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Preface

Iutergection graphs provide theory to underlie much of graph theory, They
epitomize graph-iheorelic structure and bave their owa distinetive concepis
and emphasis. Thev subsume concepts as standard as line graphs and as
nonstandard as tolerance praphs. They have real applicatioos to topics
like biology, computing, matrix analysis, and statistics {with many of these
applications not well known).

TWhile: there are othet hooks covering yarious topios of intersection graph
theory, these books have foeng and intent that are different, from ours. Even
those that are out of date are still valnable sources that we urge our readers
to cutsult furtker. [Golumbic, 1980), with its partial updating in [Gelumbic,
1984], remains a standard, excellent soures, arganized around perfect graphs.
There is much related content in [Roberts, 1976, 1978h)], both of which em-
phasize intersection graphs and applications. Among others, [Berge, 1939
develops many of the peneral concepts in terms of hypergraphs, [Fishburn,
1985] and {Trotier, 1992] stress an order-theoretic viewpoint, Kioks, 1994]
emphasizes troewidth, and [Prisner, 1995] focuses on graph operators. [Ma-
hisdev & Pelad, 1895] 5 devored 1o threshold graphs. Mrandstiadt, 1993] and
[Brandstadt, Le, & Spiurad, to appear] discuss many of the relevant graph
classes. [Zykov, 1987] includes walnable references to the Rivsdan literature
1 by that date.

We have iried to write a concise book, packed with content. The first four
chapters focus on what we fec) are the most developed topics of intersection
graph theory, emphasizing chordal, interval, and competition graphs and
their underlving common theory; Chapter 5 discucacs the allicd fopic of
threshold graphs. Chaper 6 extends {he common theory to g-Inmersection,
multigraphs, and tolerance. Chapter 7 adopts a different spirit, serving as a
T1ide to an active, soattered literature; we bope it communieates the Havor
of various topics of intersection graph theory by offering tastes of enough
different topics to lure lnlerested readers into pursuing the citations aond
learaing morc, We have pointed in o multitnde of directions, while resisting

il



vili PREFACE

trying to point in all directions.

Wea have made the book self-containsd moduls the hasics present in any
introductory greph theory text, whether one hke [Chartrand & Lesniak,
1996] with virtually no overlap with onr topics, or one like [West, 1996] that
intracditees several of the same topics. We hope it can serve as s platform
from whick one can launch mors detailed investigations of the broad array of
topics that involve intersection graphs. The more than one hundred shmple
exercises scattered thronghour the first six chapters are meant to be done
ae they occur, to reinforce and cxtend the discussion.

In spite of its size, the Biblicgraphy does not prerend to he complete.
Many relevant papers are nob incloded—even some of our own—7partly by
design and partly reflecting cur ignorance and prejudices. We hope that
even connoisseurs will find & few sutprises, though. We have made a special
effort to ineclude early papers and recent papers with good bibliographies,
but we have typically included very fow papors that cmphasize solving par-
ticular problems {e.g., coloring, domination, identifying maxcligues, and a
host of others) or that emphagize detailz of algorithms and complexity. Pa-
pers marked as “to appesar” haed not been published when this book was
completed and shovld be lnoked for naing the American Mathematical So-
ciety’s MathSciMat. We also intend limited updating {including, inevitably,
cortections] on a web site lacatable though the authory’ home tastitutions.

The following are among the possible uses of this beok: (i) 25 a scurce
book for mathematicad scicntists and others who are not familiar with this
material; (1) as a smide for 4 research seminar, okilizing the references to
explore additional topics in depth; (11} as 2 56 week “nnit" mn an advanced
undergradnate/graduate level course in graph theory.

We acknowledsze the wluable inpae of ananyious reviewers and the en-
couragement amnd interest of many colleapies, Peter Hammer in particubar.
We thank Jend Lehel in particular for comments on certain portions of the
manuscript, while of course we retain all responsibility for lapses and short-
comings.

(_'Htf} 2



Chapter 1

Intersection Graphs

The gon! of thizs chapter is to present basic definitioms and results for in-
tersection graphs of arbitrary families of set3. This machinery will then be
used as the basiz for the more specialized bopics in the following chapters,
Much of the viewpoint of this chapter reflects [Roberts, 1385].

1.1 Basic Concepts

We follow the standard terminology abd notation that is commean to most
graph theory texts, such as [Cheartrand & Lesniak, 1996] or [West, 1996, For
instance, V{(7) and F[(r) refer respectively to the sets of vertices and edges
of a graph & of order |VW{(Z)| and, for w,v € V((7), wi refers to the edge
Jolomg u and ¢, Uncommonly, we allow the null subgraph of 7, meaning the
graph K); having V(Ky) = 8 = E{K)). In particular, the null subsraph is
a complete subgraph of every praph (section 4.2 will show one reason why
this iz desirable].

By a fornily {&),..., 5.} of sets or graphs we mean a maliised, which
allows the possibility that 5; < 5; even though i # . Unless we specifically
say otherwise, all graphs snd digraphs will be finite and graphs will have
neither loops nor multiple edges.

We define » raccfique of a graph to be any complete subyraph Lthat is not
proparly canteined in another complete subgraph. {Warning: some authors
uge “clique” for what we call “maxclique,” while for many others a clique
can be any complete graph.} For instance, the graph showm on the left in
Figure 1.1 has twe maxeliques, of orders two and tbres.

Let F =[5, .., 5} be any fanily of sets, The snfersection yruph of
F. denoted DHF)Y, is the graph having F as vertex set with 5 adjacent to

1



2 CHAPTER 1. INTERSECTION CRAFHS
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Figure 1.1: An micrsection groph G, both “plam” ond set Inbeled.

S; ifand only if ¢ # j apd 5;N5; 52 B A graph (7 Is an intersection graph if
there exista a family F such that & 2 {F), where we typically display thia
womorphizm by writing V{G) = {v....,v,} with each v corresponding to
Sy thus wvy € B{G) if and only if 5;11.8; # 8. When G = (}(F), F is then
called a sci representotion of .

Example 1.1 Suppose F = {51, 59, 52, 81} where 8, = {z}, 52 = {m1,
Zz Ta}. Oy = {ma}, and 84 = {r1, F3. 24, 73}- Then G = QUF) is shown
in Figure 1.1. It is somectimes uscful to label the vertices of an interscetion
graph G with the actual sets of F (abbreviating {x;, Ta, T4} 85 31 2a23, ete.),
producing the graph on the right in Figure 1.1, which we c¢all a set-lnbeled
intersection groph.

Suppose G = QF) where F = {51,..., 8} and each v € V(&) cor-
responds to 5; € JF under the jsomorphism. For each £ £ UR 5, zet
Gr={wv 3 €5} Tt is easy to see that each (7 induces a complese graph
of G of ovder |{i:2 € 83 > 1.

Example 1.1 (continued) For the given family F and & = Q(F),
{7z, = {¥1,v2, ¥4} (these being the vertices corresponding to the three 5=
that contain xp); simdlarly |G| = 1, |Gyl = |[Gey| = 2, and |Gy = 1.

An adge cligue cover of G 15 any family £ = {(y,..., G} of complete
subgrapha of ( auch that every edge of G is in at leaat one of E(Ch),...,

E(Qr); in other words, ty € E(G) impliss xry € UL, B{Q,). Remembor
that any of these (};'s may be the null subgraph of G We customagily use
{'e {often with subecripts, superseripts, or other ornamentation) to denote
complete subgraphs of & or, interchangeably, the vertex sets of complete
subgrapha.

Clearly, the set of all maxcliques of any graph (' forms an cdge clique
cover of @, as does the set E[¢) when each edoe iz viewe] as a J-clement
siibset of V{{7). But a graph can have many other edge cligue covers.
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Example 1.1 {continued) For the given graph &, tsking h = {7y
= {vn, e, v}, Q2 = G = {m}. Qs = Goy = {vavuf, Qg == Gz, =
{va, g}y, and {y = Gy = {vq} forms a S-member edge clique cover £
of G. Altermatively, @) = {v, v, w}. @4 = {viy), @ = {uvz], and
Jy = {vy, va} form a 4-member edge clique cover @' of .

The >-member edge clique cover considered i Example 1.1 illustrares
how each set representation F = {57,...,8q} of any intersection graph &
determines a duad edge cligue cover E(F) of G defined to be the family

E(FY = {0 x5}, where each G, = {9 : 2 € &),

letting each w € VI((G) ronespond 1o 8 € F uuder the isomorphisin & =2
QUF).
Suppose G is any graph with V{G) = {m, ..., v . Every partioniar edge

cligue cover £ = {(..... ) of G determines a dual set representation
F(£) of & defined to be the family

F(£) = 151,...,5,} where each 8 = {7: v, € Q,} |

for eachh ¢ & {1,....n}. Observe that each S; in a4 dual set representarion
F(&) 35 a set of integers, and that 8; M S5; # 8 if and only if vy € E(G).

Example 1.1 (continued} For the 5-member edge clique cover £(F)
as above, the dual sel representation F{E(F)) consisls of 51 = {j : w1 €
it ={1} Sa={j-mE QJ} = {1,2,3} S3 = {4}, and 5y = {1,3,4.5}.
MNotice how this set representation corresponds, set by set, to the F at the
beginning of the example.

For the 4-member edge clique cover £ = {4, Q% @4, @4} given earlier,
the dual edge clique cover F(£'] conaists of & = {j : v1 £ (4} = {1.2},
Sg = {1} S;g = {3, 4}: atid S4 = {1,2,4}.

Exercise 1.1 Given any graph ¢ with edee cligue cover £, show that
the dusal set representation F = F(£} defined above nctuslly i a set rep-
resentation; in other words, show that & = Q0F) with each v £ V{{E)
corresponding to 5; € F.

Exercise 1.2 Show that if & s any imersection graph wish st ropro-
sentation F, then F{E(F)) corresponds, set by set. to F. Similarly, il 7 &
any mtersection graph with edge clique cover £, then £(F(E)) corresponds,
geb by set, to £.
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The back-and-forth interplay—duality—between set representations and
edge cligue covers is a characteristic feature of intersection graph theory. We
will see how it allows the interrelation of two different aorta of structures,
<ach of which can be viewed as being represented by the other, Sections 1.4
and 1.5 will show examples of fhis, with many others appearing in later
chapters., This interplay will show wp in many of the results ws present; it
is a large part of what makes them work., (We present one enticing example
in seetion 4.3: intersection praphs are wsed to consider whether acological
“food webs” can be represented by “competition graphs,” and then whether
thowie graph representations in turn have *interval representations” —back
and fuorth and back again between set representations and edge clique cov-
ers.]

Every graph 3 has the edge clique cover £ = E{(), or at the cther
extreme & could consist of all the maxcliquas of €. Thus Exercise 1.1 proves
the “Hrst theorem™ of intersection graph theory, from [Marczewski, 1945)].

Theorem 1.1 (Marczewski) Fuery graph &9 an fmiersection graph, O

While every praph hss o st representation, vterseclion praph theory
nses properties of the set representations and various conditions imposed
thereon, rather than the conventional graph-theoretic properties that *for-
pet” the sets. In many interesting exsawmples a set representation F of a
graph G aclually consists of the veriex sets of subgraphs of another graph
H. We will aften identify the vertex zets of subgraphs with the snhgraphs
themselves and say that F consistz of the subgraphs. When this happens,
we call {7 the guest graph, H the host greph, and the set representation a
graph representation of G. Theorem 1.1 can be strengthened to show that
every graph has s graph representation.

Theorem 1.2 FEuvery graph G is the intersection graph of o family of
subgraphs of e groph.

Proofl. Suppose 7 is any graph, £ = {@1....,Qn} 5 any edge cligue
cover of (&, and F = F(£} is the dual set representation of & determined
from £; thus & = ({F). Define H to have vertex set {1,...,m} with
ij € F{H) if and only if {1, j} C 8 for some & € F. Then each 5 € F
inditees a enmplete subgraph of H and, gince JF iz & set representation of &,
these induced complete subgraphs will form a graph representation of G. O
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N [\

Tigure 1.2 A host graph N for the graph G in Figure 1.1 {and H 25 o
set-labeled intersection graph as in Lemma 1.3).

1

2 Uy Vg

Example 1.1 {continued} Wa illustrate the construetion in the proof
of Theorem 1.2 using the graph ¢ and the Smember edge clique cover
£ piven earlier in Example 1.1, The host graph F comesponding to this
guest graph 7 8 shown in Figure 1.2. The subhgraph 51 of H is indaced hy
{1} since { is the only member of £ that containe 1, and 5y is induced
by {1,2,3} since €, e, and &y are the members of £ that contain wy;
similarly, 85 1= induced by {4} and 54 by {1,3,4, 3}

Exercise 1.4 Snppese the paire &, F and H, F are as in the proof of
Theorem 1.2, Show that 3{|G4]: @ € £} = S{|%) : S € FL.

Focmsing on the graph & constructerd n the proof of Theorem 1.2, the
following lemma showe how to go from & graph G with edge clique cover £
to a praph H with edge clique vover F such that & = ((F) and H = 0{£).
Figure 1.2 shows H from Example 1.1 as the set-labeled intersection graph
O£, Notice the symmetry—we et go @ither diteotion hetween H, F and
7, &, and go each graph can e thought of as a host for the other. We
exploit this dual relationship belween pairs of graphs in section 1.4 and
later chapiers.

Lemma 1.5 Suppose (7 &5 any graph and £ = {€,...,the} i5 any cdge
cligue cover of (7. Let F and H be azs in the proaf of Theorem 1.2. Then F
s an edge elique cover of H £ = £{F}, and H = Q{F).

Proof. This can be proved ss a straightforward extension of the proof
of Theorem 1.2, with each i € V[H)} roreaponding to & € £ under the
isomorphizm H = Q{£1. o

Exercise 1.1 Fill in the details in the proof of Lemma 1.3,
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1.2 Intersection Classes

Theorem 1.1 shows that for every graph & there is & family F of sets such
that ' = §(F). Interesting problems arise when restrictions are placed on
G and F. Specifically, let G be & set of graphs and T be g set of sets, We
write G 22 {3(E] if eacl graph G € G Is isomorphic to an intersection graph
G’ = Q(F) for some family F of sets from T and, vice versa, each & = (4{F)
for o family F from % is isomorphic o a 7 € G, It i3 not always the case
that each G has a ¥ for which & = Q(E}, and the situation in which it does
happen will be of considerable interest to us (for instance with T the set of
all subtrees of a tree in Chapter 2 and ¥ the set of all intervals of the real
line in Chapter 3). Most of this section is based on [Scheinerman, 1985a),
in which a set G of graphs is defined to be an intersection elass if there is o
T such that G = [[X).

A set G ol graphs (ur, eguivalently, a property of graphs) is closed under
induced subgraphs if & € § whenever (¥ in sn induced mbgraph of some 7 €
¢, Equivalently, classes (properties) of graphs that are closed under induced
gitbgraphs arc prociscly those that can be defined by a list of forbidden
induced subgraphs - & potentially infinite list, with [McKee, 1978) describing
whal, more is neaderd Lo ensure a finite list. As examples, 1he sel of &l planac
graphs (or the graph-thearetic propetty of heing planar) is closed under
induced subgraphs, but the set of all connected graphs is not. The following
exercise shows that the connected graphs do not form an intorsection class.

Exercise 1.5 Show that every intersection class is closed under induced
subgrapha,

Define a set G of graphs to be closed under rerter exponsion it G' € G
whenever &' results from G € § by repeatedly replacing an existing vertex
v by a pair ¢, »" of new adjacent vertices, each having the same pre-existing
neighbors as o did. The set of all connected graphs is closed under vertex
expansion, but the set of all planar graphs is not.

Exercise 1.6 Show that every intersection class is closed under vertex
B parEioT.

A scb § of graphs has a composifion series if there oxists s countablo
sequence {(71, Gy, ...} of graphs in G such that each &; is an induced sub-
graph of () and each 7 £ G is the induced subgraph of some ;. Notice
that if the sct G is cloaed under disjoint unioms, then & has a compaosition
series whete, for instance, each G; can be taken to be the disjoint union of
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IG £ G+ |V()| = 4}. This shows that the set of all planar saphs has
a oolnposition series: somewhat shmilerly, so does the set of all connected
araphs.

Exercise 1.7 [Scheincrman) Show that the sct of all graphs that do
tiol condain deth oycles € and O as induced subgraphs does not have a
COMpOsition series.

Lemma 1.4 (Scheinerman) If G is an intersection cluss, then there
15 @ countable © such that § = {I(X), and G hay o composition series.

Proof. Consider an intersection class @ = Q(X}. Since there are only
finitely many graphs of cach possible order, G is certainly countable - say,
G = {Gi.Gq,. ..} where each &y & N{F,) and esach Fp € E. Since each
V(G is finite, for each ¢ there is a finite F;, © Fp such that Gy = O(F).
Let &' be the countable subset F{ W, U --- of £ Then G = (X,

Thercfore, we can assume that G 2 (4X) where & = {51,5,...} is
councable, Define graphs H,, Ha, ..., where each H). has

VIH) =]l :12i<kandl <p<k}

and

E(Hy = {0 : (p, i) # (g,5) and 5, N S, # B},

Let each F7 be the family consisiing of & copies of each of $7,....%,. Then
making each +f correspond to 5; produces an isomorphism Hy 2= (4FF).
Each Hy is easily seen to be an induced subgraph of Ay ;. Foreach G € G,
suppese (7 = QF) where J © X and let b be the maxinum subscript |
for which a vertex of (7 corresponda to an §; £ F under that lsomorphism.
Setting & = max{h, |V{GH} enswres that & i an induced subgraph of Hy.
Therelore, (I, a0 i n composilion series Tor . 0

Theorem 1.5 (Scheinerman) 4 set G of graphs & an infersection
clasy if and only if olf (hree of the following condilions are satisfled:

{1} G is closed under induced subyrophs;

{2) G i5 closed under verter crpansion;

{31 G has a composition series,
Movresuer, if repeated members of E are not allowed on the F's. then eondi-
tions (17 and (1) are necessary and suffinient.

Proof. Exerciees 1.5 and 1.6 sand Lemma 1.4 prove the “anly if diree-
tion. For the "if” direction, suppose & satisfies conditions (1}, {2}, and (3]
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and has o composition series {77, Fy,...}. By (1) we can sert additional
members into the composition series and, aince each & 1s an imduced sub-
graph of ;1 1, we can even assume that each V[Gy) = {w,...,%}. For each
i, define

Si= {50 0= 7 < and vy € B(GTU{(,5): 4 >0}

Let £ = {81,590, ...} {townrd showing that G = (B}

Fach G 2 Q{{5,..., 5%} since, for i < 7 < k, 5; N 8; £ 0 if and only
if 5; M8y = {{4,7}}; that is equivalent to vy € (G). and so to vy £ {Gy).
Each G € G ia, by condition (3), an induced subgraph of some Gy, and so
= F) such that F € X by Exerciwe 1.5, This shows one direction of
G = L)

Converscly, suppose & 2 ${F) where F C B, Let & = {&;,,...,5:.}
b the sabyel of F conaisting of one copy of esch distinet member of F
(remember that the family F may have repeated members). Define a graph
&' on vertex sct {wy, ..., wn} where wgpg € B{C7) if and only it p # ¢ and
Sp M 5p # B This makes G an induced subgraph of G, with G resulting
from G' by vertex expansion. Siee G is an indoced subgraph of (7 where
k = max{f1,..., 4}, condition {1} implies that &' € ¢, and s0 condition (2)
implies that & £ .

The *Moreover” portion of the theorem follows by & similar argwment. O

Exercise 1.8 Fill in the defails in the proof of the “Moreover” portion
of the theorem, including checking Exercize 1.0 and Lemma 1.4 when the
F'sin I are required to be scts rather than families.

Whilc Scheinerman’s theorem con be used to show that a particular set
{ is an intersection class, that i3 a long way from actually fnding a guitable
L and proving that it works. For inetance, Chapter 2 will define “chordal
praphs™ a5 graphs that have no ndyced cycles larger than triangles, and
these praphs can easily be shown to satisfy all three conditions and so form
an interseetion class. Yot chordal graphs were studied for many years betors
an intersection characterization was found {(or looked for); section 2.1 tells
the story. As another example, planer graphs sstisfy conditions (1) and (3}—
but not condition {2}—and so always can be characterized as inftersection
graphs of families of distinet sets; vet in spite of this, no natural intersection
characterization iz known for thom.

Scheinerman’s approach ie extended in [Scheinerman, 1985¢, 1536], ond
[Quilliot, 1988] presents an abwtract approach to similar questions in a hy-
prerEraph context,
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[hMoorhouse, 1994, to appeac(al] perform a similar anabyvsis for groph-
bosed intersectinm clesses, the intersection wraphs of lamilies of subgraphs
of a set X of graphs. Perhaps sutprisingly, this greater restriction on the
objects being intersacted sllows less restriction on the graphs, Moarhousc
shows Whal G & a grapl-based intemecllon elass 17 amd only 1T G s closed
under induced suberaphs and closed under vertex expansion. Moreower, if
repezted memnbets of B oare not allowed in the Z's, then G heing closed
under iaduced subgraphs is necessary and sufficicnt. 'This work is extonded
in [Moothouse, to appear(bl).

It should be noted that while Scheinerman’s and Moorhouse's work gives
very ressnnable charscterizations of those claases of graphs that are delin-
able as intersectlon praphs, less stringent interpretations are possible, The
following exercise, sugeesied only for those fond of arcana, contains an “in-
tersection characterization” of hamiltonian graphs (a class of graphs that is
nok even eloged wndder induced subgraphal),

Excrcisc 1.9 {soc |Zamfircscu, 1873574|; Show that o graph & iz hamil-
tonian i end only i there exbsle a lamily F = [C5, ... Chy ol eycdes ol G
such that the olowing chree conditions Tuald:

a every vertex of (7 i i atb least one cvole in JF;

» the Inlersection-like graph F™ s a tree, where I x defoed Lo lave
V{F*) = F with €30 € B(F*} if and only if the subgraph C;n O
cousists precisely of o single cdge; and

e the imiersection graph R{F) is a trec. where cach O is now vewed as
a suhset of ¥{G).

1.3 DParsimonious Set Representations

Since every graph is an mterseclion praph, it may seom thar woee st
ture has Lo be required of the sel representation i order to ssk interestiug
cuestions about particedur praphs, But several chiallenming probliune arise
instantly, incleding finding samallest set representations and el ifving when
a st representation iz unique. Define the interssction number (1G] to be
the minimnm cardinality of a sek 5 siuch that 7 ia an inferseclion grapk of
a family of subsits of 5.

Exercise 1.10 Show that () = 1, i{{F) = 2, «{2K:) = 2, and
What= 1.
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Figura 1.3: A graph & with mterseetion nember 3. (Graph H will be ex-
plained 1 Section 1.5,

Cur next result charactenzcs () in torms of the more “intornel” pa-
rameser (), the mininmm cardinality of an edge clique cover of 7. The
orem 1.6 waz proved in [Erdde, Goodman, & TPdza, 1966] and hag been
redigcovered several times by other anthors in shightly different contexts.

Theorern 1.6 (Erdds, Goodman, & Pdsa) For every groph 7, 1{G)
- 8163).

Proof. Let £ be ap edge clique cover of 7 with |E]| = #(&). Then the
sct representation F = FIEY) of G has |L{S; 1 5 € F}| = #[3), so that
{6 < #(G). Conversely, since & has a set representation by Theorem 1.2,
we can pick F to have |L{S; : 5 € F}| minimum. Then JF determines the
edze chique cover £ = £(F) of & with |€] = |U {5 : & € F} = i{{¥, 50
that #{G} < (7). m]

Example 1.2 If & iz as in Fipure 1.3, then #(&) = 3: taking £ to
consiat of Q) — {wi. vy wg}, Qo = {wg,v3,vs}, and &3 = {vy, 1, v} shows
that & 3-mernber adge cligue cover {g sufficlent, and it is easy to see that no
fewer than three will work. Observe that F(E) = {{1}, {12}, {2}, {1.3}
{2,3}, {3}} i5 a sct representation of & with L{S; : §; € F} of minimum
cardinality.

It 15 not easy in gencral to determine &7} or #{G}—in fact [Kon, Stock-
meyer, & Wong, 1978] shows it to be NP-hard—but they have been deter-
mined for some special cases. Rerall that a friangle-frec graph is a graph
that cdoes not contain K3 as a subgraph.

Corollary 1.7 Fvery yraph G has () < |B(G)|, with {(G) = |E(G)]
if end only if G is friengle-free. a
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Now debine iM{{7) to be the minimum cardinality of a set ¥ sneh that s
an intetsection graph of distinct anbsets of 5. Clearly (3} < i*{ G} for every
graph (. (Warning: Some authors call #*(G) the *intersection number” and
() the “pgeudointersection number” of (7.}

Exercise 1.11 Show i*{K2) = 2, i*[Py) = 2, 4" (283) = 4, and i*(Ky) =

Exercise 1.12 Modify the proof of Theorem 1.1 1o show that every
graph is the intersection graph of a Lamily of distinet sets,

It w g V((/), then the closed netphborhood of v, denoted N[u, s the set
of all vertices of & adjacent to v Logether with « itself. A praph & is point
determining if, for all u, v € V{G&) with w # v, N{u| £ N[v]. {Smmner, 1873
introdueed this notion, and [Lim, 1978], calling them supercompact graphs,
vontains many characterizations and properties.

Exercise 1.13 {see [Slater, 1976]} Show that if 7 is a poial determi-
nating graph with ne solated vertices, then (G} = #*{&).

Corollary 1.8 [f & is triangle-free and euch component hos ot lesst
three vertices, then (G} = i*{().

r

Corollary 1.8 IfC is a connected graph with V(G| = 1, then #*{5)
| (G Af and anty 4f (7 is triongle-free.

o

Exercise 1.14 Show that the converse to Exercise (.13 1s not true.

MNote that if & is & triangle, then i¥{G) =3 =
aof |[V{G"} = 4 is necessary in Corollary 1.9,

E{G|, so the hypothesis

Theorem 1.10 {see [Erdés, Goodman, & Pdsa, 1966]} For any greph
G ounth v = \V(&)|, G} = L‘Ilsz-ij.

Prool. Firsl pote thal we may aswutne el & contains uo isolabed
vertices. We show the stronger result that there i an edge clique cover of
7 that consists of at most |n?/4] edges and trisngles of G.

The resutt is easily checked for n = 2, 3. By way of inductinn, assume the
result is true for all graphs that have no more than n L 2 vertices, and sup-
pase |V(G)| = n+2. Pick 2y € E(G" and cousider the praph &' = G\ {x, v}
By the induetive hypothesis, G has an edge clique cover that consists of at
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most |n%/4] edges and triengles. By considering for cach v € ¥{(7) whether
the snhgraph induced by {z,y. v} is Ky, P, or K3 U Kq, it is clear that at
meost 7+ 1 additional edges or triangles are needed to make an edge clique
cover of (7. Since [(n + 2)%/4) = [n?/4] 4+ n+ 1, the proof I8 complete. 3

A alightly different proof technique than above shows that, for any graph
G with o = |V{)| = 4, #(GQ) < {n?/4)].

Exercise 1.15 Show that the number |n®/4] is best poesible in The-
orem 1.10 by finding a graph of order n that requires |n®/4] members in
every edge clique cover.

We now turn brisfly to the question of uniqueness. Let & be a graph that
is an intersection graph of a family of distinet subsets of 5 where |5] = ().
Then = iz said to be aniguely inlergectable if, Bt every twe fatnilies F) and
Fs5 of distinct subsets of 5, f3{F)) = Q{F:) = & implies that F} can be
obtained from J2 by permutiog the elements of 5.

Example 1.8 The cycle €3 is uniquely intersectable sinee i%{Cy) = 4
and, for each & € 5 where |5 = 4, £ & in exacily two sety in any F, with
four distinet subwets reauirved.

The complete graph Ki is not wniquely intersectable. To see this, frst
note that +*(G) = 3. Let 5 = {e,b ¢}, Now, Q{A) = R(F) = G, where
Fi = {a, b}, {o. e}, {B.e}} and Fo = {{a}, {a b}, {o, b e} ). Clearly F| can-
not be obtained from Fo by permuting the elemments of 5.

Corollary 1.9 shows that the condition of being triangle-frec can lead to
a nice result, The follnving i another cxample of this.

Exercise 1,16 (see Alter & Wang, 1977}) Show that every triangle-fres
graph is unimely intersectable.

Alter and Wang also show thet no K, with n > 3 is uniquely inter-
sectable and give many types of uniquely intersectable praphs. Howevar,
the problem of giving a complete characterization of uniquely intersectable
graphs remains open. Mshadev & Wang, 1997, to appear] contains mare
recant developments. [Era & Twuchiva, 1991] and [Tsuchiya, 1924] discuss
intersection mambers when conditions are placed on the family JF of subsets
of &, for instance when F is an ontichaein, meaning that oo two membery of
F are enmparahie.



1.4. CLIQUE GRAPHS 13

[Lim & Peng, 1991] defines yniguely pseudewntersectable grophs by drop-
ping the requirement that the members of F) and F7 be distinet in the defini-
tion of uniquely intersectable graphs and shows that the notions of uniguely
mtersectable and unique pseudointersectable are equivalent for point dever-
mining graphs.

Exercise 1.17 Show that the complete graph K5 is uniquely psendoin-
tersactalle.

1.4 Clique Graphs

Recall that a maxelique of a graph 1s a complete subgraph that is not prop-
erly contained in another complete subgraph.

Exercise 1.18 Given maxcliques (} and ¢’ of & with v £  such that
v & (Y, show that there exists o' € ' such that ¢' & (J and ' & E{G).

We define the cligue graph operstor K (-] such that, for any graph Ji.
K{H} 15 the intersection graph of sif the maxcliques of H. A graph is a
aligue graph i i is sownorphic to K{H} for some graph A,

Clique graphs (and the clique graph operator) will be fmporian (o us
in later chapters, They are characterized m [Roberts & Spencer, 1971] in
terma of the following condition. A family F = {51,..., 5} of subscts of @
set 5 is said to satisfy the Helly condition il the fullowing hulds: For every
subfamily ' C F, if the members of 7' intersect pairwise, then all the
members have a common element—n other words, if svery 5, 5 € 7 has

Simi S £ W, then {5 5, £ FLA 0

Lemma 1.11 Suppose o groph € has edge cfique cover £ = {1, .., @mn}
determining the dueol set vepresentation F = FIEY of G Define a graph H
on VIH) = {1,...,m} such thut H =2 0{E) with cach i € V{H) correspond-
g to £ under that isomorphism. Then £ satisfies the Helly eondition if
and only if F condoins cvery mazchique of H.

Proof. Suppose (7, £, F, and H are as in the statement of the lemma,
By Lemma 1.3, F is an cdge clique cover of H, making each 5, € 7 induce
a complete subucaph of B, and H = ((£).

~uppose £ sntisfies the Helly condition and B is any maxclique of ¥
{toward showing that B € F). Tf . k € R, then jk € E{H] and 0 NGy #
DLy H = Q(E); thus she subfamily {2, ' 7 € R} of £ has pairwise nonempty
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intersections. By the Helly condition, there is some 15 € N{¢}; : 7 € R}. So
7 € Rimplies v € ¢, which implies 5 € 8; = {7 : v € @; ] by the definition
of F{£). Thus F C 5; and so, since B is a maxclique, fi = §; € F.
Clonversely, suppose F = F{E) = {51, ... 5.} contains every maxclique
of H and wc are given £ € £ that has pairwise nonempty intersections
{toward showing that some v & V{{7} is in every Q; € £'). Thus, for every
Qi Gr € £ there is some v; € Qj NQx and so k€ S5 =1{7:5 & QJ}
by the definition of F(£); since 5; induces a complete subgraph of H, this
implies jk & E(H). Thus {j : ; € £’} induces a complete subgraph of
H and g0 is contained in some 5 € F that iz a maxclique of H. By the
definition of F{&£}, v; is then contained in every €; € &% (|

Notice that the final eonclusion on the dual set representation JF in
Lemma 1.13 can be restated as follows: For every subset ¥/ C V(H), if every
two elements of V' ate in 4 common member of F, then all the alements of
V'’ are in a commeon member of F. This situation is sometimes described as
F satisfving the conformaiify condition, dual 10 the Helly condition.

Theorem 1.12 {Roberis & Spencer} A graph &5 o clique graph if
and anly of o Fuy on edoe eligee cover that satisfies the Helly condition.

Proof. Given any graph H 2 K[, let £ be the edge chque cover of
G consisting of the maxcliques of &; thus H = Q{£). Then F = F{&) is an
edge clique cover of by Lemnma 1.3 aod satisfiey the Helly eondition by
Lemyna 1.11.

Conversely, suppose a graph & hea an edge clique cover £ that satisfies
the Helly condition. Let H and F = {5}.....58,} be as in Lemma 1.3, 30
G =1(F). Define " e V(H") = V(H)UF to bhave E[H*) = E(HWH5;:
§ € 5. Each 5; £ Fis a vertex of H* shat 1 In 8 unique maxcligne of H*—
namely, 5; U{5;}. Since F contains every maxclique of H by Lemma 1.11,
each maxclique of H* contains a unique vertex & € F. Thus G = R{F)
epsures that ¢ 2 K{ 7"}, showing that G is indeed a clique graph. n

Exercise 1.19 Use the proof of Theorem 1,12 fo find an H such that
K{H) ix the graph in Figyre 1.1, Repeat for the praph in Figure 7.12.

Exercise 1.20 Show that the graph & in Figure 1.3 is not a clique
graph.
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1.5 Line Graphs

We include a discussion of line graphs sinee Loy form the fivst intersection
class tn b widely studied and sitee they typify mnch that is common to all
intersection classes. They are also somewhat oppusite in nature to clique
graphs, which are based on waxchigues, in ihat line graphs are based on
edred, which conld be called “mincligues.”

We define & fne graph operator L{-) such that, for any grapk I, L(A)
ia the interacetion graph of ofl the edees of H, cach viewed as o 2-clement
subset of V(H). A graph i a line graph if it is isomorphic to L0 H) for some
graph H. [Hemminger & DBeineke, 1973] surveys she extensive litersture on
line graphs up to that date, and [Prisner, 1996z] discusses many inore resent.
testilt and genetaliaalions.

Example 1.4 Show that L{K:) 2= L{K; ) (K14 is the apqer-ledl graph
in Fignre 1.4}, [Whitney, 1932] shows that these are the oaly two nontrivial
graphs that have isomorphic ine graphs.

The following theorem, from [Krausz, 1943], is the prototype of what are
sometimes called Arauss-type characterizations, meaning the characteriza-
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tion of an intersection class by requidng each graph of that class to possess a
famity of complete subgraphs that satisfes some sort of property intimately
related to the apecilic intersection clags being studied. Thia is obvicusly only
A rough descripdion:; we give several examples 1o thiy meonograph, and [Me-
Kee, 1997a] contains formal details and shows a sense in which Krausz-type
characterizations can be, typically in hindsight, mechanically constructed
from the intersection detinitions. This analysis requires tormulating graph-
theoretic properties within a formal logical system. This is similar to what
is done in [McKee, 1991d] tor certain characterizations of chordal graphs
(Chapter 2) and of interval graphs (Chapter 3), for instance showing how
their intersection definitions can lead, again in hindsight, to other charac-
terizationa.

The following theorem can be thought of as translating the properties
“every edge has exactly two vertices,” and “no two edges have two vertices in
common” —--in other words, no loops or parallel edges—into simple conditions
on an edge clique eover. This sort of franslation is commeon to many of our
thearems: Lemma 1.11 can also be viewed as an example, translating “every
cotnplete subgraph 18 contained in a maxclique” into the Helly condition on
an cdge cligue cover,

Theorem 1.13 {(Kransz) A graph G is o line graph f and only if it
has an edge cligue cover £ such that hoth the following condifions hald:

{1} evary verfes of (7 iz in eractly two members of £;

(2} rvery edge of G s in exoctly one member of £

Praaf. First suppose 7 2 LIA) and let F be the edge clique cover of
{7 that consists of the edpes of . Thuz & = Q(F), and we can supposs
subscripts are assigned so that each w € VI{(G) comesponds to S; € F
under that isomorphism. Let £ = £(F) be the dusl edge clique cover of 7
determined from F. Then for each #; € V{), {z € G} = {12 €
i} = |8] = 2, and so condition {1} holds. Similarly for each ww; € E(G),
s € Ga}| = o i 2 € 5,8} £ 1 and equals 1 since £ is an edge
chque cover, and so condition (2} holds,

Conversely, suppose G haz an edge clique cover £ = {Qq, ..., Qwm} that
satisfies conditions (1) and (2). Let & = £3(£) and let F = F(£) be the dual
set Tepresentation of (70 Thus G = Q(F), and we can suppose subscripts
are asgigned so that each 5 € F corvesponcls to v £ V{7) under that
izomorphism. For cach edge Q0 of & there cxdsts some v; € Q5 M Q.
and =0 some 5; exists that containg bath j and k. By condition {1). each

15 = W3 : w € @4} = 2, and so each G,Qs € E(H) corresponds to
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S; = {j, k1 € F. Moreover, by coudition (2}, each |5, N S;] = [{3 - ey, €
;1 = 1, so the members of F are distinct. Thevefore, F = E{A|. and so
;=2 0{F) = L{H, showing that & is indeed a line graph. C

Example 1.5 In Figure 1.3, {7 is the line praph of . In the first
part of the proof of the theorsm, taking & = {a,c}, 5 = {od}, 5 =
{hod}, 54 = {g e}, Sn=— {d, ¢}, and 55 — {e. f} for F leads Lo & = for ),
Gy = i), Go = {w, g g, and so an for £0 Tn proving the converse,
talkdng & = {'1?11?-'::_-1’4}1 &y = {“-*"21'5’3_-1"5-}: s = {T-’-i-‘l’51ﬂﬁ}1 €y = {T'l}.
(s = {r3}, and @ = {w} for £ leads to 54 = {1, 4}, 5y = {1.2}, and s0 on
for F.

Exercise 1,21 Use the proct of Theotern 1,13 to find au & such thal
L{H) 15 the graph in Figure 1.1.

Exercise 1.22 Choose any throe graphs in Figure 1.4 and show that
they are not line graphs.

Unlike for clique graphs, other characterizations are available for lins
graphs that de not invoive finding edpe clique covers. For instance, [Beineke,
1968| shows that a graph iz a line graph if and only if It Las wone of the
erapks In Pigare 1.4 as an mdnuced subgraph. Ffficient recognition algo-
rithms appesr in |[Roussopoulos, 1973) and [Lehot, 1574).

Line graphs can be generalized Lo many other soris ol nlerseciion graphs.
for fmstance using the Intersection of other kinds of induced subgraphs {In-
stead of ellges—ihose subgraphs seworphic o K)o whene gach is viewasd
as a set of still other kinds of induced subgraphs [instead of vertices—those
sebgraphs womorphie to K1), [Cal, Corpeil, & Proskurowslkd, 1996] diseusses
guch peneralivaliomns.

1.6 Hypergraphs

Many of the concepts of intersection graph theory have natural snalogues
for hypergraphs -indeed. they have frequently been developed within hy-
pergraph theory, Becwnso of that, wo inelude sections on boperemaphs in he
first three chapters, introducing terminology as necded; hypergraphs also
appear throwghout Chapter 7. The present section shows how hvpergraphs
intcreomnect the ideas from earlier in the proscent chapter.

A hyperyraph o= (X E) commists of a finite set X of vertices and a
faunily £ = {51,....5.] of edges--nonempty subscts of X, {Berge. 1989]
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s a stamlard reference for hypergraph theory, although we warn the reader
that terminology and notation are far from standardized. [Duchet, 1995] is
e tocont thorough survey.

A hypergraph (X, £} is a stmple hypergraph when the Bunily £ 15 o sef,
ihat is, when all the edges are distinct. Thus, graphs are preciscly the
sitnple hypergraphs in which cach edge containa cxactly two vertices. A
hypereraph (X, £} is a Helly hypergroph when £ salisfies the Helly condition
from eection 1.4, Because Helly hypergraphs will be very important to us
later, we include the following useful Gilimore eriterion from [Roberts &
Spencer, 1971).

Exercise 1.23 {Berge & (ilmore) Show that & hypergraph (X, £) is
n Heily hypergraph if and only if, for every w,vy,w € X, there exists x € X
such Lhal every edge i £ that containg at least two of u, v, w also contains
. (Ilint: Usze incduction ou |£], £ C &, for the harder direction.)

The line graph of the hypergraph (X, £) is defiied to be N{E). Theo-
rem 1.2 impligs that every graph is isomorphic te the line graph of a hyper-
oraph, but the Bllowing theorem shows that more is true,

Theorem 1.14 Every groph is isomorphic to the Hne graph of o Helly
Lypergraplh,

Froot. Suppose G is any graph and £ = {(h. ..., @mn} i5 the edge
clique cover of ¢ consisting of the maxeligues of &, Let F = F(E} be the
get reprogentation of & determined from £, and let H be the hypergrapl
(fl,....m},F). Then & = F) implies that & = L{H), and H can be

ghown to be o Helly hypergraph. u

Exercise 1.24 Finish the proof of the preceding theorem by showing
that F satisfios the Tlelly condition.
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Chordal Graphs

A graphis a chordnl graphif it has no indueed cyeles larger than triangles. A
chord of @ cycle 1s an edge between nonconsecutive vertices of the cyele; thus
a graph is chordal #f sud only if cvery cyele large cnough to have a chord docs
have & chord. The study of chordal graphs goes back to [Hajnal & Surdnyi,
19581, frequently nnder the names rigid-cirewit graphs or triengulated grophs.
Chapter 4 of [Golumbic, 1980] is the standard reference for chordal graphs.
[Blair & Peyton, 1943] is more up to date and mere in the style presented
here.

Iin spite of there having been considerable activity during the 1960s, it
was not until the 1970s that chordal graphs were characterized in terms of
iotersection graphs. Many of the wost sophisticated applications of chordal
graphs, which we sketch in section 2.4, came later and involved the redis.
oovery of chordal graph theory ino statiztios and matrix analysis. The recent
dates on many of our reforences show that chordal praphs are still heing
Intensively studied today.

Contrary to history, we bogin with the interscotion graph approach to
chordal graphs.

2.1 Chordal Graphs as Intersection Graphs

For the purpose of this zection only, we define o graph to be a subfree graph
if it is the intersection graph of a family of subtrees of & tree. But you
should keep in mind that Theorem 2.4 at the end of this section will show
that the subtree grophs ore precisely the chorded grophs! The ties and Family
of subtrees in the definition are called o free representadion of the subtres
graph and, while a tree iz a topological object, it s clear that i can always

14
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Figure 2.1t A chordal graph end S0 tree represeniations.

be taken to be a tree in the graph-theoretic sense.

Example 2.1 The graph & shown on the left in Figure 2.1 is a subtree
graph isomorphic to Q({T,...,77}) where each 1} is the subiree of the
tree in the middle induced by those vertices that contain i. For instance,
V(T:)} = {15, 245, 3456, 4567, 5}. Therc are, of course, many such tres
representations of 7. For instance, the tree showm on the right is a tree
representation for G, but now the vertex set is precisely the set of maxcliques
of .

I1 i3 easy Lo see that 7 is a subkree graph if and ondy if it has an edge
clicque cover £ whose members can be associated with vertices of a tree T
such that, for evere v € V(&) {Q ' v € @ £ £} induces s subtree T, of
T. This is a very transparent transiaticn of being a subtree graph into a
condition on an edee clique cover. Theorem 2.1 shows that the cdge clique
cover can alwavs be taken to be the aet of the maxcliques of 7. Theorem 2.3
then shows how to test whether the maxecliques of & can be arranged into a
tree as Just described.

When a tree represencation exizsta whose vertex zet iz the set of max-
cliques of 3, thea it 15 called a clique tree represeniation (or a clique tree
for} G. Egquivalently, a clique tree is a spenning tree of the clique graph
K{{) such that, for each v € V{G}, T, is connected. (Lemma 2.2 will
give an alternative condition to check.} Given any chque tree T for & and
any two maxcliques ¢ and Q5 of G, let T(Q:, @y, denote the path in T
gonnecting € and &y.

Exarcisa 2.1 Show that in any clique tree T for a chordal graph G, tha
family {5 i v & V{GE)} of subtrees of T, with each subtree viewed as o set
of vertices of T, satisfies the Helly condition.
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Theorem 2.1 4 graph s o subfvee groph if and only f it has a eligue
dree represerabalion. ]

Exercise 2,2 Use Lemma 1.11 wo prove Theorem 2.1,

Exercise 2.3 Show that every subtree graph is the intersection graph of
1 Laumily of disgtinet subtrees of o tree. Is every subtree graph the intersection
graph of a fanily of distinct subtrecs of a cfique tree?

The following lemma essentially appears in [Acharye & Las Vergnas,
1982] (sec also [Levin, 1983]) module knowing other results that we prove
in thiz section and the next; the lomma seems 1o first appear in this sinple
“cligue tree check” form in [McKee, 1953}

Lemma 2.2 A spanning subiree 1 of K((7) s a cligue tree for a con-
neeted graph 7 3f and only if

Ve =3 1@ - 3 0l (2.1)

VT Q.00 EE(T

Proof. Suppose T is o spunning tree of K{G). For each v € V(G),
the subgraph T\, satisfies 1 < |V{T;)| — |F{T;)|, with equality if and only if
T, is connected and thus is a subtree. Summing over all v € V{&) proves
equality (2.1]. C

Example 2.2 The cycle €4 ia oot & subtree graph: each of the four
spanning trees of K({Cy} leaves one T, disconmected, and 4 < 8 — 3 in equal-
ity {2.1).

Exercise 2.4 Show thet a subtrec graph of order m can hayve at oo »
maxrliques.

Theoregn 2.3 will show how easy it Is to find clique tTec representetions
of subtree graphs. It fest appeared in [Bermstein & Goodman, 1981] in the
COIMPULCr science comtext we discuss it section 2.4, and it has been rediscov-
ered many times. [Gavril, 1987] and [Shibata, 1988] give nice treatments.

It i important to realine that Lhe approach in Theorem 2.5 requires
konowing all the maseliques of &, a computationally hacd problem o general—
the number of maxeliques of G can grow exponentially in the number of ver-
ticeg of ¢ vet one that can be done officicntly for subtree graphs becouse of
Exercize 2.4, In eertaln applications, lor wmstance Lhe oue in salgection 2.4.4
below, & 13 given at the start as the set of its maxcligues,
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Exercise 2.5 Show that the order-2p complete p-partite graph Aa g
has 27 maxcligues.

For any graph G, define the weighted chique graph A™{() to be the clique
graph K{(7) with each edge (h(Q}; given weight i(; 1 §;]. Theorem 2.3 will
mvolve maximum spantung tress of A™{G), which can be found efficiently
by using Kruskal's well-known greedy algorithm. Recall that the usnal mini-
i Bpanning tres version of Kruskals algorithm finds afll) minimum span-
ning tree(s) of a connected weighted graph by repeatedly choosing sn edge
of smallest weight that does not formn a cyele with previously chosen sdges.
The mazimrum spanning tree version that we use is the same, except that we
now alwayn choose an edee with lergest weizht that does not form a cyele
with previcusly chosen edges.

Examplc 2.3 For the graph G on the left in Figure 2.1, 3 maximum
spanning iree of K™{G) muat contain the welght-three edge jolning vertex
3456 ta 4567, one of the two weight-two edges incident with 245, and one of
the three weight-onc edges incident with 153; one maximum spanning tree is
shown on the right in the figure. Checking that such a tree is a clique tree
requires either cherking that cach of the seven T3's is connected or checking
that 7 = 21 — 14 in equality (2.1).

Theorem 2.3 A4 connected gruph & is a subiree graph if and only i
some marimun spanning tree af KY(G) s a clique tree for . Moreover,
this i3 equivalent to every mazimum spanning tree of K'Y () being o cligue
tree for {7, and every cligue free of 0 #3 such o mazimurn yponning tree.

Proof. If some maxinmm spanning tree of K™(G) is a clique tree for G,
then by definition 7 is a connected subtree graph.

Conversely, suppose ¥ is 8 connected subtree graph with clique tree
T. Thus T iz a spanning tree of K*{{), but suppose, arguing towsrd a
contradiction, that T is not a mazimum spanning tree of K*(G). Among all
maximum spanning trees of K¥{ @}, choose T to have a maximum number
of edges in common with 7. Pick any edge & = ;@ € E(T")\ B(T) having
weight () N Q)| as large as posaible. Since T i3 a tree representation of &7,
each v € V() that is in €; M Q; must also be 1o every vertex of the path
T(Qi,€;) in Ty, and so each edge of this path must have weight at least
|&3: €] There must be some edge f of this path that is not in £{T"}. But
the spanning ttee T = T' — ¢ + f then has total weight at lessl ag large as
the weight of 79, Thus T¥ is & mavimum spanning tree of K™(G) having
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Figurc 2.2: 4 graph having three minirmal verfex separalors.

one more edge in common with T than does T7, contradicting the choice of
TF

Therefare, being a clique tree implies some maximum spanning tree of
KY((7) is a cligne tree. The rest of the theorem follows o Lemme 2.2
simce every maximum spanmng tree T of KK(G) will have the same fokal

weight }ogremm RN Q. =

A ser S5 of vertices of & is a miénimal vertez separator of & whenever
there exist u, v £ V(&} such that every path connectirg w and v conteins a
vertex in 5 and ne proper subset of § has thes same properiy.

Example 2.4 In the praph showmn in Fignre 2.2, the minumnal vertex
separators are {2}, {4}, and {4,6}.

The following twa exercises show how Kruskal’s algorithm locates the
minimal vertex separators of o subtree graph and that, even though a subtree
graph can have many clique trees T, the multiset {€, NG, @ 402, € B{T7)]
ix uniquely determined.

Exercise 2.6 (see [Barrett, Johnson, & Lindquist, 1989] and [Ho &
Lee, 1989]} Suppose G iz a connected subtree graph with cligue tree T oand
S C V(G Show that S is o minimal vertex separacor of & i and only if
there exists Q2 € E(T) such thal 5 =06

Exercizse 2.7 For a subtree graph 7 with cligue tree 17, show that the
muliplicity of each @ MQ; in the multiset {£4NEYy - i@y £ FiT)} equals
one fewer than the number of components in the subgraph of & induced by
those vertices that are adjacent te every vertex in 0 N ;.

Exercise 2.8 Constroct several cligue trees for the chordal graph in
Fignre 2.2 and then usc thom to itlustrate Exercise 2.7,
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Exercise 2.9 For any aTaph G, define 8 € VIG) to be a minimal vertes
wenk separabor ol (¢ if there exist two vertices in & common component of
the subgraph of & mdnced by VG 5 such that the distance between the
wwo vertices 15 greater in chat subgraph than in G. Call an edge 0;0Q; of
AL o “dominated chord” of a clique tree T of & if GLE4, € E{T) and
[ NG| < iQ QY| for every Q@ € E{I(G;, @)

Show that 5 15 a minimal vertex weak separator of G if and omiy if thete
exisie o dominated chord ;95 of T such that & = O E,.

The next theorem is from [Buneman, 1974], [Gavril, 1974a], and [Walter,
1978]. Our argument fflows [Shibata, 1988].

Thearem 2.4 {Buneman, Gavril, and Walter) 4 gmph i3 & suh-
tree graph if end only if i 45 6 cherdal graph.

Proof. First, suppose G is a subtres graph with cligue tree T, Arguing
woward a contradiction, suppose that {7 contains an induced cycle © whose
vertices are, in order, vy....,0e, ] Where £ > 4. Putting w5 = 4 and
Vi1 = 1, we know that, for e e {1, kL T, NT, #0# T, N,
put, siace €' is induced, 1,;MT, = B for all other vertices »; of ¢ Thus there
exista a path IT through T connecting some vertex of T, with some vertex
of T, and conteining along the way vertices from each T, with L < j < k.
But 4 is also adjacent to v, so 4, MY, # @ with T, NT, Mg =0 for
every vertex 2 of TT in T, where 1 < § <7 & This coatradiets T being a tree,

Conversely, suppose & contains noe induced cycle larger than a triangle
and that ¥ is any meximnm spanming tree of AY(G). Argning toward a
contradietion, suppose that chere arc nonadjacent vertices @ and @ of T
guch that (i) there is some vertex in (@, Q') that does not contain £ M
and, among all such, that (i1} [@ M| = k is as large as possible. More-
over, among all such &, £, suppose that (i) T{¢, &) is as short a path as
possible, Say T(Q, Q) s Q@ =G, Qo ..., @po1, Gp = @, where p 2 3.

For each : € {1,....p— 1}, define Ry = (£ N i\ (@A QT C V(G
Let cach |G M| =& (1 <4 < pl. Since T is a rnaxiimun spanning tree
for K¥{G} and Q@ & E{T), each k; > k. By (iii), QN @’ € @; for each
i € {2,...,p ~ 1}. Therefore, each K; # 8. Since F; M Ki—1 T Qi4a, the
subgraph of (f induced by J&; is conhected and we can pick 3 shortest path
X3, T2,..., %, therein such that x; € By and x; € Kpo;. Foreach v € QN§,
v will be adjacent to x1 and x; and so v,Z1,..., %4 v will be a cycle in 7.
Since the path z1,33,..., 55 was chosen to be shortest and since & has no
induced cycles larger than triengles, eech F; must be adjacent to v, Since v
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was chosen arbitrarily from (2N, it must be that, foreach i € {1,....g- 1},
there is a maxcigue 5; of G containing {z;, 2 YUQMQ). Set Sy = (? and
Sy = &, and note that each 518, 2 (@NQ U x4} 50 [SiN5 | = &
S0 by (i} & N S 15 contained in each vertex alomg T'(5;, $i41) for each
i€ {0,....q--1}. Thus QMG C 5N 54 is contained in cach vertex along
TR, 4, comrradicting {13, O

See [Hsu & Ma, 1997} for a lpear-time algorithm for finding a eligque
tree of a chordal graph. Other authore pay atrention to what sorts of clique
trees a chordal graph can have. For instance, [Blair & Peyton, 1994 plves a
linwear-toeee alegorichm for finding minimnm diaseter cligque drees of 2 chordal
graph, while [Lih. 1993] investigates finding cligue trees that have paths to
which all vertices are close. [Lin, Moles, & West, to appear| nvestigates
clique trees having a mininmum number of leaves, and [Prisner, 1992] studies
chordal graphs that have cligne trees with only thres leavea. Chapter 3 is
devited o chardial graphs that have clinue trees with only vwn leaves.

[Chen & Tik, 1980] and [Bandelt & Prisner, 1891] charactetize chordal
graphs whose elique graph is not chordal and show that if (7 is chordal then
K{K[{N) ta chordal. Seefion 7.5 s devoted to the cligme graphs of chordal
erapha,

Exercise 2.10 (Chen & Lih and Bandelt & Prisner) Give an ex-
ample al a chordal graph of order eight whose clique geaph iz ret chordal,

[Raychawdburi, 1988] gives a polynomial alperitin for finding ike inter-
wection mumber of a chordal graph.

2.2 Other Characterizations

One measure of the vichness of chordal graph theory iz the large womber
of difleren) characterigations of chordal graphs o the Iiterature; see The-
orcm 747, ‘Bewzaken, Crama, Duchet, Hammer, & Maffray, 19907, and
[Bakony & Johnson, 1996] for just o fow examples. This section considers
several standard characterisations, but Lecawse ol our [ocus on cligue Lrees
ane intersection graphs our proofs are not necessartly the standard ones.

Exercise 2.11 (see [Dirac. 1961]) Show that a graph is chordal if and
only if every minimal wertex acparator is complete.

We peed two standard definitions for Theorerm 2.5, from Fulkerson &
Gross, 1965] and [Rose, 1970, A vertex ix a swapliciod vertex of a graph if
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its neighbora induce & complete graph (which, remember, includes the case
of the null graph). Equivalently, & vertex is simplicial if 15 in & unique
maxclique. An ordering {v1,...,%,.) of all the vertices of 5 is & perfect
elimination ordering of G if, for each i € {1,...,n}, v; is a simplicial vertex
of the subgraph induced by {vi, . .., )

Example 2.5 In the graph on the left 1o Figure 2.1, vertices 1, 2, 3. and
T are the simplicial vertices. The vertices have been labeled so that their
numerical ordering is one possible perfect elimination ordering.

Theorem 2.5 {Fulkerson & Gross and Rose) A graph is chondel if
and only if it has & pevfect climination ordering.

Proof. First, auppose (7 i8 & aubtree graph with clique tree 7. We argiie
by induction on the order of T° with the result trivial when the order is one.
Suppose ) is any maxclique of & corresponding to a leaf of T\ Sinee no
maxclique can be contained in any other, {¢ must contain some v € V(i¥)
that occurs in only that one maxeligue. and so ¢ i simplicial. Lot & resule
from & by removing +, and let T~ result from T by removing v from each
vertex of 1", Then &7 is &till a chordal graph. since it has trec representation
T~. By inductive hypothesis, @7 has a perfect slimination ordering that,
when v is inserted at the beginning, takes o perfect climination ordering
tor &7

Conversely, suppose {v1,...,tn) s a perfect elimination ordering for (5.
We argue by induction on i with the resnle trivial when n = 1. Supposc
} is the maxclique of 5 consizting of v; and all its neighbors. Let 7 he
the subgraph of & induced by {us, ..., up}. Since {wg,...,1,) iz a perfect
elitnination ardering for &, the nductive ypollests tnplics that there 15 a
clique tree T~ for G, Notice that @~ = Q\{x} will Lie contained in some
wortex K of T, If Q= R, then let T regult by simply inserting vy into A
I &~ is properly contained in R, then let T rosalt by creating a now vertex
3 and making it adjacent to . In either caze, T iz & tree representation for
. x

Frercise 2.12 Show that a graph is chordal if and only if every induced
subgraph Las a simplicial vertex.

Exercise 2.13 Show that finding perfect elimination orderinga ia “focl-
proof™ in the sense that, if & has a perfect elimination ordering, then taking
ony simplicial vertex ¢ of (7 as a first vertex, then any simplicial vertex af
the subgrsph induced by V{GH{w} as the second, and so on, will wways
rosult in a perfect elimination ordering of G.
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Exercise 2.14 Show how a perfect eliminaiion ordering for & can he
used to give a direct conztruction of a clique tree for G.

We concinde this section with s characterization from [Tarjan & Yan-
nakalis, 1984] that can be implemented in O (E]| + |E{G)|) time: see alao
[Golurabic, 1984] and {Shier, 1984]. A mazimum cordinality search “marks”
the verticos of & as follows: First mark an arbitrazy vertex; then repeatedly
mark any previoualy unmarked vertex having asz many marked neighbors ag
pessible. Stop when all vertices have been marked.

Example 2.5 {eontinued) Jo the graph in Fignre 2.1, taking the ver-
tires In the opposite of their numerical order ahows one possible order in
which they might be marked by a maximum cardinality search. If verfices
5, 6, and 7 (in any ovder) are the first three marked. then the remaining
vertices must be marked in the order 4,3, 2, 1.

Thearem 2.6 {Tarjan & Yannalkalkds) A gruph G 43 chordd if and
only if in some mammum cardinelity search of G, oy each verter becomnes
marked, its previously marked neighbors are patrwise adjacent in &, More-
aver, this 4s eguivalent to, in everv magimum cordinality search of G, as
enrh verter becomes movked, ils previously marked neighbors vre paireise
sajacent in (.

Proof. If soine maxdmum cardinality search roarks the verlices of G in
the order 2y, ..., vy such that the neighbore of v; among v1. ..., 2.1 are pair-
wize adfacent in 7, then {uq. ..., w1} is automatically a perfect climination
ardering the &, and g0 & s chordal by Theorem 2.5

Conversely, suppose G is connected and chordal with clitue tree 1
Supposc o maximum cardinality scarch marks the vertices of £ in the or-
der wy,...,vn. [We show how meximun cardinality search locates nmax-
cligues of &.) No matfer which v, was chosen, vertiees tq, ..., v, (for some
£ < n} will form a maxeclique € of 7, because of always marking a vertex
that is adjacent to as many previously marked vertices as possible, and so
fin, . b =0 € VT for the purpose of this proot, eall such & vertex £}
a “saturated vertex” of 7', Simce T Is a maximum spanning tree of K™(G)
by Theptem 2.3, the next vertex o marked in ¢ will ocour by some neighbor
Q' of G in T fur which @ 1M Q' {the previously marked vertices that o is
adjacent to) is as larpe as possible. Any unmarked vertices occurring in ()
will now be adjacent to more tkan {Q = ! previcusly marked vertices, and
an these will he marked nest, making Q7 satnrated. This process conkinues
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to make saturated vertices of T oune at & time, with the vertices saiurated
at any time always forming a subtree of T. Since each newly marked wvertex
of G is always in the same maxclique as its previously marked neighbors,
these neighbors will be pairwize adjacent. |

Exercise 2,15 Suppose & is chordal. The first paragraph of the proof of
Theorcin 2.6 shows that every maximum cardinality search of ¢ corresponds
to a reversed perfect elimination ardering of &. Show by example that the
converse fails - —that o perfect elimination ordering of a chordal graph need
net correspand to a reversed maxinnm cardinality search marking.

Exercise 2,16 {Blair, England, & Thomason) Prim’s slgorithm
constructs afll) maximum spanning treefs) of a weighted graph by atart-
ing al an achitracy vertex and repreatedly chaonsing an edge of larpest weaight
that joins a vertex already in the tree with a vertex not yet in the trec.
([Torjon, 1983} and [Craham & Hell, 1985] contain detailed amalysis of both
thes Wrushs] ad Prim algorithuns.) Disouss how the second paragraph of the
proof of Theorem 2.8 illustrates the central theme of [Blair & Peyton, 1993):
that “the maximum cardinality eearch algorithm iz just Prim’s slporithm in
g

Seve [Panda, 1996 for deeper discnsgion of maximum cardinality-type
algorithms, and [Simon. 1995] for the role of minimal vertex separators in
meaximm eardinality-type search algerithms on chordal graphs, [Galinier,
Habib, & Paul, 1995] contains more information on clique trees and their role
in algorithms. [Kumear & Veni Madhavan, 1989] presenta a simple linear-time
algorithim for Lesting the planarity of & chordsl graph based on a chordal
graph being planar if and oniy if it is K;-free and each 3-vertex minimal
vertex geparator has multiplicity one.

2.3 Tree Hypergraphs

Contimiing the discussion of section 1.6, a hypergraph (X, £) is a tree hy-
pergraph if there is a tree T with X = V(T such that, for each 5; € £, there
15 a subtree T} of T with V{T}) = 5.

Fixercise 2,17 Show that the hypergraph ({a, 6, ¢, d}, &) with £ = {{a},
{c}, {&d}, {a. b.d}, {o, b . d}] is & tree hypergraph, and that the tree T in
1he definition can be any tree with vertex set {a, b, ¢, d} 50 long 88 it contains
the adge b and oue of the edges ab, ad.
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Clearly, the line graph £2(£) of a tree hypergraph (XL €) i a sublres
zraph, and o is a chordal graph by Theorem 2.4, The next example, how-
ever, shows ibat being a tree hypergraph requires more than just having a
chordal line grapk.

Example 2.6 The hypergraph ({1,2, 3}, &) baving £ = {{1. 2}, {1, 4},
{2.3}} has a chordal line graph (= K3}, vet Is not a free bypergraph; the
following exercise shows that {at least part of) the problem is that £ dues
not satisfy the Helly condition.

Exercize 2.18 Show that every teee hypergraph v a Helly hypergraph.

The following theorem appeared independently in [Duchet, 1978, [Fla-
ment, 1978)], and [Slater, 1978]; our argument. follows Slater’s,

Theorem 2.7 (Duchet, Fiament, and Stater) 4 hypergroph is o tree
hypergraph if and only if & is a Helly hypergraph with a chordal line gmph.

Proof., We have already observed the imaplication one way. For the
converse, suppose (X, £) is a Helly hypergraph and its lne praph & = {{£)
18 chordal, Say £ = {5],...,5,}. We argue by induction on m. For the
m = | hasis, (X, £) is a tree hypergraph for which T can be any tree wikh
vertax set 5. Snppose o= 1.0 Sinee O is chordal, Theorem 2.5 allows
ux to reorder the 5)%s as uecessary 5o thal 5) i3 a simplicial vertex of
and {51...., 5} induces the nmque maxcligne of 7 that containy 5], We
cap agsume kK #= 2 since if & = 1, meaning that &y s an j=olated vertex
iy (7, then the remainder of the argament becoues trivial. By the Helly
condition, there is some x € S 018 Pur &) = &3 {z}and &7 - 50 80
when i > 2. Note that & < j = m implies § N, = 0 and 5] = 5,
Suppose i and j are such that 2 <4 < § < . [F 5 NE &£ 0, ew
S.;' N Sji ;_:' S: I_'|S_':I ?5 B If Si ™ Sj 7‘,& |E|1 then cither _,l 5 Foand « € I‘;; r ':;; -_I.ft |;-'.Ii
or § >k and 8;N 8 = (8% 51N = 505y # fsinee 51715 =8 Thus
5N S; £ B il and owdy I 505 # 0. Do this way, {55..... 57, } satisfics the
Helly eondition and ${85 0 ST b = Q({%,. .., 5} is chordal. 8o by
the induction hypothesis, {X 4 87, {585, -... 8|} is a e hyporgraph with
respect to some tree T Form T from T by adding, for each elcment of 5.
# new vertex of degree ope adjacent to 2. Tlhen each 55 is the verler sel of
a subires of 1" and V(T =X C

=
.
2

Exercise 2.19 Show that a graph is chordal if and only if it 1= she fne
graph of a tree bypoergraph.
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Let H = {X,E) be a hypergraph. A partial Aypergraph of H is a hy-
pergraph H' = (X', £") where £ C £ and X' = Ugeee 8. If A C X, the
subbyperyruph of X fnduced by A is the bypergraph Ha = (A, £4) where
£i={8NA. 5e£)

While scetions 2.1 and 2.2 show that every induced subgraph of a sub-
tree graph is itself a subtree graph, the following example shows that this
hereditary property fails for tree hypergraphs.

Example 2.7 Cansider the tree hypergraph ({1,2,3,4}.£) in which £
= {{1,2,3}, {1,2,4}, {2,3,4}}. If A = {1,3,4}, then Theorem 2.7 shows
that H4 is not a tree hypergraph.

The dual hypergraph H* = {X*, &%) of a hypergraph & = (X.&) has
X*=E with £ = {5, : o € X} where each 87 = {§ € £ : x € §}.
Note that H*™ = H, Given a graph G, the cligue hypergraph of & is the
bypergraph {V(3), £) where & is the sct of all maxcliques of .

Exercise 2.20 Show that a graph ( is chordal if end only if HY iz a
tree hypergraph where H is the clique hypergraph of .

Exercize 2.21 Show that the duoal of a subhypergraph of the hyper-
praph F i izomorphie to a partial hypergraph of H*.

Section 2.4.2 will skefch an application of tree hyperpraphe in databage
thoory, See [Naiman & Wynn, 1992] for an application it probability theory
of duals of tree hypergraphs (called “generalized simple tubes” there).

A eyele of length k in the hypergraph H = (X, £) is & sequence w, 57, v,
&g, . 8, th where 8y, ..., 5, are distinct edges, u,. .., v, are distinet ver-
ticen, v,wyy) € Sy foralli =1, ...,k -1, and ve, v € S¢. A totelly balenced
feypevgrugt 15 hypergeaph o which every cycle of length greater than two
eontaing an edee %; that containg akb least ihree of the vertices ©y, ..., v, of
the cyola,

Exercise 2.22 Suppose H is any totally balanced hypergraph. Show
that ff* and all the partial hypergraphs and subhypergraphs of I are also
totally balanced and that & must be a Heily hypergraph.

The following theorem can be found in [Lehel, 1983, 1985] and {Ryser,
19647

Theoremn 2.8 A hypergraph s totolly balenced 3f ond only of cach of i
subluyperprepdes i3 o tree hypergraph.
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Proof. Suppase 7 isa totally halanced hypergraph. Exercise 2.22 shows
that every subhypergraph of H i3 2 totally balanced Helly hypergraph that,
by the definition of totally balanced, has & chordal line praph. Theorem 2.7
then implies that every subhypergraph of A is a troe hypergraph.

Conversely, siippose every subhypergraph of H i3 a tree hypergraph, yot
supposc H has a cycle of length three with nene of its edges contaiing theee
vertices of the cycle. IF this cyele has lenmth three, then those three vertices
would induec a subhypergraph of H that 1a not a Helly hypergraph; if it has
length greater than three, then its vertices would indvee & subhypergraph
of £ whose ling praph 15 not chordal. Either case contradicts Theorem 2.7, O

A hypergraph is a strong Helly hypergraph if each of its subhypergraphs
1 a Helly hypergraph. Compare the Eollewing with the Gilmore criterion in
Excreise 1.23.

Theorem 2.9 (Lehel) A Aypergraph H = {X,£)] i a strong Helly by
prvgraph if and only 1f, for ell wov,w & X, there exisis © € {o,v, w] such
thaet svery edae in £ that containg of lenst two af 0, ofso contoins o

Procf. This follows from applying Exercise 1.23 to all the subhyper-
graphs induced by distinct w,v,w € XL O

Corcllary 2.10 (Lehel) f & hypergraph s totally balanced, then i is
both o tree hypergraph and o stroag Helly hypergraph,

Proof. Supposc H 1= totally balanced. Theorem 2.8 implies H i3 a tree
hypergraph. Since every cyele of A of length three as an edge containing
at least three vertices of the cycle, Theorem 2.9 can be used to show that
H is strong Helly. !

Fxercise 2.23 Use the hypergraph H = ({0,1,2.3, 4}, {51, 52, .52, 541)
with S, = {0,2,3}, S2 = {0,314}, 83 = {0,1,4}, and S; = {0, 1,2} to show
that the converse to Corollary 2.10 fails.

Torally balanced hypergraphs also play an important role with respect
to “strongly chordal graphs,” as discuszed in scction 7.12, as do strong Helly
hypergraphs with respect (o “Lereditary clique-Helly graphs”™ in section 7.5.
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2.4 Some Applications of Chordal Graphs

Each of the following subscctions 15 mercly o bricf sketch of one applica-
tion of chordal erapls. As an example of a type of application thal Is nai
represenied in our colleciion, [Chandrasekaran & Tamir, 1982) studies the
loeatinn of “supply centers” on a nerwork heving a tree strueture. Sec-
tion 3.4 consists of additivnol examples when the tree representations are
required to be patha.

2.4.1 Applications to Biology

Lt % denote a given st of molecular sequences, where cach sequence corre-
aponds to a taren (an organism). For simplification, assume cach sequence
in & has length & and is built from the fonr latter alphabet B = {A.CG,T)
thus each corrosponde to s DINA zcquence on the four bases &, C, G, and
T. {Protein sequences are sirnilarly built from a 20) letter alphabet.} In the
Iangiage of numerical taxonotny, the taxa (arganisms) are described by k
characters, each having one of four possible stgies. These characters can be
represented as functions f), ..., fy where 0 5 -+ 8 with (7} the bosc at
position 7 for taxou ¢ € 5. Note that each character f; induccs a partition
of the set 5 ol taxa into at most four nonempty equivalence classes, the
preimages of the beses in B

Compatibility anolysis scelis to find collections of characeers from among
Ji. ... fe that arc compatible (consistent} in that there cxists & tree T with
5 C V{{I) on which, for each f, in the collection, cach equivalence class
of f; correaponds to a subtree of . If a coilection of characters ia not
compatible—il there is no sach tree—then insofar as the evolutionary history
for & is a tree, the true evolutionary history for & is not reflected in those
characters. Thus compatibility analysis, considered ps a consistency test, is
n valuable method in that it ean fell us something definite (albeit negative)
aboyt evolullonwry aspecls of cerlaly Gharacters.

Now supposc B is any finite set of states and coch character f, corre-
sponds te a partition F, = {XF'}, .. ,..X,[}ﬂ} of 5, with cach m, < |B| and
X{ﬂ # . Note thar it is pogsible to have X ) and Xg (3} equal as sets, even
though ¢ % 7. Define the partition tnferaecfion gmph ﬂ{Ph W B k=2,
to have verticas {X“l" X“J . Xik*ﬂ R m,:]-, with Yl“ adjacent to
X i and onty if i & and X1 x5 % 0. Notice that Py, .. B is a
E-partite graph with chromatic number &, and each taxon x € § correaponds
to & maxcligne of order £ [MoeMorris & Meacham, 1980] characterizes all
graphs that arse this way.
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Theorem 2.11 (Mchiorrls & Meacham) A graph with chrometic
number & = 1 is o partition infersection graph if and only if o has ne
wirdated vertices ond fes an edae cligee cover, ench member of which has
order k.

Prnof. Asmme 7 has chromatic number & > 1. v
First suppose & = P, ..., Pp). Check that (1) cach X;" € V(G has
al least & — 1 > 1 neighbors; (2) lor each taxon x £ 8 and each B € B,

{X;t] : filx) = B} induces a complete subgraph of order & in &; and {3} the
farnily of all such indoced suberaphs 15 an edge cligue cover of G
Conversely, suppose £ = {04....,@n} is an edpe clique cover for &
where each |5 = &, & has been properly k-colored (meaning that no two
adjacent vertices have the same color), and no vertex of & is isolated. For
sach v € V((7), sat &, = {0, : v € ;). Since each » € V{G} is on at least
one edee of f and that edge ia in at least oue member of the edge clique
cover £, each £, # 0. Suppase {o1,. .., v} 5 any one of the & color classes.
Then each ¢J; € £ will contain exactly one of ¥y, ..., 2¢ and =0 will be con-
todned in cxactly onc of &, ..... &y, Since &, ..., &, are disjoint =ubsets
of £, theyv partition £. S0 each of the & color classes corregponds to one of
kE partitions Py, ..., Py of £, Moreover, ur € E((7) if and only if, for aome 4,
both w, v € £} where v and v are i different color classes. TBut this s equiv-
alent to G € £ N, with £, £, in differcat partitions among 5.. ... B,
whieh in turn is equivalent to £,£, being an edme of £)[{ 8, .., F:}). Hence

G =P, ... Pl O

In the case of just two characters f; and f,, being compatible s equiv-
alent to the bipartite graph £{ B, P,) being acyclic. Pairwise compatibility
can be used to construct a compatibility graph, using the characters as ver-
ticeg wath adjacency corresponding to pairwisc compatibility. Compatibility
analyvils seelss the largest collectious of compatible characters. In the special
caze where every charcter hos only two possille states, MeMorns, 1977]
shows that maxclignes of the compatibility graph correspond to maximal
compatible callcctions of characters, See also [Cusficld, 1981]. Howcver,
this fails in genetal, as showd in [Fitch, 1977] and by an infinite tamily of
examples in [Meacham, 1983).

By assigning cach character f; {and so each comresponding pantition I}
of 5 a color ¢ and coloring each vertex Xf" of (PR ..., P with color ¢, we
Lave a cfowmndio chordel cormgpledion problem, as in [Buneman, 1974]: Given
& graph whose vertices are properly k-colorod, detcrmrine whetheor edges can
be added betweeon vertices of different enlors in order to make the graph
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Figure 2.3: A graph with e chromatic chorda!l completion.

thordal. Edges can be added in this way if and only if the collection of
characters is compatible.

Example 2.8 The graph shown in Figure 2.3, 3-colored with “colors™
1, 2, and 3, cannot be made chordal by adding edges between vertices of
different eolors: The second 2-3 edge would have to be added to chminate
the length-four *1,2,1,3" cycle, creating a new length-four *2.3,2.3" cyele
that could not be clhninated.

Finding the complexity of the chromatic chordal completion problem was
posed in [MecMorrig & Meacham, 1983]. Nete that the chromatic restriction
i timportant since an arhitrary uncolored graph can obviously be made into
n chordal graph; thus the onoly problem in the single color cnae is to find
minimal and minimum such sets of edges. See [Rose & Tarjan, 1973] and
[Fuose, Tarjan, & Lueker, 1976) for the complexity of these problems.

Recently, there hias been a lot of activity in assessing the cornpatational
complexity of ail the variations on the chromatic chordal completion prob-
let. See [Bodlaender & Kioks, 1993], [MoMurris, Waroow, & Wimer, 1994,
(Agarwala & Fernandez-Baca, to appear|, [Kannan & Warnow, 1892, 1994).
[Indury & Schaeter, 1993], and [Bodlaender, Fellows, & Warnow, 1992].

There is still a lot of theoretical work to do before these results ean
be usefil far compatibility analysis. For example, how can & largest set
of compatible characters be selecied when ehromatic ehordal completion ig
impossible?

2.4.2  Applications to Computing

The spplication discussed in subsection 2.4.1 is an example of & general “fili-
atiott” probiem, determining whether certain data or objects are compatible
with arrangement in a tree pattern. Corresponding “seriation” problems,
with arrangement in & linear pattern, will be discussed in Chapter 3.
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Ancther filiation application occurs in computer sclence. A datafese
scheme can be thought of as & collection of tables-—for instanes, a man-
ager's tablc with columns for “employee name,” *social security number,”
“pogition,” “job gkills” etc.; a payroll table with colimns for “social security
nimmber,” “date of employment,” “salary,” etc.: & receptionist’s table with
eclumns for “employes name,” “telephone extension,” *howa,” ete.; and so
on—with the tables called relations and their colamns called attributes.

Suppose a databage scheme consigts of a family R of relationz and a set X
of attributes (50 (X, R} i & hypergraph). Thia iz an aecyelic databese scheme
if the relaticns in K can be arranged as the sertices of o tree, commonly
called o join tree, such that the vertices containing any given attribute induce
a pubtree. Join trees are like tree representations, and paths within the join
tree constitute unique retrteval paths for data. Having a join tree represen-
tetion is ane of 5 large numhber of destrable propertica of detahase schemes—
matters of consistency, eficdency, and compatibility—that are shown to be
eyuivalent to each other in {Beeri, Fagin, Maier, & Yannakakis, 1933, which
also cites evidence that database schemes that poseesa these desirable prop-
crtica are “gufficientiy peneral to encompass most ‘real-world’ situations.”
[Gelumbic, 1988 providey o sinple introduction.

In terms of graphs, define 3 = G{R) to have V{G} = X with £(G) =
{zy @y € Re R} (so R s an edge clique eover of G{R)).

Proposition 2.12 A datnbese schieme 7 i an acyclic dotolese scfieme
if and only if cach complete subgraph of G(R} iz coniained in 2 common
member of R and (G{R) is a chardsl graph. a

In terme of hypergraphs, ‘R i sn acvelic database acheme if and only if
the dual of the hypergraph (X, %) iz & tree hypergraph; Proposition 2.12
then corresponds to Theorem 2.7, (Warning: There are many different no-
tions of “cycle” and “meyclic” in use for hypergraphs, and being “acyclic”
vory often means something different from not having & “evele™; aeyclic
datobase schermes correspond to what are often called “c-acyclic” hyper
praphs,

subgection 2.4.4 wili mention o somewhat relsted mle of chordal graphs
conncoved with expert systems.

Here is ancther, completely different application in computing: Many
problems that are NP-complete in general become tractable, sometimes cven
solvable in linear time, when reatricted to chordal granhs. While for many
people this iz the meost important application of chordal graphs, it often
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Figure 2.4: 4 matric M and its graph G(M).

inwveldves little of the specific nature of chordal praphs as intersection graphs—
other highly structurcd familics can do as well. |Klein, 1996} discusses similar
compuatational coneerns for parailel computing.

[Chung & Mumford. 1994) is an example of such computational concerns,
dealing with problems arising in computer vision, The specific problem faned
is to determine hounds on the number of edges needed to be added to make a
nonchordal praph chordal—the minimum fill-in problem—and an sysceptible
to more efficient algoritbrms, [Kloks, Bodlaender, Muiler, & Kratsch, 1993],
[Kloks & Kratsch, 1994], and [Parra & Scheffler, 1995, 1997], for instance,
disenss how 10 ude the minimal vertex separators of the nonchordal graph
tn determine bow to odd & minimal set of edges. Sirular concerss also arisc
with sparse matrix computation in subsection 2.4.3 and maximuem likelihood
estimation in subsection 2.4.4.

2.4.3 Applications to Matrices

(Gaussian climination on an 1 % # matrix M = (m} involves the choiccof a
NonZero pivol entry wmy;, then using elementary row and column operations
to change m;, indo 1 and all other #th row end jth column entries into 1. An
eliminalion scheme 1 a sequence of n pivots used to reduce a mattix to the
identity mainx, and a perfect efiminodion scheme has the further property
that no zern entry iz ever made nonzers adone the way., Perfect elimination
schemes mimimize both computation and data storege.

The groph of M, denoted G{M), has vertex set {1,...,r}, with vertices
t # j adjacent if and only if either my; # Gor my # 0

Example 2.9 Figure 2.4 shows a mattix and 1ts graph.

Froposition 2.13 is from [Rose, 1470] and has led to much further wori;
see [Rose, 1972], Chepter 12 of [Calumbic, 1980], [Golumbic. 1334], and
various papers iu [George, Gilbert, & Liu, 1993).
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Proposition 2.13 (Roese} A symmetric matriz M with nonzero ding-
pnal entries has o perfect eliminafion scheme using the diagonal entries as

pivets if and only if G(M} i chordal.

Proof sketch. Fivoting on m; resmils in removing all the edges incident
to vertex ¢ in G{M) and simultancously creating a new edge hj whenever
g 7 O # gy but e = 0, as below:

N (TR -

{Other cntrfes might alse fnadvertently become zero i M, and so other
edges disappear from (M)} Hence no zero antry is made nonzero in M
precisely when every two ncighbors of & (h and 7 ubowe) are adjacent 1
G{A); equivalently, when i is a simplicial vertex. ‘For instance, in the wa-
trix in Example 2.9, you could pivot on either of the entries -1 or 2 but
tiot on 4.] A perfect elimination scheme on the diagonal entries of M thus
corresponds to a perfect eliminacion ordering for G{M}, and such a perfect
elimination schems extsrs i and only if (7 is chordal, 3

The remainder of this subsection will describe a lese practical, but mors
surprising, appesrance of chordal graphs In matrix analvsis.

It is trivial to compute the determinant of 4 when A~ is a disgonal
matriz: det A =[], 6g;. There ave also simple methods to compute det A
whenever A™' is known to be “tridiagenal,” meoning that the entrics b
of A~1 are zero whenever | — ji > 1. (ibserve that (4™ *) iz then &
union of paths. In the early 1980, this was petieralized to latger lamilies of
malrices, including. in [Klem, 1982], wher A7
that F(A~") is a tree}. This work culminated in Provposition 2.14 from
[Barrett A& Inhnson, 1984] (“reinventing” chorda: praphs). See Barretr,
Johoson, & Lundquist, 1%59] and [Johnson, 1830 for more recent survevs of
where thia led next. For any v x n matrix M and any se: 5 C {1, .. n}
{or any subgraph § of (M), lot M{S] denote the submatrix detenmined
by those rows and cobunus of M indexed by the elemments of &

is “rtreediagonal” (meaning
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Figure 2.5: 4 femily of matrices having the same chordal graph G, with one
chigue tree for 3,

Proposition 2.14 (Barrett & Johngson) If G{A™!) is chordal with
cligue tree T, then

Moevir det AlQ)

2.
[g.q,eE(m dot AlQngy)’ (2.2)

det A =

provided the denominaelon & RomBgere.

Example 2.10 Suppose A is any matrix whose inverse A~! iz as shown
in Figure 2.5, with the 7 entries unspecified {possibly zero). The praph
G{A 1) ig shown in the middle, and one of the two possible cligue trees T
for G{A7Y) is shown at the right; for either clique tree, E(T) = {{2,3}, 13} ).
Formula {2.2) becomes

det A[{1,2,3}] - det A[{2,3,5}) - dot A3, 4}]

det 4 =
der A[{2, 3}] - det A[{3}]
a1 iy & L I o S 233 @
det {dg]  fgg  Qaz - det a3z fzz O3n - dat ( ﬂ3 34)
43  O4
431§z M o5z O53 05D

x93
det .
( a3y 433 ) i
Proof sketch. Suppose G = (A is chordal with clique tree T.
Suppese L is any lcaf vortex of T' and R is the st of all entries that are in

vertices of T other than L. Thus LN R eorresponds to the edge joining L
to the rest of T. We show that

det A[L] - det A[R]
det A[ILOR]

det A = (2.3)
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friom which Proposition 2.14 follows inductivelsy.

Suppose, for convenisnce, that the elemonts of L% B come fizst in the
matrives A and A~!, with those in LN B coming next and those not in &
comning lagt. Thus Lhe matrices constat of nonempty blocks as shown helow,
with two blocks of A~ consisting entirely of zero cntries. reflecting that no
vertex in LY A is adjacent to any vertex not in £

A1 | Az | A Bu|Biz| 0
A= | AnJAp Ay |, A7 =| By [ By
Aa1 i Agz | Asz 0 | Byz | By
It i= ensy to werify that
) Hyq
det 1y - det By = det {2 1L 0 Y (2.4}
0 . DPs

By a reault of Jacobi fromn 1534 relating minors of A and 471,

det 331 - det 4 = det (M) ’

Aaz | An
_ A | Asg
deh Byz - oot A = det (—321 Az, ) .
Hipl N0
and det | — — | dot A = det Ay,
( 0} Bas ) -

Multiplying both sides of {2.4) by (det A)? and then using these three equal-
Ities gives

Azy | Az Aj | A
det [l A2 ) (AL TR} g A det 4,
( Ago | Ay An | Az i

trom which (2.3] follows by dividing threugh by det da0. g

Perfect Gaussian elitnination and determinantal Fonnulas, Lhe two wopics
of this subsection, can be interrelated as in [Bakeonyi, 1992]

Exercise 2.24 (sec [Gronc, Johnson, 534, & Wolkowicz, 1984]) Show
aal, Lo any chords] graph, pew edges can be inserbed ooe al o Lhue, always
rmaintaining & chordal graph, all the way up to o complete praph.

This exercise is important in another broad topic—"matrix completion
problems.” See [Johmson, 1990], [Bakonyi & Johnson, 19951, and [Iohnson,
Jones, & Kroschel, 1995] for examples. [Bakonyi & Johnson, 1996] deals

directly with several algehraic characterizations of chordal graphs.
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2.4.4 Applications to Statistics

The apphication of chordal graphs to statistice dates from the scminal pa-
per [Dartoch, Lauritsen, & Speed, 1980] {another “reinvention” of chordal
graphs). Recent textbook introductions to this use of graphs mclude [Sant-
ner &z Duffy, 1989, (Wickens, 1988], [Christenaen, 1990, [Whittaker, 1990],
anud |Lauritzen, 1996, jKhamis & McKee, 1997] is a guide to this literature
written for praph theorists, while [McKee & Khamis, 1996] and [Fhamis,
1996] present a multigraph approach to some of the same topics. [Lauritzen
& Spiegalhalter, 1988], [Pear], 1955]. apd [Neapolitan, 1990) move on into
the propagation of probabilistic evidence in expert systems.

For a set {1....,d} of factors, a level & of factor § §s an allowalle vaine
of factor 1. We denote the comtmon ocourrence of levels £,. .., €2 by the
corjunction Afé; : 1 < ¢ < d}. A {“d-dimensional hicrarchical loglinear™)
model M consists of awel of gerereiors: Incoiparalle subsets of {1,...,d}
Gencrators cortespond to inclusion-masximal scts of factors having interre-
lationships taken to be dgnificart within the model. The internction graph
of M, depoted G{A), has the lactors as vertives. with Lwo adjucent when-
ever the factors are in a common penerator: thus the generators of M form
sn edge clique cover of (M ). If the generators of 34 are precisely the
maxcliques of G{AY), vhen M is called a graphical model.

Example 2.11 Suppose f = 7 where factor 1 corresponds to “sex" with
#, £ {male, fermale}, factor 2 is “age” with €, & {under 30, 3045, 4660,
erver 60}, and so on. Suppose the generators ate {1,565}, {2, 4,5}, {3.4, 5, 6},
and {4,5,6,7}. so G{M) i3 the groph shown on the loft o Figure 2.1, In
this model, the interaction of factor 1 {“sex”) is not taken as importent with
factor 2 (“age”), but only with factor 5 {perhaps “occupation™).

Choosing which maodel to apply to observed data involves varions statis-
tical techmiques that are not of concern here. But not all models are equally
easy to make inferences from. These with particularly desirable propertias,
usually called decomposafile models, were shown in [Darroch, Tauritzen, &
Speed, 1980] to be preciscly those thar have chordal interaction graphs.

Suppoese a large population is sampled and, {or thay sample, the number
of individuals having each possible combination of lovels of factors is doter-
mined. The principal advantage of a decomposable model with g generatogs
for these data is that the predictive value of all the data is contained in
knewing these numbers for a amall number of spacial sets of factors: the g
generators and a certain g - 1 intersections of pairs of generators. Propo-
sition 2.15, frotn [Dartoch, Lanritwen, & Speed, 19504, shows how this is
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dome. In this proposition, for any & C {L...,d}h piAdf o v 2 8} dde-
notes the mumbor of tndividasls in the somple who bave the combination
A ri € 5} of levels of factors in 5, divided by the total number of indi-
viduals m the sample. This proposition actwadly charueterizes decomposable
models, and so chordad interaction graphs, and replaces terative methods
that are peeder] in Lhe cenaral case.

Proposition 2.15 {Darroch, Lauritzen, & Speed) [f G(A) is chovdul
unth cligue ivee T, then for every chodee £y, ... €y of levels of the factors,

gevm AL 1€ Q)
HQQ(E{TI BAG i Qa”Q}

privvided the denovininolor is nonzero.

(2.5)

p{f‘\{f = V{CJ}

Proof sketch. Suppose G = G{M) is chordal with clique tree T, Sup-
pose Log any leaf vertex of I and T is the set of all factors that arc in
virrtives of T other than £, Thus £ B eorresponds to the edge jolning £
to the rest of T°. We show that

. : BALE i CLb) pAS € RY)
£ Vit = -
PN i€ vian) FUA 1€ LAY

fromy which Proposition 2.15 follows incductively.

For any set 5 of factors, let A 5 abbreviate the compound event of each
factor 1 € 5 having level £;. Then f{A{f : ¢ € S} approximates, for the
entire population sampled, the joins probability of the componind event A 5,
abbreviate this probability by Pr(A 5. 'Then (2.6) coresponds to

(2.6)

A

ooyl _ UrAL] - PriA A .
PrIAVE)] = AL R (.7}

Since L I corresponds to the edge of T joiuing L to tho vest of T
every path [rown a verlex of L\ I 1o a vertex of TN passes through a vertex
of LM A. This means that the compound events ACLYRY and AP L) are
vonditionally indepemident, condilionng oo AL T RY; Lo syrobogls,

Pr[A(LVRY ALLN R - PABL) | AL (2.8
= Pr{AkLHR URYEY| AL MR
By the definition of conditional probahility,

Pr[A L]

Fies S
Pri ALY R]U\rrrﬂ = PRI AT
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s [ARD] AL 2] = g

and

PrA(LVR U AVL)Y| A{L N R)]
D MINRORNLUIEN RY] _ PrAVI(G)]
h Pr[A(L 1 R)) T PAL R

Using thege three squalities in (2.8} and then multiplying through by Pr{A{Ln
R}|? gives

Dr [/‘\L] . Pr [/\R] =Pr[ V(G'j] . Pr [NLHR)],

from which {2.7) follows by dividing through by Pr[A{L N R)} and using
Pr[A 9] = p{AdL, 1 i € J}) agam. ]

Fropositions 2.14 and 2.15 are olwiously similar in torm, each nging a
praduct over V{1V divided by a product over E{T. This similarity is no
coincidence, as may be sensed from the proof skeiches, but a2 more abstraci
viewpoint is needed in order to be precise; (Speed & Kiiveri, 1986] and
[dcKes, 1533] present such viewpoinis,

2.5 Split Graphs

A praph (7 b5 a split graph f V(7] can be partitioned into G U I, where
&} induces a complete graph and I induoces an edgeless praph; thus & has
[QI{|£2] — 1}/2 edees within ) atd anywhere from mero to Q] - || other
edges, hetween ¢F and f. Split grephs were introduced in [Féldes & Ham-
mer. 1977a]; also see Chapter 6 of {Gohumbic, 1980). (Warning: [Foides &
Haminer, 19¥7h] gives a different meaning to “split.”} They were indepen-
dently studied in [Tyskevic & Cernjak, 1978a, 1978h, 1979). While split
eraphis iy seern too special to be of interest, the theorem and corollary in
this section guarantec the place of split zraphs in intersection graph theory.

Exercise 2.25 Show that the definition of split graphs could heve equiv-
alently required that & be a maxclique of &.

Theorem 2.16 (I"dides & Hammer} A graph G is a split graph if
and enly if hoth (3 and its complement (7 are chordel.
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Proof. Fist suppose (& is 4 split eraph. Then it is easy to see that &
iz alen eplit and that both @ and & are chordal

Conversely, suppose that & and & are both chordal. Suppose T is &
minigmun-diameter clique tree of & and, argoing toward a contradiction,
thai the diameter of T 15 at lzast three, and s0 T is not a star. Then there
axial, vertices G ad O that are the middle two vertices in an induced £
in T. Among the other neighbors of €7 in T there must be a () for which
therc cxists a vortex v € (Qg 1 )4 &2, since otherwise all the neighbors
(other than ¢} of € In T could bhe made adjacent to &y instead of 0y
and 5o create a cligue tree for G with smaller diameter than T, Les # be a
vartex in QohGy. Similarly, there is a neighbor Q4 # (1 of ¢ and vertices
w € (e N3N, and 2 € P5\(Q2. Then {u, v, w, z} induces a subgraph
of & with edge sot {wv,wz). But that would foree an tndaced €y in &,
contradicting that & iz chordsl. a

Exercise 2.26 (Fdldes & Hammer) Show that a graph is s split
araph If and only if none of its induced subwraphs s omorpbue to 2K, Cy,
or .

The following corollary, from [McMorns & Shier, T983], characterises
split graphs es intersection graphs. (Compare it with Exercise 2.3, Recall
ihal 2 sfer by a graph boworphic Lo K. (0= 03 in other words, a tree T
with diametor at most vwo, A substar of o star is then simply a subtree of
tha star.

Corollary 2,17 (McMorris & Shier) A qraph s o split graph of and
erfy if it is the infersection graph of 6 set of distinct substars of a star.

Proof. First supposc & s a split graph, Then & is chordal by Thes
rcm 2,16, and by its proof any minimum-diameter chigue tree T for (7 has
diemeter less than three and =0 iz a star. Then {7 is the intersection graph
of the subatars {T, 1 v € V()] of thet star. N the diameter of 7' i3 two,
then those subtrees are distinct; if the diameter s one, then leaves can be
added for each v € V((7} {0 produce distinet suburess.

Conversely, suppose G s the inrersection grapd of a sel of distinct sl
stars of a star 7. We can suppose that I is a clique tree for 7 and that
6 € V() is adjacenl to all other vertices of T Then & is split, as shown
by the pactition of ¥V{G) mto the complete subgraph & and the independent
subeet [ = V{G, Q. U
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Exercigse 2.27 Find an example of & graph that is not a split graph, yet
ir the intersection graph of a family of (not necessarily distinct) substars of
a star. (What does Theorem 1.5 hava to do with this?)



Chapter 3

Interval Graphs

An intersal graph is defined to be sny graph that is isomorphic to the in-
temmection graph of a tamily of finite closed intervals of the real line, with
cach verlex v correspounding to o closed nerval J; the family of ntervals
is called ao smteruval representation for the interval graph.

Intcrval graphs were first studied in {Hajds, 1957). The stondard refer-
enees are section 3.4 of [Roberts, 1976] and Chapter 8 of [Golumbic, 1980),

Examplie 3.1 The graph shown on the left in Figure 3.1 could hawe
the representation J, = {14, J = [1,1] (a single-point closed interval},
Jo=[1,2], Jy = [2,3], . = [3,4), and J; = [4. 4]. If you are squeanish about
lenpth-zero intervala, you could of eourse wie Jy = [1,1.1] and J; = [3.1, 4]
instead. You could also use all open intervals, mstead of closed.

3.1 Definitions and Characterizations

Much as in Chapter 2 for subtrees of a tree. 1t is easy to see that we can
equivalently define interval graphs wsiog subpaths of 2 path and ao talk about
peth representations, Sipee subpaths of 4 path satidy the Helly condition,
Lemma 1.11 can be used to show that every intervul graph has a clique peth
represeniation, or cligue paih (paralleling Theorem 2.1 for trecs).

Example 3.1 {continued)} The graph shown in Figure 5.1 has the
clique path P shown there in which F, has length three, I3 and Py have
length zero, and F,., Fy, snd F; have length one.

Since paths are trees, interval graphs are chordal graphs, and so the cycle
Cy is 4 cheap example of a graph that is not an interval graph. A sipnifi-
cantly different example would result from adding an edge dg to the graph

45
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a
/ j\ abe aed ade ~oef
f = -

Fizure 3.1: An interval graph with ¢ path representgtion.

L ]
L
L
L
L

Figure 3.2: Sowme graphs that are not interval graphs; each af the lower fwo
has onder af lzast siz.

an the left in Figure 3.1, producing the upper-right graph in Figure 3.2. {it
might be instructive to attermpt to find an interval representation or & path
representation for that graph right now, instead of waiting for the character-
izations just ahead in this chapter that show why it is impossible.] Indeed,
none of the graphs shown in Figure 3.2 is an interval graph, while the graph
in Figuare 2.2 is an interval graph.

The following theorem consolidates the copnection between interval and
chordal graphs, extending a well-known theorem from [Fulkerson & Gross,
1965).

Theorem 3.1 A connected graph & is an interval graph i and only if
EOMEE YRATHNUM shanning tree of the weighled chique groph K(() i8 0 cligue
path for G, Moreover, this ts equivalent o every mammum sponning tree of
the weighted cliqgue graph K™(G) that is a path deing o chigue path for G
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Froof. This 15 immediate ftom Theorem 2.3, =

Corollary 3.2 {Fulkerson & Gross) A groph is an daleron! groph of
and ondy 4f the cdge ofigue cover of oll mazefigues eon be arvangsd info a
cligue poth representation. L

It is impractical to look for eligue path representasions by using Kroskal's
algorithe to find all the maximum spannmng frees and theu trying to oall
the nonpaths {indeed, being able to do that wonld be rantamcunt to solving
the NP-hard problem of recognizing praphs that have hwouiltonian palhs).
Yet interval graphs can be recognized cfficiently. [Booth & Leuker, 1976)
containg the classical, inear-time recognition algorithm, using the influential
“I*()-tree” data structure that was introduesd lor that purpose; zee also
section 8.3 of [Golumbic, 1980]. Simon, 1991}, Ilay & Ma, 1891, [Hau,
1993, and [Corneil, Olarin, & Stewart, 1998 contain more recent recognitian
alrorithms.

Theorem 3.1 relates to two prescient applications: Benzer's 1959 study of
the fine stroctire of the gene, and Petrie’s late nineteenth centinry work wich
archaeologicel seriation (eoe f[lioberts, 1976} or |Golumbic, 19801, Interval
praphs coubd bave beoen used in ihese contexts, bul working with che appro-
prigte incidence matcices as In Corolbary 3.9 was guite sufficient. Secion 3.4
containg “real” applicatione of interval graphs.

Three verlices [urw an estermidel friple in g graph & UL Bor sach lwo, Lhere
exists a path containing thase twa ot oo neighbor of tle thied. For instance,
Lhe dhree vertices of degree one in the upper-lett graph in Figure 3.2 form
atl astercidal triple. Notice that no two vertices of an asteroidal tripls can
e adjacent. (Seetion 7.6 will disctess those graphs shat have no asteroidal
triples.)

Exercize 3.1 Show that each of the graphs in Figure 3.2 has a nuique
asteroidal triple,

Theorem 3.3 is from [Lekkerkerker & Boland, 1962]. Recall from Chag-
ter 2 that a graph is chordal if and enly if eontaing vo eyele Oy having & > 4
as an induced subgraph.

Theorem 3.3 (Lekkerkerker & Boland) A yraph s en mtterval graph
if and only if # is chordal and has no asteroidal triple,

Proof. First suppose 7 is an interval graph with a chque path P Ax
we hove already obmerved, Fis also s cligue tree and so & i choadal by
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Theorem 2.1, Suppose w, ¢, &re pairwise nonadjacent and, without loss of
generality, thas Fy is in between P, and Fy along P. Since P is & cligue
path, cvery path from @ to @ in G will have to contein a neighbor of 4. and
a7 w0, 1 cannot he an agteroidal friple.

Conversely, suppose (7 is a chordal graph and, among all clique trees
for (7, that T has a minimum number of leaves and that number is at least
three; we show thaf (7 st then eontain an asternidal triple. Suppose @,
(e, and Q are three diferent leaves of T and let, respectively. €4, @4, and
2% {not necessarily distinct) be their unique neighbors in T.

For each ¢ = 1,2, 3, choose v € V{(3;) such that o @ V{Y). We show
that {v;.175. 73} is an astcroidal triple. Suppose rather, without loss of gen-
crality, argning woward a contradiction, that every path in 7 conmecting 1y
and 1 contains a neighbor of ve. Not every edge of the path T{{ Q51 in T
can contain a nonneighbor of vy, since otherwise those nonneighhbors could
bhe vweed to induce o w-to-ws path in & that contaired no neighbor of .
Therelore, vhe path T, @3) in T would conlain some edge 7 with
O* " @** consisting entirely of netghbors of vy, making @* NQ™ C Qe NG,
Without loes of penerality, suppose O is cloger to €2 in T than is . Then
replacing edpe Q" with a new edge Q™ Qs would create a clique tree for
G that has ooe fewer Jeal than T, which is & contradiction. o

Using Theorem 3.3, Lekkerkerker & Boland, 1962] proves that a graph is
an inberval graph if and only it s chordal and eontaing wone of the graphs
in Figure 3.2 as an induced subgraph. [Harary & Kabell, 1984) contains a
similar characterization of “intinite-interval graphs” in which the mtervals
are talen to be one- or two-woy infinite intervals of the real line.

Exercise 3.2 Lat (7 be a split graph. Show that (7 is an interval graph
if and omly if & conteins none of the graphs in Figure 3.3 as an indnced
subgraph.

Defore stating the vext characterveation of interval sraphs, we need o
review some terminelogy and results about dirceted graphs (digraphs). A
digraph £7 Is definerd to have a vertex set V{2 and a set A{D) of arcy, where
vw £ A(fY) denotes an arc from vertex v lo vertex w. We assume that there
are no multiple arcs (meaniug that here are never two arcs from v to w,
although it iz possible to have both v, wr & A{D]) end, in thia chapter, no
loops {meaning oo vw & A{D}). A digraph is dransitive if, fov o, w,w € VD),
ut, v & ALY wich 4 € v implies thet ww € A{7}]). Given any gvaph (¢, an
vrientation of €7 is & digraph lortned Ly specifying a direction for each edge
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Figure 3.3: 1hvee spitt graphs thaf ere aoet aniervel grophe

of &, produeing an ericented graph. The orientation is o franstéve ovientation
if the oriented eraph is rransitive.

Exercise 3.3 Show that the cyele O has a transitive onentation bes
that 7 does not.

A direeted hamilionien path of o digraph i a dirceted path that includes
every vertex. A lpwrnament is an orientation 2 of & complate granh; thus
wov E VDY and u # v imply that either uv € A{D) or vu £ A{D) 295 nat
both. The following is from [Réde, 1934).

Lemia 3.4 (Rédel) Lhverytournament hes o diected hamiltonian prih.

Proof. Suppoec D is & tournament. We argue by inductiow oo on o=
|V {L)|, with the result trivial for n < 2. Suppose nn > 2 and » € V. By
induction hypolhosis, the tournament £ —qo has a dirceted bamiltonian path
Uty .. p—r- ey © A[D) then v, vy, .. g 1 is o directed hamiltonian
path in D. Otherwise, 1w € A{ D) and we vhoose 7 to o= the largest integer
for which e € A(D). Ife = n, then v, ..., ¥, 1. v 1 a dirceted hamiltorman
path in D If i < n, then vy © AL, making ... .. Uiy U g Le - e T
a direrted hamiltonian path in f3. W

Exercise 3.4 Show thal every trangitive tournsment of order o hac a
unigue vertex of each possible cul-degres 0, .. . sp— 1 arul 1hat Laking these
it reder determines g divected hanillonian pd,th.

Exercise 3.5 Show that every transitive lournament has o wnigue di-
reeted hamiltoniam patis,

Recall that, for a graph €&, the complement of (¥, denoted & 1z the
eraph having V() = V{G) where, for any distinct vertices v and v of G,
i E{E’j) il ancl omly if we & FIG).
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Wi are finally ready to state and prove the characterization from [Gilmore
& Hoffman, 1964).

Theorem 3.5 (Gilmore & Hoffman) A graph is an interval graph 4f
uhd ondy if it doss not contoan Cy as an ndeecd subgraph ond ity complement
kas o fronsiting apientolion.

Proof. Tirst suppose 7 is an interval graph with clique path F laid out
horizontally. Since (7 st be chardal, it cannot contain an induced Cy.

Form a oriented graph G by putting wv € A[G*}l if and enly if B, is totally
to the left of Fy in £ {ie., every vertex of P is to the left of every vertex
of P,), noting that vy £ A{F) implies P, NP, = % and 50 we ¢ B(G). It is
casy to see that this is o transitive orientation of G,

Clotnversely, suppose ¢ contains no induced Cy and that O has & tran-
sitive orientation . We [orm o digraph 17 whose vortices are precisely the
maxcliques of &, with arcs as follows: For everv two maxeliques 3, €' of &
pick v & () and v* € £ such that vo' & £(G), and then put QQ' € A(D) if
and only if 1 £ A{ﬁ} Of course we must show that D really is wall de
fined, Arguing toward a contradiction, suppose that w,v € Q and v’ v € Q'
where un', vv' € E{) and uw’, v'v A{C_?']. Ohzerve that cither uv’ & E{Q)
or ¥’ ¢ E{(0Y, since the eyde w, v, o', v°, » cannot be indueed in 7. Without
loas of generalltg,' we SUppose that ' &" EkG} The either wy' £ A(G} or
v'u & A(G). Ifur’ € AG), then uw', v’ € A{G forees wy € A{G), sinee &
i® transitively oriented. But then wo £ f'fG"). contradicting that « and v are
i & eotnmon maxeligie of G A similar eontradiction oconrs if vu £ A{{?}
Thus D is well defined.

It is easy to check that I? is transitive since 7 is transitive, so [ is a
transitive tournament. By Lemnma 3.4, D has a dirceted hamiltonian path
P, .. . Om Wenow show that P s a clique path for &, Supposc that
u € V() is in two nonadjacent vertices Q, &7 of P yet, arguing toward
a contradiction, that v & @ for some Q' € VI{F{Q, ")), Without loss of
wenerality, we can assutme that @G € ALDY. Pickw,w & @ sach that v &
and wv & E(5), while w & " and wv € E{G). Then vu,wo & A[:‘i], B0
w2 w and, by transitivity, w2 A[@} Ot then ww @ K(G), contradicting
that o, w & ). C

Example 3.2 Figure 3.4 shows one possille transitive orientation of é:
where (& 1z the sraph in Figure 3.1, Check that the only other transitive
oricutation is she roverse of this one. The corrcsponding digraph £ used
in the preceding proof is also shown, Notice that the directed Latuilbonian
swith in D correspotuls 1o the oligue path in Figure 3.1,
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2 d ahe = Qi
bé\}, \aef/
Voo

£ ———¢ ade

Figure 3.4: A transitively oriented digraph to illusbrute the proaf of Theo-
rem 3.5.

[Opsut & Roberts, 1481) shows that the interscction number of an in-
terval sraph equals the number of maxcliques minus the number of isolated
vertices.

3.2 Interval Hypergraphs

Continuing the discussion of tree hypereraphs in zection 2.3, a hypereraph
(A,&) is an infervel fypergraph if there is a path F with X = V{F) soch
thal, for each 5; € £, there is & snbpatk P of P with V(B = 5;.

Exercise 3.6 Show that the hyperpraph given in Exercise 217 is an
interval hypergraph.

Precisely as In the easy direction of Theorem 2.7, every interval hyper-
graph must e a Helly hypergraph with an interval line praph. Bul, molike
what happcned for tree bypergraphs, the following exercise shows that the
converse fails.

Exercisc 3.7 Show that the hypersraph ({a, & e, d}, £) wilh £ = {{a. e},
{b.c}, {€.d}} is a Helly hyperaraph and its line graph C{EY is an inkerval
graph, but no path F exists as requived in the definition of an interval hy-

pergraph.

A peth tn a hypergroph (X £) 1s aseqnence vy, 5,1, 53, . . -, Sk, vy where
51.. .., 5 are distinct edges, w. .. ., v, are distinct vertices, and each v _q1; &
5;; such a path is sajd to join the vertices vy and vy The hypergraph (X, £)
iz connected if every two vertices are joined by a path. A vertex v is gaid to
be betweemn vertiess w and w in s hypergraph if every path in the hypergraph
that joing w and 1 containa an edge that contains o [Ducher, 1975 1984]
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contain proofs of the following characterization that iz in the spirit of the
Fulkerson—Gross result in Corollacy 3.2,

‘Theorem 3.6 (Duchet) 4 connected hypergraph is an intervel hyper-
graph if end only i, for cvery fhree vertices, one of them bLes between the
other lwa,

Proof. First, suppose (X, £) is any connected hyperaraph and there is
a path P with X = V(P) for which each ; € £ corresponds to a subpath
£y of P such that V(F;} = 5. Then a vertex g lies between vertives » and
z along F if and only if 4 Lies between = and z in the hypergraph.

Comversely, suppose that (X, £) satislies the condition in the theuran—
so for every three vertices, one of thern lies between the other two. Choose
a hypergraph {X,£*) with £ C £* such that, among hypergraphs satisfying
ihe condilion in the theorem, £ iy maximal. Let £ be the set of minimal
edges 5 of £° for which |5 2 2.

Suppose o and b are distinct vertices in S5 £ &' If & # |a,b}, then
{a.b} ¢ £* and so the hypergraph {X,£* U {{w, 4]} }}) will not satisly the
condition in the theorem—X containg ., ¢, = and (X, £°U {{a, b}}) contains
minimal-length paths

T.EBr ... Epy with x € E; U - U B,

B, Bz with o g By U U B,

o B B zwithy € EY U U EY
where {a,b} € {F1,..., 5, B, ..., B, By...., E]'}. But if each oceurrence
of {a,b} among the E;’s, El's, and E"s is replaced by § € £*, then by
the condition in the theorem one of x,y, # will be between the other two;
without loss of generality, say that g is between x and z. That means that
fa.b} = £ forsome 1 < i < r,andsoa # y # band y € 5. Without
loss of generality, using the minimality of the path =, EY, ..., E¥. 2. we can
suppose that a € £ | {or, posaibly, ¢ = z}. By the assumed maximality
of £*, we can agsume that A = E{ U .- U E}Y | € £ (or, if a = =, that
A = {a} € £*}. Thus there exists A € £ such that e,z ¢ 4 and 6,4 € A.
Similarly, there exists B € £ such that b,z € B and a,y & B. Again using
the assumed maximality of £, we can sssume that 544, 5% B € £°, and s0
g and b are connected by the path a, S\ B, g, 54 A, & in {X, £%).

Thus we have shown that every pair of vertices in an edge 5 € £° are
linked by a path in (X, £*] whose edges are subsets of 5, and that cvery
edge 5 € £ has cardinality two, since otherwise S48 € £* would contradict
5's masumned minimality. Therefore, (X, £’} is a graph. The assumed maxi-
tnality of £ implies that X € £°, 20 (X, £'} iz connected, and tha condition
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Figure 3.5: The four noncycle forbidden subhgpergraphs for an intervel Ay~
pergraph.

i the theorem implies that (X,£') is a patli. Finally, every edge S & £°
canl be seeu to be a conneeted subset of (X, &) by an inductive argument
on |5 ad

[Tucker, 1972] proves ihut a hypergraph is an interval hypergraph if
and only if it contains none of the following five induced subhypergraphs
({v1.. . 1, },&) (sec Figuve 3.5 for the last four):

(1} n >3 and £ = {{u, v} {va oz}, {tn, 0 }}.

(2) n="5and £ = {{v. 13}, {¥z, v3, w4}, {wa, 05}, {wr, vz, v, v } ).

(Bln=fand £ = {{Ulr UE}! {1"21 Vi U-i}'l {%11 'U-‘.n]s {U.’:F: "'-'ﬁ}}'

()n>=dand &= {{m vs},... fea_r. el fur,m. N TR

{'ul: L= T :-T-'u}}'

(Binz=4and &£ = {{rm, k..., (o Ltnk {61, vt )}

{Trotter & Moore, 1976] gives a shorter proof. and [Duchet, 1984[ contains
a short pront uwsing Theorem 3.6,

Gee [Lehel, 1983; and [Duchet, 1984, 1995 and their references for more

oft varinus sorts of representation of bypergraphs by intervals.

3.3 Proper Interval Graphs

A proper inferwal groph is the intersection graph of a family of closed intervals
of the real linc, none of which is properly contained in aoothor. This is
equivalent to being the intersection graph of a family of subpaths of a, peth,
none of which is a proper subpath of another; such u path ie called a Froper
path representation of the graph. For instance, Figuere 3.6 shows a proper
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Figure 3.6: A proper interval graph with ¢ proper path represeniation.

interval graph and a proper path representation for it (Notice that we
cannot have the vertices of the path just be the maxcliques, as was true for
cligne paths.) Proper interval graphs were introduced in [Roberta, 1969a]
as “indifference graphs,” for reasony we digcugs in subsection 3.4.2; gee also
section 8.5 of [Golumnbic, 1380]. They slso were introduced in epidemiology
85 “time graphs”; see [Hedman, 1984)].

Exercise 3.8 Show that a proper interval graph cannot contain K 3
(the graph on the left in Figure 3.7) w3 an induced subgraph, and =o that
the graph in Figurc 3.1 i5 not a proper mnterval graph.

Exercise 3.9 Show that the clique graph of an interval graph must be
a proper interval graph.

Exercize 3.10 Show that every chordal praph has a “proper tres rep-
resentation,” meaning a trce representation T in which no T, is properly
contained in & 7.,

Theorem 3.7 (Roberts} A graph is 6 proper inferval graph if end anly
if it s an interval graph that does not contain on induced subgraph isomor.
phic ke K 3.

Proof. Exercise 3.8 gives the implicatinn one way., For the converse,
suppose & hag 2 clique path £ and containg no indueed subgraph isomorphic
to K 3. Suppose the subpath I, i= properly contained in B,. We first show
that there cannot he vertices Qf, " in P, with F, in betwesn such that
there are z € @\ {Q : Q € B} and y € Q"\{Q : @ € F,}, since otherwise
vy iy would vduce a Kz centered al w. Thos we can assame that F,
and Py share one common end-vertex, Without loss of geserality, assume
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(e}
[}

Figuic 3.7: Three graphs that are net preper dnderval graphs.

€} is their comunon left end-vertex. Now madify P by insertitng o new verlex
&' qust to the left of @ with @ = @\ {u : @ 35 a left end-vertex of P, ana
F. i= properly contained in £} After this modification, f7 is still a patk
representation of ¢ but 2, iz no longer comrained in Py, {or in any of the
P.'ain the definition of ). Repeating this lengthens P inte a proper path
representation of (7. O

Exercise 3.11 Use lhe cotustruelion in the proof of Theoreme 3.7 fo
makec a clique path for the praph in Figure 3.6 nto A proper path represcn-
tation.

Exercise 3.12 (Roberts) Show that s praph = s proper interval graph
if and only if it contains no eycle of length greoter than or couaed to four and
contains none of the graphs of Figure 3.7 as induced subgraphs.

[Wepner, 1987]) and [Roberts, 1964a) define a anit intersed graph to be
the intersection graph of a family of closod intervals of the Teal lne, all of
which have the same lengih [whick is often taken to be one). 'Lais is equiv-
alent to Deing the intersection graph of a family of subpaths of a path, all
of which have the same lengths sueh o path is calledd a st path represen-
fetion of the graph. Since every unit path reprosentation is a proper path
representation, every wnit interval zraph is o proper iterval grapl. Bul L
following theorem shows that mach mnre is frue.

Theorem 3.8 {Hoberts} A graph is o proper snterved graph of and endyy
if it j8 o unit mfernal groph.

Proof. As wc ohserved, the implication one way is immediate. To
prove the converse, suppose 7 is a proper interval graph. Arguing induc-
tively, suppose that, {or every proper subgraph & of &, every proper path
representation of G con be made ioto a unit path epresentation of G by
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sitnly inserting duaplicates of some of the vertices into the path, Supposc
F is a proper path representation for ¢ and pick a ¢ € VI(¢) thal ovenrs
it an end-verlex of P Obtain o proper path reprosentation P~ from F
by inserting duplicate vertices into P so that removing all cccurrencea of
from P would leave a unit path representation of the subgraph induced
by V{G1{r}. We can assume that v still occurs in an end-veriex of %
Let & = WP for each w # v. Then k& = [V(FH, since P s still a
proper path represeutation, and so adding & — [V{F; ) new vertices, sach
equal to {v}, to the end-vertex that contains » will produce a unit path
representation of . i

[Jackowski, 1992) defines an astral triple in a graph as three vertices such
that, for sach B, there exista & path containing those two but oot the third
vertex that does not have two consecrtive vertices that are neighbors of the
third, For instance, the three vertices of degree one in the graph on the left
in Fipure 3.7 form an astral triple (but not an asterotdal triple}. Paralleling
the characterization of interval graphs in 'lheorem 3.3, Jackowsld proves
that a graph is a proper interval graph if and only if it rontaing ne astral
triple.

Exercise 3.13 {Jackowski) Show that cvery nonchordal graph con-
tainz an astral triple of vertices.

For any graph G with vertices indexed by {1,...,n} and maxcliques
indexed by {1,...,m}, define the mozeligue-verter smatriz M (G) to be the
# s nomatrix with entry rry; = 1 i the #th maxclique contains the jth
vertex, and my; = 0 otherwise. For instanes, the graph & m Figure 3.6 has
the maclique-vertex matrix

0 n
0 1
1 0

[ T e

MG =

[ R R )
D e D
=
R SRR
|l i ke ol

1] 11

where the colnmns correspond to the vertices in alphabetical order and the
rows correspond to the maxcliques in the order ab, deg, bede, efgh.

A matrix has the consecufive ones property for columns if its rows can
be permuted 50 a8 to make all the 1 entries in each column consecutive. The
consecutive anes property for rows 12 defined similarly. For instance, you can
show that the above matrix has the consecutive onea property for cohnmns
by interchattpine the secemd and thind rows; it also has the consecutive ones
property for rows. The fallowing merely rephrases Corollary 3.2,
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Corollary 3.9 A4 graph G i an dnferval graph o end only f M(G) hos
the conseoutive anas property for calumans. 3

The [Bllowing resuls seems to bave been firsd staled ie this form in [De-
ogun & Gopalakdshnan, to appear], in conncetion with the application in
section 3.4.3, although all the pieces were certainly in [Roberts, 1968, Sec-
twon V.1 coutalns more about variations of the consecutive ones properties.

Theorem 3.10 A graph G is e prover intervel graph if and ondy if M{G)
hos the consecutize unes property for bodl rows and nolumnas,

Proof. First suappose & has a proper path representation P Corol-
lary 3.9 shows that M{{) has the comserutive ones property for columns.
Let vy, ..., ¥n be the vertices in the arder of their leftmost appearance along
FP. Suppase 1 < 3 < & and wwy € E{]. Then 3, (the subpath of P corre
sponding to 3;] will intersect P, and so also F,;, cosuring that vy € B (&),
Because £ cannet be properly contained in £y, path ,F"g‘.J will have to in-
tersect P, enswing that v € E(G). Thus, each maxclique of G will
correspoid to consecutive vertices in the ordering vy, . .., v, and this means
that M{G) has the consceutive ones property for rows.

Conversely. auppose A {7 has the consecutive ones property for both
eolumne and rowa. The former of these impliss that 7 s an interval by
Cotollary 3.9, The Iatter inplies that ¢ does not contain K3 as an in-
duced subgraph, and so & is a proper interval praph by Excrcise 3.7, O

Sectionz 3.4.2) 7.1, and 7.2 contain other characterizations of proper
interval grapha, and [Gutierrez & Oubifin, 1996] contains various order-
theoretic characterizations. [Gutierres & Cubifia, 1993] shows that every
proper juterval graph sabisfies

VG 2 2e(G} = o K(G)),

where K'[-} is the cligue graph operator from section 1.4 and -] covnte the
number of maxcliques and then investigates the graphs for which equality
holds.

See [Corneil, Kim, Natarajan, Olariu, & Sprague, 1995, jHell & Huang,
1955], and [de Figueiredo, Meidanis, & de Mello, 1995 for recognition al-
gorithms for prooer interval graphs, and [Hell & Huang, 19951 and [Deng,
Hell, & Huang, 19946] for reprcsentation slgerithms.

[Leibeowitz, Assman, & Pack, 1982] seneralizes the notion of a unit -
terval graph by defining the “interval count™ of an interval graph to be the
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minimam munber of different lengths of intervals needed in an interval repre-
sentation. [Skrien, 1984} characterizes mraphs that have interval eoiat fwo,
where one of the allowed lengths is zero—n other words, the intersection
graphs of points and unit intervals; section 5.2 will show that “thresheld”
graphs are of this type.

[Pe'er & Shamir, 1993] investigates & host of restrictions on interval
graphs. including bounding the maximom lengihs of intervals.

3.4 Some Applications of Interval Graphs

Each of the following subsections iz merely s brief sketch of ene application of
interval graphs. As we did in section 2.4, we have selceted applications that
make essential use of the intersection definition of interval graphs, rather
than other important applications that invelve interval graphs. One exaniple
of the latter involves on-line coloring algorithms: & graph is presented one
vertex at e time, mlong with its ncighbors among carlier vertices, and tho
praph is to be properly colored with as foer colors as possible. This is a
highly practical problem in many contexts, dynamic storage problems for
onc. Papers such os [Gyarfis & Lehel, 1988), [Sluserck, 1680], [Kicrstead,
1991) aml [Kierstead & Qin, 1995] contain results for nlerval wraphs; the
first of these also studies proper interval graphs, while [Sinsarek, 1995] and
[Marathe, Hunt, & Ravi, 1996] study circular-arc graphs (scetion 7.1).

3.4.1 Applications to Biology

Probably the first paper on iaterval praphs was an applicaiion in biology.
Although stated In terms of incidence matrieea rather then graphs, the ques-
tion in [Benzer, 1959] was whether certain fragment owverlap datas on the
DNA making up a bacterial gene was cousistent with the gene having a lin-
ear structure—in other words, whether the graph constructed from the data
was an interval graph. Of course today we know that the geps is jndeed
a lincar arrangement and, as mentioned in scction 2.4.1, DNA strands are
sequences (words) built from the fowr letter alphabet {4,CG T},

{me of the problems involving DA ie to try to assemble subsequences
involving possible overlaps into looger sequences. Certainiy one would ex-
pect interval graphs and their wariants to be useful, and indeed this has
been the case. [Jungck, Dick, & Dick, 1982} ie a very readable intreductory
paper. See [Fellows, 1lallett, & Warehane, 1993), [Goldberg, Golumbic, Ka-
plan, & Shamir, 1995). and [Nicheolson, 1995! for more recent views. [Mirkin
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& Rodin, 19584] and [Waterman, 1995 are two excellent books with in-depth
treatment.

We now briefly prezent some oversimplified background relevant to what
is called physical mapping of DINA, Sequence fragments called clones are
ohtained from an unknown DINA sequence and form & “clone library” Ex-
petirnents are then carried out that can deecide if o very short molecule, colled
a probe, overlaps each clone. The goal is to reconstruct the placetnent of the
clones along the DN A sequence, the sequence having been destroyed during
the construction of the clone library, If only some of the clones are used
as probes, then the overlap information is not available betwesn clones thar
are rot probes. [Zhang, to appesr| introduced the following seneralization
of interval graphs to deal with this situation.

A graph G iz a probde interval graph If VI(G) can be partitioned into
subsets P and N [corresponding to the probes and nonprobes) and each
v & V{{#} can be assigned to an interval I, such that wv & E(G) if and only
if both L, Ty # @ and at least one of # and v i3 in &, Interval rraphs are
simaply probe interval sraphs with N =

Exercise 3.14 Show that, slthough C; and the graph i the middle of
Figure 3.7 are not interval grephs, they are both probe interval graphs.

Besults on probe interval graphs and their variants can be found in
[Zhang, to appear], [McMorris, Wang, & Zhang, to appear], {Wan, Lee,
Whang, & Zhang, to appear| and {Sheng, Wang, & Zbang. to appear); also
see [Atkins & Middendorf, 1996]. The following result considerably restricts
the possible structure of probe interval graphbs; the graphs described therein
arc the weakly chordel graphs, thot arc diseussed further in scetion 7.3,

Theorem 3.11 (MchMorris, Wang, & Zhang} Neither ¢ probe inter-
ved groph nor its complement ran contoin an induced cycle of length greater
thon or egual fo five,

Proof. Suppose (7 i3 a probe interval graph with respect to the partition
V(GY) = PUXN, with [, the interval assigned to cach v € V(G). Let G*
be defined precisely the same as 7 except with uv £ E((7*) if and only if
I M Jp # U (without the addition {u, v} NP % § assumption). Clearly G* is
an interval graph. Suppose ' is an indneed ¢yele of &7 of length a least four
and #, v € F are adjacent along £, Since the only edges in E(G*)Y E{G) are
hetwaen vertices of ¥, u and v have the same neighborhoods in €7 and &,
But then some subset of the vertices of C would indnes a chordless eycle
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gonlaining v and v of length al least lour I G, contradicting that G* is an
interval [and so chordal) graph, Thercfore, vertices of P and & alternate
an ', and a0 (& hag no induced cveles of ndd length preater than three.

Now suppose (' is an indnced cvele of G of even lenglll sl least six.
Let vy, 2 € F be nonadjacent vertices along O, and let pathes Py, Py, and
Fy be, respectively, the secments of (' between 1 and y, between ¢ and s,
and between z and r; thus z is not adjacent to any vertex on Py, = 15 not
adjacent to any vertex on Fi, and ¥ is not adjacent to any vertex on Fi.
Since @, y, 2 € P, they have no new neoighbors in G and so form an asterscidal
triple in (7%, again contradicting that &* 18 an interval graph. Therefose, a
probe interval graph haa oo induced eycles of leapth greatar than or efual
to five,

To show that 7 contains no complement of an induced cycle of length
larger than four, first notice that the complement of an induced cycle of
length five would also be an induced cycle of length five, which we now
know is impessible in (7. Therefore, we only need to show that & containg
no complement of an induced cycle of length six or more. Suppose to the
contrary that {uy, ..., e} induces a complermnent of an induced cycle in €2
with 5 2 6, where vyw, £ E(G) and each ey € E(G), while all other
15158 are in E{G). Then v1, vy, v, vs, v will be an induced cycle in 7, and
&0 We cAn assurme without loss of generality that v, vq & P and oy, 15 € N.
Therelore, vavg € E{G) implies that vy € F and wg € F{F) implies that
s € FP. Bt then vo, og, vy, v, vo would be a lepgth-four chordless cyele
in ¢ having three vertices from P, contradicting wertices from F and N
alternating around induced cycles in 7. |

Exercise 3.15 (Zhang} Show that “cnhancing” a probe imterval sraph
by adding edges between pairs of nonprobos that have two nonadjacent
probes as comnmen peighhors produces a chordal graph.

Also relaled to DNA matiers, (Bodlasnder & de Flubier, 1396] discusses »
“chromatic interval complefion problem,” paralleling the chromatic chordal
completion problem—inserting edges so0 as to make an interval graph—in
secijon 2.4.1. Going the olher way, [Wang, 1994] discusses removing edges
from & bipartite graph so as to leave an interval graph.

3.4.2 Applications to Psychology

While classical theorvies of messurement are based on the physical sciences,
much work hes also been done on notions of messurement that are more



3.4, 50ME APPLICATIONS OF INTERVAL GRAIPHS L

suitable for the social saiences. Much of this work has been within the con-
text of peychelogy. Our disenssion below is based on [Roberts, 1976, 1973k,
Roberts, 197Y) is & related treatment of variows aspects of “measurement
theory.”

Supposc 4 iz o set of alterpatives, such as types of cars or foodl prod-
uctz, and a person has preferences among the elements of 4. [Luce, 1954
motivates seeking a tealvalued function f on A sach that, for o,k € A,
preferring alternative a to alternative b implies fia) > f(b] + &, where the
positive congtant & represents a threshold or jusi noticeable difference be.
twecn alternatives.

Diefine a hipary relation K on oa findte set A to be an dnferuel order o 11
satisfics the two following axioms.

Axiom 1: Foralla € A, not aRo.

Axiom 2t Foralla b o,de A, if oRbh ond nld, then either ald or cRE.

Exercise 3.16 Suppose {1 a realvalued function defined oo 4, and
et b 15 defined to mean that f{a) = f{f}— & where & is a poaitive constant.
Show that & ig an interval order on A.

For any hinary relation R on any finite set A, define the graph G{R) w
have V{G({R)) — 4 with b € E{G{R)) if and only if nejther ok nor 5Ro:
edges therehy correspond to “hrdifference” wich respect to B, {Warning: An
“indifftrence graph™ per s is defined somewhat differently and is equivalent
to being a proper Wnterval graph.} The following result & from [Fizshbworn,

19704, 1970bJ.

Proposition 3.12 (Fishburn) A binery relation B on o fintfe 2ot A b
an interval order on A if and only if R is transitive and G{R) iz an interunl
nraph.

Proof sketeh. First suppose J osatisfies Axioms 1 and 2 sronsitiviny
follows directly. Theorem 3.5 shows that ¢ = GIR) is an mterval eraph as
tollows: (7 eatmot contain an induced eyele o, b e d e sinee oe bl & F{G
wonuld mnply both (ale or cBa) and (8R4 or dEE}, and cach of the lonr
posaille cases would lead 1o s contradiction nsiog Axiom 2 ad 5 s ilsel!
i Aranmitive ooentalion of G

Conversely, suppose & is transitive and G = GfR) 15 an interval graph.
Axviom 1 follows fromn 6 being loopless.  Avgaing towacd a covtradicnion
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with Axiom 2, suppose oRb apd cRd, 50 ab, od € E{G), vet neither a Bd nor
cfih. Then by transitivity, neither dRe nor bfic, so ad, be € E(G). Transi-
tivity similarly shows ac, bd € E{G}, producing an induced cycle a,d,b. ¢, a,
contradicting Theorern 3.5. d

Exercise 5.17 Discuss whether or not our proof of Proposition 3.12
actually shows soinething stronger: that a binary relstion B on a finite sat
A is sn interval order on A4 if and only if £ ie transitive and G{R) contains
no incuced . :

Define & binary relation & oo a fimite set A to be a semierder if 1t satisfics
Axioms 1 and 2 and also the following axiom.

Axiom 3: Forafla,b,od€ A, if afth and bile, then aither aRd or dRc.

Exercise 3.18 Suppose f, &, A, and R are as in Exercise 3.16. Show
that R is a semiorder of A.

We state the following result of |Roberts, 1969a, 1971], as stated in
[Fighbura, 1985], without proof.

Proposition 3.13 (Roberts) A binery relation R on a finite set A is
o semdorder on A of and only if K @5 trensitive and R} is 2 proner indervol
groph.

Again with [Luce, 1936] as motivation, {Roberts, 1971] defines a graph &
to be representable by just noticenbie differences if, for each v € V(G), there
exiats a resl momber r, contained I a closed interval J, of the real line such
that we £ F{4) if and only if r, € F, {or, equivaiently, ry € J&,). (Compate
this with che conrept of “ratch graphs” in section 7.2.) While we state the
following result without proof, Exercise 3.19 will be a simpler special case,

Proposition 3.14 {Roberts) A graph 3 representable by just nelice-
able differences if end only if 4t i & proper inferval graph.

Exercise 3.19 (Roberts} Show thet a graph  ie & proper interval
graph if amd ooly if, for each © € V{{}, there exists a real number ry and
a closed wmdd interval J, centered of vy, such that wv & E{G) if and only if
N
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More general applications to psyvchology mvolve genceral scriavion prob-
lems. For instance in developmental paychology, Coombs & Smith, 1973
studics whether psychologieal “traits” ecould correspond to chronological
intervals—interval graph models would clearly be nsetul here. [Hubert, 1974]
surveys the role of interved and proper interval graphs in scriation probloms
it pavehology. [Troxel), 1995 also cousiders proper interval graphs.

3.4.3 Applications to Computing

Applications of interval graphs tend to be cxampics of gencral “scriation”
probiems, deferminiog whether certain data or abjects are compatible with
arrangement in a linear partern. Such examples are cfien scheduling prob-
lems, with the linear dimension corresponding to time, A cotrumon example
involves & graph having university eourees as vertices, with two vertices ad-
jacent if and only if the courses overlap in time of day and 2o cannot be
assigned a common reom. Such a graph will be an interval graph, and find-
ing the minirmum number of rooms needed correaponds o finding the graph's
chromatic number, a problem that is meuek eagier for interval graphs than in
veneral. {Making a hard —in this case NP-complete— problem tractable is
an important robe of interval gzaphs in computing, much as we mentioned for
chordal praphs at the end of subseetion 2.4.% [Olariu, Schwing, & Zhang,
1995] iz an up-to-date discussion.) [Kendall, 1969] contains another well-
known “seriation im tiime” problem to which interval graphs are applicable,
it this case to archaeology.

Thers are many applications to computing in which the setiation is not
with respect to time. [(3olumbic, 1984] gives one interesting example, and
there are others in section 8.4 of [Golumbic, 1880]. Our discussion iz in
terind of the widely studiad Lopie of conzecutive retrieval file orpanization.
The original Wea appeared n [Ghosh, 1972], with [Eswaran, 1975} linking
it to intervel graphs. [Ghash, Kambayashi, & Lipski, 1983] is a collection of
articles on thiz subjeet, with Lipski, 1983] listing abioost 200 references on
conseciitive retrieval and interval praphs.

Supposc R is a sot of records (files) and @ iz a sot of gueries, each
linkeed to a partionlar set of relevant records so that each query ¢ € @
can be identified wilh a subset of B, Such B and @ are saul to aatisly the
remaerudive retvieval propecty if the reconds refovaut to each query can he
stored consecutively in linear atorage without repeating vecords.

FExample 3.3 Suppose A, B, C 0, E, F, G, H, | are nine record: with
Qr={AB.CL @y = {D.EF.G}, Qs = {C.D.H I} Qs = {1}, and @5 =



54 CHAPTER 3. INTERVAL GRAPHS

{C,DLE,H,1}. T'hen one way to satisfy the consecutive retrieval property is
shewn by the linear arrangement
A-B-C-H-I-D-E-F-G.

Clearly & and ¢ satisfy the consecutive retrieval property if and only
ift H = (R,{) is an interval hypergraph. As we observed in section 3.3,
this means that if the records of R can be arranged z0 as to satisfy the
coneecutive retrieval proparty with respect to the queries in @, then the line
graph 12(Q) of H mnst be an inferval graph. But, as we also obsened in
section 3.2, the converse fails. This is & subtle, but important, point that can
canse confusion in various seriation applications. The subtlety is showrn by
its incorrect inclusion as a theorem in [Ghosh, 1977] and its removal from the
scoond edition, [Ghash, 1988]. That £ Q} is an interval graph corresponds ro
& being representable by intervals, not to the arrangement of the members
of ®. The hypergraphs of Example 2.6 and Exercisc 4.7 can both be thought
of as cxamplea of R and € where £{Q) is an interval graph, yet the records
cannol be Ineady amanged 50 a3 to satisly the consecetive retrieval property.
[Deogun & (Gopslakrishnan, to appear| proves the following.

Prapeosition 3.15 (Deogun & Gopalakrishnan) Suppese the hyper-
graph H = (R, Q) is such that there ore not two {4, Q4 € Q with Q¢ C 4.
Then the records in R can be arvanged so as lo sabisfy the consecutive re-
trieval property with respect to @ if and only if the line graph of T & eo-
morphic to the cligue yraph of the lone graph of the duel hypergraph £ and
this cligue graph is a proper intervad graph.

L'he consecutive retrieval proporty has been gomoralized in various ways,
many of them in [Ghosh, Kambayashi, & Lipski, 1883). In particular,
"Tanaka, 1983) investizates replacing linear storage with storage on trees,
thereby replacing interval hypergraphs with tree hypergraphe.



Chapter 4

Competition Graphs

Thiz chapter considers intersection graphs of variovs sorts of nesghborhoods
in graphs and igraphs, the most studied of which are the “competition
graphs’ in secticn 4.2, But, in a generic sense, they all can be thought of in
terma of “eompetition.”

The developroent of these topics differs from that of chordal and interval
graphs in that they arc intersection graphs of the set of afl subgraphs {neigh-
borhoods} of a certain sort, rather than an arbitrary multiset of them. They
resemble cligue and line graphs in this regard. In particular, eacl of these
tapics has an associated ceaph operator that is discussed more thoroughly
in [Prisner, 1995].

4.1 Neighborhood Graphs

Recall that for any graph & and any v € V(G), the open neighborhomnd
of v, denoled Nele), is the salwraph jnduced by {u : we € E[G)}. The
rlosed neighborhosd of v in 7. denated Nz(n). is the subgraph induced by
Nelv) U {u}. We write N{v} end M[v] when ¢ is clear from the context.

4,1.1 Squared Graphs

For any graph &, the spuare of (7, denoted %, has the same vertices as (3,
with teo vertices w and v adjncent if and onoly if die. v) < 2 o 7, whers
diu, v) denotez the usual praph distance; this can be thought of as saving
that 1 and » are close enough to “compete” in some sense. A graph Giza
squarcd graph if & = #? for some graph H.

Example 4.1 The graph ' in Figore 4.1 34 the sguave of the graph 5.

Gh
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Fipure 4.1: 4 gruph H and its syuare G = H2,

Exercise 4.1 Describe the relationship between the inddence matricos

of & and G-

Theorem 4.1 A graph is 2 sguaved graph if and only if 38 i the inter-
section graph of ell the closed neighborhoods of the vertices of some graph.

Proof. This follows immediately from the observation that, for w % v,
N Nfy| # 8 if and only if du, v) < 2 |

Squared praphs orginated in [Harary & Ross, 1960), where the squares
of Lrees were characterized. Squared praphs in genecal were characlerized in
{Mukhopadhway, 1967]. Notice how “u € N[t]" tranglates into eanditian (1)
on an edge clique cover in the fullowing theorem, and “w &€ N{v} if and only
if v € N[u]” translates inte condition (2).

Theorem 4.2 (Mukhepadhyay) 4 graph G with V(G = {v1,..., e}
i2 6 squared graph +f and only if G hus an edge cligue cover £ = {1, ..., }
such that both the following hold:

(1) for every 4, v € Qy;

{2) for every i & 5, 1y € G4 if and only if v; € (.

Proof, First supposc & has versex sct {vr,.. ., ¥n} and edge clique cover
E ={Ch. ..., Qn} satislying conditions (1) and {2}. Put F = F(£), the dual
set repregentation of (7 determined from £. Thus G = (M F) where, in the
definition of F(£), F = {8,...,5,} and each 8 = {j o € Q;}

Define a graph  on V(H} = {1....,n} where jk € E{G) if and only if
7 # k and v € (J;, noting that adjacency is indeed symmetric by (2). Fix
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2]
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k€ V{H) Then j £ Ngl[k] if and only if either jk € E{H} or j = k. 5o
br (1), 7 € Ng|k] is equivalent to v, € 5, and so to j € 5. Thus each
Sp = Np[hl, and so @ i3 a squared graph by Theorem 4.1.

Conversely, suppose G = H? where for convenlence we assume V{{z} =
VIH?Y = {o,....05} with each vy € V(&) corresponding wr v € V{7
under the jaomorphism. Thns & 22 Q(F)} where 7 = {5;,..., 55} and each
8 = Nyiwg]. Put £ = E{F}, the dual edge clique cover of {7 determined by
£ thus £ = {Q, ..., ]} where, in the definition of £(F), each

Q5 = Gy = {15 1uy € 8} = {1 vy € Nylu]} = Ny

Condition (1) holds since each #; € Nplw, and [2) hoids since »; € Nyl
Iy equivalent to w; & Ngly). a

Example 4.1 {continued) For the squared graph & in Figure 4.1,
Q@1 = {th, vg, va. ur) Q2= {v1. vo, 13}, Q3 = {1, vy, vy, wd. Q4 = {uy, vg,
vsh Qs = {vd4, vs. va}. Qe = {us, va. vr}, Q7 = {1, ve, vt} forrn an edge
clique cover as described in Theorem 4.2,

4.1.2 Two-8tep Graphs

For any graph G, the twe-step graph (or two-path grapht of &, denoted &g,
has the same vertices as (7, with two vertices w and v adjacent if and oniy
if there is a path of length cxactly two connccting v and w in & A graph &
i & two-gtep graph if 7 =2 H; for some graph H.

Examnple 4.2 The graph G iu Figure 4.2 i the Lwo-step graph of the
araph H.

Theorem 4.3 A graph is a two-step graph if end enly if it s the infer-
secton graph of all the open neighborhoods of the vertices of some graph.

Proof. This follows immediately from the observation that, for u # v,
Nuwyr N{v) # D if and only if there is & path of length two connecting ¢
and 1. il

|Escalante, Montejano, & Hojano, 1974] is & good reference on two-step
graphs, which were characterized in | Acharva & Vartak, 1371, noting the
“atriking similarity™ with sgnared graphs.
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Figure 4.2: A groph H ond ils two-step graph & = H;.

Theorem 4.4 (Acharya & Vartak) 4 graph & with V(G) = {u,
et e two-step groph if and orly if G has an edge cligie cover £ =
{th,-...Qn} such that both the following hold:

(1) for eoery &, w € Q;

(%) for every i 2 5, w € Qy if and only if v; €9,

Proof. This can be proved by a minor modification of the proof of
Theorem 4.2, ]

Exercise 4.2 Find the edge clique cover £ aa in Theorsm 4.4 for the
two-step graph & in Figure 4.2,

Exercise 4.3 Verify the detaile in the proof of Theorem 4.4,

4.2 Competition Graphs

Rocall that & digraph O can be defined to have a finite vertex set V{D) and
azet A(L3) of arcs, where vw € A(D) denotes an are from vertex v ¢o vertex
w. We assume that there are no multiple arcs {meaning that there are pever
two arcs from v o s, although it is possible to have both vw, we € A(D)).
In this chapter, we will sometimes allow loops (meaning an arc o). For
each v € A{D), define the out-neighborhood of v in D, denoted NZ{v) or
NT{1), to be the subdigraph of I induced by {w : vw € A{I)}. (Notice
that v € N (v} if and enly if 3 eontaing a loop at v.) A sinkof Dis a
vertex v € V{D) mich that N*{v) = . Similarly, the in-neighborhood of 1
in D, dencted Npv) or N~ (r), denotes the subdigraph of & induced by
{w:we € AN}, A source of D is a vertex v € V(D) such that N~=(v) = 8.
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Figure 4.3: A digraph I and ifs competition grpl = O00),

Cnmpetition graphs were mtroduced by Joel Cohen in 1968 in the con-
text of o food web {an acyeclic digraph) [ whose vertices are species with
v £ A(DY whenever species © [eeds on species w. Competition graphs are
sometimes called niche overlap graphs or cotswmer grapha for this reason.
:Warning: Graph theorists direet ares from “predators” toward “proy,” but
biolugiits use Lhe opposite directions for the ares when they draw foodwebs, )
‘Cohen, 1978] and {Roberts, 1976, 1978a] contain murch mare information.
Thia biological motivation aleo explains the frequent restriction ko acyehe
fand 50, automatically, to loopless}t digraphs. [Lundgren, 1989| is a recent
survey.

The competifion graph C{I}) of a digraph I has vertex set V00 and
cdges 50 as to make C{D) = QN (v} : v e VI}) Notice that a sink in
D will be an isolated vertex in C(), and that uv & &(C(LD)) if and only
if there iz some w £ V(D) such Lhat both ww, v € A(D} - which means if
and only if u and v arc in some common N ™ (w}. In other words, two species
are adjacent in the competition graph 0 and only i {hey compete foc {boch
feerd o) some commaon prey.

Example 4.3 The graph & in Fignre 4.3 is the cowmpelition graph of
the aeyclic digraph 3 shown there. Far instance, vyug € B becanse
NEa ) NN ) = fisag,va )} 0 g, vs b F —species v and »y compete
for species wy—while vy £ E(G) hecause N v 1NN Y (vg) = {imp.wg, g} 0
s} = @—species 11 and vy do not both fecd on a common species. Vertex
145 19 isolated in 7, smce 1t i o aink in D) The vertex labels uzed in Figure 4.3
are as deacribed in the following lemma.,

Loamma 4.5 ff o digreph D is acyelic, then V(D) cun be iobeled os
{v1..-.,on} so that vy € A(DY) implies thaf § < j.

Proof. Suppoese I is acyclie. If every vertex of D had positive in-degree,
then movwing backward along srcs would cventwally detormine a directed
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cvele, Thus some vertox must have in-degree zero; label it v and remove it
from the digraph. Repeat this procedure—each time labeling a vertex with
in-degrec zero using the next axvailabic label—until all vertices are labeled.

Arguing toward & contradiceion, supposc wvy € A{D) yet i > 7. When
wy becomes labeled, v; will already have become labeled within a digraph
containing the vertex that becomes . But this measns that 2 had positive
in-degree when it becamce labeled, which is a contradiction. O

Exercise 4.4 Prove the ronverze of Lemma 4.5,

The basic chrracterization of competition graphs of acyelic digraphs is
in hoth [Dutten & Brigham, 1983] and [Lundgren & Maybee, 1983a]. Recall
that the definition of an edge elique cover £ in acction 1.1 allows any O, € £
o L2 Lle pull subgraph.,

Theorem 4.6 {(Duiton & Brigham and Lundgren & Maybee) A
graph {7 i3 u competition graph of on acyclic digraph 1f and ondy if V{G) can
be lebeled os {t, ..., tn} end G hos an edge elique cover £ = {fh,....Qx}
suck that w £ Oy imphes i < j.

Proof. First suppose G has vertex set {v1,. ... v, | and edge clique cover
E={th,..., 0} such that & € (7; implies ¢ < j. Define a digraph D with
V(D) = V(G}, where wwy € A(DY if and only il vy € Q4. noting thal D is
acyclic hy Exercise 4.4. Then 1y € E{) if and enly if v, v; € (25 for some
#. But that i equivalent Lo vpwy, wiry € A{D) and so to v, € N” {wy).
making & a competition graph by definition.

Conversely, suppose ¢ = (D)), where I is acyclic with V(D) = {u,.. .,
e - By Lemma 4.5, wo can assume the vertices of D huve been labeled so
that wo, € A{D) unplies i < 7. Checkthat N7 (v} = @ .. .. N (u) = @y
i an edge clique cover of G. Moreover, v € @5 is equivalent to ww; € A{D},
which implies i < j. O

Example 4.3 (continued) For the competition sraph & in Figure 4.3,
=W, &a={wn}. Ga= {v1, v}, Qi = {v1, 1}, end @5 = {ve, vy, va} form
an edge clique cover as descnbed in Theorem 4.6,

Exercise 4.5 In the first paragraph of the proof of Theorem 4.6, show
that F(E) == {51,.... 5}, the dual set representation of & determined from
&, eorresponds to the family of onteneighborbonds of 23, with each j € 5 if
and only if v; £ N;l:v;;]l.
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Tis Lhe secoud pacagraph of the proof, 7 has the sot representation F =
INS{m) . Ny} Show that E(F) = {(Gy,... . (7, }. the dual cdge
caver of & determined from F, corresponds to the family of in-neighborhoods
of B3, with each G, = Ng{w}

Competition graphs of arbitrary {not necessarily acyelic) digraphs are
characterized in [Dutton & Brigham, 1983} as follows.

Theorem 4.7 (Dulton & Brigham) A gruph & is ¢ competition graph
of an erbitrary digreph if and onfy if G has an edge cligte cover £ sueh that
|&] = ¥

Proof. This ean be proved by a minor modification of the proof of
Theorem 4.6 a

Exercise 4.6 T'ill in the details in the proof of Theorem 4.7,

Reeall from section 1.3 that #(€7) denotes the minimum cardinality of an
wilpe cligie cover of . Theorsn 4.7 can be rephrased as follows,

Corollary 4.8 (Dutton & Brigham) A groph 7 is o competifion graph
of an arbitrary digreph if end only o (G < [VIGIL !

Ag an elegant, bnt nonsrivial, modification of this corollary, Roberts &
Steif, 1983] shows thal & graph & is a competition graph of a Inopless digraph
if and oniy if #(G) < (V{1 and G ¥ K5. The proof of Theorem 4.6 can be

modified to produce Lthe lolowing move straightiorward characterization.

Exereise 4.7 {(Dutton & Brigham} Show that a graph (7 is & com-
pelitivn graph of a leopless digraph if and anly if VG cun be labeled ax
farg. oo | oand (7 has anoedge cligee cover £ = {(h,. ... (Ja} such that
€ 0y implies  # 7.

[Fraughnaugh, Lundgren, Merz, Maybee. & Fullimean, 1995] and [Guichard,
1398] describe competition graphs of strongly connected digrephs and of
haciltoniun digraphs.

Jven a competition graph (7, the rompetition number of &, denoted
k(). 1s the mintmum number of isolated wertices that have to be added to
Cr Lo tuake 16 indo 8 compelibion graph of an aeyelie digraph.

Exercise 4.8 (zee [Hoberts, 1478a]) Show that &{} is well defined by
showing that at most [F((7)] isnlated vertices need 1o be added to any graph
{r to omake i into a competition graph of an acyclic digraph.
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[Lundgren, 1330] and [Kim, 1993] survey the rich theory of competis
tion numbers that has developed, and NP-completeness is shown in [Opsut,
1932). This last paper aiso containg Opsut’s confecture: If every v € V()
has N{u) covernhie by ai most two complete subgraphs of . then KRG} € 2.
[Kim & Roborts, 1990, 1937] and [Wang, 1952, 1565b] further discuss com-
petition numbers and variants of Opsut’s conjecture.

Note that cvery competition zraph of an acyelic digraph has at least
oae igolated vertex. sinee every acyclic digraph has ar lesst one sink; the
following result from (Roberts, 1978h] 15 a sort of converse to that.

Exercise 4.9 {Roberts) Suphose ¢ is a chordal graph that contains an
isolated vortox. Prove that & iz a competition graph of an acvclie digreph.
(Hint: Use the fact that & must contain a simplicial vestesx.)

The common enemy groph (or resonrce gruph) of & digraph £ 15 the inter-
section graph L{{NVN " (v} : v € V{(LN]}]. Compelifion-common enemy graphs,
in which «, v € V(D) are adjacent whenever both N {u) N NY{L) # 8 and
N{w)NN (v} £ U, and nicke grophs, m which adjacency means that edther
NYu)nNTe) 20 or N {u) NV (2} # D, have been studied extensively,
along with the corresponding analogues of competition numbers—again, see
[Lundgren, 1989] and [Kim, 1493] for details and results, along with [An-
derson, 1295], Anderson, Jones, Lundgren, & Seager, 1991), [Hefuer, Jones,
Kim, Lundgren, & Roberts, 1991], and [Wang, 1998a]. [Raychsudhuri &
Roberts, 1985] discusecs other pencralizations and applications of competi-
tion graphs.

4.3 Interval Competition Graphs

The Impetus behind the intensive study of competition graphs was Jocl Co-
hen's provocative 1968 obwervation, leading tn the book [Cohen, 1978]. that
naturally ocowrring food webs tond to have interval competition graphs.
Insolar as thig s Lrue, there would be polenlial ranifvativns for the ecoloy-
ical notion of “niche space.” [Cohen & Palka, 1990| and [Cohen, Briend, &
Newman, 1990)] are recent sources describing the literatnre spawned by these
questions and the status of Coben'’s observation. (Building oo the present
sectiom, we conlinue the food web story in the middle of section £.2.)

The hmdamental open problem i this ares is to characterize thosc
acyclic digraphs whese competition graph is an interval graph. [Luadgren,
L3R4] discuszes this in detail, it wa only inclide the one following result
from [Lundgren & Maybes, 1984,
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Given an acyclic digraph 17, a competition cover T = {Dy, 0, D)
af O is a sel of sabwets of V(D) guch that, for all @, v & V(D) both
vi. vy € Dy for some Dy £ D if and only it both ey, v £ ALD) for some
vr £ VI A competition cover D has a consecutive ranking if its members
cah be aranged sz vertices of & path 7 such that, for each v € V(]

1D, € v £ I} induces a subpath of P.

Theorem 4.9 (Lundgren & Maybee} An acyclic digraph hoy an -
tervul competition grph if and ondy 16 Jus o computition cover that hos o
COnSACUIIIE PRREIT].

Proof. Suppose D is an acyelic digraph with competition graph C(0),

First euppose (D) i an interval graph, say with clique path 2 ag n
section 3.1, Take D = V(P). Then w,v; € 7 € D for some ¥ il and
only if wyw; € Z{C(DY), and so if and only il vive, vyv € ALY Ty some &
Moreover, F determines a consecutive ranking of 1.

Conversely, suppose D is & competition cover of 1J that has a consecutive
ranking by a path P. Then o, vy € D € D for some & 0 and ooy if
vive. vyt € ALD) for some k, and so if and only if e, € E(C(DN). So D
iz an edge clique cover of {2 and P is a palh representation for €000,
Therefore, /(1) is an interval graph. 1

Exercize 4.10 Use I'henrem 4.9 to shoaw that the digraph in Fignre 4.3
has an interval competition graph, but the digraph produced from the graph
an the left in Figure 4.4 by directing each edge dowmnward does not.

Az far back ax [Cohen, 197Y], gnestions were alko taized about digraphs
that have chordal competivion graphs. Sugihara, 10984] considers arions
rationales to explain why competition graphks {and common enemy graphs)
of natarally oceurring food webs mieht tend to be chordal. See also [Pimm,
1991] for an ecology textbook's introductIon to nterval and chordat com-
petition graphs and [MeKee, 1995a for several groph-relabod canoepts chat
are potentlally relevant.

[Lundgren & Mers, 199%4] vontains more characierizalions of digraphs
that have interval or chordal competition eraphs. [Lundgren, Merr, & Bas-
muszen, 1993 contains characterieations of digraphs that bave cterval or
chordal squarcd praphs. [Lundgren, Mavbee, Mers, & Rosmussen, 1933]
cligensqes digraphs that have interml or chordal Dwo-sten grapha,
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Figure 4.4: A posct with {is upper bound graph.
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4.4 Upper Bound Graphs

A partially erdered sct, or posct, (X, <) consists of & noncmpty sct X with
an irreflexive, transitive binary relation < defined on . The upper bound
graph of (X, <) i the graph & with V{G) = X and o € (G} if and only
if % £ v sand thers exists wr € X such that « < w and v < w; in other words,
w and v oare distinct and bhave a comtmoen gpper bound. 4 sraph is an upper
hound graph if it 1= isoniorphic to the upper bound graph of some posct.

Example 4.4 'I'he figure on the lek in Figure 4.4 shows a poset, where
v, ¢ vy if and only if there is a downward path from v to vw. The upper
bound graph of this poset is the graph on the right.

Exercise 4.11 For any acyelie digraph £ and v € V(D), define the
ancesfor set of v to be the anbdigraph of D induced by {w # v thereis a
directed w-to-v path in D}, Show that & graph is an upper bound graph
if and only if it s the intersection graph of ancestor sets of some acyclic
digraph.

Upper bound graphs were introduced end characterized in [MeMortis &
Zaslavsky, 1982).

Thecrem 4.10 (McMorris & Zaslavsky) A graph G is an upper bound
graph if and only if G has an edpe cligue cover £ = {001,..., Q) such that,
foreach § € {1,...,k}, there exisis vy € V(G) such that vy € Qy, but vy & O
fori £ 7.

Proof. First suppose (& iz the upper bound eraph of ({1, .... 1}, <)
Without loss of generabity, assume that v1,..., v (k= 1) are the maximal
clements of (X,<). Foreach i & {1,....k}L let @i = fos t vy S i Tt
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is eagy to check that ¢, ..., form an edue cligue cover of 3 and each
vy & €. Ford 2 7 in {1,.... k), vy maxiweal implies that ey 2 o and so
'L-‘j E 'L';Ji.

Conwversely, suppnsa £ is an edge cligne enver of (7 as described in the
theorem. Define < on V{G} =1, .. ..o} byy, < vyifandonlyifi < K< 7
and ©; € ;. Then vvy € E{G) with ¢ < j iland only ifeither ¢ < & < j with
i, vy € or there exista b < kb <04 < 3 with v, vy € Q4 these happen if
and only if 1y and vy have a commeon upper bound (respectively, w or vp). 0

Notice that, in the poset produced in the second part of the above proof,
each v & either a maximal element (when 7 < &} or & minimal element
{when 1 == k): that i3, “height-one poscts suffice.”

Exercise 4.12 Find the edge chque cover £ a3 in Theerern 4.10 for the
upper bound graph on the right in Figure 4.4, Then find the posst (X, <)
for (¢ as produced in the proof. Also, show that removing vertex »a from &
would produce & graph that s not an apper bound graph.

Exercise 4.13 {(McMorris & Zaslavsky) Show that the edge clique
cover £ in the stotement of Theorem 4,10 can always be required to consist
of maxcligues of &,

Recall from sectiom 2.2 that a simplicial vertex is defined to be & vor-
tex whose neighbors induce a complete subpraph (which may be the null
sithgraph].

Exercise 4.14 (sec [Bergstrand & Joncs, 1UBE] and [Cheston, Hars,
Hedetniemi, & Laskar, 1988]). Show that a graph is an upper bound graph
if and only if every adge i in fhe closed neighborhood of a simplicial vertex.

The: lollowing morc himdamental characterization of upper bound graphs
appearcd in [Lundgren & Maybee, 19830

Theorem 4,11 {Lundgren & Mayhee) A graph & @@ on upper bound
graph if and ondy if V(G) can be fabefed as {v), ..., v and G has an edge
cligue cover £ = {{M, ..., Qn} such that both the following hold:

(1) seeh v Q4

(2) ifm e}y, then j <1 ond G C© Q.

Proof. This can be preved by medifying the proof of Thenrem 4,10,
using idess from Exercise 4.11 and the proof of Theorem 4.6, d
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Exercise 4.15 Prove heorem 4,11,

[Scott, 1088] characterizes those posets that have interval and chordal
upper bound graphs. [McMorris & Myers, 1983] discusses upper bound
graphs that correspond to a unigue poset.

[Lundgren, Maybes, & McMorris, 1988] containg various related topics
concarninys upper bound praphs {and similarly defined lower bound graphe)
in relation to eompetition graphs (and common enemy graphs}. {Bergstrand
& Jopes, 1989], [Bergstrand, Jouves, & Sherman, to appear), and [Era &
Tsuchiya, 1997, 1998] discuss more relations between upper and lower bound
erapha.



Chapter 5

Threshold Graphs

Recall from section 2.5 that a graph & is a split graph if ¥V{G) can be
parlitioned into @ U I, where ¢ induces a complete graph and I indoces
an edgeless graph {that is, ! is an independent set}. Thresheld graphs are
special split graphs that were introduced in [Chvétal & Hammer, 1973] and
that have been extensively studicd sinee that time. In keeping with the style
of the previous chapters, this chapter will provide only a short introduction
ta threshold graphs; [Mahadev & Peled, 1995] is a very nice compreliensive
study,

5.1 Dwefinitions and Characterizations

The definition that we give in this section s from [Chvdtal & Hammer,
1973], m which set-packing problems are studied. For each wertex v of a
graph 7, let 1, denote & noonegative real number, the weight of . A graph
{r is o threshold graph if therc 1z an assignmeent of weights to the vertives
of €7 ane a nonoesative real nanadber &, the fhreshold, auch that, for cvery
X S VG, X s an independent sel if and only it 3 - ¢ wy < £-—in other
words, if weights can be assigned to the vertices of & 5o that a subset of
vertices is independent if and only if the total weight of the sel is po greater
than a certain constant threshold. Figure 5.1 shows two threshold graphs
with weight assipninents and thresholds,

The notion of degree partition of & vertex set is crucial to the under-
standing of threshold graphs. Let < be a graph whose nonisolated vertices
have the distinct degrecs §; < 83 < -+ < fp. Set §gp = Oand b, = V|1,
aud tet 05 be the set of all vertices having depree §; for i =0, ..., m. The
sequeonce Dp, ... Dy is called the degree partition of GU

T
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Figure 5.1: Twe threshold grophs having thresholds 4 and 7, respectively,
thitty vy;) to denote that verier v haa weight w, = 1.

0y ={d,ef}

Figure 3.2: Another tiew of the graph on the right in Figere 5.1, as explained
i the fext.

Example 5.1 The threshold graph on the left in Figure 5.1 has m =2
with 1 =1, 83 =4, Dy =4, 01 = {a,b,d,€}, and 3 = {c}. The threshald
graph on the righl has m = 4 with Dy = 8, Iy = [b}, Du = {d.e, f}.
Dy = {c}, ond Dy = {a).

Figure 5.2 shows spother view of the graph on the right in Figure 5.1,
with its vortiees now grouped intoe “cclls” corrcsponding to the degroe par-
tition, The [;’s in the laft column represent independent sets, the £5'%s in
the right column represcnt complete subgraphs, and a line between cells O
and f); mesna that every wvertex in f); ie adjacent to every vertex in L.

Notice that the graph iy Example 5.1 ia a split graph, with the union
of the cells oo the left in Figure 5.2 forming the independent set T and the
union of these on the right ducing the complete subgraph ¢, Also notice
that the open neighborhoods of the vertices in the left column of cells are
nested with respect to set inclusicn in that the open neishhorhond of every
wervex in the left column is contmined in the open neighborhood of every
vertex below it; similarly. the desed neighborhoods of vertices in the right
column are nested in that the closcd ncighborhood of cvery vertex in the
right columm §s sontained in the closed neighborhood of every vertex above
it. Cme of the consequences of Theoremn 5.1 will be that this sort of structure
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characterizes threshold graphs. LThis theorem is from [Chvital & Tlainmer,
1973), with the equivalence of conditions (1) and (3} independently found
in [Henderson & Zalostein, 1977]).

Theorem &.1 {Chvatal & Hammer) [+t &= (V. E) be o gruph with
degree poviifion Dy, ..., Dy Then the following statements are cquivelent:

(1) {7 35 o threshold graph;

(2) forz e D, endy € 1y, xy € F if ond only if i + 3 > my

(3] there erist nonnegatiye integer wweights w, and thresheld ¢ such that,
for distinct vertices v end v, wu € B if ond andy &M w, + w2 6

(4] € does not eontain £y, Cy, or 2K5 as an induced subgraph;

(3) G s 2 splid graph where the open neighborhiosds of e vertices of the
independent set ! ean be nesled with respect o sef inefusion,

(6) G can be oftained from K by recursively adding etther un dvplufed
verter oF a verter adincent fa cvery aristing voricr,

Praof. {1 = 2]: Assume (7 is a threshold wraph with weighis oy,
threshold ¢, and degree partition Dy, ..., Dy, and sappose < 1 < § = e
Onr proof is by induction onr o, with the o = 0 case - when {7 15 cdzeless —
immediate. Now assurne Lhat 4 € Dy, and x £ DOy, Then there iz a vartex z
such that zz € E{G), s0 that

Pty + oy S ouly — Yy,

which implics that xy © F{{). Thus every vortex in Dy s adjocent to evory
nonmisolated vertest. aond a0 &, = V| — |y - 1. This sbhows condition (2)
when 7 = . Dxercise 5.1 will show that & = (12|, thus showing condition
{2} when ¢ = 1. Suppose m = 1, amd let V' = V ~ [y - Dy, and &' be
the subgraph of & induced by V', Then 6 is a threshold graph with degree
partition Dy, ..., LY, _5 where cach 1% = 43,1, Lhe imduction hypothess
can then be nsed on & o show that condition (2} holds when j =m—1 or
1 = 2 repetition shows that condition {2) hold=s i general.

(2 = 3): This follows by assigning the welght j to every vertex in D,
and letting ¥ = .

(3 = 41, Supposc cach vertex v € V(&) 1z assigned weight w, enc
therc is a threshold £ as in condition (3). Suppose o, b, e d £ V(6] with
abod € E{G) while ad, be & E(G), Then wy + wy = £ g + g € 8
e+ ty > 3, and wwy + 0y < £, an ineonsistent sel of inequalitise,

(4 = 5): Let ¢ be a largest maxchque of 7 and T = GQ. Suppose there
cxist &,y = 1 such thar xy € £({). Because (} is o largest maxelique, there
would exist vertices w. v € £ (posaibly = ») =such thar rw, yv € B,
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leading in every case to an induced Fy, Oy, or 2K, Thus G iz a split graph.
Now let 2,y &  have open neighborhoods N {z) and N {y). If NV{z) € N{y)
and N{y) € N(z), then it i3 easy to see that x and y would be in an induced
Fyor 2Ky 1n .

(3 = 6): Suppose (7 satisfies condition (5). Since the removal of an
isulated verfex or a vertex adjacent to every other vertex results in a graph
that still satisfies condition (3}, it suffices to show that & containg such a
vertex. Assume I 29 and 7 has no isolated vertices. Pick © € T such that
Nzl € Ny} for every ¥ € I. Then ony z € N{z} is adjocent to every
vertex in G,

{8 = 1}: Assume  satisfies condition (6) and proceed by irdwnetion on
|[V{GY]. Cleatly G is & threshold graph if V(G| = 1,2,3. Now assume that
(s is a threshold graph with weights 1y, and threshold ¢. If we add & vertex
T that is adjacent to all the vertices of =, assign z the weight { and lesve
the other weights and threshold unchanged. If we add an isolated vertex y
to &, then assign weight 2w, to each v € V{G), make the new thresbold
2f + 1, and assizn to y the weight I. ]

Exercise 5.1 In the (1 == 2) step of the proof of Theorem 5.1, show
that vertices in I} arc only adjacent to vertieos in Dy,

Notice that conditinn (21 of Theorem 5.1 means that, for each v € By,

k
N} = U B jlurk=1,..., /2]
=1

k
Nlv] = | Dipwr—j for k= |m/2[ +1,...,m,

j=1
Therefore, the typical threshold graph ¢ has the structure shown in Fip-
ure 3.3, generalizing Fignure 5.2: Dp, ..., Dy, I1s the degree partition of &
with Ly possibly empty and D, o) present only if m is odd. A line be-
tween cells D; and D; means that every vertex in v is adjacent o every
vertex in £, The L)i's in the left column represent independent seta, with
the open neighborhoods of thelr vertices ordered by inclusion dowiward,
aud the In's in the right column represent complete subgraphs, with the
closed neighborhoods of their vertices ordered by inclusion upward.

Exercise 5.2 Show that (7 is & threshold graph if and oniy if ¥{7) can
he ardered wy,...,w, such that v; Is adjacent to either none or all of the
vertices in the subgraph induced by {w, ..., v}
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Figure 5.3: The structure of o typical fhresfuold g

Also, find such an ardering of the vertices of the grapk on the right in
Figure 5.1

Corollary 5.2 The cotnplement of a threshold groph 5 o threshold graph.

Proof. This follows immediately from condition (4) of Theorem 5.1 and
the facts that Py is selicomplementary and that &y and 28, are comple-
ments of each other. O

Exerrise 5.3 Show that a graph is & threshold graph of and only if
neither i nor its compleront coutaing Fy or O as an indueeed subgraph.
(Such Fy. Cy-froe graphs are discussed further in section 7.0.)

5.2 Threshold Graphs as Intersection Graphs

Sinee Theorem 5.1 shows that threshold graphs are split grephs, the in-
tersection characterization of split graphs n Corollary 2,07 can be ysed to
produce the following characierization of thresaold graplis.
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Exercise 5.4 Show that a graph ts a threshold geaph of and only if it
is the ioterscetion graph of & set of distinet substars of a star where the
substars containing the center of the star are nested with respect to set
inclusion.

Let €7 be an interval graph, A fhreshold interval representefion for & i3
an interval repeesentation for G that consists of a family of intervals {J,.}
stich that Jy, is either the interval [0, 1] or the trivial interval [5;, 3] where
s; # s for all 7 # & and where s; # r for 81l 7 and &. The following is
from |[Muahuadey & Peled, 1995|.

Theorem 5.3 A gruph is o thresheld graph if ond anly if it 45 an interval
graph with o threghold inderval representation.

Proof. Assume (7 i5 an interval graph with a threshold interval repre-
sentation. Then the nonfrivial intervals in the repregentation correspond to
vertices that induce a maxclique ¢ of &, the trivial intervals correspond to
vertices that form an independent set I in (7, and the neighborhoads of ver-
tices in I are nested in the order in which their ropresenting trivial intervals
appear along the real line, Thercfore, (7 is a threshold graph by part (5} of
Theorem 5.1

Couveracly, suppose that &5 is o threshold graph. By part {5} of Theo-
rem 5.1, & is o split graph with V{¢7) partitioned inte the complete subgragh
£ and the ndependent =et 7 with the peighborhoods of T nested.  Aszsipn
each vertex v in @ an interval Jy = [0, ry] such that N{u} © Nfz] if and only
ifry <y, for all wow € Q. Tor each w € I, let r{w) = max{r, - wv € E{G)}.
Biach stich 1 ean be asgioned a trivial interval .F, that is a amall distance e,
to the loft of r{w) in such & woy that the intervals form a threshold interval
representation far . (|

Example 5.2 To illustrate the proof of Theorem 5.3, the threshaold
graph on the lell in Figure 5.1 eould receive the threshold interval repre-
sentation delermined by §§ < s, < 85 < 8y < 82 < 7. The threshold graph
on the right conld receive the threshold intervad representation determined
by 0 < s < 82 < 8p <X v < Sy < Fa.

Excreise 5.5 Verify that if cach of the colls i the goneral threshold
araph shown in Figure 5.3 is the singleton Dy = {w) {and if m i3 odd),
then any choiee of #;%5 and &;'s s in Figure 5.4 would determine o threshold
interval reprasentation of the graph.
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O < rrmes] < Smyr < Tmfl+l <0 €82 <o) <& < T <08
I | [ ) I ) [}

Figure 5.4: A threshold imterual representation for a typical threshold graph

as tn Figure 5.3.

Figure 5.0: An intervel graph thet requires ondy lwe fengths of dntervals, yet
t5 not a threahold gruph.

Becsll that a unit interval graph iz an interval sraph with aon interval
representation wsing intervals all of the same length. There are threshold
graphs that are unit interval graphs (K, for evample! and others that are
net unit interval graphs (K 3, for example), However, as first obeerved
in [Leibowitz, 1978|, a threshold graph will never require more than two
distinet lengths of intervals in its interval representation.

Theorem 5.4 (Leibowils) Evevy threshold graph hos on inderval rep-
reseninfion whase fnferenls have of most Boo distinet lengths

Praof., Lel 7 Le & Lhreshold praph with V(G paetilioned nto Lhe
maxclique € and independent set I, and suppose {1} is a threshold in-
terval represeniation as constructed in the proof of Theorem 5.3, By thag
consthuchion, there exisls a2 € £ such that v < v, for all & € £} For
each w € @ assign the interval S = [ry — ro,0y), while for cach e e T let
Ji, = .Fp. Then .J} is an interval representation for €& using only the two

'

lepgths v, and 0. [

The converse to Theorem 3.4 faile since the noathreshold graph Py s a
unit interval grapi.

Exercige 5.6 Show that the pothreshold graph in Figure 5.5 is an in-
terved sraph whose interval representations require two but only two differant
interval lengths, ([Skricn, 1934] characterizes all such graphs.)
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T ———tr Ty ——
o Gy
I If: Lll'z \EL

Figure 5.6: Fy iz o difference gruph unth weights we, = 4, wey = 2, wy, =
=2, wy, = =1, and T =4, Gx is as in Theovem 5.5 using X = {1, 22},

5.3 Difference Graphs and Ferrers Digraphs

This scction is a brief introduction to two types of graphs that are closely
related to threshold grapha. [Mahadev & Peled, 1935| contains a more thor-
oligh trestment and extensive references.

Diefine a difference graph to be a graph ¢ = (V, E'} such thet each vertex
v € ¥V can be assigned a rea) number weight wy, and there exists a positive
real number T' such that both the kllowing hold:

(1} |ity| < T for all w € ¥;

(2} if u £ v, then wo € Ef and only if [wy, —w)) = T.
Difference graphs were first introdoeed in [Hammer, Peled, & Sun, 1990],
emphasizing their similarity to threshold graphs. Notice that every dif-
ference graph (& is bipartite, since V{¥} can be partitioned into the two
independent setg X = {v:wy > 0} and ¥ = {u: w < 0}, Thus Kz is a
threshold graph that is not a difference graph. Figure 5.6 aseigna weights
to &y to show that it is a difference graph that, by Theorem 5.1, is not a
threshold graph.

Let & = (V, E) be any bipartite graph with ¥ partitioned into indepen-
dent eets X and ¥, and define the split graph &y = {V, EU Ex} to have
Ey ={ur:u,ve X and u # v}, see Figare 5.6.

Theorem 5.5 {Hanuner, Peled, & Sun) 4 greph & = (V&) i5 4
difference graph if and ondy if theve i & portifion af V oindo sndependent sets
X and ¥ sueh thol Gy d5 o threshold groph.

Proof. Let & = (V, E] be s difference graph with vertex weights w, tor
v € V and with V partitioned into the independent sets X = {v: uy = 0}
and ¥ = {u:we <0}, Toeach v € X assign the new weight o) = T + wy,
and to each u € Y assign the new weeight wy, = —w,. Llet t+ = 27 If
v € X, then o) + wl = ¢ sinee both wy,wy 2 0. Ho e X andy £ Y,
then wy +wy, = ¢ if and only if [uy —wy| 2 7. g, u € Y, then w4 uf, <t
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Figwe 5.7 Forlidden configurulions o Ferrers digroph: in cach, if the
two sofid arcs ocour, then ot feast one of the fwo desfied ares st o,

since both |wyl, w| < 2. Therefore, condition {3) of Theorem 5.1 shows
that €7y is a threshold graph with weights w), and threshold {.

For the comverse, suppose Vi partitioned into independent sets X and
Y such that &x is a threshold graph with degree partition f,..., Dt
turthermors, we can assuine that X and ¥ are chosen so that

Y =D[] (W 'UD'_mJu'E_i and X = D'_m.u"ij+l bl Dm

‘To cach = € £, T X assign w, = i — [m/2}, and to cach y € D, C ¥ assign
ity = J— [w/f2] - L Fhuslor« # v we C EUEy f and only if wy, +wy 20,
andd i wkdition wy > 0 for » € X aud wy, < Q for y € ¥, Pick T anrch that
T = max{w, : € X} and 7> max{—wy, 3 € ¥}. Toeach r € X assign
Wy = Ws, and to cach y € Y assign ), — —uy — T It is easy to check that
conditions (1) and {2} of the definition of a difference graph are satisfied. O

Theorem 5.6 (Hammer, Peled, & Sun) A groph is o differenec graph
if und ondy if i does wold confein Kx, (5, or 255 os on induced subgrapft.

Exetrcise 5.7 Prove Theorem 5.6.

Introduced in [Riguet, 1951], a Fervers digraph is a digeaph £ = (V, A)—
with Inops allowed—such that for all @, 2, 5, 2 € V' {not necessarily distinet
exce that 1 # yand x £ 2}, it s antthe case that wr, y2 € Aand wz, yx £
A. {This says that [ satisfies Axiom 2 from section 3.4.2; a lnopless digraph
ia n Ferrera digraph if and only if it ia an interval order.) Figure 5.7 illustrates
what is forbidden in Ferrers digraphs, taking the allowed coslescence of
w, Ty, = into account.

Exercise 5.8 Show that the digraph oo the left in Figure 3.4 is not
Ferrers digraph.
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Exercigse 5.8 Show that 0 = (V, 4) is a Ferrers digraph i and oudy il
the out-neighborhoods N+ (v} for v £ V arc nested {or, couivalently, the
in-neighborhoods N ~(v] for ¢ € V7 are nested).

Excreise 5.10 {Cogis) Show that if D = {V, 4} is a symmetric Ferrers
digraph—*“symmetric” meuaning that vv € A if and only if vu € A—then the
vnderlying graph of 17 (discarding any loopa) is & threshold graph. ([Cogis,
1982] also shows how to po from an arbitrary threshold graph to a symmetrie
Ferrers graph with properly chiosen loops.)

For a digraph D = (V, 4} with ¥V = {#1,...,vs}. define the bipar-
tite vepresentation of D to be the bipartite graph B(D} on V(B{D}) =
{Z1, s Enin, -, Y} wWith my; € E(B{D}) exactly when vy € 4. For
instance, the graph @ in Figure 7.6 is the bipartite representation of the
digraph I shown there.

Exercise 5.11 Show that a digraph P is a Ferrers digraph if and only
if its hipartite representation B{D) ia a difference graph.

3.4 Some Applications of Threshold Graphs

The atudy of threshold grapbs begen in [Chvétal & Hommer, 19873, 1977]
with applications to the “aggregation” of lincar inequalities in integer pro-
gramming and set packing problems. There bave been several other appli-
cation areas such as the synchronization of parallel processes in [Golumbic,
1978¢c|, [Henderson & Zalcstein, 1977], and [Ordman, 1989], and to cyclic
scheduling in [Koop, 1986]. This section focuses on an application in the
social sciemccs that fits in more naturally with our approach to threshold
graphs.

Suppose £ ia a set of “snhjects” and f is 8 set of “ftems,” where for
examnple the (5, I} paite might be {students, teste), (soldiers, combat situ-
ations) or (people, opinion poll questions). Assume further that there is a
nary relation p between 5 and I; for the three previous examples p might
be, respectively, “can pess,” “fears” and “agrees with." It is ofter desired
to linear ovder §17 so that the p relation is preserved. Formally, & Guitmon
scle s amapping g: SUf— R euch that foreach u€ Sand v € I, wow if
and only if g{u) < g{v).

Hlustrating this with the poilling example, the existence of a Guttman
scale means that the people and opintosz can be linearly ordered {“scaled”™)
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8o that cach person agrees with the opinions surceading her inche seabs and
disagrees with cach opinion preceding ber in the scele.

We want to determine for which 5, 7. amd p a (uttman scale exists, fo
do this, consider the biparvtite graph 7 in which V(&) =501, 5 and I are
idependent and, for w € & and v & I, wr € EMG T and only tf wme Lek
{75 be the split graph formed from & by adding all cdres boetweer vertices
m & in order to make S complete.

‘T'he following theorem from [Cozzens & Leibowitz, 1934] and [Loibowite,
1978] combines with Theorem 5.5 to show that the bipartite graph of a
Guttmian seale 1= o difference graph,

Thearemn 5.7 {(Cozzenz and Leihowits) A Guitmon sodle erists if
and onfy if Gy is a threshold graph,

Proof. Supposc 75 is a threshold graph. Then by condition (6) of
Theorem 5.1, the vertices of Gy can be Lnearly ordered such that every
vertox In & is adjacent to overy wertex preceding it iv the order bus to o
others, The reverse of this order leads W0 a mapping ¢ that satisfics the
definition of a Guttman seale.

Now assume that (g has & Guttman seale g vet is not a threshold graph.
By condition {4) of Theovem 5.1 and € ¢ Leing split, there cxists an induced
Fo,say o, b with boe € § aned eedd € T This implies Lhe cont radictory
inequalities g(d) < g(B) < gla} and glad < plo) < gld). 0

[Comrens & Leibowitz, 1987] contains further disenssion of rhe comnection
botwern Guttmen scales and graphs.
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Chapter 6

Other Kinds of Intersection

Given a family F = {51..... Sn ) of nonemupty sets, the existence of edges in
the intersection graph Q{F} depends only on whether 8; M &; # B Clearly,
however, the eardinality of the interaections and other featurcs con also be
relevant. This ehapter constders Lhree of Lhe other kinds of intersection
that have heen worked on and shows for each how the basic theory from
Chapter 1 cam be modified and what analogues cxist for various sorts of
intersectijon graphs we have stadied.
Chapter 7 containg other examples of different kinds of intersection.

6.1 p-Intersection Graphs

For each integer p > 1, the p-wndersestion graph (3,{F) of the family & =
{57, .. Ya} of subsets of a finife set § is defined to be the graph ¢ having
V() = F with 5;5; € E{C7) il anel only if 4 +# § and [S; 530 = p. A graph
G iz a p-intersection graph if there exists o family F such that & = {3,{F),
and JF iz then called & p-inferserfion sef representation for . I'hus the
L-intersection graphs are precisely the ordinary intersection graphs on finite
sety. The econcept of the p-inlersection graph was introdnced in [Jacobson,
MeMorrs, &2 Schetnerman, 1991]; see also [Molee, 1991a] and [Kin, MreKee,
McMornis, & Roberts, 1945|.

Example 6.1 Suppose 7 = {51,...,5;) where &) = {e, b}, S =
{h: fi. 'rﬂ} 53 = {E" riy 4, f:-.‘?}:- 5y = {C‘. d. e, f, :'?}‘- and S5 = {ﬂ". d. E}~ Then the
Z-intersection praph G = {1:(F) iz shown on the left in Figure 6.1, with a
set-labeled verson on the right. The graph £3(F) corresponds to the path
525753 and two isolated vertices, $34(F) cotresponds to the edge 535 and
three isolated vertives, Qg (F) i edgeleas fov & > 4, and £3,(F) is complete.

84
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Figure 6.1: A 2-intersection graph.

Exercise 6.1 Show that every graph is a p-intersection graph for every
p=l

The key concept for p-intersection graph theory is a p-edge clique cover
of a graph G, whiekh is a family {17,...,V,} of not neeessarily distinet
sulbwets of V{G) such that, for every set {i1,. .., %} of p disfinct subscripts.
T =W, N1V, induces a complete subgraph of G —recall that T wuy
he the oull subgraph of G—and such that the collection of sets of the form
T iz an edge clique cover of &, The proof of Theorem G.1 will show ihat
{V1,.-.. V) is & pedge clique cover of G if and only f oy € B(G) is
equivalent to v and vy being in at least p common sets Vi This shows that
pedge clique covers are what are called p-pererators in [Chung & West,
1994).

Exercise 6.2 Show that V) = {51, 5}, Vo = {57, 5,5} Vo = {51, 5,
Sy, Saf. Vi = {52, 85.80,5) V5 = {84, 55}, Ve = {55, 54}, and Vi =
{%3,8:} is & 2-cdge cligue cover of the graph G in Example 6.1. Show
t—h&t 1i’,-'l = {S'.l.:-‘-‘;‘ﬂ}: .":.-'3 = {S]qu}: 1{'1- = {SI:SEESH-}: !“;:l = {521 '5:'{1‘5‘4}:
Vs = {82, 5,3, Vo = {53, 81}, Vo = {84, 5}, and V3 = {54, 55} iz another
2-edge clique cover.

Exetcise 6.3 Clieck thal bemg a l-edge clique cover I8 the same as
being an edge clique cover.

Theorem B.1 Suppuse (4 the p-intersection graph of F = {8),...,5:}
un the set S. For each element x € 8, put Ve = {8 € V(&) : z € 5;}. Then

the family of these V. 's forms a p-edge elique cover for 3.

Prouf. Supposs 7 and F are aa in the theorem and {o, ..o apb i
a set of distinet elements of § and 5,5, e T =V, n--- N Ve, Then
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{z1,...,zp} © 558y, 80 508 2 p, and s0 55, € E{). Thua T mduces
a complete subgraph {possibly the null subgrapt) of . T show the sets of
form T cover E(G). suppose 5:5; € E(f). This implies |5 1.9;] 2 7 and
thus therc exist distinet @1,...,@p € 5 M 5. By definition of the Vp's, we
have 53, 5; & Vo, -~ Vo O

Exercise 6.4 Show that the first 2-edpge clique cover listed in Bxer-
cise £.2 is the sort described in Theorem 6.1, Also check that we really have
shown that p-edge clique covers are the same as pacnerators [as defined
almve}.

Exercise 6.5 Suppose & has p-edge clique cover {47, ... Vim |- For each

v € VIG) = {v1..... Un}, define F; = {j: v € V;}. Show that Ry, .. R,

ia a p-intersection set representation for &,

For any graph (7, the p-intersection auimber of (7 is the minicmm cardi-
nolity of a sct § such that & is & p-interscetion graph on 5. The following
iz analogous to Theorem 1.

Theorem 8.2 For cvery graph &, the p-intersection number of {7 equels
thee minirnumn cardinality of a p-edge cligue cover of (4.

Proof. This follows by a similar armuonent to that used for Theorem 1.6,
using Theotem 6.1 and Exercize 5.5. O

Actually finding p-intersection numbers is hard, even in the p = 2 cage;
sec {Chung & West, 1994), [Ganter, Cronau, & Mullin, 1034], |Jacobson,
Kézdy, & West. 1995], and [Eaton, 1987). For instance, Jacobson, I{ézdy,
and Weat show that the 2-intersection aumber of the n-vertex path £, is
seymptotic to 24/, Also see [Brigham, Dulton, & MeMorris, 1992 19931
(Eaton, Gauld, & Radl, 1996], and [Fiiredi, 1097

Paralleling section 1.3, define a graph to be o pecligue groaph if it s
isomorphic to the p-intersection graph of all maxeliques of some graph. 1t is
pot hard to show that the direct analogue of Theorem 1,12 holds: A graph
is a pclique graph if and only if it has a p-cdge cligque cover that satisfies the
Helly condition; aee [McKee, 19%1a), which alsa shows that p-cloue graphs
arc clique graphs.

Exercise 6.6 Show that, for every p > 1, a graph iz the p-intersection
graph of » family of subtrees of a tree if ond ondy if the graph is chordal
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Thus chordal graphs do not have interesting p-analogues, and the same
15 true for interval prapha, proper Interval graphs, unit interval vraphs, and
line graphs. However, parts of intersection graph theory can have inter-
esting g-intersection graph aoalogues 1o unexpected ways. In particular,
section 4.2 motivates the most-studied topic in g-intersection graph theory:
p-competition graphs, meaning graphas isomorphic to the p-intersection graph
of the out-neighborhcods of vertices of a digraph. {Kim, McKee, Mcbor-
rig, & Roberts, 1995] is the most general source, alihough not the earliest.
For instance, the following dircet analogue of Theorem 4.7, the Dutton and
Brigham characterization, appeared in [Isaak. Kim, McKee, McMorris, &
Loberis, 1952].

Theorem 6.3 A grash G 45 the p-competition greph of an arbitrary d-
graph if and ondy if & hes & p-edge cligue cover of cardinslity \V(G)|.

Proof. First mppose 7 iv the p-eompetition graph of D, where V() =
V(DY = {w,....v}. It is easy to check that {N—{w}: 1 <1 < n}, the
family of all in-neighbovhoods of D, is a pedge clique cover of GG

Comversely, suppose (3 has a p-edge clique cover {14,...,1.}, wherer <
n: since repetittons are allowed, we can assume that r = n. Define a digraph
L with V(£ = V() with wy; & A(L}) if and only if o ¢ V). It is easy to
check that (7 is the pconapetition graph of D, O

Exercise 6.7 Show that C is not the Z-competition graph of an arbi-
trary digraph.

Howowver, not overything gocs over dircetly from competition graphs
to p-competition graphs. For imstance, Theorem 4.7 made it easy to tell
which complcte bipartitc graphs £, arc competition grophs of arbitrary
digraphs: precisely these for which mn < m<4n. But only partial results are
known even lor which cormplete bipartite graphs ore 2-competition graphs of
arbitrary digraphs; for istance [Tsaak, Kin, McKee, MebJorio, & Toberts,
1992] shows that Ky, is the 2-competition graph of an arbitrary digraph if
and only if n = 1 or n > 9, and [Jacobson, 1982] showa that ¥, is the
2-competition graph of an arbitrary digraph if and only if s = 1. There
are also agalogoud questions for p-competition nunbers of graphs in Kim,
MeKee, McMorris, & Roberts, 1993,

i, MoeKee, Moeblorris, & Boberts, 1995] also showa the direct ans-
lres—replacing “competition” with “p-competition” and “edge clique cover
with “p edge complete cover” —ol Theorem 4.6, for acyelic digraphs, and Ex-
crcise 4.7, for loopless digraphs. But no simple apalogue is known for the
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characterization i (Roberts & Steif, 1983] that a graph (7 is a competition
craph of a loepless digraph if and only if #(&) < V()] and €7 2 A,

See [Majur & MoMoris, 1990)] for printersection graph enalogues of var-
ous other intersection graph concepts. [Lundgren, MeKenaa, Merz, & Ras-
missen, 1985, to appear]. [Lundgren. Melenna, Langley, Merz, & Ras
nmssen, 1987], aud [Anderson, Langley, Lundgren, MeKenna, & Merz, 1994
are some of the recent papers on p-competition graphs of sprcdal types of
digraphs and otber related topres.

[Eaton & Grable, 1996] and [McMorris & Wang, 1996] disenss nolions
related to p-intersection graphs, such as having 5:5; € E{G) depened oo the
congruence class of |8; N 55| modulo a given nomber- in particular, when

.51 8| 1s odd.

6.2 Intersection Multigraphs and Pseudographs

The intersection maultigreph 0,(F) of the family F == {51, ..., 5.} of subwess
of a Hnite zet 5 i3 the multigraph M having V(M) = F with &, and 5; joined
by |4 M S, parallel edges whenever © # j, When |5, N5 = 1, 5,8, is a
raultiple edge with multiplicity |5, NS5, Let E(A) be the set of &) multiple
edges of M. A multigraph M i= an intersection multigraph if there exists »
family F such that M =0, F).

For any multigraph, its wnderlyang grmph is obtained by replacing each
nultiple edge by a simple edge. an cdge of nmMapdicity one. Thus the or-
dinary interscotion graph £2{7) is the nnderlving graph of the intersoetion
mulligraph £, 0.

Example 6.2 Supposc F = {5, ..., 5} whore §) = {obe}, &5 =
{hedl, & ={bod fogh, 5 = fedoe figh and 85 = {e.d ¢} Then the
inlersection multigraph M = 0,0F) is showp on the lell in Figure 6.2, with
ret-lnheled wersion on the right. Noties how this vanitigraph it ltaneonsly

displazs all the ;0 F s from Example 6.7.

Exercise 6.8 Show that every multigraph is an interseetion multigragl.

An edye cligue porttbion of o multsgraph M 15 a family {0, Q) of
ot necsasarify distinet complete subgraphs of the underlving graph of 3
snch that each wywy; € E(M) has multipliciey |14 0 s € FlCR)30 Thne M
con be thought of as the suporposition of (i, .. ., Gn, ldentifying wortices
while coltecting edees futo bindles of porallel edges.
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Figure 6.2: An inlersection muliigraph.

Example 6.2 {(continued) The complete subgraphs induced by {5,
oS5 Sy Ssb {5152, 83, {50 80,54}, {84, 55), {93, 854, and {53, 5}
foim one edee clicque partition of the multigraph A in Figure 6.2. Another
consists of the 1% Ha's,

Paralleling section 1.4, dafine a multigraph to be the cligue multigraph
of a graph il il b5 lsomorphic to the intersection multigraph of all max-
chques of . It is straightforward te modify the proof of Thearem 1.12 from
[Reberts & Spencer, 1971] to show that a multigraph is a clique multigraph
of a grapl if and only if it hes an edge cligue partition that satisfies the
Helly conclition. [MreKee, 1981¢] contains more about clique multigraphs.

Exercise 8.9 Use the abovementioned charscterization of cligue malti-
graphs to show that removing an edege from K produces a clique graph that
is not a clique multigraph.

The analogucs of Theoram 4.2, charactenzing squared graphs, and The-
orcm 4.4, characterizing two-step graphs, are also stralghtforward; see [Mo-
Kee, 1990a]. Ta luct, [Harary & McKee, 1994] shows that the “squared walii-
graph” of a chordal graph iz particilarly niee in that it “aquare roat” —the
chordal graph whosc sgquarc is the given multigraph— can be uniguely con-
giructed. [Prisner, to appear] shows an advantage of considering “trisngle
multigraphs™ - intersection nmltigraphs of the X3's of a graph——rather than
“triangle graphz" [McKees, 1589] introduces “upper bound mmltigraphs,”
showing how they determine their aseociaied posets up to somorphism.
iAnderson, Jones, Lundgren, & McKec, 1990] discusecs “competition multi-
graphs” and “multicompeiition numbers,” and [Bylka & Komar, 1997 con-
siders incersecrion nmbers of infetzeclion mitigraphs.

[McKee, 19971b] characterizes chordal multigraphs, the intersection multi-
graphs of sublrees of o tree, and indervad mulilorophs, Whe Inlergeclion multi-
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Figure 6.3: A chordal mulligraph with ¢ ree vepresentation.
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craphs of subpathe of 8 path. For instance, Pigure 6.2 shows a chordal
multigraph with a tree representation.

Wo state and prove the charactedzation of chordal multigraphs; the cor-
reaponding theoremn for interval miltigraphe is more invelved.

‘Theorem 6.4 {(McKee) A mulbigraph M with underiying groph G is
a chardal multigraph if and ondy if both the following held:

(1) the multiplicity of eech nv € E(M) 45 greater than or cqual to the
number aof marclioues in G that contoin Aoth v end o

(2} G is chordal.

Proof. Firet suppose that M is the intersection multigraph of a family
of subtrees of some tree T and G is the underlving graph of M. Since T is
niso a trec representation for &, condition (2} follows from Theorem 2.4, If
uw & B(A) has multiplieity p, then [, N1 = g and {u, v} will be in p of
the vertices of T that are maxcliemes of 7 {by the proof of Theorem 2.1).
Condition (1) vhen follows,

Conversely, supposs Af has underlying graph ¢ and satisties condi-
tions {1) and (2). Construet a maltigraph MY fom M es follows: For
coch edge uv = E(M) with mulliplicivy g, et & be the number of max-
cliques of & that contain ue; by condizion (1), we can create g — & == 0 new
simplicial vertices, each joined {only} to ¢ and v by simple edges in M¥.
(This M ¥ sakislles condition (1) with equality always bolding.) Let G be
the underlying eraph of M, and note that GF is chordal by condition (2).
Let ¥'F be a clique tree for (7%, and construct ¥° from 1~ by removing
occurrences of vertices in V{M 15 V(M from vertices of TF. Then it is
straighrforasrd lo verify Lhat A =007, -0 2 VAT £

Exarcice 6.10 Show that in a chordal multigraph M, cvery circuit of
length greater than or equal to four must contain at least Lwo {possibly
paralle:] chords,
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Exercise 6.11 Show that the muligraph obtained by removing edge
5155 from the multigraph in Fipure 6.2 is not a chordal rmBigraph. Also
show that the tree repregentation for the chordal multigraph in Figure 6.3
can be constructed as to the proof of Thecrom 6.4,

We now return to the topic of section 4.3, the premise of {Cohen, 1978]
that ... 1t is possible for michie overlaps to be described in a one-dimensional
niche space if and ouly if the niche overlap graph [competition graph] is an in-
terval graph.” Define a competition multigraph of a digraph 2 to be a mualti-
graph isomorphic to the intersection mutigraph of the out-neighborhoods
of vertirea of 1), and recall that a food web is an acyelin digraph.

Theorem 6.5 A mulligroph M i o compelition multipraph of an acyciic
digraph if and only if V(M) cen be labeled as {v1,...,va} and M has an
edge cligue parition £ = {Ch,....Qn} sueh thal v; € Qy dmpliey ¢ < j.

Proof. Thiz follows by & modification of the proof of Theorem 4.6. O
Exercise 6,12 Complete the details of the proof of Theorem 6.5.

[McKee, 1390b] observes that the competition multigraphs of the stan-
dard food web examples are not even chordal, let alone interval tqultigraphs
{a they should be for a one-dimensional niche space). [McKee, 1995a) con-
siders other deficiencics of food web models and uses competition onlti-
graphs {and peeudographsa) to predict possible omissions in observed fond
webs.

MeKee, 1994)] introduces intersection pseudegrophs, formed by creating
}5:| parallel Inops at each vertex S, in M = 0.{{5;,. . ., 5:}). When |5 2
1, there iz a mulfiple oop st 5 with mulfiplieity |Sih all such multiple loops
ate also included in E(1{).

Example 6.3 Suppose F = {5;,..., 5} where 57 = {a}, 52 = {e},
Sa={mbc} Sy ={obodl S ={cde f}, and S5 = {e,d, e f}. Then
the intersection pseudograph of JF is shown on the left in Figure 6.4 with a
selb=labeler] version on the right.

Exercise 6.13 Show that every peseudograph is an intersection pseudo-
grap.

We: describe interzectinn peendographs in further detadl in order to illus-
trate concepts that are important in workivg with both inbersection multh-
graphs aod intersection psendographs. A mazclique M of a pseudogroph is a
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wmaxclique, together with one loop at cach vertex, of the graph cbtained by
replacing each multiple edge and mnltiple loop in £{M) by a simple edge
or loop. Thus s maxclique oonrains exartly one edge and one loop from
each bundle of parallel adges or loops having the satme endpoints in M. If
it is possible to romove simultancously the edges and loops of all the mosx-
cliqucs of M, then the vesulting pseudograph iz denoted # M. If, morecver,
thiz process can be repeated, forming #(rM), efe., nowil all edges and loops
are gone, then Af is called a reducible pseudagraph and the family (allowing
repetitions) of all maxcliques of M. r M, rir{M)}, ... are the residual cliguss
of A,

Fxample 8.3 (continued) The intersection pseudograph M in Exam-
ple 6.3 is reducible, with rM and +{v{M}) shown in Figure 6.5. Thia M has
wix rewidual chiques: {5, .55, 53}, §54, 54, .55, S¢}. and {5, 55, 55}, the max-
cliques of M5 {53, S4} and {85, 85, Ss ), the maxcliques of 7 M and {55, 561,
the maxclinue of #(r{ M)}

Exercise 6.14 Show that the intersection psendograph of the family F
in Example 6.2 is reducible, with eight residual cliques. Alse show thaet the
intersection psendograph of the family F' = {{a}, {a.8}. {o, ¢}, {6, ¢}} i3 noe
reduicible,

[tchine the residual clfique psexdagraph K (M) of a reducible pseudograph
M 1o be ihe intersectivn pseudograph of all the residual cliques of M. The
residual eligue pscudoeraph of the pscudograph M fromy Example 6.3 is
shown in Fignre 6.6 TF KA ix also redncible and if KK (M) = M, then
K{AY is called the pscuds dual of M.
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Figure 6.5: Reduced psendagraphs of Figure 6.4,
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Fignre 6.6: The residual cligue preudograph of Figure 6.4,

Exercise .15 Show that the pseudograph in Example 6.3 has a pseudo
dual.

Exercise 6.168 Verify that the intersection pseudngraph Af of the family
F={5.....5) with 5 = {a,bed}, 53 = {a.bee} 5= {abd F}

Sy = {a,c,d, g}, S5 = {5, f}, 85 = {d, g}, 5 = {c,e}, 15 “self-dual” m the
sense that M 2 A'{M).

[McKee, 1994] characterizes those psendagraphs that heve pseudo dusls.
Moreover, by defining infervaf pseudographs to be intersection pseudopraphs
of subpaths of paths, every interval pseudograph can be shown to have a
peeudo dual. [Fulkerson & Gross, 1965 shows alpebraically, and [Duchet,
1584] states pat-theoretically, that interval pseudographs have subpath rep-
resentations that are unique up to jsormorphiso.
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By defiming competifion paesdogruphs to be intersection pseudographs of
oit-netghborhonds of digraphs. every competition psendograph of an acyelie
digraph that alsc 1= an interval pseudograph can be shown to have a paeds
dual -namely, the digraph's “commeon-enemy pseurlograph,” paralleling sec-
tion 4.2, [McKee, 19%5a} relates this to the ecological application in sec-
ticn 4.3.

6.3 Tolerance Intersection Graphs

Suppose F o= {5],...,5,} s o family of mbsets of a finite zet 5, o is
a symmetric binary function taking pairs of positive reals to nonnegative
reals, i is a unary function taking subsets of 5 to nonnepgative reals, and
each 5; is assigned a positive real foleronee §,. The d-folerance intersection
graph ¢ of the family F with respect to @, g, and the #'s has vertex set
V(G) = F with §,5; € E(G) if and only if 4 # 4 and (S NS0 = @, ).
A greph G is & g-folerance intersection graphif there exdst 7. &, u, and 4;'s
auch that {7 is isomorphic to the d-tolerance interzection graph of F with
respect to o, u, and the £;'s

Thix very peneral notion of ¢-tolerance was introduced in [Jacobson, ke
Morris, & Mulder, 1891 and |Jacobson, McMorris, & Scheinernman, 1531).
Frequently, u messures the cardinality of a set or the length of an inter-
wal. Natural basic choices for the £;'s include making them all & constant
or setting each t; = w(9:). Natural choices for & include the minimmm,
maximurm, product, sum, and absolute difference functions, resuliing in the
followring types of toleranees graphs: min-tolerance intersection grophs from
taking ¢z, y) = min{x, ¥}, mae-toleronce tndersection graphs from ¢z, ¢) =
max{z, g}, product-toflevance indersection graphs frow @l yw) = oy, sum-
tolerance intersection gruphs from ${x, ) = o + 4, and ebdiff-toleronce -
tersection graphs from @z, ) = |2 — y). The tollowing exercize presents one
extreme case of ¢-tolerance interseetion gruphs,

Exercige 6.17 Show thet if x(8 = |5| for each & £ 5, each 4 =
w5, and ¢lie, ¥) = p (a positive indeger) 15 a constant funcitor, then the
f-tolerance intersection graphs of a family * are prectsely the p-intersaction
graphs of F.

Exercise 6.18 Show that every graph iz a ¢-taleranee intersection graph
for eyery .
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Theorem 6.6 {(Jacabson, MeMorria, & Mulder} Brery graph is o
min-tolernnce intersection groph of subatars of a ster with all the £;'s equal
to a4 constand.

Proof. Let G be & pgraph and m = |E(G)). Label the pendant vertices
of the star K4, with the clements of E{(}. Tor each © € V(). let 5,
denote the substar of Ky, that consists of the central vertex topether with
those pendant vertices labeled with the edpes that are incident with v in G
Thus un € E(G) if and only if S, and 5 have an edge of K| in common,
pamedy the edge between the central vertex and the pendant vertex lebeled
wr. Thus {7 is the min-tolerance intersection graph of the substars Sy, of
K1 m with cach ¢; = 2 and p{S5;] = |5 o

NMNote that Theorem 6.6 shows that every graph is the “edge intersection
graph” of substars of a star, as shown in [Golumbic & Jamison, 19854,
1985h]: alse eotnpare this with Corollary 2.17.

The definiticn of g-tolerance interzection graphs was motivated by the
following special case from [Golumbic & Monma, 1932| and [Golumbic,
Motuna, & Trotter, 1984 A min-toleranee inlerval graph is a min-tolerance
intersection graph of a family of intervals of R in which p measures the length
of intervals, {Warning: in the literature, min-tolerance interval graphs are
frequently veferred to simply as “tolerance graphs.”} In cther words, the
vertices of & correspond to intervals 81, ..., 8, with two vertices 5 and 5y
adjacent in & if and ooly i 155 M 5| 2 min{t;, t;} for the corresponding in-
tervals, [Gohunbic, Monma, & Trotter, 1954] discusses powsible applications
thar invobve tolerating eertain degrees of overlap of intervals

Exercise 6.19 Show that the cyele £, although not an interval praph,
is & min=boleranes interval srapls,

Exercize 6.20 {se¢ [Gohunbic & Monma, 1982]) Show that if all the
t:'s cquel A consteat ¢, then the resulting min-toleranec interval graphs are
interval graphy. Conversely. for every ntecval graph G, show that there
is a constant ¢ such that 7 15 2 min-tolerance interval graph with every
t; = ¢. {Using the results on “containment graphs™ in section 7.6, if each
t; = |5¢], then the remulting min-tolerance interval grapha ean be shown to
be “permutation graphs” as in zection 7.6, and conversely.)

A wide variety of papers have been wrilten on nin-toleratce teryal
graphs, incduding [Monma, Reed, & Trotter, 1988], [Naragimhan & Man-
ber, 1852], [Andreae, Hennig, & Parra, 1993], [Fclsner. 1993), and [Holm &

Bogart. to appear].
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Jacobson, McMorris, & Scheinerman, 1941 investigates maz-, sum-,
atd product-tolevastoe tnferval grophs, where these are defined in the same
sort of way as min-tolerance interval graphs.

Theorem 6.7 {Jacobson, McMorris, & Scheinerman) Frery tree
is & mar-tolerance intervel graph.

Proof. The proof is by induction and shows something even stronger:
every tree is a max-iolerance interval graph such that, for each verlex, there
is @ representation in which the interval correspornding to that vertex is “ledt-
most,” meaning that its left-hand endpoint 1s less than or equal to all the
other left-hand endpoints of intervals in the representatinn. Too stare the
induction, note thet such representations exist for trecs having only one or
o vertices,

Now let &7 be o tree with w vertices and assume that all trees with
fewer than » verticea are max-tolerance interval praphs whern sach vertox
can he made to correspond to s left-most interwal. Fix any @ = ¥V{TL
Let T3,...,T% be the connccted componente of 4 -- x and ot T, ho the
vertox of T adjecent to x in ¥'. By the induction hypothesis, cach 75 has o
max-tolerance interval repressatation with x; corresponding to a lefi-most
interval. MNote that, for each i, ail the intervals In a represeotation of
can be translated so that the left-hand endpoint of each lefr-moso ineerval
iz (. Amsmme that this has been done. Lel vy denote the largest sght-hand
endpoint of this roprescoration for 1:, and let o be the length of the lonmes
mterval over all of these representations for 77, ..., Tk Choose ¢! > m and
get W' = max{t t,,..., 4, ). Now extend the left-hand endpoint of each
interval corresponding to an z; down o —w’. Each of these intervals is
now m' units longer and there are no new intersections amorg the ¥j's. Sct.
Wy = Z}:l LFE

We now define a mase-tolerance mterval representation of T haviog o
correapond to a leR-most jnterval. Let 8, = [0 wg + 2kn'] and ¢, = #,
with Lhe renuining Wolerances as Delove aud all (he udervals e The TS nowe
translated w; 4+ 4 units to the right. The new intervals corresponding to
vertices in T; do not interssct those correaponding to vertices in 75 for § #
becanse thev have been moved suffictently far apari in the translations to
the right. Thus we ooly need check those adjacencies caused by intervals
micrsccting 5. 8inee # > m and each interval not corresponding to x or
an xy has length at mast m, verlex o can only possibly be adiacent 1o oan
7;- Each |85, = m', a0 |5 N85, = m' = max(t;.t.,], and so v 19 adjacent
v each of oy, . .25, A
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Figure 6.7 A trec that i3 net a min-tolerance wnberval gruph.

Exercise .21 [Jacobson, McMorris, & Scheinerman) Show that
every tree is & sinn-tolerance interval graph and a product-tolerance interval
graph.  (Note that the sane argument would work whenever & satisfies
Ny oo (3 ) = 00.)

In coutrast to these results, [Golumbic, Monma, & Trotter, 1984] shows
that not every trec 1s o min-tolerance interval graph—indced that & tree is a
min-tolerance interval graph if and only if it containg no subtree isomarplhic
to the troc shown in Figure 6.7,

Motivated by Theorem 3.8 from [Roberts, 1969a], that the proper in-
terwal graphs are precisely the unit interval graphs, a natoral question iz
whether avery d-tolerance proper interval graph iz a g-tolerance unit inter-
val graph. As expected, a ¢-ftolerance proper interval graph 19 a g-tolerance
inberval grapl of a family of ntervals where o interval s properly con-
tained in another, and a g-lalerance unil infervel graph is a @-tolerance
interval praph of a family of unit-length ntervals, Golumbie, Manma, and
‘[rotter firat posed shis question for min-tolerance interval graphs and it was
surprisingly answered in the necative in [Bogart, Fishburn, Isaak, & Lang-
ley, 1995). The gquestion remains open for max-tolerance. {Shull & Trenk,
1997] proves the equivalence of “unit” and “proper” for bitelerance interval
digraphs, where the two endpaoints are allowed to have different tolerances.
[Jacobson & McMoryie, 1991] answers the guestion in the affirmative for
smin-tolerance interval graphs. This result witl appear as Theorem 6.11,
after we consider a couple of closely related classes of tolerance graphs.

[Bogart, Fishburn, [saalk, & Langley, 1995 defines a 50% tolerance graph
to be a min-tolerance interval graph represented by the intervals S; with
tolerances #; = |5;]/2.
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Theorem 6.8 (Bogart, Fishburn, Isaak. & Langley) A graph is o
8% tolerance graph if end only if @ is o win-tolevance unit inferval graph.

Proof. Suppoas G has a min-tolerance unit interval ropresentation wang
e unit inlervals 55 and lolerances f;. Note vhak each & can be picked so
that £, < |8;| = 1. Let ¢; be the center of 5; and set & = 1 — #;. Create the
new intervals 8] = [¢; - 8. & o )] with telerances . These intervals and
Lolerances give g representalion lor G as a M0% tolerance graph.

Conversely, suppase & has a 50% tolerance representation weing intervals
5; and tolcranecs ¢ = |5!|/2. Sealc the represcntation so that ¢ < 1 for all
i and let o then be the center of the th interval. Create the new intervels
5= [m - ?lg:f-':'. + %] with tolerances #; = 1 — ¢;. This new representation
makes ¢ & min-telerance unit interval graph. a

Exercise 6.22 Verily the last step in each parapraph of the proof of
Thesremn §.8.

[Jacobson, Mchlormis, & Mulder, 1991] and [Jacobson, Lehel, & Lesmak,
1993] study the g-televance chain grapfis in which the family 51, ...,8: 5 a
chain of fnite sets with respect to set melusion, with 5) € - © 5, and
measuring cardinality.

Exercise 6.23 Show that = graph i= a f-tolerance chain graph if and
only if 1t is the ¢-tolerance intorsection graph of the scts &; = {1, ... Kk}
whore cach k; is an imteger and 1 < &y < --- = By

Exercize 6.24 Show that a graph s a ¢-tolerance chain graph if and
valy if it is a ¢-tolerance interval graph where the intervals 5 = {0, 73’ where
each rjisreal and D < r) <ro < - < 1y

‘Phe nexdt exercise demonstrates what heppens when the two natural
restrictions are placed on the toleraneca and the measure p.

Exercise 6.25 Show the following:

(1} A graph s & ¢=tolerance cham praph with constam, tolerances if and
omly if it consists of a complete graph and isolated vertices.

(2} A praph is a mio-tolerance chaio graph with tolerances equsl to set-
sizes tf and oply if it is a complete graph.

{3} A graph is a mav-tolerance chain graph with tolerances equal to
set-sizes if and only if it i a disjoint union of complete graphs.

{4} A graph iz a sum-tolerance chain praph with tolerances equal to
set-sizes if and only if it is an cdgeless graph.
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We now imtroduce some convenient notation. IF {7 is the g-tolerance
interval graph of the intervals [l r,] with corresponding tolerances t; for
i = I,...,7, we simply say that ¢ has the representaetion [{1.ri1]i¢1, ...,
[fs s tn {or [{;,r;]; t;). Exercise 6.24 shows that a graph iz a f-tolerance
¢hain groaph if and only if it bas a representation [0.ry]its, ..., [0, ro)itn
where 0 < r; = -+ = ry. The ollowing lemma ia easy Lo prove.

Lemma 6.9 Suppose (7 is o a-faleranes interual graph.

(1) If @ hes the representation [l b, then & hos the represenfation
[fi + k,re + AL & for every k.

(2) Suppose ¢ safisfles the condition that Glkr, ky) = kd{z,y) for all
positive k. Then G has the representation [l rli; if and only if G has the
representation [kly, kry); kb, for every positive k. a

Theorem 6.10 (Jacobson & Ncbhorris) Erery ¢-tolerance chain greph
4 g p-Eolerance proper interval yroph.

Proof. Let &' = (V, E} he a ¢-tolerance chain graph with representation
[0, 7¢]; ¢4 with r; < ry; whenever { < 7. If G is complete we are done. If not,
then let £ = min{g(t;, £;) — min(ry, r;) vy & E}. Since 7 is not complete,
¢ > 0. Now sct 5 = j%ik,rj 2“} Clearly |85 = r; + 4. It follows
that |5 M55 = i ty) if and only if min[ry, rj] = oft;,4;). Therefore,
Sl es oS b 15 8 proper interval representation of & o

Theorem 6.11 (Jacobson & McMorris} A graph is & sum=tolerance
proper interval graph if and andy if il is o sum-tolerance undf fnferual graph.

Proof. It is easy to see that every sum-tolerance upit interval praph js
a sum-tolerance proper interval graph,. Let G be o sum-tolerance proper
interval graph having represeotation [f.71}5¢1,. .., [ln, )i te- By Lemma 6.9
we are done if we show that ¥ hae a representation using intervals of equal
leppth. Using induction, assume that the frst & intervals have equal lengoh.
If &K = n »e are done, so assume thet & < n.

We now show bow to construet s representation for &7 where the first b4+1
intervals all have the same length. Let 5 = [§, r]. Assume Skl = |Zeas]
and set § = |Sg| — [Sky1|. Form the intervals ! as follows: For § < & let
.5" =5, andforj >klet S = - -g.,f‘_? {-El Let £; = ¢t; for all j < & and
.'.r =t;+ ﬁ for 7 = k. It is casy to show that S;;t;- is a represantation for
- for each 7 = 1,... 1. Similarly if |8| < |S;H.1{ let & = |S;41] — |9, and
set §; = 95 for j -k, For j <k, let S = [l — §, 95 + §] and define the new
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tolerances by tfa- =4y for § <0 & wnd ﬂ:- =+ '% for § = k. il

The next three theorems demonstrace the robustness of detolerance chain
graphs.

Theorem 6.12 {Jacobson & WcMorris) A groph s o sum-tolernnee
proper fnferunl groph if und only of o 6 o s tolerance chein graph.

Proof. From Theoram 610, every sum-tolerance chain eraph iz a sum-
tolerance proper interval graph., To prove the converse, fet & be a aum-
tolerance proper interval graph with representation ({1, r1]it1, ..., [ln) i -
Sinee the inlervals are proper we ey assie shal &< =0 g and ey 2
- = v, By Lemmma 8.9, we can take O < £ We now show that 7 s a
sum-toletance chain graph with representation |, ry +4li 81+, o {0 v+
fa|itn + Ins For & < 4, ([0 4] O [0,%, |- £ = (8 1 ) F (E o L) if and
iy 0wy + 0, = 0 =540+ 6 if and only iDvg — 8 = 44+ 4 T and only if
[[fiared 1 [B. ]| = 4+ 1 d

Theorcm 6.13 (Jacobson, McMorris, & Mulder) A graph s o 7w
toleratics chain greph f ond only i it is an dnterval graph.

FProof. Suppose & is o max-tolerance chain graph with, by Exercise .23,
each 5 = {1,..., &} where 1 < & < - = k. Consequently, vorticos
corrcsponding to 8 and & are adjacent n 7 i and oaly if min{k, ki =
max{t;, ti 1 We may ssime thal each 20 b, sioee o 4 = & then 5,
correspronds to an =olated verex of 3 and can be disregarded, So vertices
corresponding to S, and 5, arc adjacent if and only if [, k] 11 [t,. &l F 0.
Thus, the max-tolerance chain graph of A 15 the inferval graph of the sel
{[ti- k] - 4+ = 1,...,n}. Conversely, 1 = easy Lo show lhat every nserval
graph has an interval representation of this form. o

Theorem 6.14 [Jaccohsen, McMorris, & Mulder) A gk is a min-
tolerance chain graph if and oxnly if i is o threshold groph.

Proof. Juppose &7 13 o min-tolerance choin graph with o reoveseplation
[O.ri]it1, ... . [0 7a]idn where ry < - - < 7y, with vertex 2 corresponding to
[0, ;] By Theorem 5.1, it suffices 10 show that every sieh ¢ sither buas o
vertex adjacent to all other vertices or has an isolated veroex, (6 < 3,
then w18 adjacent to all ather vertices of G IF L) & vp and v is ned isolared,
let @ be adjacent 1o vr. This hinplies thal £ < r;, and thus ¢ is adjacent

ter all other vertices of &,
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Figire 6.8: A threshold graph with o mdn-ioleronce representafion for the
proaf of Theoram 614,

For the convorse, Figure 8.8 shows a min-folerance represe:ntation for

a typical threshold graph & (as in Figure 5.3): Dy....,Dy is the degree
partition of & with Ly possibly empty and Dy, o pre'aeut ooly if 7 1= odd,
A line: betwecn cells 0; and 12 meaps that every veriex in DY is adjacent to
every vertex in I3, The IX's in the left column represent independent seta,
with the open neighborhoods of their vertices ordered by inclusion down-
ward, and the £%° in the right column represent complote subgraphs, with
tha closed nelghborhoods of their vertices ordered by inclusion upward. The
representing set and tolerance are next to each Dy, 0

There are nthar interasting ways to extend the notion of threshotd graphs.
(Jacobsen, Lobel, & Lespial, 1993 calls a graph G a ¢-threshold graph if
there exists a positive number ¢ assigned to & and a positive weight wr,
asgigned to each vertex o such that

uw € E(GYif and only if ¢ = éfuy,, wy )

Since the complement of a threshold graph is a threshold graph by Corol-
lary 5.2, the ordinacy threshold graphs are precisely the sum-threshold
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graphs,  [Jacobson, Lehel, & Lesnial, 1993 poes on to cheracterize o
Lresituokd praphs where ¢ = ale + v + 5o — y).

[Monme, Reed, & Trotter, 1958) defines s graph & to be a threshold
toleranee graph if it 19 possible to assign a positive weight w,. to each vertex
v of ¢ and a positive tolerance £, to each v such that

wy & £{G)if and only ifwy + wy 5= min(t,, ).

Thus if all the tolerances arc cgual in o thresheld tolerance graph, it is
an ordinary threshold graph. Complements of threshald tolerance graphs,
called onTT grophs, are characterized m [Monma, Reed, & Trotter, 1988
Uzing the same parameters as above, adjacency in a col"l' graph is defined
by

awny, + oty S minddy, £y )

o

By changing the .’z to v’z and then the w,’s to £,'s, % is clear from
Exercize £.24 that co'TT graphs are precisely sum-wolerance chain graphs,
The following sumrnanzes these results o sum-tolerance clain graphs.

Theorem B-15 {Jacobsen, McMorris, & Mulder) Let G be 2 graph.
Then the following statements are equivalend:

(1) & ts ¢ coTT graph,

(2) & s o sum-tolerance chamn groph:

(3) G is @ sum-tolerance uwnit interval graph;

(4) G 15 & swm-tolerance proper interval groph. O

[Brigham, McMorcis, & Vitray, 1995] studies d-ieferunce compelition
graphs, defined the same way that competition graphe aad p-competition
praphe were in sections 4.2 and §.1. Specifically, let ¢ be a symunetric ey
{unction thab lakes palrs of nouwnegalive intesers to ponnegabive integers.
The graph (7 i 4 ¢d-tolerance rommpetition graph if & is isamorphie to the
drtolerance intersection graph of the out-neighhotrhands of the vertices of
vome digrapi, Thua

ti; € B(GYIFand only i |NF(u) 0 NT (1)) 2 @(t:,05)

tor some tolerances 4y, ..., &, As expected, there is v clique cover analogue
of Thearem 6.3, Let b be as above s T = (4, ... {,) be an n-tiple of (nol
necessarily distinet} nonnegative integers. A & -T-edge cligue cover of the
graph 7 ia a family {W.... Vi1 of subsets of V(G) such that sy € B{G)

if and only if vy and v; are elements of at least ¢(%;,t;) common sets V.
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Exercise 6.26 (Brigham, McMorris, & Vitray) Show that a graph
{7 is & $-toleronce competition graph if and only if there i3 o & -T-edge clirue
cover of (3 wnth |V| elements.

While there are many resulls concerning various ¢-tolerance coupedi-
tion graphs, wajor questions remain open. Tt is not even known whether
there are grapha (poestbly even tripartite graphs) that are not min-tolerance
compeiition praphs. Related papers include [Anderson, Langley, Lund-
gren, MeKenna, & Merz, 1994] and [Brigham, MeMorns, & Vitray, 1995).
[Brigham, Carrington, & Vitray, to appesr| introduces abdiff-tolerance com-
petition graphs and chatacterizes those complete biparfite graphs that are
abdiff-talerance competition graphs.



Chapter 7

Guide to Related Topics

Thiz chapter consisis of sectione involving clusters of concepts related to
intersection graphs. Arranped alphabetically, they can be read in any oeder
and the index should help in navigating between related topics.

Each section contains selecied definitions and sentes results without
proof, concentrating on the Aavor of the topic and pointers to both the
original papers and recant work, especially Lo surveya with exlensive bib-
lingraphies. [Brandstade, 1983| comaing wore information on many of the
families of graphs considered (and [Brandstidt, Le, & Spinrad, to appear]
will surely contain mach more).

We arc well aware that we have not covered many topics in which work
iz being done, and that we have not given complete coverage of any of
these topics—these are all areas of arctive research. Also, while many of
these familics are widely studied in terms of the commputational complexaty
of problorns like domination and roloring, cur attention is concentrated on
structural aspects.

7.1 Assorted Geometric Intersection Graphs

It ia clearly possible, and sometimes useful, to consider intersection graphs of
all sorss of geometric ohjects; neeasionally, nice results have surfaced. While
we are wheilledly spotty e our tTeatmene of the arcay of possibiliiies, we
emphasize what seem to be natural examples, vet {ry to mention a few of
the unexpected (for instance, [Maire, 1893] studics the interscetion graphs
of maximal rectangler in polyominoes).

Maotivated by the suceess of wteral graphs, sud qince intervals are the
convex subsers of B, [Wegncr, 1867] shows that K with each edge bisected

1y
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Figure 7.1: A bomcily two groph with o 2-boz representation.

is an example of & graph that is not an intersection graph of convex subsets
of B2 The problem of characterizing those graphs that are intersection
eraphs of convex subscts of B2 is still open, but the following two results

from [Duchet, 1978, 1584] and [Wegner, 1967] are known.

Theorein 7.1 {Duchet) Euvery chordal graph is the intersection graph
of conver subgraphs of the plune.

Theorem 7.2 (Wegner} Euery graph ia the infersection grmaph of con-
vex subsets of B.

A d-dimensional boz is the cartesian product of intervals [a;, &) for 1 <
i=d A grophisad-bor graph ifit is the interscetion graph of d-dimensional
boxes in B, Hence interval graphs are precisely the 1-box grapha. Just as
intervel graphs can alao be viewed as intersection grephs of subpaths of
paths, d-box graphs can be viewed as intersection graphs of subgrids of
d-dimensional grids. d-dimensional integer lattice points, with two points
adjacent if and only if they differ by 1 at one coordinate position and not
at all at the othor positions,

[Roberts, 1969b] observes that every graph of order n is an n-hox graph.
Thus the doxiesty of a graph & can be detined to be the miniomm 4 for which
{7 iz a d-hox oraph. Figure 7.1 shows an example of a graph of boxicity two.

Theorem 7.3 {(Roberts) Fuery camplete multipartite graph K |
has bogicity equal to [{f 1 ny > 1}.
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Henee €4 = Ko 2 has hoxivity two and che cctahedron Ao 0 has boxie-
ity three, showing that the following romilts from [Scheinermen, 1984] and
[Thotnassen, 1956) are best possible. {Recall that a graph is outerpfanar if
it can be embedided in the planc with all of Hs vertices o the unbourded
face.}

Theorem 7.4 (Scheinerman} Every outerpionar graph fas horicily at
st fine.

Theorem 7.5 (Thomassen)} Fvery planwr yraph fas bozicity af most
thiee,

[Roberts, 1989] contains a short snrvey of koown results about d-box
graphs and bosacity, eluding NP-cotnpleteness and other relerences, but
surprisingly little s known in general. [Quest & Wegrner, T990] gives a
matriz-based characterization of graphs that hose boxicity at most dwe,
and [Rim & Nakajima, 1995] discusses computationad probloms on 2-hox
graphy, [Trotier & West, 1987 presents a related notion of represenmiability,
replacing boxes in despace witho ot ervals In d-dimensional pattially ordered
sets,

Cieneralizing d-box graphs  r-dimensional boxes in J-dimensional orids—
‘Hartman, Newman. & ¥iv, 1991] and [Rellantoni, Hartman, Prevtyeka, &
Whitesidea, 1993| define the grid dimension of a graph to be the smallest
Brsuch thar the grapd is bhe iolersection geaph of d-dimensional boxes in a
fd + Vi-dimensional grid.

Theorem 7.6 {Bellantoni, Hartinan, PPrzytycka, & Whitesides)
Euery grogh fuay grid dimension equal ta or one less tham dfs Doxity.

A bipartite geapd fiax dogieity feas fhio o equeel Lo boo 4 ead ondip of 81
haz grid dimension less than or cqual fo one.

[Machara, 19840] and (Ecdés, (Godail, Krantz, & Parsons, [988] study
mtersections graphs of balls in B™, and [Sachs, 1994) studies their tangency
graphs. [Clark, Colbourn, 4 Johnson, 1%90] and [Marathe, Breo, Hunt,
Rawvi, & Rosenkrantz, 1995 consider computationad problems on the special
case of unit disk graphs, an intersection class with obvious applications 1o
cellular telephone networks.

A circudar-arc graph G s isomorphic b she intorscction graph of a family
of closed arcs of & circle ar, equivalent]y, of a family of convected subgraphs
of & cycle. Interval graphs clearly are circular-arc graphs, bus circular-aze
graphs arc, in general, very differsut from incer val grapbs sinee thoy need not
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Figure 7.2: A circelar-arc groph with corresponding subpaths in o oyele.

even be chordal: every eycle O i3 a cireular-are graph. Figure 7.2 showe a
circular-arc syaph with o subpaths-of-a-cycle intersection representation that
can easily be smoothed into an arcs-of-a-cirele representation. Section 8.6
of [Golumbie, 1980, [Lucker, 1975], and [Flotow, 1996} discuss applications
of eirenlar-are grapha, and [Gavril, 1974b] is a key paper. Recognition al-
gorithms for circular-arc graphs are discussed in [Eschen & Spinrad, 1993]
{using choedal bipartite graphs), [Hsu, 1995]), and [Hell & Huang, 1997].
Kloks, Kratsch, & Wong, 1996] mives a cubic algorithm for the minimum
fill-in problem.

Circular-are graphe do not have the graph-theoretic characterizations
that might be expected from their superficial resemblance to interval grapha,
larpedy due to ares (lhose in Figure 7.2 corresponding to vertices 2, 3, and
4, for instance} of a circle not having to satisfy the Helly condition.

Recall the maxclique-vertex matrix M{G) of a graph & defined in sec-
tion 3.3, and that & is an interval graph if and oniy f M (&) has the con-
secutive ones property for columnns. Define M (7)) to have the circular enes
property for cofumns if all the 1 entrics in each column are consecutive when
the matrix is theught of as weapped around a horizontal cylinder. I M(G)
has the circular ones property for columns, then {7 is a circular-arc graph,
but the example in Figure 7.2 shows that the converse fails. [Gavril, 1974b)
tlefines 3 graph to be o Helly cirewlar-are graph if 1t is isomorphic to the
mtersection graph of a family of arcs of a circle that satisfies the Helly con-
dition, and proves that M{G} has the cirenlar ones property for columns
if ond only if ¢ iz » Helly circodsr-are graph. Chapter 6 of |Golumbie,
1980 and [oxeens & Mahadey, 1989] contain more on the consecitive ones
property and its generalizations.

Define the augmented adjocency matriz A~ {7} of a graph G to be its
adjacency matrix with each diagonal entry set equal to 1. [Roberts, 1968



7.1, ASS5GHIED GEOMETRIC INTERSECTION GEAPHS 113

proves thut G is a proper inverval graph if aod only il AT{5 bas the con
secutive nnes property for columps. [lucker, 1971] nroves that, it A7 {f7)
has the circular oncs property for columns, then & is a circular-are graph,
but 1he example in Figure 7.2 apzio shows that the converso Tails, Tacke)
does charactenize cirenlar-sre graphs by A1 (G sabis®ving o gnasi cinmias
ones property.”

[Tucker, 1971, 1974] give characterizations of proper cirealar-ore prophs—
graphs with a cireular-are represenvation in which none of the ares propely
contains snother—and wnif circular-are graphs—praphs with a cirealar wee
representalion of egquallength aves. Unlike what happeoed insection 3.3,
anit cirenlar-are graphs form a proper subalass of the proper cirenlac-are
graphs. The nondnterscetion of chords that subtend nested arcs of o clreic
leads to the following conmection with circle graphs (scetion 7.1),

Theorem T.T Every proper circular-are groph {3 a4 circle groph,

The following characterizalion of proper cirenlaraare graplis i< o [Skrien,
1982]. (The same stetoment can be used to charactevize proper interval
grapha by alao requiring the orientation to be acycelic.)

Theorem 7.8 (Skrien} A connccted graph is a proper cirrulor-are graph
if and only if it ks an oriendution that covbamns no indieced subdiyragh, iso-
morphic th s——ae—e o B——a——.,

[Miell & Huang, 1095] and [Deng, Hell, & Huang, 1995 contain propor
cirenlar-arc graph algorithms. [Stueckle, lazza, & Ringeisem, 1945] con-
Laing an application of proper cireular-are graphs 1o questions ovolving how
graphs ean be drawn. [Rang-lensen & Hell, 1994] disensses chovdal praper
cironlur arc grapls,

Stepping up from ', [Ehrlick, Even, & Tarjan, [976] and |Kratochvil
& Matousek, 1994] studdy the imersectiom graphs of line semnents in B
showing that recopnizing auch praphs is NP-hard even when all the segrients
lie in & {xed numiber {greater than one) of directions. Section 7.4 discusses
several other spedial cases that are more nicely behased,

[Ehdich, Twven, & Tarjan, 1076; snd Kratochsdl, 19974, 1991 sty
string graphs, the Intersection graphs of arbitrary curves in B2, If the corves
are all “vrapks” of continrous functions on the closed unit interval, then
[Golumbic, Hotern, & Urretia, 1933] shows that the intersection graphs are
precisely the complemnents of the comparahility graphs {section 7.6 On the
other kand, every graph is the intersection graph of arbiorary cirves in B
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Figure 7.3: A frapezoid graph with an infersection representation.

[Corneil & Kamnla, 1987] and Degan, Golutbic, & Pinter, 1988] gener-
alize interval graphs in another way. Suppose L and M are two parallel lines
of which, respectively, {I1, ..., Jn} and {J1,. .., Ja} are families of intervals.
Then, each 1 € {1,....n} determines a wrapezoid having parsllel sides [
snd J; (allowing degenerate trapezoids with either I; or J; a single point}.
A wraph is a frapezoid graph H it is isomorphic to the intersection graph of
such a Family of trapezoids.

Every interval graph is a trupezoid graph, taking each pair [; and £ so as
to make the trapezoid a rectangle. Every perttation graph (scetion 7.4)
is a trapezoid graph, taline each f; = {i} and i = {=[i}} where 7 is a
permutation of {1, ...,n}. The graph shown in Figare 7.3, from [Corneil &
Kamule, 1987], shows a trapevoid graph that is neither an interval graph
nor a permeltation groph. [Cheah & Corueil, 1996] contains more on the
strectnre of traporoid graphs and their relation to permmutation graphs.

[Fiotow, 1995] introduces higher-dimensional snalogues of trapesoid
araphs. [Felser, Miller, & Wemisch, 1997) contains many relevant ideas,
including s more general notion of & “circle trapezoid graph™ that subsumes
both circle praphs (section 7.4} and cireular-are graphe, The following two
sheorems from [Cormeil & Kamula, 1987] and [Felsner, 1993] link trapozoid
graphs with cocomparability graphs (section 7.6).

Theorem 7.9 {Corneil) Freery trapezoid groph is a covemparabifity
qraph.

Theorem 7.10 {Kamula and Felsner) Every cocomparsbility groph
thed i elso a min-tolerance inferseciion groph is o trapezeid giuph.

i Trotter & Harary, 1978) and |Griggs & West, 1979] independentiy in-
Lreslice o natural generalization of interval graphs by allowing each vertex
nf a graph to e represcnted by a wndon of intervals. The intarval number
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af a graph {7 is the smallest number # such that €7 s an intersection graph
with each vertex corresponding to a iunien of at most ¢ intervals, The in-
terval graphs are, of course, precisely the graphs having interval number
one. Every cyele Oy : w2, .., thy, ¥ with 1 > 4 clearly has interval num-
ber two, wsing two intervals to correspond to vy and one sach for the rest.
[West & Shmoys, 1984] shows that recognizing graphs having a fixed interval
mutiher is NP-complete. [Scheinermar & West, 1953] contains atl extensive
discussion, including that f5 9 has interval number three and the following
theorern.

Theorem 7.11 (Scheinerman & West) Fvery planar graph has #n-
tereal number af most three,

The interval number of 7 i= bounded above by the maximum degrec
of G, by [[V{G)! + 1)/4] from [Griggs, 1979, and by 1 + [/I&IGH/21
from [Spiorad, Vijaven, & West, 1987). While chordal graphs can have
arbitrarily large interval nuimbers, [Scheinerman, 1988a] discusses specific
upper bounds. (Kratzke & West, 1993, 1996] cliscuss other parameters that
resemble interval numbers. [Joseph, Meidanis, & Tiwar, 1292] contains a
molacular biology application of graphs having interval number at most two.
[Raychaudhuri, 19920] wses multiple interval assignmestts io & traflic phasing
contexl.

Partially motivated by [Kumar & Deo, 1954], [Gyarfds & West, 1965
discusses mulfilrack tntertal graphy in which vertices correapond to inter-
vals from separatce copics of the real line { “parallel tracks™), [Scheincrman,
19864%| contains a very weneral trenlinent of multiple-set representations.

Ax we change our focus from interval graphs to chordail graphs, obscrve
that a graph G having boxicity at most o can be equivalently phrased as
saving that il is the “ntersection” of interwal graphs &, ..., 7y, where this
means that V{7 = V{G1) = - - = V{Gy) and B{G) = EIG)N-- -NEG).
{The cquivalence can be seen by viewing the projections of two-dimensional
hoxes on the - and p-axes as intervals ) Motivated by this, a graph is gaid o
have chordality at most o if it s similarly an intersection of & chordal graphs,
For instance, Fipure 7.4 shows that &5 is the intersection of two chordal
oraphs and so has chardality two. The octahedron #y29 has chordality
three. Every bipartite graph has chordality at most twe since it is the
imtersection of two split graphs. The analognes of Thearems 7.4 and 7.5
hold since chordality I always less than or equal to bowieity. [Cozzens &
Roberty, 1989] and [McKee & Scheinerman, 1993] contain many bounds and
other results on chordality, of which we mention only one.
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Figure T.4: A eycle as the intersection of twe cfinrdal grophs.

A k-free can be defincd as a chordal graph that has a perfect eliminsa-
tion ordering {v1,..., vy such that cach & has degrec min{k,» — ¢} in the
stberaplh induced by wi, ..., % (w0 Lhe 2-treey are exuctly the trees), The
treewidth of &+ is the least k such that (7 is & portial k-iree, meaning that &
iz & subgraph of a k-tree. [Kloks, 1994| contains an extensive dizcusion of
treewidth and other topics that have goown out of the pioncering work of
Robertson and Seymour—see, for instance, [Roberteon & Seymour, 1985]—
ineluding caleulating and approximating the treewidth of many of the samc
families of graphs that we study.

Theorem 7.12 {McKee & Scheinerman) Fvery groph hos chordality
fess than or egual (o (s recwtdih,

Thus the aerics-parelle! gruphs—the pattial 2-trees—have chordality at
most two, in contrast to an example in [McKee & Scheinerman, 193] of a
serics-parallel graph that has boxicity three.

[Kratochvil & Tuza, 1994]) and [Hlinény & Kub&na. 1995 discuss more
general “intersection dimensions” for classes of graphs. Mimicking multi-
track interval graphs, (Chang, Jaccheon, Monma, & West, 1993] gives resualts
involving unions of subtrees [or substars! of trees.

Motivated by chordal graphs being the mtersection graphs of subtrees
of trees, [Renz, 1970] characterizes the intersection graphs of aubpaths of a
tree, and [Gavril, 1975] gives a recognition algorithm. [Golumbic & Jami-
son, 1985a, 1985b] and [Syelo, 1985 investigale what happens when the
paths are considered as sets of edges (rather than sets of vertices). [Monma
& Wei, 1986] presents an extensive study of path graphs, including many
sorts of intersection graphs involving various sorts of families of subpaths
of & tree. Viewing each subpath as a set of vertices, there are three posi-
hle interscction classes: 71 intersection graphe of undirected paths of an
undireeted tree, £V: intersection praphs of directed paths of a directed tree,
and ROV intersection graphs of directed paths of a rooted directed tree;
three other possible intersection classes —JE, [F, and RDE, respectively—
reault by viewing cach subpath as a set of edges. In particular, Monma
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Figure 7.5: A bipartite infersection graph G from & = {o,b}, 5, = {c},
Ty = {b.c}, T, = {a}. Ty, = {c}, and its asseriated intersection digraph
D.

and Wel present clique tree characterizations of these clayses, o the atyle of
Theorem 2.1,

Theorem 7.13 (Monma & Wel) The siz intersection classes are dis-
tinct and relefed as followe: RDV = DV = UV = chordal, and RDE =
DE = UE. {(s is an coample of 6 graph in UE that &s not chordal.)

Theorem 7.14 {Monma & Wei and Golumbic & Jamison) Mem-
bership tn UV, DV, RDV, DE, or RDE can be recognized by a unified polyno-
miel algorithm, but recognizing members of UE (or even recognizing whether
a member of UV is 4n UL) 45 NF-complefe.

[Fanda & Mohanty, 1995] discusses some of these elasses furcher. [Gavril,
1994, 1996], {Gavril & Ureatia, 1994), saod Prisner, 1994] go another way
fromn chordal graphs by looking at intersection graphs of varous sorce of
sbtrees of elagses of graphs (hal are more general than trees.

7.2 Bipartite Intersection Graphs, Intersection Di-
graphs, and Catch {Di)Graphs

[Harary, Kabell, & Mchorris, 1982] defines a bipartite graph 7 with V(&) =
AUY and XY =0 to be a biporiite intersection graph, sometimes called
an infersection bigraph, if each r € X can be assigned a set 5; and cach
4 €Y aset Ty, such that zy € E(G) if and only if S; T, # 8. Figwe 7.5
gives an example.

iSen, Das, Roy, & West, 1989] defines a directed graph D, with loops
allowed, to be an inlersection digroph if each v £ V(D) can be assigned two
sets Sy and 15 sueh thar ww € A(D) if and only i S, N T, # A (This is
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Figare 7.5: An intersection digraph It from 3, = {8}, Th, = {h e}, Sy =
{a}, T, = {c.d}, By = {d}, Ty = {a}, Sy = {e}, Ty, = {e, d, e}, und ils
associated bipartite infersection groph G.

a specialization of the earlier notion of “conmection digraph,” introduced in
{Beineke & Zamfirescu, 1982].}) Figure 7.8 gives an example.

Bipartite intersection graphs and itersection digraphs are intimately
interrelated, a feature that is frequently useful in their study. For instance,
each bipartite intersection graph & as above leads to an intersection digraph
Don V(D) =X UY by setting T, = § for each 7 € X and 5, = @ for each
% € ¥; this means that D results from G by directing each edge zy & F{()
from r = X toward y € ¥. See Figure 7.5.

Conversely, each mlersection digraph I} as above leads to a bipartite
intersection graph & on V{G) = {z,n : v € V{IN} by setting, for sach
v & V(D) 8p, = 84, T, =0, 5y, =9, ond T, = T,;; this means that D
results from G by directing each edge zyy, € B(G) from o, toward 1, and
thetr identifving each &y, g pair. See Flgure 7.6

{Harary, Kabell, & McMorriy, 1982) focusea on bipurtite inferval graphs,
where each 8y snd T}, is an interval of a line; [Miiller, 1997) updates work
toward a characterization. [Sen, Das, Roy, & West, 1889)- - sce alao [West,
1998]—similarly focuses on inierval digraphs, where each 5, and 13 is an
intervel of a line. Sen, Das, and West give an clegant adjacency matrix
characterization of interval digraphs. The analogy between interval graphs
G and interval digraphs ) involves replacing the fundamental role of a
complete subgraph ¢ of G with a subdigraph of I formed from X, ¥ € V{D)
with ww € A(D) U and ondy il w € X and w € Y, and with a loop al any
vertex in X MY, [Miiller, 1997] gives a polynumial algorithm for recoguizing
interval digraphs, and so for recognizing bipartite interval graphs. [Langley,
Lundgren, & Merz, 1985] studies Lhe competilion graphs of interval digraphs.

[Sen & Senyal, 1994] introduces notions of unit intervsl, proper inter-
val, and indifference digraphs as the natural modifications of the vndirected
notions from scotions 2.3 and 3.4.2; see alye West, 1293].
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Theorem T.15 (Sen & Sanyal} fhe properties of being o wnit dnler-
vl digraph, ¢ preper inferval dwraph, or an mdifference digroph arc ol
equivafent.

Steiner, 1996] gives a linear recoguitivn algerithw for the digraphs in
Theorem 7.15; {Lin & West, 199%] characterizes them with forbidden sub-
matrices. [Sanyal & Sen, 1096] studtes other classes of interval digraphs.,

Sen, Das, & West, 1980, 1992] introduce cwrcrlar-are digraphs, in anal-
ogy with circular-are graphs (section 7.1}, and [Sen, Sanyal, & West, 1995]
studies various other sorts of intersection digraphs, (nchiing divected con-
tainment, graphs in analogy with section 7.6.

In looking for analogies to chordal graphs, it is alse natural to consider
bipurtite subiree grophs (and subtree digruphs) in which all the sets 5, T, [or
5., Ty are subtrecs of a tree 7. But then, as abserved in [Ilarary, Kabell,
& MceMorris, 1982), every bipartite graph (7 is a bipartite subtree graph
and, as observed in [Sen, Das, & West, 1989), every digraph D is a sibtres
digraph. For the latter. T can be taken to be the bipartite graph K|
having V(T -= V(D) J{z} where « & V(DY and BT = {ve v e V(D) ];
then st 5y = fet and T, = N7 (v) U {x} = {o: wv € AT} L {2} for all
we VD,

Various ather notions of “hipartite chordal graphs,” defined by means
other than interseetion, have beon proposed in [Goliubic Az Goss, 1978] {ox
section 12.4 of Golumbic, 1480)), [McI{ee, 1987]. and [DBrandstadt, 1991).
{Golumbin introduced the now-standard notion of chordal bipartite graph,
a bipartite graph in which every cvele of length greater thar four has a
chord, that & discussed o detail in section 7.3, Ollwer Bipactile saslopues of
intersection eraphs ave considersd in [Frost, Jaoobson, Kabell, § Meblorris,
1930} and iMiiller. 1997].

Harary, Kabell, & McMorriz, 1890] introdness o different sors of inter-
section acyclic digreph. For instance, a digraph [} iz an dnterval aocyolic
figrapfe if cach ¢ € VI can he assigned an interval &, of the real line
such that the &.'s all have distinct left endpoints and wwe £ ALY if and
only if 5, NSy #= 0 and the left endpoint of &, i3 less than the Jeft end-
point of S,. ([McMorris & Mulder, 18996] corrects the forbidden induced
qubgraph characterization of nlerval acyclic digraph stated i the earber
paper.) [Harary, Kabell, & McMorris, 1992] cxtends interval acwclie di
graphs to subires acyclic digruphs, with veriices corresponding Lo subtrocs
of & rooted tree and with the mle of 1efr endpoines of inrtervale now plaved
by wertices of the subtress 1hat are elozest to the tree's root; the subtrec
avvehe digraphs covstituce o proper subsed of the acechic shgraphs.
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Figure 7.7: An interval cotch greph and an intervel representation fwith base
point b the vertex in which 1 17 underfined).

‘Fheorem 7.16 {Harary, Kabell. & McMarris) An acyelic digraph
is o subtree acyclic digraph if and only if it contains no tnduced subdigraph
tsemorphic to e—e—a,

Compare this with 'Theorem 2.5, which essentially says that a graph is
chordal if and only if it bas an acyelic orientation that contains no indnced
subdigraph isomorphic to the digraph in Theorcm 7.16; see [Rose, 1970).
[MeMorris & Mulder, 1996 alse considers subpath ccyctic digraphs (using
subpaths of a tree, analogous to the path graphs in section 7.1).

Related concepts were introduced (using different terminclogy than we
use) in [Roberts, 1869, 1971} and {Maehara, 1984a]. Given a set 5, call
a distinguished element & € & a buse point of §. Given a family F =
T8 ;). .o {Sn. b} of scts with base points {“pointed sets™), the eatch
digraph of F is the digraph D with V(D] = {1,...,n} and ij € A& if
and only if ¢ #£ 7 and ¥; € 8. The cateh graph of F 13 the graph G with
V(G ={1,...,n} and if € E(C) if and only if 4 $ § and either iy £ 5; or
i = S_;;.

Roberts, 1969, 1971] focus on interval enteh graphs, in which the Sp's
are intervals of » line and the base poiuts are chosen so that by € S & b €
&y, Figore 7.7 shows an interval cateh graph with corresponding intervals
{shown as subpaths of a path as in Chapter 3} and base points (shown by
underlining); for instance, i the path shown {here s labeled, left o nght,
ag P :a,b e de then 8§ = {a, b e.d}, 1 = b and 55 = {e.b,¢}, bs = 0.
Roberta showed thal 5% and f°s can afways be taken so that §; ta the
midpoint 5; sod wll 1he 5% have the same length; moreover, as was his
original motivation, iztcrval catch graphs arc precisely the praphs repre-
sentable by just noticeable differences as in the application to psychology in
gubsection 3.4.2.

Theorem 7.17 (Roberts) fnterval cetch grophs ere precisely the proper
interval graphs.
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[Melioe, 1999 generalizes same of Roberts’s work to calch graphs of
subtrees of trees. The following, from [Dgden & Roberts, 19701, contrasts
to what bappens for intervals (convex subsets of a line).

Theorem 7.18 [Ogden & HRoberts) Every groph is the catch groph
of conver subsete of a plane.

[Maehara, 1984a| focnses on catch digraphs of n-dimensional spheres and
Lioxes when the base point is the midpoint. [Sen, Das, Roy, & West, 1989]
and [Prisner, 1989] stndy cateh digrapha of intervals.  [Braumer, Briakdi,
& Sneyd, 1993] studies psewdo-interval grephs—the underlyving praphs of
interval catch digraphs.

7.3 Chordal Bipartitc and Weakly Chordal Graphs

Cherdeal biportite graphs were introduead o [Golumbic & Goss, 1978] as the
Lipartite graphs in which every oycle of length greater themn four has a chord,
equivalently, the graphs In which cvery induecd cyele iz a &y, (Warning:
As O atself shows, chordsl bipartile graphs peed pot be chordal, wmeh as
complete bipartite graphs necd not be complete.)

The original maotivation for chordal bipartite graphs came from applica-
tinns to nensyrnmetric matrices. These applicatioms, somewhat paralleling
thase presented in section 2.4.3, are described in [Golombic & Gosa, 1978,
[Golumbic, 1830, and [Bakonyi & Bono, 1897] (to gonssion elimination in
sparse mabrives); in [Hoffmen, Kolen, & Sakaroviteh, 1935] (to juteger pro-
gramming); and in [Johngon & Whitney, 1991] and [Johnson & Miller, 1997)
{to matrix analysis].

Much of the literature on chordal hipartite graphs involves analogies with
chordal graphs, analogies that aze often edge based because of the matrix
applications.

For instance, [Golumbic & Gosa, 1878] defines an edge vu: € E{G) to be
a bissmplicial edge if N(v) L N(w) induces a commplete bipartite snbgraph of
(=, An crdering {e;,....ey) of all the edges of & is & perfect edpe eliming-
tion ordering of G if, for each 1 € {1,..., i}, € 15 a simphcial edge of the
apanning subwraph of (¢ having edge set e;, .. ., e,. For insiance, Figure 7.8
shows a chordal hipartite graph that has a perfect edge elitmination ordering
beginning (18 24, 2¢, 3¢, . ..}, with the remaining edges taken in any order.
Parfect edpe climination orderngs were mtroduced (with different names) in
[Brandstidt., 1992] and [Bakony & Bone, 19987). [Miiller, 1997] and [Kloks &
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Figure 7.5: A chordal Mipartite graph,
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Kratach, 1995] disenss algorithmic aspects of perfeet edoe elimination order-
ings and recognition of chordal bipartite graphs. ({Golumbic & Goss, 1978}
introduces a related but different notion of “perfect elimination scheme™ that
is relevant to the matrix applications but for which the following theorem
faila.}

Theorem 7.19 {Brandstadt and Bakonyi & Bono) A bipartite
graph is chordal bipartiie if and only if it hes a perfect cdge elimination or-
daring.

The following analogy of Dirac’s characterization of chordal graphs ia
from [Golumbic & Goss, 1978]; see also [Golumbic, 1978b). (Warning: The
only if direction of Theorem 4 of the latter paper fails—sese [Golutnbic,
1980).) A set 5 C V(5) is a ménimel edge separator of G whenever there
exist e, f € F{G) that are in different cotmponente in the subgraph induced
by V{1 5, and no proper subset of 5 has this same property. For instance,
5 = {a,d,2} iz & minimsl edge separator in the graph in Figure 7.8. An
independent set of vertices is said to mduce a “complete bipartite subgraph”
of & bipartite greph & if and only if cvery two of its vortices are an cven
digtance apart in ) i.e., all its vertices are of the same “color.”

Theorem 7.20 {Golumbie & Goss) A bipartite graph G is chordal
hiparfite if and onfy {f every minimal edge sepavalor induces o complete
bipartite subgraph of (7.

Becall from Theorem 2.5 that a graph is chordal if and only if its vertices
can be eliminated one at a time, where each eliminated vertex is simplicial -
which can be thought of as meaning that the vertex iz not the center vertex
of an induced path of length two—in the subgraph induced by the Temnaining
vertives.
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Theorem 7.21 (Hammer, Mafiray, & Preissmann} A graph s
chordal bipartife if and only if #ts vertices can be eliminated one ot a time,
where each eliminafed verfer & vl the cender verler of un midured path of
length four in the subgraph induced by the remaining vertices.

[Hammer, Maffray, & Preisemann, 1989 also shows that if v iz 2 vertex
of a chordal bipartite graph & that is not the center vertex of an induced
path of length four and if w is a neighbor of ¢ of smalicst degres, they v
is & bisimplicial edge of (7; thus a vertex eliminarsion ordering ss described
in Theorem T.21 also deterines a perlect, edpge eliminalion ordering,

[Brouwer, Dmchet, & Schrijver, 1983] rontains the fallewing theorer,
which shouid be compared wath Theorem 7.67. {Theorem 7.70 and the
parapraph [llowing it contain related characterizations of chordal bipartite

grapha. )

Theorem 7.22 (Brouwer, Duchet, & Schrijver) A graph & 4
chordal bipartite if and only if the hypergraph (V(G). E), with £ the fam-
iy of afl open neighborhoods of G, is tetally balanced.

Define the bipertite adjacency matriz of a bipurtite graph & with color
classes {og, ..., on} and {b. ... e} to be the hx k (0, 1)-matrix M = (m;,)
where tny; = 1 if and only if ab; & E{G]. Hoffman, Kolen, & Sakarovirch,
15986] showa that a graph { iz chordsl bipartite i and only if the rows and
columns of ity bpartite adjacency tnatrix can be permnted so as to contain
no {H} submatrix. Farther refinements of this sppear io [Fabiw, 1982, 1687]
and [Spinrad, 1993, 1943). This approach allows chordal biparttite graphs to
be used as a tool in recognizing and studying various spectad kinds of graphs.
For instance, [Eschen & Spinrad, 14593] use them for circular-arc graphs and
[Eschen, Hsyward, Spinrad, & Sritharsn, to appear] use them for weekly
chordal comparability grapha and weakly chordal eocomparability grapha.

{Cthserva that the complement of & chordal graph cannot contain an in-
duced cyele of length greater than four. This motivates the tollowing defi-
nition from [Haywerd, 1985]. A graph is weakly chords! {very olten called
weakly trionguicted) i neither it nor ils complement containg an induced cy-
cle of length greater than four. Thus every chordal graph is weakly chordal,
and s0 s the graph in Pigure 7.8, In fack, it 1= easy to sec the fotlowing.

Theoremn 7.23 A groph is cherdal bipartite if and onfy i i is both
wegkly chordel and bpartite,

The following is from [Spinrad & Sritharan, 19%5] and [Hayward, 1995].
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Theorem 7.24 {(Spinrad & Sritharan and Hayward) A praph s
weakily chovdal if and only if its edges can be eliminated one ot o time, where
e2ch eliminated edge is not the center edge of an induced path of length three
in the subgraph constafing of the remaining edgey.

Alporithms o weakly chordal graphs, including recognition algorithms,
make n2e of the following characterization from {Hayward, Hoang, & Maf-
fray, 198Y). [Spinrad & Sritheran, 1993] contains more details on algonthmic
aspects,

Thecrem 7.25 (Hayward, Hodng, & Maffray) 4 graph do weakly
chordal &f and only of cvery induced subgraph i either complele or containg
twe nonadiacent vertices such that each induced path connecting them has
length fuw.

7.4 Circle Graphs and Permutation Graphs

A graph is & cirele graph if it 1s isomorphic to an intersection graph of chords
of a circle. (For simplicity, all the chords can be taken to have distinct end-
points.} Circle graphs are characterized in [Even & Itai, 1971], and their
carly history and applications are the subject of Chapter 11 of [Golumbie,
1980], where they are introdaced as “stack sorting praphs.” Using steveo-
graphic projection, these are also exactly the inéerval overlep grophs—the
Eraphs isomorphic to graphs obtained from intervals of a line with adja-
cency of twoe vertices corresponding to the intervals intersecting without
either containing the other.

{Other characterizations of circle graphs appear in [Fournier, 1978], [Frays-
weix, 1934], [Naji, 1985] (as Lthe gonsislency of a sel of linear equations—
|Gasge, 1997] contains a shopler proof), and [Bouchet, 1994). [Spinrad,
1994] gives & recognition algorithm that is quadratic in the order of the
graph, and [Kloks, Kratsch, & Wong, 1996] givea a cubic algorithm for the
winimumn fili-in problem.

For any vortex ¢ of a praph ), dofine a local complementation of & at
vt be the graph obtained by replacing N{vi—the graph induced by the
neighbore of w— by its romplement. T'wo grapha are locally equdvalent if one
can be obtained from the other by a sequence of local complementations.

Theorern 7.26 {Bouchet) A graph w a circle graph if end ondy of it
containg no subgraph that is lecally equivalent to one of the graphs shown #n
Figure 7.9,
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Figure V% Three grophs that are naf cimele grphs.

If the radius of the circle is thought of as infinitely large, then the chords
berome intersecting or parallel lines and the associated intersection graphs
are precigely the complele mulipartite graphs (with paraliel classes of nes
corresponding to independent “parts” of the graph)-—if we happen to be in
the sucfidean plane. In elliptic geometry thera are ne parallel lines, and =0
the intersection graphs of lines are precisely the complete graphs, While the
question would seem to be much harder in hyperbolic grometry, the common
“Beltrami-Klein circle model,” as for instance in [Crecnberg, 1980;, shows
that the intersection praphs of lines are again precisely the circle graphs.

[Elnallah & Stewarl, 1993) delines s b-polygon graph w be g graph
tmnorphic to the intersection graph of line segments drawn hetwern points
on distinct sides of o A-sided polygen. The circle graphs arc preciscly the
graphs that are k-polygon graphs for some &,

The smallest & for which (7 is a &-polyoon graph is 4 measgure of how far
G 1s from Deing a permadafion groph, sointerseclion graph of line segmenis
dramm hatweon two paralle] lines (so o sort of “Z-polrgan graph™). Parmu-
tation sraphs ave frequently ueeful in specilic compulationad prolhemns, aod
s they have heer looked s in a wide wariety of contexts, We, Tuowever,
only mention vheir stroctural properties. Chaptec 7 of [Goelumbie, 1980] is
a standard reference, and Pnueli, Lempel, & Even, 1971} is a key paper.
Permutation graphs are special sorts of trapezold praphs (section 7.1) and
of asteroidal toiple-free graphs (section T.6).

The lollowing motivates Lhe name “peronsaion”  Soppose 7 13 anv
permntation of {1,...,n} and consider the resulting list w{1)... ., =(n)].
The perrautation graph () has vextices 1. ., 1, with an edpe hetweean
vy and v; whenever ¢ and j occur “out of order” in the list. ln othor words,
wyy € E(G{r)) il and oty M4 < F and ¢ 1= to the right of § in e list,
mesning that #71(i] = 77 (5], Alternatively, if von place (1,...,n} and
{m{1), .. ..w(r)} on parallel lines and draw the n line semments for each
1,m{1] pair, then () is isomerphic to the inrerszction graph of chese line
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Til) =4 1 4 1 2
n(2) =2 2 2 > |
m3l=1 3 1 3 4
m{4) =3 4 3 o

Figure 7.10: A4 permufotion graph example.

segmants,

As an example, suppose n = 4, with #{1) = 4, #(2) = 2, n(3) = 1,
and m{4} = 3. Then the liat iz [4,2,1,3] and four line segments and the
permuttation graph are as shown in Figure 7.14.

Oy luoking at the permutation with revemsed liss, [3,1,2, 4] in the exam-
ple, it i easy to see that the complement & of a permutation graph 3 is
also @ pormutation graph. [Poueli, Lempel, & Even, 1971] relates permuta-
tion graphs with containment and comparability graphs (gection 7.6) using
Theorem 7.36.

Theorem 7.27 (Paueli, Lempel, & Even} A gruph G is o permnta-
tion graph if and only ¥f both G and 7 are comparability graphs and so if
and only if & is the conlainment groph of intervals of o line.

Thas led b considerable work on polynomial recognition algorithms for
permutation graphe. culminating in a4 Lnear-time recognition algerithm in
[MeConnell & Spinrad  1994].

7.9 Cligue Graphs of Chordal Graphs and Clique-
Helly Graphs

The clique grapha of chordal graphs were independently studied in [Brand-
stade, Uragan, Chepoi, & Veloshin, 1994} as drualfy chordel graphs {called
*HT-graphs” in earlier work in, for insvance, [Dragan, 1993]}, in [Szwarcfiter
& Bornstein, 1984 as “expanded trees.” and in [Gutierrez & Oubifia, 1505]
as Mlree-clique graphs” (based on earier work in [Batbedat, 1990]). We
include only some of their characterizations.

Theorem T7.28 {Szwarcfiter & Bornstein) A4 graph 7 is the cligue
graph af o chordal graph if ond only if & Bas o speaning tree T such that, for
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Figurc 7.11: 4 cherdal graph ¢ and ils cligue graph R(G).

each wv € E{{7}, the vertices of the u-to-v subpath in T induce 2 complate
stbgraph in (7.

This appears in a slightly different fovn in iBrandstadt, Dragen, Chepoi,
& Voloshin, 1994] and ,[Gui:ir:.rrt:z & Oubina, 1988]: ¢ i the clique graph of
a chordal graph if and only if (& has a spanning tree ! such that, for each
maxcligus ¢ of @, the vertices of @ induce s subliree of ¥,

Fignre 7.11 shows a chordal graph 7, which s not the odigee graph of
a chordal prsph, and its cligne graph K(G), which is not a chordal graph.
The spenping tree of K{(G) described in the preceding theorem consists of
the four spokes of the whesl.

The motivation for calling these “dually chordal praphs™ b rhat, in the
terminology of section 2.3, €7 is the clique graph of a chordal graph if amd
only if £'a clique hypereraph is a tree hypergraph, whereas ¢ is a chordal
graph if and only if the dual of G™s clique hypergraph is a toee hyperpraph,

Theorem 7.29 (Brandstidt, Dragan, Chepol, & Veloshin} A
graph G is the cligue graph of a chondal graph if and only VG can be

ardeved {uy, ..., cnp sneh that, for each vy Hhere is o v with 5 2 ¢ sueh that,
selative Lo the wr,f?g*.ruph of G induced by ay, .. vy, Nw] © Ny for each
w & Nyl

[Brandstadt, Chepot, & Dragan, 1995] gives a recognition algorithm that
linds such vertex orderings. [Brandstidt, Dragan, Cliepol & Voloshin, 1994]
shows that if & iz the cligne eraph of a chordal graph, then so is every
power of (0. That papeor also contaans the following connection with strongly
chordal graphs (section 7,123

Theorem 7.30 {Bramlsiadt, Dragan, Chepol, & Voloshin) A4
graph & iy strongly chordal if and only if every induwced swhgraph of (7 45
the oligue graph of & chownlel graph.
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Figure 7.12: A clique graph that is not o cligue-Helly graph.

[Bandelt & Prisner, 1991] shows that K{() is chordal whenever (5 is the
clique graph of a chordal graph.

A graph ( is & clique-Helly graph if the family of all the maxcliques of
G satishies the Helly condition -if the members of any family of maxcliques
of (¢ intersect peirwise, then they all have a common element. Clique-Helly
graphs were first studied in Hamelink, 1968), showing that clique-Helly
graphs are clique graphs. Figure 7.12 shows a clique graph (Exercize 1.19)
that is not clique-Heily. [Escalante, 1973] strengthers Hamelink’s result.

Theorem 7.3% {Escalante} A graph 7 is a chigue-Helly graph if ond
only if & = K(H) where H is another cligue-Helly graph.

For every trinngle wow of a gruph &, let Gy denole the subgraph of
& nduced by thosc vertices that are adjacent to at least two of u, v, w.
[Szwrercfiter, 1947| proves that & graph & is clique-Helly if and only it every
such Gy containg a vortex adjacent ©o all the other wertices of (2y,,,. This
also plves an efficient recognition algeritlm.

Let K™ & = K{K*@)), where K1) = K({7). The following is
from [Brandstidt, Dragan, Chepoi, & Voloshin, 1994].

Theorem 7.32 (Brandstidt, Dragan, Chepof, & Voloshin) A
graph G is hoth chordol and cligue-Helly if ond only if ¢ = K2(H) where
H is o chordol graph {and so if end only if C = K(H) where H i o cligue
graphk of a chordal graph).

[Escalante, 1973] and [Bandelt & Prisner, 1991] show that every clique-
Helly graph (7 has parameters p < 2 and » such that K™ (T} 22 K*({).
This leads inte many gquestions involving iterating the cligue graph operator;
see, for instance, [Bandelt & Prisner, 1991], [Prisner, 1995], and [Bornstein
& Szwarcfiter, 1995].



7.6. CONTAINMENT AND COMPARABILITY GRAPHS, ETC. 129

[Prisner, 1993] and [Wallis & Zhang, 1990] study hereditary clique-fielly
graphs—praphs for which every induced subgraph is & clique-Helly praph.
A family F = {5, ..., 5%} of subsets of 2 set 5 is said to satisfy the strong
Helly condition if, for every subfamily 7' C F,

HS - 8 € FH=min{|Si N &l : 8.5 € F and i & )
By induction, this 15 equivaleni to, for every three metmbes 53, 55,55 € F,
1.1 8; P Sl = min{i$; 1551, 1S 1 8l 155 Sl

[t can be ghown thas F satisties the strong Helly condition if and only ¥ the
hypergraph (V{G), F} is a strong Helly hypergraph {zection 2.3).

Theorem 7.38 (Prisner) A graph & 25 o hereditary cligue-Helly graph
if and ondy o the family of all the maccliques of & satishics the strong Helly
condifion.

‘Wallis & Zhang, 1990] defines a graph & to be irreducible if cach max-
clique of & containg an edpge that s n no other maxclique. Bosed on that
wark, Prisner gives a forbidden induced subgraph characterization of hered-
itary clique-Helly graphs and shows that a graph is a hereditary clique-Helly
graph if and only if each of its induced subgraphs is irreducible.

Theorem 7.34 (Prisner) A graph G is o heredifory clique-Helly graph
if and only if G = K{H) where H i{s another hereditary cligue- Helly graph.

Mckee, 1994] defines & notion of an “absolutely clique-Helly pseudeo-
agraph” that characterizes those pseudographs from zection 6.2 that have
peewdo duals,

7.6 Containment, Comparability, Cocomparabil-
ity, and Asteroidal Triple-Free Graphs

A graph 7 s a containment graph of some foruly F = {5,..., 5.} of
nonempty sets if V(G) = F and §,.5; € E(G) if and only if one of §;
and ¥; is properly contained in the other. Recall that (X, <} is a partially
ordered sed (o posed} if < 1s an imreflexive, rransitive binary relation on the
nonempty set X. [Golumbic & Scheinerman, 1989] observes that a graph &
is a contuinment graph if and only if it s & comparability greph of 4 poset
(X. <), where thiz means that V(1) = X and wir € E(G) i and only if either
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Figure 7.13: A posef and ils comparubility grupk.

Ve vy

i = v ot v < w Alternatively, a graph & is a comparability graph if and only
if B((F) can be tmnsitively oriented—meaning that an orientation D of 7
has are set A{D) snch that wir, v € A{D) implies s € A(IN, Floare 7,13
shows & posct on the left, with v; < v; whenever v; 13 below z; on a path,
and its eomparability graph & on the right; G is also the containment graph
of the “downsets” 5; = {7 : v; = w} and can be trapsitively oriented by
directing all arcs downward. Chapter 8 of [Golumbic, 1980] is a standard
reference on comparsbility praphs, and Hell & IIuang, 1995] gives an up-
to-daie description of algorithms,

‘I'he following two resnlts, from [Golumbic & Schemerman. 1989 and
[Dushnik & Miller, 1941], respectively, show that containment graphs be-
have very differently from intersection graphe with repard to the topics in

Chapters 2 and 3.

Theorem 7.35 (Golumbic & Scheinerman) Fvery confeinment
grapfl is the conlainment graph of e fornily of subtrees of o trve.

Theorem 7.36 (Dushnik & Miller} A graph & is the conteinment
graph of a fomily of intervals af the real line if and ondy &f both @ and dts
complement G ore containment graphs.

As a corollary of this and Theorem T.27, G is the containiment graph of
a family of intervals of the veal line it and only if &7 is 8 permatation graph
{section 7.4} Dushnik & Milter show that these containment graphs are
also precisely the comparability graphs of posets of “dimension two.”

Paralleling section 1.2, [Golumbic & Scheinerman, 1989] characterizes
containment classes, eetz of grapbs that are exactly thosc isamorphic o
containment graphs of arbitrary families F of members of some sef T of sots
{for instance, the set of all subtreea of a trer or of all intervals of the real
line). Define a set G of graphs to be closed under verfer mulfiplfication if
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& £ O whenever G regults from G € § by repeatedly replacing an esisting
vertex v by a pair v, ¢" of new nowadjacenl vertices, vach having the same
pre-existing neighbors as » did.

Theorem 7.37 (Golumbic & Scheinerman) 4 32 § of comparabil-
iy graphs is o contetnment cless if ond only if all three of the following
condifions ere sofisfied:

{1} & is closed under induced subgraphs;

{2) G is cloxed wnder vertes muliipliration,

{3} & has a composition serics.

Movanver, if repeated members of £ are not allowed in the F's, then condi-
tions (1) and (3) are neccssary and sufficient.

{Golumbic & Scheinerman, 1989] aleo characterizes related kinds of graphs
and classes based on overlap and disjointedvess, instead of intersection or
comparahbility.

[Sert, Sanyel, & West, 1985 considers a directed verston of containment
graphs. [Ma & Spinrad. 1991] studies chordal comparability graphs and
‘Eschen, Hayward, Spinrad, & Sricharan, to appear| studies weakly chordal
comparability graphs.

{Golambic & Scheinermaan, 1%89] also contains results on d-box contain-
ment, paralleling section 7.1, [McKee & MoMorris, 1992] discusses com-
parability multigraphs, paralleling acction 6.2, [McKec, 1995b] introduces
“connection graphs,” generalizing both intersection and containment graphs
{and sleo eatch graphs as in section 7.2), emphasgizing the appropriate ana-
logues of edge clique cuvers and characteriving “connection clugses”

A graph G is a cocomparalslity graph if its complement G is o compa-
rability graph (or, equivalently, & contaimment graph]. Theorem 3.5 says
that & graph is an interval graph if and only if it is A cocomparability graph
that contains no induced cyecle &%, and Theorem 7.27 says that a graph is
a permutation graph if and only if it is hoth a comparability graph and a
cocomparability graph,

[Corneil & Kamula, 1387] shows that every trapesaid graph (section 7.1)
i 8 eocomparahility greph, and ao that is also true of icterval grophs and
permutation graphs. Conversely, (Felsner, 1903] shows that every cocompa-
rability graph that 12 alse s min-tolerance interval graph yomat be a trapezoid
graph. Langley, 1984] shows that every bipartite cocomparabilivy graph is
a min-tolerance imterval graph.

The following is from [Golumbic, Rotem, & Urrotia, 1983].
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Thearem 7.38 (Golumbie, Rotem, & Urrntia) 4 graph ts o cornwm-
parabifity graph if and only if it is the intersection groph of confinuous fune-
tions f:[0,1) — B, esch viewed as & set of poinis in B2

Just as interval, permutation, and trapescid graphs bave linear struc-
tures, so do cocomparability praphs: a graph 7 i= a2 cocomparability graph
if and only if its vertices can De arranged in a path such that uw € E(G)
if and only if, for cach vertex 2 in between « and © on the path, cither
we & E{G) or va € B{G).

Interval, permutation, trapezoid, and cocomparability graphs are all spe-
cial cases of astersidal triple-free graphs  graphs that contain no asteroidal
briples (section 3.1). [Corneil, Clarin, & Stewart, 1987 is au excellent survey
and synthesis of all aspects of these only recently studied graphs (including,
for ingtance, s cubic recogoition algorithm). The kllowing two theorems
are from that paper, with one direction of the second from [Mohring, 1996).
{Motice the ramifications for the minimum fillin problem.} Hecall that
& C V(N dominetes & if every w € V() is cither in 5 or is adjacent to a
vertex in 5.

Theorem 7.39 {Corneil, Olariu, & Stewart) Fuvery eonnected as-
teroidal triple-free graph G conteins o pair u, v of vertices such thal svery
u, v-path dowinates G (and w, v can be found such that their distance in G
equals the digmeter of ).

Theorem 7.40 {Mbhring and Corneil, Olariu, & Stewart) 4 graph
45 asterpidal friple-free if and ondy if odding o minimael set of new edges
fo G 5o a5 {o create a chordal graph ofwoys creates an interval graph.

7.7 Infinite Intersection Graphs

Although we have been making the common graph-theoretic restrietion to
finite vertex sets throughout the rest of fhis monograph, much work on
intersection graphs has involved infinite graphs. jDiestel, 1991 is a recent,
exhanstive survey of many aspects of thia work.

Intereatingly, the earliest paper om chordal graphs, [Hajnal & Snranyi.
1':!58],_ was moet definitoly interested in the infinite casc in connection with
the “Sonslin bypothesis” {that the real line can be characlerized as a dense
linear order without endpoinis, complete under the formation of sups and
infz, such that every collection of pairwise digjoint open intervals s count.
able). [Wolk, 1902] also introduced Py-lree chiurdal grapls (seclion 7.9} with
the Souslin hypothesis o motivation.
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Dhefine an infindle subbres grophk Lo be e indemsection graph of an inlsice
family of subtrees of an infinite tree aod an infindte chordel yraph o he a
eraph that contains no incduced eveles larper than triangles. While every
infinite subtres graph is an infinite chordal graph, the converse was disproved
in [Halin, 1984], even for graphe with just a countably infinite vortex set.
[Diestel, 1988] gives the following cxaraple of 4 countable chordal graph A,
that is ot a subtree graph: take V{H) = {z1,74,...551.53,...;¢} and
E{H) = {aimq t 8 2 1 W sy 0 1V £ 9 € FF U (a8 0 6,4 = 1} 0
{#:4 : 4 = 1}, Another example is given by Hu, which is obtained [rom
Hy by including all edges x2; where 4.7 > 1. Dicstel then proves that a
countable graph 13 & subtres praph if and culy if it is chordal and contains
neither H) nor H» a= a “simplicial miner.”

Note that each of Diestel’s fwo problematic subpraphs conlaivs an in-
frute complete subaraph. [Halin, 1984] charactenizes the infiuile subtree
graphs in termne of a suitable version of perfect elimination orderings from
which the following is a cerollary.

Theorem 7.41 (Halin) A graph with no infinife complete subgraphs is
an tnfinite sublree gruph if and only of 4 & an infinite chordal graph.

[Halin, 1982 also cotisiders infindts dufertnl graphs, meaning the inter-
section sraph of oo infinite numnber of intervals of the teal line.

Theorem T7.42 (Halin) A graph i3 an infinite mieread graph if and
only i cvery finite indured subgraph is an interval graph and is equivelent
to euery three marchques Aaving one Hhat seporfes the other bpa.

7.8 Miscellaneous Topics

Completion Sequences. A complebion sequence for a praph G within a
class of graphs is & sequence of edges of the complement & such that, when
these edges are inserted one at o time, each of the resulting graphs from &
up to Kiygy s adso in the class. This notion was introdaced in [Grone,
Johnson, 84, & Wolkowicz, 1984), where it is shown that the class of chordal
graphs allows such completiou sequences.  Rasnurssgen, 1994, shows that
the classes of chordal, interval, proper interval, split, circular-arc, proper
circulat-arc, comparability, and permutation graphs allow completion se-
guences, [(Odomn & Rasmussen, 1995] adds strongly chordal graphs to this
list and emphasizes polymoonial algonithens for Aoding completion segquences,
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{Bakonyi & Bouno, 1997] contains the corresponding result for chordal bipar-
tite grapha. See [Spinrad & Sritharan, 1995} for a related approach to weakly
chordal graphs.

Dot Product Representations. [Fiduccle, Scheincyman, Trenk, & Zito,
1998] defines the dot product graph of a femily F of k-tuples of reals to
have vertex set F with vectors &, 47 € F adjacent if and only it ¥ @ = 1.
This generalizes the intersection graph Q{{S1,..., 5. }) in that each get 5;
corresponds to a ehavacteristic vector & e {0, 15 and $:n8; # 0 if and
only if & - = 1.

Fiduccia, Scheimerman, Trenk, & Zito define the dof product dimension
of (7 to be the minimwm Kk such that G is the dot product graph of a set of
k-vectors. The dot produect dimension of a graph ia less thao or egual to the
intersection number of the graph., Among a wealth of results on dot prod-
uct graphs (and their generalizations!), they show that every interval graph
has dot product diinension at st twe and every chordal graph & has dot
product dimension at most one plus the order of the largest maxclique in &,

Fuzzy Intersection Graphs. A fuzzy sef is a set in which each poten-
tial element Is in the sct with a particular value {“degree of membership” )
between () and 1. Fuzzy set theory (along with fuzezy logic and the like) is
currently popular among cervain mathematicians and computer scientisis. A
“fuzey graph” is o greph in which each pair of vertices is joined by a “fuzzy
edpe” with a value hetween 0 and 1. Fuzzy inferseciion grphs—defined
in terms of “fuzzy intersection” of fuzzy sets—are discussed in [McAllister,
1488).

Sec [Craine, 19%4] for another notion of fuzzy intersection graphs with
an afalogue of Marceewski's theorern {Theorem 1.1) and a notion of “faxy
interval praph” that has an analogue of the Gilmore—Hoflrnan characteriza-
tien {Theorem 3.5) but not of the Mulkerson—Cross characterization {Coral-
larvy 3.2).

Intersection Graphs from Designs. Design theory 18 one of the cen-
tral areas of combinatorics and has many applications. A design on a set
is a collection of subscts, called blacks, such that every pair of claments of
the underlying sct is contained in a fived mumber of blocks. The Mock.
intersention graph of a design (not to be confused with a graph-theoretic
*hlack graph”} is the intersection graph of its blocks. See [Alspach & Hare,
1991] and its references for results on (snd extending) the hamiltonicity of
the block-intersection graph, and [Hare & McCuaig, 1993)] for discussion of



7.8, MISCELLANECQUS TOPICS 134

questions of connectiviey.

Tntersection Graphs of Algebraic Siructures. [Csdkdny & Polldk,
1969] defined the graph of subgroups of a4 group 7 to be the intersection
graph of overy IF'Y {e}, where H is a proper, honttivial subgroup of 7 and
e is the identity clement of (. The study of the interplay of the structures
of the group and its geaph was convimied in |Zelinka, 1975a). All sorts of
algebraic structures can be similerly treated, with [Bosak, 1975] constdering
the graph of subalgebras of an algebra.

Some of the earliest work involved the gruph GU5) of sulisemigroups of
o semigroup of a group S, the imtersection graph of all the proper subsemi-
groups of 5. This began with [Bosdk, 1064] and contimmed over the nes
decade, considering such things as the conneclivicy, diameter, and girth of
G{H); see [Shevrin & Qvsyanmtkoy, 1983] for references. The tople was res-
urrected in [Loedeman & Mohlorris, 1886], charscterizmg when G(8) iz a
tree, and in [Ackermaxn, Mchorris, & Seif, 1993], focusing on the question
of when (7{&) is chordal. [Luedeman & McMorris, 1986] also studies the
inlersecrion graphs of right ideals, (Luedeman, 1987] the intersection graphs
of quasi-ideals and bi-idenls of semigroups, and [Pondéliéek, to appear| the
imersecsion grapbe of semigroups in which every eloment is idempotent.

Tt 15 easy {0 see that graphs 7 & G(S)} for a semigroup 5§ are upper
bound grapha, but a complete characterization of such graphs remaing an
inlarestiing open probleom.

Intersection Graphs of Graphs. [Zelinka, 1975b] defines the intersection
graph of o gragh & to be the intermection graph of the edge sets of all the
proper induced subgraphs of . The paper contains results and examples
comeerring the conjecture thet every graph of order at least fovr is uniquely
determmed by its intersection graph.

Partition Graphs. Partition graphs (not to be confused with the “parti-
tion mtersection graphs” described in section 2.4} were inlroduced in [De-
Temyple, Robertson. & Harary, 1984]. A pariffion graph is an intersection
graph O of a luoily of sulsety of & sel 5 such vhat the verbives 1 every mmaxi-
mal independent sabset of V() correspond to » partition of 5, The graphin
Figure 7.14 is an example of a partition graph oo the set 5 = {1,2,.3,4,5}, as
s wilnessed by the set-labeled intersection representation shown there: the
mexamum independent subsets of V(G) are {a, e}t {b, f}, {e,d}. {e,d. f},
and sach corresponds to a partition of &.

[MeAvanay, Roberison, & DeTemple, 1983] characterives partition graphs



136 CHAPTER 7. GUIDE TO RELATED TQOFPICS

12

/
b— 1234 125

\
d/—-\r/—:-\f 34/ \345/ N 5

Figure 7.14: A portition groph G on the set {1,2,3,4.5}.

by the existence of an edge clique cover Q anch that each ) is a maxelique
that has a nonempty intersection with every maximal independent set of
vertices. [DeTemple, Dinsen, Robertson, & MuAvaney, 1993] contains re-
lated details,

Handom Intersection Graphs. The varous wodels for random graphs
provide powerful tools for understanding many praph-theoretic concepts,
including intersection graphe. {Janson & Kratochvil, 1993] has a broad
discussion; see also [Maehara, 1991].

Random interval graphs are disenssed in [Scheinerman, 19880, 1390k
and applied to queving theory in [Nawijn, 1991). See [Scheinerman, 19%0a)
for connections with interval numbers as in seciion 7.1, {McMorris & Schein-
erman, 1991] discusses random chordal graphs, and [Maehera, 1590] dis

cussges random circular-are graphs (as in section 7.1).

7.9 PFi-Free Chordal Graphs and Cographs

The Fy-free chordal graphs arc easily scen to be the same as the Oy, Py-free
graphe: the graphs that hawve no induced 4-vertex cyecle or path. These
graphs fotm one of several well-studied forbidden-subgraph subclasses of
chordel graphs; we include & section on this particular one because of its
many relationships to other concepts we bave considored, These graphs first
appeared in [Wolk, 1962, 1965).

Theorem 7.43 (Wolk) A greph i o Py-free chordal gruph of and endy
if it is the comparability graph of & tree poset.

Meare directly relevant to mtersection grapbs, {Skrien, 1982] defines a
graph to be a nested intervol graph 1 it is the intemection praph of o family
of nested intervels of the real line, meaning that two intervals in the family



7.9. Fe-FREE CHORDAL GRAFPBS AND COGRAPHS 137

have a nonempty inlersection only when one of them 3 contained in the
other. Equivalently, a graph is a nested interval graph il and only 10 it is the
containment graph {scction 7.6) of nested intervals.

Theorem T.44 (Skrien) A graph is o Py-free chordel groph if ond oaly
if & 45 o nested fnferval graph.

A graph G is perfect if, for every induced subgraph &7 of ), the cards-
nality of the largest independent set in &' equals the minimum number of
maxrliques needed ta cover V(G'). (Perfect praphs, introduced by Berge in
the sarly 19602, have an homense Dlerature that includes Golommbic, 1980,
the elamsdc textbook on mmtersection graph theory) [Golumbic, 19784] des
fines a graph & to be trivially perfect if, for cvery induced suboraph G of
5. the cardinality of the largest independent set in £ 2quals the number of
maxcligres of (3.

Theorem 7.45 (Golumbic) A graph is a P.-free chordal gruph if and
anly if it is trivially perfect.

A zet 5 C V(&) domenates » graph {7 if every vertex of {7 is either in &
of has a neighbor in 5. The domination number of &, denated (G}, 15 the
srnadlest cardinality of a sct & that dominakes (7. For any complete subgraph
(¢} of &, detine V{€}), the common neighbarioodof G, to be I N (v) : v e @}
The following cheorems are from [McKee, 1990c, to appear{a]. respectively;
Lhere iy related material in [Kellieher & Cozzens, 1980

Theorem 7.46 (McKee) A graph G iz ¢ Fy-free chordal groph if and
anty of V(7Y con be ordered (v, ..., v} where cach vy dominates i3 compa-
nent i the subgroph of (7 indueed by vy, . .. va-

Thoorcm 7.47 {McKee} For cvery graph C,

ST —A(NIG)] £ G,
I,

where the sum i daken over all nonempty complele subgraphs ¢ of G, unth
equality holding if and only f C i @ Pa-free chordal graph. { The dneguadity
alfso holds when the ~ parameter is replaced with the number of components.
with equality then holding if and onfy of & € cherdal )
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Dofine a graph to be a hereditary upper bound graph if every induced
subgraph s an upper bound graph. [Mvers, 1982] shows that o graphis a Fy-
froe chordal graph if and only if it is a hereditary upper bound graph. [Ma,
Walliz, & Wa, 1980 characterize Pi-free chordal graphs as quesi-threshold
grophs, a weakening of the notion of threshold graphs from Chapter §; [Yan,
Chen, & Chang, 1998] discusses quasi-threshold graphs further,  By-free
chorclal graphs alzo show upin [Peyton, Pother, & Yuan, 1995] in connection
with sparse mattis computations.

[Skrien, 1982] refers (equivalently) to the Py-free chordal graphs as being
the fy-free inferval graphs. Heplacing £y with the &-vertex tree F having
degrees 1, 1, 1, 2, and 3 (like the letter F), [MoKee, 1998] shows that F-free
intervisl graphs are those for which eligque path representations are produced
by a simple-minded greedy path algorithm obtained by modifying Kruskal's
algorithin to repeatedly choose an edge of largest weight that does net forn
cithey a cvele or a vertex of degree threc with previously chosen edges. This
gives an analogne of the chordal graph greedy free algorithm of Theorem 2.3:
The Fy-free interval graphs (equivslently, the nested interval graphe) are
precisely the graphs for which the siipple-minded sreedy path algorithm
produces a nested interval ropresentatiorn.

'hose Py-free graphs that are not necessarily chordal have also been in-
dependently investigated and are alac konown by many different names, the
wost {requent beiny complement reducile grophys o, more oiteu, cographs.
iCorneil, Lerchs, & Stewart Burlingham, 1981) iz the key paper, orcanizing
many people’s work from the 1970s, with an assortment of characteriza-
tiona and applications. [Chailen, Murray, & Rosenthal, 1939] containa even
ore, festuring an apphlcanion to automated] theorem proving. Cographs
form 2 snholass of the perrmitation graphs (section 7.4). The “complement
reducible” name comes from the fotlowing.

Theorem 7.48 (Corneil, Lerchs, & Stewart Burlingham) 4 graph
ia o eograph i and ondy o i ean be vedused to an edgeless graph by repeat-
edly toking complements within companents. In other words, if G® = G
end GHU g the union of the complements of olf the components of G,
then G is n cograph if and onfy if these GO oll exist and become cdgeless
Jor sufficiently large 1.

Figure 7.15 shows an example of & cozraph G and &M and G¥; the
O with ¢ > 3 are all edgeless. Trying the same procesg on Py cleatly never
even begins to icad to an cdgeless graph.

Paralleling Theorem T.43, a graph 15 a cograph if and ondy o it is the
eomparahility graph of a scrics-parallel poset. Paralleling Theorem 7.45,
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Figure 7.15: A cogreph & with its nonedyeless subsidiory cographs GW.

& i= a cograph if and only if, in every induced subgraph &7 of &, cvery
maxelique and every meximal independent sef have exactly one vertex in
commen. Other simple chararterizations inclade the following:

# Lo every nonlrivial (oeaping |[VIG) = 1) indueed subgraph 7 of &,
there are vertices o, w such that M{u) ' {e.w} = N{w) )\ {u,w} in &

» For every nontrivial indueed snberaph ¢ of (7, either €7 or its com-
plement &7 is not connectad.

» Every connected indueed suberaph of 7 has dismeter af mest fweo.

s (7 can be generated from trivial graphs by a seqnence of disjoint wions
ard joins.

[MeKee, 1990c] further siudies the connectinug stnong cographs, inter-
sechion graphs, and comparability graphs (as well as ther multigraph ana-
logues), ineluding the statement of the following “odd” intersection char-
acterization. Call a graph the odd infersection graph of & family F =
{85 %) ol sels i 0L hay F oas ils verlex see with 5 aud §; adjacent
iF aned omly 3f |51 .55  add.

Theorem 7.49 A graph (7 is o cograph if and only f there erists o
rooted tree T with no nonroot verter of degree fwo such that O is isomerphic
to the odd dnfersection groph of all the root-to-leaf poths of T

These (ress are essentiafly the cofrees in [Corneil, Lerchs, & Stewart
Burlingham. 1981). For instance, a cotree representation for the cograph
in Figure 7.16 is shown in Figure 7.18; notice how its subirees correspond
to the components of the G'¥s, [Corneil, Peri, & Stewart, 1985] contains
mor¢ information on cographs, including o linear slgonthm for recognizing
cographs and construcring eotree representations.



140 CHAPTER 7. GUIDE TY) RELATED TOPICS
r
1 / \ 9
/ N
a \b f:l\/c/ \f g
d e

Figure 7.16: A cotrec represeniation for the cograph in Figure 7.15.

Figure 7.17: A chordal groph whose square i3 not chordal

7.10 Powers of Intersection Graphs

(zeneralizing the notion of squared graph from section 4.1.1, the k-power of
s graph €7, denoted (5%, has the same vertices as 7, with two vertices u and
w adjacent if and only if d{z, w) = k, where d{u, w) denotes the usual graph
distance in (. Section 16.2 of [Prisner, 1995] discusses powers of all sorts of
intersection granhs,

Many intersection classes O are slosed tnder powers, meaning that G € G
implies that &% € G for &ll & = 1. An intersection class G is strongly closed
under powers if, for every & > 1, G* € € implies that G*t? € §; in other
words, if a power of (7 is in the clasa, then so are all higher powers.

[Laskar & Shier, 1980] effectively began the study of powers of chordal
graphs, noting that the elass of all chordal graphs is not closed under powers:
the example in Figure 7.17 15 a chordal graph whose square 1s not chordal.
[Laskar & Shier, 1983] and [Wallis & Wu, 1995] both characterize when the
squatre of a chordal graph is chordal.

Theorem 7.50 {(Wallis & Wu} A chordal graph 7 hae G¢ chordal if
end onfy if the cligue groph K{G) of G is cherdal, For any graph G, K{Q)
chordal fmplies (2 i5 chordal.
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[Duchket, 1984], [Balakrisknan & Pavlrajs, 1983}, and [[Flotow, 1997 con-
tain lurthier reswlts on powers of chordal graphs, Call the graph formed fom
a triangie by adding two nonadjacent pendant edges (like the letter A) an
A-graph, and recall that K 3 is the upper-ieft graph in Figure 1.4.

Theorem 7.51 {Duchet) [f G* is chordal, ther 50 is G**2, If G and
7 are both chordal, then ol powers of 7 are chordal,

Theorem 7.52 (Balakrishnan & Paulraja) If G is chordal and k is
add, then G* is chordul, If G is chordel and %% i3 not chordel, then none
of the edges of any chordless cyele of G2 iy an adge of G7 for v < 2h.

Theorem 7.53 (Flotow)} If (! confains no induced A-graph or K 4 or
(0, with 0 2> 2k + 2, then GF is chordal. If (7 contins ne induced K 1.3 oF
Cy with n > 4, then every power of G is chordal If G contains no induced
K3 or(y withn = 6, ther every odd power G5 k> 3, of G is chordul

(Brandstédt, Chepol, & Dragan, 1596] shows that it 7" and G™ are both
chordal, then they have a comtnon perfecl elimination ordering thet can be
found efficiently using a modibied maximum cardinality search.

[Ravchaudhuri, 1987], [Prisner. 1996b], and [Flotow, 1996] investigate
the closses of (proper) interval graphs and circular-are graphs.

Theorem 7.54 (Raychaudhuri) The inferscction classes of inferval
qrophs, uwstevoidael triple-free grophs, and proper fnterve] graphs are stronyly
closed under powers.

Theorem 7.55 (Prisner) The intersection cluss of proper circelor-are
qraphs iz strongly closed under powers.

Theorem 7.5 {Flotow) The intersection class of circular-arc graphs
is closed under powers, and for ol k = 2, (F & eircular-ave graph tmplics
thaet GFT2 35 4 civendurare graph.

The result of [Lubiw, 1082] and [Dahlhang & Dichet, 1987] that strongly
chordul graphs {section 7.12) are closed under powers is strengthened in
[Raychaudhuel, 1992a].

Theorem 7.57 (Raychaudhuri) The intersection elass of strongly
chordal graphs 15 strongly closed under powers,
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[Lundgren, Merz, & Rasmussen, 1993) investigates characterizing graphs
whiose squares are interval graphs. [Brandstadt, Dragan, Chepoi, & Voloshin,
1994] shows that the intersection class of clique graphs of chordal graphs
(section 7.3} is closed under powers.

[Jamison, to appear| shows that every power of a block graph is chordal,
where a block graph is any graph isomorphic to the intersection graph of the
vertex setd of all the blocks- —maximal 2-connected subgraphs—of a graph.
{(Block graphs are not to be confused with the block-intersection graphs of
dcsigns in section 7.8).) [Harery, 1963} characterizes block graphs as the
graphs in which every bluck is vomplete,

7.11 Sphere-of-Influence Graphs

Suppose X is any finite set of points in B2 and each » € X is associated
with the open ball centered st with radins equal to the smallest distance
from x to any other pomnt of X. A graph is 8 sphere-of-influence graph if it
is isomorphic to the intersection graph of such open balls for some X ¢ B2,
Lipman, 1992] shows that the pointe = can always be assumed to be lattics
points of the plane. Closed gphere-of-influence grophs are defined similarly
using closed balls, The geometric delicacy involved in these definitions cax
be glimpred in Figure 7.18, which shows that the cyele O is a sphere-of-
influence praph. Mote the tangency of the upper left and upper right circles;
by Theorem T7.59, C» i3 not a closed sphere-of-influence graph.

Sphere-of-influence graphs grew out the [Toussaint, 1988] discussion of
pattern recogaition and computer vision: [Jaromeayk & Toussaint, 1992
containg references and discussion of general prozimity grapha of this sort.

Much work has been done attempting to characterize which graphs are
{closed) sphere-of-influence graphs, but the geners| problems retnain open.
Oue awkward fact is that the classes of all sphere-of-influence graphs and of
all closed aphere-of-influencc graphs are not closed under induced subgraphs,
anrd 50 are not intersection classes in the sense of section 1.2,

A {G1,...,Gr}-factor of a graph is a spanning subgraph consisting of
verbex-disjoint copies of graphs iscmorphic to graphs each of which is iso-
morphic to one of G1,..., 0y & { Kg}-factor is & pevfect matching. The fol-
lowing results are {rom [Jacobson, Lipman, & McMorris, 1995] and [Michael
£z Quint, to appesr]. {Recall that &, denotes a path with n — 1 edgea.)

Theorem T7.58 {Jacobson, Lipman, & McMorris) A free isa sphere-
af-influence gmph if and onty if ¢ has e perfect mofchang and 12 o closed
sphere-of-influence graph if and only o 5 has o {I%, Iy }-fector.
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Fignre T.18: Open bolls showitg that Cy is o sphere-nfanfluence graph,

Theorem 7.5% {Jacobson, Lipman & McMorris) Feery triaugle-
free closed spherc-of-influence graph has 8 perfect matching.

Theorem 7.60 {Michael & Quint) ELeery iriongle-free sphere-of-
influence graph or friangle-free closed spheve-of-dnflence proph a pletor,

Ewven the status of complete graphs is not folly known: there iz a gap
between K, which is known to be a sphere-of-inflaence graph, and His,
which s kuown not te be by the following result of [Kézdy & Kubicli,
1087]. [Harary, Jacohson, Lipmarn, 4 McMorris, 1993; conjectires thal Ky
is not a sphore-of-influence graph.

Theorem 7.61 (Kézdy & Kubicki) Kiy is ual o sphere-of influcnee
grieph.

[Michael & Quint, 1994] surveys sphere-ofsinfluence graphs and has a
bibliograpiy that iz complete through 1903, It also shows how the work on
spherc-obinfluence graphs finds natural expression whes exlemwded to arld-
trary mefric spaces. {Chen, Gould, Jacobson, Schelp, & West, 19492] and
[Harary, Jacobson, Lipman, & Meborns, 1934] present a related notion of
influence graph, replacing euclidean distance with the usual graph-thonretic
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distance metric. [Guibas, Pach, & Sharir, 1994] investigates sphere-of-
influence graphs m higher dimensiona. (Helin & Bogart, to appeat| atudies
min- and sum-tolerance ephers-ofk-infuence graphs.

Theorem 7.62 (Holm & Bogart) EBvery free is both a min-felerunce
sphere-of-influence graph and 6 sum-tolerance sphere-of-influence graph.

[Lipman, [996] studies mex-tolerance sphere-of-influence graphe and
shows that not cvery tree is a max-folerance spherc-of-inflvence graph.

Theorem 7.63 (Lipman) The complete bipartite graph K1y 5 6 moz-
iolerunce sphere-of-influence yraph f and ondy if 1 < n <L

[Mcharris & Wang, Lo appear] initiates the study of sphere-of-nitraction
graphs, motivated by applications to marketing in {Crama, Hansen, & Jao-
rpard, 1995], Thesc are defined by two sets A, and X, of points, whose
elements can be thought of as, respectively, “customers” and “products,”
with bells (open or cloged) centered at pointa of A, where each radiug is de-
termined by the shortest distance to 2 point in &, McMorris & Wang prove
that, iIn RBf, cloged sphere-of-atirection graphs arc proper interval graphs,
and they give a forbidden suberaph cheracterization of the B! closed sphere-
of-attraction graphs. They also show that every proper ioterval graph is an
R? cloacd aphere-of-attraction graph.

Theorem 7.64 (MecMorris & Wang) 4 iriangle-free graph is an R?
sphere-of-attraction graph (or, equivalently, a closed B2 sphere-of-atfraction
grophk) if and onfy if it is planar.

7.12 Strongly Chordal Graphs

A chordal graph is strongly chordal if it has the additional property that
every cycle O of even length st lemst six hag a chord that divides O into
two odd-length paths. Strongly chordal graphs form an intermediate fam-
ily between the families of interval graphs and chordal graphs. They have
been particularly important becanse certain graph-theoretical problems have
efficient computational solutions for subfamilies of the family of atrongly
chordal graphs. However, we will foeus on etructural properties, primarily
from the fundamental paper [Farber, 19583]

Define a trempoine, sometimes called a k-sun, to be a graph formed
from an even-length evele wi,... o, v by adding edeges between even-
subscripted vertices so that {vs,vy4,.... v} induces a complete suberaph,
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For mstance, the graphs on the left wn Figures 7.11 aud Figure 7.14 are
trampolines. (Warning: Some suthors use “trampoline” snd “f-sun” wilh
the same meaning except with “complete” replaced with -chordal™ the two
meanings are equivalent in the following characterization by results in [Far-
ber, 1983] and [Chang & Nemhauser, 1984 }

Theorem 7.65 (Farber) A graph is strongly chovdel of and only i 4
i3 chordal and confaing no Htduced frampoline.

Dlefine a vertex o € V{GY to be simple i [or every #.w & N[2|, the
closed neighborhoods A[w] and M|w] are comparable by inclusion. For
inglance, vertex 1 in Figure 719 is shaple since N[} = {1.2,4,3} and
N1} € N[2] © N[4] = N[]; the graph i Figare 7.20 luas no simple verteg.
Call an ordering {ny, ..., vy of all the vertices of (7 & simpde efimenation
ordering of (7 if, for each i € {1,....n}, 1 5 a simple vertex of the sah-
graph indueed by wog,... v,. The vertices in the strongly chordal graph in
Figure 7.19 are munbered im o simple elimination ordering. Fhe following
theorem parallels the perfect elimination erdering characterzation of chordad
grapha in Thenrem 2.5. ([Farber, 1983] also introduces a different, somewhat
less simple notion of “strong olimination crdering” that alzo characterizes
strongly chordal graphs.)

Theorem 7T.66 (Farber) 4 graph is strongly chordal if end only if &
haz o simple eliminalion ovdering.
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[Chang & Nembauser, 1984] obscrves that a graph is chordal if and only
if, for every cycle € of length greater than three, there is a triangle consisting
of fwo edges of ¢ and ope chord of & [Dabihaus, Maouel, & Miller, 1998]
proves that a chordal graph is strongly chordal if and only if, for every cycle
€ of length greater than five, there is 4 triangle consisting of oue edge of <
and two chords of C

[Brandstadt, Dragan, Chepoi, & Voloshin, 1494] shows that a graph is
strangly chordal if and only if every induced subgraph is the clique graph of
a chordal graph {section 7.5). {Bandelt & Prisner, 1991] shows that a graph
{15 strongly chordal if and only if & = A(H) where & is another stromgly
chordal graph. [Reychaudburi, 1988] pives an algorithm for the intersection
number of strongly chordal graphs.

Strongly chordsl graphs are intimately related to totally balanced hy-
pergraphs in [Anstee & Farber, 1984]; see also [Lubiw, 1987]. The second
part of the following theorem also appears in [Brouwer, Duchet, & Schrijver,
1983}, which contains the very similar characterization of chordal bipartite
graphs stated in Theoretn 7.22. [Ma & Wu, 1890] shows that Theorem T7.67
is also truc when £ is the family of all minimai vertex separators of a chordal
craph €7

Theorem 7.687 {Farbher) A graph & is strongly chordal if ond only if
the hypergraph (V{C), £), with £ the fermily of all meozelinues of G, is to-
tulfy bulaviced; moreover, the saine is true when £ s the fomily of ofl elosed
netghborkonds of vertices of €.

Chall a elique tree T a strong clique tree representation tor a eraph (7 when
there arc act vertices vy, ... E V@ and @y, ..., G € V(T), k = 3, much
that (1 igin Ty and 13, Qo isin T and Ta, ..., and Qp is in Ty, and Ty,
with ne £} in any ather 1 for ¢, 7 ¢ {1,...,k}. For instance, the clique
tree in Figure 7.20 can be sean not to be a strong clique tree by taking
vy =2, =8, vy =T, and ) = 1245, Q2 = 4567, Q3 = 2347 {in other
words, T is not a strong clique tree because of the “cyclic™ arrangement of
the subtrecs i, T, and T3). This is expressed in terms of either of the
hypergraphs (VG V{T)) and {(V(T), {7 : v € V(G)1) not being strongly
halaneed. The Tllowing characterization, paralleling Theorem 2.1, Loilows
from Theorsmn 7.67, Exercise 2.20, and Coroliary 2,110

Theorem 7.68 A graph is strongly chordol if and only if it has a strang
elipee Free v gresentlation.
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MeKee, to appear(l]] characterizes such strong clique trec representa-
tions T of G by, for all v € V(G), wach T, TV, ... Leing connected, where
{mimicking secticn 2.1} 17 is defined to be sny maximum spanning tres of
the weighted intersection yraph K¥(F{T} of the set {Q : @ € £{1)} 17
is defined similarhy in terms of K*{E{T)), and so on.

Reflecting their connention to totally balanced lypergraphs, strongly
choerdal grapha are also intimatcly related to chordel bipartite graphs in
[Dahlbaurs, 1289, [Hofman, Kolen, & Sakarovitch, 1985], (Hammer, Mafleay,
& Preissmann, 1989), snd [Brondscadt, 1991). For instance, Brandstadt’s
paper includes proofs of the following twe results (which should be compared
with Exercise §.11 and Theorem 5.5).

Thecorein 7.69 {Brandstidt and Miiller) 4 graph & on V(F) = {11,
ooy o} s strongly chordal if und enly if B((7) iz chordal bipartite, where
G is defined to be the bipartite groph on VIDB(G)) = {z1.. ... Tns 01, -+ -
¥n} with Ty € E{B(G)) exectly when either 1 = j or wv; € E{G).

Theorem 7.70 {Dahibaus) A partite graph G is chordal hiportite if
and snly if the split greph obteined from G by making one of its two eolor
rlnsses complete i3 atrongly chordal

Peralleling Theorem 7.68, [McKee, to appear(b)| also defines & “strong
neighborhood tree represeatation” T in the same way as strong chque tree
representations, as a maximum spanning tree T of the weighted intersection
graph K*(N(G)) of the set AYG) = {N(v) : v & V()} of all open neigh-
borhoods of vertices of (7 such that every T, T, T, . . I connected. Then,
relatisd to Theorerm 7.22 or 7.70, » graph is chordal bipartite if and ounly if
it has a “strong neighborhond tree reprasentation.”
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