(usually in 'log/maui.log'). The LOGLEVEL and LOGFACILITY parameters enable control over the verbosity and focus of
these logs. Maui's high verbosity levels are very verbose, however, so keeping the LOGLEVEL below 4 or so unless actually
tracking problems can help prevent excessing file activity.

These logs contain a number of entries, including the following:
INFO: provides status information about normal scheduler operations.

WARNING: indicates that an unexpected condition was detected and handled.

ALERT: indicates that an unexpected condition occurred that could not be fully handled.

ERROR: indicates that problem was detected that prevents Maui from fully operating. This may be a problem with
the cluster that is outside of Maui's control or may indicate corrupt internal state information.

Function header: indicates when a function is called and what parameters are passed.

A simple grep through the log file will usually indicate whether any serious issues have been detected and is of significant value
when obtaining support or locally diagnosing problems. If neither commands nor logs point to the source of the problem, the Maui
users list (<mauiusers@supercluster.org>) or Supercluster support (<support@supercluster.org>) may be consulted for additional
assistance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.6 Conclusions
This chapter has introduced some of the key Maui features currently available. With hundreds of sites now using and contributing
to this project, Maui is evolving and improving faster than ever. While this chapter was able to address common aspects of
scheduler configuration, many features such as Grid scheduling, virtual resources, and dynamic jobs could not be adequately
covered. To learn about the latest developments and to obtain more detailed information about the capabilities described above,
see the Maui home page at http://www.supercluster.org/maui.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17: PBS: Portable Batch System

Overview
James Patton Jones

The Portable Batch System (PBS) is a flexible workload management and job scheduling system originally developed to manage
aerospace computing resources at NASA. PBS has since become the leader in supercomputer workload management and the de
facto standard job scheduler for Linux.

Today, growing enterprises often support hundreds of users running thousands of jobs across different types of machines in
different geographical locations. In this distributed heterogeneous environment, it can be extremely difficult for administrators to
collect detailed, accurate usage data or to set systemwide resource priorities. As a result, many computing resources are left
underused, while others are overused. At the same time, users are confronted with an ever-expanding array of operating systems
and platforms. Each year, scientists, engineers, designers, and analysts waste countless hours learning the nuances of different
computing environments, rather than being able to focus on their core priorities. PBS addresses these problems for computing-
intensive industries such as science, engineering, finance, and entertainment.

PBS allows you to unlock the potential in the valuable assets you already have, while at the same time reducing demands on
system administrators, freeing them to focus on other activities. PBS can also help you effectively manage growth by tracking use
levels across your systems and enhancing effective utilization of future purchases.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1 History of PBS
In the past, computers were used in a completely interactive manner. Background jobs were just processes with their input
disconnected from the terminal. As the number of processors in computers continued to increase, however, the need to be able to
schedule tasks based on available resources rose in importance. The advent of networked compute servers, smaller general
systems, and workstations led to the requirement of a networked batch scheduling capability. The first such Unix-based system
was the Network Queueing System (NQS) funded by NASA Ames Research Center in 1986. NQS quickly became the de facto
standard for batch queuing.

Over time, distributed parallel systems began to emerge, and NQS was inadequate to handle the complex scheduling
requirements presented by such systems. In addition, computer system managers wanted greater control over their compute
resources, and users wanted a single interface to the systems. In the early 1990s NASA needed a solution to this problem, but
after finding nothing on the market that adequately addressed their needs, led an international effort to gather requirements for a
next-generation resource management system. The requirements and functional specification were later adopted as an IEEE
POSIX standard (1003.2d). Next, NASA funded the development of a new resource management system compliant with the
standard. Thus the Portable Batch System was born.

PBS was quickly adopted on distributed parallel systems and replaced NQS on traditional supercomputers and server systems.
Eventually the entire industry evolved toward distributed parallel systems, taking the form of both special-purpose and commodity
clusters. Managers of such systems found that the capabilities of PBS mapped well onto cluster systems.

The PBS story continued when Veridian (the research and development contractor that developed PBS for NASA) released the
Portable Batch System Professional Edition (PBS Pro), a complete workload management solution. After three years of
commercial success, in March 2003, the PBS technology and associated engineering team was acquired by Altair Engineering,
Inc. Altair set up the PBS team as a seperate, subsiderary company (Altair Grid Technologies) focused on continued development
of the PBS product line, and created a world-wide PBS support network via the Altair international offices.

The cluster administrator can now choose between two versions of PBS: an older restricted-use Open Source release (Altair
OpenPBS); and Altair PBS Pro, the new hardened and enhanced commercial version.

This chapter gives a technical overview of PBS and information on installing, using, and managing both versions of PBS.
However, it is not possible to cover all the details of a software system as feature-rich as PBS in a single chapter. Therefore, we
limit this discussion to the recommended configuration for Linux clusters, providing references to the various PBS documentation
where additional, detailed information is available.

While this chapter describes only single-operating system clusters, the reader should note that PBS Pro is not limited to this
configuration. Heterogenous clusters containing UNIX, Linux, and Windows systems are also supported.

17.1.1 Acquiring PBS

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best sources for the most current release of either
product are the official Altair PBS Web sites: www.OpenPBS.org and www.PBSpro.com. Both sites offer downloads of the
software and documentation, as well as FAQs, discussion lists, and current PBS news. Hardcopy documentation, media kits, and
training classnotes are available from the PBS Online Store, accessed through the PBS Pro Web site.

17.1.2 PBS Features

PBS Pro provides many features and benefits to the cluster administrator. A few of the more important features are the following:

Enterprisewide resource sharing provides transparent job scheduling on any PBS system by any authorized user. Jobs can be
submitted from any client system, both local and remote, crossing domains where needed.

Multiple user interfaces provide a graphical user interface for submitting batch and interactive jobs; querying job, queue, and
system status; and monitoring job progress. Also provided is a traditional command line interface.

Security and access control lists permit the administrator to allow or deny access to PBS systems on the basis of username,
group, host, and/or network domain.

Job accounting offers detailed logs of system activities for charge-back or usage analysis per user, per group, per project, and per
compute host.

Automatic file staging provides users with the ability to specify any files that need to be copied onto the execution host before the
job runs and any that need to be copied off after the job completes. The job will be scheduled to run only after the required files
have been successfully transferred.

Parallel job support works with parallel programming libraries such as MPI, PVM, and HPF. Applications can be scheduled to run
within a single multiprocessor computer or across multiple systems.

System monitoring includes a graphical user interface for system monitoring. PBS displays node status, job placement, and
resource utilization information for both standalone systems and clusters.

Job interdependency enables the user to define a wide range of interdependencies between jobs. Such dependencies include
execution order, synchronization, and execution conditioned on the success or failure of another specific job (or set of jobs).

Computational Grid support provides an enabling technology for meta-computing and computational Grids, including support for
the Globus Toolkit.

Comprehensive API includes a complete application programming interface for sites that wish to integrate PBS with other
applications or to support unique job-scheduling requirements.

Automatic load-leveling provides numerous ways to distribute the workload across a cluster of machines, based on hardware

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automatic load-leveling provides numerous ways to distribute the workload across a cluster of machines, based on hardware
configuration, resource availability, keyboard activity, and local scheduling policy.

Distributed clustering allows customers to use physically distributed systems and clusters, even across wide area networks.

Common user environment offers users a common view of the job submission, job querying, system status, and job tracking over
all systems.

Cross-system scheduling ensures that jobs do not have to be targeted to a specific computer system. Users may submit their job
and have it run on the first available system that meets their resource requirements.

Job priority allows users the ability to specify the priority of their jobs; defaults can be provided at both the queue and system level.

Full configurability makes PBS easily tailored to meet the needs of different sites. Much of this flexibility is due to the unique
design of the scheduler module, which permits complete customization.

Broad platform availability is achieved through support of Windows 2000 and XP, and every major version of Unix and Linux, from
workstations and servers to supercomputers. New platforms are being supported with each new release.

User name mapping provides support for mapping user account names on one system to the appropriate name on remote server
systems. This allows PBS to fully function in environments where users do not have a consistent username across all the
resources they have access to.

System integration allows PBS to take advantage of vendor-specific enhancements on different systems (such as supporting
cpusets on SGI systems and interfacing with the global resource manager on the Cray T3E).

For a comparison of the features available in the latest versions of OpenPBS and PBS Pro, visit the PBS Product Comparison
web page: www.OpenPBS.org/product_comparison.html.

17.1.3 PBS Architecture

PBS consists of two major component types: user-level commands and system daemons. A brief description of each is given here
to help you make decisions during the installation process.

PBS supplies both command-line programs that are POSIX 1003.2d conforming and a graphical interface. These are used to
submit, monitor, modify, and delete jobs. These client commands can be installed on any system type supported by PBS and do
not require the local presence of any of the other components of PBS. There are three classifications of commands: user
commands that any authorized user can use, operator commands, and manager (or administrator) commands. Operator and
manager commands require specific access privileges. (See also the security sections of the PBS Administrator Guide.)

The job server daemon is the central focus for PBS, fulfilling the queueing and accounting roles of workload management (see
Chapter 16 for details). Within this document, this daemon process is generally referred to as the Server or by the execution name
pbs_server. All commands and the other daemons communicate with the Server via an Internet Protocol (IP) network. The
Server's main function is to provide the basic batch services such as receiving or creating a batch job, modifying the job,
protecting the job against system crashes, and running the job. Typically, one Server manages a given set of resources.

The job executor is the daemon that actually places the job into execution. This daemon, pbs_mom, is informally called MOM
because it is the mother of all executing jobs. (MOM is a reverse-engineered acronym that stands for Machine Oriented Mini-
server.) MOM places a job into execution when it receives a copy of the job from a Server. MOM creates a new session as
identical to a user login session as possible. For example, if the user's login shell is csh, then MOM creates a session in which
.login is run as well as .cshrc. MOM also has the responsibility for returning the job's output to the user when directed to do so
by the Server. One MOM daemon runs on each computer that will execute PBS jobs. The MOM daemons, collectively, are
responsible for the monitoring and resource management (and part of accounting) roles of workload management.

The job scheduler daemon, pbs_sched, implements the site's policy controlling when each job is run and on which resources (i.e.
fulfiling the scheduling role of workload management). The Scheduler communicates with the various MOMs to query the state of
system resources and with the Server to learn about the availability of jobs to execute. The interface to the Server is through the
same API (discussed below) as used by the client commands. Note that the Scheduler interfaces with the Server with the same
privilege as the PBS manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.2 Using PBS
From the user's perspective, a workload mangement system enables you to make more efficient use of your time by allowing you
to specify the tasks you need run on the cluster. The system takes care of running these tasks and returning the results to you. If
the cluster is full, then it holds your tasks and runs them when the resources are available.

PBS provides two user interfaces: a command-line interface (CLI) and a graphical user interface (GUI). You can use either to
interact with PBS: both interfaces have the same functionality. (The examples below show the command line interface; see the
"Using the PBS Graphical User Interface" section below for examples of the GUI.)

Using either interface, you create a batch job that you then submit to PBS. A batch job is a shell script containing the set of
commands you want run on the cluster. It also contains directives that specify the resource requirements (such as memory or
CPU time) that your job needs. Once you create your PBS job, you can reuse it, if you wish, or you can modify it for subsequent
runs. Example job scripts are shown below.

PBS also provides a special kind of batch job called interactive batch. This job is treated just like a regular batch job (it is queued
up and must wait for resources to become available before it can run). But once it is started, the user's terminal input and output
are connected to the job in what appears to be an rlogin session. It appears that the user is logged into one of the nodes of the
cluster, and the resources requested by the job are reserved for that job. Many users find this feature useful for debugging their
applications or for computational steering.

17.2.1 Creating a PBS Job

Previously we mentioned that a PBS job is simply a shell script containing resource requirements of the job and the command(s)
to be executed. (However, if you use the PBS graphical interface, you do not have to edit any batch files; instead, the GUI
provides a point and click interface that creates the batch job script for you.) A sample PBS job might look like the following:
 #!/bin/sh
 #PBS -1 walltime=1:00:00
 #PBS -1 nodes=4
 #PBS -j oe

 cd ${HOME}/PBS/trial
 mpiexec -n 4 myprogram

This script would then be submitted to PBS using the qsub command.

Let us look at the script for a moment. The first line tells what shell to use to interpret the script. Lines 2-3 are resource directives,
specifying arguments to the "resource list" ("-1") option of qsub. Note that all PBS directives begin with #PBS. These lines tell
PBS what to do with your job. Any qsub option can also be placed inside the script by using a #PBS directive. However, PBS
stops parsing directives with the first blank line encountered.

Returning to our example above, we see a request for one hour of wall-clock time and four nodes. The fourth line is a request for
PBS to merge the stdout and stderr file streams of the job into a single file. The last two lines are the commands the user wants
executed: change directory to a particular location, then execute an MPI program called 'myprogram'.

This job script could have been created in one of two ways: using a text editor, or using the xpbs graphical interface (see below).

17.2.2 Submitting a PBS Job

The command used to submit a job to PBS is qsub. For example, say you created a file containing your PBS job called
'myscriptfile'. The following example shows how to submit the job to PBS:
 % qsub myscriptfile
 12322.sol.pbspro.com

The second line in the example is the job identifier returned by the PBS Server. This unique identifier can be used to act on this
job in the future (before it completes running). The next section of this chapter discusses using this "job id" in various ways.

The qsub command has a number of options that can be specified either on the command-line or in the job script itself. Note that
any command-line option will override the same option within the script file.

Table 17.1 lists the most commonly used options to qsub. See the PBS User Guide for the complete list and full description of the
options.

Table 17.1: Qsub options.

Option Purpose

-1 list List of resources needed by job

-q queue Queue to submit job to

-N name Name of job

-S shell Shell to execute job script

-p priority Priority of job relative to your jobs

-a datetime Delay job under after datetime

-j oe Join output and error files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-h Place a hold on job

The "-l resource_list" option is used to specify the resources needed by the job. Table 17.2 lists all the resources available
to jobs running on clusters.

Table 17.2: PBS resources.

Resource Meaning

arch System architecture needed by job

cput CPU time required by all processes in job

file Maximum single file disk space requirements

mem Total amount of RAM memory required

ncpus Number of CPUs (processors) required

nice Requested "nice" (Unix priority) value

nodes Number and/or type of nodes needed

pcput Maximum per-process CPU time required

pmem Maximum per-process memory required

wall time Total wall-clock time needed

workingset Total disk space requirements

17.2.3 Getting the Status of a PBS Job

Once the job has been submitted to PBS, you can use either the qstat or xpbs commands to check the job status. If you know
the job identifier for your job, you can request the status explicitly. Note that unless you have multiple clusters, you need only
specify the sequence number portion of the job identifier:
 % qstat 12322
 Job id Name User Time Use S Queue
 ------------- ------------ ------ -------- - -----
 12322.sol myscriptfile jjones 00:06:39 R submit

If you run the qstat command without specifing a job identifier, then you will receive status on all jobs currently queued and
running.

Often users wonder why their job is not running. You can query this information from PBS using the "-s" (status) option of
qstat, for example,
 % qstat -s 12323
 Job id Name User Time Use S Queue
 ------------- ------------ ------ -------- - -----
 12323.sol myscriptfile jjones 00:00:00 Q submit
 Requested number of CPUs not currently available.

A number of options to qstat change what information is displayed. The PBS User Guide gives the complete list.

17.2.4 PBS Command Summary

So far we have seen several of the PBS user commands. Table 17.3 is provided as a quick reference for all the PBS user
commands. Details on each can be found in the PBS manual pages and the PBS User Guide.

Table 17.3: PBS user commands.

Command Purpose

qalter Alter job(s)

qdel Delete job(s)

qhold Hold job(s)

qmsg Send a message to job(s)

qmove Move job(s) to another queue

qrls Release held job(s)

qrerun Rerun job(s)

qselect Select a specific subset of jobs

qsig Send a signal to job(s)

qstat Show status of job(s)

qsub Submit job(s)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xpbs Graphical Interface (GUI) to PBS commands

17.2.5 Using the PBS Graphical User Interface

PBS provides two GUI interfaces: a TCL/TK-based GUI called xpbs and an optional Web-based GUI.

The GUI xpbs provides a user-friendly point-and-click interface to the PBS commands. To run xpbs as a regular, nonprivileged
user, type
 setenv DISPLAY your_workstation_name:0
 xpbs

To run xpbs with the additional purpose of terminating PBS Servers, stopping and starting queues, or running or rerunning jobs,
type
 xpbs -admin

Note that you must be identified as a PBS operator or manager in order for the additional "-admin" functions to take effect.

From this main xpbs window, you can create and submit jobs, monitor jobs, queues, and servers, as well as perform any of the
actions that the command line interface permits you to do.

The optional Web-based user interface provides access to all the functionality of xpbs via almost any Web browser. To access it,
you simply type the URL of your PBS Server host into your browser. The layout and usage are similar to those of xpbs.

17.2.6 PBS Application Programming Interface

Part of the PBS package is the PBS Interface Library, or IFL. This library provides a means of building new PBS clients. Any PBS
service request can be invoked through calls to the interface library. Users may wish to build a PBS job that will check its status
itself or submit new jobs, or they may wish to customize the job status display rather than use the qstat command.
Administrators may use the interface library to build new control commands.

The IFL provides a user-callable function that corresponds to each PBS client command. There is (approximately) a one-to-one
correlation between commands and PBS service requests. Additional routines are provided for network connection management.
The user-callable routines are declared in the header file 'PBS_ifl.h'. Users request service of a batch server by calling the
appropriate library routine and passing it the required parameters. The parameters correspond to the options and operands on the
commands. The user must ensure that the parameters are in the correct syntax. Each function will return zero upon success and
a nonzero error code on failure. These error codes are available in the header file 'PBS_error.h'. The library routine will accept
the parameters and build the corresponding batch request. This request is then passed to the server communication routine. (The
PBS API is fully documented in the PBS External Reference Specification.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.3 Installing PBS
PBS is able to support a wide range of configurations. It may be installed and used to control jobs on a single system or to load
balance jobs on a number of systems. It may be used to allocate nodes of a cluster or parallel system to both serial and parallel
jobs. It can also deal with a mix of these situations. However, given the topic of this book, we focus on the recommended
configuration for clusters. The PBS Administrator Guide explains other configurations.

When PBS is installed on a cluster, a MOM daemon must be on each execution host, and the Server and Scheduler should be
installed on one of the systems or on a front-end system.

For Linux clusters, PBS is packaged in the popular RPM format (Red Hat's Package Manager). (See the PBS Administrator Guide
for installation instructions on other systems.) PBS RPM packages are provided as a single tar file containing

the PBS Quick Start Guide in both Postscript and PDF form (PBS Pro only),

the PBS Administrator Guide in both Postscript and PDF form,

the PBS User Guide in both Postscript and PDF form (PBS Pro only),

multiple RPM packages for different components of PBS (see below),

a full set of Unix-style manual pages, and

supporting text files: software license, README, release notes, and the like.

When the PBS tar file is extracted, a subtree of directories is created in which all these files are created. The name of the top-level
directory of this subtree will reflect the release number and patch level of the version of PBS being installed. For example, the
directory for PBS Pro 5.3 will be named 'PBSPro_5_3_0'.

To install PBS Pro, change to the newly created directory, and run the installation program:
 cd PBSPro_5_3_0
 ./INSTALL

The installation program will prompt you for the names of directories for the different parts of PBS and the type of installation. A
"full" installation will install all parts of PBS on the computer (including the PBS daemons/services); the "server-only" is intended
for the control node of the cluster; the "execution host only" option is intended for compute-nodes of the cluster. Next, you will be
prompted for your software license key(s). (See the "Acquiring PBS" section above if you do not already have your software
license key.)

For OpenPBS, there are multiple RPMs corresponding to the different installation possibilities: full installation, execution host only,
or client commands only. Select the correct RPM for your installation; then install it manually:
 cd pbspro_v5.3
 rpm -i RPMNAME...

Note that in OpenPBS, the RPMs will install into predetermined locations under '/usr/pbs' and '/usr/spool/PBS'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.4 Configuring PBS
Now that PBS has been installed, the Server and MOMs can be configured and the scheduling policy selected. Note that further
configuration of PBS may not be required since PBS Pro comes preconfigured, and the default configuration may completely meet
your needs. However, you are advised to read this section to determine whether the defaults are indeed complete for you or
whether any of the optional settings may apply.

17.4.1 Network Addresses and PBS

PBS makes use of fully qualified host names for identifying the jobs and their location. A PBS installation is known by the host
name on which the Server is running. The name used by the daemons or used to authenticate messages is the canonical host
name. This name is taken from the primary name field, h_name, in the structure returned by the library call gethostbyaddr().
According to the IETF RFCs, this name must be fully qualified and consistent for any IP address assigned to that host.

17.4.2 The Qmgr Command

The PBS manager command, qmgr, provides a command-line administrator interface. The command reads directives from
standard input. The syntax of each directive is checked and the appropriate request sent to the Server(s). A qmgr directive takes
one of the following forms:
 command server [names] [attr OP value[,...]]
 command queue [names] [attr OP value[,...]]
 command node [names] [attr OP value[,...]]

where command is the command to perform on an object. The qmgr commands are listed in Table 17.4.

Table 17.4: qmgr commands.

Command Explanation

active Set the active objects.

create Create a new object, applies to queues and nodes.

delete Destroy an existing object (queues or nodes).

set Define or alter attribute values of the object.

unset Clear the value of the attributes of the object.

list List the current attributes and values of the object.

print Print all the queue and server attributes.

The list or print subcommands of qmgr can be executed by the general user. Creating or deleting a queue requires PBS
Manager privilege. Setting or unsetting server or queue attributes requires PBS Operator or Manager privilege.

Here are several examples that illustrate using the qmgr command. These and other qmgr commands are fully explained below,
along with the specific tasks they accomplish.
 % qmgr
 Qmgr: create node mars np=2,ntype=cluster
 Qmgr: create node venus properties="inner,moonless"
 Qmgr: set node mars properties = inner
 Qmgr: set node mars properties += haslife
 Qmgr: delete node mars
 Qmgr: d n venus

Commands can be abbreviated to their minimum unambiguous form (as shown in the last line in the example above). A command
is terminated by a new line character or a semicolon. Multiple commands may be entered on a single line. A command may
extend across lines by marking the new line character with a backslash. Comments begin with a hash sign ("#") and continue to
the end of the line. Comments and blank lines are ignored by qmgr. See the qmgr section of the PBS Administrator Guide for
detailed usage and syntax description.

17.4.3 Nodes

Where jobs will be run is determined by an interaction between the Scheduler and the Server. This interaction is affected by the
contents of the PBS 'nodes' file and the system configuration onto which you are deploying PBS. Without this list of nodes, the
Server will not establish a communication stream with the MOM(s), and MOM will be unable to report information about running
jobs or to notify the Server when jobs complete. In a cluster configuration, distributing jobs across the various hosts is a matter of
the Scheduler determining on which host to place a selected job.

Regardless of the type of execution nodes, each node must be defined to the Server in the PBS nodes file, (the default location of
which is '/usr/spool/PBS/server_priv/nodes'). This is a simple text file with the specification of a single node per line in
the file. The format of each line in the file is
 node_name[:ts] [attributes]

The node name is the network name of the node (host name), it does not have to be fully qualified (in fact, it is best kept as short
as possible). The optional ":ts" appended to the name indicates that the node is a timeshared node (i.e. a nodes on which multiple
jobs may be run if the required resources are available).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nodes can have attributes associated with them. Attributes come in three types: properties, name=value pairs, and
name.resource=value pairs. Zero or more properties may be specified. The property is nothing more than a string of
alphanumeric characters (first character must be alphabetic) without meaning to PBS. Properties are used to group classes of
nodes for allocation to a series of jobs.

Any legal node name=value pair may be specified in the node file in the same format as on a qsub directive:
attribute.resource=value. Consider the following example:
 NodeA resource_available.ncpus=3 max_running=1

The expression np=N may be used as shorthand for the expression
 resources_available.ncpus=N

which can be added to declare the number of virtual processors (VPs) on the node. This syntax specifies a numeric string, for
example, np=4. This expression will allow the node to be allocated up to N times to one job or more than one job. If np=N is not
specified for a cluster node, it is assumed to have one VP.

You may edit the nodes list in one of two ways. If the server is not running, you may directly edit the nodes file with a text editor. If
the server is running, you should use qmgr to edit the list of nodes.

Each item on the line must be separated by white space. The items may be listed in any order except that the host name must
always be first. Comment lines may be included if the first nonwhite space character is the hash sign ("#").

The following is an example of a possible nodes file for a cluster called "planets":
 # The first set of nodes are cluster nodes.
 # Note that the properties are provided to
 # logically group certain nodes together.
 # The last node is a timeshared node.
 #
 mercury inner moonless
 venus inner moonless np=1
 earth inner np=1
 mars inner np=2
 jupiter outer np=18
 saturn outer np=16
 uranus outer np=14
 neptune outer np=12
 pluto:ts

17.4.4 Creating or Adding Nodes

After pbs_server is started, the node list may be entered or altered via the qmgr command:
 create node node_name [attribute=value]

where the attributes and their associated possible values are shown in Table 17.5.

Table 17.5: PBS node attributes.

Attribute Value

state free, down, offline
properties any alphanumeric string

ntype cluster, time-shared
resources_available.ncpus (np) number of virtual processors > 0
resources_available list of resources available on node
resources_assigned list of resources in use on node
max_running maximum number of running jobs
max_user_run maximum number of running jobs per user
max_group_run maximum number of running jobs per group

queue queue name (if any) associated with node

reservations list of reservations pending on the node

comment general comment

Below are several examples of setting node attributes via qmgr:
 % qmgr
 Qmgr: create node mars np=2,ntype=cluster
 Qmgr: create node venus properties="inner,moonless"

Once a node has been created, its attributes and/or properties can be modified by using the following qmgr syntax:
 set node node_name [attribute[+|-]=value]

where attributes are the same as for create, for example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where attributes are the same as for create, for example,
 % qmgr
 Qmgr: set node mars properties=inner
 Qmgr: set node mars properties+=haslife

Nodes can be deleted via qmgr as well, using the delete node syntax, as the following example shows:
 % qmgr
 Qmgr: delete node mars
 Qmgr: delete node pluto

Note that the busy state is set by the execution daemon, pbs_mom, when a load-average threshold is reached on the node. See
max_load in MOM's config file. The job-exclusive and job-sharing states are set when jobs are running on the node.

17.4.5 Default Configuration

Server management consist of configuring the Server and establishing queues and their attributes. The default configuration,
shown below, sets the minimum server settings and some recommended settings for a typical PBS cluster.
 % qmgr
 Qmgr: print server
 # Create queues and set their attributes
 #
 # Create and define queue workq
 #
 create queue workq
 set queue workq queue_type = Execution
 set queue workq enabled = True
 set queue workq started = True
 #
 # Set Server attributes
 #
 set server scheduling = True
 set server default_queue = workq
 set server log_events = 511
 set server mail_from = adm
 set server query_other_jobs = True
 set server scheduler_iteration = 600

17.4.6 Configuring MOM

The execution server daemons, MOMs, require much less configuration than does the Server. The installation process creates a
basic MOM configuration file that contains the minimum entries necessary in order to run PBS jobs. This section describes the
MOM configuration file and explains all the options available to customize the PBS installation to your site.

The behavior of MOM is controlled via a configuration file that is read upon daemon initialization (startup) and upon reinitialization
(when pbs_mom receives a SIGHUP signal). The configuration file provides several types of runtime information to MOM: access
control, static resource names and values, external resources provided by a program to be run on request via a shell escape, and
values to pass to internal functions at initialization (and reinitialization). Each configuration entry is on a single line, with the
component parts separated by white space. If the line starts with a hash sign ("#"), the line is considered to be a comment and is
ignored.

A minimal MOM configuration file should contain the following:
 $logevent 0x1ff
 $clienthost server-hostname

The first entry, $logevent, specifies the level of message logging this daemon should perform. The second entry,
$clienthost, identifies a host that is permitted to connect to this MOM. You should set the server-hostname variable to the
name of the host on which you will be running the PBS Server (pbs_server). Advanced MOM configuration options are
described in the PBS Administrator Guide.

17.4.7 Scheduler Configuration

Now that the Server and MOMs have been configured, we turn our attention to the PBS Scheduler. As mentioned previously, the
Scheduler is responsible for implementing the local site policy regarding which jobs are run and on what resources. This section
discusses the recommended configuration for a typical cluster. The full list of tunable Scheduler parameters and detailed
explanation of each is provided in the PBS Administrator Guide.

The PBS Pro Scheduler provides a wide range of scheduling policies. It provides the ability to sort the jobs in dozens of different
ways, including FIFO order. It also can sort on user and group priority. The queues are sorted by queue priority to determine the
order in which they are to be considered. As distributed, the Scheduler is configured with the defaults shown in Table 17.6.

Table 17.6: Default scheduling policy parameters.

Option Default Value

round_robin False
by_queue True
strict_fifo False
load_balancing False
load_balancing_rr False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

load_balancing_rr False
fair_share False
help_starving_jobs True
backfill True
backfill_prime False
sort_queues True
sort_by shortest_job_first
smp_cluster_dist pack
preemptive_sched True

Once the Server and Scheduler are configured and running, job scheduling can be initiated by setting the Server attribute
scheduling to a value of true:
 # qmgr -c "set server scheduling=true"

The value of scheduling is retained across Server terminations or starts. After the Server is configured, it may be placed into
service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.5 Managing PBS
This section is intended for the PBS administrator: it discusses several important aspects of managing PBS on a day-to-day basis.

During the installation of PBS Pro, the file '/etc/pbs.conf' was created. This configuration file controls which daemons are to
be running on the local system. Each node in a cluster should have its own '/etc/pbs.conf' file.

17.5.1 Starting PBS Daemons

The daemon processes (pbs_server, pbs_sched, and pbs_mom) must run with the real and effective uid of root. Typically, the
daemons are started automatically by the system upon reboot. The boot-time start/stop script for PBS is '/etc/init.d/pbs'.
This script reads the '/etc/pbs.conf' file to determine which daemons should be started.

The startup script can also be run by hand to get status on the PBS daemons, and to start/stop all the PBS daemons on a given
host. The command line syntax for the startup script is
 /etc/init.d/pbs [status | stop | start]

Alternatively, you can start the individual PBS daemons manually, as discussed in the following sections. Furthermore, you may
wish to change the options specified to various daemons, as discussed below.

17.5.2 Monitoring PBS

The node monitoring GUI for PBS is xpbsmon. It is used for displaying graphically information about execution hosts in a PBS
environment. Its view of a PBS environment consists of a list of sites where each site runs one or more Servers and each Server
runs jobs on one or more execution hosts (nodes).

The system administrator needs to define the site's information in a global X resources file, 'PBS_LIB/xpbsmon/xpbsmonrc',
which is read by the GUI if a personal '.xpbsmonrc' file is missing. A default 'xpbsmonrc' file is created during installation
defining (under *sitesInfo resource) a default site name, the list of Servers that run on the site, the set of nodes (or execution
hosts) where jobs on a particular Server run, and the list of queries that are communicated to each node's pbs_mom. If node
queries have been specified, the host where 'xpbsmon' is running must have been given explicit permission by the pbs_mom
daemon to post queries to it; this is done by including a $restricted entry in the MOM's config file.

17.5.3 Tracking PBS Jobs

Periodically you (or the user) will want track the status of a job. Or perhaps you want to view all the log file entries for a given job.
Several tools allow you to track a job's progress, as Table 17.7 shows. While the job is running, the 'qstat' command should be
used to track the status of a job. However, after the job has completed, then 'tracejob' should be used.

Table 17.7: Job-tracking commands.

Command Explanation

qstat Shows status of jobs, queues, and servers

xpbs Can alert user when one or more job completes

tracejob Collates and sorts PBS log entries for specified job

17.5.4 PBS Accounting Logs

The PBS Server daemon maintains an accounting log. The log name defaults to
'/usr/spool/PBS/server_priv/accounting/yyyymmdd' where yyyymmdd is the date. The file will be closed and a new
one opened every day on the first event (write to the file) after midnight.

The accounting log files may be placed elsewhere by specifying the -A option on the pbs_server command line. The option
argument is the full (absolute) path name of the file to be used. If a null string is given, for example
 # pbs_server -A ""

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # pbs_server -A ""

then the accounting log will not be opened, and no accounting records will be recorded.

The accounting file is changed according to the same rules as the log files. With either the default file or a file named with the -A
option, the Server will close the accounting log and reopen it upon the receipt of a SIGHUP signal. This strategy allows you to
rename the old log and start recording anew on an empty file. For example, if the current date is December 1, the Server will be
writing in the file '20011201'. The following actions will cause the current accounting file to be renamed 'dec1' and the Server
to close the file and starting writing a new '20011201'.
 # mv 20011201 dec1
 # kill -HUP (pbs_server's PID)

17.5.5 PBS Accounting Report

The PBS administrator can use the 'pbs-report' command to generate a wide range of system, user, and job usage reports
(including statistical analysis of jobs, cluster monitoring reports, etc). The program extracts data from the above-described PBS
accounting logs, and performs any necessary calculations to produce the requested report. The PBS Administrator Guide includes
detailed examples of the reports this command can produce.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.6 Troubleshooting
The following is a list of common problems and recommended solutions. Additional information is always available on the PBS
Web sites.

17.6.1 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a Server there are several possible errors to check. If the
error return is 15034, No server to connect to, check (1) that there is indeed a Server running and (2) that the default Server
information is set correctly. The client commands will attempt to connect to the Server specified on the command line if given or, if
not given, the Server specified in the default server file, '/usr/spool/PBS/default_server'.

If the error return is 15007, No permission, check for (2) as above. Also check that the executable pbs_iff is located in the
search path for the client and that it is setuid root. Additionally, try running pbs_iff by typing
 pbs_iff server_host 15001

where server_host is the name of the host on which the Server is running and 15001 is the port to which the Server is listening
(if started with a different port number, use that number instead of 15001). The executable pbs_iff should print out a string of
garbage characters and exit with a status of 0. The garbage is the encrypted credential that would be used by the command to
authenticate the client to the Server. If pbs_iff fails to print the garbage and/or exits with a nonzero status, either the Server is
not running or it was installed with a different encryption system from that used for pbs_iff.

17.6.2 Nodes Down

The PBS Server determines the state of nodes (up or down), by communicating with MOM on the node. The state of nodes may
be listed by two commands: qmgr and pbsnodes.
 % qmgr
 Qmgr: list node @active

 % pbsnodes -a
 Node jupiter
 state = down, state-unknown
 properties = sparc, mine
 ntype = cluster

A node in PBS may be marked down in one of two substates. For example, the state above of node "Jupiter" shows that the
Server has not had contact with MOM on that since the Server came up. Check to see whether a MOM is running on the node. If
there is a MOM and if the MOM was just started, the Server may have attempted to poll her before she was up. The Server should
see her during the next polling cycle in ten minutes. If the node is still marked down, state-unknown after ten minutes, either the
node name specified in the Server's node file does not map to the real network hostname or there is a network problem between
the Server's host and the node.

If the node is listed as
 % pbsnodes -a
 Node jupiter
 state = down
 properties = sparc, mine
 ntype = cluster

then the Server has been able to communicate with MOM on the node in the past, but she has not responded recently. The
Server will send a ping PBS message to every free node each ping cycle (10 minutes). If a node does not acknowledge the ping
before the next cycle, the Server will mark the node down.

17.6.3 Nondelivery of Output

If the output of a job cannot be delivered to the user, it is saved in a special directory '/usr/spool/PBS/undelivered' and
mail is sent to the user. The typical causes of nondelivery are the following:

The destination host is not trusted and the user does not have a .rhost file.

An improper path was specified.

A directory in the specified destination path is not writable.

The user's .cshrc on the destination host generates output when executed.

The '/usr/spool/PBS/spool' directory on the execution host does not have the correct permissions. This directory must
have mode 1777 (drwxrwxrwxt).

17.6.4 Job Cannot Be Executed

If a user receives a mail message containing a job identifier and the line "Job cannot be executed," the job was aborted by MOM
when she tried to place it into execution. The complete reason can be found in one of two places: MOM's log file or the standard
error file of the user's job.

If the second line of the message is "See Administrator for help," then MOM aborted the job before the job's files were set up. The
reason will be noted in MOM's log. Typical reasons are a bad user/group account or a system error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the second line of the message is "See job standard error file," then MOM had already created the job's file, and additional
messages were written to standard error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18: Scyld Beowulf
Walt Ligon and Dan Stanzione

The first Beowulf developed at NASA Goddard Space Flight Center [107] was billed as a "Giga-ops workstation." The first and
most important part being the performance (giga-ops) but the second part being a workstation. In the minds of the creators, a
Beowulf was to be a single computer used to solve large problems quickly. The implementation, of course, was quite different.
Each node in a Beowulf was, in reality, a distinct computer system with a distinct copy of the operating system running
independently of the other nodes. The Beowulf architecture supports the notion of a single computer in that there was one node
that was connected to the external network, there was often a network file system to provide a common storage area, and there
was software for running programs across the nodes. This software, typically PVM [43] or an implementation of MPI [48], creates
a virtual parallel computer that allows the programmer to create and manage processes on the various nodes. This software is
not, however integrated with the operating system, it does little or nothing to assist in system configuration and management, and
is not well suited to managing processing resources on a system-wide basis. This chapter describes Scyld, a system designed to
provide a system-wide view of a Beowulf cluster.

18.1 Introduction
Early on, the ideal was to have a single system image: cooperation between the nodes of a Beowulf at the operating system level
that not only eases programming across the nodes, but all aspects of interacting with the machine, including programming,
configuration, and management tasks. The first attempts at this were to develop a global process ID space, so that processes
running anywhere on the Beowulf could be uniquely identified, and so that the node the process executes on can be determined.
This mechanism was implemented for the Linux kernel but proved to be of limited value. A more complete implementation later
emerged that extended the process ID space of the master node of the machine, including all aspects of process control and
management. The bproc process management system included fast creation and migration of processes across nodes,
maintained information on remote processes for local reporting, included signal delivery services, and continued the abstraction of
the single image process space to processes subsequently created on the remote nodes. Later versions included the ability to
control access rights for creating processes on remote nodes.

With bproc process management in place, the next logical step is stripping the nodes down to a bare minimum of processes and
services, and letting the master node start and manage all other processes using bproc. This quickly reduces the number of actual
processes run directly on each compute node to a bproc daemon and a few other key processes. Once this runtime image is
reduced, the next and final step is to move the copy of the runtime image off of the node completely so that each node boots from
the master. The fact that the runtime image is very small makes this feasible for even a fairly large number of nodes. Finally, the
resulting system provides a single system image that allows easy management of the configuration (it is all stored on the master
node and loaded to the compute nodes at boot time), of the running system (almost everything is visible from the master node)
and programming (uses the same programming model as the original Beowulf).

Figure 18.1: Evolution of Beowulf System Image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resulting single system image approach has been developed and marketed by Scyld Computing, Inc. as Scyld Beowulf. Scyld
Beowulf is a complete Linux distribution based on RedHat Linux with modified installation scripts, a Scyld-enabled kernel, and the
rest of the tools needed to implement the system. The Scyld CD is booted to install the Master node. Installation scripts configure
the private network and set up the services to boot the nodes. Once installed, the Master node can make a CD or floppy that can
boot the nodes, or they can boot using PXE boot. Nodes boot a minimal kernel, connect to the server, and then re-boot from the
server. Facilities are provided to install a boot area on the local hard disk of each node so that subsequent boots do not require
the CD or a floppy. The boot kernel is used only to start the system and thus does not need to be changed even in the event that
the desired runtime kernel configuration is changed. The node kernel is updated on the server, the nodes are rebooted, and are
ready to go. Utilities are provided to manage the nodes, determine their status, start and monitor processes, and even control
access rights to the nodes.

18.1.1 Process Management with Bproc

The heart of Scyld Beowulf is the bproc process management facility. On the surface, bproc is just another facility for starting
remote processes such as rsh or ssh. In reality, bproc is a sophisiticated tool for migrating processes to remote nodes, while
maintaining a centralized locus of control. The principle function in bproc is bproc_move() which migrates a process from the
master to a remote node. This function is built upon the VMADump facility, which is a library for copying and restoring the
complete virtual address space of a process. Essentially, VMADump copies the virtual address space on the master node, the
copy is sent to the remote node, a new process is started there and then VMADump restores the address space in this new
process. The original process does not go away, but becomes a "ghost process." This ghost process stands in on the master
node as a placeholder of sorts for the remote process. It is just like a regular process, except that it has no memory space and no
open files. In implementation, ghost processes behave like Linux kernel threads, they can sleep or run as needed, they can catch
signals (including SIGKILL) and forward them to the running process. They are different than regular threads in that they inherit a
number of process statistics like CPU time used from the remote process. For the user on the master node, the ghost process is
the remote process.

Figure 18.2: Migration of processes using bproc.

18.1.2 Node Management with Beoboot

The key to managing nodes with Scyld Beowulf lies in the fact that the nodes have no permanent state other than a simple boot
loader. All of the node configuration is maintained on the master node and downloaded to the compute nodes when they boot with
beoboot. The beoboot utilities, along with the beoserv daemon which runs on the master node, allow the compute node
configuration to be tuned as needed. The Scyld Beowulf software allows the kernel to be configured, startup scripts to be
adjusted, and very importantly, shared libraries to be managed. Since all processes that are run on the compute nodes of a Scyld
Beowulf machine are transferred from the master node, it is important that any libraries used by the executables are either
statically linked or present on the compute node. Since this can be a rather extreme requirement, bproc will transfer any shared
library linked to a migrated process along with the process itself, if the shared library is not installed on the target compute node.
This solves a potential problem with running applications, but may not be as efficient as it could be. Thus, the beoboot system
allows the compute nodes to be configured with shared libraries that are highly likely to be used. This increases the size of the
boot image, and hence the boot time, but reduces the size of the typical process image and the time to start an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.2 Using Scyld Beowulf
To the typical user of a Scyld Beowulf system, there is little difference between a Scyld and a non-Scyld system. Programs are
written with MPI or PVM libraries, and executed interactively or submitted using PBS or some other scheduler. There are small
details that may be different, such as how one selects a set of nodes to execute a program or, or how one views a process
running on a node. For the most part, these are easier to do. For a system administrator, however, Scyld Beowulf offers a number
of features that greatly simplify the configuration and management of a cluster, and in particular, a large cluster.

The ability to boot a machine over a network connection has been available for a long time, and many cluster tool-kits offer
mechanisms to simplify cluster installation based on mechanisms such as bootp, dhcp, and similar protocols. Scyld Beowulf also
offers a simplified installation procedure for nodes in the form of a boot image that can be installed on a CD or floppy disk. Unlike
other systems however, Scyld extends this concept to simplify configuration and management not just at installation time, but
every time the cluster boots.

Booting a compute node in a Scyld Beowulf system starts when the node first powers up. A fully installed node will have a boot
image installed on the default boot device. This image is responsible for bringing up a minimal running kernel including network
services through which the node can broadcast its readiness to boot to the beoserv daemon running on the master node. This
boot image is extremely generic, it is used only during this first phase of booting, thus it rarely needs to be changed, even if the
clusters compute nodes are completely reconfigured. In fact, this image only need be updated if the Scyld beoboot system
requires an update, which normally wouldn't occur even if the Scyld software was updated. Only in fairly extreme circumstances
requiring extensive changes to the beoboot system would the boot loader be changed. This is a critical point, because updating an
on-disk boot loader can be a cumbersome task, though even in the event this is required, the Scyld beoboot system can usually
install on-disk boot loaders automatically onto the disk from the master node, making the process much simpler than even a per-
node network install.

Once the phase 1 boot loader has contacted the beoserv daemon on the master node, the beoserv daemon sends boot
instructions to the node. If the node has been booted before and has a local disk partition with a kernel installed, the daemon can
simply instruct the node to boot from the local image. In many cases the node might not have a local boot image. This might be
because a decision has been made not to use the local disk to hold the OS. Or it might be that we want to boot a new
configuration that the node does not have installed. This could be a kernel upgrade, a distribution upgrade, or a library upgrade.
Whatever the reason, the new boot image is transferred over the network to the booting node, where it can either be loaded into a
RAM disk or it can be loaded into an available disk partition on the local disk so that future boots can be performed from local disk.
Whatever the source, when the beoserv daemon instructs the node to boot a new image an interesting process takes place. A
small bit of Scyld code known as "Two-Kernel Monte" loads the new kernel and tricks the old kernel into giving up control to the
new image. This bypasses the normal boot process, but effectly switches kernels to the new image.

The beoserv daemon need not instruct a booting node to boot at all. The daemon maintains a database of nodes, their
corresponding MAC addresses, and their current disposition in the system. A node that has never been booted before can be
placed in a holding pattern to wait for the system administrator to choose to boot it. Even nodes that have been previously booted
can be set to stay in the "down" state until such time as the sysadmin decides to bring it "up." In addition, when selecting a node to
boot, the sysadmin can specify whether to boot a local disk image or a server image, the logical node number of the node and
other configuration information.

Once a node has its boot instructions it loads and initializes its kernel the same way any other Linux computer does. The primary
difference at this point lies in the system startup scripts that are part of a Scyld Beowulf image. Put simply, Scyld Beowulf boot
nodes do not start any daemons or services that are not needed to bring the node to a running state other than the bproc slave
daemon. The bproc slave daemon contacts the bproc master daemon running on the master and enrolls the compute node as a
slave to the master. Once this is completed, the master can initiate processes on the node, and all processes, including any
service daemons, are started from the master by the beoboot system.

18.2.1 Programming and Debugging

Writing programs for a Scyld Beowulf is generally very straight-forward. Most users of a distributed memory parallel computer will
use a message passing library, such as MPI or PVM to write their program. Both MPICH (a popular implementation of MPI) and
PVM have configurations for use with Scyld. For the most part, these packages only have to be configured to use bpsh rather
than rsh or its equivalent for starting processes on the nodes. The only other issues comes in naming nodes. Under Scyld, nodes
are named .-1 (the master node), .0, .1, .2, and so on, whereas under other Beowulf installation, nodes may be named almost
anything. Other than this, the process of creating a socket and establishing a connection are exactly the same as on any other
Linux platform. MPICH and PVM are already configured with these issues in mind, and can be used directly for parallel
programming.

Running Parallel Programs
When running MPICH, there are a number of features to be aware of. The first of which is that under Scyld, most of the controls
for launching a job are controlled with environment variables. Thus, one can launch and MPI job without the traditional mpirun
command just by setting the various environment variables. For example, the environment variable NP specifies the number of
tasks to start. The variable NOLOCAL specifies not to run any tasks on the master (the default is to run the first task on the master,
the rest on the nodes). Table 18.1 lists the environment variables used when starting MPI jobs under Scyld.

Table 18.1: Environment variables used when starting MPI jobs.

Environment Variable mpirun flag Description

NP -np number of tasks to run

NO_LOCAL -nolocal no tasks on master

ALL_LOCAL -all_local all tasks on master

ALL_CPUS -all_cpus task on every cpu in the system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXCLUDE -exclude exclude nodes

BEOWULF_JOB_MAP -map specify node to use for each task

Otherwise, writing MPI programs for Scyld is about the same as for any other Beowulf system. On the other hand, things can be a
little different when writing more traditional programs or doing things more out of the ordinary within an MPI program. For example,
Scyld does not load a copy of shared libraries on the disk of the nodes unless this is specifically done as part of configuration (see
the section below on administration of Scyld systems). When a program is launched, all shared libraries referenced by the
program and not already loaded on the target node are loaded. On the other hand, shared libraries used by a program but not
referenced directly in the calling code (done via a call to dl_open() and the path to the library) cannot be loaded by Scyld, and
will fail unless the library referenced is already installed on the nodes.

Scyld Libraries
In addition to libraries such as MPI, programmers can take advantage of APIs provided specifically for Scyld systems. Table 18.2
outlines the libraries provided by Scyld. Of these, the bproc, perf, and beostat libraries are the most likely to be of interest to some
programmers.

Table 18.2: Scyld libraries.

libbeostat Library for returning compute node status info

libbeomap Library for finding available (unloaded) nodes

libbpsh Library for bproc shell-like functions

libbproc Library for access to Bproc API

libbpslave Library for compute nodes to receive Bproc requests

perf Library for access to Pentium Hardware Performance Counters

The bproc libraries provide access to routines for starting new processes under bproc and for moving existing processes. The perf
libraries provide access to performance counters in the Pentium hardware. beostat routines are for gathering node status info.
These facilities are most likely to useful to systems programmers rather than applications programmers.

Other libraries such a mathematical codes like lapack or IO packages such as HDF are pretty much independent of Scyld, unless
they have library loading issues as described above.

Debugging
Debugging parallel programs can be a complex task. Debugging programs with Scyld Beowulf can in many cases be easier than
on a standard Beowulf system because of the bproc process management. Typical debugging techniques for MPI programs
involve the use of MPE to generate a log file and tools such as Jumpshot [126] to help in analyzing the data. Using these tools on
Scyld Beowulf is no different than on any platform. Similarly, the use if print statements in the program code is relatively straight-
forward due to the structure of most MPI implementations.

On the other hand, sometimes these tools are not as effective as we may like for debugging. Other tools such as strace,
ltrace, and gdb are standard for debugging sequential programs, but are often difficult to use on a parallel program because the
processes are not local, but are distributed among many machines. On a standard Beowulf, the approach is to run all of the
processes locally, thus allowing these tools to be used, but on Scyld Beowulf, these tools can be used even if the processes are
remote. As an example, gdb can be made to attach to a running processes, and once attached can set breakpoints examine and
change memory, trace references, and a number of other useful things. On a standard Beowulf, this involves logging in to the
remote node the processes is running on, and then running GDB. On Scyld Beowulf, we merely need to identify the process id
and attach to it just like any other process.

Overall, debugging is not significantly different under Scyld Beowulf, but in some cases is a little easier and a little more flexible.
For more details on these debugging tools see their respective documentation and Section 8.8.

File I/O
A critical issue in an program is I/O. Most programs read at least some data from a file and output results to a file. The I/O may be
quite minimal, or it may be hundreds of megabytes. File I/O in any Beowulf system is an issue because there are several distinct
ways file I/O can be configured, and these alternatives have very different performance depending on how you use them. There
are three major options: local disks on the nodes, Network File System (NFS), or a parallel file system.

Local disks are easy to use, assuming your cluster has local disks. Each task in your program can simply open a file and read and
write data from and to that file. The difficulty comes in coordinating the files before and after running your program. If all of your
tasks need to read the same data, then you simply copy the file to all of your disks before the program runs. If they all need to
ready different parts of a single file, then you must divide the file accordingly and copy the correct part to each node. Similarly,
after running the program there are many output files that may need to be reassembled. Sometimes this is a complex enough task
as to not be worth the trouble. If your program requires that one task writes a file that is subsequently read by another task, this
will not work on local disks, the reading task will only see what was written on that node. If your program runs more than one task
on a node, then you must be careful in naming files to prevent a conflict. There are C library routines such as mktemp() that
make this fairly easy to do.

Another alternative is the use of NFS [109]. With NFS the disk or disks on one machine can be accessed from all of the nodes.
This eliminates the need to distribute and gather files before and after execution, and allows the tasks to read and write portions of
the same file simultaneously. The Master node can act as an NFS server, which works well for small clusters, or a dedicated
server might be set up. This machine can act as a slave, but usually is configured as a full server just like the master, but without

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server might be set up. This machine can act as a slave, but usually is configured as a full server just like the master, but without
acting as bproc master. This prevents traffic related to NFS from bogging down bproc traffic to and from the master. The down
side of NFS is performance. The NFS server becomes a bottleneck. Experience has shown that one a machine gets to be the
side of 100 nodes or more, the potential for severe performance problems exists. Even for much smaller clusters, if there is a
large amount of data read or written during the execution of a job, NFS can become the limiting factor to performance. In other
words the processors have to wait on the I/O. Other issues of concern include caching and other matters related to semantics as
implemented by NFS. In general NFS was not designed to act as a parallel file system, thus in many cases it does not behave as
one would expect.

The last option for file I/O is the use of a parallel file system. Parallel file systems allow program tasks to interact with a shared file
just like NFS, but they do it by distributing the data among many servers, and managing the I/O throughput across the network so
as the reduce or eliminate the effect of bottlenecks. An example of a parallel file system is PVFS [22], detailed in Chapter 19. Not
only do parallel file systems provide high performance access to shared files, they also tend to offer interfaces better suited to
parallel processing. As previously mentioned, there are issues of caching and other semantics that should make a parallel file
system better suited to parallel computing. The MPI specification includes a parallel I/O standard called MPI-IO as detailed in
Chapter 9. As discussed in chapter 19, one implementation of MPI-IO known as ROMIO [115] works with PVFS and MPICH
implementation of MPI.

On the down side, some parallel file systems are so tuned for high performance use by parallel programs that they are not
particularly well suited to common every day file system use the NFS is. In the end, it is usually best to provide all three forms of
storage and let each application make use of the facilities as best it can. User's home file systems and small config files work well
in NFS, large data files work well in parallel file systems, and local disks are still useful for certain types of logging and in other
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.3 Administration
One of the primary advantages to the single system image approach is simple system administration. Most administrative work,
from simple jobs like adding users to more complex tasks like adding network drivers or kernel modules, can be done simply by
manipulating the image, rather than manually configuring each node. Experience has shown that administration of traditional
Beowulf systems can be as labor intensive as managing a comparable number of workstations, with as much one full time
administrator required per 128 nodes. While nothing in the Scyld approach makes maintaining the cluster hardware any less labor
intensive, managing the OS is substantially simpler. In earlier chapters of this book, such as Chapters 5, 6, and 13, the
complexities of managing traditional clusters have been discussed in detail. This section contrasts with that the Scyld approach to
some common administrative tasks to provide some insight into the process of administering Scyld clusters versus the more
traditional approach.

Most of the administration tasks that will need to be done can be performed using Scyld's beosetup program, which provides a
GUI interface for performing all common configuation tasks. The system can also be configured and administered using command
line programs and by modifying relevant configuration files using a text editor. Table 18.3 lists the major configuration files. The
sections below describe common administration tasks, including the configuration files and tools related. Sysadmins new to Scyld
should probably try to use beosetup rather than using a manual approach until they are familiar with a running system.

Table 18.3: Common configuration files.

/etc/Beowulf Directory with Scyld Beowulf configuration files

/etc/Beowulf/config Main configuration file

/etc/Beowulf/fdisk Default disk partitioning for nodes

/etc/Beowulf/fdisk.1 Disk passioning for node 1

/etc/Beowulf/fstab Default fstab for nodes

/etc/Beowulf/fstab.1 Fstab for node 1

/var/Beowulf Node boot images

/var/log/Beowulf Node logging

/usr/lib/Beowulf Scripts and programs

While some functions of administering the cluster use the same configuration systems as normal Linux machines (such as user
accounts and groups), the Beowulf specific functions require additions to the "normal" set of Linux configuration files. Scyld
encapsulates the additional configuration information into a small set of files consistent with the Linux/UNIX administrative
philosophy. The '/etc/beowulf' directory contains information about cluster configuration and node management. Node boot
images and related information are kept in '/var/beowulf'. Node logging information is in the directory '/var/log/beowulf',
and scripts and programs used in booting are in '/usr/lib/beoboot'.

The sections below discuss how some of the normal tasks of a cluster administrator are performed using the Scyld Beowulf OS.
These tasks are broadly grouped into four categories: managing nodes, system maintenance tasks, failure detection and
recovery, and finally node allocation and scheduling.

18.3.1 Managing Nodes

A fairly frequent task for a Beowulf system administrator is the addition, deletion, or customization of the compute nodes. Like
most tasks on a Scyld Beowulf, all of these tasks are handled from the head node.

Adding and Deleting Compute Nodes
When a new node is added to the cluster, the phase 1 boot image must be booted on this node. This is the same procedure as
discussed previously in the install section, and can be done via floppy, CD, or PXE boot. When the node boots, it will make a
RARP request to the head node. When the head node sees this request, it examines the MAC address of the requesting node,
then examines it's configuration file, '/etc/Beowulf/config' to determine what to do.

If the MAC address of the node does not appear in the configuration file, the request is ignored, and the address is added to the
file '/var/Beowulf/unknown_addresses'. If the MAC address of the requesting node does appear in the configuration file,
there are two possibilities. If the address is labeled in the configuration file as "ignore", the request will simply be ignored.
Otherwise, the head node will respond to the compute node's RARP request, and assign it a node number corresponding to the
label or position in the configuration file. Nodes can be removed from the cluster by simply marking the corresponding line in the
configuration file as "ignore".

This behavior can be modified if the beosetup GUI is used when nodes are being added. This GUI includes an option to auto-
activate new nodes that appear as unknown addresses. This option is particularly useful when adding large numbers of new
nodes to the cluster. beosetup also allows you to drag and drop nodes between the unknown and active lists, reorder the node
list, and perform many other node setup features as mentioned in the installation section.

Compute Node Disks
One of the components in a Beowulf cluster that is most susceptible to failure is the disk drives. Due to the short product life
cycles of commodity hard drives, it is only a matter of time before a Beowulf cluster will be using several different types and sizes
of disk drives in the compute nodes. The single system image concept provided by Scyld and the Bproc system make it possible
to deal with frequent rebuilds of node file systems. However, it is important that the system image have flexibility in dealing with
different disk drives on which the image is to be stored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Scyld OS deals with this issue by keeping partition tables for each type of disk in the cluster in the '/etc/Beowulf' directory
on the head node. These partition tables are indexed by either the geometry and device number of the disk to which they apply.
This allows the head node to automatically determine the appropriate partitioning for a given disk drive at boot time. To add a new
type of disk drive to a cluster, the administrator can either manually add the new configuration, or take it from a running node.
When a new type of disk is installed on a node, the node can initially be booted using a RAM disk. The node's new disk can be
partitioned using the standard fdisk command via bpsh, then this partition table can be read in by the head node in the
appropriate format via the beofdisk command. beofdisk can also be used to propagate this partition table to every other node
in the cluster with the same hardware, eliminating the need to manually partition each disk.

Compute Node File systems
The default setting in Scyld Beowulf is for each node to use a RAM disk for it's root file system, and to use NFS to mount the
'/home' file system from the head. However, it is a simple process for the administrator to customize compute nodes to make use
of local disks, or to access any number of network or parallel file systems, either from the head or another accessible server.

In traditional Linux systems, the file systems a node mounts is determined by the '/etc/fstab' file. In the Scyld OS, compute
node 'fstab' files are kept in the '/etc/Beowulf' directory. A single file may be used to control all nodes, or, if there are
differences in node configurations, fstab files may be created for each node. Ideally, a single fstab would suffice for an entire
cluster (and frequently does), but sometimes certain nodes may have additional disks to provide additional swap or temporary
space, or to serve as I/O servers for a parallel file system. The list of network file systems available to nodes may change to allow
only certain nodes to have access to sensitive data.

The syntax for the 'fstab' files is identical to normal Linux syntax, and allows the use of RAM disks, local disks, NFS file systems,
or parallel file systems such as PVFS as described in Chapter 19.

The Scyld OS also provides a number of options for when node file systems should be rebuilt. To maintain a single system image,
some users opt to have all local file systems on a node rebuilt each time a node is booted. This option is particularly useful when
adding new nodes to the cluster. Some choose to use the local file systems for permanent storage, and never wish to rebuild
those images. Still others may choose for performance reasons to only rebuild node file systems when checks on the file system
fail, indicating errors. Scyld supports all of these options, and the policy can be changed at any time through the Beosetup GUI or
by editing the '/etc/Beowulf/config' file and sending HUP signals to the associated beoboot and bproc daemons.

Compute Node Shared Libraries
The Bproc system provided with Scyld allows jobs to be migrated quickly to the nodes by not migrating shared library code with
the nodes, but rather remapping these libraries within the process after it is migrated. To achieve high performance with this
technique, nodes must keep a cache of the shared libraries. Administrators can easily change the list of libraries kept cached on
the nodes to achieve good performance on any application. The '/etc/Beowulf/config' file contains a keyword libraries,
after which can be listed individual libraries or whole directories of libraries can be listed. All libraries listed in this line will be
moved to the compute nodes when they boot.

18.3.2 System Maintenance

Another group of important tasks involves the overall maintenance of the system, such as controlling the state of the nodes, the
boot image and kernel run by the nodes, and account management.

Controlling Node State
Compute nodes can be in any of a number of states, including up, down, unavailable, boot, reboot, error, and pwroff. As
a node powers up, it moves from the down state to the boot state, and, if all goes well, eventually to the up state. The state of a
node can also be controlled by the administrator via the bpctl command. This command allows the the administrator to set the
state (among other things) of all the nodes, individual nodes, or ranges of nodes. Bpctl can be used to reboot nodes, shut them
down, tag them as unavailable to users or mark them as back up.

Node Boot Images
Periodically, as updates become available or new drivers are added, the administrator may want to change either the phase 1 or
phase 2 boot images that are given to the slave nodes. Both images can be recreated through the beosetup GUI or via the
beofdisk command.

The phase 1 image rarely needs to be changed. It consists simply of a small RAM disk image and a minimal kernel, and is
designed to fit on a floppy disk or in a 2 megabyte partition at the start of a hard drive. The RAM disk and kernel can also be
generated separately for use with a PXE boot server.

The phase 2 image contains the runtime kernel, and may need to be updated more frequently. This image is created in a format
suitable for download by a phase 1 image. When the image is created, the head node must be running the same version of the
kernel as to be placed in the phase 2 image.

Kernel Maintenance
Periodically, administrators may wish to update kernels on their cluster to take advantage of bug fixes, new features, etc. More
frequently, an administrator may wish to add a device driver or new module to the existing kernel, and propagate this change to
the slaves. The kernel used in the Scyld system is not quite the standard Linux kernel, so the recommended procedure is to
download source for the new kernel from Scyld. If you wish to use a kernel version that is not available from Scyld, you should
have some expertise in hacking Linux kernels, and be prepared to add in a number of additional modules for beoboot, bproc,
PVFS, etc.

Adding drivers to kernels is a fairly simple task in a Scyld cluster. Most drivers are added via a dynamically loadable module, so
recompiling the full kernel is not necessary. In order to add a driver, you will need to compile the module twice, once with options
for the kernel on the head node, and a second time with the options for the beoboot kernel on the nodes. The correct options are
shown in Table 18.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 18.4: Parameters for building Scyld kernels.

For Uniprocessor kernel on head: -D__BOOT_KERNEL_SMP=0
-D__BOOT_KERNEL_UP=1

For Uniprocessor kernel for BeoBoot: -D__BOOT_KERNEL_SMP=0
-D__BOOT_KERNEL_UP=1
-D__module__beoboot

Each compiled version will need to be installed in '/lib/modules' in the appropriate directory for each kernel (the kernel for the
head has an _Scyld after the version number, the kernel for the compute nodes has an _Scyldbeoboot extension). Once the
modules are created, you will need to update your Beoboot images. If the module is a critical one, such as the module for your
compute node's primary network interface, you may need to update both the phase 1 and phase 2 kernel images.

If the new module is to be included in the phase 1 image, the '/etc/Beowulf/config' file must be edited to include this module
in the module list and to determine how it is loaded. The bootmodule lines in the configuration file list all the modules to be
included in the phase 1 image. Addition of new modules may require the deletion of some old ones if the phase 1 image must still
fit on the floppy drive. If you wish the module to always be loaded, you must also add a modprobe to the config file. If you wish it
to be loaded only when the corresponding hardware is detected, the system's PCI table must be edited. Finally, the new beoboot
images can be created including the new kernel modules using the beoboot command.

Additional Compute Node Boot Commands
System administrators may wish to perform site specific customizations of the compute nodes when they boot, such as starting
additional daemons or copying extra files to the nodes. At the end of the node boot cycle, each node runs a script called
node_up. During its execution, this script looks in the directory '/etc/beowulf/init.d' and executes any scripts it finds there.
This is where administrators can add any additional site-specific commands to be run. Any script run from this directory will have
the additional environment variable $NODE defined, which will contain the node number of the node on which the script is being
executed. This makes it possible to have the script only act on certain nodes, or act differently on each node if this is desired.

Account Maintenance
Managing user accounts on a Scyld system is just as easy as managing user accounts on a single workstation. All account
management is done from the head node, using the normal linux tools, for instance the adduser script or the passwd command,
or manual editing of the '/etc/password' file. Compute nodes see exactly the set of user IDs and permissions that are available
on the head, and need no passwords.

This removes a number of authentication problems that can exist in traditional Beowulfs. For instance, as seen in Chapter 5, in a
traditional Beowulf, user accounts must be added on every node with the same user ID, and passwords must be kept consistent
on every node, or some central account management service such as NIS (Network Information Service) must be maintained and
accessed via the network by all nodes. Typically, users wish to spawn tasks on compute nodes of the cluster without being
prompted for a password. The solution to this problem is usually to maintain a 'hosts.equiv' or '.rhosts' file on every node in
the Beowulf, which contains the name or network address of every other node in the Beowulf. This file must be kept to up-to-date
each time the cluster's configuration changes.

Managing groups is equally simple. Groups take on an added importance in Scyld clusters. In addition to the traditional use of
managing file access, groups can be used to manage access to compute nodes. Groups are defined by the file '/etc/group',
and can be changed by directly editing the file, or through the standard usermod, groupadd and groupdel commands.

More sophisticated mechanisms to prevent User and Group ID-space conflicts are being built into the newest version of the Scyld
OS to allow for clusters with multiple heads, primarily to provide high availability or failover capabilities.

18.3.3 Failure Detection and Recovery

An important issue whenever working with a large number of nodes is detecting their failure and recovering. This includes systems
for monitoring the nodes, and strategies for replacing a failed node.

Monitoring Cluster Status
The Bproc and Beoboot packages provide useful libraries for tracking the status of your cluster from a central location. The Scyld
Beowulf OS provides a number of tools that take advantage of these libraries to allow administrators to better control their
clusters, as well as the APIs for the creation of more sophisticated tools.

Among the tools provided for for cluster monitoring are the tools beostatus and bpstat, which are designed for direct user
interaction, and the beostat tool which is more appropriate for embedding in scripts. beostatus provides a display of common
performance metrics for each node, such as CPU, memory, and network utilization. The output display can be graphical or text
based. Bpstat provides a summary of the state and permissions for each node, and can also be used in conjunction with the UNIX
ps command to list which compute node every bproc process is running on. The beostat tool provides any of the information
normally available in the '/proc' file system of a Linux machine for any or all of the compute nodes. The 'libbeostat' library
and the bproc kernel module provide a variety of system calls and library functions which make cluster status information easily
available to a programmer. These calls can be used for making more sophisticated status reporting tools, or to import status
information into load management and other tools. 'libbeostat' has a library call to report each of the same fields as the
beostat command line tool, ranging from node status to CPU speed and about twenty other quantities.

Web Based Monitoring
Most of the functionality provided by the beosetup configuration tool, the beostatus monitor, and the Beowulf batch queue
monitor can also be accessed through the web on a Scyld Beowulf cluster. All of these functions are provided as add-ons to the
standard webmin interface for remote system administration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard webmin interface for remote system administration.

Compute Node Failure
Inevitably, nodes will eventually fail. This may be do to software failures somewhere along the boot process, such as file system
errors or bad scripts added to the boot sequence, or a variety of hardware failures. In the case of software failures, the node is
placed in the error state and a complete log of both the phase 1 and phase 2 boot process is stored on a per node basis in the
directory '/var/log/Beowulf' in a file named 'node.<nodenumber>'. This makes debugging possible without having to
physically access one of the compute nodes.

In the case of a hardware failure, Scyld provides no additional support beyond simply marking the node as being in the down or
error state. A system administrator would be well advised to employ one of the cluster management techniques described in
Chapter 13 to debug hardware issues.

In either case, the Scyld OS continues to function in the event of a compute node failure. Processes currently running on a node
that fails will be lost, and it is up to the application to provide checkpoints if recovery of the job is possible. However, the system as
a whole will continue to function, and the OS will not schedule any new tasks on the node that has failed. Unfortunately, some
applications and/or users may hard code node numbers into scripts that run jobs. While this practice should generally be
discouraged, system administrators can compensate this by simply reordering the node list such that another node takes the
place of the one that has failed. For instance, say a cluster has one spare node available for failover. If node 15 on that cluster
fails, the administrator can either use the beosetup GUI or edit the configuration file to place the MAC address of the spare node
in the 15th position on the node list. If the administrator then boots the spare node, it will come up as node 15. The users will then
see the same set of nodes they always see, and service was not interrupted on any other node, though anything on the original
node 15 at the time of the failure will be lost.

18.3.4 Node Allocation and Scheduling

One of the primary chores of running a large Beowulf is allocating and scheduling nodes to particular jobs or to particular users.
The Scyld/bproc system provides an elegant means for providing access to nodes, and a simple set of tools for allocation and
scheduling. These mechanisms can in turn be used as a basis for building more sophisticated tools.

The core of the node allocation mechanism is the Bproc permission model. Nodes are given owners, groups, and permission bits,
much like the UNIX file permission system. For nodes, the "read" and "write" bits are meaningless, only the execute bit has
importance. Nodes are given an owner and group user ID. The permission bits allow the administrator to define whether a node
can be used by the owner, by all members of the group, or by all users. Permissions can be changed on the fly manually by the
administrator, or can be set by allocation and scheduling software to restrict node access.

The Beowulf Batch Queue
Scyld Beowulf includes a simple load management system based on the UNIX at facility known as bbq, the Beowulf Batch
Queue. The bbq system queues jobs submitted by users, and runs them on a first-come, first-served basis to processors deemed
available by the beomap calls. The number of processors required for a particular job is determined from the users submitted job
script. A request for this number of processors is made of beomap, which will return a list of processor numbers which have a load
average below 0.8. The job is then issued to this list of processors.

The scheduling policy implemented in BBQ can be changed by replacing 'libbeostat', or by just replacing the call
get_beowulf_job_map(). BBQ is a functional scheduler for simple workloads, but lacks the ability to enforce limits on job time,
out-of-order execution, and other features expected in a modern scheduler. If a Beowulf has a fairly complicated workload, the
PBS system described in Chapter 17 has also been modified to work with Scyld Beowulf, and may provide a better option.

18.3.5 Scyld Command Summary

The commands listed in Table 18.5 are used to perform all of the Scyld system administration tasks. New administrators should
stick to the GUI systems provided, but in some cases these commands can be very useful. Man pages are provided online with all
of the details.

Table 18.5: Scyld command line programs.

atd Beowulf Batch Queue daemon

atrm Remove jobs from batch queue

batch Submit job to queue

bbq Check queue status

bdate Set the time and date on slave nodes

beoboot Generate Beowulf boot images

beoboot-install Install beoboot on compute node drives

beofdisk Partition slave node disks

beoserv Beoboot server daemon

beostatus Interactive status tool

beostat Display raw data from libbeostat

beowebenable Activate web access

bpcp Copy files to compute nodes

bpctl Set node state and ownership

bpmaster The bproc server daemon on the head

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bpsh Run programs on compute nodes

bpslave Bproc client daemon on compute nodes

bpstat Show node status information

linpack Run linpack benchmark

mpprun Launch a non-parallel job on compute nodes

mpirun Launch an MPI job on compute nodes

node_down Shutdown compute nodes cleanly

recvstats Daemon to receive multicast status info for libbeostat

sendstats Daemon to send multicast status info for libbeostat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.4 Features in Upcoming Releases
The Scyld Beowulf OS continues to evolve over time, and many new features are planned for upcoming releases, primarily
focused on scalability and high reliability. Beowulf clusters are being built with larger and larger numbers of nodes, and are more
often now used in production environments. Larger clusters often require substantially different techniques than those used to run
8, 16, or 64 node clusters, and production environments find downtime to deal with hardware failures or upgrades less acceptable.

18.4.1 Failover Head Nodes

One of the most important new features will be support for multi-headed clusters. While a current Scyld cluster can continue to
function in the event of a compute node failure, the head node remains a single point of failure. In the upcoming release, a new
head node can take over when the original head fails.

This is achieved by adding some extensions to the bproc model. Bproc is being extended to allow slave processes to detach from
the head node that spawned them, and run independently. These tasks can then continue to run to completion on their own, or
they can use the slave daemon on the nodes to contact a new master, and insert themselves into the process table of the new
head node. This will allow a switch from one head to another without disrupting any ongoing jobs.

18.4.2 Scalable bproc Job Spawning

The bproc mechanism provides extremely rapid migration of jobs from the head node to the compute nodes. However, as the
number of compute nodes grows to hundreds or even thousands, the total time to launch jobs via bproc can become substantial.
Future versions of bproc will contain the ability to do a tree-based spawn. In this system, the head node will migrate tasks to
nodes at the top of the tree, and these nodes will then migrate the tasks to additional nodes, and so on. This offloads some of the
load of spawning tasks from the head, and removes a potential bottleneck. Experimental work at Scyld has shown that this
approach begins to become useful as clusters grow past 256 nodes using a single head.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5 Conclusion
Scyld Beowulf is a packaged product that makes the installation, management, and use of Beowulf computers easier and more
effective. The main tools for doing this are the bproc process management libraries and the beoboot node management tools.
Together these tools create an effective single system image that allows all installation and management activities to be
performed from a single master node. From the programmer's perspective, a Scyld Beowulf is pretty much the same as any
Beowulf system, right down to the use of tools and libraries for parallel programming. Current development of Scyld Beowulf is
exploring new ways to use its unique features to provide even better system management for clusters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19: Parallel I/O and the Parallel Virtual File System

Overview
Walt Ligon and Rob Ross

Ever more frequently users of clusters find themselves in an interesting situation: it isn't the processors, communication network,
or memory that is limiting their application; it is the storage system. This might force the users to checkpoint less frequently than
they would like, might limit the resolution of output visualization data, or might prevent the use of out-of-core solutions needed for
the largest of problems. What's worse, the I/O hardware in the system may indeed be adequate for the user's needs but may be
being used ineffectively by one of the many software layers involved.

A lot of mystery surrounds I/O solutions in clusters today. For this reason we have rewritten this chapter in the second edition. We
begin by covering what we believe are some of the most important issues in parallel I/O systems. These include parallel access
patterns, parallel I/O system components and architectures, and consistency semantics. Knowing how parallel I/O systems
operate and the issues involved can be useful when performance tuning an application for a particular system or choosing an I/O
solution to match expected workloads. This material builds on material in many preceding chapters, including the I/O hardware
discussion in Chapter 2, the local and distributed file system discussion in Chapter 3, and the network hardware discussion in
Chapter 4.

Following this more general discussion, we delve into PVFS, specifically covering some of the quirks of PVFS, management and
tuning, and approaches for narrowing down the source of problems that may crop up. Finally, we discuss some critical issues for
parallel file systems and how PVFS2, the next-generation parallel file system being developed by the PVFS team, attempts to
address these.

These are very interesting times for parallel file systems on Linux clusters. As we are writing this chapter, the Lustre, PVFS2, and
GPFS groups are all bringing new parallel file systems to the Linux cluster environment. The relative success of each of these is
not likely to be known for quite some time, but we can certainly hope that at least one of these projects will result in a new, high-
performance parallel file system designed to operate on systems with thousands of nodes (and, we hope, more!).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1 Parallel I/O Systems
What do we mean by a "parallel I/O system"? At a high level three characteristics are key:

multiple hardware I/O resources on which data will be stored,

multiple connections between these I/O resources and compute resources, and

high-performance, concurrent access to these I/O resources by numerous compute resources.

Parallel I/O systems get their performance by using multiple I/O resources that are connected to compute resources through
multiple I/O paths. Multiple physical I/O devices and paths are required to ensure that the system has enough bandwidth to attain
the performance desired. The hardware could consist of nodes with local disks attached via more traditional IP networks, a
separate storage area network, or something else entirely; all of these are valid options for parallel I/O systems.

The third characteristic is easily as important as the first two but is considerably more difficult to pin down. Parallel I/O systems
should be designed from the bottom up with the assumption that performance is a key attribute and that concurrent access to
resources will be commonplace. This characteristic is heavily dependent on the software architecture; the software managing the
hardware resources can make or break a parallel I/O system.

Often I/O systems that have multiple connections and hardware devices but don't cater to high-performance concurrent access
are called distributed file systems. The software in these systems is tailored to other workloads. Chapter 3 discusses distributed
file systems such as NFS.

A parallel file system is simply a component of a parallel I/O system that presents a hierarchical (file- and directory-based) view of
data stored in the system. In the next section will see where this component fits into the big picture.

19.1.1 Components of a Parallel I/O Stack

A parallel I/O system includes both the hardware and a number of layers of software, as shown in Figure 19.1. While this chapter
really focuses on parallel file systems and PVFS in particular, it is important to understand what other components might be
involved and how these work together to provide a reasonable solution to a tricky problem.

Figure 19.1: Parallel I/O System Components

At the lowest level is the I/O hardware, described briefly in Chapter 2. This layer comprises the disks, controllers, and interconnect
across which data is moved. Obviously, this hardware determines the maximum raw bandwidth and the minimum latency of the
system. The bisection bandwidth (defined in Chapter 4) of the underlying I/O transport is an important measure for determining
the possible aggregate bandwidth of the resulting parallel I/O system, just as it is an important measure for the communication
network as seen in Chapter 4. At the hardware level, data is usually accessed at the granularity of blocks, either physical disk
blocks or logical blocks spread across multiple physical devices, such as in a RAID array.

Above the hardware is the parallel file system. The role of the parallel file system is to manage the data on the storage hardware,
to present this data as a directory hierarchy, and to coordinate access to files and directories in a consistent manner. Later in this
chapter we'll talk more about what "consistent manner" means, as this is an interesting topic in itself. At this layer the file system
typically provides a UNIX-like interface allowing users to access contiguous regions of files. Additional low-level interfaces may
also be provided by the file system for higher-performance access.

While some applications still choose to access I/O resources by using a UNIX-like interface, many parallel scientific applications
instead choose to use higher-level interfaces. These higher-level interfaces allow for richer I/O description capabilities that enable
application programmers to better describe to the underlying system how the application as a whole wants to access storage
resources. Furthermore, these interfaces, especially high-level I/O interfaces, provide data abstractions that better match the way
scientific applications view data.

Above the parallel file system layer sits the MPI-IO implementation. The MPI-IO interface [46], part of the MPI-2 interface
specification, is the standard parallel I/O interface and exists on most parallel computing platforms today. The role of the MPI-IO
implementation, in addition to simply providing the API, is to provide optimizations such as collective I/O that are more effectively
implemented at this layer. In some sense the job of MPI-IO is to take accesses presented by the user and translate them, as best
as possible, into accesses that can be performed efficiently on the underlying parallel file system. This makes the MPI-IO interface
the ideal place to leverage file system-specific interfaces transparently to the user. The MPI-IO API is covered in Chapter 9.

The MPI-IO interface is useful from a performance and portability standpoint, but the interface is relatively low level (basic types
stored at offsets in a file), while most scientific applications work with more structured data. For this reason many scientific
applications choose to use a higher-level API written on top of MPI-IO (e.g., HDF5 [25] or Parallel netCDF [66]). This allows
scientists to work with data sets in terms closer to those used in their applications, such as collections of multidimensional
variables. These high-level interfaces often provide the same level of performance as using MPI-IO directly. However, one should
be aware that in practice the implementation details of some of these systems do sometimes add significant overhead [96].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1.2 Access Patterns and Scientific Applications

Applications exhibit all sorts of different access patterns, and these patterns have a significant effect on overall I/O performance.
The cat program, for example, accesses blocks of a file starting from beginning to end. This is the ideal pattern of access for most
file systems, because many systems can identify this pattern and optimize for it, and the prefetching implemented in many I/O
devices also matches with this well. This pattern is seen for a large number of applications, including video and audio streaming,
copying of data files, and archiving.

Database systems use I/O resources as another level of memory. In doing so, they tend to access it in very large blocks
(contiguous data regions) in an order that the I/O system cannot always predict. However, because the blocks are large and are
aligned to match well with the underlying disks, this access pattern can also match well with the I/O system.

Studies tell us that the access patterns seen in scientific applications are significantly different from what we see in these other
application domains. Scientific applications are in some sense worst-case scenarios for parallel I/O systems. One such study, the
CHARISMA project [79], provides a great deal of insight into the patterns seen in scientific applications. We will extract some of
the more important points here.

The CHARISMA project defines sequential access as a pattern where each subsequent access begins at a higher file offset than
the point at which the previous access ended. Most of the write-only files were written sequentially by a single process. This
behavior was likely because in many applications each process would write out its data to a separate file. This may have been an
artifact of poor concurrent write performance on the studied platform. Read-only files were accessed sequentially as well, but
regions were often skipped over by processes indicating that multiple processes were somehow dividing up the data. About a third
of the files were accessed with a single request.

Figure 19.2 shows an example of a nested-strided access, in this case utilizing three strided patterns in order to access a block of
a 3D data set. The study noted that strided access patterns were very common in these applications, with both simple (single)
strides and nested strides present. A nested-strided pattern is simply the application of multiple simple-strided patterns, allowing
the user to build more complex descriptions of stored data. These patterns arise from applications partitioning structured data
such as multidimensional arrays. More recent studies, such as an analysis of the FLASH I/O benchmark [96], support these
findings, although in this particular case the strided patterns occur in memory rather than in the file (which is written sequentially)
and data from all processes is always written to a single file.

Figure 19.2: Nested-Strided Example

What does all this mean to us? First, it indicates that application programmers really can benefit from the descriptive capabilities
available in high-level interfaces. Second, it suggests that the layers below these high-level interfaces should be capable of
operating in terms of structured data as well. As we will see in the next section, some parallel file systems fall short in this area.

Because of the differences in access patterns between various applications, I/O solutions that work well for one application may
perform poorly for another. This situation encourages us to consider using multiple file systems in the same cluster to fill particular
roles. For example, a very reliable distributed file system that might not handle concurrent writes well could be a very useful file
system for storing home directories in a large cluster. For smaller clusters NFS might fill this role. On the other hand, a very fast
parallel file system with no fault tolerance capabilities might be perfect for storing application data used at run time that is backed
up elsewhere. With this in mind, we will now discuss some typical parallel file system architectures with specific examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2 Parallel File System Architectures
Numerous parallel I/O systems have been built, although few have seen wide use. If we look at these file systems we do see
trends in how the systems are designed. The architecture of these systems, both hardware and software, can have a significant
effect on application performance, particularly with the demanding access characteristics of scientific applications.

We discuss the two most common architectures, including the components of the systems and some of the key characteristics.
These architectures serve as a starting point for discussion of specific parallel file systems. For each architecture we give three
example file systems, all of which have run on Linux at one time or another, and all of which have had an impact on parallel I/O
systems of today.

19.2.1 Shared Storage Architectures

File systems relying on a shared storage architecture are the most popular approach for large production systems. The reason
rests at least in part on the popularity of storage area networks (SANs) and fibre channel (FC) storage. File systems using shared
storage have the common feature of accessing block devices remotely, either through direct attach hardware (such as FC disks)
or through intermediate I/O servers that provide a block-oriented interface to disks attached locally to the server. In either case, a
key component of these systems is a locking subsystem. The locking subsystem is necessary to coordinate access to these
shared resources. While we will not discuss the issue of fault tolerance with respect to the locking subsystems of the example file
systems, we note that a significant amount of effort has been put forth to ensure that locks can be recovered from failed nodes.
This is a complicated problem, and the cited works discuss the issues in detail.

Some file systems that use shared storage implement a "virtual block device" in order to separate the access of logical blocks of
data from their physical representation on storage. This virtual block device provides a mapping from logical blocks to physical
storage. A file system component builds on this to provide the directory hierarchy for the file system, just as a local file system
builds on a disk or RAID volume. This approach is advantageous from a system management point of view. The virtual block
device, because it abstracts away physical data location, can provide facilities for data migration and replication transparent to the
upper layers of the system. This approach simplifies the implementation of the upper level components. Further, this virtual block
device provides a mechanism for adding and removing hardware while the system runs. Data blocks can be migrated off a device
before removal and can later be moved onto a newly installed device. This capability is very valuable in systems that must provide
high availability.

The abstraction is, however, limiting in some ways as well. First, all file system accesses must be translated to block accesses
before hitting this component. Because scientific applications often have noncontiguous access patterns, this approach can result
in read/modify/write patterns that could have been avoided if more fine-grained accesses were allowed. Second, control over
physical data locations is lost to the upper layers. While few scientific applications currently try to perform careful block placement
for performance reasons, this could be an issue as groups attempt to further push the boundaries of I/O performance. Finally, this
additional level of indirection adds overhead in the system, increasing the latency of operations.

A number of systems are available with this architecture. The first two example systems that we cover, Frangipani and GFS, rely
on virtual block devices. The last, GPFS, uses a slightly different organization. SGI's CXFS file system, not discussed here, has a
similar architecture to GFS.

Frangipani and Petal
The Frangipani and Petal systems, originally developed at Digital Equipment Corporation (DEC), together form a good example of
the virtual block device approach. The Petal [65] component implements a virtual block device with replication, snapshotting, and
hot swapping of devices. It presents a simple RPC-like API for atomically reading and writing blocks that higher-level components
can use to build a file system. The Petal component runs on nodes that have attached storage. Instances of the Petal component
communicate to manage these devices, as not all Petal instances can directly access all the devices that make up the virtual block
device.

The Frangipani [118] component implements a distributed file system on top of Petal. A distributed locking component is used by
Frangipani to manage consistency. Locks are multiple-reader, single-writer and are granted on a per file basis. Locks are "sticky";
clients hold onto locks until asked to release them by the locking subsystem, allowing for read and write caching at the client side.
The Frangipani component runs on nodes that access the shared storage region. Instances of the Frangipani component do not
communicate with each other, only the locking component and Petal.

Figure 19.3: Frangipani and Petal File System Architecture

This architecture provides us with a good opportunity to introduce a common term in distributed file systems. A system can be
considered a serverless distributed file system if nodes work together as peers to provide a shared storage region, as opposed to
some specific server or servers providing this functionality [5]. When the term was coined back in the mid-1990s, systems weren't
particularly large (the referenced paper tested on 32 nodes), and the point was really to distribute both metadata and data across
multiple nodes more than to actually use every node as a storage resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In any case, it's easy to imagine that the Frangipani and Petal approach could be used in this "serverless" mode with Petal
running on all clients, or it could be used in a system with a collection of heavy-duty servers with RAID arrays running Petal, with
most nodes running only Frangipani. Without knowing more about a particular architecture, it's not clear which of these would be
the right choice.

Frangipani and Petal are an early and well-documented example of this architecture. The Frangipani and Petal code is still
around, although obtaining it seems difficult. At the time of writing rumor was that the code has been ported to Linux 2.4 and is
floating around at one of the major hardware vendors. Perhaps it will pop up again to compete with some of the currently available
systems.

GFS
The Global File System (GFS) was originally developed at Minnesota and is now developed and supported by Sistina [89, 88].
GFS is actively maintained and improved by Sistina. An older version of the source code, originally released under the GPL, is
also available under the name OpenGFS. GFS also uses a virtual block device architecture, in this case using LVM (Logical
Volume Manager) underneath the GFS file system layer.

GFS currently uses a "Pool" driver to organize storage devices into a logical space. They are investigating the use of LVM [52], a
newer system for organizing multiple physical storage devices into "volume groups" and then partitioning these into "logical
volumes," which are the virtual equivalent of partitions on a disk. Just as with Petal, the Pool driver (and eventually LVM) provides
capabilities for snapshotting and hot swapping of devices. The typical installation of GFS uses some number of nodes connected
to shared fibre channel storage, with all nodes running both the LVM and GFS software (making it serverless). Alternatively a
GNBD component can be used to provide remote access to a storage device over IP. This is similar to the VSD component in
GPFS, which will be discussed in the next section.

GFS stores data as blocks on this virtual block device. A locking subsystem, OmniLock, provides the locking infrastructure
necessary to ensure consistency. A number of locking modules are available with OmniLock allowing the locking granularity to be
tuned to match expected workloads. Locks are sticky here as well, again allowing for read and write caching of data at the client.

GPFS
The General Parallel File System (GPFS) from IBM grew out of the Tiger Shark multimedia file system [100] and has been widely
used on the AIX platform. Unlike the other file systems described, GPFS has no explicit virtual block device component. Instead
GPFS simply uses one of two techniques for accessing block devices remotely and manages these devices itself. IBM's Virtual
Shared Disk (VSD) component allows storage devices attached to multiple I/O nodes to be accessed remotely. VSD is different
from the previous two approaches in that no logical volume management is performed at this level; it just exports an API to allow
access to the devices. Alternatively, the VSD component can be avoided by attaching all nodes that wish to access the system to
a SAN that gives them direct access to storage devices (Figure 19.4). This can be an expensive solution for large clusters, thus
the existence of the VSD component. The newer Linux version of GPFS uses a similar component, called the Network Shared
Disk (NSD), to provide remote access to storage devices.

Figure 19.4: GPFS Architecture Using Storage Area Network

In either case, GPFS operates on a shared storage region using block accesses. Because there is no volume management,
however, GPFS sees multiple devices. This approach was a conscious decision on the part of the developers to provide the file
system with direct control over striping of data across devices. A side effect of this decision is that volume management and fault
tolerance capabilities must be handled outside of the VSD, either below the VSD or in GPFS. RAID devices can be used below
the VSD layer (or directly attached via the SAN). In addition to or in place of RAID, GPFS also supports data and metadata
replication at the file system layer. If this capability is enabled, GPFS will allocate space for a copy of data on a different disk and
keep copies synchronized. In the event of a temporary failure, GPFS will continue to operate and will update the device when it is
returned to service. Likewise, functionality for migrating data onto new devices or off bad ones is also implemented within GPFS.

GPFS relies on a distributed locking component to guarantee consistency. Similarly to the other two systems, locks are acquired
and kept by clients who then cache data. The granularity of locking in GPFS is at the byte-range level (actually rounded to data
blocks), so writes to nonoverlapping data blocks of the same file can proceed concurrently.

GPFS provides as an alternative a consistency management system called data shipping. This mode disables the byte-range
locks described above. Instead nodes become responsible for particular data blocks, and clients forward data belonging in these
blocks to the appropriate node for writing. This approach is similar to the two-phase I/O approach often applied to collective I/O
operations [113]. It is more effective than the default locking approach when fine-grained sharing is present, and it forms a
building-block optimization for MPI-IO implementations.

The GPFS system also recognizes metadata blocks as distinct from data blocks. A single node that is accessing a file is given
responsibility for metadata updates for that file. A multiple-reader, multiple-writer system then is applied to metadata that allows
concurrent updates in many circumstances.

GPFS is arguably the most successful parallel file system to date. It is in use on a variety of large parallel machines, such as ASCI
White, a 512-node Power3-based system. We note that only 16 I/O server nodes (running VSD) are used in that particular
instantiation. At this time GPFS has been made available in a limited fashion on IA32 and IA64 Linux systems but has not seen
widespread use on these platforms.

19.2.2 Intelligent Server Architectures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second common approach to parallel file systems is the use of "intelligent" I/O servers. By this we mean that the servers do
more than simply export a block-oriented interface to local storage devices. These systems usually communicate with clients in
terms of higher-level constructs, such as files (or parts of files) and directories. Specific operations to act on metadata atomically
might be included as well, rather than treating them as data operations as in the previous systems. Further these servers have
knowledge that the data they are storing corresponds to particular file system entities (e.g., files or directories), not just arbitrary
blocks on a storage device. Hence they have the potential to accept more complex, structured requests than are possible with
other approaches. This is a particularly useful capability for scientific applications given their structured file accesses.

Designers of systems using this architecture often logically separate the storage of metadata from the storage of file data. This
approach allows for flexibility in configuration because they can choose to handle metadata operations with different servers from
the I/O traffic. Because providing distributed metadata services is more complicated than placing metadata in a single location,
some systems support only a single metadata server while maintaining many I/O servers. On the other hand, using a single
metadata server adds a potential bottleneck, so some systems distribute metadata across multiple servers, possibly even all the
I/O servers. We will see examples of both of these approaches in upcoming sections.

Groups have been implementing parallel file systems using this approach for quite some time as well. Two of these systems are
the Galley parallel file system and the Parallel Virtual File System (PVFS). An emerging parallel file system, Lustre, also has this
type of architecture.

Galley
The Galley parallel file system [78] was developed at Dartmouth College in the mid-1990s (Figure 19.5). It was a research file
system designed to investigate file structures, application interfaces, and data transfer ordering for parallel I/O systems. As such
many things that we expect from a production file system were never implemented, including kernel modules to allow mounting of
Galley file systems and administrative tools.

Figure 19.5: Galley Architecture

Galley breaks user's files into subfiles, which are stored on Galley servers. These subfiles have forks that allow for multiple byte
streams to be associated with a particular subfile as well and can be used for more complex storage organizations. The client-side
code handles placement of file data into appropriate subfiles and forks. Metadata is also stored on all the Galley servers. File
names are hashed to find a server on which to store data (a technique also used by the Vesta parallel file system [29], which we
will not cover in detail here).

Galley servers understand strided and batch accesses, making the interface quite rich. Many of the application access patterns
seen in the CHARISMA study, as well as the patterns seen in the Flash I/O study, could be described with Galley's I/O language
as single accesses.

Galley also implements disk-directed I/O [62], a method for organizing how data is moved between client and server. In disk-
directed I/O, the server calculates a preferable ordering of data transfer based on predicted disk access costs. This ordering is
then used when moving data. The method worked well for many access patterns, although the designers of Galley did see low
performance due to network flow control problems in some cases. Later work showed that a more general approach of optimizing
for the bottleneck resource can be more effective [97].

While Galley never made it into production, it is an excellent example of the intelligent server approach. Further, many of the ideas
embodied in this design, in particular rich I/O request capabilities and more complex file representations, are becoming key
components of new parallel file system designs. The Galley source code is available online [41].

PVFS
The Parallel Virtual File System (PVFS) [22] was originally developed at Clemson University by the authors of this chapter, starting
in the mid-1990s, and is now a joint project between Clemson University and the Mathematics and Computer Science Division at
Argonne National Laboratory. PVFS is designed to be used as a high-performance scratch space for parallel applications.

PVFS file systems are maintained by two types of servers (Figure 19.6). A single metadata server, typically called the "mgr"
because of the name of the daemon that runs on this server, maintains metadata for all files. For many workloads and
configurations this is not seen as a bottleneck, although it is increasingly becoming one as systems grow in numbers of nodes.
Separate I/O servers handle storage of file data. File data is distributed in a round-robin fashion across some set of I/O servers
using a user-defined stripe size. Thus a simple algorithm can be used to determine the I/O server holding a particular file region.
This simplifies the metadata stored on the metadata server and eliminates the need for metadata updates as files are written. I/O
servers write to local file systems, so local disk management is managed by the local file system. Likewise, single disk failures can
be tolerated by using a RAID to store local file system data at the I/O server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19.6: PVFS File System Architecture

PVFS uses what the authors term stream-based I/O for data movement. PVFS transfers data using TCP, and the stream-based
I/O technique leverages this by predefining a data ordering and eliminating all control messages in the data stream. This approach
is able to attain very high utilization of TCP bandwidth; however, in many cases PVFS is disk bound, not network bound. The
more adaptive approach given in [97] would likely provide better overall performance, but it was not merged into the PVFS source.

PVFS implements simple strided operations. These can be useful for some patterns; however, a more general approach is
necessary for implementing MPI-IO operations. More recently a more flexible (but less concise) system was added for accepting
arbitrary lists of I/O regions as single operations [27]. Called List I/O, this was first proposed in [115] and has been shown to be of
great benefit to some access patterns. Support is provided in ROMIO for leveraging this; the hint to enable this is described in
Section 19.4.4.

PVFS has no locking component. Instead, the metadata server supplies atomic metadata operations, eliminating the need for
locking when performing metadata operations. Data operations are guaranteed by I/O servers to be consistent for concurrent
writes that do not overlap at the byte granularity, but byte-overlapping concurrent writes result in undefined file state. This
approach allows for a relatively simple system with no file system state held at clients, but it precludes client-side caching, which
makes for very poor performance in a number of cases, particularly uniprocess workloads where systems from the preceding
section would perform well.

Further, PVFS does not implement any form of fault tolerance. RAID can be used to tolerate disk failures, but node failures cause
the system to be at least temporarily unusable. High-availability (HA) software is being investigated as a solution to this problem.

PVFS is also missing many of the administrative features that file systems such as GPFS offer. This limitation, combined with the
lack of fault tolerance, has dissuaded many sites from using PVFS.

Nevertheless, PVFS has made it into production use at a number of sites around the world, mainly as a large, shared scratch
space. PVFS is actively developed and supported, and the source for the file system, now commonly referred to as PVFS1 by the
developers, is freely available online [90]. Because of its easy installation and source availability, many I/O researchers have
chosen to compare their work to PVFS or to use PVFS as the starting point for their own research. We couldn't be happier that so
many people have found this work to be so useful!

PVFS1 is showing its age, and a new version is under development to replace it before typical systems scale beyond its
capabilities. We discuss this version, PVFS2, later in the chapter.

Lustre
The Lustre file system [17] is being developed by Cluster File Systems. At the time of writing the Lustre file system is under
development, but much documentation and early code is available. The Lustre design benefits heavily from previous work in
parallel file systems.

One of the key features of Lustre is the use of modules connected by well-defined APIs. This is seen in at least three areas:
networking, allowing for multiple underlying transports; metadata storage, allowing for multiple underlying metadata targets; and
object (data) storage, allowing for caching and multiple underlying data storage technologies. In the latter two cases modules can
be stacked to implement additional functionality. This provides great potential for the reuse of significant portions of the code when
porting to new platforms or adding support for new hardware. Lustre uses the Portals API [19] for request processing and data
transfer. Portals is a full-featured, reliable transfer layer designed for use in large-scale systems over multiple underlying network
technologies.

Lustre breaks the nodes of the system into three types: clients, Object Storage Targets (OSTs), and Metadata Servers (MDSs).
Object Storage Targets store objects, similar to inodes, which hold file data. OSTs perform their own block allocation, simplifying
the metadata for a file in a manner similar to previous systems [22]. Objects can be stored on a number of back-end resources
attached to OSTs, including using raw file system inodes. Alternatively data can be stored on more traditional SAN resources. In
this case OSTs would still be in place, but would handle only authentication and block allocation, allowing data to be transferred
directly between clients and SAN storage devices. This is similar to the GPFS approach when the VSD component is not used.
This configuration could be convenient for sites with a SAN already in place.

Metadata servers store attributes and directory hierarchy information that is used to build the name space for the file system.
Lustre's design calls for multiple MDS nodes in order to help balance the load on these systems. The protocol for metadata
operations is explicit and transaction based, allowing for the avoidance of locks. An option is provided for using a node as both a
MDS and as an OST.

A snapshot capability is also provided in Lustre, similar to the approach seen in [65], except that snapshotting is performed on
object volumes (collections of objects) rather than a collection of blocks.

The designers of Lustre also propose a collaborative caching capability, where caching servers aggregate accesses to particular
objects so that a single cache can be shared by multiple applications. This is similar in some ways to the data shipping scheme
used in GPFS and distributed caches seen in research parallel file systems [55, 123]. However it is of particular note that Lustre is
able to provide this functionality in a modular way.

Lustre relies on a distributed locking system for data coherence. Locks are available at different granularity levels to allow for
concurrent access to disjoint file regions. Locks are managed by the OST that stores the object. Metadata operations are also
performed by using locks to allow for client-side caching. Lustre adds intent locks for use in metadata operations. These are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performed by using locks to allow for client-side caching. Lustre adds intent locks for use in metadata operations. These are
special locks that are used to perform some type of atomic operation at lock time. While in many instances an explicit operation to
perform the intent could be used instead, this approach may lead to fewer opportunities for races between atomic operations by
immediately returning a lock that could be used for a subsequent operation.

Lustre implements full POSIX semantics, but this can be turned off on a per file or per file system basis. An interface similar to the
List I/O interface described in [115] is proposed as an optimization as well.

Beta versions of Lustre are available, and development is very active. Also released under the GPL license, Lustre could become
the next widely used parallel file system for Linux clusters; license compatibility with the PVFS2 project means that the two
projects could share components if appropriate APIs were developed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3 File System Access Semantics
From the user's point of view, two aspects of the file system API should be considered: what types of accesses can be described
to the file system, and what happens when multiple processes access a file at the same time. We discussed earlier the
importance of structured access descriptions; in this section we will focus on the second aspect, concurrent access semantics.

19.3.1 POSIX I/O Semantics

The most significant barrier to scalable parallel I/O systems today is the POSIX I/O interface and its associated semantics.

The POSIX I/O interface [58] was specified with local file systems in mind. The POSIX I/O interface specifies the open, close,
read, write interface that we are all accustomed to using. It further specifies that writes through this interface must be
performed in a sequentially consistent manner. Writes to the file must also appear as atomic operations to any readers that
access the file during the write; the reader will see either all or none of any write. These semantics apply to any processes that
access the file from any location.

Internal to a single system, the disadvantages of the POSIX semantics are not so apparent. In the single system, all operations to
a file will pass through to a single device, and locks can be used to efficiently manage atomic access to files. However, the
semantics of the POSIX interface have broad-reaching implications on any type of distributed or parallel file storage. In stark
contrast to the single system, now we have multiple devices that might be accessed by any single operation, and all these
devices, plus the clients, are distributed across some type of network. In this situation maintaining the POSIX semantics can be a
complicated and communication-intensive process, particularly when many processes access the same resources.

POSIX I/O and Locking
The most common approach to providing these semantics is to use a locking subsystem to manage access to files, and this is in
fact the approach applied in all our example systems that implement the POSIX semantics (Frangipani, GFS, GPFS, and Lustre).
POSIX semantics require that all accesses be atomic operations. When implemented with locks, this means that before a process
can write to a region of a file, it must obtain the lock associated with that region. It can then write, then release the lock.
Sophisticated lock caching and forwarding are used to alleviate the overhead of the locking subsystem in systems that expect to
see a high degree of concurrent access.

Locks may be applied at the block, file, or extent granularity. The most coarse grained of these is file-based locks. File-based
locks associate a single lock with an entire file. No distributed file system employing file-based locks should be seriously
considered as part of a parallel I/O system because the contention for locks during concurrent access will ruin the performance of
all but the least I/O-bound problems.

The second most coarse grained is block-based locks. This approach is often used in systems that use block-based accesses
when communicating between clients and the underlying storage. Block-based locks have the advantage of being much finer
grained than are file based locks. For large files, however, this approach can result in a very large number of locks being present
in the system. Often these file systems address this by simply increasing the size of blocks. This, however, results in a situation
where false sharing of blocks is more likely to occur.

The third, and most flexible, locking approach is extent-based locks. This approach can result in fewer locks in use because large
ranges may be described as a single extent. This advantage is lost; however, if accesses are interleaved at a fine granularity. This
approach, when coupled with noncontiguous access, can also result in a very large number of locks being processed in the
system. Even with these two disadvantages this is the best locking approach for concurrent access under POSIX in use in parallel
file systems today.

Scientific access patterns have a great deal of regularity. None of this information is retained in any of these locking approaches,
however, leading to all these approaches being relatively inefficient, either in number of locks or in contention for a small number
of locks. Approaches like IBM's data shipping can certainly help make lock approaches perform more effectively, especially when
accesses are interleaved. We will discuss the similar two-phase I/O approach later in Section 19.4.4.

From this discussion, and the presence of optimizations such as data shipping, it should be clear that the POSIX semantics are
known in the community to be a problem. In fact, this problem is very similar to those seen in distributed shared memory (DSM)
systems, where hardware and software are used to build globally accessible memory regions [121, 54]. The DSM community has
for the most part abandoned the sequential consistency model in favor of more relaxed consistency models, in large part because
of the overhead of maintaining such a model as systems scale. Perhaps it is time for the I/O community to follow suit.

19.3.2 NFS Semantics

The Network File System (NFS) protocol [80, 21, 102] is probably the most popular means for accessing remote file systems.
Typically, remote file systems are "mounted" via NFS and accessed through the Linux virtual file system (VFS) layer just as local
file systems are. What many users don't understand is that these NFS-mounted file systems do not provide the POSIX
consistency semantics! The NFS version 3 RFC notes [21]:

The NFS version 3 protocol does not define a policy for caching on the client or server. In particular, there is no
support for strict cache consistency between a client and server, nor between different clients.

The story is a little more complicated for NFS version 4, but the lack of cache consistency on the client side remains.

NFS is an everyday example of relaxing the POSIX I/O consistency semantics in order to gain performance. NFS clients cache file
data, checking every now and again to see whether the file has changed. This loosely synchronous consistency model makes for
convenient, low-latency access to one's home directory stored on a remote system. Further, the locking systems typically used to
implement the POSIX semantics are avoided along with their overheads.

On the other hand, NFS semantics are nearly useless from a parallel computing point of view. Clients can cache data
indiscriminately, and tend to do so at arbitrary block boundaries. This causes unexpected results when nearby regions are written

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indiscriminately, and tend to do so at arbitrary block boundaries. This causes unexpected results when nearby regions are written
by processes on different clients; if two processes concurrently write to the same block on different processes, even if they write to
different bytes, the result is undefined! Figure 19.7 shows an example of how this happens. Two nodes have cached the same
block, and processes have written to different parts. First one block is committed back to storage, then the second. Because of the
blocking, and the lack of consistency control, the data from the first write is lost when the second write completes.

Figure 19.7: Concurrent Writes and NFS

Nevertheless, the semantics implemented by most NFS clients are sufficient to provide a usable file system for a number of
situations.

19.3.3 MPI-IO Semantics

One could argue that the POSIX semantics are stricter than necessary for use in parallel I/O in that they force I/O systems to
implement more consistency control than applications really need. Do scientific application programmers typically write to
overlapping regions and let the file system sort it out? Probably not; they have better things to do with the I/O bandwidth! On the
other hand, NFS semantics are definitely too loose; the nondeterminism introduced by uncoordinated client-side caching makes
NFS semantics troublesome for concurrent writes.

The MPI-IO semantics [46] provide a very precise, but less strict, set of consistency semantics. The Using MPI-2 [50] book
provides a very thorough description of these semantics; they are actually relatively complicated. We touch on the semantics for
some common cases here.

First, the scope of the MPI-IO semantics is the MPI communicator used to open the file. MPI says nothing about the semantics of
access from different communicators, leaving this coordination to the application programmer. Second, by default MPI-IO does
guarantee that concurrent nonoverlapping writes will be written correctly (unlike NFS) and that the changes will be immediately
visible to the writing process. These changes are not visible by other processes in the communicator right away. Instead, explicit
synchronization between the processes is necessary. This can be accomplished in a number of ways, all outlined in [50]. Simply
closing and reopening the file is one method of synchronization, and the use of explicit file synchronization operations is another.

This model makes a lot of sense for many access modes seen in parallel applications, including checkpointing and of course all
read-only modes. More importantly it relaxes the requirements on the underlying I/O components significantly and provides many
opportunities for optimization within the MPI-IO implementation. We will discuss two such optimizations later in this chapter in the
context of using ROMIO with PVFS.

19.3.4 PVFS Semantics

Noting the increased system complexity and potential overhead in implementing full POSIX I/O semantics (and having limited
resources!), the PVFS developers chose to implement a different set of I/O semantics. With PVFS, concurrent nonoverlapping
writes are written correctly and are immediately visible to all processes. Note that this approach is stronger than the default MPI-IO
semantics. Overlapping writes will leave some undefined combination of the written data in the overlapping file region, and reads
that occur concurrently with writes may see pieces of old and new data.

These semantics are adequate for implementing most of MPI-IO and are more than adequate for most access methods while
simultaneously simplifying the system significantly: no coordination is needed at write time between clients or servers. The result
is a more scalable system, at the cost of POSIX semantics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.4 Using PVFS
In the previous edition of this book, the majority of this chapter was dedicated to the specifics of PVFS configuration and use. This
information is all available at the PVFS Web site [90], in particular in the User's Guide [91]. Rather than rehash that document,
we'll talk a little bit about practical aspects of using PVFS, including implications of the PVFS design on certain types of
operations, managing and tuning PVFS file systems, using ROMIO with PVFS, and bug spotting. We hope that this information
supplements the online documentation nicely. Section 19.5 describes PVFS2, the next generation of PVFS, which addresses
many of the design limitations of PVFS.

19.4.1 Implications of the PVFS Design

The preceding sections have prepared us to discuss the implications of the PVFS design from a practical standpoint. First, PVFS
does not perform client-side caching for metadata. Hence, all metadata operations have to travel across the network to the
metadata server. For heavy metadata workloads, this design can cause sluggish performance.

Additionally, PVFS does not keep a file size as part of the metadata stored at the metadata server; rather, it calculates this value
when it is requested. The advantage is that, during writes, the metadata need not be updated. However, a stat on a file requires
not only a message to the metadata server to obtain the static metadata but also a sequence of messages to the I/O servers
(performed by the metadata server) in order to obtain the partial sizes necessary to fill in the file size. The ls program performs
this operation on every file in a listed directory, which can cause ls to be very slow for PVFS file systems. In practice, this makes
PVFS a poor performer for small files, too, because users tend to put all the small files in one directory. Then they ls the directory
and are frustrated by the delay. A pvfs-ls utility is provided with PVFS that avoids gathering this metadata, instead just printing
directory contents. For users who simply want to see what resides in a directory, this is a much faster option.

PVFS does not cache data at the client side because it has no mechanism for ensuring that cached data is kept synchronized with
data in other caches or on I/O servers. Hence, all data reads and writes must cross the network as well. Thus, the size of reads
and writes to large files does have a significant impact on performance, especially through the VFS interface, which has
particularly high overhead. This design decision makes PVFS perform poorly for benchmarks such as Bonnie [18]. Along these
same lines, executing programs stored on a PVFS volume can be quite slow because pages are read one at a time on demand.

Missing Features
Users are occasionally surprised by the fact that some features are missing from PVFS. Here's a list as of version 1.5.8:

links (both hard and symbolic)

write-sharing through mmap

flock and fcntl locks

fault tolerance (other than using RAID, described later)

That's about it! If a user requires one of these features, perhaps one of the systems described earlier in the chapter will suffice
instead.

19.4.2 Managing PVFS File Systems

PVFS allows for many different possible configurations. In this section we'll discuss some of these options.

While PVFS is relatively simple for a parallel file system, it can sometimes be difficult to discover the cause of problems when they
occur simply because there are many components that might be the source of trouble. Here we discuss some tools and
techniques for finding problem spots.

Monitoring File System Health
The pvfs-ping utility is the most useful tool for discovering the status of a PVFS file system and has turned into something of a
"Swiss army knife" for PVFS debugging at this point.

A simple example of its use is as follows:
pvfs-ping -h localhost -f /pvfs-meta -p 3000
mgr (localhost:3000) is responding.
iod 0 (127.0.0.1:7000) is responding.
pvfs file system /pvfs-meta is fully operational.

In this case the I/O server is dead and needs to be restarted:
pvfs-ping -h localhost -f /pvfs-meta -p 3000
mgr (localhost:3000) is responding.
pvfs-ping: unable to connect to iod at 127.0.0.1:7000.
iod 0 (127.0.0.1:7000) is down.
pvfs file system /pvfs-meta has issues.

Using Multiple File Systems
Since PVFS includes no fault tolerance, for large systems it can make sense from a fault tolerance point of view to create multiple
PVFS volumes. A single metadata server can serve multiple file systems if desired; however, if multiple file systems are chosen
for fault tolerance reasons, it is definitely better to use multiple servers for I/O (one per file system). A single I/O server daemon
(iod) cannot serve more than one file system. However, more than one daemon may be run on the same server if desired by
specifying a different port value in the iod.conf file used to start the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifying a different port value in the iod.conf file used to start the server.

Tolerating Disk Failures
Disk failures can be tolerated by using any of the many available RAID solutions under Linux, including both hardware devices
and software RAID. There have been very few reported instances of data loss with PVFS because of software failures. Using
RAID to tolerate disk failures is an effective mechanism for increasing the reliability of PVFS.

Increasing Usable File Descriptors
While some improvements have been made in PVFS with respect to file descriptor (FD) utilization, the servers in particular still
can end up using all of their available FDs. The I/O servers will print a little message when this is about to happen:
NOTICE: exceeded 90 percent of available FDs (1024)!

Luckily this is easy to fix. The limits are set in /etc/security/limits.conf. Lines are of the following format:
<domain> <type> <item> <value>

The domain can be "*" for everyone, a userid, or a group using "@group". The type can be soft (setting the default) or hard
(setting the maximum). The item parameter controls what limit this affects and can take many values, including nofile (open files).
"Value" is the new value to set.

For example, the following lines would set the maximum number of FDs for root to 8192 and the default to 4096:
root hard nofile 8192
root default nofile 4096

Likewise one can set a new maximum and then use limit or ulimit as appropriate in the startup script for the servers.

Migrating Metadata
When upgrading to a newer PVFS version, occasionally the format of metadata on disk changes. This is due to oversights in the
original design of the metadata format. Tools are now provided that can be used to convert metadata to the new format (assuming
you haven't gotten too far behind on updates).

For example, if you are moving from version 1.5.6 to version 1.5.8, a utility called migrate-1.5.6-to-1.5.8 is provided (there
were no changes from 1.5.7 to 1.5.8 in the metadata format). This tool is used in conjunction with find:
find /pvfs-meta -type f -not -name .pvfsdir -not \
 -name .iodtab -exec migrate-1.5.6-to-1.5.8 \{\} \;

Warning messages will be printed and the process aborted if the utility detects that the metadata is not the correct version. This
process should be performed after stopping the mgr.

19.4.3 Tuning PVFS File Systems

We often get questions about how to tune PVFS file systems for the best performance. Truthfully, system hardware varies widely
enough that it is difficult for us to supply any single set of parameters that will work best for everyone. Instead, in this section
discuss some specific parameters common to all machines and some general techniques for improving overall PVFS file system
performance. Chapters 3 and 5 include many tips for improving the overall performance of Linux nodes; all that information
certainly applies to PVFS servers as well.

Of course, in addition to tuning the file system itself, many steps can be taken above the file system that can make a huge
difference. Given the discussion of the PVFS design, many of these are obvious: using large requests rather than small ones,
using MPI-IO so PVFS List I/O optimizations can be leveraged, and avoiding lots of metadata operations (opens, closes, and
stats). Often such optimizations in application code can make more difference than any tuning within PVFS itself. An in-depth
discussion of improving the performance of MPI-IO access can be found in [50].

Adjusting Socket Buffers
PVFS relies heavily on the select call and kernel handling of multiple TCP connections for parallelism. For this reason, it is often
useful to tune the network-related parameters on the system. Chapter 5 covers this process in some detail; in particular increasing
the wmem_max and rmem_max values is often very helpful.

Once these have been increased, the socket_buf option in the I/O server's configuration file (iod.conf) can be used to adjust the
socket buffer size up to the new maximum.

Enabling DMA for Hard Drives
Chapter 3 describes the hdparm tool. It can be used to verify that DMA is turned on for the hard drives that are being used for
PVFS storage and to turn this on if it is not enabled. Because PVFS pushes both the network and storage hardware, alleviating
any load on the CPU is helpful. Note that DMA isn't reliable on some hardware, so you should check the support of your hardware
if this isn't turned on by default.

Improving Space Utilization
Originally we thought that users would want to know where their data was striped so that they could distribute processes to match
data locations. Hence, we set up default striping so that data always started on the first I/O server. It turns out that for the most
part people don't care about this and rarely use this information. Additionally, when users create lots of small files, this unbalances
the distribution of data across the I/O servers.

We have subsequently added a "-r" flag that can be passed to the metadata server (mgr). This flag will cause the metadata
server to choose a random starting I/O server when no server is specified (this can be done through the MPI-IO interface, for
example). This will better distribute files and has a particularly large effect in the small files case.

Here we examine the free space on the I/O servers of a PVFS file system using the additional "-s" option to pvfs-ping:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here we examine the free space on the I/O servers of a PVFS file system using the additional "-s" option to pvfs-ping:
pvfs-ping -h localhost -f /pvfs-meta -s
mgr (localhost:3000) is responding.
iod 0 (192.168.67.51:7000) is responding.
iod 0 (192.168.67.51:7000): total space = 292825 Mbytes,
 free space = 92912 Mbytes
iod 1 (192.168.67.52:7000) is responding.
iod 1 (192.168.67.52:7000): total space = 307493 Mbytes,
 free space = 121154 Mbytes
iod 2 (192.168.67.53:7000) is responding.
iod 2 (192.168.67.53:7000): total space = 307485 Mbytes,
 free space = 121155 Mbytes
iod 3 (192.168.67.54:7000) is responding.
iod 3 (192.168.67.54:7000): total space = 307493 Mbytes,
 free space = 121199 Mbytes

We see that the first I/O server has significantly less free space than the others. This will show up in the df output:
Filesystem Size Used Avail Use% Mounted on
localhost:/pvfs-meta
 1.2T 824G 363G 69% /pvfs

PVFS calculates the available space returned to the system by the minimum amount available on any single I/O server (in this
case 92.9 Gbytes) times the number of I/O servers (in this case 4). Because so much less space is available on the first server,
we get a very low reported available space. Using the "-r" manager flag described above will help alleviate this problem.

Testing Aggregate Bandwidth
Since users are mostly interested in PVFS for high performance, obtaining a baseline performance number for a particular
configuration is fairly important. The pvfs-test tool supplied with PVFS can be used for this purpose. This is an MPI program
that opens a file from a large number of processes and writes or reads that file in parallel with each process accessing a different
large block of the file. A "-h" option will cause it to list its options. This program can be used as a simple benchmark for testing the
effects of configuration changes.

Here's the output of one of our favorite runs, using 80 nodes of Chiba City (see Chapter 20) as clients for PVFS and 128 separate
nodes for I/O servers back in April of 2001:
mpirun -nolocal -np 80 -machinefile mach.all pvfs-test -s 262144 -f
 /sandbox/pvfs/testfile -b 268435456 -i 1 -u
Using native pvfs calls.
nr_procs = 80, nr_iter = 1, blk_sz = 268435456, nr_files = 1
total_size = 21474836480
Write: min_t = 3.639028, max_t = 6.166665, mean_t = 4.755538,
 var_t = 0.334923
Read: min_t = 6.490499, max_t = 7.171075, mean_t = 6.977580,
 var_t = 0.023353
Write bandwidth = 3482.406857 Mbytes/sec
Read bandwidth = 2994.646755 Mbytes/sec

We did not sync after the writes ("-y" option), so the data was at the servers but not necessarily on disk. Nevertheless we were
able to create a 20 Gbyte file in just over 6 seconds and read it back in just over 7 seconds. Not too shabby at the time. Note that
we found a strip size of 256 Kbytes to be the best for that particular configuration, where a strip is the amount of data written to a
single server (and a stripe is the amount written across all servers in the round-robin fashion).

Adjusting the Default Strip Size
By default the strip size (the size of the regions distributed in round-robin fashion to I/O servers) is set to 64 Kbytes (as of version
1.5.8). For some systems, particularly ones using large RAID volumes at each I/O server, this is simply too small.

The pvfs-test tool can be used to experiment with various strip sizes in order to find a good one for a particular configuration.
Using the "-y" option will help ensure more accurate results by forcing data to the disk. Once a good value has been found, an
additional "-s ssize" option can be used with the metadata server in order to provide the new default value (ssize is in bytes).

It is also useful to adjust the I/O server write buffer size to be larger than this size. That value is set in the I/O server configuration
file with the write_buf option (value is in Kbytes, and the default is 512 Kbytes).

19.4.4 ROMIO and PVFS

MPI-IO implementations provide a number of services over using a local file interface. First and foremost these implementations
provide a portable interface to which application programmers can code. The MPI-IO implementation takes MPI-IO operations and
translates these into operations that can be performed by the underlying file system. Depending on the underlying file system, the
MPI-IO implementation has a number of options with respect to how it translates an MPI-IO read or write operation into file system
operations. If the underlying file system supports only POSIX operations, the MPI-IO layer might convert the MPI-IO request into a
collection of contiguous operations. For a file system such as PVFS, MPI-IO requests might instead be converted into List I/O
operations.

The second service that MPI-IO implementations provide is I/O optimizations. As we have discussed before, the MPI-IO
semantics leave some opportunities for performance optimizations that are not available under the POSIX semantics. Further, the
information provided by the use of collective I/O calls provides additional opportunities for optimizations. For more information on
MPI-IO in general, including examples, see Chapter 9 of this book or [50]. In this section we will touch upon building ROMIO with
PVFS support and then discuss in detail the optimizations available within ROMIO that are usable with PVFS.

Building MPICH and ROMIO with PVFS Support
Chapter 8 introduced the MPICH implementation of the MPI standard. ROMIO is included as part of the MPICH package. When

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8 introduced the MPICH implementation of the MPI standard. ROMIO is included as part of the MPICH package. When
configuring MPICH with ROMIO and PVFS support, a few additional parameters are necessary. Particularly we want to tell
ROMIO what kinds of file systems to support, link to the PVFS library, and provide the path to PVFS include files.

For example, let us assume that PVFS was previously installed into /soft/pub/packages/pvfs-1.5.8, and we want both
PVFS and "regular" (UFS) file system support:
./configure --with-romio="-file_system=pvfs+ufs"
 -lib="-L/soft/pub/packages/pvfs-1.5.8/lib/ -lpvfs"
 -cflags="-I/soft/pub/packages/pvfs-1.5.8/include"

The standard MPICH build and installation procedure can be followed from here. Building with LAM is very similar.

If ROMIO is not compiled with PVFS support, it will access files only through the kernel-supported interface (i.e., a mounted PVFS
file system). If PVFS support is compiled into ROMIO and you attempt to access a PVFS-mounted volume, the PVFS library will
detect that these are PVFS files (if the pvfstab file is correct) and use the library calls to avoid the kernel overhead. If PVFS
support is compiled into ROMIO and you attempt to access a PVFS file for which there is no mounted volume, the file name
passed to the MPI-IO call must be prefixed with pvfs: to indicate that the file is a PVFS file; otherwise ROMIO will not be able to
find the file.

ROMIO Optimizations
ROMIO implements a pair of optimizations to address inefficiencies in existing file system interfaces and to leverage additional
information provided through the use of collective operations. These optimizations, as well as PVFS options such as striping
parameters, are controlled through the use of the MPI_Info system, commonly known as "hints." Much of the information in this
section comes from the ROMIO users guide [117]; this guide provides additional information on these topics as well as covering
the use of ROMIO on file systems other than PVFS.

ROMIO implements two I/O optimization techniques that in general result in improved performance for applications. The first of
these is data sieving [114]. Data sieving is a technique for efficiently accessing noncontiguous regions of data in files when
noncontiguous accesses are not provided as a file system primitive or where the noncontiguous access primitives are inefficient
for a certain datatype. In the data sieving technique, a number of noncontiguous regions are accessed by reading a block of data
containing all of the regions, including the unwanted data between them (called "holes"). The regions of interest are then extracted
from this large block by the client. This technique has the advantage of a single I/O call, but additional data is read from the disk
and passed across the network. For file systems with locking the data sieving technique can also be used for writes through the
use of a read-modify-write process. Unfortunately, since PVFS does not have file locking of any kind currently, this is not available
for PVFS.

Two hints can be used to control the application of data sieving in ROMIO for PVFS:

ind_rd_buffer_size controls the size (in bytes) of the intermediate buffer used by ROMIO when performing
data sieving during read operations. Default is 4194304 (4 Mbytes). If data will not all fit into this buffer, multiple
reads will be performed.

romio_ds_read determines when ROMIO will choose to perform data sieving. Valid values are enable,
disable, or automatic. Default value is automatic. In automatic mode ROMIO may choose to enable or
disable data sieving based on heuristics.

The second optimization is two-phase I/O [113]. Two-phase I/O, also called collective buffering, is an optimization that applies only
to collective I/O operations. In two-phase I/O, the collection of independent I/O operations that make up the collective operation
are analyzed to determine what data regions must be transferred (read or written). These regions are then split up among a set of
aggregator processes that will actually interact with the file system. In the case of a read, these aggregators first read their regions
from disk and redistribute the data to the final locations; in the case of a write, data is first collected from the processes before
being written to disk by the aggregators. Figure 19.8 shows a simple example of the two-phase write using a single aggregator
process. In the first phase (step), the two nonaggregator processes pass their data to the aggregator. In the second step the
aggregator writes all the data to the storage system. In practice many aggregators are used to help balance the I/O rate of the
aggregators to that of the I/O system. Because the MPI semantics specify results of I/O operations only in the context of the
processes in the communicator that opened the file, and all these processes are involved in collective operations, two-phase I/O
can be applied on PVFS files.

Figure 19.8: Two-Phase Write Steps

Six hints can be used to control the application of two-phase I/O:

cb_buffer_size controls the size (in bytes) of the intermediate buffer used in two-phase collective I/O (both

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cb_buffer_size controls the size (in bytes) of the intermediate buffer used in two-phase collective I/O (both
reads and writes). If the amount of data that an aggregator will transfer is larger than this value, then multiple
operations are used. The default is 4194304 (4 Mbytes). If the data size exceeds this buffer size, multiple iterations
of the two-phase algorithm will be used to accomplish data movement.

cb_nodes controls the maximum number of aggregators to be used. By default this is set to the number of unique
hosts in the communicator used when opening the file.

romio_cb_read controls when collective buffering is applied to collective read operations. Valid values are
enable, disable, and automatic. Default is automatic. When enabled, all collective reads will use collective
buffering. When disabled, all collective reads will be serviced with individual operations by each process. When set
to automatic, ROMIO will use heuristics to determine when to enable the optimization.

romio_cb_write controls when collective buffering is applied to collective write operations. Valid values are
enable, disable, and automatic. Default is automatic. See the description of romio_cb_read for an
explanation of the values.

romio_no_indep_rw indicates that no independent read or write operations will be performed. This can be used
to limit the number of processes that open the file.

cb_config_list provides explicit control over aggregators, allowing for particular hosts to be used for I/O. See
the ROMIO users guide for more information on the use of this hint.

ROMIO Data Placement Hints
Three hints may also be used to control file data placement. These are valid only at open time:

striping_factor controls the number of I/O servers to stripe across. The default is file system dependent, but
for PVFS it is -1, indicating that the file should be striped across all I/O devices.

striping_unit controls the striping unit (in bytes). For PVFS the default will be the PVFS file system default strip
size.

start_iodevice determines what I/O device data will first be written to. This is a number in the range of 0 ...
striping_factor - 1.

ROMIO and PVFS List I/O
Two hints are available for controlling the use of list I/O in PVFS:

romio_pvfs_listio_read has valid values enable, disable, and automatic. The default is disable. This
hint takes precedence over the romio_ds_read hint.

romio_pvfs_listio_write has valid values enable, disable, and automatic. The default is disable.

Clearly, a wide variety of parameters can be used to control the behavior of ROMIO and PVFS when used together. Because no
single set of parameters works best for all applications, experimentation is often necessary to attain the best set of parameters. A
study examining some of these parameters has been published [26]; this can serve as a starting point for your own tuning.

19.4.5 Bugs

Users sometimes encounter bugs in PVFS. When they do, we generally guide them through a predictable set of steps to help us
discover where the problem lies. This section outlines this process. The purpose is not to discourage users from reporting bugs or
asking for help, but to streamline the process. If you have already tried these steps, we can skip a number of email exchanges
and get right to the root of the problem!

Checking the List Archives
The very first thing to do is to check the PVFS mailing list archives. These are searchable online and available from the PVFS
Web site [90]. Many problems have already been reported, so checking here might provide you with an immediate solution.

Reporting Versions and Logged Output
Bugs should always be reported to the PVFS users mailing list. This is an open list for discussion of many PVFS issues, one of
them being bugs. By reporting to the mailing list you reach the maximum number of people that might be able to solve your
problem, and you guarantee that an archive of the discussion will be saved.

We will always ask what version of the code you are running, especially if the problem that you report looks like something that
has already been fixed. The distribution and kernel version you are using are helpful as well. If the problem is related to compiling,
we'll ask for configure output and a log of the make process. If the problem is a runtime one, we'll ask for any information in the
logs that might help. This includes dmesg output, the pvfsd log, the iod logs, and the mgr log. By default the three types of log
files are all placed in /tmp, although this can be changed with configure-time options.

Providing this information in your first message is the easiest way to get the bug reporting and fixing process started.

Client Side or Server Side
The most common runtime bugs seen in PVFS at this time concern the Linux kernel module. One of the first things that we do in
the case of a runtime problem is try to determine whether the problem is related to the servers themselves or to a particular client.
We usually ask the user to look at the state of other clients in order to determine this. For example, one bug that we have seen
prevented new files from showing up on certain clients. One client would see the new file while others did not. By looking at the
state of multiple clients, the user was able to report this back and help us narrow down the problem.

Simplifying the Scenario

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The simpler the set of conditions necessary to cause the problem on your system, the more likely we are to be able to replicate it
on some system we have access to. Hacking out portions of a scientific code so that it performs only I/O or writing a script that
uncovers a metadata incoherence problem really helps us see what is going on and replicate the problem on our end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.5 Parallel I/O in the Future
Machines with tens of thousands of nodes are on the horizon. For a parallel I/O system to efficiently operate at this scale, a
number of issues must be addressed.

Adapting to new technologies is critical in this environment. It is not clear what processor, storage, or network technologies will be
present in future machines, or even what operating system will run on nodes. Any new parallel file system design should be built
with abstract interfaces to allow adoption of new technologies and porting to new operating systems.

Leveraging collective operations, rich I/O request languages, and relaxed consistency semantics will be key to operating efficiently
on these machines and exploiting the inherent hierarchy in these systems. Opportunities exist at many levels in the I/O component
stack to boost performance.

Management of I/O systems is a growing concern because the systems continue to become more complex. Tools to aid the
administrator are key, and self-maintaining solutions would be ideal.

Our next-generation parallel file system, PVFS2, is being designed to tackle just these problems. By the time this book is
published, early versions of the next-generation Parallel Virtual File System, PVFS2, should be available online. The core of
PVFS2 has been designed to provide PVFS2 is the culmination of a 3-year effort to redesign PVFS as a production-capable
parallel file system based on experience gained in the design and operation of the original PVFS, observations of other parallel file
systems, and interactions with the scientific data management community.

modular networking and storage subsystems,

a structured data request format modeled after MPI datatypes,

flexible and extensible data distribution modules,

distributed metadata,

tunable consistency semantics, and

and support for data redundancy.

In this section we will examine some of the challenges facing parallel I/O systems both today and in the near future. We will use
PVFS2 as one example of how these problems might be addressed.

19.5.1 Supporting New Hardware Technologies

While in some sense cluster computing is about using commodity parts, we often see new technologies in use in larger clusters
before they hit the commodity market. Networks are a great example of this; we see many interesting network technologies,
including Myrinet, Quadrics, and InfiniBand, in use in clusters today. Likewise on the storage side we see locally attached
hardware, SANs, and iSCSI as some of the potential mechanisms for storage access. Leveraging these technologies requires
appropriate abstractions in the I/O system. In the Lustre design we see a very modular system used to attack just this problem
[17].

19.5.2 PVFS2 Abstract Interfaces

PVFS2 also addresses this problem with abstraction layers. The first two of these are BMI, through which client and server
messages flow, and Trove, through which storage is accessed. Figure 19.9 shows the overall software architecture of PVFS2; we
will discuss the major components here.

Figure 19.9: PVFS2 Software Architecture

The Buffered Messaging Interface (BMI) provides a nonblocking network interface that can be used with a variety of high-
performance network fabrics and is tailored for use in file system servers and clients. Currently BMI modules exist for both TCP/IP
and GM networks.

The Trove storage interface provides a nonblocking interface that can be used with a number of underlying storage mechanisms.
Trove storage objects, called data spaces, consist of both a stream of bytes and a keyword/value pair space, similar in some ways
to the data and resource forks available in other local file systems. Keyword/value pairs are convenient for arbitrary metadata
storage and directory entries, while the stream of bytes is a natural place to store file data. The current implementation uses Unix
files and Berkeley db4, but many other implementations are possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The third major abstraction in PVFS2 is Flows. Flows combine the functionality of the network and storage subsystems by
providing a mechanism to specify a flow of data between network and storage. Flows also incorporate the request and distribution
processing system that allows PVFS2 to handle highly complex access patterns. Finally, Flows provide a point for optimization:
specific flow implementations to optimize data movement between a particular network and storage pair can be implemented to
exploit fast paths.

Above all these the job scheduling layer provides a common interface for posting BMI, Trove, and Flows and checking on their
completion. Within this layer, scheduling decisions are made, and multiple threads are used to manage asynchrony and leverage
multiple CPUs. This is tightly integrated with a state machine processing system that is used to track operations in progress. With
this layer in place, new underlying components may also be added and integrated with minimal effort. At the highest level within
the server, the request processing component handles incoming requests and initializes new state machines to process these
requests.

19.5.3 Tolerating Faults

Parallel computing systems continue to grow in numbers of components (nodes, disks, etc.), and because components are
becoming no more reliable, the likelihood of component failure is increasing. While application and middleware are beginning to
be adapted to handle faults, most users depend on the I/O system to be a reliable and available location for data storage. On the
other hand, because providing fault tolerance usually lowers performance, some users will desire to forego fault tolerance at the
I/O system level and instead implement it in a more efficient manner at the application level. Doing so allows them to get the
highest performance from the I/O system. For a parallel file system to be usable in many domains, the level of redundancy should
be configurable. The approach PVFS2 takes to redundancy is much the same as it takes to semantics and other issues involving
a trade-off between performance and protection: that is, it provides a choice of various levels of protection, with the requisite loss
or gain in performance. Thus PVFS2 aims to allow files to be stored with no redundancy or with varying degrees of redundancy,
as needed. Multiple technologies may be leveraged to accomplish this, some built into the file system and others external
components.

Redundant Storage
Many tools are available for providing fault tolerance in storage systems. One is the use of local RAID arrays. This is a time-
proven approach to handling disk failures, and a RAID provides high-performance I/O with minimal performance degradation
when directly accessed by a single I/O server. We encourage this application of RAID with both PVFS1 and PVFS2. RAID like-
techniques can also be applied across the devices on a SAN; the file system examples implementing a VSD use this type of
approach. Using RAID in this way can incur performance penalties because of the fine-grained locking often used to control
concurrent access when multiple nodes have access to the resources.

In PVFS2 we will provide what we term lazy redundancy as an option. In this approach writes to files do not update redundant
information automatically as they would in a RAID-like approach. Instead redundant information is updated only when clients
make explicit calls. These calls can be automatically made within I/O middleware libraries at logical points, such as MPI sync or
close operations. By delaying the update to these explicit points we allow the I/O layers the option of aggregating updates to
redundant data. Further, in the context of MPI-IO we have control of all the processes accessing the file; we can use these
processes to update redundant data in parallel for higher performance. The data distribution component of PVFS allows us to
describe where this redundant data is located in a convenient manner, and the approach can be applied on a per file basis. Lazy
redundancy can be coupled with server failover to provide an even greater degree of protection.

Failover
High availability (HA) software provides a mechanism for server failover in the case of node failure. Dual-attach storage hardware
can be used with this software to tolerate single-node failures by creating pairs of nodes that provide "backup" for each other. This
allows systems to run in what is termed active-active mode (meaning that neither node sits idle in absence of failure), with
somewhat degraded performance in the event that one node fails. Of course, if you don't mind having half your system sitting idle,
active-passive mode can be used, leaving an extra server for each of the ones in service. More complicated HA solutions are
becoming available that allow for a pool of backup servers that can be brought online as needed. In contrast to active-active pairs,
this architecture would allow for a small number of extra servers that could fill in without degrading performance. However, these
extra servers would need access to many different storage resources; providing this capability could be prohibitively expensive.

Having the hardware and software infrastructure necessary to restart a server on backup hardware is just the first step. A second
issue to be considered with respect to failover is shared state. Clients and servers in a stateless system do not maintain
information about other entities in the system that is necessary for correct operation (i.e., they can cache information for
performance reasons, but the system must be able to function without this information). Assuming that a system is stateless and
that no file system data is cached in volatile storage, a server restart need not cause the loss of any data. Unfortunately, shared
state is used in many parallel file systems; write-back caches are an example, where a client is holding onto the state of blocks
(for performance reasons) that a server is in fact responsible for. Servers and clients can checkpoint their state on shared storage
if it is available. This is a viable option for systems where clients and servers have access to shared storage, but this connectivity
may not be available. Another option is to implement an arbitration process that allows the system as a whole to reclaim resources
and synchronize state in the event of a node loss. Handling all the failure cases can be very difficult. PVFS2 servers and clients
are stateless in order to simplify the use of failover solutions and minimize complication in failure scenarios.

19.5.4 Aiding Management

Most parallel file systems today (excluding PVFS1) have mechanisms for checking the status of devices involved in the system,
migrating data on and off particular resources, checking the consistency of the file system, and adding or removing devices from
the file system. Looking beyond this functionality, we can imagine I/O systems that can suggest optimizations based on observed
access patterns or, even better, manage themselves. The areas of "autonomic computing" [61] and "autonomous storage" in
particular cover just this type of operation. PVFS1 lacked most of the management tools that administrators expect from such a
system, and we believe that this discouraged its use in a number of cases. We intend to take management very seriously in
PVFS2, and we will discuss some of the basics here.

System Monitoring

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first step in easing the management task is providing tools for system monitoring. These tools should allow for both examining
the real-time state of the system and looking at trends over time for optimization purposes. A complicating factor in parallel I/O
monitoring is the sheer amount of data available, particularly information on access patterns. This process is similar to gathering
logs from parallel programs in that data from many cooperating components must be collected and presented coherently.

The PVFS development team has experimented with instrumentation of the PVFS1 servers and has developed tools to aggregate
performance metrics, collect access pattern statistics, and visualize the results. Using the tools and techniques developed for
PVFS and looking at other work in the area, we have slated monitoring operations to be an integral part of the suite of operations
that PVFS2 supports. These monitoring functions can be used as a starting point for visualization, analysis, and self-management
tools.

Data Migration
In PVFS2, file data is distributed to Trove data objects for storage. Trove data objects are referenced by a handle. These data
object handles are clustered into logical groups such that all handles within a logical group are managed by a single server. In the
simplest case, each server manages a single logical group of Trove handles, and therefore the objects referenced by those
handles. These groups can be split and merged if necessary for repartitioning purposes, and servers may be responsible for many
of these logical groups. The mapping of handles to the servers where they are stored is a part of system configuration and is
easily changed. This not only provides a decoupling from handles to servers but potentially allows storage objects to be moved
from server to server by transferring the control of an entire logical group and updating the handle mapping appropriately.

Figure 19.10 shows three servers, each with two logical groups of storage objects referenced by different handle ranges. If
resources on the middle server need to be freed (e.g., to replace faulty hardware), the groups of objects stored on the server can
be relocated to one or more servers, and requests from the clients can be redirected by updating the mapping of these groups.
Because these Trove objects are used to store both metadata and data, metadata can be migrated in the same manner.

Figure 19.10: Migrating Storage Objects

Automated Management
Ideally, these systems would simply manage themselves! If components fail, data could be migrated appropriately to allow for
continued fault tolerance and minimum degradation of performance. Data that is used frequently as input could be replicated so
that multiple copies were available for reading or redistributed to match observed access patterns. Infrequently used data could be
kept on slower disks or moved to tertiary storage. Caching and scheduling policies could be tuned to match access patterns as
well.

We are very interested in this type of system, and we plan to start working in this area once the PVFS2 system matures. The first
step is to provide a suite of management operations as part of the server API. With this API in place, an additional set of
monitoring processes can interpret the performance monitoring information over time and direct changes to the file system
accordingly. Separating these management processes into their own components will maintain the simplicity of the underlying
PVFS2 core.

19.5.5 Leveraging I/O Languages and Semantics

Earlier in the chapter we discussed consistency semantics; obviously we feel that experimentation in this area could lead to useful
alternative semantics. Equally important is the use of structured I/O descriptions from the highest-level interfaces down as low as
possible in the I/O stack. Certainly, parallel file systems should be supporting these operations.

MPI-IO
So far, MPI-IO implementations have been very conservative in their exploitation of the more relaxed MPI-IO consistency
semantics. As systems scale, taking further advantage of these semantics allows us to potentially improve I/O system
performance using the same hardware as before. During this process, however, some users are likely to experience surprising
behavior from the I/O system because of assumptions about what level of consistency MPI-IO will provide. We will do everything
possible to minimize the pain experienced by users in order to keep them from abandoning this powerful API.

Caching at the MPI layer is one of the biggest opportunities that has so far been unexploited in production systems. The
constrained scope of the MPI-IO semantics, coupled with the explicit synchronization points, makes caching in MPI-IO a
straightforward process. This is in stark contrast to the infrastructure necessary to cache under the POSIX interface. File systems
such as PVFS2 can benefit greatly from caching at this layer.

Operations such as MPI_File_open can be further optimized with appropriate support from the parallel file system. PVFS2 does
not keep state regarding open files. Instead, clients essentially find only a file handle during an open call. A scalable
implementation of MPI_File_open for PVFS2 can have a single process perform the mapping from file name to handle, then
broadcast the file handle to the rest of the processes. This type of optimization can be applied in a number of cases where MPI
collectives are used.

Configurable Semantics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Earlier in the chapter we discussed the file consistency semantics of a number of interfaces. We noted that for some types of
workloads the NFS semantics were acceptable, while for others they were not. It is not difficult for a parallel file system to relax its
semantics; usually this is a matter of simply neglecting to perform consistency checks it might have otherwise. This approach
should be considered seriously. As a real example, many large physics datasets are being put online today. Files in these
datasets are never modified once written. Aggressive caching of these files can be performed because the semantics applied to
the dataset by the scientists permit it. We should allow for these optimizations.

Likewise, relaxing the consistency of directory contents provides another potential point of optimization, as could metadata of files
and directories (in particular file size). PVFS2 will provide a configurable window of time for which previous metadata values and
directory contents are treated as up to date. This allows for caching without locks, at the cost of short periods of time where views
of the file system on different clients are slightly different. Such an approach might be useful as we attempt to share parallel file
system access across wide-area networks.

Describing I/O Operations and Data Distributions
PVFS2 allows for structured I/O requests via a format based directly on MPI datatypes. Currently a set of datatype constructor
functions identical in function to the equivalent MPI calls is provided, and the format can readily be translated from existing MPI
datatype formats, making it trivial to leverage this functionality within an MPI-IO implementation such as ROMIO. PVFS2 servers
directly process this format (in the flow component) to service I/O requests; the type is not converted into a vector before
processing.

With structured data sets comes the potential for leveraging more sophisticated data distributions. Most parallel file systems use
striping. In PVFS2, however, the distribution mechanism has been abstracted so that different files can be stored with different
distributions. PVFS2 relies on an algorithmic mechanism for distribution of data to servers. The functions that define the
distribution can now be selected at file creation time, permitting a number of potential data distributions.

One such alternative distribution pattern is nested striping. As shown in Figure 19.11, simple striping distributes data round-robin
to all IO nodes used to store the file. Nested striping distributes data round-robin first to one subset of nodes and then to another
subset in a round-robin pattern among subsets. This pattern better matches block distributions of multidimensional datasets. Any
distribution that can be represented algorithmically can potentially become a PVFS2 distribution scheme.

Figure 19.11: Examples of Data Distributions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.6 Conclusions
The many software and hardware layers of parallel I/O systems and the terminology used to describe them can be very confusing.
Underlying this complexity, however, are simple concepts: methods of describing accesses, consistency semantics, distributing
data across many resources, and surviving component failures. Armed with knowledge of these concepts, one can both
qualitatively assess the appropriateness of a particular system to a given problem and devise tests to measure quantitatively the
effectiveness of the system. Many of these I/O systems share common traits, so the example systems presented here can be
used as a frame of reference when examining new systems as well.

Parallel I/O continues to grow in importance as a component of clusters. While existing parallel file systems such as PVFS1,
GPFS, and GFS are filling existing needs, new systems such as Lustre and PVFS2 are already being built to meet the needs of
upcoming systems. These systems build on the successes of the past but also address issues germane to upcoming systems, in
particular parallel I/O system portability and increased scale. Even so, additional effort will be necessary to see exciting concepts
such as autonomous storage become reality.

As parallel I/O researchers and developers, we definitely have our work cut out for us!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz

Overview
Rémy Evard

This case study examines and compares two large-scale Linux clusters. The first of these is Chiba City, a 256-node cluster
supporting computer science that was installed at Argonne National Laboratory in 1999. The second is Jazz, a 350-node cluster
for production computing. Jazz was installed a few feet away from Chiba City in late 2002.

A comparison between the two clusters is instructive. Chiba City is beginning to fade into the half-life of technology, while Jazz is
just getting started. Our design choices on Jazz were based on our experiences with Chiba City, on changes in the industry, and
the need to support a production computing user base.

We'll first describe Chiba City in some detail, considering the design, configuration, operation and usage. While Chiba City's
technology is aging, the cluster architecture itself is still extremely relevant. Then we'll describe Jazz similarly while contrasting it
with Chiba City in order to illustrate those aspects of cluster design that change over time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1 Chiba City
With 256 dual-CPU computing nodes, Chiba City is the largest cluster in the Argonne scalable clusters project.

Chiba City was designed with a unique purpose in mind: to support scalable computer science and the development of scalable
systems software. We believe that advances in the state of system software for high-performance computing are critical in order
to improve the performance and reliability of high-end machines. Yet the developers and researchers who will bring about those
advances often find it very difficult to gain access to the largest systems because those computers are dedicated to running large
code. With the advent of commodity clusters, the solution to this problem became clear: using relatively inexpensive parts, it was
now possible to build a system that could be used to support activities that required development and testing at large scale without
the usual large price tag. This was the basis of the idea for Chiba City.

In addition, Chiba City was built to support a wide range of parallel computational science applications. In the Mathematics and
Computer Science (MCS) Division of Argonne National Laboratory, we collaborate with hundreds of researchers around the world
who use our computing facilities in partnership with the scientists in our division. Chiba City was meant to be used by these
scientists in order to tackle real scientific problems while they simultaneously worked with computer scientists to expand the scope
of problem that they could address.

In essence, Chiba City is intended to support two distinct goals that are occasionally in conflict: scalable computer science
research, which needs a dynamic and interactive testbed, and computational science, which has historically used stable, batch-
oriented systems. We believe that Chiba City has achieved a comfortable balance between these two worlds and has helped
promote good science in both.

The difference in requirements between experimentation and classic production computing has kept us—Chiba City's designers
and administrators—living in two worlds at once, trying to keep the cluster both stable and interesting.

20.1.1 Chiba City Configuration

In this section, we describe the configuration of the Chiba City from multiple perspectives. We cover not only what went into the
cluster but why it is there and how it is used.

Node Configuration
Chiba City includes the following computing components (see Figure 20.1):

256 computing nodes

32 visualization nodes

8 storage nodes

18 management nodes

Figure 20.1: Chiba City schematic.

Computing Nodes. The 256 computing nodes are the workhorse portion of the cluster. These are the primary nodes that run the
user's programs.

CPU. Each computing node has two 550 MHz Pentium III CPUs. This lets us play the game of sometimes referring to the system
as a "512-CPU computer" rather than a "256-node computer." (Of course, some people actually include every CPU on the system
when they count, not just the ones available to the users. In Chiba's case, this would be 574 CPUs, not including the CPUs in the
networking equipment.)

One of the more hotly debated issue throughout the design phase of Chiba was the question of how many CPUs each node
should have. From a pure performance viewpoint, it makes the most sense to have only one CPU per system, for several reasons.
First, the memory bandwidth on Pentium IIIs is quite limited; thus one CPU alone can easily saturate the memory bus, making any
more than the first one potentially useless. Second, in order to most efficiently use all of the CPUs in the system with an MPI job,
the communication between processes must use both network and shared-memory communication, which is difficult. Third, at the
time of the installation, Linux didn't run on more than one CPU particularly well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the other hand, from a price/performance perspective, it makes much more sense to have multiple CPUs on each node—and
in fact, four would have been better than two from this viewpoint. It's typically cheaper to buy a dual-CPU system than to buy two
of the same system, each with only one CPU. Furthermore, it's far cheaper to install a network for 256 nodes than for 512 nodes.
(On the other hand, if the network is the bottleneck, then some people who use multi-CPU systems end up installing two or more
network interfaces per computer.)

On Chiba City, we decided to go with dual-CPUs for flexibility. We wanted to be able to support experiments and development on
both types of MPI programming. Those wishing to go for maximal node performance could ignore the second CPU. Alternatively,
those wishing to use or experiment with mixed-mode MPI programming would have that option as well.

In retrospect, this is exactly what has happened. Some users find that their code is more efficient if they use only one processor.
Others find that two processors work well for them. And developers have needed access to both types of configurations.

Computing Node Memory. Each computing node has 512 megabytes of RAM. We felt that this was a minimum for dual CPUs at
the time. We do occasionally see applications run out of free memory and start swapping, particularly when using both CPUs, but
in general this has proven to be sufficient.

Computing Node Footprint. The nodes themselves are 2U units. (Equipment that can be housed in computer racks is measured
in the unit U, where 1U is 1.75 inches. A standard rack is 42U.) We went with these because they were the smallest system we
could find at the time. In fact, the size of the units was a major driver: one of the initial proposals we received from vendors had 3U
and 5U units, which would essentially doubled the floor space required for the cluster. We simply didn't have that much space in
our machine room.

Ironically, 1U Pentium systems hit the market a few months after we installed Chiba City. We knew they were likely be available
around then, but renegotiating the cluster purchase to have 1Us was simply not an option. These days, blade technology and
clever mounting schemes allow configurations of less than 1U.

Computing Node Disks. Some cluster builders include disks in all nodes. Others go completely diskless. Diskless nodes have a
number of advantages in a cluster. First, it's a little easier to configure the operating systems on the nodes when they're diskless,
because those configurations are stored on management nodes. (This advantage can be negated if adequate configuration tools
are used to manage diskful nodes.) Also, disks tend to break. If the nodes don't have disks, that's one less thing on each node
that may require service. On large clusters, it's a good idea to eliminate any situation that involves touching the nodes.

On Chiba City, we have 9 gigabyte hard drives on each node. We decided to install disks in each node for maximum flexibility.
Some applications that the scientists run make extensive use of local disk. We also anticipated that system-software experiments
or alternative operating systems might need to use the local disk. It has turned out that, for us, this was the right choice. Many,
many uses of the system rely on or take advantage of the local disk. And while we do occasionally have drives that fail, this has
been much less of an issue than many other hardware components, particularly the fans.

Other Computing Node Hardware. In addition to the CPUs, the RAM, and the hard drive, each computing node has

one 32-bit PCI slot that is used for a Myrinet card,

a 10/100 Ethernet port on the motherboard,

a floppy drive (because that was included), and

serial, parallel, keyboard, and the other usual PC ports.

Computing Node Connections. Looking at the back of a node can be instructive. Each connection plugs into another component
of the cluster, all of which are described in detail in following sections of this chapter.

The Myrinet card is a part of the Myrinet network. Each node has one fairly large Myrinet cable that runs under the
floor to a Myrinet Clos64 switch.

The Ethernet port is used for to connect to the Ethernet network. Each node connects to an Ethernet switch in its
rack or in a neighboring rack.

The serial port that Linux uses as the console plugs into a serial concentrator in the rack, which enables remote
access to all of the consoles.

The "management" serial port on each node plugs into a separate serial concentrator, to be used for low-level
hardware and management. This is a motherboard-specific management interface, and we've never needed to use
it.

The power cable runs to a Baytech power control unit that allows us to remotely monitor and control the power to
each node.

The keyboard and video ports are left vacant. In rare situations, such as hardware diagnosis or BIOS upgrades, we
may plug a keyboard and monitor into them. In an ideal world, we would never use these at all. Other clusters built
since Chiba use daisy-chain mechanisms to allow somewhat remote access to the keyboard and video.

Visualization Nodes. The 32 visualization nodes are used by computer scientists for research into cluster-based image synthesis
and computer graphics. They are sometimes used as their own independent 32-node cluster and sometimes used in conjunction
with the computing nodes as part of one large program.

The primary feature of the visualization nodes is that they include high-end video cards that can be used for graphics and image
synthesis. Ideally, these cards can be used in two ways:

Simply as video cards. In our environment, we have a remote console infrastructure for graphics systems that
allows us to connect the display port of graphics systems located in one spot to display systems located in a
laboratory. This means that the visualization nodes can be housed in the machine room and still be used to drive
the CAVE or our 15-projector Active Mural, both of which are in other rooms.

As pipelines for generating images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These video cards typically require an AGP slot. The requirement for the AGP slot drives every other detail of the visualization
nodes. For example, computers with AGP slots are usually desktop systems or workstations rather than servers. Our visualization
nodes are workstation-style systems that don't fit into racks well and are actually kept on shelves. The systems that were available
at the time we purchased Chiba City were 550 MHz Pentium III systems configured with 13 GBytes of disk and 384 MBytes of
RAM. We manage them the same way that we do the compute nodes, including remote serial and power control.

The video cards were originally Matrox Millenium 32 MBytes G400Max cards. Since installing Chiba City, we've upgraded the
video cards to NVidea GEFORCE3 cards.

Storage Nodes. The eight storage nodes are not accessed directly by most of the users of Chiba City. Instead, they provide file
system service to the computing nodes, as described below under "file servers."

Each storage node has a 500 MHz Xeon, 512 MBytes of RAM, and, most important, 300 Gbytes of SCSI-attached disk. So, in
aggregate, the storage nodes provide 2.4 TBytes of raw disk space to the computing nodes. This was a lot of disk at the time we
installed the cluster.

The storage nodes are a part of the Myrinet network. In some cases, cluster builders will choose to put their storage nodes
exclusively on the Ethernet network. This choice is primarily an issue of performance versus cost. With an even order of two
number of computing nodes (i.e., 64, 128, 256, etc.), one can often build an interconnect network with a lot less hardware than
would be required for those same compute nodes plus a few storage nodes. The difference may be negligible or may be
substantial. In our case, getting the storage nodes onto the Myrinet meant that we needed to purchase several additional Myrinet
switches. Because I/O performance and experiments are important to our user community, we felt the cost was worth it.

The storage nodes interface with the rest of the cluster in the same way that the rest of nodes on the cluster do. In addition to
being available over Myrinet, they're also on the Ethernet. They also have remote power and console control.

Under normal conditions users don't have direct access to the storage nodes. However, scientists working on a project specifically
related to I/O research may have access to the I/O servers. In this case, it's possible that their programs will run simultaneously on
both the compute nodes and the storage nodes.

Management Nodes and Servers. The nodes used for cluster management come in several different flavors:

12 systems used as the cluster "mayors," or monitor systems

4 front ends

2 file servers

The mayors provide a scalable management mechanism, which is described in greater detail in Section 20.1.1. Most clusters don't
need this many mayors because their configuration isn't changed as frequently as Chiba City's.

Mayor systems. Every set of 32 computers in the cluster is associated with a computer, called their "mayor," that monitors and
manages them. The mayors are never used as part of any computation or experiment running on the cluster but are instead used
to configure the cluster for that experiment and recover from any problems it might cause. Each mayor is system with a single 550
MHz Pentium III, 512 MBytes of RAM, 10/100 Ethernet, Gigabit Ethernet, and 200 GBytes of SCSI disk. Two of the mayor units
have special functions. One serves as the "city mayor" and is used to control the other mayors. The other runs the scheduler for
the cluster.

Front ends. Chiba City was originally configured with four front ends: systems that users could login to in order to build their
programs and launch them onto the compute nodes. Since these systems are identical to the compute nodes, the users' build
environment would be the same as program's execution environment. In practice we found that two front ends was sufficient, and
we have used the other two nodes as test systems.

File servers. The two file servers provide file systems via NFS to the login nodes and to the mayors. They house all of the user's
home file systems and all of the configuration files (kernels, RPMs, config files, and so on) for the nodes. They do not export file
systems directly to the nodes—that's the job of the storage nodes. The file servers have exactly the same hardware configuration
as the storage nodes. Each has 500 GBytes of disk.

Nodes We Missed. After a few years of running the cluster, we've concluded that the configuration that we put together is almost
correct, but we missed a few pieces.

First, we could use more test systems. Linux kernels, file systems, system software, and applications all change rapidly. Having
between four and eight test machines for testing individual pieces of code and cluster functions would be extremely helpful. At
present, we usually allocate some of the compute nodes in order to test new software. This procedure works okay, but since it
reduces the pool of compute nodes the users can access, it tends to be a short-term solution.

Second, we could use a few spare nodes. We always seem to have a small handful of nodes with hardware problems, which
makes it difficult to reliably be able to run jobs on all 256 nodes. We would like to have a pool of spare nodes that we would swap
in for a node with broken hardware. Then, once that node was repaired, it would go into the pool of spare nodes. Four spare
nodes would probably cover most situations.

We actually considered both of these in the original plan, but for financial reasons they were removed. It's difficult to justify
between eight and twelve computers that aren't really being used most of the time.

Logical Configuration
Chiba City is conceptually divided into cluster building units which we call "towns." In our definition, a town consists of a set of
computers and a single "mayor" node that manages them. For example, each of the eight towns of computing nodes in Chiba City
includes one mayor and thirty-two computing nodes.

In Chiba City, there are eleven towns:

8 computing towns, each with 32 computing nodes

1 visualization town of 32 visualization nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 storage town with the 8 storage nodes

1 server/mayor town with the 10 mayors, login nodes, and file servers

The towns are a mechanism to allow scalable management (see Figure 20.2). From a systems administration perspective, we
would like to be able to completely manage every node in a town by interacting with its mayor. So, in order to manage the 256
computing nodes in Chiba, one merely needs to manage the 8 mayors of those computing nodes. To accomplish this, the mayor
provides boot service, operating system configuration, console management, and file services to each of the other nodes in its
town. It monitors those nodes to make sure that they're running correctly. The mayor performs management functions only and
never participates in the computing activity of the nodes, so the users of the cluster never work with the mayors directly.

Figure 20.2: A Chiba City town.

In most cases on Chiba City, each mayor monitors 32 nodes. In a few cases, such as the storage town, there are fewer nodes in
the town. We chose 32 clients for a number of reasons:

Our tests indicated that NFS performed reasonably with 32 clients. Thus, NFS would be an option within a town if
we so chose.

In a 1024-node cluster, there would be 32 towns of 32 nodes.

The hardware for a 32-node town fit nearly perfectly into two racks.

The town relationship is hierarchical. A collection of mayors can be managed by a higher-level mayor in the same way that a
collection of nodes is managed by a mayor. In Chiba City, we have one node, which we refer to as the City Mayor, that is
responsible for managing each of the mayors. This gives us a single point of control from which the entire cluster can be
managed.

The concept of building the larger system out of smaller replicated systems, each with their own server, wasn't a new one. Beyond
being a classic computer science technique, it was used to some degree in the IBM SP, has been a standard approach for years
in the systems administration community, and was demonstrated on clusters by the Sandia National Laboratories CPlant project.

We've made a number of observations about the mayor/town concept while operating the cluster:

The mayor concept has proven its worth over and over. We could not manage the cluster without some sort of
hierarchical approach.

Some network services already have scalability mechanisms built in, or scale to the size of the cluster. The
Dynamic Host Configuration Protocol (DHCP) is one of these. Breaking these down so that it runs on each mayor
and supports only the local town isn't worth the time. In other words, some services for the cluster can and should
be global.

The ratio of clients to mayor is highly dependent on what those clients are doing. With 32 nodes, we're comfortable
supporting network booting and remote operating system installation. If we were also supporting high-capacity file
systems or other services, we might need to scale down. On the other hand, if every node was largely independent
except for monitoring and time service, for example, then we could probably shift to 64 nodes per mayor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have often been asked why we call the building blocks "towns." In the early design phases of Chiba City, we talked to a lot of
people in a lot of companies who had never heard of clusters before. We had trouble explaining that we wanted to build the
cluster out of these subclusters that had a monitoring agent, so we started to call them "towns" as a part of the city metaphor. This
explanation helped quite a bit even though, of course, real cities aren't made up of towns that look identical—they're made up of
neighborhoods that are usually very different. But the metaphor helped explain the concept, and the name stuck.

Network Configuration
Chiba City has two types of networks—Myrinet and Ethernet. In this section, we describe their configuration and their use.

Myrinet. The Myrinet network is used to support high-speed communication between nodes as part of a user's program, usually
related to computation or I/O.

On Chiba City, a high-performance network is essential. Many of the jobs that run on the cluster are bound by the performance of
the network: the faster the network, the better the performance of their code. Also, a lot of the computer science research on
Chiba is related to communication.

We chose to use Myrinet, a product of Myricom, because it was the most cost-effective high-performance networking solution on
the market at the time we purchased the cluster. Myrinet has a number of nice characteristics. It can deliver a full bisection
bandwith network between all of the nodes of a cluster. The network cards that we installed can support a theoretical 1.28 Gbps
transfer rate, with latencies from process to process in the 10–15 microsecond range.

The specific Myrinet hardware on Chiba City includes 4 Myrinet spine switches, 5 CLOS-64 switches, and 320 Lanai 7.2 NICs.
The hosts that usually participate on the Myrinet network include the computing nodes, the visualization nodes, the storage nodes,
and the login nodes. In other words, everything except the management nodes and the file servers is typically on Myrinet. At
different times over the life of the cluster, we have connected the file servers and mayors to support experiments.

It is possible to run IP over Myrinet, and we do. From an IP standpoint, the Myrinet network is a flat IP subnet and is not
accessible from outside of the cluster.

Ethernet. The Ethernet network is used for everything that the Myrinet network isn't. For the most part, this means management
functions, remote access, and a fallback communications network for applications if the Myrinet network isn't available.

Figure 20.3 is a diagram of the Ethernet network, which is arranged in a simple tree structure. Each computing, visualization, and
storage node is connected via Fast Ethernet to an Ethernet switch near that node. There are 10 Cisco Catalyst 4000s distributed
around the cluster, each connecting approximately 32 nodes.

Figure 20.3: The Chiba City Ethernet.

A central Gigabit Ethernet switch, a Cisco Catalyst 6509, is connected to each of the Catalyst 4000s with two channel bonded
Gigabit Ethernet links. The remaining computers—the front end nodes, the file servers, and the mayors—all connect directly to the
Catalyst 6509. Also, Chiba City's link to the outside world comes in through the Catalyst 6509.

In essence, Chiba City has a completely switched Ethernet. The IP network layered on top of this Ethernet is one flat subnet with
no routing. Every node in the cluster is at most three Ethernet switch hops away from every other node.

Physical Configuration
The physical layout of a cluster is particularly important if space is limited, as is the case for us. Chiba City occupies twenty-seven
standard 19-inch racks arranged into two rows (see Figure 20.4). The racks include

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.4: One of two rows of Chiba City.

16 racks of computing nodes. Each computing town fits precisely into two racks. This include the 32 compute
nodes, the mayor and its disk, the serial and power management systems, and the Ethernet switch for the town.

4 racks of storage nodes. The storage nodes and their associated disk each take up half of a rack.

2 double-layer shelving units for the visualization nodes. Because of cable length limits for the video systems, these
are located in another part of our machine room from the rest of Chiba City.

3 racks for the Myrinet switches. These racks have the heaviest cable density in Chiba, because every node has a
cable that runs to some port in these racks.

1 rack for the file servers and their disk.

1 rack for the Gigabit Ethernet switch and remaining servers.

20.1.2 Chiba City Timeline

In this section of the case study, we examine the phases of activity that Chiba City has gone through, starting with the early seeds
of the idea up through full-time operation. These are similar to the phases that most other clusters go through.

Phase 1: Motivation
As noted at the beginning of this chapter, the primary driver for Chiba City was to create a testbed that could be used to support
scalability testing and research into scalability issues. We believe that this area is the most important aspect of computing to
address in order to advance the state of high-performance computing.

Furthermore, we felt that it was important to build a system that could be used for general computer science and development,
rather than on applications and simulations, which is typically what large computers are used for.

Before building Chiba City, we had been building and running small clusters for several years, including clusters based on
Windows NT, Linux, and FreeBSD. We had used those to support research into communication, visualization, and several other
areas of experimentation. But, by fall of 1998, we still had not yet been convinced that the large system in MCS would be a
cluster.

However, once we considered the issues of scalability, the need for a computer science testbed, and the price/performance of
commodity clusters, it became clear that a large-scale cluster could probably address all of these needs as well as become the
next major MCS platform for simulation and computational science.

We originally considered installing a 1024-node system. However, we decided to start with a 256-node system in order to test
many of the concepts. Thus, Chiba City was started as the first step toward a thousand-node (or larger) cluster, with a primary
goal of supporting scalable computer science and a secondary goal of supporting scientific applications.

Phase 2: Design and Purchase
Having convinced ourselves that a large cluster was the right direction for MCS, we started, in December 1998, to design the
system and arrange to purchase it.

We spent the next several months repeating this cycle over and over:
1. Think about what we needed and how we would use it.

2. Talk to vendors, integrators, and the cluster community in order to find out what would be available on our time
frame.

3. Consider various funding options and match those with design and availability.

We discovered, among other things, that the traditional set of high-performance computing vendors were all trying to decide what
to do about clusters (and what to do about Linux). At the time, it was possible to buy an actual cluster from Compaq and from a
number of small integrators, but none of the larger vendors had yet created cluster product lines. No one was selling anything like
what we wanted for Chiba City.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Eventually we put together a presentation to use to explain to vendors what we wanted to buy. The presentation explained what
clusters were, what the cluster would be used for, how we wanted to operate it, and what we thought the necessary parts might
be. As we updated our internal designs for the system software, we updated the purchasing presentation. We talked to a lot of
different vendors and then went through the formal purchasing process. Eventually we agreed to buy the system through IBM.
IBM arranged to provide subsets of the system from other vendors, including the Ethernet hardware from Cisco, the Myrinet from
Myricom, and the 2U compute nodes from VA Linux.

These days, the purchasing phase is a lot easier. Almost every vendor can sell you a small or medium cluster without much
thought, and even standard large clusters are relatively simple. However, the very large clusters with focused requirements still
require a great deal of interaction with the vendor, as will be described later in this chapter when we discuss Jazz.

Throughout this period, we continued the design of the management infrastructure and system software for Chiba City, developing
and testing it on a small cluster. (We called the nodes in the small cluster "the freakies." No one seems to knows why. That small
cluster is long gone, but the name continues to live on in code references and machine configurations. Be warned.)

Phase 3: Installation
In October 1999, we installed the cluster.

During the preceding month, truck after truck had backed up to our loading dock and dropped off boxes. We had piles of
computers, racks, cables, network boxes, disks, and miscellaneous hardware stacked everywhere. Fortunately we had been
through large computer installations before, so we were careful to keep rigorous track of which boxes arrived from which vendor
on which truck on which day. Despite this, there were still a few missing boxes that took weeks to locate.

During the purchase phase of the system, we realized that the installation of the cluster would be interesting. While the vendors
were willing to provide installation technicians as part of the package, we were the ones who knew how the cluster should be
connected. We needed to be actively involved in the installation.

Once we realized this, we decided this was an opportunity rather than a problem. Many of the scientists at Argonne are interested
in the details of the computers, and we felt that they would probably enjoy being able to help install the system. We decided to
assemble the cluster in the style of an old-fashioned barnraising, inviting everyone to join in. Everyone was enthusiastic about the
idea. Over forty people signed up to help.

Before the installation, the MCS Systems Group built one of the computing towns. We took detailed notes on what we did and
then put together a twelve-page installation manual. Based on the amount of time it took us and the space to work in the machine
room, we estimated that we could build the entire cluster in two days. We spent the day before the barnraising working with
technicians from VA to assemble the racks and to put the Ethernet and serial cables under the floor.

The barnraising itself was great fun. We divided the volunteers into teams of four people. Each team was led by a member of the
Systems Group or a VA technician. We ran four teams at a time. Each team took half a day to assemble one rack, and each rack
was half a town. So, by the end of the first day, four computing towns—half of Chiba City—was assembled.

While the teams worked, lots of other things were going on. IBM engineers assembled the storage nodes. The Chiba development
team fine-tuned the software for some initial testing. And, most important, Janet Sayre of the Systems Group created just the right
kind of atmosphere by sitting in the middle of all the activity and playing the banjo.

At the end of the second day, we connected all of the towns and booted every node. There were a few minor hardware problems
with a few systems, so we weren't able to bring them all up, but we were able to run an MPI job on 248 of the nodes.

A time-lapse video of the barnraising is available on the Chiba City Web page www.mcs.anl.gov/chiba/barnraising/video.html.

Phase 4: Final Development
For the next four months, the cluster was primarily in development mode. While we had demonstrated that the nodes were
running an operating system and connected to each other at the end of the barnraising, a lot of work had to be completed before
the system was ready for users.

Among other things, we needed to finish the cluster environment: to get a cluster schedule installed, arrange for data
management, and tune the communications networks. We also had to get the management system working, including the ability
to create user accounts, push out node configuration changes, and so on.

During this time, we asked a few users to try various tests on the system, but it was not available to more than three or four users.

Phase 5: Early Users
Starting in March 2000, we opened up the cluster to the first set of early application users. There were around four early users at
first, all of whom were trying to use the cluster but were also providing detailed feedback to us so that we could fix problems they
found.

Once things were relatively stable for them, we opened up the cluster to a few more users, and then a few more, and so on. By
the end of the early user phase, we had around sixty user accounts on the cluster.

The majority of the problems that we had to address during this time were related to the scheduler and to the Myrinet
communication libraries.

Phase 6: Full Operation
In June 2000, we felt that we had eliminated most of problems that would impact users of the system, and we opened up the
cluster for general use.

From this point on, account requests for Chiba City were handled in the same way that requests are handled for other MCS
computing facilities—the account request is approved based on whether the use matches the mission (and therefore the funding)
of the system. These decisions are made by a group of MCS scientists who are responsible for the activities on the MCS systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chiba City has been in full operation mode since that point. The nature of the operational load has shifted—initially it was
supporting a lot of computational science interspersed with computer science testing. As the cluster aged, however, many
computational scientists shifted to faster platforms while the computer scientists begin to carry out more substantial systems
software development and deployment. Fortunately, the cluster was able to support both of these kinds of usage without any
modification.

In the future, Chiba will no doubt go through the next phase: gradual obsolescense. At one time, we could have upgraded it, but at
this point it will likely make more sense to simply replace it.

20.1.3 Chiba City Software Environment

In this section we examine two aspects of the Chiba City software environment: computing and management.

The Computing Environment
The computing environment on Chiba City was, like the rest of the cluster, optimized to support computer science yet intended to
support other uses. In this section, we describe the standard computing environment on the cluster as well as the special
modifications we've made to support computer science and scalability research.

The Default Node Environment. The "node computing environment" is the set of programs and services available on the user-
accessible nodes of the system, that is, the computing nodes, the visualization nodes, and the login nodes.

All machines in the cluster run Linux by default. The original distribution that we started with when building the node operating
system was Red Hat 6.2. Over time, we added and removed RPMs, changed much of the default behavior, and added software
from all over. The nodes are still vaguely recognizable as Red Hat, but they could just as easily have been another distribution.

The specific kernel installed by default on the computing nodes varies over time. Intially, it varied a bit more than we would like
because we kept running into odd problems that forced us to switch kernels to isolate problems. After the first year of operation,
this settled down—we found a kernel version that worked and didn't change it without substantial testing.

Twice in the lifetime of the cluster, we have installed a completely new software image on the entire cluster in order to roll out a
global update of new kernels, libraries, and software. These images are tested rigorously on a small set of nodes before they
become the default environment. Updating the computing nodes has proven to be relatively simple, while updating the mayors
and servers is always complex.

The compilers available on the front end include C, C++, and Fortran 90. Some users also program in Java, Perl, Python, and
PHP.

The Default Cluster Environment. The software glue that we use to turn the pile of nodes into a functional cluster includes a
number of different packages.

Communications libraries. The vast majority of jobs on Chiba City use MPI for communication. Our preferred version of MPI is
MPICH. We have multiple versions of MPICH installed in order to allow users to choose their favorite compiler and flavor of
network. To use generic messages over Myrinet, you must link with MPICH-GM from Myricom.

The set of MPICH installations on Chiba got so large, in fact, that we built a small tool that lists all of the MPICH installations and
allows you to pick the one you will be working with by default. The number of MPICH installations inspired the MPICH group to
provide an alternative for handling multiple compilers; see Section 8.7.6.

Scheduling. We use OpenPBS on Chiba City for queue management. (See Chapter 17 for a detailed discussion of PBS.)
OpenPBS is the open source fork of the Portable Batch Scheduler (PBS).

OpenPBS wasn't designed for environments as large or distributed as Chiba City and therefore has some scalability issues. Most
of the problems that users of the cluster have had are related to OpenPBS. Many of these have been solved by the community
over time, while others remain issues. Becaues OpenPBS is not under active development by a focused author or community, it's
not clear that these will ever be solved.

OpenPBS can be interfaced with an external scheduler that makes the decisions about which jobs in the queue will run at what
time. We use the Maui scheduler for this purpose (see Chapter 16 for a detailed discussion of the Maui scheduler). We've been
quite happy with Maui.

Global file systems. A global file system is one that is available on every node of the cluster and presents the same view of the
data in the file system. It is not necessarily capable of supporting high-performance use, but at least provides a common name
space. This normally is used for home directories, common applications, and so on.

One of the early design decisions on Chiba City was that we would not use NFS as a global file system on the cluster. NFS
performs badly and scales worse. We felt that if it were really necessary, NFS could be made to work on the 256+ nodes of Chiba
City, perhaps by using an optimized NFS server such as a Network Appliance box. However, Chiba City is meant in part to be a
prototype of a much larger cluster of 1024 nodes or more, and at that level we expect NFS to be useless. Therefore, we decided
to try to run the cluster without a global NFS file system to see how it worked out.

This has been an experiment with a clear finding: global file systems are very important.

Because there was no plausible file system alternative at the time we built Chiba City, we avoided NFS by simply not having a
global file system.

It's fairly easy to survive without a global file system for administration purposes—one simply uses rdist or other file
synchronization mechanisms. On the user side, though, we've had two primary problems:

Job staging. The user's program, support files, and data must be copied out to that user's nodes at the beginning of
their job. After the job has completed, any output files that were created must be staged off the nodes before the
nodes can be used by the next user. We've tackled this problem from a number of angles and have a solution in
place that works but is not as fast as we would like. We believe that multicast file copying is the right solution to this
problem and will be investigating it in the near future.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Confusion. Users tend to expect that the cluster will have a global file system. When they log in to their nodes and
look around, they don't see the files they expect in their home file system on that node. Even when the entire
environment is explained, it is difficult to use the data transfer tools to copy in the right files and copy out the right
files.

Initially, we felt that a global file system would be convenient, but not critical. Based on all the difficulties that the users of the
system have had, we now believe that a global file system, even if it performs relatively poorly, is essential.

Parallel file systems. In contrast to a global file system, a parallel file system is specifically meant to provide high-performance
access to application data for large parallel jobs. For example, one might store a very large input dataset on a parallel file system
and subsequently start an application consisting of a few hundred tasks, all of which simultaneously access portions of this
dataset. The parallel file system provides both a single logical space for application processes to look for data files and also the
performance necessary for these parallel applications to have timely access to their data.

The only open source parallel file system available on Linux clusters at the time that we installed Chiba City was the Parallel
Virtual File System (PVFS), which is described in detail in Chapter 19. PVFS and Chiba have a comfortable relationship, and over
the years Chiba has become the primary development platform for PVFS. In this environment PVFS has been proven to scale to
hundreds of I/O servers and compute processes, and peak aggregate throughput of over 3 GBytes per second has been shown.

Running at these scales also served to highlight some reliability issues in PVFS that were not evident when running in smaller
configurations. As these problems have been addressed and PVFS has begun to stabilize, we have begun to make a PVFS file
system available as a full-time resource for the users of Chiba City. This has two benefits for users: it provides a high-performance
data storage space for use by applications, and it gives users a single place to store datasets that can be accessed from any
node.

Job invocation. Job startup of hundreds of processes using MPICH with its default ch_p4 device is slow. Especially for
interactive jobs, something more scalable is needed. Chiba provided some of the motivation for the ch_p4mpd device that made
use of an earlier version of the MPD process startup system, described in Section 8.7.3. Chiba City has provided a valuable
testbed for the development of the MPD system and the version of MPICH that relies on it for job startup. The MPD daemons can
run as root, and we have been using them to run a mix of user jobs.

Parallel Unix commands. Chiba City is also serving as testbed for the Scalable Unix Commands [44], which provide parallel
versions of the common Unix commands such as ps and cp. A new version of these [82] is now available at
www.mcs.anl.gov/sut. The new version implements these interactive commands as MPI applications, so the fast startup of MPI
jobs made possible by MPD is critical. We plan to make these familiar commands available to all users as part of the Chiba
environment.

Support for Computer Science. Computer scientists have a few general requirements that conflict with running applications on a
system: interactivity, a license to crash the system, and the need to modify the system software.

Interactivity. Computer scientists, as well as developers of all types, often want to use the computer in "interactive" mode. They
want to edit code, compile it, and then test it immediately. The test, and even the production run, may last only for a few seconds,
but it often needs to use the entire system.

If the computer scientist has to submit a test job in a queue and wait until it can be scheduled, it can take hours or even days to
complete a one-minute run. If the scheduler is optimized to allow access to the entire machine quickly, the resulting schedule will
have huge numbers of unused node time. Production sites and computers that have real dollars tied to machine utilization simply
can't afford to have that type of scheduling policy.

This need for interactivity is not unique to computer scientists, of course. Application developers need interactive test cycles while
building code that will eventually run for hours. But many of these developers can get away with testing on a small set of nodes,
which is easier to acquire, and computer scientists may never need the entire cluster for more than a few minutes at a time.

On Chiba City, we do run a batch scheduler because we have not yet found a better way to equitably share the system between
many users. But we clear the cluster of all jobs every day for a two-hour period, during which time no job longer than five minutes
can run. This gives computer scientists a two-hour window every day for quick turnaround. Long-running jobs have to wait until the
weekend, when we allow jobs to go from Friday evening until Monday morning.

Also, it's possible to schedule a number of nodes and then simply use them in interactive mode during that timeslot.

License to crash. Some computer scientists and developers work on low-level pieces of code that can have bugs that impact the
entire operating system on a node. In some cases, such as in file systems and job managers, they may even crash the entire
cluster. It's important to have some kind of facility where code like this can be tested in a real-world environment.

Crashing a node on Chiba, even to the point of requiring a rebuild, is fairly minor. We have remote power control, remote
monitoring, and the ability to rebuild a node from scratch. (All of these systems are described in Section 20.1.3.) If a node needs
to be rebuilt, we simply set a flag in the City database for that node, and that node's mayor will initiate a rebuild the next time that
node reboots. If necessary, the mayor can force the reboot.

Crashing the entire cluster is a bigger problem. Still, we set the expectation that we actively support development of the cluster's
system software and that we expect things will occasionally crash. We try to minimize the frequency of these large-scale problems
and try to minimize their impact. But in a worst-case situation, we can rebuild all the nodes and reboot in 20–30 minutes.

Modifiable node environment. A small number of developers actually need a completely different node environment. They might
be testing a set of device drivers that are unusual, or comparing FreeBSD to Windows XP to Linux. (We actually have run
FreeBSD and Windows XP on the computing nodes on Chiba.) In any of these cases, the scientists may need to have root access
on their nodes or may want to replace the node operating system entirely for the duration of their job.

We support the ability to arbitrarily modify the node computing environment. The mayors build their nodes from a node "image,"
where an image is a set of files or binary file system data. The mayor will write that to the node's disk, then boot it.

You can build an image of any operating system desired, as long as it boots. During the time that the nodes are reserved for you
by the scheduler, you can do whatever is necessary on those nodes. Once your scheduled time is up, the mayor power cycles the
node, catches the booting system, and reinstalls the Chiba City default Linux image on the node. This process is illustrated in
Figure 20.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.5: Node image management.

Management Environment
Starting with the very first design for the cluster, we put a great deal of emphasis on scalable management of Chiba City. For
example, one of our goals was never to have to physically touch a node unless it was having hardware problems.

We emphasized scalable administration because we must. All management functions of a very large system, of which Chiba City
is a prototype, must scale for obvious reasons. Furthermore, we need scalable management for Chiba itself. The management
team for Chiba City consists of three people who are responsible for all aspects of the administration of the cluster, all user
support, the development of management tools and system software, involvement in experiments, and other aspects of the MCS
computing environment.

The management approach for Chiba City incorporates a number of philosophies:

Support all the needs of the diverse user community, ranging from stable batch-oriented computing to letting
individual users have root access on their nodes.

Don't change the model too much, because our scientists need to work in the common model to make their tools
applicable to others. For example, we couldn't switch over to a shared-memory model of the cluster.

Manage from a central point. The mayor/town architecture—in which the city mayor presides over the mayors, each
of whom manages a set of nodes—is designed to strongly support central management.

Use open source and existing tools as much as possible. As much as we like to invent cooler wheels, we don't have
time.

The remainder of this section describes the individual components of the management environment.

City Database. The city mayor keeps a database of relatively static cluster information. We call this database the City Database
or "citydb." The database describes the node/mayor relationship, keeps track of which nodes have what types of hardware, and
knows which nodes should have which operating system image at which time.

The City Database is different from the database kept by the scheduler, which is much more dynamic. The dynamic database
includes job information, which users own which nodes, and which nodes are currently up. Optimally, both databases would be
more closely related, but in practice it has been easier for us to keep the functionality split.

The City Database is authoritative. If the database and reality don't match, then reality must be wrong. Using this philosophy, we
can describe the desired cluster configuration in the database and then tell the mayors to make sure the cluster conforms to the
configuration. The configuration management tools described below take care of this.

Citydb is built on MySQL using standard SQL.

Configuration Management. At the highest level, the configuration model works this way:

The configuration for every node is described on the city mayor. Since many nodes are identical, this is not as bad
as it might seem.

The city mayor is the source for all configuration files, images, and RPMs. All mayors keep a mirror image of those
files.

When a configuration change is necessary, the administrator makes a change on the city mayor and then invokes a
process to push that change out.

The nodes themselves are checked at boot up and after user jobs run to make sure that they have the correct
configuration.

The primary configuration management tool that we use on Chiba City is a program called sanity. The idea behind sanity is
that it can install RPMs, modify configuration files, and execute scripts. It decides what to do based on a configuration file that can
be general or very specific to a node. Once it has established that the node matches the configuration in that file, the node is
pronounced sane.

The mayors have the ability to invoke sanity on each of their nodes. The nodes also run sanity when they first boot and after a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mayors have the ability to invoke sanity on each of their nodes. The nodes also run sanity when they first boot and after a
user job completes. The configuration for sanity is an aspect of the image on that node, and the image for each node is
recorded in the citydb on the city mayor.

In order to make a change to all of the nodes on the system, one would modify the sanity configuration file for the default image,
then invoke a global sanity push on the city mayor. It tells each mayor to kick off a sanity run, and each mayor in turn tells
each node to run sanity. This process is illustrated in Figure 20.6.

Figure 20.6: OS image management.

Serial Infrastructure. Another tool in the management arsenal is remote console management. The console of every system in
Chiba City is available over the network. The system works in the following way:

The console port on each node is connected to a serial concentrator for that town.

The serial concentrator is connected to the mayor.

The mayor runs a daemon called conserver that enables remote access to the console from anywhere on the
network that has permission. This daemon is an open source tool that is widely used in the system administration
community.

From any point on the MCS network, an administrator can type console <node> and get access to the console of
that node.

This process is illustrated in Figure 20.7.

Figure 20.7: Serial infrastructure.

In practice, we use this feature only when debugging. Ideally we don't want to actually have to go to all the consoles of all the
nodes. Sometimes, though, a node will quit responding for no reason. It's frequently possible to recover the node via the console
—or at least get a hint from the console messages what might have gone wrong.

The conserver daemon has another feature of console management that is also critical to Chiba City. It can log all of the output
of any console to a file or to a process. We wrote a program called chex that monitors the output of each console, looking for
particular strings. Among other things, this lets us know whether a node is rebooting, whether it has panicked, or whether some
other error condition has taken place.

We take advantage of this console monitoring to capture node-specific information such as the node's MAC address. See the
section below entitled "The First Boot Process" for an example of why this is useful.

Low-Level Diagnostics. Some motherboards have the ability to provide useful information about the hardware, such as the
temperature of the node and the fan speed. Some can also control the power of the system.

The nodes that we are using have this ability. Initially, however, this functionality was accessible only if you used a Windows NT
system to monitor the node remotely. Since then, people have created open source software that runs on Linux to manage these
ports.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, we have never taken advantage of this system. It would be nice, but we haven't had time to get to it.

Power Control. We do, however, have remote power control for every component of Chiba City. The power control system works
as follows:

Every computer and network box is plugged into a Baytech power unit. There are, on average, five Baytech units
per town.

The Baytech unit is somewhat like a power strip with an Ethernet port. It's possible to telnet to the Baytech and then
power on, power off, or query the power status of anything plugged into it.

We have a simple tool called city_power that allows a Chiba City administrator to control the power of any device
or set of devices in Chiba City.

The Baytechs are connected to their own network, which is built of very simple Ethernet hubs. We could connect them using the
Chiba City Ethernet, but then, if something went wrong with the network, we couldn't access the Baytechs to reset the Ethernet
devices. The power network is accessible only via the City Mayor.

The power configuration is shown in detail in Figure 20.8.

Figure 20.8: Power infrastructure.

The First Boot Process. To explain how the management tools work together, we give an example. One of the more complicated
scenarios on a cluster is when a node is booted for the very first time. The cluster software needs to be made aware of that
process, and the node needs to get the right operating system. Many people ignore this situation and take care of the details by
hand.

Here is what happens on Chiba City when a completely new node is installed in the cluster:
1. We set a flag in the City Database indicating that this is a new node.

2. The node is installed in the correct spot in the rack and cabled appropriately.

3. We install the correct BIOS in the node. This, unfortunately, is still done manually, although we are looking into a
boot floppy approach that will do the right thing. Among other things, the BIOS is set to boot using PXE, a type
of network booting. This means that on all subsequent power cycles, the node will boot from the network.

4. The node is turned on, and it boots from the network. Some server on the net, usually that node's mayor,
responds with the boot image.

5. The boot code is a Linux boot image that includes LILO and a kernel. LILO is configured to launch and then wait
forever at its boot prompt, occasionally reissuing the prompt.

6. The LILO boot prompt is issued over the serial line.

7. The node's mayor sees the Boot prompt. It knows which node this is because it knows which serial lines it is
watching. Thus, at this point, the mayor knows that it node15 (for example) is waiting to boot.

8. The mayor checks the City Database to see what image should be on that node. It discovers that this is a new
node.

9. Based on this information, it issues a boot command over the serial line to the node, handing it a set of boot
parameters. This command tells the node to boot from the mayor from the Build Image.

10. The node receives the command and boots the Build Image kernel that was transferred back in Step 4.

11. As a part of booting the Build Image, the setup scripts partition the node's disk and install the correct image files.

12. At the end of the Build Image, the node displays certain relevant pieces of information to its console, including
its Ethernet MAC address.

13. The mayor, which is monitoring the console, now knows that this new node has successfully built. Furthermore,
it has the MAC address of that node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14. The mayor updates the DHCP tables on the city mayor with the new MAC address and queues a DHCP restart
request.

15. The mayor updates Citydb with a flag saying that the node has the correct image installed.

16. The node waits for a minute and then reboots. Once again, it PXE boots and loads the boot image from the
mayor. It issues the LILO boot prompt to the serial console and waits.

17. The mayor checks Citydb and notes that this node has already built the correct image onto its local disk. It
issues a "boot from local disk" command to the LILO boot prompt over the serial line.

18. The node boots from the local disk. Among other things, it will send out a DHCP request to get its IP address
and will be sent the correct IP address for the node in that spot of the cluster.

19. After rebooting, the node runs sanity. It installs any modifications necessary for that operating system image.

20. Finally, the node is ready to run. The scheduler notes that the node is up and adds it to the pool of allocatable
resources.

This whole process is long to describe but fast to run. The only slow part is the operating system build in Step 11, when the bits
are being installed on the local disk. That can take 10–15 minutes, with the exact time dependent on the size of the image and the
activity on the network. Once the node has been installed and the BIOS updated, the process requires no intervention from an
administrator.

20.1.4 Chiba City Use

The average user of Chiba City interacts with it just like any other cluster of distributed supercomputer. Consider the following
scenario.

A user logs into the front end node using ssh. She compiles her code on that system, or perhaps copy in precompiled code. If she
wants to test the code on several nodes before submitting a large job, she can choose nodes on the 32 nodes of the cluster that
we refer to as the interactive town. This set of nodes is configured in the same way as the standard computing nodes, but is never
scheduled. It is always available specifically for testing purposes. It's quite possible that two users' codes will conflict with each
other, so it's not useful for performance testing or long-running code. Once she is confident that her code will run successfully, she
prepares her code and her job data to be copied out to the nodes that she will eventually be allocated. She does this by putting
everything together in a directory. Finally, she submits her job to the PBS queue using the qsub command. She can check on the
status of her job with qstat. Eventually she will be assigned a set of nodes for the duration of her timeslot, and her job will be
invoked on those nodes. During this time, she will be able to login to her nodes, which she will want to do if she's running an
interactive job. If there are any errors with her job, she will be notified by e-mail. Once her job has completed or her time is up,
whichever comes first, the datafiles she created are copied back to her home directory on the front end node.

Nonstandard use of Chiba City can entail endless variations of this scenario. A user might arrange to have dedicated access to
the cluster for a long period of time—this requires administrator and, in some cases, management approval. Or a user might have
a custom image to be tested and then arranged for installation on that user's nodes. Some people use the storage nodes as part
of I/O experiments. Others use the visualization nodes, sometimes in conjunction with the jobs on the computing nodes, and other
times as a completely separate activity.

Currently, we have about one hundred active users on Chiba City. We expect to add several hundred more in the next few months
as a result of changes in the allocation policies on some of our other supercomputers.

Since its installation, Chiba has been used for many different types of activities. Notable among these are the following:

Monte Carlo simulations in nuclear physics

Computational optimization

Parallel and numerical library development

Distributed supercomputing development

Communication library development

File system development

Astrophysical simulation

Scalable system software development

Visualization

Genomics

Automated reasoning

Climate modeling of both Earth and Mars

Molecular dynamics simulations

Scalability testing of open source tools

A detailed description of these projects is beyond the scope of this chapter; this list is merely meant to give a feel for the different
types of use that the cluster enables.

20.1.5 Final Thoughts on Chiba City

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case study, we have described in detail the kinds of issues that we encounter when designing, building, and running a
multipurpose large cluster. We hope that the topics discussed here will be useful to others who may find themselves in a similar
situation.

Lessons Learned
This entire case study is about lessons that we've learned while running Chiba City. We still have a few that are worth mentioning.

It is surprisingly difficult to run a job on the entire cluster. Most users don't care about this, but management would
always like to confirm that a job has used every possible resource on the system. It seems like there is always at
least one node that is down for hardware maintenance, or one network interface this is flaky, or a node that just isn't
in the mood to play. We have actually run jobs on all of the nodes using both types of network, but these jobs take
focused effort and are relatively rare.

In a cluster, the hardware gets stressed beyond what any vendor expects because it is always being used,
sometimes in ways that the designer never anticipated. We've had bad AGP and PCI slots, large-scale memory
problems, fan lossage, bad cables, and everything else. Furthermore, when buying commodity hardware, one gets
commodity quality. This hardware doesn't take abuse the way high-end supercomputing equipment does. It's a very
good idea to invest in a three-year hardware maintenance option.

When running a cluster like Chiba City, it is essential to have at least one person who lives in the Linux world. Two
or three people is even better. Those people should follow the important Linux mailing lists, track bugs, and follow
discussions on Web sites. The success of the cluster often rides on figuring out exactly which version of the kernel
works best with which set of applications, or knowing that a particular feature will be available (or removed) in a few
weeks.

Future Directions for Chiba
Chiba City has largely been a success. We would like for some portions of the system, notably the scheduler and the I/O system,
to be more reliable and functional, but despite these failings, good science has been accomplished on the computer, both in the
realm of computer science and in scientific simulation. The model that we use to manage and operate the cluster has worked well
and shows every sign of scaling to a much larger cluster. We have a number of plans for software modifications to improve the
system and to support new capabilities.

In the near future, the scalability work that has been started on Chiba City must continue to expand to larger and larger testbed
systems. Many open scientific questions require systems that can deliver sustained petaflops of computation. It is not yet clear
what the path to building a petaflop system is, but it is very likely that such a computer will be built from many tens or hundreds of
thousands of individual computing components. As a community, in order to build such a system, we must have systems software
that can operate a machine of that scale, and we must have algorithms and applications that can make reasonable use of it. Thus,
while the computing industry forges ahead with building better and faster processors, we must have a strategy for connecting
them together and making them run well. Scalability testbeds such as Chiba City are an important part of this plan, and we hope
that research and activities in this space will continue to be expanded.

For more information on Chiba City and the software used to drive it, see www.mcs.anl.gov/chiba.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2 Jazz—A New Production Cluster
In 2002, Argonne determined that the Laboratory had a need for a production computing facility that would support the computing
needs of scientists and engineers around the Lab. The Lab's Computational Science Advisory Committee discussed and studied
the situation in detail and determined that a Linux cluster would be the appropriate way to satisfy the majority of the Lab's scientific
computing requirements. Unlike Chiba City, which was limited to computer scientists and collaborators, this new cluster would be
available to anyone at the Lab.

Thus, in October, we installed "Jazz," a 350-node Linux cluster purchased from Linux NetworX. Jazz achieved just over a teraflop
on sustained Linpack benchmarks, putting it in the top 50 of the world's fastest supercomputers (or at least those that had been
registered on the list). Although our goal had only been to install a cost-effective and efficient mid-range computer, it was
interesting to see what it took to land towards the top of the top 500 list. A far more interesting fact was that we had a lot of
company. The entire list, including the upper echelon, was loaded with clusters running Linux. Since we had installed Chiba City a
mere three years earlier, the world of high-end computing had bought into (or been consumed by) Linux clusters in a serious way.

20.2.1 Different Worlds

While our plans for Jazz were built on our experience with Chiba City, we found that designing, installing, and running Jazz was
quite different for a number of reasons.

First, the entire field of cluster computing on Linux had matured substantially. It was now possible to go to many different vendors
and request some flavor of Linux cluster without first explaining what Linux was, why we wanted it, and how clusters worked.
Vendors had experience with installing clusters. They had custom software suites, often built on open-source tools, for managing
clusters.

That said, we found that buying a Linux cluster was still more complicated than buying an IBM SP or an SGI Origin 2000 simply
because of the range of choices in hardware, interconnect, storage and software. One might say that buying an established
supercomputer is a lot like buying a condo—you don't have any choice about where the walls go, but you choose your own
furniture. In contrast, buying a Linux cluster today is like buying a house that hasn't been built yet. You sit down with the blueprints
and the architect and discuss where to put toilets and whether or not to have a fourth bedroom.

A second reason that the experience was different was simply because the hardware had changed substantially in three years.
Rather than looking at 500 MHz Pentium IIIs in a 2U case, we were looking at 2.4 GH Pentium IVs in a sub-1U case. This, of
course, is something we've all grown to expect, but it's still entertaining. While the impact of Moore's Law is one of the main
economic forces behind the technology industry, one could still make an argument that it's always better to delay your purchase
by six months, when everything will be faster and cheaper.

Finally, and perhaps most importantly, Jazz was different then Chiba City because it was built for a different purpose.

20.2.2 Mission and Design

Jazz was designed from the outset to support serious production computing for a wide-range of users, namely the Argonne
scientific computing community. Argonne is somewhat like a university campus in that it is divided into departments (or divisions,
in Argonne's case) that operate relatively independently. For example, there's a chemistry division, a physics division, and a lot of
engineering divisions. Overall there are over thirty different divisions at Argonne, and Jazz was meant to be a technical computing
resource for all of them.

Therefore, unlike Chiba City, Jazz was meant to be a "production" resource. It needed to perform well on a mix of code. It needed
to be stable. We needed to make sure we had a happy user community, so we had to be helpful, answer questions, solve
problems, and not crash the machine by trying out the latest Linux kernel to check out cool new features.

The need to be a production facility impacted the design in a number of ways:

As part of the initial planning, we carried out a lot of benchmarks and testing on available systems using code that
we expected to use on the system. We verified what we already knew—in most cases, application performance was
directly related to the performance of the memory system. Anything that could be done to avoid memory
bottlenecks and speed up memory was likely to be worth it. As a result, we decided to use nodes with just one CPU
—the last thing we needed were multiple CPUs fighting over the memory bus, even if the price/performance ratio
looked better on multiple CPU systems. We also decided to go with the best memory technology that we could
afford. Benchmarks with Rambus were much better than the same tests with slower memory.

We also knew from a survey of the application community that many of the applications were bound by the size of
physical memory on a node. Thus we needed to try to maximize the amount of memory within budget constraints.

Although we didn't expect every user to be running code that relied heavily on communications performance, we
knew that many would, so we planned again on having a high-performance interconnect for the cluster.

As described earlier, we knew from our experience with Chiba City that a global file system was essential. We knew
that we had to have some way of having exactly the same file namespace on all nodes, even if the I/O performance
on those files were bad.

We also knew that the highest-performing code required fast I/O but could live with variable reliability for the sake of
speed. Thus we expected that we would likely to have to have at least two different file systems installed (like our
older SPs had had): a slow, global, reliable home file system, and a fast parallel file system.

We'd had no end of troubles with OpenPBS on Chiba City, so we decided to use a more current resource manager.
After surveying the options, we ended up buying PBS Pro.

We knew that the system would require more human effort to support applications and operate in production mode
for a large community than a cluster for a small number of users or purposes. Thus we planned on hiring four or five
system administrators and application engineers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With a lot of users, and when allocating time on the machine to projects, the account and project system becomes
a critical part of the infrastructure. We therefore anticipated that the time for "early user mode" would take longer
than on previous systems, as we would be getting the allocation system working during that time.

Being production means being fairly consistent. Because we expected to keep the software installation on the
computing nodes relatively constant (as compared to Chiba City, where we load new images continually), we didn't
feel that we needed as substantial a management infrastructure. Also, we had carried out a lot of testing of the
management functionality of Chiba City, as reported in our team's paper at Cluster 2002 [36]. So, while Jazz still
has mayors, it has many fewer than Chiba City did. The irony here is that in order to have a production facility, we
felt that we could have fewer management systems, but this has turned out to be true.

Finally, we needed the hardware on Jazz to be supported by a vendor. As part of the purchase, we specified that
everything needed to have support for at least three years.

As a result, by knowing that we had to run a production facility and understanding the characteristics of the applications fairly well,
we had a pretty solid definition of our requirements. In short, we had to have:

single-CPU nodes with a lot of fast RAM

a fast interconnect

a rock-solid, but not necessarily fast, global file system

a fast parallel file system

reliable systems software

good vendor support

This was the list that we took to the cluster vendors. From there, the question was how best to maximize the cluster parameters
within our budget.

20.2.3 Architecture

The system that we ended up purchasing is illustrated in Figure 20.9. We purchased this cluster. Jazz, in its entirety from Linux
NetworX.

Figure 20.9: Argonne's Jazz Cluster

The cluster consists of:

350 computing nodes. Each node has one 2.4 GHz Pentium IV. Half of the nodes have 2 GB of RAM, half have 1
GB. We ended up using DDR RAM for budget reasons after confirming that the performance was sufficient.

4 login nodes. These nodes are identical to the computing nodes, except that each has two CPUs and 2 GB of
RAM.

8 home directory servers and 10 TB of FibreChannel disk. For home directory service, we went with a
recommendation made by Linux NetworX and used a combination of GFS and NFS. GFS is a file system product
from Sistina. Each of these eight servers has joint access to a large GFS file system shared between them. Each
then provides access to that file system to one eigth of the cluster using NFS. In this way, we avoid the scaling
problems of NFS while maintaining consistency across all of the NFS servers.

8 PVFS servers and 10 TB of JBOD disk. For parallel I/O, we use eight servers running the Parallel Virtual File
System exported to the entire cluster. Most users of this file system access it via MPI-IO interfaces.

8 management nodes. These nodes share a variety of duties including scheduler and job management,
configuration management, monitoring, web services, and so on. As noted above, the management requirements
for Jazz are substially lower than those of Chiba City because we rarely change the configuration of the entire
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Myrinet 2000. We selected Myrinet for the fast interconnect for the system because it was proven to scale to
clusters this size (and larger), performs well, and wasn't overwhelmingly expensive. We seriously considered
Gigabit Ethernet as an alternative, but the cost of well-performing GigE switches is still prohibitive, and the reliability
of some GigE NICs under Linux is a problem.

Fast Ethernet. Even with Myrinet, we felt that we need a rock-solid network for management and applications to fall
back onto.

For management purposes such as remote power control and console management, Linux NetworX provided a proprietary
solution—the ICEbox, which fulfilled the functionality of a collection of similar hardware that we'd found incredibly handy on Chiba
City.

20.2.4 Installation

It's interesting to understand precisely what you're getting when you buy a cluster. The vendors are striving to be able to provide a
turn-key system, but the definition of "turn-key" changes rather dramatically between a cluster that runs one application and a
cluster than runs hundreds. We didn't expect to have a system that worked with no modification, nor did we expect to be handed
350 computers with no operating system, but we weren't sure where in the middle things would land.

On the hardware side, having installed a 256-node cluster ourselves, we had no particular desire to build a 350-node cluster.
Fortunately, this was one of the many things that the vendors had taken on, and learned to do quite well, since we'd had the Chiba
City barnraising. Linux NetworX installed Jazz without substantial help from us, although we needed to be involved from time-to-
time to handle power attachments, floor space issues, cable routing decisions, and so on.

On the software side, it turns out that it would have been possible for us to stay similarly uninvolved. We would have ended up
with Linux installed on every node, an environment for parallel computing that had MPI and PVM installed, the global file systems
built, and Linux NetworX's "ClusterWorX" management software that could be used to build and configure nodes. This was
substantially more than we could have imagined when installing Chiba City three years earlier, and was quite excellent in and of
itself.

However, to run a production computing environment, we had to do quite a lot more work, such as installing extra software,
building the user environment, building the allocation mechanisms, installing bug and request tracking systems, and adding our
favorite set of management tools. Fortunately, the Linux NetworX folks understood that we were in a rush, so while they were
working on software installs, we had joint access to the machine. We ended up working together on a lot of the detailed
configuration.

As it turns out, it was very important for us to be involved during the software installation, because we needed to become very
familiar with the configuration of the machine as a part of taking ownership of it. Also, there were several situations where we were
able to ask the vendor to do things differently then they normally would have in order to accomodate our specific needs.

20.2.5 Software Environment

While it's not feasible to list the entire set of software packages that are installed on the cluster in this space, it is useful to
describe the more essential tools available to users of the system.

This list of software refers to the software installed on the login nodes, which is where the users do the bulk of their work. The
compute nodes have fully-populated Linux installations and all of the tools that might be necessary to have on compute nodes
(such as libraries) but don't necessarily have every tool installed on them.

The Base Installation
RedHat 7.2

All the tools and languages you'd expect in a reasonable UNIX-based environment including X11, Perl, Python, the
GNU tools, CVS, Bitkeeper, and so on.

The Development Environment

ABSoft Compilers MPICH - multiple versions

NAG Compilers and Libraries ROMIO

Intel Compilers and Libraries MPICH-2

Portland Group Compilers Globus

Totalview Columbus

IDL NetCDF

Matlab NCAR

Gaussian PETSc

StarCD ScaLAPACK

Gnu compilers

20.2.6 Going Production

When you buy a large machine from a vendor, one of the first major transition points in the lifecycle of that system is when the
machine is turned over to you from the vendor. In our case, this happened after Linux NetworX had finished building the machine,
installing the base software with a number extensions, configuring the file systems, teaching us about the tools that they delivered,
and passing a number of tests confirming that the machine was operating correctly. While it was great to finally get to this point,
our work was really just starting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If this machine were going to run only a few applications or support only a few users, we could have started doing so immediately.
Enough of the software was installed and enough of the system configured that we could have started using it for parallel jobs at
this point. However, in order to turn it into a multi-user, multi-project resource, we had quite a few more things to complete.

For the next two months, we kept the system in "Configuration and Testing mode". During this time, we installed the majority of
the programs listed in the previous section. We installed the Maui scheduler to work in conjunction with PBS Pro, and spent a lot
of time configuring those. We began to create web pages with information for the user community. We put in an initial user
account creation system, and began to slowly add users to the system. These were users who we knew would be comfortable on
large and potentially unstable machines, users who could put the machine through its paces and give us lots of feedback on how it
was working, what was missing, and so on. By the time we were done with this phase of testing, we probably had about ten user
accounts on the system.

Once the system was relatively stable, we entered "Early User mode". At this point, we added accounts for anyone who asked,
with the caveat that we were still specifically asking for feedback and that the machine might be taken down at any point to fix
problems or reconfigure things. The bulk of our own effort at this point, beyond responding to user issues, was to focus on the
account creation system and the allocation tracking system. (That said—responding to user issues took a huge amount of time.)
In our division, we already have a comprehensive user account management system. We extended it to include the Jazz system,
and then created web pages so that anyone at the Laboratory could easily request an account specific to Jazz and use those web
pages to manage their account.

Like most multi-user production facilities, we planned for Jazz to be formally allocated. We had an allocations committee that
would be making decisions about which projects at the Laboratory would be able to use the system and what percentage of the
machine would be available to each project. The committee met several times to discuss allocation and scheduling policies, and
our job was to make sure that those allocation policies could be implemented on the system. We used the "QBank" software [92],
created by Pacific Northwest National Laboratory, to manage allocations.

After three months of Early User Mode, the cluster was stable, the majority of requested software was configured and installed, we
had a fairly good start at the web-based documentation, and the account and allocation system was working. We were ready to
shift formally into production mode.

We held a ribbon-cutting ceremony to mark the occasion, at which the Laboratory Director, Dr. Hermann Grunder, spoke and
helped cut a ceremonial ribbon cable.

From this point onwards, we opened up the cluster to access by the entire Laboratory community and began to track allocations.
Based on the policies set the allocations committee, any user at Argonne who got an account would be given 1000 CPU hours of
initial startup time. To compute for longer than that, a user would need to submit a project request that explained the project in
fairly substantial detail. The committee would then determine how much time on the machine to allocate—times of 20,000 hours
and more are currently typical. Although we have the option of stopping any project that has run beyond its allocation, we're
currently taking the more friendly approach of warning those projects that they're exceeding their allocated time and discussing the
usage of the system with the allocations board. As the user community and usage on Jazz expands, this will no doubt become a
more complex issue.

20.2.7 Jazz Status and Futures

Jazz is now really at the beginning of its life cycle. At the time of this writing, it has been in production mode for only a few months.
Use of the cluster is expanding regularly, and we will begin outreach efforts across the Laboratory shortly.

Response from the user community has been exceptionally positive. The individual nodes are fast and responsive—the Pentium
IVs and the memory system compare well to all other systems currently out there, although this will of course change as new
technology is rolled out. The entire cluster is solid and reliable.

Although we are still early in the project, we can identify a number of essential bits of information that we have learned or
confirmed:

Both GFS and PVFS are working well. Having a global file system is proving to be just as critical as we had thought
it would be.

We're generally happy with the way that the vendors have embraced Linux clusters. Designing and purchasing this
system was far simpler then what we went through with Chiba City, and the vendor handled installation and
followup support quite well. Obviously, the experience of others in this case will depend on who their specific vendor
is, but the point here is that there are now a number of professionals in the business who are doing a good job of
this.

That said, these clusters are still not simple. We've had some very serious headaches with the networks, the file
systems, the schedulers, and in configuring the environment. We've overcome all of these (for the moment), but the
situation is not yet optimal, and is nowhere near turn-key.

Adequate and experienced staffing is essential. We have had the equivalent of three system administrators working
full-time (and then some) on this project since its inception. Among the staff are people with experience on large-
scale parallel computers, strong Linux backgrounds, and networking skills. As the user community grows, we are
adding people who can focus on supporting applications with porting, parallelizing, and tuning code, as well as
running seminars and tutorials. This is essential to the success of a production facility for a large user community.

We hope that Jazz, in its current configuration, will meet the needs of the Argonne computing community for the next three years.
Our development and expansion focus during that time will be on application support and capabilities. If Jazz is operating correctly
as a production facility, it will simply continue to work smoothly through the efforts of the systems administration team. Based on
our experiences thus far with Jazz and with Linux clusters in general, we're confident that this goal is within reach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21: Conclusions
William Gropp and Ewing Lusk

In this book we have tried to collect the information needed to build, use, and operate a Beowulf computer. The chapter authors
have described the key issues and technologies associated with their individual topics, and then gone on to provide details
associated with the current state of the art. We hope that this combination will not only guide you in making near-term decisions
but also enable you to make informed choices in the future regarding hardware and software use with clusters.

21.1 Keeping Up To Date
In preparing this second edition of Beowulf Cluster Computing with Linux, nearly all authors were reminded how quickly software
evolves by the number of changes in the details of installing and using the software packages described here. Fortunately, it is
primarily the details that change; the concepts either remain the same or evolve much more slowly.

A number of approaches exist for keeping up to date. Nearly all of the software packages and some of the hardware items
described in this book have web sites. We have tried to include as many as possible explicitly; if we haven't included the site you
need, Google (www.google.com) is your friend.

The Beowulf mailing list (<beowulf@beowulf.org>) is an active, ongoing discussion of all Beowulf-related topics, for clusters both
large and small. A number of specific technology areas also have newsgroups, such as comp.parallel,
comp.parallel.mpi, and comp.parallel.pvm. Specific software often has its own mailing list and/or web site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2 Future Directions for Clusters
It seems likely that Beowulf-style cluster computing will continue to grow, due to considerations of both supply (costs will continue
to decrease, driven by commodity markets) and demand (more applications will come into existence and evolve to exploit
parallelism to meet their computing resource requirements). As the use of clusters grows, we will see even more "integration
vendors" that bundle pre-assembled hardware with increasingly professional software to provide turnkey solutions. At the same
time, those seeking the most economical solutions will still be able to create their own quite capable parallel computers from
components available at the nearest mall and software they can download for free. A wonderful thing about Beowulf computing is
that the same technology underlies both approaches.

21.2.1 Clusters Get Faster

The amazing increases in CPU clock rates will continue, at least for the next few years, following the "doubling every 18 month"
prediction of Moore's law. However, Moore's law, which is really an observation about the rate at which the size of features such
as a transistor shrink on silicon wafer, cannot hold true indefinitely. If nothing else, feature sizes are rapidly approaching the
dimensions of a single atom, where no further reduction will be possible (even if a gate can be built with a single atom). One
possibility is to increase the CPU power by using parallelism; a number of research groups are already looking at such
approaches. In some ways, these CPUs become little clusters. Other approaches look at different architectures, concentrating on
a memory-centric, rather than processor-centric, computing model. Whatever the approach taken, we can expect that CPU's will
continue to rapidly increase in performance.

The development that would have the greatest impact on the range of applications that can exploit cluster computing would occur
if interconnection networks began behaving according to Moore's Law. So far, this has not been historically true, but recent
developments are encouraging. The early parallel computer networks started at relatively low speed. (The Intel iPSC 1 used the
original Ethernet to connect its nodes based on the Intel 80286 CPU.) There was a rapid increase through the time of the Intel
Paragon and the ASCI Red machine, which had more than 100 MByte/second bandwidth between nodes. It is unfortunate that
these early networks were never commoditized into high performance system area networks (the one exception being Myrinet,
which grew out of Chuck Seitz's pioneering work with the Cosmic Cube, a machine that can be viewed as the ancestor of all
cluster computers because it used commodity CPUs as the building block).

One solution to the problem of commodity, multi-vendor high-performance networking may be Infiniband. The original goals for
Infiniband included doubling bandwidth at the same rate as Moore's law—every 18 months. Unlike latency, which is constrained
by the speed of light to no less than about 1 ns/foot (3 ns/meter), increasing bandwidth is an engineering problem. Infiniband
vendors are just beginning to sell large-scale switches this year. Time will tell whether Infiniband achieves its promise and
provides a suitable cost-effective cluster network. Software will also be required; fortunately, support for MPI, both as part of the
MPICH project and MVAPIBCH (nowlab.cis.ohio-state.edu/projects/mpi-iba), is already available.

21.2.2 Clusters Get Larger

This year (2003), multiple Linux clusters are being installed with more than a thousand nodes each. Even larger, "Beowulf-like"
systems are coming soon, such as the 10,000-CPU Red Storm machine from Cray and the 64,000-CPU BG/L from IBM. These
will be among the very most powerful computers in the world when they are installed. While you can't buy all of their components
at the corner electronics store, many of the topics covered in this book are relevant to their design, system software,
programming, use, and management. And in the future, the technology used in these machines may become more generally
available.

One interesting open-source effort is the Scalable Systems Software project (www.scidac.org/ScalableSystems). In it a number of
groups are collaborating on the development of a component architecture, with well-defined interfaces expressed in XML, for the
systems software (schedulers, process managers, monitors, accounting systems, etc.) for large systems. The component
structure makes it possible for alternate component implementations to evolve individually and interact with other, separately
developed, components.

21.2.3 Clusters Get Smaller

Nodes developed for the game market have become capable enough to run Linux and thus serve as cluster building blocks. A
number of sites have assembled clusters from Sony Playstation 2's. Continuing downward in size, as we noted above, increasing
densities for transistors on a chip are leading in the direction of clusters that fit on a single chip. You can already buy small
clusters that are in a single PC tower; desktop clusters will become common-place in the next few years. And someday soon, you
may have a cluster in your PDA or cell phone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.3 Learning More
Although we hope we have done a lot more than "scratch the surface" of Beowulf-style computing in this book there is of course
much more to learn in every area, and keeping current in any area of computing remains a challenge. We recommend the reading
list in Appendix B, which includes some other books in this series from MIT Press. Suggestions for further study are also given in
individual chapters.

To keep abreast of the latest research in cluster computing, you might consider attending any of the several annual conferences
and workshops devoted to related topics. Examples include the IEEE Cluster Conference (all aspects of clusters),
Supercomputing (both research papers and vendor exhibits, especially high-end machines), EuroPVM/MPI (both applications and
implementation research on MPI and PVM), and the multiple conferences devoted to Linux and to parallel computing in general.

Now that you have finished this book, it is time to put your new knowledge into practice. Go forth and compute!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A: Glossary of Terms

B-I
Beowulf-class system

commodity cluster employing personal computers or low-cost SMP servers to achieve excellent price-
performance initially developed by the Beowulf project at the NASA Goddard Space Flight Center

bit
the fundamental unit of information representing a two-state value; a digital circuit capable of storing a two-state
value

BLAS
basic linear algebra subroutines

bps
bits per second, a unit measure of data transfer rate

byte
a commonly addressed quantity of digital information storage of eight bits reflecting one of 256 distinct values

cluster
in the general sense, any interconnected ensemble of computers capable of independent operation but employed
to service a common workload

commodity cluster
a cluster of commercial computing nodes integrated with a commercial system area network

constellation
a cluster of large DSM, SMP, or MPP computing nodes incorporating more microprocessors per node than there
are nodes in the system

COW
cluster of workstations; an early project at the University of Wisconsin

DSM
distributed shared memory multiprocessor, tightly coupled cache coherent multiprocessor with non-uniform
memory access

EPIC
Explicitly Parallel Instruction Computing

Ethernet
the first widely used and truly ubiquitous local area network operating at 10 Mbps

Fast Ethernet
a cost effective local area network based on the original Ethernet protocol that has become very popular with low
end Beowulf-class systems; providing 100 Mbps

Gigabit Ethernet
a LAN that is the successor of Fast Ethernet providing peak bandwidth of 1 Gbps.

GNU
a project resulting in a number of open source and free software tools including the GNU C compiler and Emacs

GPL
GNU Public License; a legal framework protecting open source software

HDF
Hierarchical data format, both a file format and high level interface for I/O access in both sequential and parallel
applications

HPL
High Performance Linpack

Infiniband
a system-area network designed to provide high performance and to provide a path for rapid improvement in
network bandwidth.

ISA
Instruction Set Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L-P
LAN

Local Area Network; a network employed within a single administrative domain such as a laboratory or office
complex, connecting PCs and workstations together to file servers, printers and other peripherals, and to the
Internet. Low cost LAN technology has been adopted to provide Beowulf-class systems with inexpensive
moderate bandwidth interconnect

LED
Light Emitting Diode

Linux
the dominant Unix-like cross-platform operating system developed by a broad international community enabled by
an open source code framework

Mbps
1 million bits per second data transfer rate or bandwidth

Mega
prefix meaning 1 million or in the case of storage 220

message passing
An approach to parallelism based on communicating data between processes running (usually) on separate
computers.

metadata
Used in the context of file systems, this is the information describing the file, including owner, permissions, and
location of data

MPI
message passing interface, a community derived logical standard for the transfer of program messages between
separate concurrent processes

MPP
Massively Parallel Processors

MTBF
Mean Time Between Failure

Myricom
vendor, distributor, and developer of the Myrinet network for commodity clusters

network
the combination of communication channels, switches, and interface controllers that transfer digital messages
between Beowulf cluster nodes

NIC
network interface controller; usually the combination of hardware and software that matches the network transport
layer to the computer node of a cluster

NOW
network or workstations, and early influential commodity cluster project at UC Berkeley

PC

See Personal Computer or PC.

PCI
the dominant external interface standard for PCs and workstations to support I/O controllers including NICs

Personal Computer or PC
mass market microprocessor based computer employed by both commercial and consumer users for everything
from games to spreadsheets and internet browsers; emphasizing performance/cost for maximum market share,
these nodes are the basis for low cost Beowulf-class clusters

PVFS
Parallel virtual file system

PVM
Parallel Virtual Machine, a library of functions supporting an advanced message-passing semantics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Q-W
QSW

high bandwidth network employed in very large clusters, specifically the SC series developed by Compaq

Quadrics
commercial vendor of networking hardware and software.

See also QSW.

RISC
Reduced Instruction Set Computer

ROMIO
Portable implementation of MPI-IO interface (not an acronym)

RWCP
major Japanese initiative to develop robust and sophisticated cluster software environment

SAN
System Area Network; a network optimized for use as a dedicated communication medium within a commodity
cluster

Scheduler
a software tool which is part of the node operating system or system middleware that manages the assignment of
tasks to cluster nodes and determines the timing of their execution

SMP
Symmetric MultiProcessor, tightly coupled cache coherent multiprocessor with uniform memory access

SSE
Streaming SIMD Extensions

WAN
Wide Area Networks used to connect distant sites, even on a continental scale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B: Annotated Reading List
This appendix contains an annotated reading list of books and papers of interest to builders and users of Beowulf clusters.

Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy White, editors.
Sourcebook of Parallel Computing. Morgan Kaufmann, 2003. A collection of chapters written by many of the leaders in
the field of parallel computing, including overviews of parallel computer architecture, programming models, algorithms.
Also included are descriptions of applications that have successfully used parallel computing.

Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995. Also at: http://www.mcs.anl.gov/dbpp/.
A general introduction to the process of creating parallel applications. It includes short sections on MPI and HPF.

William Gropp,Steven Huss-Lederman,Andrew Lumsdaine,Ewing Lusk,Bill Nitzberg,William Saphir, and Marc Snir.
MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998. An annotated
version of the MPI Standard; this contains additional examples and discussion about MPI-2.

William Gropp,Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message
Passing Interface, 2nd edition. MIT Press, 1999. A tutorial introduction to the MPI Standard, with examples in C and
Fortran.

William Gropp,Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, 1999. A tutorial introduction to the MPI-2 Standard, with examples in C and Fortran. This
is the best place to find information on using MPI I/O in applications.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. PTR Prentice Hall, 2nd edition, 1988. The
original book describing the C programming language.

John M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann, 2001. A thorough introduction to
parallel I/O including MPI I/O and higher-level libraries such as HDF.

Evi Nemeth,Garth Snyder,Scott Seebass, and Trent R. Hein. Unix System Administration Handbook. Prentice Hall
PTR, 3rd edition, 2001. A comprehensive and practical book on Unix system administration, it covers all major
varieties of Unix, not just Linux.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997. A good introductory text on parallel
programming using MPI.

Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel Computing, 2nd ed. Prentice Hall,
Englewood Cliffs, NJ, 1995 edition, 1998. A delightful book advocating clusters for many problems, including for
commercial computing. It has nice sections on parallel programming and (as part of his argument for clusters) a good
discussion of shared-memory systems and the issues of correctness and performance that are often brushed under
the rug. See Pfister's annotated bibliography for more books and articles on clusters.

Marc Snir,Steve W. Otto,Steven Huss-Lederman,David W. Walker, and Jack Dongarra. MPI—The Complete
Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998. An annotated version of the MPI-
1 Standard, it contains more examples than the official copy and is a good reference on MPI.

Thomas L. Sterling,John Salmon,Donald J. Becker, and Daniel F. Savarese. How to Build a Beowulf. MIT Press,
1999. The original and best-selling Beowulf book. Includes a discussion of building and testing Beowulf node
hardware.

W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading, MA, USA, 1992. A
thorough and highly readable reference on programming under Unix.

W. Richard Stevens. UNIX Network Programming: Interprocess Communications, volume 2. Prentice-Hall, Upper
Saddle River, NJ 07458, USA, second edition, 1998. A companion to Stevens' excellent book on sockets and XTI, this
book covers POSIX and System V interprocess communication mechanisms including shared memory, remote
procedure calls, and semaphores.

W. Richard Stevens. UNIX Network Programming: Networking APIs: Sockets and XTI, volume 1. Prentice-Hall PTR,
Upper Saddle River, NJ 07458, USA, second edition, 1998. An excellent reference for network programming under
Unix; it provides a highly readable and detailed description of all aspects of Unix socket programming.

David Wright, editor. Beowulf. Penguin Classics, 1957. A highly regarded translation (into prose) of the Beowulf Epic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C: Annotated URLs
Below is a sampling of URLs that are helpful for those building or using a Beowulf. This is not an exhaustive list, and we
encourage the reader to browse the Web for other sites. A good place to start is the general Beowulf Web sites.

C.1 General Beowulf Information
www.beowulf.org: The original Beowulf Web site. See also the Beowulf mailing list at
www.beowulf.org/mailman/listinfo/beowulf.

beowulf-underground.org: The Beowulf Underground provides "unsanctioned and unfettered information on
building and using Beowulf systems." It is a site that allows the Beowulf community to post brief articles about
software, documentation, and announcements related to Beowulf computing. Each article includes links to Web
sites and downloads for the various items. A separate commercial and vendor area keeps free software well
delineated. Moderators work to keep the material brief and on topic and to prevent abuses. This is the one stop for
all things Beowulf.

dsg.port.ac.uk/sigwulf: The special interest group (SIG) on Beowulfs. Provides material material for
teaching courses on cluster computing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2 Node and Network Hardware
www.cs.virginia.edu/stream: The STREAM Benchmark provides a simple measure of the performance of the
memory system on a node. This site also includes results for a wide variety of platforms, from PC nodes suitable for
a Beowulf, to workstations, to supercomputers.

www.tomshardware.com: Aimed at hobbyists building their own computers, this is a good site for general
background on node hardware and includes up-to-date instructions on building your own node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3 Network Security
www.securityfocus.org: An up-to-date, searchable security exploit information service that supplies descriptions,
discussions, solutions, and exploit codes on a per vulnerability basis.

www.cert.org: Very complete, includes vendor responses to vulnerabilities, but holds back vulnerability information
until vendors have had time to respond.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.4 Performance Tools
www.netlib.org/benchmark/hpl: Home of the High Performance Linpack Benchmark

www.mcs.anl.gov/mpi/mpptest: Performance tests for MPI, including a guide for how not to measure
communication performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.5 Parallel Programming and Software
www.mpi-forum.org: The official MPI Forum Web site, contains Postscript and HTML versions of the MPI-1 and
MPI-2 Standards.

www.mcs.anl.gov/mpi: A starting point for information about MPI, including libraries and tools that use MPI and
papers about the implementation or use of MPI.

www.mcs.anl.gov/mpich: Home of the MPICH and MPICH2 implementations of MPI. Download source,
documentation, and Unix and Windows versions of MPI from here. Also check the bug list page for patches and
announcements of releases.

www.netlib.org: A valuable collection of mathematical software and related information.

www.csm.ornl.gov/pvm: PVM home page.

www.mcs.anl.gov/romio: Home of the ROMIO implementation of the I/O chapter from MPI-2. ROMIO is included in
MPICH and LAM but can also be downloaded separately. Information on tuning ROMIO for performance can be
found here.

hdf.ncsa.uiuc.edu: Home of HDF. Included here are I/O libraries; tools for analyzing, visualizing, and converting
scientific data; and software downloads, documentation, and support information.

www.parl.clemson.edu/pvfs: Home of PVFS, a parallel file system designed for Beowulf. This site includes online
documentation, FAQ, source code downloads, mailing lists, developer's area, and research papers about PVFS.

www.cs.dartmouth.edu/pario: Home of the Parallel I/O Archive. This includes a list of projects in parallel I/O, people
working in parallel I/O, and conferences on parallel I/O. Its biggest claim to fame is an extensive annotated
bibliography of parallel I/O resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.6 Scheduling and Management
www.openpbs.org: The OpenPBS site is the official Web site for the open source version of PBS. Maintained by
Altair, it offers downloads of software, patches, and documentation, and it hosts FAQs, discussion lists, searchable
archives, and general PBS community announcements.

www.pbspro.com: Focused on the Professional Version of PBS, the PBS Pro Web site includes software
downloads, documentation, evaluation versions, beta releases of new software, news, and information for the PBS
administrator.

www.supercluster.org: The Supercluster Web site contains documentation for the Maui scheduler and Silver
metascheduler. It also includes cluster-relevant research in areas of simulation, metascheduling, data staging,
allocation management, and resource optimization.

www.scyld.com: The Scyld Web site provides information on the profession version of the Scyld Beowulf product.
Scyld was recently acquired by Penguin Computing (www.penguincomputing.com).

www.cs.wisc.edu/condor: The Condor Project Homepage provides access to software, documentation and reports.

gridengine.sunsource.net: The Grid Engine Web site provides access to software, documentation, mailing lists,
and other resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

References
[1] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilly & Associates, Inc., Sebastopol, CA 95472, 4th edition, 2001.

[2] Stephen F. Altschul,Thomas L. Madden,Alejandro A. Schaffer,Jinghui Shang,Zheng Zhang,Webb Miller, and David J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.,
25:3389–3402, 1997.

[3] Sridhar Anandakrishnan. Penguins everywhere: GNU/Linux in Antarctica. IEEE Software, 16(6):90–96, Nov/Dec 1999.

[4] E. Anderson,Z. Bai,C. Bischof,J. Demmel,J. Dongarra,J. Du Croz,A. Greenbaum,S. Hammarling,A. McKenney,S.
Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.

[5] Thomas E. Anderson,Michael D. Dahlin,Jeanna M. Neefe,David A. Patterson,Drew S. Roselli, and Randolph Y. Wang.
Serverless network file systems. ACM Transactions on Computer Systems, 14(1):41–79, February 1996.

[6] Aztec home page. http://www.cs.sandia.gov/CRF/aztec1.html.

[7] Zhaojun Bai,James Demmel,Jack Dongarra,Axel Ruhe, and Henk van der Vorst. Templates for the Solution of Algebraic
Eigenvalue Problems, A Practical Guide. SIAM, 2000.

[8] Satish Balay,Kris Buschelman,William D. Gropp,Dinesh Kaushik,Matt Knepley,Lois Curfman McInnes,Barry F. Smith, and
Hong Zhang. PETSc web page. http://www.mcs.anl.gov/petsc, 2001.

[9] Satish Balay,Kris Buschelman,William D. Gropp,Dinesh Kaushik,Matt Knepley,Lois Curfman McInnes,Barry F. Smith, and
Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.

[10] Satish Balay,William D. Gropp,Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object
oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in
Scientific Computing, pages 163-202. Birkhauser Press, 1997.

[11] Daniel J. Barrett and Richard Silverman. SSH, The Secure Shell: The Definitive Guide. O'Reilly & Associates, Inc.,
Sebastopol, CA 95472, 1st edition, 2001.

[12] Richard Barrett,Michael Berry,Tony F. Chan,James Demmel,June Donato,Jack Dongarra,Victor Eijkhout,Roldan
Pozo,Charles Romine, and Henk van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia PA, 1994. http://www.netlib.org/templates/.

[13] Luiz André Barroso,Jeffrey Dean, and Urs Hölzle. Web search for a planet: The Google cluster architecture. IEEE Micro,
2003.

[14] David M. Beazley. Python Essential Reference. New Riders Publishing, second edition, 2001.

[15] L.S. Blackford,J. Choi,A. Cleary,E. D'Azevedo,J. Demmel,I. Dhillon,J. Dongarra,S. Hammerling,G. Henry,A. Petitet,K.
Stanley,D. Walker, and R.C. Whaley. ScaLAPACK Users' Guide. SIAM, 1997.

[16] BLAS web page. http://www.netlib.org/blas.

[17] Peter J. Braam. The Lustre storage architecture. Technical report, Cluster File Systems, Inc., 2003.

[18] Tim Bray. Bonnie file system benchmark. http://www.textuality.com/bonnie/.

[19] Ron Brightwell,Tramm Hudson,Arthur B. Maccabe, and Rolf Riesen. The Portals 3.0 message passing interface.
Technical Report SAND99-2959, Sandia Technical Report, November 1999.

[20] Surendra Byna,William Gropp,Xian-He Sun, and Rajeev Thakur. Improving the performance of MPI derived datatypes
by optimizing memory-access cost. Technical Report ANL/MCS-P1045-0403, Mathematics and Computer Science Division,
Argonne National Laboratory, 2003.

[21] B. Callaghan,B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. Technical Report RFC 1813, Sun
Microsystems, Inc., June 1995.

[22] Philip H. Carns,Walter B. Ligon III,Robert B. Ross, and Rajeev Thakur. PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327, Atlanta, GA, October 2000. USENIX
Association.

[23] CERT web site. http://www.cert.org.

[24] Chaco web page. http://www.cs.sandia.gov/~bahendr/chaco.html.

[25] Albert Cheng and Michael Folk. HDF5: High performance science data solution for the new millennium. In ACM, editor,
SC2000: High Performance Networking and Computing. Dallas Convention Center, Dallas, TX, USA, November 4–10, 2000,
pages 149–149, New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. ACM
Press and IEEE Computer Society Press.

[26] Averg Ching,Alok Choudhary,Kenin Coloma,Wei keng Liao,Robert Ross, and William Gropp. Noncontiguous I/O
accesses through MPI-IO. In Proceedings of the Third IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2003), May 2003.

[27] Avery Ching,Alok Choudhary,Wei keng Liao,Robert Ross, and William Gropp. Noncontiguous I/O through PVFS. In
Proceedings of the 2002 IEEE International Conference on Cluster Computing, September 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[28] Douglas Comer. Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture. Prentice Hall, Inc.,
Englewood Cliffs, NJ 07632, 4th edition, 2000.

[29] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya,
editors, High Performance Mass Storage and Parallel I/O: Technologies and Applications, chapter 20, pages 285–308. IEEE
Computer Society Press and Wiley, New York, NY, 2001.

[30] Cray Research. Application Programmer's Library Reference Manual, 2nd edition, November 1995. Publication SR-
2165.

[31] David E. Culler,Richard M. Karp,David A. Patterson,Abhijit Sahay,Klaus E. Schauser,Eunice Santos,Ramesh
Subramonian, and Thorsten von Eicken. LogP: towards a realistic model of parallel computation. ACM SIGPLAN Notices,
28(7):1–12, July 1993.

[32] I. S. Dhillon. A new O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. PhD thesis,
Computer Science Division, University of California, Berkeley, California, 1997.

[33] Chris DiBona,Sam Ockman, and Mark Stone. Open Sources: Voices from the Open Source Revolution. O'Reilly &
Associates, Inc., 1999.

[34] Jack Dongarra. Performance of various computers using standard linear equations software. Technical Report Number
CS-89-85, University of Tennessee, Knoxville TN, 37996, 2001. http://www.netlib.org/benchmark/performance.ps.

[35] Jack J. Dongarra,Iain S. Duff,Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems on Vector and
Shared Memory Computers. SIAM, Philadelphia, 1991.

[36] R. Evard,N. Desai,J. Navarro, and D. Nurmi. Clusters as large-scale development facilities. In Proceedings of the 2002
IEEE International Conference on Cluster Computing, September 2002.

[37] FFTW web page. http://www.fftw.org.

[38] Fluent web page. http://www.fluent.com.

[39] G. C. Fox,S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrix multiplication. Parallel Computing,
4:17–31, 1987.

[40] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. 1998 IEEE Intl.
Conf. Acoustics Speech and Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[41] The galley parallel file system. http://www.cs.dartmouth.edu/~dfk/nils//galley.html.

[42] Gaussian web page. http://www.gaussian.com.

[43] Al Geist,Adam Beguelin,Jack Dongarra,Weicheng Jiang,Bob Manchek, and Vaidy Sunderam. PVM: Parallel Virtual
Machine—A User's Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, Mass., 1994.

[44] W. Gropp and E. Lusk. Scalable Unix tools on parallel processors. In Proceedings of the Scalable High-Performance
Computing Conference, May 23–25, 1994, Knoxville, Tennessee, pages 56–62, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1994. IEEE Computer Society Press.

[45] W. D. Gropp,D. K. Kaushik,D. E. Keyes, and B. F. Smith. Towards realistic performance bounds for implicit CFD codes.
In Proceedings of Parallel CFD'99, pages 241–248, 1999.

[46] William Gropp,Steven Huss-Lederman,Andrew Lumsdaine,Ewing Lusk,Bill Nitzberg,William Saphir, and Marc Snir. MPI
—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[47] William Gropp,Ewing Lusk,Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the
MPI Message-Passing Interface standard. Parallel Computing, 22(6):789–828, 1996.

[48] William Gropp,Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message Passing
Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[49] William Gropp,Ewing Lusk, and Debbie Swider. Improving the performance of MPI derived datatypes. In Anthony
Skjellum, Purushotham V. Bangalore, and Yoginder S. Dandass, editors, Proceedings of the Third MPI Developer's and
User's Conference, pages 25–30. MPI Software Technology Press, 1999.

[50] William Gropp,Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, Cambridge, MA, 1999.

[51] William D. Gropp and Ewing Lusk. Reproducible measurements of MPI performance characteristics. In Jack Dongarra,
Emilio Luque, and Tomàs Margalef, editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
volume 1697 of Lecture Notes in Computer Science, pages 11–18. Springer Verlag, 1999. 6th European PVM/MPI Users'
Group Meeting, Barcelona, Spain, September 1999.

[52] Michael Hasenstein. The logical volume manager (LVM). Technical Report Whitepaper, SuSE Inc., 2001.

[53] Don Heller. Rabbit: A performance counters library for Intel/AMD processors and Linux.
www.scl.ameslab.gov/Projects/Rabbit/.

[54] J. M. D. Hill,B. McColl,D. C. Stefanescu,M. W. Goudreau,K. Lang,S. B. Rao,T. Suel,T. Tsantilas, and R. H. Bisseling.
BSPlib: The BSP programming library. Parallel Computing, 24(14):1947–1980, December 1998.

[55] James V. Huber, Jr.,Christopher L. Elford,Daniel A. Reed,Andrew A. Chien, and David S. Blumenthal. PPFS: A high
performance portable parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performance portable parallel file system. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Performance Mass
Storage and Parallel I/O: Technologies and Applications, chapter 22, pages 330–343. IEEE Computer Society Press and
Wiley, New York, NY, 2001.

[56] Craig Hunt. TCP/IP Network Administration. O'Reilly & Associates, Inc., Sebastopol, CA 95472, 3rd edition, 2002.

[57] S. A. Hutchinson,J. N. Shadid, and R. S. Tuminaro. Aztec user's guide: Version 1.1. Technical Report SAND95-1559,
Sandia National Laboratories, 1995.

[58] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)-part 1: System application program interface (API)
[C language], 1996 edition.

[59] Iperf home page. http://dast.nlanr.net/projects/iperf.

[60] Alan H. Karp. Bit reversal on uniprocessors. SIAM Review, 38(1): 1–26, March 1996.

[61] Jeffrey Kephart and David Chess. The vision of autonomic computing. IEEE Computer, pages 41–50, January 2003.

[62] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High
Performance Mass Storage and Parallel I/O: Technologies and Applications, chapter 35, pages 513–535. IEEE Computer
Society Press and John Wiley & Sons, 2001.

[63] LAPACK software. http://www.netlib.org/lapack.

[64] C. Lawson,R. Hanson,D. Kincaid, and F. Krogh. Basic linear algebra subprograms for FORTRAN usage. Transactions
on Mathematical Software, 5:308–323, 1979.

[65] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Seventh
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 84–92,
Cambridge, MA, October 1996.

[66] J. Li,W.-K. Liao,A. Choudhary,R. Ross,R. Thakur,W. Gropp, and R. Latham. Parallel netCDF: A scientific high-
performance I/O interface. Technical Report ANL/MCS-P1048-0503, Mathematics and Computer Science Division, Argonne
National Laboratory, May 2003.

[67] Xiaoye S. Li. Sparse Gaussian Eliminiation on High Performance Computers. PhD thesis, University of California at
Berkeley, 1996.

[68] Josip Loncaric. Linux 2.2.12 TCP performance fix for short messages. www.icase.edu/coral/LinuxTCP2.html. This web
site is no longer available.

[69] LS-Dyna web page. http://www.lstc.com.

[70] Alex Martelli and David Ascher, editors. Python Cookbook. O'Reilly and Associates, 2002.

[71] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream/.

[72] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. International Journal of Supercomputer
Applications, 8(3/4):165–414, 1994.

[73] Message Passing Interface Forum. MPI2: A message passing interface standard. International Journal of High
Performance Computing Applications, 12(1–2):1–299, 1998.

[74] Jeffrey Mogul and Steve Deering. Path MTU discovery. Technical Report IETF RFC 1191, Digital Equipment
Corporation WRL and Stanford University, November 1990. http://www.ietf.org/rfc/rfc1191.txt.

[75] P. Mucci,S. Brown,C. Deane, and G. Ho. Papi: A portable interface to hardware performance counters.
icl.cs.utk.edu/projects/papi/.

[76] NAMD web page. http://www.ks.uiuc.edu/Research/namd/.

[77] Nastran web page. http://www.mscsoftware.com/products/products_detail.cfm?S=74&PI=7&M=0.

[78] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Computing, 23(4):447–476, June 1997.

[79] Nils Nieuwejaar,David Kotz,Apratim Purakayastha,Carla Schlatter Ellis, and Michael Best. File-access characteristics of
parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[80] Bill Nowicki. NFS: Network file system protocol specification. Technical Report RFC 1094, Sun Microsystems, Inc.,
March 1989.

[81] NWChem web page. http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html.

[82] Emil Ong,Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: A high-performance
implementation. In Jack Dongarra and Yiannis Cotronis, editors, Proceedings of Euro PVM/MPI. Springer Verlag, 2001.

[83] OpenMP Web page. www.openmp.org.

[84] ParMetis web page. http://www-users.cs.umn.edu/~karypis/metis/parmetis/index.html.

[85] Chrisila Pettey,Ralph Butler,Brad Rudnik, and Thomas Naughton. A rapid recovery Beowulf platform. In Henry Selvaraj
and Venkatesan Muthukumar, editors, Proceedings of Fifteenth International Conference on Systems Engineering, pages
278–283, 2002.

[86] PLAPACK web page. http://www.cs.utexas.edu/users/plapack/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[87] Jon Postel, editor. Transmission control protocol. Technical Report IETF RFC 793, Information Sciences Institute,
University of Southern California, September 1981. http://www.ietf.org/rfc/rfc0793.txt.

[88] Kenneth W. Preslan,Andrew Barry,Jonathan E. Brassow,Russell Cattlelan,Adam Manthei,Erling Nygaard,Seth Van
Oort,David C. Teigland,Mike Tilstra, Matthew O'Keefe,Grant Erickson, and Manish Agarwal. A 64-bit, shared disk file system
for Linux. In Proceedings of the Eighth NASA Goddard Conference on Mass Storage Systems and Technologies, March
2000.

[89] Kenneth W. Preslan,Andrew P. Barry,Jonathan E. Brassow,Grant M. Erickson,Erling Nygaard,Christopher J.
Sabol,Steven R. Soltis,David C. Teigland, and Matthew T. O'Keefe. A 64-bit, shared disk file system for Linux. In
Proceedings of the Seventh NASA Goddard Conference on Mass Storage Systems, pages 22–41, San Diego, CA, March
1999. IEEE Computer Society Press.

[90] The parallel virtual file system. http://www.pvfs.org.

[91] Using the parallel virtual file system. http://www.parl.clemson.edu/pvfs/user-guide.html.

[92] QBank: A CPU allocations bank. http://www.emsl.pnl.gov:2080/docs/mscf/qbank-2.10/.

[93] Red Hat Linux 9: Red Hat Linux Customization Guide. Red Hat web site.
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/pdf/rhl-cg-en-9.p%df.

[94] R. Reussner,P. Sanders,L. Prechelt, and M Müller. SKaMPI: A detailed, accurate MPI benchmark. In Vassuk
Alexandrov and Jack Dongarra, editors, Recent advances in Parallel Virtual Machine and Message Passing Interface,
volume 1497 of Lecture Notes in Computer Science, pages 52–59. Springer Verlag, 1998. 5th European PVM/MPI Users'
Group Meeting.

[95] R. K. Rew and G. P. Davis. The unidata netCDF: Software for scientific data access. Sixth Int'l. Conf. on Interactive Inf.
and Processing Sys. for Meteorology, Oceanography, and Hydrology, February 1990.

[96] R. Ross,D. Nurmi,A. Cheng, and M. Zingale. A case study in application I/O on linux clusters. In Proceedings of
SC2001, November 2001.

[97] Robert B. Ross. Reactive Scheduling for Parallel I/O Systems. PhD thesis, Dept. of Electrical and Computer
Engineering, Clemson University, Clemson, SC, December 2000.

[98] Youcef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2003. Originally published by PWS
Publishing Company, Boston, 1996; this edition is available for download from http://www.cs.umn.edu/~saad.

[99] K. Schloegel,G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-constraint graph partitioning. In
Proceedings of EuroPar-2000, 2000.

[100] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large computing clusters. In First USENIX
Conference on File and Storage Technologies (FAST'02), Monterey, CA, January 28–30 2002.

[101] SecurityFocus web site. http://www.securityfocus.org.

[102] S. Shepler,B. Callaghan,D. Robinson,R. Thurlow,C. Beame,M. Eisler, and D. Noveck. NFS version 4 protocol.
Technical Report RFC 3010, Sun Microsystems, Inc., Hummingbird Ltd., Zambeel, Inc., and Network Appliance, Inc.,
December 2000.

[103] Joseph D. Sloan. Network Troubleshooting Tools. O'Reilly & Associates, 2001.

[104] Quinn O. Snell,Armin R. Mikler, and John L. Gustafson. NetPIPE: A network protocol independent performace
evaluator. In IASTED International Conference on Intelligent Information Management and Systems, June 1996.
http://www.scl.ameslab.gov/netpipe/paper/netpipe.ps.

[105] Marc Snir,Steve W. Otto,Steven Huss-Lederman,David W. Walker, and Jack Dongarra. MPI—The Complete
Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

[106] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal., 13:357–385,
1992.

[107] T. Sterling,D. Savarese,D. J. Becker,J. E. Dorband,U. A. Ranawake, and C. V. Packer. BEOWULF : A parallel
workstation for scientific computation. In International Conference on Parallel Processing, Vol.1: Architecture, pages 11–14,
Boca Raton, USA, August 1995. CRC Press.

[108] Thomas L. Sterling,John Salmon,Donald J. Becker, and Daniel F. Savarese. How to Build a Beowulf. MIT Press, 1999.

[109] Hal Stern,Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS. O'Reilly & Associates, Inc., Sebastopol, CA
95472, 2nd edition, 2001.

[110] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley Publishing Company, Reading, MA
01867, 1994.

[111] W. Richard Stevens. UNIX network programming: Networking APIs: Sockets and XTI, volume 1. Prentice-Hall PTR,
Upper Saddle River, NJ 07458, USA, second edition, 1998.

[112] SuperLU web page. http://www.nersc.gov/~xiaoye/SuperLU/.

[113] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays.
Scientific Programming, 5(4):301–317, Winter 1996.

[114] Rajeev Thakur,Alok Choudhary,Rajesh Bordawekar,Sachin More, and Sivaramakrishna Kuditipudi. Passion: Optimized
I/O for parallel applications. IEEE Computer, 29(6):70–78, June 1996.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[115] Rajeev Thakur,William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high performance. In
Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pages 23–32. ACM Press, May 1999.

[116] Rajeev Thakur,Ewing Lusk, and William Gropp. A case for using MPI's derived datatypes to improve I/O performance.
In Proceedings of SC98: High Performance Networking and Computing, November 1998.

[117] Rajeev Thakur,Robert Ross,Ewing Lusk, and William Gropp. Users guide for ROMIO: A high-performance, portable
MPI-IO implementation. Technical Report ANL/MCS Technical Memorandum No. 234, Mathematics and Computer Science
Division, Argonne National Laboratory, May 2002.

[118] C. Thekkath,T. Mann, and E. Lee. Frangipani: A scalable distributed file system. In Proceedings of the Sixteenth ACM
Symposium on Operating System Principles (SOSP), October 1997.

[119] TotalView Multiprocess Debugger/Analyzer, 2000. www.etnus.com/Products/TotalView.

[120] J. L. Traeff,R. Hempel,H. Ritzdoff, and F. Zimmermann. Flattening on the fly: Efficient handling of MPI derived
datatypes. In J. J. Dongarra, E. Luque, and Tomas Margalef, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 6th European PVM/MPI Users' Group Meeting, volume 1697 of Lecture Notes in Computer
Science, pages 109–116. Springer Verlag, 1999.

[121] The treadmarks distributed shared memory (DSM) system. www.cs.rice.edu/~willy/TreadMarks/overview.html.

[122] Trilinos web page. http://software.sandia.gov/trilinos/index.html.

[123] M. Vilayannur,A. Sivasubramaniam,M. Kandemir,R. Thakur, and R. Ross. Discretionary caching for I/O on clusters. In
Proceedings of the Third IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2003), May 2003.

[124] Larry Wall,Tom Christiansen, and Jon Orwant. Programming Perl. O'Reilly and Associates, third edition, 2000.

[125] R. Clint Whaley,Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, January 2001.

[126] Omer Zaki,Ewing Lusk,William Gropp, and Deborah Swider. Toward scalable performance visualization with Jumpshot.
High Performance Computing Applications, 13(2):277–288, Fall 1999.

[127] Robert L. Ziegler. Linux Firewalls. New Riders Publishing, 2nd edition, 2001.

[128] Zoltan web page. http://www.cs.sandia.gov/Zoltan/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Symbols
'/etc/exports', 116
'/etc/fstab', 117
'/etc/group', 101, 108
'/etc/hosts', 101, 107
'/etc/inetd.conf', 63
'/etc/nsswitch.conf', 115
'/etc/passwd', 101, 108
'/etc/resolv.conf', 107
'/etc/services', 63
'/etc/shadow', 108
'/etc/xinetd.conf', 63
'/etc/xinetd.d', 63
'/proc', 52

socket buffers, 127–128

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

A
accept, 183
access control list, 435
accounting, 377

batch jobs, 467
PBS, 467
report, 467

accounts
'/etc/passwd', 101, 108
'/etc/shadow', 108
adduser, 108
home directory, 108
management, 107–108
NIS, 101, 108
root, 107, 108
under Scyld, 486

achievable performance, 5
active target

RMA synchronization, 270
ActiveMural, 540
adaptability, 315, 324
adding cluster nodes, 324
adduser, 108
Altair, 448
Anubis project, 43
ARGOS, 43
Arnoldi method, 344
Arpack, 344
ASCI Red, 580
ATLAS, 276, 348
authentication keys

SSH, 104, 110–113
Aztec, 341

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
backfill, 429, 438
bandwidth, 7

backplane, 80
bisection, 89

bandwidth-delay product, 126
barnraising, 550
Basic Linear Algebra Communication Subprograms, 336
Basic Linear Algebra Subprograms, 336
batch job, 374
batch scheduling, 447
Becker, Donald, 49
Benchmarks

Beowulf Performance Suite, 14
bonnie++, 14
halo communication, 274
HPL, 275
I/O, 14
LMbench, 14
memory system, 14
mpptest, 274
NAS parallel benchmarks, 14
netperf, 14
netpipe, 14
ping pong test, 274
SKaMPI, 275
STREAM, 14
Unix, 14

BeoMPI Web site, 243
beoserv, 475
Beowulf Performance Suite, 14
Beowulf-class system, 583
Berkeley Unix, 41
Big Brother, 362
bind, 182
bioinformatics, 195
BIOS, 30

LinuxBIOS, 31
bisection bandwidth, 89
bisection bandwidth, 82
bit, 583
BLACS, 336, 337
BLAS, 275, 336, 348
block devices, 498
blue screen of death, 44
BlueGene/L, 581
bonnie++, 14
Boot

network, 56
Boot time kernel messages, 360
bproc, 471
bps, 583
Bratu problem, 234
broadcast, 228

root, 228
BSP, 268, 269
byte, 583

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
cable management, 148
cache memory, 6
CAVE, 540
central manager, 408
CERT, 369
cfengine, 370
Chaco, 347
channel bonding, 123
CHARISMA project, 496
checkpoint

periodic, 381
restart, 319

checkpoint/restart, 317
Chiba City Imager, 152
children, 246
chkconfig, 65
CIAC, 369
ClassAd, 380, 382

attributes, 382
job, 382
machine, 382

ClassAd attribute
on_exit_hold, 396
on_exit_remove, 396
periodic_hold, 396
periodic_release, 396
periodic_remove, 396
requirements, 395

CLIC, 152
client image, 164
Cluemon, 362
cluster, 583

defined, 3
no homogeneous, 144

cluster security, 94, 128–137
firewalls, 132–137
node level, 128–132
restricting access, 130

clusters
software for, 335

collective operation, 228
root, 228

collisions
Ethernet, 71

command-line
in MPI, 226

commodity cluster, 583
communication context, 327
communicator, 327

intercommunicator, 245
intracommunicator, 245
MPI, 213

compiling of MPI programs, 241
complexity model, 7
compute server, 55
Concentrix, 41
Condor, 379

availability, 379
checkpoint, 381
ClassAd, 382
ClassAd example, 384
DAGMan, 406

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

host-based security, 414
job ClassAd, 382
job submitting, 386
Kerberos security, 414
list of features, 380
machine ClassAd, 382
matchmaking, 416
overview of, 379
periodic checkpoint, 381
policy customization, 415
pool, 408
sample submit description files, 387
submit description file, 386
Universe, 385, 396
X509 security, 414

Condor commands
condor_prio, 393
condor_q, 386, 390, 394
condor_rm, 386, 393
condor_status, 386, 390, 391
condor_submit, 386

Condor Universe
Globus Toolkit, 399
Parallel, 397
PVM, 398
Standard, 400
Vanilla, 397

condor_collector, 409
condor_master, 408
condor_negotiator, 410
condor_schedd, 409
condor_shadow, 409
condor_startd, 409
condor_starter, 409
configuration, 369
configuration file and MPI compile scripts, 241
configuration macro

CONTINUE, 417
DAEMON_LIST, 418, 422, 424
DedicatedScheduler, 418
Department, 424
FULL_HOSTNAME, 413
HOSTNAME, 413
KILL, 418
LOCAL_CONFIG_FILE, 413
OPSYS, 413
PREEMPTION_RANK, 418
PREEMPTION_REQUIREMENTS, 418
PREEMPT, 417
RANK, 417, 423
RELEASE_DIR, 413
Rank, 423, 424
SHADOW_LOG, 395
START, 417
SUSPEND, 417
TILDE, 413
WANT_SUSPEND, 417
WANT_VACATE, 417, 418

configuration of Maui scheduler, 428
connect, 185
connection oriented, 98
connnectionless, 97
constellation, 583
contention, 7
context

PETSc, 233
CONTINUE macro, 417
copyleft, 46
Cosmic Cube, 580
COW, 583
Cox, Alan, 49
CPlant project, 544

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cray SHMEM, 268
cron, 66
Cumulvs, 331
cycle stealing, 439

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
daemon

condor_collector, 409
condor_master, 408
condor_negotiator, 410
condor_schedd, 409
condor_shadow, 409
condor_startd, 409
condor_starter, 409
PBS, 465
pbs_mom, 451, 463
pbs_sched, 451, 464
pbs_server, 451

DAEMON_LIST macro, 418, 422, 424
daemons, 179
DAG Man, 400
data buffer, 211
data migration

in PVFS2, 530
data representation, 266
data shipping, 502
data sieving, 520
datagrams, 84
DedicatedScheduler macro, 418
delivery

ordered, 84
reliable, 84, 98
unordered, 97
unreliable, 97

denial of service attack, 55
dense systems, 335
Department macro, 424
derived datatypes in MPI, 257
destination

message, 213
DHCP, 154

DHCPDISCOVER, 154, 166
directed acyclic graph, 406
disabling services, 129–131
Disk Imaging

primitive dd, 162
disk-directed I/O, 504
diskless nodes, 147
distributed job scheduler

Condor, 379
distribution

Linux, 44
dmesg, 358
DNS, 102
domain decomposition, 9
Domain Name Service, see DNS
double buffering, 220
drivers

network, 83
DSM, 583
dynamic process management, 245
dynamic parallel programs, 315

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
eigenvalue problems, 343
eigenvalues

Arpack routines, 344
embarassingly parallel, 7
EPIC, 26
epoch

MPI RMA, 269
Ethernet, 78, 545, 583

Gigabit, 124, 546, 573
etype, 265
exec, 175
execute machine, 463
EXT2, 60
EXT3, 61

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
FAI, 152, 157
failure monitoring, 318, 319
failure recovery, 317
fairness

in job scheduling, 432
in message passing, 220

fairshare in job scheduling, 434
Fast Ethernet, 583
fault tolerance, 4, 198, 249, 315
FFTs, 335, 346
FFTW, 346
file

locks, 498
file for Condor's submit description, 386
file formats

netcdf, 234
file sharing, 102–103
file system

CXFS, 499
EXT2, 60
EXT3, 61
Galley, 503
GPFS, 501
JFS, 61
journaling, 60
Lustre, 506
MSDOS, 54
PVFS, 505
PVFS2, 525
ReiserFS, 61
XFS, 61

file view, 265, 266
filetype, 265
filtering packets, 108–109, 134–137
firewalls, 55, 132–137

configuration, 135–137
definition, 132
hardware firewalls, 137
Linux iptables, 108–109, 134–137
placement, 133

flow control, 85
Fluent, 349
fork, 175
fragmentation, 84
frames

Ethernet, 124
jumbo, 97, 123–125

Frangipani, 499
Front Side Bus, 27
fsck, 60
ftp, 181
FULL_HOSTNAME macro, 413

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
G5, 25
Galley, 503
Ganglia, 362
gateway address, 100, 101, 105–106
Gaussian, 348
Gaussian elimination, 335, 340
GFS, 366, 500
ghost cells, 223
ghost points, 201
Gigabit Ethernet, 124, 583
Globus Toolkit, 243, 399, 449
GNU, 583
golden node, 153
GPFS, 366, 501
GPL, 46, 583
grain size, 231
green threads, 404
groups

'/etc/group', 101, 108

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
halo, 201
halo cells, 223
HDF, 583
hdparm, 517
heat equation

with PVM, 301
hello world

with MPI, 208
with PVM, 283

high availability, 528
Holy Grail eigensolver, 344
home directory, 108
host address, 99
HOSTNAME macro, 413
hostnames, 100–101, 105–106

localhost, 101
HPF, 449
HPL, 275
hubs

network, 79
HyperTransport, 26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
I/O

benchmarks, 14
I/O access patterns, 496
IBM SP, 544
immediate operations, 252
inetd, 63
Infiniband, 78, 580, 583
intelligent I/O servers, 503
intercommunicator, 245
Internet Protocol, see IP
interrupt coalescing, 125–126

latency effects, 125
interrupts, 87
intracommunicator, 245
IP, 97

packets, 97, 108
routing, 97, 99

IP addresses, 99–100
gateway address, 100, 101, 105–106
host portion, 99
netmask, 99
network broadcast address, 99
network portion, 99
non-routable, 100

iperf, 127, 138, 141
iPSC 1, 580
iptables, 108–109, 134–137

configuration, 135–137
iptables, 109
ISA, 23
Itanium, 26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
Jacobi, 200
Jacobi method, 222

scalability analysis, 254
Java, 400
JFS, 61
job

accounting, 467
analysis, 394
completion, 395
not running, 394, 454
policy, 396
priority, 393
usage, 467

job scheduler for Condor, 379
job scheduling, 447
jobs

migrating, 484
jumbo frames, 97, 123–125
Jumpshot, 242
Jumpstart, 152, 157

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
kernel, 52

source code, 53
kernel module, 53
keys

SSH, 104, 110–113
Kickstart, 152, 155

example, 117
KILL macro, 418

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
LAM Web site, 243
LAN, 583
latency, 7
LCFG, 152
LED, 29
libraries

MPI, 231
license

GPL, 46
linear solvers

in ScaLAPACK, 339
Linux, 583

version numbers, 49
Linux distributions, 48
Linux kernel, 358
listen, 182
LMbench, 14
load balancing, 347

services, 120–122
Loadleveler, 427
local group, 245
LOCAL_CONFIG_FILE macro, 413
localhost, 101
locking subsystem, 498
locks, 509
LogCheck, 361
LogDog, 361
logrotate, 361
LogSentry, 361
loopback device, 101
LS-DYNA, 349
Lustre, 506
LVM, 501

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
MAC, 153
machine

central manager, 451
execute, 463
PBS server, 451
scheduler, 464

manager/worker, 302, 311, 319
manager/worker approach, 215
Mandrake, 45
matrix-matrix multiplication, 219

in MPI, 219
matrix-matrix multiply

with PVM, 295
matrix-vector multiplication, 216
Maui scheduler, 427
maximum segment size, see MSS
maximum transmission unit, see MTU
Mbps, 583
Mega, 583
Memory, 26
memory

as requirement, 4
cache, 6
virtual, 6

mesh
ghost cells, 223
regular, 221

message
allocating memory for, 214
destination, 213
size, 214
source, 213

message box, 331
message latency, 254
message passing, 171, 207, 331
Message Passing Interface, 207
message tags, 296
messages

ordered, 214
metadata, 583
migrating jobs, 484
Miller, David, 49
module

kernel loadable, 53
MPI for Fortran 90, 272

monitoring, 361, 376
PBS, 466

Moore's law, 580
motherboard, 28
mount, 116
MP-MPICH Web site, 243
MPD, 236, 555
MPE, 242
MPI, 207, 271, 583

implementations, 243
mixed-mode programming, 537

MPI Forum, 207
MPI jobs under Condor, 397
MPI-1, 207
MPI-2, 207

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MPI-IO, 495
semantics, 511

MPI-Madeleine Web site, 243
MPI/GAMMA Web site, 243
MPI/Pro Web Site, 243
MPI::Comm::Clone, 272
MPI_Accumulate, 269
MPI_Allgather, 261
MPI_Allgatherv, 263
MPI_ANY_SOURCE, 213
MPI_ANY_TAG, 214
MPI_ARGV_NULL, 248
MPI_Bcast, 228, 231
MPI_Cart_coords, 266
MPI_Cart_create, 266
MPI_Comm_accept, 248
MPI_Comm_connect, 248
MPI_Comm_dup, 259
MPI_Comm_free, 248
MPI_Comm_get_parent, 246
MPI_Comm_rank, 209
MPI_COMM_SELF, 248, 265
MPI_Comm_size, 209
MPI_Comm_spawn, 246
MPI_Comm_split, 259
MPI_COMM_WORLD, 213
MPI_ERRCODES_IGNORE, 248
MPI_File_close, 266
MPI_File_open, 264
MPI_File_set_view, 265
MPI_File_write, 266
MPI_File_write_all, 268
MPI_Finalize, 208
MPI_Get, 269
MPI_Get_count, 214
MPI_Get_processor_name, 211
MPI_INFO_NULL, 248
MPI_Init, 208
MPI_Init_thread, 273
MPI_Intercomm_merge, 246
MPI_Irecv, 252
MPI_MODE_WRONLY, 268
MPI_ORDER_C, 268
MPI_ORDER_FORTRAN, 268
MPI_Pack, 256
MPI_PACKED, 256
MPI_Probe, 214, 214
MPI_PROC_NULL, 225
MPI_Put, 269
MPI_Recv, 211
MPI_Reduce, 228, 231
MPI_Request, 252
MPI_Send, 211
MPI_Sendrecv, 225
MPI_STATUS_IGNORE, 266
MPI_STATUS_SIZE, 273
MPI_THREAD_FUNNELED, 273
MPI_THREAD_MULTIPLE, 273
MPI_THREAD_SERIALIZED, 273
MPI_THREAD_SINGLE, 273

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MPI_Type_commit, 257
MPI_Type_create_struct, 257
MPI_Type_create_subarray, 266
MPI_Type_free, 257
MPI_Type_indexed, 257
MPI_Type_vector, 257
MPI_Unpack, 256
MPI_Wait, 252
MPI_Waitall, 253
MPI_Win_create, 269
MPI_Win_fence, 269
MPI_Win_free, 269
MPI_Win_lock, 270
MPI_Win_unlock, 270
MPI_Wtime, 229
MPI_WTIME_IS_GLOBAL, 229
MPICH, 520

installing, 236
license, 47

MPICH and MPICH2, 236
MPICH Web site, 243
MPICH-G2 Web site, 243
MPICH-GM Web site, 243
MPICH-V Web site, 243
MPICH2, 210
mpiexec, 210
mpirun, 210
MPP, 583
mpptest, 274
MSS, 98
MTBF, 316
MTU, 97, 124

discovery, 98
Ethernet, 97

multiple networks, 122–123
multithreaded, 207
MVAPBCH, 580
MVAPICH Web site, 243
MVICH Web site, 243
Myricom, 583
Myrinet, 545
MySQL, 559

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
Nagios, 362
NAMD, 349
name resolution, 101–102, 107

'/etc/hosts', 101, 107
'/etc/resolv.conf', 107
DNS, 102
NIS, 101

namespace in MPI, 271
NAS parallel benchmarks, 14
Nastran, 349
NAT, 100
neighbor exchange, 224
nested-strided access, 497
netCDF, 234
netfilter, 134
netmask, 99
netpipe, 127
netpipe, 14
NetSaint, 362
netstat, 138
network, 583

cluster, 3
network address, 99
network address translation, 100
Network Booting, 56
network broadcast address, 99
network design, 93–96

examples, 94
fully connected, 94
hidden cluster, 95
hidden nodes, 95
single system image, 95

Network File System, see NFS
Network Information Service, see NIS
network interface

configuration, 106
network interface card, 78
network performance, 94, 120–128

bandwidth-delay product, 126
channel bonding, 123
interrupt coalescing, 125–126
jumbo frames, 123–125
multiple networks, 122–123
netperf, 14
netpipe, 14
offloading services, 120–122
problems, 141–142
socket buffers, 126–128
technology specific optimizations, 123–126

Network Queueing System, 447
network topologies

administrative, see network design
network troubleshooting, 137–142

diagnosing problems, 138
example, 139
tools, 138–139

NFS, 61, 102–103
'/etc/exports', 116
'/etc/fstab', 117
configuration, 116–117
performance, 120–122
problems, 108–109

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root, 57
root account, 108
semantics, 510
services

netfs, 117
nfs, 116

shared libraries, 102
synchronization, 62
unsuitable for parallel file access, 6

NIC, 78, 583
channel bonding, 123

NIS, 67, 101, 367
'/etc/nsswitch.conf', 115
configuration, 114–116
problems, 108–109
root account, 108
services

ypbind, 115
yppasswdd, 114–116
ypserv, 114–115
yxfrd, 114–115

SSH issues, 116
yppasswd, 116

nmap, 139
node

appliance, 155
compute, 144
defined, 3
frontend, 146
golden, 153
head, 146
login, 144

node level security, 128–132
nodes, 460
nonblocking communication, 252
Norton Ghost, 152
notification, 318
NOW, 583
NPACI ROCKS, 49
NPACI Rocks, 150
NQS, 447
numerical software for clusters, 335
NWChem, 349
nX, 41

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
octet, 99
offloading services, 120–122
offset, 265
one-sided communication, 268
open source, 46
Open Source Cluster Application Resource, 161
OpenMP, 273
OpenPBS, 427, 448
OpenSSH, 104

configuration, 110–113
OPSYS macro, 413
Opteron, 26
ordered delivery, 84
ordered messages, 214
origin of MPI RMA, 270
OSCAR, 49, 150, 161
overhead, 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
packets

filtering, 108–109, 134–137, 137
IP, 97, 108

PAPI, 70
Paragon, 580
Parallel I/O

with MPI, 264
parallel performance

HPL, 275
NAS parallel benchmarks, 14

parallel file system, 494, 495
parallel I/O, 493
parallel performance

mpptest, 274
SKaMPI, 275

parameter study, 190
parents, 246
ParMetis, 347
PARMON, 362
partial differential equation, 8
passive target and RMA synchronization, 270
PBS, 447

accounting, 467
API, 457
architecture, 450
benefits, 449
commands, 455
configuration, 458
creating a job, 452
GUI, 455
history, 447
installing, 457
managing, 465
MOM daemon, 451
overview, 449
querying status, 454
scheduler daemon, 451
server daemon, 451
starting, 465
stopping, 465
submitting a job, 453
tracking jobs, 466
trackjob, 466
troubleshooting, 468
using, 451

PBS Pro, 448
PBSPro, 427
PC, 583
PCI, 583
PDE, 8

time marching, 8
PDE solving, 220
pdsh, 371
performance

achievable, 5
achieved, 9
complexity model, 7
memory bandwidth, 9
peak, 11

Performance Co-Pilot, 362
performance counters

PAPI, 70
Rabbit, 70

performance tests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HPL, 275
mpptest, 274
SKaMPI, 275

Perl, 185
persistent messages, 331
Personal Computer or PC, 583
Petal, 499
PETSc, 342
pi

Monte Carlo, 229
numerical integration for, 226

ping, 126, 138
PLAPACK, 339

Holy Grail eigensolver in, 344
Poisson equation, 220
Poisson problem, 199
policy enforcement, 375
PolyServe, 366
pool of machines, 408
port, 182
POSIX 1003.2d, 448, 450
POSIX I/O

implementing, 509
semantics, 508

PowerCockpit, 152
PowerPC, 25
PowerQuest Drive Image, 152
PREEMPT macro, 417
preemption in job scheduling, 439
PREEMPTION_RANK macro, 418
PREEMPTION_REQUIREMENTS macro, 418
priority of a job, 393
process, 175
process id

global, 471
processors, 23

Alpha, 25
Athlon, 25
G5, 25
hyperthreading, 24
Itanium, 26
Opteron, 26
Pentium 4, 24
Pentium III, 25
PowerPC, 25
SSE, 24
SSE2, 24

profiling library, 242
program, 175
program counter, 175
programming model

message-passing, 207
one-sided, 268
shared nothing, 201

protocols
IP, 97
TCP, 98–99
UDP, 97

PVFS, 35, 505, 583
aggregate bandwidth, 518
file descriptors, 515
handling disk failures, 515
MPI-IO hints, 521
multiple file systems, 514
semantics, 512
strip size, 519
tuning, 516
upgrading, 515
using with ROMIO, 519

pvfs-ping, 514

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pvfs-ping, 514
pvfs-test, 518
PVFS2, 525

data migration, 530
PVM, 279, 315, 583

computing model, 281
console, 312
group functions, 295, 296
grouping tasks, 282
hostfile, 310
language support, 282
message handler functions, 328
message handlers, 328
multicast, 296
setup, 308
shutdown, 310
starting programs, 311
startup, 309

pvm_barrier, 295
pvm_initsend, 287
pvm_parent, 286
pvm_spawn, 323
PXE, 31
Python, 185

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QBank, 436, 576
QSW, 583
Quadrics, 583
queue, 374
queuing, 374

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
Rabbit, 70
rack unit, 148
RAID, 365
RAM, 26
RAM disk, 483
random number generator, 229
rank in MPI, 209
RANK macro, 417, 423
Rank macro, 423, 424
Raymond, Eric, 46
rcp, 180
rcp, 103
rdist, 181
realtime, 3
Red Hat, 45
Red Hat Package Manager, 457
Red Storm, 26, 581
Redhat

Anaconda Installer, 155
Kickstart Description, 155

ReiserFS, 61
RELEASE_DIR macro, 413
reliability, 316
reliable delivery, 84, 98
remote access, 103–104
remote group, 245
remote memory access, 268
remote shell

fails, 139
remote system call, 381
reporting, 377
reservations

in Maui scheduler, 435
resource management, 377, 447
resource monitoring, 376
reverse communication, 345
RISC, 25
Ritchie, Dennis, 41
rlogin, 103
RMA, 268

synchronization, 270
window object, 269

ROCKS, 49
Rocks, 150

rocks-dist, 156
ROMIO, 278, 519, 520, 583

data sieving, 520
hints, 521
optimizations, 520
two-phase I/O, 521

root, 228
routing, 97, 99
RPM, 155, 156
RPM format, 457
rsh, 178
rsh, 103

problems, 139

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rsync, 181
RTT, 126
running

MPI programs, 210
running multiple programs

under Condor, 388
RWCP, 583

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
SAN, 583
sanity/cfg, 370
scalability analysis, 219, 254
Scalable Systems Software, 581
Scalable Unix Tools, 555
ScaLAPACK, 336

eigenvalue routines, 343
ScaMPI Web site, 243
Scheduler, 583
scheduler in Condor, 379
scheduling, 375, 447
SCore, 150
scp, 180
scp, 104, 110
scripting language

Perl, 185
Python, 185

Scyld, 150
secure shell, 110
Seitz, Chuck, 580
select, 188
self-scheduling, 216
sequential access, 496
server

compute, 55
servers

Web, 4
setup

by description, 152
by disk imaging, 152

sftp, 181
SGE, 378
SHADOW_LOG macro, 395
shared libraries, 102

NFS, 102
shared nothing, 201
shared storage architecture, 498
shell

secure, 110
SHMEM, 268, 269
single system image, 471
single threaded, 207
SKaMPI, 275
slocate, 66
slogin, 104
SMP, 3, 583
socket buffers, 126–128

'/proc' entries, 127–128
sockets, 181
Sojourner, 43
sonification, 55
Soupercomputer, xxvii
source

message, 213
spanning tree, 228
sparse matrices, 340
sparse systems, 335

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spawning tasks, 285, 322
speedup

analysis, 218
superlinear, 11

SPRNG, 229
SQL, 559

used in Rocks, 157, 159
SSE, 24, 25
SSH, 104

agent, 113
configuration, 110–113
FTP, 104
host based authentication, 111–112
host keys, 104, 110–111
problems, 108–109, 116, 139
scp, 104, 110
slogin, 104
ssh, 104, 110
ssh-add, 113
ssh-agent, 113
ssh-keygen, 113
ssh-keyscan, 110
sshd, 110
user keys, 104, 112–113

ssh, 178
ssh, 104, 110

problems, 139
ssh-add, 113
ssh-agent, 113
ssh-keygen, 113
ssh-keyscan, 110
sshd, 110

configuration, 111
sshd, 360
Stallman, Richard, 46
START macro, 417
static scheduling, 172
status

MPI, 214
status of queued jobs, 390
STREAM, 14
stream-based I/O, 505
stride

in memory, 257
strided access, 497
strip, 519
superlinear speedup, 11
SuperLU, 340
Supermon, 363
SuSE, 45
SUSPEND expression, 417
SUSPEND macro, 417
swatch, 361
switches

network, 79
symmetric multiprocessor, 3
synchronization

active target, 270
NFS, 62
passive target, 270
RMA, 270

syslog, 358
syslog-ng, 361
System Imager, 163
system monitoring, 376
System service messages, 360
SystemImager, 152

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
T3D and T3E, 268
tag in MPI, 214
target

MPI RMA, 270
task parallelism, 215
TCP, 98–99

tuning for Linux, 69
telnet, 103, 139
TFTP, 56
Thompson, Ken, 41
thread, 207
thread-safety

MPI, 273
throttling in job scheduling, 433
throughput, 4
TILDE macro, 413
time-marching

PDE, 8
Torvalds, Linus, 41
TotalView, 240
tracking PBS jobs, 466
Transmission Control Protocol, see TCP
Trilinos, 341
troubleshooting in PBS, 468
turnkey system, 3
Tux, 41
Tweedie, Stephen, 49
two-phase I/O, 502, 521

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
U

unit of a rack, 148
UDP, 97
Unix

Berkeley, 41
unordered delivery, 97
unreliable delivery, 97
uptime, 4
usage policy, 375
User Datagram Protocol, see UDP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
Veridian, 448
virtual block device, 498
virtual memory, 6
visualization

performance, 242

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
wall-clock time, 229
WAN, 583
WANT_SUSPEND macro, 417
WANT_VACATE macro, 417, 418
Web servers, 4
wild card

MPI, 214
PVM, 291

window object
MPI, 269

workload management, 447, 448

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X
XCAT, 150
XENIX, 41
XFS, 61
xinetd, 63
xinetd, 360
XML

used in Rocks, 157
xpbs, 455
xpbsmon, 466
XPVM, 310

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Y
YaST, 152, 157
ypbind, 115
yppasswd, 116
yppasswdd, 114–116
ypserv, 114–115
yxfrd, 114–115

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Z
Zoltan, 348

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: So You Want to Use a Cluster
Figure 1.1: Sample decomposition of a 3-D mesh. The upper right corner box has been pulled out to show that the mesh has
been subdivided along the x, y, and z axes.

Chapter 2: Node Hardware
Figure 2.1: Block diagram of a motherboard chipset. The chipset consists of the entire diagram excluding the processor and
memory.

Chapter 3: Linux
Figure 3.1: A simple program to touch many pages of memory.

Chapter 4: System Area Networks
Figure 4.1: A simple cluster network.

Figure 4.2: A complex cluster network.

Chapter 5: Configuring and Tuning Cluster Networks
Figure 5.1: Layering of network protocols

Figure 5.2: Diagram showing the configuration of our simple example cluster.

Figure 5.3: Diagram showing compute nodes with multiple interfaces on multiple networks. Notice that the Myrinet network is
entirely internal to the cluster, a common design point since the dedicated network is typically much higher performing than
networks outside the cluster.

Figure 5.4: Above are shown some possible locations one may wish to place a firewall, denoted by the curved dotted lines.

Figure 5.5: Above are shown some of the interesting points through the Linux kernel where network packets are affected.
The letters are points in kernel space where routing decisions are made. Numbered locations are some of the places where
netfilters exist that will determine the fate of packets passing through. A.) incoming packet routing decision. B.) local machine
process space. C.) postrouting decision. 1.) FORWARD netfilter table. 2.) INPUT netfilter table. 3.) OUTPUT netfilter table.

Chapter 6: Setting up Clusters
Figure 6.1: Cable bundles. Wire ties make 8 power cables into a neat and managable group

Figure 6.2: The back of a rack, showing the clean organization of the cables. Note that the fans are unobstructed.

Figure 6.3: Basic RedHat Kickstart file. The RedHat Installer, Anaconda, interprets the contents of the kickstart file to build a
node

Figure 6.4: Description (Kickstart) Graph. This graph completely describes all of the appliances of a Rocks Cluster.

Figure 6.5: Description Graph Detail. This illustrates how two modules 'standalone.xml' and 'base.xml' share base
configuration and also differ in other specifics

Figure 6.6: The ssh.xml module includes the ssh packages and configures the service in the Kickstart post section.

Figure 6.7: The 'base.xml' module configures the main section of the Kickstart file.

Chapter 7: An Introduction to Writing Parallel Programs for Clusters
Figure 7.1: Schematic of a general manager-worker system

Figure 7.2: A simple server in C

Figure 7.3: A simple client in C

Figure 7.4: A simple server in Python

Figure 7.5: A simple client in Python

Figure 7.6: A simple server in Perl

Figure 7.7: A simple client in Perl

Figure 7.8: A Python server that uses select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.9: A Python client

Figure 7.10: Matrix-matrix multiply program

Figure 7.11: Manager for parameter study

Figure 7.12: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration

Figure 7.13: Two code fragments for parallelizing the Poisson problem with the Jacobi iteration, including the communication
of ghost points. Note the changes in the declarations for U and UNEW.

Figure 7.14: LU Factorization code. The factors L and U are computed in-place; that is, they are stored over the input matrix
a.

Chapter 8: Parallel Programming with MPI
Figure 8.1: Simple "Hello World" program in MPI.

Figure 8.2: A more interesting version of "Hello World".

Figure 8.3: A more complex "Hello World" program in MPI. Only process 0 writes to stdout; each process sends a message
to process 0.

Figure 8.4: Using MPI_Probe to find the size of a message before receiving it.

Figure 8.5: Framework of the matrix-vector multiply program.

Figure 8.6: The matrix-vector multiply program, manager code.

Figure 8.7: The matrix-vector multiply program, worker code.

Figure 8.8: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson problem.

Figure 8.9: A simple version of the neighbor exchange code. See the text for a discussion of the limitations of this routine.

Figure 8.10: A better version of the neighbor exchange code.

Figure 8.11: Computing π using collective operations.

Figure 8.12: — Computing π using the Monte Carlo method.

Figure 8.13: A parallel Poisson solver that exploits two libraries written with MPI.

Figure 8.14: The main program in a high-level program to solve a nonlinear partial differential equation using PETSc.

Figure 8.15: Jumpshot displaying message traffic.

Chapter 9: Advanced Topics in MPI Programming
Figure 9.1: Dynamic process matrix-vector multiply program, manager part.

Figure 9.2: Dynamic process matrix-vector multiply program, worker part.

Figure 9.3: Fault-tolerant manager.

Figure 9.4: Nonblocking exchange code for the Jacobi example.

Figure 9.5: A 12 x 12 computational mesh, divided into 4×4 domains, for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

Figure 9.6: Locations of mesh points in ulocal for a two-dimensional decomposition.

Figure 9.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the mesh.

Figure 9.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in the MPI_Recv calls (from [48]).

Figure 9.9: Schematic representation of collective data movement in MPI.

Figure 9.10: Using MPI_Allgather and MPI_Allgatherv.

Figure 9.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output step; if output of
multiple steps of the Jacobi method are needed, the arguments to MPI_File_set_view must be modified.

Figure 9.12: C program for writing a distributed array that is also noncontiguous in memory because of a ghost area (derived
from an example in [50]).

Figure 9.13: Neighbor exchange using MPI remote memory access.

Figure 9.14: Simple MPI program in C++.

Chapter 10: Parallel Virtual Machine
Figure 10.1: PVM used to create a Grid of clusters.

Figure 10.2: PVM program 'hello.c'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.2: PVM program 'hello.c'.

Figure 10.3: PVM program 'hello_other.c'.

Figure 10.4: Output of fork/join program.

Chapter 14: Cluster Workload Management
Figure 14.1: Activities performed by a workload management system.

Chapter 15: Condor: A Distributed Job Scheduler
Figure 15.1: Examples of ClassAds in Condor.

Figure 15.2: Condor jobmonitor tool.

Figure 15.3: A sample Java submit file.

Figure 15.4: Remote System calls in the Standard Universe.

Figure 15.5: A directed acyclic graph with four nodes.

Figure 15.6: Daemon layout of an idle Condor pool.

Figure 15.7: Daemon layout when a job submitted from Machine 2 is running.

Figure 15.8: CondorView displaying machine usage.

Chapter 18: Scyld Beowulf
Figure 18.1: Evolution of Beowulf System Image.

Figure 18.2: Migration of processes using bproc.

Chapter 19: Parallel I/O and the Parallel Virtual File System
Figure 19.1: Parallel I/O System Components

Figure 19.2: Nested-Strided Example

Figure 19.3: Frangipani and Petal File System Architecture

Figure 19.4: GPFS Architecture Using Storage Area Network

Figure 19.5: Galley Architecture

Figure 19.6: PVFS File System Architecture

Figure 19.7: Concurrent Writes and NFS

Figure 19.8: Two-Phase Write Steps

Figure 19.9: PVFS2 Software Architecture

Figure 19.10: Migrating Storage Objects

Figure 19.11: Examples of Data Distributions

Chapter 20: A Tale of Two Clusters: Chiba City and Jazz
Figure 20.1: Chiba City schematic.

Figure 20.2: A Chiba City town.

Figure 20.3: The Chiba City Ethernet.

Figure 20.4: One of two rows of Chiba City.

Figure 20.5: Node image management.

Figure 20.6: OS image management.

Figure 20.7: Serial infrastructure.

Figure 20.8: Power infrastructure.

Figure 20.9: Argonne's Jazz Cluster

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Tables

Chapter 3: Linux
Table 3.1: Some companies or groups that release Linux distributions.

Chapter 5: Configuring and Tuning Cluster Networks
Table 5.1: Some example services with descriptions and category of external systems that should have access to them.

Chapter 8: Parallel Programming with MPI
Table 8.1: The most common MPI datatypes. C and Fortran types on the same row are often but not always the same type.
The type MPI_BYTE is used for raw data bytes and does not correspond to any particular datatype. The type MPI_PACKED
is used for data that was incrementally packed with the routine MPI_Pack. The C++ MPI datatypes have the same name as
the C datatypes but without the MPI_prefix, for example, MPI::INT.

Table 8.2: Accessing the source and tag after an MPI_Recv.

Table 8.3: Some MPI implementations for Linux.

Chapter 9: Advanced Topics in MPI Programming
Table 9.1: A sampling of libraries that use MPI. See Chapter 12 for a more thorough list.

Chapter 12: Numerical and Scientific Software for Clusters
Table 12.1: Support routines for numerical linear algebra. LINALG is a collection of software that is available but too varied
to describe.

Table 12.2: Direct solvers for systems of linear equations.

Table 12.3: Sparse direct solvers.

Table 12.4: Sparse eigenvalue solvers.

Table 12.5: Sparse iterative solvers.

Chapter 13: Cluster Management
Table 13.1: Most useful system log files.

Chapter 15: Condor: A Distributed Job Scheduler
Table 15.1: List of user commands.

Table 15.2: Commands reserved for the administrator.

Chapter 16: Maui Scheduler: A High Performance Cluster Scheduler
Table 16.1: Maui priority components.

Chapter 17: PBS: Portable Batch System
Table 17.1: Qsub options.

Table 17.2: PBS resources.

Table 17.3: PBS user commands.

Table 17.4: qmgr commands.

Table 17.5: PBS node attributes.

Table 17.6: Default scheduling policy parameters.

Table 17.7: Job-tracking commands.

Chapter 18: Scyld Beowulf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 18.1: Environment variables used when starting MPI jobs.

Table 18.2: Scyld libraries.

Table 18.3: Common configuration files.

Table 18.4: Parameters for building Scyld kernels.

Table 18.5: Scyld command line programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beowulf Cluster Computing with Linux, Second Edition
by William Gropp, Ewing Lusk and Thomas
Sterling (eds)

ISBN:0262692929

The MIT Press © 2003 (618 pages)

This how-to guide provides step-by-step instructions for
building a Beowulf-type computer, including the physical
elements that make up a clustered PC, the software
required, and insights on how to organize the code to exploit
parallelism.

Table of Contents

Beowulf Cluster Computing with Linux, Second Edition
Series Foreword
Foreword
Preface to - the Second Edition
Preface to - the First Edition
Chapter 1 - So You Want to Use a Cluster
Part I - Enabling Technologies
Chapter 2 - Node Hardware
Chapter 3 - Linux
Chapter 4 - System Area Networks
Chapter 5 - Configuring and Tuning Cluster Networks
Chapter 6 - Setting up Clusters
Part II - Parallel Programming
Chapter 7 - An Introduction to Writing Parallel Programs for Clusters
Chapter 8 - Parallel Programming with MPI
Chapter 9 - Advanced Topics in MPI Programming
Chapter 10 - Parallel Virtual Machine
Chapter 11 - Fault-Tolerant and Adaptive Programs with PVM
Chapter 12 - Numerical and Scientific Software for Clusters
Part III - Managing Clusters
Chapter 13 - Cluster Management
Chapter 14 - Cluster Workload Management
Chapter 15 - Condor: A Distributed Job Scheduler
Chapter 16 - Maui Scheduler: A High Performance Cluster Scheduler
Chapter 17 - PBS: Portable Batch System
Chapter 18 - Scyld Beowulf
Chapter 19 - Parallel I/O and the Parallel Virtual File System
Chapter 20 - A Tale of Two Clusters: Chiba City and Jazz
Chapter 21 - Conclusions
Appendix A - Glossary of Terms
Appendix B - Annotated Reading List
Appendix C - Annotated URLs
References
Index
List of Figures
List of Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

