

UML DEMYSTIFIED

http://dx.doi.org/10.1036/007226182X

This page intentionally left blank

UML DEMYSTIFIED

PAUL KIMMEL

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/007226182X

Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-148671-2

The material in this eBook also appears in the print version of this title: 0-07-226182-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right
to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTH-
ERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licen-
sors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or
omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007226182X

http://dx.doi.org/10.1036/007226182X

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/007226182X

In loving memory of my sister Jennifer Anne
who was given just 35 years.

ABOUT THE AUTHOR

Paul Kimmel is the Chief Architect and a founder of Software Conceptions, Inc.
He has been designing and implementing object-oriented software since 1990 and
has more than a dozen years of experience with modeling languages and was an
early adopter of the Unified Modeling Language. Paul has helped design and
implement solutions using the UML for some of the largest corporations in the
world from international banks, multinational telecommunications companies,
logistics and shipping companies, Department of Defense agencies and national
and international governmental groups.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

CONTENTS AT A GLANCE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

APPENDIX A

A Picture Is Worth a Thousand Lines of Code 1

Start at the Beginning with Use Cases 17

Diagramming Features as Processes 47

Discovering Behaviors with Interaction Diagrams 81

What Are the Things That Describe My Problem? 101

Showing How Classes Are Related

Using State Chart Diagrams

Modeling Components

Fit and Finish

Visualizing Your Deployment Topology

Final Exam

Selected Bibliography

Index

131

157

175

185

197

209

225

227

vii

This page intentionally left blank

CONTENTS

Acknowledgments xv
Introduction xvii

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code 1

Understanding Models 2

Understanding the UML 3

The Evolution of Software Design 3

If No One Is Modeling, Why Should You? 5

Modeling and the Future of Software
Development 5

Modeling Tools 5

Using Models 6

Creating Diagrams 7

Reviewing Kinds of Diagrams 7

Finding the Finish Line 12

How Big Should a Diagram Be? 13

How Much Text Should Supplement
My Models? 13

Get a Second Opinion 13

ix

12howwmanyakfainisahbfiuadictrerafgatrflaserjlsndfilamnfdllll

For more information about this title, click here

http://dx.doi.org/10.1036/007226182X

CHAPTER 2

CHAPTER 3

UML Demystified

Contrasting Modeling Languages with Process 14

Quiz 14

Answers 16

Start at the Beginning with Use Cases 17

Making the Case for Use Cases 18

Prioritizing Capabilities 19

Communicating with Nontechnophiles 20

Using Use Case Symbols 21

Actor Symbols 21

Use Cases 21

Connectors 22

Including and Extending Use Cases 25

Annotating Use Case Diagrams 27

Creating Use Case Diagrams 32

How Many Diagrams Is Enough? 34

Example Use Case Diagrams 34

Driving Design with Use Cases 43

Quiz 44

Answers 46

Diagramming Features as Processes 47

Elaborating on Features as Processes 48

A Journey toward Code 48

Understanding Activity Diagram Uses 49

Using Activity Diagram Symbols 51

Initial Node 52

Control Flow 52

Actions 56

Decision and Merge Nodes 62

Transition Forks and Joins 63

Partitioning Responsibility with Swimlanes 63

Indicating Timed Signals 67

Capturing Input Parameters 70

X

CONTENTS

CHAPTER 4

CHAPTER 5

Showing Exceptions in Activity Diagrams 70

Terminating Activity Diagrams 71

Creating Activity Diagrams 72
Reengineering Process 73

Reengineering a Subactivity 74

Knowing When to Quit 77

Quiz 77

Answers 79

Discovering Behaviors with
Interaction Diagrams 81

Elements of Sequence Diagrams 82

Using Object Lifelines 83

Activating a Lifeline 84

Sending Messages 85

Adding Constraints and Notes 87

Using Interaction Frames 87

Understanding What Sequences Tell Us 91

Discovering Objects and Messages 92

Elements of Collaboration (or Communication)
Diagrams 94

Equating Design to Code 96

Quiz 97

Answers 99

What Are the Things That Describe
My Problem? 101

Elements of Basic Class Diagrams 102

Understanding Classes and Objects 103

Modeling Relationships in Class Diagrams 111

Stereotyping Classes 117

Using Packages 118

Using Notes and Comments 118

Constraints 118

XI

CHAPTER 6

CHAPTER 7

UML Demystified

Modeling Primitives 120

Modeling Enumerations 121

Indicating Namespaces 122

Figuring Out the Classes You Need 123

Using the Naive Approach 124

Discovering More than Domain
Analysis Yields 124

Quiz 128

Answers 130

Showing How Classes Are Related 131

Modeling Inheritance 132

Using Single Inheritance 132

Using Multiple Inheritance 135

Modeling Interface Inheritance 139

Whiteboarding 139

Using Realization 140

Describing Aggregation and Composition 143

Showing Associations and Association Classes 145

Exploring Dependency Relationships 150

Adding Details to Classes 153

Quiz 153

Answers 155

Using State Chart Diagrams 157

Elements of a State Diagram 158

Exploring State Symbols 159

Exploring Transitions 164

Creating Behavioral State Machines 166

Creating Protocol State Machines 167

Implementing State Diagrams 168

Quiz 172

Answers 173

• •
Xll

CONTENTS

CHAPTER 8

CHAPTER 9

CHAPTER 10

Modeling Components 175

Introducing Component-Based Design 177

Using a Top-Down Approach to Design 177

Using a Bottom-Up Approach to Design 178

Modeling a Component 178

Specifying Provided and Required Interfaces 179

Exploring Component Modeling Styles 180

Diagramming Components for Consumers 180

Diagramming Components for Producers 182

Quiz 183

Answers 184

Fit and Finish 185

Modeling Dos and Don'ts 186

Don't Keep Programmers Waiting 187

Work from a Macro View to a Micro View 187

Document Sparingly 187

Find an Editor 188

Be Selective about Diagrams
You Choose to Create 188

Don't Count on Code Generation 188

Model and Build from Most Risky
to Least Risky 188

If It's Obvious Don't Model It 189

Emphasize Specialization 189

Using Known State Patterns 189

Refactoring Your Model 192

Adding Supporting Documentation 192

Validating Your Model 193

Quiz 193

Answers 195

Visualizing Your Deployment Topology 197

Modeling Nodes 198

Showing Artifacts in Nodes 201

Xlll

UML Demystified

Adding Communication Paths 204

Quiz 206

Answers 207

APPENDIX A Final Exam 209

Answers 223

Selected Bibliography 225

Index 227

XIV

ACKNOWLEDGMENTS

Well into my second decade of writing I have Wendy Rinaldi at McGraw-Hill/Osborne,
along with Alexander McDonald and my agent David Fugate at Waterside to thank for
this opportunity to write what I believe you will find an informative, entertaining, and
easy to follow book on the Unified Modeling Language.

I also want to thank my friend Eric Cotter from Portland, Oregon, for offering to
provide technical editing for UML DeMystified. Eric did an excellent job of finding my
mistakes, omissions, and in improving the explanations.

Thank you to my hosts at the Ministry of Transportation Ontario in St. Catharines,
Ontario. Collaborating with you on CIMS was an enjoyable process and exploring
my models and designs with you provided excellent fodder for this book. Thank you
Novica Kovacevic, Jennifer Fang, Rod, Marco Sanchez, Chris Chartrand, Sergey
Khudoyarov, Dalibor Skacic, Michael Lam, Howard Bertrand, and David He from
Microsoft. It was a pleasure working with and learning from all of you.

In 2004, along with Bill Maas, Paul Emery, Sainney Drammeh, Bunmi
Akinyemichu, and Ryan Doom, the Greater Lansing area .NET Users Group (glugnet
.org) was formed, and I'd like to say hello to all of the great glugnet members and
supporters. We meet the third Thursday of every month at 6:00 P.M. on the beautiful
campus of Michigan State University. Thanks to MSU for permitting to use their
excellent facilities in the Engineering Building and Anthony Hall.

While working in Ontario my sustenance was graciously provided for at Prudhom-
mes in Vineland, Ontario, at exit 55 and 57 and the Honest Lawyer in St. Catharines,
Ontario, Canada. Thanks to Lis, Jen Cheriton, Everett, Kathryn, and Kim for food and
adult beverage, and the staff of the Honest Lawyer for the wireless access.

Last but not least, I owe a gratitude of debt to my wife Lori and four children, Trevor,
Douglas, Alex, and Noah, playing the role of biggest fans and supporters. A family is
the greatest blessing. (I would also like to introduce the newest member of our family
Leda, an energetic chocolate lab, who waits patiently at my feet as a subtle reminder to
push back from the computer and go do something else every once in a while.)

XV

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

INTRODUCTION

New inventions often occur out of necessity and are documented on napkins long
before, if ever, an authoritative and formal definition is provided. The Unified Modeling
Language (UML) is just such an example. Individual aspects of what ultimately became
the UML were defined by Ivar Jacobson, James Rumbaugh, and Grady Booch out of
necessity long before their individual contributions were consolidated into a single
definition.

There is a mixed problem with formal and standard specifications. Generally, for an
august body of scientists to ratify something it is to be unambiguously and rigorously
defined. If you look up the definition of the UML, you will find meta-models that
describe to minute detail what is and what is not the UML. The effect is much like
reading congressional reports: long-winded, dry, tedious, and with an occasional juicy
tidbit. Think of formal definitions versus practical applications like this: there are
specific rigorous rules that define something as simple as algebra, but you don't need to
know them even though we perform or rely on simple algebra in everyday tasks such
as pumping gas. For example, price per gallon multiplied by number of gallons = total
price. With simple text-to-character substitution we can create arithmetic equations,
p * g = t, that start to look like those confusing equations from school but make it
notationally convenient to determine any quantity of the equation. What I mean is that
even people that would identify themselves as math challenged perform math everyday
for practical purposes without ever thinking of it what they are doing as solving math
problems.

That's the objective behind this book. There are formal and rigorous definitions of
the UML and they exist for good reason, but you don't have to know them to use the
UML in a practical way. UML linguists have to know the UML intimately to rigorously
define just like English professors know grammar intimately to teach it, but you don't
have to be an English teacher to communicate effectively. This is true of the UML
too; you don't have to know every detail about the UML to use it effectively.

xvii

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

UML DeMystified is written in simple prose and designed to make the UML
practical and an effective tool for communicating software analysis and design.

There are many books on process and the UML does not define a process. However,
this book is organized in such a manner that if you create the kinds of models as
needed in the order in which they appear in this book, then you have a practical
beginning of a usable process.

UML DeMystified is a modest-sized book but it is a compilation of more than
a dozen years of practical experience working with some of the largest and best
known companies in the world as well as many well-known smaller companies, and
the UML described in this book is pragmatic, practical, and applicable whether you
are building small, medium, or very large applications. In short, UML DeMystified
leaves the ivory tower fluff and rigor to other texts and tells you what you need to
know to successfully use the UML to describe software.

r ••>kvnjj

CHAPTER

A Picture Is
Worth a Thousand

Lines of Code

Pictures of little stick people represent the oldest recorded form of communication
in human history. Some of these cave art have been dated to be as old as 75,000
years. Oddly enough, here we are at the turn of the twenty-first modern century, and
we are still using little stick figures to convey information. That's right, a little stick
man we'll call Esaw is a central character in one of the newest languages developed
by humans (Figure 1-1).

1

1

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

Figure 1-1 Esaw, who is referred to as an actor in the UML.

The language I am talking about is called the Unified Modeling Language, or
UML. The UML is a language just as sure as, Pascal, C# (C sharp), German, English,
and Latin are languages. And the UML is probably one of the newest languages in-
vented by humankind, invented around 1997.

As with other languages, the UML was invented out of necessity. Moreover, as
with many languages, the UML uses symbols to convey meaning. However, unlike
organic languages such as English or German that evolve over time from common
use and adaptation, the UML was invented by scientists, which unfortunately is a
problem. Scientists are very smart, but they often are not very good at explaining
things to those less scientific. This is where I come in.

In this chapter we will look at the origin and evolution of the UML. We also will
talk about how to create pictures using the UML, how many and what types of pic-
tures to create, what those pictures should convey, and most important, when to stop
drawing pictures and start writing code.

Understanding Models
A model is a collection of pictures and text that represent something—for our pur-
poses, software. (Models do not have to represent software, but we will narrow our
scope to software models.) A model is to software what a blueprint is to a house.

Models are valuable for many specific reasons. Models are valuable because
they consist of pictures to a large extent, and even simple pictures can convey more
information than a lot of text, e.g., code. This is consistent with the somewhat mod-
ified old adage that a picture speaks a thousand lines of code. Models are valuable
because it is easier to draw some simple pictures than it is to write code or even text
that describes the same thing. Models are valuable because it is cheaper, faster, and
it is easier to change models than it is to change code. The simple truth is that cheap,
fast, easy, and flexible are what you want when you are solving problems.

2

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

Unfortunately, if everyone uses different pictures to mean the same thing, then
the pictures add to the confusion rather than mitigate it. This is where the UML
comes in.

Understanding the UML
The UML is an official definition of a pictoral language where there are common
symbols and relationships that have one common meaning. If every participant
speaks UML, then the pictures mean the same thing to everyone looking at those
pictures. Learning the UML, therefore, is essential to being able to use pictures to
cheaply, flexibly, and quickly experiment with solutions.

It is important to reiterate here that it is faster, cheaper, and easier to solve prob-
lems with pictures than with code. The only barrier to benefiting from modeling is
learning the language of modeling.

The UML is a language just like English or Afrikaans is a language. The UML
comprises symbols and a grammar that defines how those symbols can be used.
Learn the symbols and grammar, and your pictures will be understandable by every-
one else who recognizes those symbols and knows the grammar.

Why the UML, though? You could use any symbols and rules to create your own
modeling language, but the trick would be to get others to use it too. If your aspira-
tions are to invent a better modeling language, then it isn't up to me to stop you. You
should know that the UML is considered a standard and that what the UML is and
isn't is defined by a consortium of companies that make up the Object Management
Group (OMG). The UML specification is defined and published by the OMG at
www. omg. org.

The Evolution of Software Design
If you feel that you are late to the UML party, don't fret—you are actually an early
arrival. The truth is that the UML is late to the software development party. I work
all over North America and talk with a lot of people at lots of very big software
companies, and the UML and modeling are just starting to catch on. This is best
exemplified by Bill Gates' own words after his famous "think week" in 2004, where
Gates is reported to have talked about the increasing importance of formal analysis
and design (read UML) in the future. This sentiment is also supported by Micro-
soft's very recent purchase of Visio, which includes UML modeling capabilities.

3

www.omg.org

UML Demystified

The UML represents a formalization of analysis and design, and formalization
always seems to arrive last. Consider car makers in the last century. Around the turn
of the last century, every buggy maker in Flint, Michigan, was turning horse car-
riages into motorized carriages, i.e., cars. This occurred long before great universities
such as Michigan State University (MSU) were turning out mechanical engineers
trained to build cars and software tools such as computer-aided design (CAD) pro-
grams that are especially good at drawing complex items such as car parts. The
evolution of formalized automobile engineering is consistent with the evolution of
formalized software engineering.

About 5000 years ago, the Chinese created one of the first computers, the abacus.
About 150 years ago, Charles Babbage invented a mechanical computing machine.
In 1940, Alan Turing defined the Turing computing machine and Presper Eckert
and John Mauchly invented Eniac. Following computing machines came punch
cards and Grace Hopper's structured analysis and design to support Cobol develop-
ment. In the 1960s, Smalltalk, an object-oriented language, was invented, and in
1986, Bjarne Stroustrop invented what is now known as C++. It wasn't until around
this same time period—the 1980s—that very smart men like Ivar Jacobson, James
Rumbaugh, and Grady Booch started defining elements of modern software analy-
sis and design, what we now call the UML.

In the late 1980s and early 1990s, modeling notation wars were in full gear, with
different factions supporting Jacobson, Rumbaugh, or Booch. Remember, it wasn't
until 1980 that the average person could purchase and own—and do something use-
ful with—a personal computer (PC). Jacobson, Rumbaugh, and Booch each used
different symbols and rules to create their models. Finally, Rumbaugh and Booch
began collaborating on elements of their respective modeling languages, and Jacob-
son joined them at Rational Software.

In the mid-1990s, the modeling elements of Rumbaugh [Object Modeling Tech-
nique (OMT)], Booch (Booch method), and Jacobson (Objectory and Use Cases)—
Rumbaugh, Jocobson, and Rumbaugh are referred to as "the three amigos"—were
merged together to form the unified modeling process. Shortly thereafter, process was
removed from the modeling specification, and the UML was born. This occurred very
recently, in just 1997. The UML 2.0 specification stabilized in October 2004; that's
right, we are just now on version 2.

This begs the question: Just how many companies are using the UML and actu-
ally designing software with models? The answer is still very few. I work all over
North America and personally know people in some very successful software com-
panies, and when I ask them if they build software with the UML, the answer is
almost always no.

4

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

If No One Is Modeling, Why Should You?

A rational person might ask: Why then, if Bill Gates is making billions writing
software without a significant emphasis on formal modeling, should I care about
the UML? The answer is that almost 80 percent of all software projects fail. These
projects exceed their budgets, don't provide the features customers need or desire,
or worse, are never delivered.

The current trend is to outsource software development to developing or third-
world nations. The basic idea is that if American software engineers are failing,
then perhaps paying one-fifth for a Eurasian software developer will permit compa-
nies to try five times as often to succeed. What are these outsourcing companies
finding? They are discovering that the United States has some of the best talent and
resources available and that cheap labor in far-away places only introduces addi-
tional problems and is no guarantee of success either. The real answer is that more
time needs to be spent on software analysis and design, and this means models.

Modeling and the Future of Software Development

A growing emphasis on formal analysis and design does not mean the end of the
software industry's growth. It does mean that the wild, wild west days of the 1980s
and 1990s eventually will come to a close, but it is still the wild, wild hacking west
out there in software land and will be for some time.

What an increasing emphasis on software analysis and design means right now
is that trained UML practitioners have a unique opportunity to capitalize on this
growing interest in the UML. It also means that gradually fewer projects will fail,
software quality should improve, and more software engineers will be expected to
learn the UML.

Modeling Tools
Until very recently, modeling has been a captive in an ivory tower surrounded by an
impenetrable garrison of scientists armed with metamodels and ridiculously expen-
sive modeling tools. The cost of one license for a popular modeling tool was in the
thousands of dollars; this meant that the average practitioner would have to spend
as much on one application for modeling as he or she spent for an entire computer.
This is ridiculous.

5

UML Demystified

Modeling tools can be very useful, but it is possible to model on scraps of paper.
Thankfully, you don't have to go that far. Love it or hate it, Microsoft is very good
at driving down the cost of software. If you have a copy of MSDN, then you have a
modeling tool that is almost free, Visio. Visio is a good tool, ably capable of produc-
ing high-quality UML models, and it won't break your budget.1

In keeping with the theme of this book—demystifying UML—instead of break-
ing the bank on Together or Rose, we are going to use the value-priced Visio. If you
want to use Rose XDE, Together, or some other product, you are welcome to do so,
but after reading this book, you will see that you can use Visio and create profes-
sional models and save yourself hundreds or even thousands of dollars.

Using Models
Models consist of diagrams and pictures. The intent of models is that they are
cheaper to produce and experiment with than code. However, if you labor over what
models to draw, when to stop drawing and start coding, or whether your models are
perfect or not, then you will slowly watch the cost and time value of models dwin-
dle away.

You can use plain text to describe a system, but more information can be con-
veyed with pictures. You could follow the extreme Programming (XP) dictum and
code away, refactoring as you go, but the details of lines of code are much more
complex than pictures, and programmers get attached to code but not to pictures.
(I don't completely understand the psychology of this code attachment, but it really
does exist. Just try to constructively criticize someone else's code, and watch the
conversation deteriorate very quickly into name calling.) This means that once code
is written, it is very hard to get buy-in from its coder or a manager to make modifi-
cations, especially if the code is perceived to work. Conversely, people will gladly
tinker with models and accept suggestions.

Finally, because models use simple symbols, more stakeholders can participate
in design of the system. Show an end user a hundred lines of code, and you can hear
the crickets chirping; show such an end user an activity diagram, and that same
person can tell you if you have captured the essence of how that task is performed
correctly.

'Microsoft has a new program that permits you to purchase MSDN Universal, which includes Visio,
for $375. This is an especially good value.

6

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

Creating Diagrams
The first rule of creating models is that code and text are time-consuming, and we
don't want to spend a lot of time creating text documents that no one wants to read.
What we do want to do is to capture the important parts of the problem and a solu-
tion accurately. Unfortunately, this is not a prescription for the number or variety of
diagrams we need to create, and it does not indicate how much detail we need to
add to those diagrams.

Toward the end of this chapter, in the section "Finding the finsh line.", I will talk
more about how one knows that one has completed modelling. Right now, let's talk
about the kinds of diagram we may want to create.

Reviewing Kinds of Diagrams
There are several kinds of diagrams that you can create. I will quickly review the
kinds of diagrams you can create and the kinds of information each of these dia-
grams is intended to convey.

Use Case Diagrams

Use case diagrams are the equivalent of modern cave art. A use case's main sym-
bols are the actor (our friend Esaw) and the use case oval (Figure 1-2).

Use case diagrams are responsible primarily for documenting the macro require-
ments of the system. Think of use case diagrams as the list of capabilities the system
must provide.

Activity Diagrams

An activity diagram is the UML version of a flowchart. Activity diagrams are used
to analyze processes and, if necessary, perform process reengineering (Figure 1-3).

Figure 1-2 The "FindFood" use case.

7

UML Demystified

Figure 1-3 An activity diagram showing how Esaw goes about finding food.

An activity diagram is an excellent tool for analyzing problems that the system
ultimately will have to solve. As an analysis tool, we don't want to start solving the
problem at a technical level by assigning classes, but we can use activity diagrams
to understand the problem and even refine the processes that comprise the problem.

Class Diagrams

Class diagrams are used to show the classes in a system and the relationships be-
tween those classes (Figure 1-4). A single class can be shown in more than one class

a

a

Figure 1-4 A single class diagram, perhaps one of many, that conveys a facet of the
system being designed.

diagram, and it isn't necessary to show all the classes in a single, monolithic class
diagram. The greatest value is to show classes and their relationships from various
perspectives in a way that will help convey the most useful understanding.

Class diagrams show a static view of the system. Class diagrams do not describe
behaviors or how instances of the classes interact. To describe behaviors and inter-
actions between objects in a system, we can turn to interaction diagrams.

Interaction Diagrams

There are two kinds of interaction diagrams, the sequence and the collaboration.
These diagrams convey the same information, employing a slightly different per-
spective. Sequence diagrams show the classes along the top and messages sent
between those classes, modeling a single flow through the objects in the system.
Collaboration diagrams use the same classes and messages but are organized in
a spatial display. Figure 1-5 shows a simple example of a sequence diagram, and
Figure 1-6 conveys the same information using a collaboration diagram.

A sequence diagram implies a time ordering by following the sequence of mes-
sages from top left to bottom right. Because the collaboration diagram does not
indicate a time ordering visually, we number the messages to indicate the order in
which they occur.

Some tools will convert interaction diagrams between sequence and collabora-
tion automatically, but it isn't necessary to create both kinds of diagrams. Generally,
a sequence diagram is perceived to be easier to read and more common.

9
CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

UML Demystified

Figure 1-5 A single sequence diagram demonstrating how food is gathered and prepared.

State Diagrams

Whereas interaction diagrams show objects and the messages passed between them,
a state diagram shows the changing state of a single object as that object passes through
a system. If we continue with our example, then we will focus on Esaw and how his
state is changing as he forages for food, finds food, and consumes it (Figure 1-7).

REMEMBER Demystified the UML is a language. Like programming or spoken
languages, idioms that you don't use frequently may become a little rusty from disuse.
It is perfectly acceptable to look up a particular idiom. The goal of modeling is to
capture the essence of modeling and to design proficiently and, ultimately, as accurately
as possible without getting stuck arbitrating language elements. Unfortunately, UML
tools aren 't as accurate as compilers in describing language errors.

10

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

Figure 1-6
behavior.

A collaboration diagram that conveys the same gathering and consuming

Component Diagrams

The UML defines various kinds of models, including analysis, design, and imple-
mentation models. However, there is nothing forcing you to create or maintain three
models for one application. An example of a diagram you might find in an imple-
mentation model is a component diagram. A component diagram shows the
components—think subsystems—in the final product.

Figure 1-7 A state diagram (or statecharf) showing the progressive state as Esaw forages
and eats.

11

UML Demystified

I'll cover deployment diagrams later in this book but defer citing an example for
now. Generally, a component diagram is a bit like a class diagram with component
symbols.

Other Diagrams

There are other kinds or variations of diagrams we can create. For example, a de-
ployment topology diagram will show you what your system will look like deployed.
Such a diagram typically contains symbols representing things such as Web servers,
database servers, and various and sundry devices and software that make up your
solution. This kind of diagram is more common when you are building «-tiered
distributed systems.

I will show you examples of some of these diagrams later in this book. Remember
that the key to modeling is to modeling interesting aspects of your system that help
to clarify elements that may not be obvious, as opposed to modeling everything.

Finding the Finish Line
The hardest part of modeling is that it is so new that UML models are subjected to
some of the same language wars object-oriented projects suffered from during the
last decade. I encourage you to avoid these language wars as mostly unproductive
academic exercises. If you find yourself getting hung up on whether something is
or isn't good UML, then you are heading toward analysis (and design) paralysis.

The goal is to be as accurate as possible in a reasonable amount of time. Poorly
designed software is bad enough, but no software is almost always worse. To deter-
mine if you are finished with a particular diagram or model, ask the question: Does
the diagram or model convey my understanding, meaning, and intent? That is, is the
diagram or model good enough? Accuracy is important because others need to read
your models, and idiomatic mistakes mean that the models will be harder for others
to read.

How Many Diagrams Do I Create?

There is no specific answer. A better question is: Do I have to create every kind of
diagram? The answer to this question is no. A refinement of this answer is that it is
helpful to create diagrams that resolve persnickety analysis and design problems
and diagrams that people actually will read.

12

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

How Big Should a Diagram Be?
Determining how big a model needs to be is another good question to decide. If
a given model is too big, then it may add to confusion. Try to create detailed mod-
els — but not too detailed. As with programming, creating UML models takes
practice.

Solicit feedback from different constituencies. If the end users think that an anal-
ysis diagram adequately and correctly captures the problem, then move on. If the
programmers can read a sequence and figure out how to implement that sequence,
then move on. You can always add details if you must.

How Much Text Should Supplement My Models?
A fundamental idea for using pictures for modeling instead of long-winded text is
that pictures convey more meaning in a smaller space and are easier to manipulate.
If you add too much text — constraints, notes, or long documents — then you are
defeating the purpose of this more concise pictorial notation.

The best place for text is the use case. A good textual description in each use case
can clarify precisely what feature that use case supports. I will demonstrate some
good use case descriptions in Chapter 2.

You are welcome to add any clarifying text you need, but the general rule for text
is analogous to the rule for comments in code: Only comment things that are rea-
sonably subject to interpretation.

Finally, try to document everything in your modeling tool as opposed to a sepa-
rate document. If you find that you need or the customer requires a written
architectural overview, defer this until after the software has been produced.

Get a Second Opinion
If you find yourself getting stuck on a particular diagram, get a second opinion.
Often, putting a diagram aside for a couple of hours or getting a second opinion will
help you to resolve issues about one model. You may find that the end user of that
model will understand your meaning or provide more information that clears up the
confusion, or a second set of eyes may yield a ready response. A critical element to
all software development is to build some inertia and capture the macro, or big,
concepts without getting stuck or keeping users waiting.

13

UML Demystified

Contrasting Modeling Languages
with Process

The UML actually began life as the Unified Process. The inventors quickly realized
that programming languages do not dictate process, and neither should modeling
languages. Hence process and language were divided.

There are many books on process. I don't think one process represents the best
fit for all projects, but perhaps one of the more flexible processes is the Rational
Unified Process. My focus in this book is on the UML, not on any particular pro-
cess. I will be suggesting the kinds of models to create and what they tell you, but I
encourage you to explore development processes for yourself. Consider exploring
the Rational Unified Process (RUP), the Agile process, extreme Programming
(XP), and even Microsoft's Services Oriented Architecture (SOA). (SOAis more of
an architectural approach using elements like XML Web Services, but it offers
some good techniques.)

I am not an expert on every process, but here is a summary that will provide you
with a starting point. The RUP is a buffet of activities centered on the UML that
defines iterative, small waterfalls macro phases, including inception, elaboration,
construction, and transition. XP is constructive hacking. The idea generally is based
on building on your understanding, expecting things to change, and using tech-
niques such as refactoring and pair programming to support changes as your
understanding grows. Microsoft's SOA depends on technologies like COM+, Re-
moting, and XML Web Services and a separation of responsibilities by services.
Agile is a new methodology that I don't understand completely, but Dr. Boehm's
book, Balancing Agility and Discipline, compares it with XP, and I suspect that
conceptually it lives somewhere between RUP and XP.

It is important to keep in mind that many of the people or entities offering a pro-
cess may be trying to sell you something, and some very good ideas have come
from each of these parties.

Quiz
1. What does the acronym UML mean?

a. Uniform Model Language

b. Unified Modeling Language

c. Unitarian Mock-Up Language

d. Unified Molding Language

14

CHAPTER 1 A Picture Is Worth a Thousand Lines of Code

2. The UML is used only to model software.

a. True

b. False

3. What is the name of the process most closely associated with the UML?

a. The modeling process

b. The Rational Unified Process

c. eXxtreme Programming

d. Agile methods

4. What is the name of the standards body that defines the UML?

a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. The Four Amigos

5. Use case diagrams are used to capture macro descriptions of a system.

a. True

b. False

6. Sequence diagrams differ from collaboration diagrams (choose all that
apply).

a. Sequence diagrams are interaction diagrams; collaboration diagrams
are not.

b. Sequence diagrams represent a time ordering, and collaboration diagrams
represent classes and messages, but time ordering is not implied.

c. Time order is indicating by numbering sequence diagrams.

d. None of the above

7. A class diagram is a dynamic view of the classes in a system.

a. True

b. False

8. A good UML model will contain at lest one of every kind of diagram.

a. True

b. False

15

UML Demystified

9. What is the nickname of the group of scientists most notably associated
with the UML?

a. The Gang of Four

b. The Three Musketeers

c. The Three Amigos

d. The Dynamic Duo

10. Sequence diagrams are good at showing the state of an object across many
use cases.

a. True

b. False

Answers
1. b

2. b

3. b

4. c

5. a

6. b

7. b

8. b

9. c

10. b

16

CHAPTER

Start at the
Beginning with

Use Cases

The Unified Modeling Language (UML) supports object-oriented analysis and de-
sign by providing you with a way to capture the results of analysis and design. In
general, we start with understanding our problem, i.e., analysis. An excellent type
of model for capturing analysis is the use case diagram.

The purpose of a use case is to describe how a system will be used—to describe
its essential purposes. The purpose of use case diagrams is to capture the essential
purposes visually.

A well-written and well-diagrammed use case is one of the single most important
kinds of models you can create. This is so because clearly stating, knowing, and
organizing the objectives is singularly important to attaining those objectives suc-
cessfully. There is an old proverb that says, "A journey of a thousand miles begins

17

2

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

with a single step," and there is a slightly younger proverb that says, "If you don't
know where you're going, then the journey is never ending."

In this chapter I will talk about a significant first part of such a journey—creating
use cases—by covering

• The symbols used to create use case diagrams

• How to create use case diagrams

• How many use case diagrams to create

• How much to include in a use case diagram

• The level of detail to include in a use case diagram

• How to express relationships between individual use cases

• The quantity and style of text that is useful for annotating use case diagrams

• Significantly, how to prioritize use cases

Making the Case for Use Cases
Use case diagrams look deceptively simple. They consist of stick figures, lines, and
ovals. The stick figure is called an actor and represents someone or something that
acts on the system. In software development, actors are people or other software
that acts on the system. The lines are dotted or solid lines, with or without various
arrows that indicate the relationship between the actor and the ovals. The ovals are
the use cases, and in the use case diagram, these ovals have some text that provides
a basic description. Figure 2-1 is a simple example of a use case diagram.

For a long time use case diagrams bugged me. They did so because they seemed
too simple to be of any value. A child of three or four with a crayon and a piece of
paper could reproduce these stick figures. Their simplicity is the deception, however.

Figure 2-1 A very simple use case diagram.

18

CHAPTER 2 Start at the Beginning with Use Cases

That a use case diagram is easy to create is implicit praise for the UML. Finding
the right use cases and recording their responsibilities correctly is the deception.
Finding the right use cases and describing them adequately is the critical process
that prevents clever software engineers from skipping critical requirements and in-
venting unnecessarily. In a nutshell, use case diagrams are a macro record of what
you want to build.

In the preceding paragraph, I used the word macro. Macro in this context simply
means "big." The big, or macro, objectives are what are referred to as compelling
business arguments, or reasons, for doing something. Use case diagrams capture
the big, compelling objectives. The use case text captures supporting details.

This is what I missed in the stick figure pictures of use case diagrams. I missed
that simply by recording what the system will do and what it won't do, we record
and specify the scope of what we are creating. I also missed that the text that ac-
companies use case diagrams fills in the blanks between the macro uses and the
micro uses, where micro means "smaller, supporting" uses.

In addition to recording the primary and secondary uses, use case diagrams im-
plicitly provide us with several significant opportunities for managing development,
which I will go into in more detail as the chapter progresses.

Prioritizing Capabilities
Have you ever written a to-do list? A to-do list is a list of things that you must do or
desire to do. The act of writing the list is a starting point. Use cases are essentially
to-do lists. Once you have captured the use cases, you have articulated what the
system will do, and you can use the list to prioritize our tasks. Both stating and or-
ganizing objectives are very critical early tasks.

The value in prioritizing the capabilities of a system is that software is fluid. Let
me illustrate what I mean by example. It is possible to create, save, open, and print
a text document with both Notepad and Microsoft Word, but the difference in the
number of lines of code and the number of features between these two programs is
tremendous. By prioritizing uses, we often have the opportunity to juggle features,
budget, and schedule advantageously.

Suppose, for example, that my primary objectives are to be able to create, save,
open, and print a text document. Further suppose that my secondary objectives are
to save the document as plain text, Hyper Text Markup Language (HTML), and rich
text—i.e., special formatting. Prioritizing the capabilities means that I could elect to
focus on primary uses—create, save, open, and print—but defer supporting HTML
and rich text. (Features in software commonly are deferred to later versions owing
to the real constraints mentioned earlier, including, time, budget, and a change in the
business environment.)

19

UML Demystified

Not having enough time and running out of money are straightforward problems.
Software developers are routinely optimistic, get distracted by tangents, and spend
more time in meetings than planned, and these things tax a budget. However, let's
take a moment to examine a change in the business environment. If our original
requirements were HTML, plain text, and rich text and we were building our soft-
ware in the last 5 years, it is perfectly plausible that a customer might say, during
the middle of development, that saving a document as extensible Markup Lan-
guage (XML) text would be more valuable than rich text. Thus, owing to an evolving
technological climate, midstream a customer might reprioritize and demand XML
as more important than rich text. Had we not documented our primary and second-
ary requirements, then it might be very challenging to determine desirable tradeoffs,
such as swapping rich text for XML. Because we clearly recorded desirable use
cases, we are able to prioritize and make valuable tradeoffs if we have to.

Communicating with Nontechnophiles

Another thing that I missed about use cases is that their very simplicity makes them
an easy conveyance for communicating with nontechnophiles. We call these people
users or customers.

Left-brained programmers generally loathe users. The basic idea is that if one
cannot read code, then one is dumb or, at least, dumber than those who can. The
UML and use cases bridge the gap between left-brained programmers and nontech-
nophile users.

A stick figure, line, and oval are simplistic enough, when combined with some
text, that every participant can understand the meaning. The result is that users and
customers can look at the drawings and read the plain text and determine if the
technologists have accurately recorded and understand the desirable features or not.
This also means that managers—who may have not written code in 10 years—and
technical leads can examine the end product and by inspection ensure that rampant
inventiveness isn't the cause of missed schedules or absent features. Demonstrating
this dissonance by continuing my earlier example, suppose that rich text support is
implemented anyway because the programmer knows how to store and retrieve rich
text. However, because XML is newer and the programmer has less experience
working with XML, the XML write feature is unmaliciously deferred. A proactive
manager can track a customer's needs as captured by the use cases and preempt
unproductive tangents.

Because use cases are visual and simple, users and customers can provide feed-
back, and bridge-persons between customers and programmers, such as managers,
can determine if features actually built accurately reflect the desires of users.

20

CHAPTER 2 Start at the Beginning with Use Cases

Using Use Case Symbols
Basic use case diagrams consist of just a few symbols. These are the actor, a con-
nector, and the use case oval (Figure 2-2). Let's take a few minutes to talk about
how these symbols are used and what information they convey.

Actor Symbols

The stick figure, referred to as an actor, represents participants in use cases. Actors
can be people or things. If an actor is a person, then it may never actually be repre-
sented by code. If an actor is another subsystem, then the actor may be realized as
a class or subprogram but still be represented using the actor symbol in use case
diagrams.

Actors are discovered as a result of analysis. As you are identifying the macro
uses of the system, you will identify who the participants for those use cases are.
Initially, record each actor as it is discovered by adding an actor symbol to your
model and describing what the actor's role is. We will worry about organization and
refinement later in the section entitled, "Creating Use Case Diagrams."

Use Cases

The use case symbol is used to represent capabilities. The use case is given a name
and a text description. The text should describe how the use case starts and ends and
include a description of the capability described by the use case name, as well as
supporting scenarios and nonfunctional requirements. We will explore examples of
use case names in the section entitled, "Creating Use Case Diagrams," and I will
provide a template outline that you can use to help you write use case descriptions
in the section entitled, "Documenting a Use Case Using an Outline."

Figure 2-2 Basic use case diagram symbols include the actor, the connector, and the use
case oval.

21

UML Demystified

Connectors

Because use case diagrams can have multiple actors, and because use cases can be
associated with actors and other use cases, use case connectors are used to indicate
how actors and use cases are associated. In addition, connector styles can change to
convey more information about the relationship between actors and use cases.
Finally, connectors can have additional adornments and annotations that provide
even more information.

Connector Line Styles

There are three basic connector line styles. A plain-line connector is called an as-
sociation and is used to show which actors are related to which use cases. For
example, Figure 2-1 showed that an employer is associated with the use case "Cre-
ate a Job Listing."

A second connector style is a dashed line with a directional arrow (Figure 2-3).
This style of connector is referred to as a dependency. The arrow points to the use
case that is depended on. For example, suppose that employers in www.motown-
jobs.com have to be logged in to create a job listing. Then we can say that the use
case "Create a Job Listing" depends on a use case "Log-In." This is the relationship
depicted in Figure 2-3.

A third connector style is a directed line with a hollow triangle. This is called
a generalization. The word generalization in the UML means "inheritance." When
we show a generalization relationship between two actors or two use cases, then we
are indicating that the child actor or use case is an instance of the base actor or use
and something more. Figure 2-4 shows a generalization relationship between two
actors and two use cases.

In generalization relationships, the arrow points toward the thing on which we
are expanding. There are a number of ways you can describe this relationship

22

Figure 2-3 The use case "Create a Job Listing" depends on the employer logging in.

www.motown-jobs.com
www.motown-jobs.com

CHAPTER 2 Start at the Beginning with Use Cases

Figure 2-4 A use case diagram showing two generalization relationships between two
actors and two use cases.

verbally—which you should know about—but unfortunately, all these synonyms
can lead to verbal confusion. The following statements describe the generalization
relationships shown in Figure 2-4:

• User is the target, and Employer is the source.

• Employer is a User.

• User is the subtype, and Employer is the supertype.

• Employer inherits from User.

• User is the parent type, and Employer is the child type.

• Employer generalizes User.

(In this list you can substitute the phrase Create a Job Listing everywhere you see
the word User and substitute the phrase Create Priority Job Listing everywhere you
see the word Employer to convey the relationship between the two use cases.) The
latter statement, which uses the word generalizes, is the most accurate in the context
of the UML, but it is worth recognizing that all the statements are equivalent.

23

UML Demystified

Connector Adornments

UML diagrams encourage less text because pictures convey a lot of information
through a convenient visual shorthand, but UML diagrams don't eschew text alto-
gether. For example, connectors can include text that indicates endpoint multiplicity
and text that stereotypes the connector.

Showing Multiplicity
Connectors in general can have multiplicity notations at either end of the connector.
The multiplicity notations indicate the possible count of each thing. For example, an
asterisk means many. An asterisk next to an actor means that there may be many in-
stances of that actor. Although the UML permits notating use case connectors in this
way, it isn't that common. You are more likely to see these notational count marks in
such diagrams as class diagrams, so I will elaborate on multiplicity in Chapter 3.

Stereotyping Connectors
A more common connector notation is the stereotype. Stereotypes add detail to the
relationship between elements in a use case diagram. For example, in Figure 2-3,
I introduced the dependency connector. A stereotype can be used to expand on the
meaning of the dependency connector.

In the section entitled, "Connector Line Styles," I said that an employer can create
a job listing and illustrated this with an employer actor, a "Create Job Listing" use
case, and an association connector. However, I also said that the employer must be
logged in. When a use case—"Create a Job Listing"—needs the services of another
use case—"Log-In"—then the dependent use case is said to include the depended-
on use case. (In code, an include relationship is implemented as code reuse.)

A stereotype is shown as text between the guillemots (« and » characters). For
instance, if we say that "Create a Job Listing" includes "Log-In," then we can
depict an include stereotype by annotating the dependency connector as shown in
Figure 2-5.

Figure 2-5 An example of an include stereotype—used to depict reuse—on the dependency
between "Create Job Listing" and "Log-In."

24

CHAPTER 2 Start at the Beginning with Use Cases

Include and extend are important concepts in use case diagrams, so I will expand
on these subjects next.

NOTE Stereotype is a generally useful concept in the UML. The reason for this is
that it is permissible to introduce and define your own stereotypes. In this way you
can extend the UML.

Including and Extending Use Cases

A dependency relationship between two use cases means that in some way the de-
pendent use case needs the depended-on use case. Two commonly used, predefined
stereotypes that refine dependencies in use cases are the include and extend stereo-
types. Let's take a minute to expand on our introductory comments on include from
the preceding section and introduce extend.

TIP Visio applies an extends stereotype on the generalization connector to mean
inheritance. Variations between the UML and UML tools exist because the UML
is an evolving standard, and the implementation of tools may lag or lead the
official definition of the UML.

More on Include Stereotypes
A dependency labeled with the include stereotype means that the dependent use
case ultimately is intended to reuse the depended-on use case. The baggage that
goes with the include stereotype is that the dependent use case will need the serv-
ices of and know something about the realization of the depended-on use, but the
opposite is not true. The depended-on use case is a whole and distinct entity that
must not depend on the dependent use case. Logging in is a good example. It is
clear that we require an employer to log in to create a job listing, but we could log
in for other reasons too.

NOTE In an include dependency between use cases, the dependent use case is also
referred to as the base use case, and the depended-on use case is also referred to as
the inclusion use case. While base and inclusion may be more precise, they do not
seem to be employed in speech commonly yet.

Putting so much meaning into a little word like include is why the UML can con-
vey a lot of meaning in a simple diagram, but it is also why UML models can be
challenging to create and to read. A real strategy that you can fall back on is to add a
note where you are not sure about the use of some idiomatic aspect of the UML

25

UML Demystified

(see "Attaching Notes to Use Case Diagrams" below.) For example, if you want to
describe the relationship between "Create a Job Listing" and "Log-In" but aren't
sure about which connector or stereotype to use, then you could use a plain associa-
tion and a note connected to the connector describing in plain text what you mean.
The note can act as a reminder to go back and look up the precise UML later.

Using Extend Stereotypes

The extend stereotype is used to add more detail to a dependency, which means that we
are adding more capabilities (see Figure 2-6 for an example). As shown in the figure,
we say that "Log Viewed Listings" extends (and is dependent on) "View Listing."

NOTE In an extend relationship, the arrow points toward the base use case, and
the other end is referred to as the extension use case.

In the preceding section we would not permit an employer to create a job listing
without logging in, but the use case log in is indifferent to the use case reusing it. In
this section the use case view listing doesn't care that it is being logged; in other
words, the logging feature will need to know about the view listing feature, but not
vice versa.

A valuable perspective here is who might be interested in the logging. Clearly,
the "Job Seeker" probably doesn't care how many times the listing has been viewed,
but a prospective employer might be interested in how much traffic his or her listing
is generating. Now switch to a different domain for a moment. Suppose that the
"Job Seeker" were a home buyer and that a listing were a residential listing. Now
both the buyer and seller might be interested in the number of times the property
has been viewed. A house that has been on the market for months may have prob-
lems. Yet, in both scenarios, the listing is the most important thing, and the number

Figure 2-6 Tracking the number of times a job listing is viewed is an extension of "View
Listing," as depicted by the dependency and the extend stereotype.

26

CHAPTER 2 Start at the Beginning with Use Cases

of viewings is secondary. This illustrates the notion of extension use cases as akin
to features, and from a marketing perspective, extensions might be items that are
separated into an optional feature pack.

TIP Consider another alternative as relates to an extension use case. Extension
use cases are natural secondary features. If your project has a tight schedule, do
the extension use cases last, and if you run out of time, then postpone the extension
use cases to a later version.

Include and extend seem somewhat similar, but the best way to keep them straight
is to remember that "the include relationship is intended for reusing behavior mod-
eled by another use case, whereas the extend relationship is intended for adding
parts to existing use cases as well as for modeling optional system services" (Over-
gaard and Palmkvist, 2005, p. 79).

Annotating Use Case Diagrams

Consider the job of a court stenographer. Stenographers use those funny steno-
graphic typewriters that produce a sort of shorthand gibberish. We can safely assume
that if a regular typewriter or word processor were capable of accepting input fast
enough to keep up with natural speech, then the stenograph would not have been
invented.

Stenographs produce shorthand that is more condensed than speech. The UML
is like shorthand for code and text, and UML modeling tools are like stenographs.
The idea is that models can be created faster than code or faster than writing tex-
tual descriptions. That said, sometimes there is no good substitute for text.

If you find yourself in the predicament that only text seems to resolve—or you
aren't sure of the UML—then go ahead and add text. You can add text by document-
ing your models with features of most modeling tools, by adding URL references to
more verbose documents, or by adding notes directly in the diagrams themselves.
However, if you add too much text, then naturally it will take longer for the model-
ing to be complete and may require a greater effort to understand the meaning of
individual diagrams.

Inserting Notes

The UML is a shorthand for a lot of text and code, but if you need to, you can al-
ways add text. Every diagram, including use cases, supports adding textual
annotations. Notes are represented as a dog-eared piece of paper with a line attach-
ing the textbox to the element being annotated (Figure 2-7). Use notes sparingly
because they can clutter up a diagram and make it harder to read.

27

UML Demystified

Figure 2-7 A note adding plain text to clarify some aspect of a diagram.

Adding Supporting Documentation

Every modeling tool that I have used—Together, Rose, Rose XDE, Visio, Poseidon
for UML, and the one from Cayenne Software—supports model documentation.
This documentation usually takes two forms: text that is stored in the model and
Uniform Resource Locators (URLs) referencing external documents (Figure 2-8).
Exploring the features of your particular tool will uncover these capabilities.

More important is what kind of documentation you should provide. Subjectively,
the answer is as little as you can get away with, but use case diagrams generally
seem to need the most.

Use case diagrams are pretty basic with their stick figures but are pretty impor-
tant because they record the capabilities your system will have. Good information
to include with your use case diagrams is

• A pithy paragraph describing how the use begins, including any preconditions

• A short paragraph for each of the primary functions

• A short paragraph for each of the secondary functions

• A short paragraph for each of the primary and secondary scenarios, which
helps to place the need for the functions in a context

• A paragraph for nonfunctional requirements

• Insertion points where any other dependent use cases are used

• An ending point with postconditions

28

CHAPTER 2 Start at the Beginning with Use Cases

Figure 2-8 By double clicking on a model element in Visio, you can add documentation
that is stored in the model.

All these elements sound like a lot of work and can be. Remember, though, that use
cases are the foundations of analysis, and it is important to document them as care-
fully and as thoroughly as you can. It is equally important to note that I used the
words pithy and short intentionally. By short, I mean that it is acceptable to have
one-sentence paragraphs.

You can use any format you like for documenting your use cases. If you are
comfortable with the outline format, it is very easy to create a template outline from
the bulleted list. A good practice is to choose a style for your documentation and
stick with it.

Let's take a moment to elaborate on the elements—as described in the preceding
bulleted list—of use case documentation. Keep in mind that this is not an exact sci-
ence, and your use case documentation doesn't have to be perfect.

Documenting a Use Case Using an Outline

You can use free-form text to document a use case, but I find that an outline
template suggests the extent of the information and acts as a reminder of the
elements needed to document each use case adequately. Here is a template; the
template includes a brief description and example for each section. It is worth

29

UML Demystified

noting that this style of documentation is not part of the UML but is a useful part
of modeling.

1. Title

a. Description: Use the use case name here, making it very easy to match
use case diagrams with their respective documentation.

b. Example: Maintain Job Listing

2. Use case starts

a. Description: Briefly describe the circumstances leading up to the use
case, including preconditions. Leave out implementation details, such as
"User Clicks a Hyperlink" or references to forms, controls, or specific
implementation details.

b. Example: This use case starts when an employer, employer's agent, or
the system wants to create, modify, or remove a job listing.

3. Primary functions

a. Description: Use cases are not necessarily singular. For example, "Manage
Job Listing" is a reasonable use case and may include primary functions
such as reading and writing to a repository. The key here is to avoid having
too few or too many primary functions. If you need a good yardstick, it
might be two or three primary functions per use case.

b. Example: "CRUD Job Listing." The primary functions of "Maintain Job
Listing" are to create, read, update, and delete the job listing.

4. Secondary functions

a. Description: Secondary functions are like a supporting cast in a play. For
example, given a use case "Manage Job Listing," updating, inserting,
creating, and deleting a job listing—called CRUD, for create, read,
update, and delete—are excellent secondary functions, part of a bigger
use case. If you need a yardstick, then two times as many secondary
functions as primary functions is good.

b. Examples:

(1) "Expire Job Listing." Thirty days after the listing is made available
for viewing, the listing is said to expire. An expired listing is not
deleted, but users, with the exception of the listing owner, may no
longer view the listing.

(2) "Renew Job Listing." A listing may be extended for an additional
30 days by paying an additional listing extension fee.

30

CHAPTER 2 Start at the Beginning with Use Cases

(3) "Make Job Listing a Priority Listing." Any time during the life of
a listing, the owner of that listing may elect to promote the listing to
a priority listing for a fee prorated by the exhausted portion of the
listing period.

(4) "Log Viewed Listing." Each time a listing is viewed, a log entry will
be written, recording the date and time the listing was viewed and
the Internet Protocol (IP) address of the viewer.

(5) "Examine View Logs." At any time the owner of a listing may view
the logged information for his or her listings.

(6) "Automatic Viewed-Log Notification." The owner of a job listing
may elect to have view logs sent by e-mail at an interval specified by
the owner.

(7) "Pay for Listing." The owner of the listing is required to pay for every
listing unless the listing is offered as a promotional giveaway.

5. Primary scenarios

a. Description and example: A scenario is a short story that describes the
functions in a context. For instance, given a primary function "Create Job
Listing," we might write a scenario such as this: "Mr. Jones' secretary
is retiring, and he needs to hire a replacement. Mr. Jones would like
a secretary who types 100 words per minute, is willing to work only
four hours per day, and is willing to work for $10 per hour. He needs the
replacement secretary to start no later than January 15." Consider at least
as many primary scenarios as you have primary functions. Also consider
a couple of scenario variations for important functions. This will help
you to think about your problem in creative ways. It is a useful practice
to list the scenarios in approximately the same order as the functions that
the scenario describes.

6. Secondary scenarios

a. Description and example: Secondary scenarios are short stories that put
secondary functions in a context. Consider a secondary scenario we will
refer to as "Expire Job Listing." Demonstrated as a scenario, we might
write: "Mr. Jones paid for the listing to run for 30 days. After 30 days,
the job listing is delisted, and Mr. Jones is notified by e-mail, providing
him with an opportunity to renew the listing." We can organize the
secondary functions in an ordering consistent with the secondary
functions they support.

31

UML Demystified

7. Nonfunctional requirements

a. Description: Nonfunctional requirements address implicit behaviors, such
as how fast something happens or how much data can be transmitted.

b. Example: An employer's payment is to be processed while he or she waits
in a period of time no longer than 60 seconds.

8. Use case ends

a. Description: This part describes what it means for the use case to be
finished.

b. Example: The use case is over when changes made to the job listing are
persisted and the payment has been collected.

How much information you include in the written part of your use cases is really
up to you. The UML is silent on this matter, but a process such as the RUP may of-
fer you some guidance on content, quantity, and style of text documentation.

As a final note, it is useful to record ideas about functions and scenarios even if
you ultimately elect to discard them. For example, we could add a secondary func-
tion that states that "The system shall support a semiautomatic renewal of an
expiring job listing" supported by the scenario "Mr. Jones' listing for a new secre-
tary is about to expire. Mr. Jones is notified by e-mail of the impending expiration.
By clicking on a link in the e-mail, Mr. Jones' listing is automatically renewed us-
ing the same billing and payment information used with the original listing."

By recording and keeping considered ideas, it is possible to make a record of
ideas that were considered but may or may not ever be realized. Keeping a record
of possibilities prevents you from rehashing ideas as team members come and go.

Finally, it is useful to insert references to depended-on use cases. Rather than
repeating an inclusion use case, for example, simply make a reference to the inclu-
sion use case at the point at which it is needed. For example, suppose that paying
for a job listing requires an employer to log in. Instead of repeating the "Log-In"
use case, we simply make a reference to the "Log-In" use case where it is needed;
in this instance we can make a reference to "Log-In" when we talk about paying for
the job listing.

Creating Use Case Diagrams
As I mentioned earlier, use cases are design to-do lists. Since another holiday is
always just around the corner, a good comparative analogy is that defining use
cases is like writing a list of chores in order to prepare your house for an extended

32

CHAPTER 2 Start at the Beginning with Use Cases

visit from relatives. For example, you might write down, "Dust living room." Then
you decide that your 10-year-old daughter did a good job the last time, so you as-
sign the dusting to her. The level of detail is important here because you know—if
you have ever dusted—that different kinds of things need different kinds of dusting.
Small knickknacks can be dusted with a feather duster. Coffee tables and end tables
might need Pledge® and a clean, dry, cloth, and ceiling fans might need the wand
and brush on a vacuum cleaner. The key here is the difference between what we
diagram and what we write as part of our use case.

NOTE You might wonder what dusting has to do with use cases and software.
The first answer is that use case models can be used for things that aren't software,
and the second part is that software is found in an increasingly larger number of
devices. Suppose that we were defining use cases for a house-cleaning robot; then
our dusting rules might be useful. And if you are wondering how probable software
for robots might be, then consider the Roomba* cleaner. Roomba is a small robot
that wanders around a room vacuuming up debris, and according to its marketing
material, it even knows when to recharge itself. Someone had to define and implement
those capabilities.

The use case for dusting in the preceding paragraph would consist of an actor,
"Child," an association connector, and a use case "Dust Living Room" (Figure 2-9).
The use case diagram itself need not depict all the necessary micro tasks that "Dust
Living Room" consists of. For example, "Find Pledge and clean, dry cloth" is a
necessary subtask but not really a use case in and of itself. Good use cases mean
finding good actors and the right level of detail without convoluting the diagrams.

After we have the use case diagram, we can add supporting information in the
model documentation for our use case. Primary functions would include dusting key
areas, and secondary functions would include preparation, such as getting the vacu-
um cleaner out and finding the Pledge. Adequate scenarios would include addressing
specific problem areas, such as dusting picture frames and collectible items. Non-
functional requirements might include "Finish dusting before grandparents arrive."

Figure 2-9 The use case for a child actor and dusting a living room.

33

UML Demystified

Don't worry about perfect use case diagrams and use case documentation. Use the
outline to help you consider the details and use case diagrams to provide you with
a good picture of your objectives.

How Many Diagrams Is Enough?

Sufficiency is a tricky problem. If you provide too many use cases, your modeling
can go on for months or even years. You can run into the same problem with use
case documentation, too.

NOTE I consulted on a project for a large department of defense agency. The
agency literally had been working on use cases for almost 2 years with no end in
sight. Aside from what seemed like a never-ending project, the domain experts felt
that the wrong use cases were being captured or that the use cases had little or no
explanatory, practical value. The models were missing the mark. The objective is to
capture the essential characteristics of your objective, and use case models are an
excellent low-tech way to get nontechnical domain experts involved. Skipping the
dialogue-provoking value of use case diagrams is missing half the value of the use
case diagrams.

A reasonable baseline is that medium-complexity applications might have be-
tween 20 and 50 good use cases. If you know that your problem is moderately
complex and you have five use cases, then you may be missing critical functionality.
On the other hand, if you have hundreds of use cases, then you may be subdividing
practical macro use cases into micro use cases.

Unfortunately, there are no hard and fast rules. Defining the right use cases takes
practice and requires good judgment that is acquired over time. To help you begin
acquiring some experience, the next subsection demonstrates some actual use case
diagrams for www.motown-jobs.com.

Example Use Case Diagrams

This book is about the UML. Specific text documentation is not part of the UML,
so I will limit the examples in this section to creating the use case diagrams. You
can use your imagination and the outline in the section entitled "Documenting
a Use Case Using an Outline" to practice writing use case descriptions.

Motown-jobs.com is a product of my company, Software Conceptions, Inc.
Motown-jobs is a Web site for matching people looking for jobs with people offering
jobs. It is a Web site like dice.com, monster.com, computerjobs.com, or hotjobs.com

34

www.motown-jobs.com

CHAPTER 2 Start at the Beginning with Use Cases

and is implemented in ASP.NET. All this aside, Motown-jobs.com started as an
idea whose features were captured as a group of use cases. Because I was building
the software for my company, I had to play the role of domain expert—the domain
being what it takes to match employers with employees. Since I have been looking
for and finding customers for my company for 15 years, I have some experience in
this area.

Finding use cases can start with an interview with your domain expert or by
making a list. Since I was playing the role of interviewer and interviewee, I simply
began with a list of the things I thought Motown-jobs.com would need to offer to be
useful. Here is my list:

• Employers or employers' agents will want to post information about jobs
being offered.

• Those looking for jobs may want to post a resume that can be viewed by
potential employers.

• Employers or employers' agents will want to actively search the Web site
for resumes that match the skills needed to fill job openings.

• Those looking for jobs will want to search through jobs listed.

• Employers and employers' agents will have to pay for listings and for
searching for resumes, but posting resumes or searching through jobs will
be a free service.

• An additional source of revenue might be advertising and resume-building
services, so the Web site will be able to sell and post advertising space and
help job seekers create resumes.

In addition to software being expensive to write and hardware, server software,
and high-speed Internet connections being expensive to purchase and maintain,
helping businesses find employees is a valuable service—or at least that is the
premise behind building Motown-jobs.com in the first place. Figuring out how
much to charge for the listings and attracting advertisers are business and marketing
functions, so I won't talk about that in my list of use cases.

Now, clearly, I could get stuck examining all the little tasks that each of the
macro tasks—such as posting job vacancies—consists of, but the list I have is a very
good starting place. Let's start by diagramming these features (Figure 2-10).

Notice in the Figure 2-10 that I captured maintaining jobs and finding resumes
for employer types, maintaining advertisements for advertiser types, posting resu-
mes and finding jobs for job seeker types, and managing billing for the system. The
next thing I can do is ask involved parties if these use cases capture the essence of
the features I need.

35

UML Demystified

Figure 2-10 A first pass at the use case diagram for Motown-jobs.com.

As a use case diagram, I give this a grade of a C, but it is a start. The next thing
I can do is look at the actors and use cases themselves and look for redundancies,
simplifications, or needed additional details and make necessary adjustments to the
use case diagram.

Defining Actors

In the use case diagram in Figure 2-10,1 have "Employer" and "Employer's Agent"
actors. However, for all intents and purposes, these two actors do the same things
relative to the system, and they do them the same way. Thus I can eliminate "Em-
ployer's Agent" and rename "Employer" to "Job Owner"; with a simple description,

36

CHAPTER 2 Start at the Beginning with Use Cases

"Job Owner" captures the idea that a listed job is "owned" by a responsible party.
Figure 2-11 shows the revision in the use case diagram.

Next, it seems pretty obvious that a job listing, a resume, and an advertisement
are all kinds of listings, and the people who own those elements are "Listing Own-
ers." I can experiment with these relationships using generalization. The modified
use case diagram is shown in Figure 2-12.

Figure 2-12 treats jobs, advertisements, and resumes all as listings that need to
be maintained. It also shows that the billing system is associated with listings and
resume searches. In some ways Figure 2-12 is an improvement, but in others it is
too clever. For example, depicting a job seeker as a "Listing Owner" suggests that
every job seeker owns a listed resume. What if a job seeker doesn't want to post

Figure 2-11 "Employer" and "Employer's Agent" are converted to a single actor, "Job
Owner."

37

38
UML Demystified

Figure 2-12 This figure suggests that jobs, resumes, and advertisements are all listings
that have to be maintained by a listing owner, as well as associations between the billing
system and listings and resume searches.

a resume? Further, I said that posting a resume is a free service, but the implication
is that the billing system treats resume listings as a billable item. Does this mean
that it is billable but costs $0? The revised diagram seems a bit clever and raises as
many questions as it answers. Perhaps I could further divide "Listings" into "Bill-
able Listings" and "Free Listings." This might resolve the billing system question,
but what about job seekers who don't post resumes? I still have to resolve this issue.
For now, I go back to four separate actors as opposed to three kinds of listing own-
ers and the system actor (Figure 2-13).

CHAPTER 2 Start at the Beginning with Use Cases

Figure 2-13 Four separate unrelated actors participating in unrelated use cases.

I like the simpler form of the use case diagram in Figure 2-13. It is less cluttered,
easier to follow, and tells me what I need to know about the system features.

Dividing Use Cases into Multiple Diagrams

You can elect to have one master use case diagram and several smaller use case
diagrams or just several smaller use case diagrams. It is up to you. Simpler dia-
grams are easier to manage and follow but may not show how use cases are related.
I generally prefer separate, simple diagrams and create a single master diagram if
I am sure that I will derive some specific benefit from doing so.

39

UML Demystified

In my Motown-jobs.com example I have four significant facets. I have the job
seeker-related use cases, job owner-related use cases, use cases for advertisers, and
the billing system. To explore each of these facets of the system, I will separate
these use cases and their incumbent actors into separate diagrams and add details.
Figures 2-14 through 2-17 show the new diagrams.

By separating "Maintain Billing Information" into a separate use case, I have room
to add details. For example, it makes sense that the billing system is only interested
in billable things and that an actor called a "Registered User" can maintain billable
items. Notice that I added the "Log-In" use case. Because I need to know who users
are in order to bill them, I will need a means of registering and authenticating.

In Figure 2-15,1 introduce the idea that a job seeker is also considered a regis-
tered user. However, I elect to require registration only if the user wants to post a
resume. I want to know who people putting information on our system are, but I
don't require it of casual browsers. Again, to post something on the system, I will
require the user to log in and otherwise only offer the casual user the opportunity to
register. The concept of a registered user suggests that I need another use case
"Maintain Registration Information." This can be implemented as a simple use case
diagram with the "Registered User" actor and an association to the new use case.

In Figure 2-16,1 show that an advertiser is a registered user, and I also include
that "Maintain Advertisement" generalizes "Maintain Billable Item." Because

Figure 2-14 This figure shows that a new actor called a "Registered User" can maintain a
billable item if he or she is logged in and the billing system is associated with billable items.

40

CHAPTER 2 Start at the Beginning with Use Cases

Figure 2-15 An expanded view of use cases related to job seekers.

"Maintain Billable Item" is in the diagram in Figure 2-16, I also know that this
means that I am tied to the billing, registration, and authentication (or logging in) use
cases, but I intentionally removed those elements from the diagram to unclutter it.

In Figure 2-17, I show the dependency between "Maintain Billable Item" and
"Log-In" by showing the dependency connector between these two use cases. It
should be obvious that since "Search for Resumes" and "Maintain Job Listing"
generalize "Maintain Billable Item," authentication is required to post jobs and
search for resumes. Using the single connector simplifies the diagram.

You certainly are welcome to try to create a single master use case diagram, but
you don't have to do so. Even in this relatively simple system, a single monolithic
model might only add to confusion; our objective is to reduce confusion and in-
crease understanding as simply and as directly as possible. I think that these four
models do this, but the discussion illustrates precisely the kinds of issues you will
have to weigh when deciding which models to spend time on.

41

UML Demystified

Figure 2-16 An increasingly detailed view of use cases involving advertisers.

Finding the Finish Line

As your use case diagrams and written text documentation are evaluated, you will
come up with other ideas and things that you missed. This is to be expected. Docu-
ment these ideas even if you discard them ultimately. Also be prepared to revise
your models as your and your customer's understanding or business climate changes.
A growing understanding or a dynamic business climate means more use case dia-
grams and revisions to existing use case diagrams. If you anticipate the dynamic
nature of understanding, then you will have no problem moving on to next steps
rather than trying to create a perfect set of use cases up front.

The objective of creating use case diagrams is to document important aspects of
the system, to provide users with a low-tech way to visually evaluate your mutual
understanding, and then to move on. The outcome we desire is a "good enough,"
not perfect, set of use cases.

42

CHAPTER 2 Start at the Beginning with Use Cases

Figure 2-17 This figure shows the relationship between a job owner and his or her use
cases, including a clear depiction that authentication is required and that the job owner is
managing tollable things.

Driving Design with Use Cases
Thus far I have defined significant use cases and use case diagrams for Motown-
jobs.com. (I left out "Maintain Customer Information," but I know that I need it.)
From the discussion it should be obvious that I left off minor tasks such as reading
and writing listings to a database, for example. However, this is covered by "Main-
tain Job Listing." I don't need a separate use case diagram to show that I am
"crudding"—from CRUD, or create, read, update, and delete—listings, advertise-
ments, or resumes, although it will be useful to describe these things in future diagrams
such as sequence diagrams (see Chapter 6 for more information). The next thing I am
interested in accomplishing is prioritization.

Too many projects skip use cases altogether and ignore prioritization, but use
cases exist to help you manage scope and to prioritize. The term use case-driven
design means that we state what we are building in our use cases to limit scope and
avoid wasted time, and we prioritize what we build by starting with the most criti-
cal, highest-priority features first. Too often programmers will build cool or easy
things such as "About" dialogs first and bells and whistles that aren't needed

43

UML Demystified

because they are exploring some new technology, and this is a significant factor in
why so many projects fail.

After you have defined your use cases, you will want to prioritize and further
design and implement a solution to support those use cases that have the highest
priority or represent the most significant risk. How do you decide what to design
and build first? The answer is to ask you customer what is most risky, most impor-
tant, or most valuable and then to focus your energies on those use cases.

NOTE The real question to ask your customers is: "What features can we build
first so that if we run out of time and money, we still will have a marketable
product? Customers don't always want to hear the tough questions, and you will
have to exercise some diplomacy, but finding the right answer to this question and
acting on it may be the most important thing you do.

For Motown-jobs.com, I decided—as the customer—that I can go to market with
a fee-based job listing service. This means that if I implement "Maintain Job Listing,"
"Search for a Job," and "Maintain Billing Information," I will have a product that I
can go to market with. This doesn't mean that I won't build resume posting, search-
ing, and advertising support into the system—it just means that these aren't the
most important features.

Next priorities are tougher. Should I build resume posting and searching or ad-
vertising next? The answer is that I want job seekers to use the service and job
owners to see that there is a lot of traffic on and interest in my site, so I will support
posting a resume next—which is a free service but critical—and then resume
searching—which is also a fee service but dependent on having resumes to look
through. Finally, I will support advertising, which ultimately is dependent on hav-
ing enough traffic to interest advertisers.

The important thing here is that identifying my use cases helped me prioritize
my list of tasks and illustrates a critical path to my minimal-success criterion—
selling help wanted advertisements.

Quiz
1. What symbol represents a use case?

a. Aline

b. A directed line

c. A stick figure

d. An oval containing text

44

CHAPTER 2 Start at the Beginning with Use Cases

2. An actor can only be a person.

a. True

b. False

3. What symbol represents a dependency?

a. Aline

b. A line with a triangle pointing toward the dependent element

c. A dashed line with an arrow pointing toward the dependent element

d. A dashed line with an arrow pointing toward the depended-on element

4. How is a stereotype indicated on a connector?

a. Text between a pair of guillemots

b. Plain text next to the connector

c. The word stereotype inside of the oval symbol

5. An inclusion relationship is used for reusing behavior modeled by another
user case.

a. True

b. False

6. An extension relationship is used for modeling optional system features.

a. True

b. False

7. Generalization in the UML is reflected in implementation by

a. polymorphism.

b. aggregation.

c. inheritance.

d. interfaces.

8. Every capability of a system should be represented by a use case.

a. True

b. False

9. In an extend relationship, the arrow points toward the

a. base use case.

b. extension use case.

45

UML Demystified

10. It is important to implement the easy use cases first to ensure that early
efforts are successful.

a. True

b. False

Answers
1. c

2. b

3. d

4. a

5. a

6. a

7. c

8. b

9. a

10. b

46

CHAPTER

Diagramming
Features as

Processes

This chapter is about activity diagrams. While my emphasis isn't process, a next
step after capturing use cases is to begin describing how the features represented by
your use cases will play out. Activity diagrams help you and users to describe visu-
ally the sequence of actions that leads you through the completion of a task.

The goal is to converge on code continuously by starting with an understanding of
the problem space in general and capturing the problems we will solve—use cases—
by describing how those features work and ultimately implementing the solution.
Activity diagrams are a useful analysis tool and can be used for process reengineer-
ing, i.e., redesigning process. In this way, activity diagrams are a progressive

47

3

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

bridge leading from analysis to design and ultimately to implementation. In this
chapter you will learn about

• The symbols used to create activity diagrams

• How to create activity diagrams by describing use cases and scenarios as a
series of actions

• Modeling simultaneous behaviors

• Refining physical activities with activity diagrams

• Figuring out when to stop creating activity diagrams

Elaborating on Features as Processes
Few ideas are completely new. Existing concepts are refined and evolve and mature,
carrying along some of the old and some of the new. The same is true for analysis
and design concepts.

Structured analysis and design emphasized the flowchart. An activity diagram in
the Unified Modeling Language (UML) is pretty close to a flowchart. The symbols
are similar but not the same. The utility is similar, but there is a difference. Activity
diagrams, unlike flowcharts, can model parallel behavior.

Activity diagrams are good analysis diagrams for developers, users, testers, and
managers because they use simple symbols, plain text, and a style that is similar to the
familiar flowchart. Activity diagrams are good at helping you to capture, visualize, and
describe an ordered set of actions from a beginning to an end. Activity diagrams are
created as a finite set of serial actions or a combination of serial and parallel actions.

A Journey toward Code
A basic principle of objected-oriented analysis and design is that we want to start
from high-level problem-space ideas and concepts and move toward a low-level
solution space. The high-level problem space is also referred to as the problem do-
main. The low-level solution space is referred to as the solution domain. The UML
is a language for capturing and describing our understanding as we move from
documenting a problem to coding a solution.

Based on the idea of moving our understanding from concept to design, use cases
are a good way to capture the things that describe our problem. For example, we want
to match employers to potential employees by providing a job listing board. A use
case that supports this is to manage listings. A next step in an abstract sense is to
describe how we would go about managing a listing. At this juncture it is still too early

48

CHAPTER 3 Diagramming Features as Processes

to begin talking about databases and programming languages. Instead, we want to talk
about the activities that describe our problem, and these activities consist of actions.

NOTE At an ideological level, analysis and design are processes whereby we
decompose a problem into smaller discrete problems so that we can compose small
solutions for each discrete problem and ultimately orchestrate the small solutions
into a coherent whole. The UML is a language for decomposing a problem and
recomposing it as the description of a solution. A language such as Visual Basic.NET
is useful for implementing the solution description, and process is how we go about it.

Understanding Activity Diagram Uses
Activity diagrams are not really about methods or classes. It is still too early for
that. The reason that it is too early is because technical things such as polymor-
phism, inheritance, methods, and attributes generally are meaningless concepts to
users and sometimes managers.

Activity diagrams are a means by which we can capture the understanding of
people we call domain experts. For example, if you are building a jail-management
system, then a domain expert might be a corrections officer. A corrections officer
probably won't understand the difference between a namespace, class, and inter-
face, but as a designer, you may not understand the significance of a purchase of
50 toothbrushes by an inmate. An activity diagram can help.

A true story—and why consulting can be interesting—is behind the toothbrush
metaphor. While working for a large county jail system in Oregon, I had to write
a pilot application to demonstrate ASP.NET in its early days. The pilot ultimately
would be part of an inmate account-management system for the jail. The basic idea
was that prisoners can't be in possession of cash, but they can have money on ac-
count to purchase personal items and snacks. The county managed the accounts.
Some of the rules included limits on the number of candy bars, say, a diabetic might
purchase, as well as a limit on the number of toothbrushes that could be purchased.
Not being a corrections officer, it seemed weird to me that anyone would buy more
than one toothbrush and weirder still why anyone would care. The problem is that
when scraped to a sharp point or split with a piece of a safety razorblade wedged
into the split and held in place by a rubber band, a toothbrush can become a formi-
dable weapon. (In reality, I knew this because I either learned it as a military
policeman or saw it on an episode of "Oz" on HBO.)

In practice, this story is illustrative of the fact that those on the ground—the do-
main experts—will know details that you will never think of. Activity diagrams are
good for capturing these details in a general sense and in a way that the domain
experts can examine, clarify, and improve on.

49

UML Demystified

Working backward from my prisoner account-management story, we might have a
use case "Make Purchase" and a scenario in that use case that we need to ensure that the
purchase does not violate a safety rule. We can capture this in an activity diagram plainly
enough that a corrections officer can tell us if we understand the problem and have de-
composed it sufficiently. Figure 3-1 shows an activity diagram for this scenario.

Figure 3-1 An activity diagram that illustrates restrictions on the kind and number of
items that can be purchased in prison.

50

CHAPTER 3 Diagramming Features as Processes

For now, don't worry about what the shapes mean. Simply note the simple text
and the flow suggested by the arrows. The general idea is that at a glance—perhaps
with a minimum of explanation—this diagram should make sense to users and de-
velopers alike. The next section will begin exploring what all these elements and
more mean.

Using Activity Diagram Symbols
Activity diagrams can be simple flowcharts that have a finite beginning and ending
point or more complex diagrams that model parallel behavior and multiple subflows
and define multiple terminuses. I find that diagramming simple activities is an excel-
lent way to get started and that adding too many alternate scenarios in a single diagram
makes it both hard to manage and print the diagram and difficult to understand.

Making your activity diagrams comprehensible may be more important than mak-
ing the diagram comprehensive or all-encompassing. Another mistake is to create
activity diagrams for every use case and scenario. Creating diagrams is time-consuming,
and a good way to focus your time is by diagramming those aspects that are more
critical to solving your problem.

Consider a couple of examples. Programs that store data commonly do so in re-
lational databases. This behavior is called create, read, update, and delete (CRUD)
behavior. Reading and writing data from a database are so well understood that I
wouldn't diagram this behavior as a separate activity. (In fact, the notion of a data-
base really shouldn't show up in an activity diagram.) The entire read-write behavior
might be captured at some point in an activity as an action called fetch and store or
read and write. On the other hand—borrowing from Chapter 2—if we are going to
expire a customer's job listing and want to give that customer an opportunity to ex-
tend the job listing, then this is less common than CRUD behavior, and I would
create an activity diagram to explore the sequence of actions. By diagramming the
"Expire Listing" activity, I could get the sequence of actions just right, and it might
be the catalyst for improving on the quality of service. For example, we might come
up with the renew by e-mail feature we discussed in Chapter 2.

If you have created some flowcharts with a tool such as Visio in the past, then activ-
ity diagrams will seem pretty straightforward, but keep in mind that activity diagrams
can be used to model richer behavior than plain old flowcharts. In order to create ac-
tivity diagrams, you will need to learn abut the symbols and rules that apply.

TIP You can think of the symbols and rules of any UML diagram as the visual
grammar for the language.

51

UML Demystified

Initial Node
Every activity diagram has one initial node symbol. This is a solid circle (see the
top of Figure 3-1). You can provide a name and some documentation for the initial
node, but generally I do not.

The initial node can have one transition line exiting the node. The transition line
is called a control flow and is represented by a directed arrow with the arrow point-
ing away from the initial node. For clarity, just the initial node and a control flow
are depicted in Figure 3-2. You can place the initial node anywhere on the diagram
you'd like and add the control flow anywhere on the initial node you'd like. Living
in the western hemisphere, I have a bias toward upper-left starting points and lower-
right ending points.

Control Flow
As mentioned previously, a control flow is a directed arrow. A control flow is also
referred to as just a flow or an edge. The control flow begins at the symbol losing
focus and points to and is connected to the thing gaining focus. For example,
a control flow might originate at an initial node and terminate at an action, as shown
in Figure 3-3.

A common way to adorn a control flow is to add a guard condition. A guard
condition acts as a sentinel that requires a test be passed before flow continues. In
code, commonly this would be implemented as an if-conditional test.

Using Guard Conditions

Without diverting our attention away from guard conditions too much, an action—
which we will talk about more in the section entitled, "Action"—is something that
happens in the flow. An action, like the initial node, is another kind of node. Activ-
ity diagrams are wholly composed of various kinds of nodes and flows (or edges).

Figure 3-2 The solid circle is called an initial node—or activity diagram starting
point—and the directed arrow is called a control flow.

52

CHAPTER 3 Diagramming Features as Processes

Figure 3-3 An initial node, control flow, and an action.

A guard condition is shown as text in between the left and right square brackets, and
you can think of a guard condition as a gatekeeper to the next node (Figure 3-4).

If you have ever served in any kind of militia, then you are familiar with the no-
tion of a password or pass phrase:

Guard: "The sparrow is a harbinger."

Footsolider: "Of death, which is the only certainty besides taxes."

Guard: "You may pass."

Well, when I was in the army, the pass phrases were never clever, but the idea is the
same. The guard represents a test that must be passed to continue. Oddly enough,
programmatic tests can be pretty esoteric, but the text you write in your guard condi-
tions will serve your constituency better if they are simple. Figure 3-5 is a practical
example of an initial node, an action, and a flow with a guard condition.

In the figure, the initial node transitions to the first action, "Find Customer." The
guard condition is that my availability date is known. It doesn't do any good to pile
up customers when I have no available time left.

The diagram in Figure 3-5 illustrates how an activity diagram is sort of agnostic
when it comes to implementation. The partial activity in Figure 3-5 could be talking
about a physical process such as searching the Motown-jobs.com Web site and

Figure 3-4 An initial node, flow with guard, and a generic action.

53

UML Demystified

Figure 3-5 Part of an activity diagram for finding customers.

calling past customers or a software process that automatically scans the Motown-
jobs.com Web site through a Web service and e-mails past customers, notifying
them of my availability. You will see more instances of guard conditions throughout
the examples in this chapter.

Different Ways of Showing Flows

The most common way to diagram a flow is to use a single control flow symbol
connecting two nodes, but this isn't the only way. If your diagram is very complex
with a lot of overlapping edges, then you can use a connector node (Figure 3-6). An
edge can transition from an action to an object to an action (Figure 3-7) and be-
tween two pins (Figure 3-8).

Using Connector Nodes
You don't have to use connectors, but if your diagrams become very large or com-
plex, then you will find that your flows begin to overlap or that your activity spans
multiple pages. The connector node is a good way to simplify overlapping flows or
flows that span multiple pages.

TIP The version of Visio that I used to create Figure 3-6 does not support the
connector node. To create this effect, I had to use the Ellipse tool. The result is
that the diagram is visually correct, but Visio will report an error. As is true with
many tools, tradeoffs have to be made.

Figure 3-6 A connector node can be used to simplify busy-looking activity diagrams.

54

CHAPTER 3 Diagramming Features as Processes

Figure 3-7 Inserting a customer object between two actions related to customers.

To use a connector node, draw a flow exiting a node and transitioning to a con-
nector. Where the connection is made to the next node, draw a connector with
a flow exiting the connector and transitioning to the next node in the diagram.

Connector nodes come in pairs. Make sure that connector pairs have the same
name; naming connectors will help you to match connection points when you have
multiple connector pairs in a single diagram.

Using Objects in Activity Diagrams
Earlier I said that diagramming activities occurs too early in analysis to figure out
what the objects are; however, the UML supports adding objects to activity dia-
grams. After you have had a chance to let users provide you with some feedback
and your understanding of the problem space has grown, it may be helpful to add
objects to your activity diagrams. The key here is to avoid adding technically com-
plex concepts too early. If you get bogged down in discussions about what an object
is or whether the object is named correctly or not, then remove the object. On the
other hand, if the object is very obvious—as is depicted in Figure 3-7—and it aids
everyone's understanding, then add it.

It is valuable to keep in mind who your constituency is for each kind of diagram.
Generally, I think of activity diagrams as analysis tools that end users will read to
help you understand how they do their job; explaining object-oriented concepts
typically seems to be a distraction, so I leave objects out of activity diagrams.

Using Pins
Pins in the UML are analogous to parameters in implementation. The name or
value of a pin leaving one action should be thought of as an input parameter to the
next action. Figures 3-7 and 3-8 convey the same information—that there is a cus-
tomer involved in this flow. Pins, like objects, may be too detailed for everyday use

Figure 3-8 An advanced technique includes connecting two pins on action nodes with
a control flow.

55

UML Demystified

and may result in tangential, confusing discussions when working out flows with
customers. However, if you are explaining the activities to designers and program-
mers, then it may be helpful to show objects.

In Figures 3-7 and 3-8 the names of actions—"Find Customer" and "Contact
Customer"—clearly suggest that a customer is involved. Leaving out the object and
pins—see Figure 3-9—still pretty clearly suggests the participation of a customer
without risking lengthy, tangential explanations.

Actions

Action nodes are the things that you do or that happen in an activity diagram, and
an edge represents the path you follow to leapfrog from action to action. Action
nodes are slightly more rectangular in shape than use case shapes. Two of the most
important aspects of actions are the order in which they occur and the name you
give them. The name should be short and to the point. Using noun and verb pairs in
action names can help you to find classes and methods, but action names are not
intended solely for this purpose, and again, it is pretty early in analysis and design
to get hung up on implementation details such as classes and methods.

Actions are permitted to have one or more incoming flows and only one outgoing
flow. If there is more then one incoming flow, then the action will not transition
until all incoming flows have reached that action. Actions can split into alternate
paths using the decision node—refer to the section entitled, "Decision and Merge
Nodes"—or transition into parallel flows using the/orfc node—see the section en-
titled, "Transition Fork and Transition Merge"—but only a single flow actually
should be attached as an outgoing flow for an action.

A good rule of thumb for creating activity diagrams is to describe how a use case
begins, progresses, and ends with all the actions that must be completed along the
way. Decision and merge nodes and forks and joins are a means of modeling paral-
lel behavior or alternations with the activity itself. If alternate flows are very complex,
then you can use the subactivity diagram to compartmentalize the subactivity.

Actions also can use preconditions and postconditions to indicate the necessary
conditions before and after an action occurs. Let's chunk these aspects—names,

Figure 3-9 This diagram is simpler than the diagrams showing an object or using pins
but still suggests the participation of a customer.

56

CHAPTER 3 Diagramming Features as Processes

subactivities, and conditions—into subsections to examine how we annotate each
aspect of an action.

Naming Actions

I prefer actions to have sufficient detail—a noun and a verb—to describe what hap-
pens and what or who is involved, e.g., "Find Customer," "E-mail Customer," "Store
Job Listing," "Cancel Listing," and "Delete Resume." Without a tremendous amount
of additional text, these names tell me what the action does and what is acted on.
This is important because an essential concept in the UML is that a lot of informa-
tion is conveyed visually as opposed to with a lot of text.

Ultimately, nouns and verbs will help you to find classes and methods, but it is
a good idea to defer thinking about implementation details for a while yet. We sim-
ply want to understand how we go about performing an activity but not how we
implement that activity.

For example, in Chapter 2 we defined a use case "Manage a Job Listing." This is
a use case that arguably consists of several activities, including "Post a Job Listing."
Posting a job listing is a scenario in the "Manage a Job Listing" use case, but "Post
a Job Listing" is not a single action. There are arguably several actions that would
have to be completed to capture the entire activity. Here is a written example that
describes posting a job listing, followed by a short activity diagram (Figure 3-10)
modeling the same thing:

• Pro vide job description

• Log-in

• Provide payment information

• Process payment

• Store job description

• Provide confirmation

Once we have an initial diagram—shown in Figure 3-10—we have a good basis
for holding a discussion about the activity. We can bring in domain experts and ask
them about details of the activity diagram and evaluate this information to deter-
mine if we need to revise the diagram. For instance, we may want to check if valid
payment information on file can be used or we want new payment information. Or
if the user is a new user, then we may need to add a decision point that permits the
user to register and then log in.

A real implicit benefit here is that a reasonable stab at an activity diagram cap-
tures the modeler's understanding and permits others to provide feedback and
elaborate on the flow, adding or removing detail as necessary.

57

UML Demystified

Figure 3-10 A model showing the actions required to post a job.

Adding Preconditions and Postconditions

Preconditions and postconditions can be added to a model using a note—the stereo-
type symbols with the word precondition or the word postcondition in between and
the name of the condition. The note is attached to the action to which the condition or
conditions applies. This is referred to as design by contract and often is implemented

58

CHAPTER 3 Diagramming Features as Processes

Figure 3-11 Using a precondition and postcondition constraint.

in code as an assertion combined with a conditional test. Figure 3-11 shows a precon-
dition and postcondition applied to the "Provide Payment Information" action.

In Figure 3-11, the diagram requires the precondition that the user is registered
and the postcondition that the payment information is valid. As is true with code,
there is more than one way to represent this information. For example, we could use

59

UML Demystified

a guard condition before and after the "Provide Payment Information" action
(Figure 3-12), or we could use a decision node (see "Decision and Merge Nodes")
to branch to a register action before permitting payment information to be provided,
and we could have an action to validate payment information after the payment
information is provided (Figure 3-13).

Figure 3-12 Using guards to express a precondition and a postcondition.

60

CHAPTER 3 Diagramming Features as Processes

Figure 3-13 Using a decision node to indicate that users must register and provide valid
payment information.

61

UML Demystified

All three of these diagrams—Figures 3-11, 3-12, and 3-13—convey the same
information. The real difference is stylistic. If you want the diagram to appear less
busy, try using the guard condition. If the constraint style—in Figure 3-11—seems
more meaningful, then use that style. If you want to explore registration and address
validation, then use the decision node styles in Figure 3-13. In that figure, the deci-
sion nodes are represented by the diamond-shaped symbols.

Modeling Subactivities

Sometimes it is easy to add too much detail to a single activity diagram, making the
diagram busy and confusing. For example, if we expand "Register User" in Figure 3-13
to include all the necessary actions for registering users, such as obtaining a unique
user name and password and validating and storing mailing address information,
then the main focus of the activity—creating and paying for a job listing—may be
lost in the noise of all the additional actions and edges.

If in any instance we find the details of subactivities making a diagram too con-
fusing, or we find that we want to reuse subactivities, then we can mark an action
as a subactivity with a fork inside the action. (Visio doesn't support the subsidiary
activity symbol, so I drew one from scratch in Microsoft Paint and added it to the
"Register User" action in Figure 3-13.)

TIP If you want to invent or find that an aspect of the UML isn't supported by your
specific modeling tool, then consider using a stereotype or a note to document your
meaning.

Decision and Merge Nodes
Decision and merge nodes were called decision diamonds in flowcharts. This diamond-
shaped symbol is one of the elements that makes an activity diagram reminiscent of
a flowchart. Decision and merge nodes use the same symbol and convey condi-
tional branching and merging.

When the diamond-shaped symbol is used as a decision node—after "Log-In" in
Figure 3-13—it has one edge entering the node and multiple edges exiting the node.
When used as a merge node, there are multiple entering edges and a single exiting
edge. A decision node takes only one exit path, and a merge node doesn't exit until
all flows have arrived at the merge node.

The guard conditions on a decision node act like if..else logic and should be
mutually exclusive, which necessarily implies that if one guard condition is met,
then the other must fail. As depicted in Figure 3-13, you can stipulate both guard
conditions literally or stipulate one guard condition and use an [Else] guard for the
alternate condition.

62

CHAPTER 3 Diagramming Features as Processes

A merge node marks the end of conditional behavior started by a decision node.
We don't need a merge node in Figure 3-13 because we rerouted the newly registered
user back to the "Log-In" action. However, if we wanted to be a little nicer, we might
simply authenticate the new user automatically and proceed right to providing pay-
ment information where he or she left off. This revision is shown using a merge node
in Figure 3-14. (Note that the guard conditions for the decision node following the
"Log-In" action were modified to show the use of the [Else] guard style.)

Transition Forks and Joins

A fork exists to depict parallel behavior, and a join is used to converge parallel be-
havior back into a single flow. Forked behavior does not specify whether or not the
behavior is interleaved or occurs simultaneously; the implication is simply that the
forked actions are occurring during a shared, concurrent interval. Usually forked
behavior is implemented as multithreaded behavior. (Figure 3-13 presents an ex-
ample of a fork after the "Process Payment" action and a join immediately before
the final node.)

When multiple flows enter an action, this is implicitly a join, and the meaning is
that the outgoing flow occurs only when all incoming flows have reached the action.
Your diagrams will be clearer if you use forks and joins explicitly where you mean
to show parallel behavior.

In Figure 3-13 we mean that we can store a job description and provide the user
with a confirmation simultaneously or concurrently but that both these things must
occur before the activity is considered complete.

Partitioning Responsibility with Swimlanes

Sometimes you want to show who or what is responsible for part of an activity. You
can do this with swimlanes. Modeling tools typically show swimlanes as a box with
a name at the top, and you place whatever nodes and edges that belong to that thing
in that swimlane. You can have as many swimlanes as it makes sense to have, but
boxy swimlanes can make it hard to organize your activity diagram.

UML version 2.0 supports vertical, horizontal, and gridlike partitions, so the
swimlane metaphor is no longer precise. The actual terminology is now activity
partition, but the word swimlane is still employed in general conversation and used
in modeling tools.

Using Swimlanes

If we want to show who or what is responsible for various actions in Figure 3-14,
then we can add a swimlane (or partition) for what we believe the partitions to be.

63

UML Demystified

Figure 3-14 A merge node used to converge when a branch is taken after a new user
registers.

64

i

CHAPTER 3 Diagramming Features as Processes

In the example, we could say that posting a job is divided into two partitions, the
user and the system, and add a swimlane for each partition (Figure 3-15). If we
decided that payment processing represents a distinct partition, then we could add
a third partition and move the process payment action into that partition (Figure 3-16).

Figure 3-15 Actions are divided between a user and the system.

65

i

i

UML Demystified

Figure 3-16 Further subdividing responsibilities by placing the "Validate Payment
Information" and "Process Payment" actions in a separate partition called the "Payment
Processor."

As is true with programming, you can divide your analysis and design into as
many partitions as you want. There are tradeoffs for adding partitions in models just

66

CHAPTER 3 Diagramming Features as Processes

as there are tradeoffs for adding partitions in code. Partitioning models may help
you to organize, but all those partitions suggest partitioned software that will have
to be orchestrated and reassembled to accomplish the goals of the system.

Modeling Actions that Spans Partitions

Sometimes an action may belong to more than one partition at a time. For example,
"Register User" really doesn't belong to the user or the system. We know from
earlier discussions that "Register User" is a subsidiary activity that may involve the
user providing personal information and the system validating address information
and storing the user information. However, the UML doesn't permit a node to span
more than one partition in a single dimension. As a result, you will have to pick a
partition for the node, and this also suggests what we know to be true about "Reg-
ister User"—that it can be decomposed into its own activity.

Using Multidimensional Partitions

Modeling multidimensional activity partitions is a relatively new concept. Diagram-
ming multidimensional activity partitions also doesn't seem to be wholly supported
by some popular and currently available modeling tools; however, you can simulate
a multidimensional partition in Visio by adding two swimlanes (activity partitions)
and rotating one of them. (The result is a diagram similar to Figure 3-17.) Now that
we have the mechanics for creating a multidimensional partition, you might be
wondering how it is used.

An action in an activity partition matrix belongs wholly to both partitions. Sup-
pose, for example, that as we are gearing up to sell job listings on Motown-jobs
.com, we decide to use PayPal to process payments. We can say that "Process Pay-
ment" is part of both our "Payment Processor" and PayPal's payment-processing
system, which is reflected in Figure 3-17.

Indicating Timed Signals
Thus far we haven't talked about when things occur. There are three types of signals
that facilitate talking about time in activity diagrams. These are the time signal, the
send signal, and the accept signal. A signal indicates that an outside event has fired,
and that event initiates the activity.

The hourglass shape of the time signal is used to specify an interval of time. For
example, we could use the time signal to indicate that the "Expire Listing" activity
will start after the listing has been available for 30 days (Figure 3-18). The receive

67

UML Demystified

Figure 3-17 Multidimensional partitions, where an action is owned by two partitions in
different dimensions at the same time.

signal symbol is a rectangle with a wedge cut into it, and the send signal symbol is
a rectangle with a protruding wedge—making the receive and send signal symbols
look a bit like jigsaw puzzle pieces (again shown in Figure 3-18).

NOTE Every tool has its limitations. In Visio, for example, there is no symbol for
a time signal, so I contrived one, and the send and receive signals are used as
an alternative form of documenting events. Visio's implementation isn't precisely
consistent with the UML; it is important not to get hung up on these little
inconsistencies that you are bound to run into. Rather than spending your time
drawing pictures for unsupported aspects of the UML, try using a note instead.

The model in Figure 3-18 is understood to mean that 30 days after a listing is
posted, it will be expired automatically unless a notified owner elects to extend it.
Alternate signals include a user deleting a listing, which causes the listing to be

68

CHAPTER 3 Diagramming Features as Processes

Figure 3-18 A time signal for expiring a listing, two receive signals for extending and
deleting a listing, and a send signal for notifying a listing about an impending expiration.

archived before being delisted and an owner taking his or her own initiative to ex-
tend the listing prior to its expiration. If the owner extends the listing, then this
signals the system to process an additional payment.

69

UML Demystified

Capturing Input Parameters

Activity diagrams can have input parameters, e.g., in Figure 3-18 in every instance
that we are talking about doing something with a listing. We could show a "List-
ing" object as the input for each action in the figure. Grabbing just a small piece of
Figure 3-18, we can show the notation and symbol for indicating that the input to
that action is a "Listing" object (Figure 3-19).

While input objects can be useful for developers, this is another instance where
they may add confusion to the discussion of the activity in a general, analytical
sense. At least during early phases of analysis, consider deferring specific reference
to implementation details such as classes.

Showing Exceptions in Activity Diagrams

The UML supports modeling exceptions. An exception is shown as a zigzagging
line (or "lightning bolt") with the name of the class of the exception adorning the
zigzagging line. The exception handler can be modeled as an action node with the

Figure 3-19 The "Listing" object is shown as an input parameter to the "Extend Listing''
action and its containing activity diagram.

70

CHAPTER 3 Diagramming Features as Processes

Figure 3-20 Modeling an exception in an activity diagram.

name of the action in the node and the exception flow connecting to an input pin on
the exception action node (Figure 3-20).

The node containing the exception handler has no return flow. An exception hand-
ler just hangs off the action that caused the error to occur. It is important to
remember that we are capturing general flow and actions; during this phase, we do
not have to indicate how we are handling the exception.

Concepts such as exception, exception handler, stack unwinding, and perfor-
mance may add considerably to the confusion for nontechnical users. If you can
add an exception and exception action node without getting bogged down in discus-
sions about how exception handlers are implemented or how they work, then go
ahead and add them to your activity diagrams.

Terminating Activity Diagrams

When you reach the end of an activity, add an activity final node. If you reach the end
of a flow and nothing else happens, add a flow final node (Figure 3-21). You can have
more than one activity final node and flow final node in a single activity diagram.

The activity diagram in Figure 3-21 shows that we process all the expired listings
until there are no more, and for each expired listing, we e-mail the owner, providing
him or her with an opportunity to renew the listing or let it expire. Notice that when
the decision node branches because there are no more expired listings, it simply

71

UML Demystified

Figure 3-21 An activity showing a flow final node and an activity final node.

dead ends. You might envision this sort of activity implemented as an asynchronous
process where each expired listing fires off a process to permit the listing owner to
renew the listing.

Creating Activity Diagrams
A decision as important as what goes into an activity diagram is what to diagram.
Too often it is easy to keep adding additional models and adding more detail to
existing models. The implication, though, is that while you are modeling, someone
else is waiting to implement your design, or worse, while you are refining your
designs, some poor implementer will have to modify their implementation. For this

72

CHAPTER 3 Diagramming Features as Processes

reason, it is important to make your activity diagrams relatively simple; limit the
activity diagrams you create to important, critical, or challenging aspects of your
problem; and avoid trying to make them perfect. A good model that is easy to
understand and completed in a timely matter is more valuable than a perfect model
later—if there is such a thing as a perfect model.

Examples of the activity diagrams I would create for use cases from Chapter 2
might be an activity for "Manage Job Listing," "Expire Listing," and "Maintain
Billing Information." Specifically, I am interested in understanding the critical as-
pects of the system, especially those for services that are billable items. Common
things such as searching or logging are understood well enough that it is unlikely
that I would create an activity diagram for them.

Picking what to model and what not to model is a lot like adding salt during
cooking: You can always add a little more, but it is hard to remove salt if you have
added too much. The same is true with modeling: You cannot recoup time spent
modeling obvious activities, but you always can add more activity diagrams later if
you need to.

Reengineering Process
Probably the most beneficial use of activity diagrams is to help nondomain
personnel—usually the technologists who will implement a solution—understand
a domain. Implicit in the preceding statement is that while domain experts and
technologists are attempting to reach a common understanding, there is an opportu-
nity to reengineer the process. Let's take a moment to review what is meant by
process reengineering.

Frequently, people do there jobs every day without ever identifying a formal
process. The process knowledge is known only to the practitioners. Often these
same organizations are shocked to discover how much overhead and waste exist
within their organization. Process reengineering is a kind of pseudoscience that
entails first documenting an organization's processes and then looking for ways to
optimize those processes.

I am not an expert in process reengineering, but there are historical examples
where well-known companies have spent a considerable amount of money and en-
ergy to refine their business processes, and the results have led to broad, sweeping
changes in industry. An interesting example can be found in Behind the Golden
Arches, which details the evolutionary path that led McDonald's to use centralized
distribution centers for its franchisees.

73

UML Demystified

NOTE Ironically enough, software development itself is an example of a domain
where the practitioners have defined the process in an ad hoc way. Many software
companies are now beginning to realize that they are long overdue for an introspective
examination of the processes they follow to build software. Has anyone in your
organization every used an activity diagram (or flowchart) to document how your
organization builds software?

Software development is a business of automating solutions to problems. In
a general sense it is a useful idea to document critical domain processes and explore
some possible optimizations before writing code. If the process is simplified, then
the ensuing implementation may be markedly simplified too.

Reengineering a Subactivity

Here is an example involving a subactivity called "Interior Cabin Check" that has
to do with the preflight inspection of a small airplane. The idea behind the interior
cabin check is that we are looking for required or important things in the interior of
the airplane and performing steps to help with some exterior checks. There is a very
good likelihood that if we miss something, then we could be taking off with unsafe
conditions or not have critical resources during an emergency. (If it bothers you that
this doesn't sound like a software problem, then just imagine that we are document-
ing this problem to write testing or simulation software.)

One of the planes I fly is a Cessna 172 Skyhawk. The interior cabin check
(depicted in Figure 3-22) consists of

• Making sure the ignition switch is off

• Turning the master switch on so that we have power

• Lowering the flaps

• Checking for the registration, airworthiness certificate, weight and balance
information, and operating handbook, which includes emergency procedures

• Checking the fuel level indicators and fuel selector

• Turning the master switch off

As shown in the activity diagram in Figure 3-22, the steps are carried out con-
secutively. (This is the way that I performed the inspection the first couple of times
I performed it.) An experienced pilot (a domain expert) will tell you that it takes

74

CHAPTER 3 Diagramming Features as Processes

Figure 3-22 Our initial understating is that each task in the activity is performed
consecutively.

a few moments for the flaps to come down, so some of the other checks can be per-
formed concurrently. We can tighten up the activity diagram as shown in Figure 3-23.

75

UML Demystified

Figure 3-23 Making some tasks concurrent will improve the time to completion of
the activity.

76

Knowing When to Quit
Applying rules consistently will help you to work efficiently during the modeling
phase of development. With this in mind, recall that I said that an important idea is
to capture the most critical use cases and tackle those first. The same is true of activ-
ity diagrams. Identify the use cases that are most critical, and create activity diagrams
for those use cases that require some exploration. For instance, authenticating a user
in Motown-jobs.com is necessary, but this is a well-understood problem. I wouldn't
spend a lot of time creating an activity diagram for this, and I wouldn't work on that
activity diagram before I worked on those related to my primary use case, "Manage
Job Listing."

If you are not sure how many activity diagrams to create, then try creating an
activity diagram for each of the primary functions of your most important use cases.
Try to get as much about the activity modeled as quickly and as accurately as you
can. Immediately check back with your domain experts, and explore the activities
to see if you have captured the most salient points.

Finally, don't permit yourself to get bogged down here. If you can't reach a consen-
sus on the completeness of a particular activity, then set it aside and agree to come back
to it. There may be other elements of the problem that will increase your understanding
or your users' understanding of the problem in general and resolve the problem you set
aside. The key is not to get stuck on any particular problem too early.

Quiz
1. Synonyms for a transition are

a. connector and flow.

b. edge and flow.

c. edge and connector.

d. action and event.

2. In general, activity diagrams consist of

a. nodes and edges.

b. actions and transitions.

c. actions, decisions, and flows.

d. symbols and lines.

77
CHAPTER 3 Diagramming Features as Processes

UML Demystified

3. An exception can be shown in an activity diagram with a lightning bolt-
shaped edge.

a. True

b. False

4. A decision node and merge node use

a. different symbols.

b. identical symbols.

c. either identical or differing symbols depending on context.

5. Multiple flows entering an action node constitute

a. an implicit merge.

b. an implicit join.

6. Every flow waits at a merge and join until all flows have arrived.

a. True

b. False

7. The swimlane metaphor is no longer used

a. because swimlanes are no longer part of the UML.

b. because partitions can be multidimensional and don't look like
swimlanes.

c. The swimlane metaphor is still in use.

d. Both b and c.

8. Actions can exist in two activity partitions in different dimension at the
same time.

a. True

b. False

9. A decision and merge node is represented by

a. an oval.

b. a circle.

c. a rectangle.

d. a diamond.

78

CHAPTER 3 Diagramming Features as Processes

10. Activity diagrams differ from flowcharts because activity diagrams support

a. swimlanes.

b. parallel behavior.

c. decision nodes.

d. actions.

Answers
1. b

2. a

3. a

4. b

5. b

6. a

7. d

8. a

9. d

10. b

JTJ1

This page intentionally left blank

CHAPTER

Discovering
Behaviors with

Interaction
Diagrams

Demystify means to "expose, set straight, or throw light on," and each chapter does
this implicitly or explicitly. In this chapter I'd like to start off by setting you straight
right away. There are all kinds of Unified Modeling Language (UML) diagrams.
Some are redundant, and you definitely do not have to create every kind of diagram
to have a good design. There is more than one kind of interaction diagram, and the
rule of avoiding redundancy is apropos to this chapter.

4

81

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

The two common interaction diagrams are the sequence and the collaboration
(or communication) diagrams. These diagrams tell you exactly the same thing. Se-
quences have an explicit time ordering and are linear, and collaborations have
a "labeled" time ordering and are geometric. You only need one or the other, but
definitely not both.

I like sequence diagrams. Sequence diagrams are more common, very easy to
create, and are naturally organized, and we don't need to indicate the time ordering
by annotating the messages. Consequently, in this chapter I will emphasize the se-
quence diagram, but I will talk briefly (and demonstrate) collaboration diagrams so
that you are familiar with them. (If you decide ultimately you like the geometric
organization of collaboration diagrams, then use those. Remember, though, that
you don't need both sequences and collaborations, and many UML tools will read-
ily convert sequences to collaborations and vice versa automatically.)

In this chapter I will show you how to

• Identify the elements of sequence diagrams

• Create sequence and collaboration diagrams

• Understand the time ordering of interaction diagrams

• Use interaction diagrams to discover classes and methods

• Model success and failure scenarios using interaction frames introduced
in UML version 2.0

• Use sequences to explore the behavior of many objects across a use case

Elements of Sequence Diagrams
Every diagram uses only a subset of the tokens and grammar that make up the
UML. Learning about those tokens and the specific grammar is an essential evil. It
is important to remember that you don't need to remember every word in a lan-
guage to communicate effectively—for example, I can't remember what solecism
means precisely, as in "for it is the solecism of a prince to think to control the end
yet not endure the mean"—but it is important to master a language to employ it
creatively.

NOTE It is important to remember that the UML is an evolving language. As
with spoken languages, effective communication can occur with a very basic
understanding of the language. The key is to remember to leave the language
lawyering to others. (In this case, leave the language lawyering to the Object
Management Group.)

82

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

Let's take a couple of minutes to explore the useful tokens and grammar of se-
quence diagrams. We will begin with the two basic and essential elements of sequence
diagrams—lifelines and messages. (It is worthwhile to note that a passable dialogue
can occur with just these two elements of sequence diagrams.)

Using Object Lifelines
A lifeline is a rectangle with a vertical line descending from the rectangle. The life-
line represents an instance of a class, and the vertically descending line is a convenient
place to attach incoming and outgoing messages. Adding multiple lifelines to a sin-
gle diagram and attaching these with time-ordered messages permits you to show all
the classes and messages necessary to complete a scenario described by a use case.
By eliminating ambiguous gaps or avoiding the repetition of classes and messages,
you can get a whole solution, one scenario at a time.

An object lifeline takes form as an object that plays a part of a role in a use case. I'll
talk more about lifelines as we progress; for now, just look at the symbol in Figure 4-1.

Object lifelines can represent actors or objects. Both actors and objects may or
may not be actualized as code. This may sound confusing, but it is not. Suppose, for
example, that we are building an airline ticketing reservation system. An actor might
be a person working the counter in the terminal or a kiosk (used for e-tickets).
The person is an important participant in the ticketing sequence but will not be
represented by code. A kiosk is also an important participant, and it will be repre-
sented by code to some extent. Thus we can refer to an actor called a "Ticketing
Authority" and mean both the person and the kiosk.

In some modeling tools, the stick-figure actor is used with an attached lifeline, and
in others, a box with a stick figure or «actor» stereotype is used. More important

Figure 4-1 An object lifeline represents an instance of a class and a line conveniently
placed to permit connecting objects by messages.

83

UML Demystified

than the precise notation is to remember that an actor may or may not be realized in
code and that a lifeline can be an actor.

A lifeline also can represent an actualized class. What is important to know is
that a lifeline is generally a noun that may or may not be codified as a class but is
definitely something that can interact with your system and that a lifeline is also just
a rectangle with a vertical line descending from it.

Activating a Lifeline
Objects have a lifetime. For example, in a deterministic language such as C++, an
object lives until the destructor is called. In a nondeterministic language such as C#
(pronounced "C sharp"), an object lives until it is garbage collected. This means that
the programmer doesn't really know when the object goes away. However, modelers
are not entirely constrained by the implementation language.

From our perspective, we only care when we begin using an object and when we
are done using an object unless the object represents a finite resource. In both cases,
the activation line represents the span of an object's lifetime for practical purposes.
It is also important to know that an object can be represented as being created and
destroyed using a single lifeline.

The activation symbol is a vertical rectangle replacing the lifeline for the dura-
tion of that instance's existence (Figure 4-2), keeping in mind that an object can be
created and destroyed multiple times and that one lifeline is used to represent all

Figure 4-2 A lifeline with an annotated activation symbol.

84

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

instances of that class in a sequence. (I will talk about deterministic destruction in
a minute.) If we want to express nested or recursive messages, then we can stack
activation symbols horizontally.

Sending Messages
Messages are directed lines connecting lifelines. The line begins at one lifeline, and
the arrow points toward a lifeline containing the message invoked. The message can
begin and end on the same lifeline; this is a nested call. A filled-in triangle repre-
sents a synchronous message. A stick triangle represents an asynchronous message,
and a dashed line is used for return messages. Included as possible messages are
found messages and lost messages. A found message is a message with a known
receiver, but the sender is not known, and a lost message has a known sender but no
specified receiver. Figure 4-3 shows each type of message clearly labeled.

Figure 4-3 Synchronous and asynchronous method call symbols.

85

UML Demystified

We also can specify deterministic object deconstruction by adding a circle with
an X in it at the message origin. For languages such as Visual Basic.NET and Java,
deterministic object deletion is not supported, but a language such as C++ requires
it. (You are likely to seldom encounter a deletion message unless it is critical that
you remind developers to free finite resources.)

Suppose that we want to use a specific authentication and authorization scheme
in Motown-jobs.com. We could create a sequence that describes how we want to
implement the "Log In" use case. Look at the sequence in Figure 4-4 and see if you
can follow along. A description of the sequence follows the figure.

The user object uses the actor stereotype. (You could use an actor symbol, too.)
The user will not be realized as code but participates in the sequence. Beginning
from top left and working our way to the bottom right, we set the user name and
password and then send the message "Login." (This is interpreted as the "Log-In"

Figure 4-4 A sequence diagram for authenticating a user.

86

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

form having a method named "Login.") Next, the user-supplied password is en-
crypted and compared with the encrypted password stored as part of the UserData. If
ValidateUser succeeds, then we return a Boolean message true.

The sequence diagram is good at showing us how objects are orchestrated and
used across a use case, but they aren't good at showing us how this behavior is
implemented. For example, we could use Secure Hash Algorithm 1 (SHA1) en-
cryption with a salt and store the user data with an encrypted password, but the
sequence doesn't make this clear. (For a resolution as to how to implement a se-
quence, refer to the section entitled, "Understanding What Sequences Tell Us.")

Adding Constraints and Notes

You can add notes and constraints to help disambiguate the meaning of particular
aspects of your sequence diagrams. The UML describes how these elements are add-
ed, but in practice, they vary some depending on the tool you use. For example, we
could add a note to the diagram in Figure 4-4 that indicates that we are using SHA1
and a salt value and storing the password in an encrypted form only (Figure 4-5).

Constraints can be added as plain text, pseudocode, actual code, or Object
Constraint Language (OCL). Actual code or OCL constraints can be used to help
code-generating UML tools generate lines of code. In some heavyweight modeling
processes, the ability to generate code may be a requirement, but to date, it seems
harder to create UML models that generate granular code than it is to write the code
itself. You will have to decide for yourself if you need moderately detailed or very
detailed models.

TIP Models that generate complete applications are unrealistic and impractical.
Avoid falling into the trap of trying to create perfect models with enough detail to
spit out an application.

Using Interaction Frames

Interaction frames (or combined fragments) are new in UML version 2.0. Interac-
tion frames are rectangular regions used to organize interaction diagrams (sequence
and timing diagrams). Interaction frames can surround an entire interaction dia-
gram or just part of a diagram. Each interaction frame is tagged with a specific
word (or an abbreviated form of that word), and each kind of interaction frame
conveys some specific information. Table 4-1 defines the current interaction frame
types.

87

UML Demystified

Figure 4-5 Using notes to add detail to your sequence diagrams.

Table 4-1 The Types of Interaction Frames

faa

Alt Alternatives fragments (i.e., conditional logic); only guard conditions evaluating to
true will execute.

Loop The guard indicates how many times this part will execute.

Neg An invalid interaction.

Opt Equivalent to an alt with one condition (i.e., an if condition with no else statement).

Par Fragments are run in parallel—think multithreading.

Ref Reference to an interaction defined on another diagram.

Region Critical region; think not reentrant or only one thread at a time.

Sd Used to surround an entire sequence diagram, if desired.

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

The UML is meant to be extensible. If you think of another kind of frame, then
use it, as long as you define it. Deviating from the standardized UML is done all the
time; this is consistent with how all languages evolve. There are examples of slang
that get adopted in spoken languages all the time.

Let's spend a few minutes looking at interaction frames. The key to using interac-
tion frames is to pick the frame type you need, specify the guard conditions that
determine how the interaction in the frame is executed, and add the correct number of
fragments (or frame divisions). Let's start with the loop frame. This is basically a for.,
next, for..each, or while construct as it might appear in a UML model (Figure 4-6).

NOTE Earlier in this book I said that I would use Visio to demonstrate that you
didn't have to spend thousands of dollars to create usable UML models. Figure 4-6
demonstrates that we can create new UML version 2.0 elements—e.g., loop
interaction frame—even though these aren't supported directly by Visio. (The
interaction in the figure was created with the simple line drawing tools in Visio.) In
the case of interaction frames, I haven't seen any current UML tools that support
this construct. The current version of Rational for XDE and Visio doesn't include
interaction frames. You can check Togethersoft's offerings and Poseidon for UML.

Figure 4-6 An interaction frame showing the loop frame; we are looping through the
creation of multiple job listings.

.89^

UML Demystified

We read the sequence diagram the same as before, except that all the messages
in the loop frame are part of the repeating behavior that this sequence describes.
(An older-style notation was to use an asterisk as a guard condition. The same model
using the multiplicity symbol (an asterisk) is shown in Figure 4-7.)

The key to successful modeling is to remember that it happens in a world with
real constraints—budget for tools, available time, the tool's compatibility, the cur-
rent definition of the UML, and so on. Don't get hung up language lawyering. If
your tool doesn't support a particular construct, fudge. In practice, I would not take
the time to manually draw an interaction frame if my tool didn't support it; I'd use
the asterisk guard condition.

Figure 4-8 shows another common interaction frame, the alternative frame. Sup-
pose that we offer perquisites for customers who frequently post a certain number
of jobs. We may want to pass these customers to a different billing system, perhaps
offering a special volume discount.

Figure 4-7 The guard condition—[*]—by the name of the "Input Job Details" message
indicates multiplicity or repetition, employing an older style devised to indicate a loop.

Eil

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

Figure 4-8 An example of an alternative interaction frame.

Understanding What Sequences Tell Us
Older-style sequence diagrams had a singular nature, but with interaction frames
we can more conveniently convey behavioral alternatives, parallel behavior, and
loops and clearly reference-related sequences. Implicit in the top-left to bottom-
right ordering of sequence diagrams is a time ordering that shows how a single use
case is supported by multiple objects.

Sequences do not have to be complex to be useful. Most important are the ob-
jects across the horizontal and each object's lifeline and the order and name of the
messages sent between objects. You do have the option of staggering the lifelines,
creating a jagged effect; occasionally you will see this style of sequence. Staggered
or horizontally aligned, the meaning is the same.

91

UML Demystified

NOTE A complete model is subjective. In the Rational Unified Process (RUP),
more detail is preferable. Employing the Agile methodology, you are encouraged to
create models that are barely good enough. Ultimately—perhaps within 50 years—
software models will be required to be as detailed and as rigorous as electronic
wiring diagrams, but that day isn't here yet. I prefer something more detailed than
the barely good enough models prescribed by the Agile methodology but never so
much as to generate lines of code.

Use sequence diagrams to show how several objects prop up a use case. While
sequences are good at showing how objects occur in a use case, they are not good
at describing specific behavior. If you want to model more detail than a sequence
supports, then consider using an activity diagram or code itself; trying to model
code at the statement level is generally more efficiently captured simply by writing
the code. If you want to see an orthogonal view—many use cases, a single object—
then you want a statechart (see Chapter 8).

Discovering Objects and Messages
Use cases should contain success and failure scenarios. In UML version 2.0, you
can use the alternation construct to show what happens when things are going as
planned and what to do when things go haywire.

Sequence diagrams are also good at helping you to discover classes and meth-
ods. The classes can be identified easily as a noun name for the instance of your
objects, and methods are the messages that are invoked on an object. It may not be
immediately evident what the parameters for these methods are, but classes and
methods are a good start.

Owing to the sequential nature of sequences, they also can be good at helping
you to identify gaps. For instance, suppose that you discover that a sequence has
a lot of notes to explain what is happening. This may indicate that there needs to be
some well-named objects and messages that define the annotated behavior. (Gener-
ally, I find that well-named classes and methods in code are preferable to comments
that try to clarify long methods and well-named objects, and messages in models
are preferable to a lot of notes.) Let the sequence be self-explanatory to the extent
possible. Consider Figure 4-9, which shows a possible design for the search behav-
ior for Motown-jobs.com.

In the figure we have a job seeker, a search page, and something called a search
engine. This design doesn't tell us the form of the search criteria or whether we

92:

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

Figure 4-9 A poor design for searching for listed jobs.

validate it or not. We know nothing about the search engine—what it does or where
it retrieves the data from—and we haven't any clue about the form of the results.
This sequence would need several notes and a lot of verbal support. We can do bet-
ter (Figure 4-10).

In the revised search sequence, we are showing that we are using a parameter
object—"SearchCriteria"—to store, validate, and pass the user-entered search in-
formation. We are also depicting that the search engine reads the job listings from
a database object—at this point the database object simply might represent a data
access layer—and the database object puts the read information into a typed collec-
tion of "JobListing" objects. The new sequence is something we can actually
implement with very little ambiguity.

Another implicit feature of the new sequence in Figure 4-10 is that others will
now clearly understand that we intend to use custom objects for "JobListing." Be-
fore proceeding with implementation, we could have a discussion about the design.
In addition, because the pieces are more clearly delineated, we could divide the
work among specialists across the implementation team.

NOTE The role specialization is at least as old as Adam Smith's Wealth of Nations
or Henry Ford's assembly lines but is really just catching on in the software industry.
Our relatively young industry still seems to prefer generalists and suffers as a result.

93

UML Demystified

Figure 4-10 The Motown-jobs.com search behavior with a detailed sequence diagram.

Elements of Collaboration
(or Communication) Diagrams

A collaboration diagram—redubbed a communication diagram in UML version 2.0—
conveys the same information as a sequence diagram. Where time ordering is implicit
in the linear layout of a sequence diagram, we explicitly indicate the time ordering by
numbering the messages in geometrically organized collaboration diagrams.

Key symbols in collaboration diagrams are the rectangle, called a classifier role,
and a line indicating the message, again called a connector. The classifier role rep-
resents the objects. Connectors represent connected objects, and a named arrow
indicates the message as well as the sender and receiver. Figure 4-11 shows the
sequence in Figure 4-10 converted to a collaboration diagram.

As you can see, the collaboration has the same elements but fewer details. The
compact nature and fewer elements make collaborations convenient when doodling

>j

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

designs. To read the diagram, start with message 1 and follow the messages
by number. Collaborations aren't meant to use interaction frames and, as a result,
don't convey as much information as the sequence diagram.

Note the numbering scheme in Figure 4-11.1 have always used a simple number-
ing scheme such as the one depicted in this figure, but valid UML version 2.0 requires
a nested numbering scheme. A simple number scheme is 1,2, 3, 4, etc. The UML
version 2.0 nested number scheme is 1.1, 1.2, 2.1, 2.2, etc. The nested numbering
scheme is designed to show nested message calls, but it can get out of hand quickly.
If you want to use the UML version 2.0 numbering scheme, then the messages
would be renumbered as follows: 1 remains 1, 2 becomes 1.1,3 becomes 1.1.1,
4 becomes 1.2, 5 becomes 2, 6 becomes 2.1, 7 becomes 2.2, and 8 becomes 2.3.

TIP Consider using collaboration diagrams when working on a whiteboard or
napkins—or wherever you doodle your inspired designs. The compact nature and
fewer adornments of collaboration diagrams make them more manageable when
designing manually.

Collaboration diagrams have other common elements such as notes, constraints,
and stereotypes. These elements are used the same way they are used in sequence
Hi arrramc

Figure 4-11 Searching for job listings represented in a collaboration diagram.

95

UML Demystified

Equating Design to Code
Interaction diagrams provide you with enough information to begin coding. The
objects are instances of classes, so you need to define a class for each object. Mes-
sages generally equate to methods, and the method is placed in the class of the
receiver (not the caller).

I have found generally that with sequences I have most of the information I need
to start writing code. How the code is implemented is based on a couple of factors:
(1) your experience and (2) the implementation language. For example, "JobList-
ing" and "JobListingCollection" represent a class and a collection containing
objects of that class. If we were to implement this in C#, then "JobListingCollec-
tion" could inherit from "System.Collections.CollectionBase," and that decision
drives its implementation (see the listing).

public class JobListing

{}

public class JobListingCollection: System.Collections.CollectionBase

{
public JobListing this[int index]

{
get{return (JobListing)List[index];}
set{List[index] = value;}

}

public int Add(JobListing value)
{

return List.Add(value);

Notice that in this listing I inherit from a specific base collection and define a
property called this and the add method shown in the sequence. It is important to
note that the designed sequence didn't indicate the this property or the parent class;
sequence diagrams won't. In this instance the implementation language—Micro-
soft C# and the .NET framework—drove this part of the decision. Also notice that
the job listing doesn't tell us anything; its an empty class. Well, the "JobListing" in
the sequence didn't tell us anything either. Sequence diagrams aren't good at spec-
ifying code details. We did, however, stub out interfaces. At this point it depends on
the experience of your developers how much code they can write. Less experienced
developers will need more details, and more experienced developers will need fewer
details. I tend to model detail that is sufficient for my audience—the developers
doing the implementation.

96

}
}

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

To begin to specify more details, such as properties, supporting methods, and
inheritance relationships, we can use class diagrams. Chapter 5 goes into greater
depth about class diagrams.

Keep in mind that there is a lot of implicit knowledge at this stage. First, you
should know that your design is likely to change. Second, things such as typed col-
lections are based on patterns, and as is demonstrated in the code listing,
implementation is driven by the language and framework. Third, there are many
common and popular design patterns (see Erich Gamma et al., Design Patterns.
Reading, MA: Addison Wesley, 1995), and it isn't always necessary to do much
more than state that a pattern is used; you aren't absolutely required to create mod-
els for well-known public patterns. And last but not least, there is a subject known
as refactoring. Refactoring is a methodical means of simplifying code. Refactoring
stems from a doctoral thesis by William Opdike and a well-publicized book by
Martin Fowler (see Refactoring: Improving the Design of Existing Code. Reading,
MA: Addison Wesley, 1999). When refactoring is employed, it may mean in
practice that a design decision can be improved on during implementation. If the
refactoring is better than the design, then go ahead and modify the code and simply
update the model to reflect the change.

NOTE We demonstrated a refactoring in design in Figures 4-9 and 4-10 when
we introduced the "SearchCriteria" object. This refactoring is named "Introduce
Parameter Object," which simply replaces a long list of parameters with a single
instance of a parameter class that contains those values. We also snuck in a design
pattern, "Iterator." The strongly typed collection implemented as a response to
Figure 4-10's typed collection of "JobListing" objects inherits from .NET's
CollectionBase, which, in turn, implements an lEnumerable pattern (an
implementation of the iterator pattern). Good designs and implementations are
based on patterns and refactorings. Good design models are based on a simple,
accurate, and direct use of the UML and incorporate design patterns and refactorings.

Quiz
1. A sequence diagram is an example of

a. a collaboration diagram.

b. an interaction diagram.

c. a class diagram.

d. a use case diagram.

97

UML Demystified

2. Sequence diagrams depict all the objects that support a single use case.

a. True

b. False

3. Sequence diagrams are good at showing how to implement lines of code.

a. True

b. False

4. A collaboration diagram and a communication diagram differ

a. because collaboration diagrams show that objects interact and
communication diagrams show how objects communicate.

b. not at all; collaboration diagrams simply were renamed in UML
version 2.0.

c. because collaboration diagrams are geometric and communication
diagrams are linear.

d. Both a and c

5. Sequence diagrams can model asynchronous and multithreaded behavior.

a. True

b. False

6. Interaction frames use a guard condition to control when and which fragment
of the frame to execute.

a. True

b. False

7. The alt—called an interaction operator—interaction frame

a. is used to show an invalid fragment.

b. models optional behavior.

c. shows conditional logic.

d. models parallel behavior.

8. A good design must include both sequence and collaboration diagrams.

a. True

b. False

9. Activation symbols are used to show

a. the lifetime of an object in a sequence diagram.

b. the lifetime of an object in a communication diagram.

98

CHAPTER 4 Discovering Behaviors with Interaction Diagrams

c. when an object is created.

d. None of the above

10. Valid UML version 2.0 employs

a. a nested numbering scheme to show time ordering in a sequence
diagram.

b. a nested number scheme to show time ordering in a communication
diagram.

c. a simple numbering scheme to show time ordering in a sequence
diagram.

d. a simple numbering scheme to show time ordering in a collaboration
diagram.

Answers
1. b

2. a

3. b

4. b

5. a

6. a

7. c

8. b

9. a

10. b

99

This page intentionally left blank

CHAPTER

What Are the
Things That
Describe My

Problem?

This chapter introduces class diagrams. Class diagrams are the most common and
the most important view of the design that you will create. Class diagrams are
called static diagrams because they don't depict action. What class diagrams do is
show you things and their relationships. Class diagrams are designed to show all the
pieces of your solution—which pieces are related to or used as parts of new
wholes—and should convey a sense of the system to be built at rest.

5

noc

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

To communicate at a technically precise level in Unified Modeling Language
(UML)-speak, it helps to learn such words as association, composition, aggregation,
generalization, and realization, but to communicate sufficiently and effectively, all
you must know are simple words to describe whole and part relationships, i.e., parent
and child relationships, and be able to describe how many of a thing of one sort are
related to how many things of another sort. I will introduce the technical terms, but
don't get stuck trying to memorize them. With practice, eventually you will incorpo-
rate UML-speak into your daily language.

A common myth is that if you find all the nouns and all the verbs that describe
your problem, then you have discovered all the classes and methods you will need.
This is incorrect. The truth is that the nouns and verbs that describe your problem
sufficiently for a user are the easiest classes to find and can help you to complete
a useful analysis of the problem, but you will end up designing and using many
more classes that are necessary to fill in the blanks.

This chapter will show you how to create class diagrams and begin helping you
to figure out how to find most or all of the classes you will need to design a solution.
An important concept here is that very few designs require that all details be discov-
ered before programming ensues. (A few agencies and companies, such as NASA
and General Dynamics, may have rigid requirements that stipulate the complete-
ness of a design, but in most instances this leads to very long production times and
excessive expense.)

In this chapter I will show you how to use the elements of class diagrams, create
class diagrams, and capture some advance ideas, and I will show you some ways to
discover some less obvious classes and behaviors. You will learn how to

• Identify and use class diagram elements

• Create simple but useful class diagrams

• Model some advanced expressions

• Figure out how to discover less obvious supporting classes and behaviors

Elements of Basic Class Diagrams
Foolishly, in high school I didn't like literature class and was stupefied by grammar
classes. Fortunately, by college, I began to see the error of my thinking. While I am
not an expert on English grammar, understanding such things as prepositions, prep-
ositional phrases, conjunctions, objects, subjects, verbs, verb tense, adjectives,
adverbs, articles, active voice and passive voice, and plural and singular possessive
words helps a lot when writing these passages. The reason I tell you this is that,

102

CHAPTER 5 What Are the Things That Describe My Problem?

unfortunately, grammar is a component of the UML because it is a language, but the
UML's grammar is much easier than English grammar. How much easier is the
UML? The answer is that the two most important elements in class diagrams, as in
other diagrams, is a rectangle and a line. The rectangles are classes, and the lines
are connectors showing the relationship between those classes.

UML class diagrams can seem as challenging as Shakespeare's Hamlet or as
easy as the prose in Hemingway's The Sun Also Rises, but both can tell a story
equally well. As a general rule, focus on the classes and their relationships, and use
more advanced elements, which I also will discuss, when needed. Avoid the idea
that a class diagram has to be decorated extensively to be useful.

Understanding Classes and Objects
The rectangle in a class diagram is called a classifier. The classifier can tell you the
name of the class and the name of an instance of that class, called an object. Classes
ultimately will include behaviors and attributes, collectively called features, too.
Attributes can be fields, properties, or both. Behaviors will be realized as methods
(Figure 5-1).

Significantly, class diagrams will use the simple classifier represented by the
"Motorcycle" class in Figure 5-1. The other types are important and worth explor-
ing. Let's take a moment to do that.

TIP When you first start capturing classes in your models, conceptually thought
of as an analysis phase, it is sufficient to start with just classes and relationships.
Features can be added later.

Figure 5-1 Examples of classifiers in the UML.

JOB)

UML Demystified

Using Simple Classes

The class (shown in Figure 5-1 as "Motorcycle") is the most common element in
a class diagram. Classes ultimately are things in your analysis and design and may
be domain-specific things or supporting things. Consider the example given in the
next two paragraphs.

Groves Motorsports in Mason, Michigan, sells motorcycles, ATVs, snowmobiles,
and accessories. If we were designing an inventory system for Groves Motorsports,
then salespeople, purchasers, and mechanics could tell us about motorcycles, ATVs,
snowmobiles, boots, helmets, and related sales items. From this discussion we might
easily derive starter classes such as "Salesltem" and "Motorcycle." Suppose now
that we have to manage the inventory using a relational database. Now we need to
know what kind of database and what the classes are that describe how we interact
with inventory items, i.e., how we read and write the inventory.

The result is that one class diagram may have classes that describe inventory
items, but other class diagrams may describe elements such as promotions and
sales, financing, and managing items that are not for sale but may be part of the
inventory of items in for maintenance. The hard part of design is finding and de-
scribing these relationships. A motorcycle is still a motorcycle whether it is for sale
or in for service, and we can use the same "Motorcycle" class, but we will need to
show different kinds of relationships based on a particular instance of that class.

Using Objects

A kind of a class diagram is an object diagram. Object diagrams show instances of
classes and their relationships. In the UML, an object is distinguished from a class
by underlining the name in the top compartment of the rectangle. This is illustrated
in Figure 5-1 by my midlife-crisis-inspired Kawasaki KDX 220R.

Using Interfaces

Programmers often have trouble with interfaces (see "IVisitor" in Figure 5-1). Inter-
faces are equivalent to pure abstract classes. By saying an interface is purely abstract,
I am saying that an interface will have no executable code. Interfaces are a critical
element in class diagrams and software; let's take a moment to understand why.

When I use inheritance, I mean that a thing also can be thought of as another
kind of thing. For example, both a motorcycle and an ATV are kinds of recreational
vehicles. This description depicts an inheritance relationship, one that doesn't use
an interface. Comparatively, a remote control sends infrared signals to change chan-
nel, attenuate volume, begin recording, or open and close a garage door. Devices
that receive these signals may not be related. For instance, a TV and a garage door
opener both have an up and down feature, and garage door openers and televisions

104J

are sold with remote controls, but a garage door opener is not a kind of television or
vice versa, but each may have the ability to perform an up and down operation. Up
and down increase or decrease the volume of a television, or up and down raise and
lower a garage door. This ability that supports up and down through a remote device
is an interface or a related facet of each of the unrelated devices. How this behavior
is implemented is also completely unrelated but doesn't have to be.

Interfaces are used when parts of things have semantically similar facets—up
and down behaviors—but have no related genealogy.

By convention we use the interface stereotype and prefix interfaces with "I," as
shown in Figure 5-1. Considering the "IVisitor" interface in Figure 5-1, we could
say that visitors have a kind feature. Fleas can visit a dog, and your brother-in-law
can visit your house, but a flea is a kind of dog visitor and your brother-in-law
Amos is a kind of family visitor. Fleas and Amos are not similar kinds of things (no
parasitic pun similarities intended).

Using Datatypes

The «datatype» stereotype usually is used to show simple datatypes such as "Inte-
ger." If you were designing a programming language, then your class diagrams
might show datatypes, but in general, I model these elements as attributes of classes
and reserve classifiers for compound types such as "Motorcycle" and "JobListing."

Using Parameterized or Generic Types

Synonyms can make life confusing. In the UML, parameterized types mean the
same thing as generics in C# and Java and templates in C++. A parameterized class
is a class whose primary data type is specified at runtime. To understand parameter-
ized classes, consider a classic example.

What does a sort algorithm sort? The answer is that a sort algorithm can sort
anything. Numbers, names, inventory, income tax brackets, or job listings all can be
sorted. By separating the datatype—number, string, "JobListing"—from the algo-
rithm, you have a parameterized type. Parameterized classes are used to separate
implementation from datatype. The "Sort" class in Figure 5-1 shows that a param-
eterized type uses the rectangle with a dashed smaller rectangle specifying the
parameter type.

It is worth noting that using templates well is considered an advanced part of soft-
ware design and that a tremendous amount of great software exists without templates.

Using Metadasses

A metaclass is a class of a class. This seems to have evolved to address the problem
of obtaining runtime type information about classes. In practice, a metaclass can be

305)
CHAPTER 5 What Are the Things That Describe My Problem?

UML Demystified

passed around like an object. Metaclasses are supported directly in languages such as
Delphi; e.g., given a class "JobListing," we could define a metaclass and (by conven-
tion) name it "TJobListing," passing instances of "TJobListing" as a parameter. The
metaclass "TJobListing" could be used to create instances of "JobListing." In a lan-
guage such as C#, metaclasses are not supported directly. Instead, C# uses a "Type"
object that represents sort of an instance of a universal metaclass; i.e., every class has
an associated metaobject that knows everything about classes of that type. Again, in
C#, the "Type" class exists to support dynamic, runtime discovery about classes.

NOTE There is another concept, metadata, that is similar to the notion of
metaclasses. However, metadata are data that describe data and often are used
to convey additional information about data; e.g., metadata sometimes are used
to describe valid values for data. Suppose that you were writing an accounting
system and that valid invoice dates were January 1, 1990, to time's end. Most
datetypes support dates much earlier than 1/1/1990, but you could use a date
metadata object to indicate that for your purposes valid dates began on 1/1/1990
instead of the earliest date for your language's datetype.

There are some practical applications for metaclasses. In Delphi, metaclasses are
used to support creating a control that is dragged from the control panel (toolbox) to
a form at design time. In .NET, the "Type" object—a kind of implementation of the
metaclass—is used to support dynamically loading, creating, and using objects.
Microsoft calls this capability "Reflection," but it is basically an implementation of
the metaclass idiom. Consequently, when the Delphi or Visual Studio designers were
designing their respective tools, they may have used the metaclass classifier in their
UML models, assuming that they used UML models. It is important to recognize
that just as different UML tools will support differing levels of UML compatibility,
different languages will support various design decisions in different ways.

Decorating Classes
The classifier symbol is divided into rectangular regions (see the "Motorcycle"
class in Figure 5-1). The top-most rectangle contains the name of the class and the
class stereotypes. The second rectangular region from the top contains attributes
(Figure 5-2). As shown in Figure 5-2, the "Motorcycle" class has an attribute "mo-
tor." The bottom rectangle contains behaviors (or methods). In Figure 5-2, the
"Motorcyle" class contains a method named "GetPowerOutput."

Each of the attributes and methods can be decorated with access modifiers.
(Remember that the term feature generically means "method or attribute.") The

106J

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-2 The "Motorcycle" class with a private access modifier on a motor attribute.

features can be decorated with the access modifiers +, -, or #. The plus (+) symbol
means that a feature is public, or available for external consumption. The minus
(-) symbol means that a feature is private, or for internal consumption, and the
pound (#) symbol means that a feature is neither public nor private. Usually, the
pound symbol means that a feature is for internal consumption or consumption by
child classes. The pound symbol usually equates to a protected member. Gener-
ally, UML tools will make methods public by default and attributes private by
default.

Using Attributes

Many modern languages distinguish between properties and fields. Afield repre-
sents what your classes know, and a property represents an implicit function for
reading and writing to private fields. It is not necessary to capture both fields and
properties; capturing fields is enough.

When you add classes to your class diagrams, add the fields, and make them
private. It is up to those implementing your designs to add property methods if they
are supported. If your language does not support properties, then during implemen-
tation, use methods such as get_Fieldl and set_Fieldl for each field to constrain
access to a class's data.

TIP Adding private fields and relying on an implicit understanding that fields are
accessed through methods, whether public or private, is a good recommended
practice but not enforced or part of the UML. This style of design implementation
simply is considered a best practice.

Declaring Attributes
Attributes are shown as a line of text. They need an access modifier to determine
visibility. Attributes need to include a name, can include a datatype and default
value, and can have other modifiers that indicate if the attribute is read only, write
only, static, or something else.

107

UML Demystified

In Figure 5-2, the "motor" attribute has a private access modifier and a name
only. Here are some more complete attribute declarations containing examples of
the elements we discussed:

-Type : MotorType = MotorType.TwoStroke
-Size : string = "220cc"
-Brand : string = "Kawasaki" {read-only}

In this listing we have a private attribute named "Type," whose datatype is "Motor-
Type," and its default value is "MotorType.TwoStroke." We have an attribute named
"Size" with a datatype of "string" and a default value of "220cc." And the last at-
tribute is a string named "Brand" with a default value of "Kawasaki"; the "Brand"
attribute is read only.

Declaring Attributes with Association
Attributes also can be depicted as an association. This just means that the attribute
is modeled as a class with a connector between the containing class and the class of
the attribute. All the elements mentioned previously can be present; they simply are
arranged differently.

Consider the "motor" attribute shown in Figure 5-2. This attribute could refer to
an association to a "Motor" class (Figure 5-3); further, the attributes—"Type,"
"Size," and "Brand"—could be listed as members of the "Motor" class.

When you use an association attribute, leave the field declaration out of the class.
The association link (shown as "motor") in Figure 5-3 plays that role; there is no
need to repeat the declaration directly in the containing class. The association con-
nector is named. This name represents the name of the field; in Figure 5-3 the name
is "motor," and the class is "Motor." Association attributes also can include a multi-
plicity, which indicates how many of each item is involved in the association. In the
example, one motorcycle has one motor. If the relationship were "Airplanes" and
"Motors," then we might have an asterisk next to the "Motor" class to indicate that
planes can have more than one motor.

TIP Some conventions use an article prefix for an association name, such as "the"
or "a," as in "theMotor" or "aMotor."

The class diagram in Figure 5-3 conveys identical information to the class
diagram in Figure 5-4. Class diagrams can quickly become overly complex if all the

Figure 5-3 Showing the "motor" attribute using an association.

108J

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-4 This figure conveys information identical to that shown in Figure 5-4; i.e.,
a motorcycle contains a motor whose type is "Motor."

attributes are modeled as associations. A good rule of thumb is to show simple
types as field declarations in the containing class and show compound types (classes)
as association attributes. Figure 5-5 shows how we can elaborate on the "Motor"
class more completely by using an association attribute rather than just a "motor"
field. (Figure 5-5 adds the fields used to describe a motor mentioned earlier.)

In Figure 5-5, we mean that only one motorcycle has a 220-cc two-stroke Kawa-
saki motor. (This is probably not true in real life, but that's what the model conveys.)

NOTE I mentioned that the diagram in Figure 5-5 means that only one motorcycle
has a 220-cc two-stroke Kawasaki motor, but that this information may be inaccurate.
By doing so, I inadvertently reillustrated one of the values of class diagrams: A class
diagram is a picture that means something, and experts can look at it and quickly tell
you if you have captured something that is factual and useful.

Figure 5-5 This class diagram contains more information about the motorcycle's motor
by using an association attribute for the motor and a second association attribute for the
possible types of motors.

109;

UML Demystified

Attribute Arrays and Multiplicity
A single attribute type might represent more than one of that type. This implies
multiplicity and possibly attribute ordering. There can be more than one of some-
thing; e.g., multiengined planes might be modeled as a plane with an array of
engines, and arrays can be sorted or unsorted. Multiplicity is indicated most readily
by adding a count to an association attribute, and sorted or unsorted attributes can
be annotated using the words ordered or unordered in brackets. Table 5-1 shows the
possible multiplicity counts and provides a description for each.

Multiplicity indicators are used in other contexts and have the same count mean-
ing when applied to other UML elements beside attribute associations.

TIP If the upper and lower values are identical, then use a single-valued multiplicity
indicator such as 1 instead ofL.l.

When speaking about multiplicities, you might hear the terms optional applied
to multiplicities with a lower bound of 1, mandatory if at least one is required,
single-valued if only one is permitted, and multivalued if an asterisk is used.

Indicating Uniqueness
Attributes can be annotated to indicate uniqueness. For example, if a field repre-
sents a key in a hashtable or primary key in a relational database, then it may be
useful to annotate that attribute with the {unique} or {nonunique} modifiers. For
instance, if you want to indicate that "JobListingID" is a uniquely valued field, then
define it in the class as follows:

-JobListingID : integer {unique}

If you want to indicate that the key value of a collection must be unique, then use the
{unique} modifier. If keys can be repeated, then use {nonunique}. Rarely do model-
ers have so much time that they use very detailed diagrams that include {nonordered}
and {unique} to mean hashtable. Generally, modelers simply express the datatype

Table 5-1 Mutiplicity Indicators

110

1 Only 1

* Many

0..1 Zero or 1

0..* A lower bound of zero and an upper bound of infinity; this is equivalent to *

1..1 One and only one; this is equivalent to 1

1 ..* A lower bound of at least one and an upper bound of infinity

m,n Meaning a noncontiguous multiplicity such as 3 or 5; no longer valid UML

CHAPTER 5 What Are the Things That Describe My Problem?

of the attribute, but it is worth knowing that the UML specifies ordered versus non-
ordered and unique versus nonunique and not array or hashtable. Arrays and hashtables
represent known design solutions, not aspects of the UML language.

Adding Operations to Classes
It can be useful to think of modeling as something that cycles from a high-level
macro view to successively lower-level micro views and ultimately to code, the
most detailed micro view. The macro phase can be thought of as an analysis phase.
During this phase, it might be enough to capture classes and relationships as you
begin to understand the problem space. As your understanding improves and you
begin to capture the details of a solution—moving from a macro understanding to a
more detailed micro understanding—you begin elaborating on a design. At this
juncture you may return to your class diagrams and begin adding operations and
attributes. Operations, behaviors, and methods all refer to the same thing. In the
UML, we generally say operation, and when coding, we generally say method.

Operations are shown in the bottom-most rectangle of a classifier. Operations
have a visibility modifier such as attributes. Operations include a return datatype; a
name; a parameter list including names, datatypes, and modifiers; and additional
modifiers that may indicate if an operation is static, virtual, or something else.

As mentioned previously, it isn't necessary to show property methods. You also
can save yourself some time by not elaborating on nonpublic operations in great
detail. The public operations generally will describe the behaviors of the class suffi-
ciently, and the nonpublic members can be left to the devices of your programmers.

Since I don't actually have an application that represents motorcycles or a vehi-
cle inventory for a motor sports vehicle store, let's change the examples a bit.
Occasionally, I go to Las Vegas and partake in a little "Blackjack" (Figure 5-6).
Because I like to get as much entertainment as possible for my money, I wanted to
practice "Blackjack" in a way that would make me a better player. Hence I wrote a
"Blackjack" game that provided tips based on the best course of action to win a
hand. (This application is done, and the code is online at www.softconcepts.com.) In
that example, there are many classes, including a class that represents a player's
hand as a list of cards. Some of the operation signatures used to implement the
"Hand" class are shown in the classifier in Figure 5-7.

Modeling Relationships in Class Diagrams
Class diagrams consist primarily of classifiers with attributes and operations and con-
nectors that describe the relationships between classes. About 80 percent of your class
diagrams will just use these features. However, while this sounds simple, class

:inj

www.softconcepts.com

UML Demystified

Figure 5-6 The "Blackjack for Windows" game.

diagrams can be used to describe some very advanced relationships. By name, these
relationships include generalization, inheritance, realization, composition, aggrega-
tion, dependency, and association. Refined further, the connectors that depict these

Figure 5-7 A classifier showing several of the operation signatures for the "Hand" class.

ji2:

CHAPTER 5 What Are the Things That Describe My Problem?

relationships can be directed or undirected and bidirectional or unidirectional and can
express multiplicity (just like attribute multiplicity). In this section I will introduce
these connectors, but I will wait until Chapter 6 to explore examples in more detail.

Modeling Associations

The association connector is a solid line. If it is directed, then the solid line can have
a stick-figure arrow at either or both ends. For example, in the preceding section I
implied that a blackjack "Hand" was comprised of "Card" objects. I could model
this relationship by adding a "Card" class to the "Hand" class introduced in Figure 5-7
and connecting the "Hand" and "Card" classifiers with an association connector.
Look at Figure 5-5 for a visual example of two associations, one between "Motor-
cycle" and "Motor" and another between "Motor" and "MotorType."

Just as in Figure 5-5, associations can specify multiplicity at either end of the
connector. Figure 5-5 indicates that a "Motorcycle" is associated with one "Motor,"
and Figure 5-8 indicates that there is at least one hand and that each hand can con-
tain many cards.

If there is an arrow at either end of an association (Figure 5-8), then the associa-
tion is said to be directed or directional. The end with the arrow is the target or the
object that can be navigated to. The end without the arrow is called the source.
Navigation simply means that the source—"Hand" in Figure 5-8—has an attribute
of the target's type—"Card." If the association were bidirectional, then "Hand"
would have a "Card" attribute, and "Card" would have a "Hand" attribute. If the
association were nondirected—there are no arrows—then a bidirectional associa-
tion is assumed.

Modeling Aggregation and Composition

Aggregation and composition have to do with whole and part relationships. The
connector for aggregation is a hollow diamond, a straight line, and optionally
a stick-figure arrow. The diamond is attached to the whole classifier, and the arrow
is attached to the part classifier. A composition connector looks like an aggregation
connector except that the diamond is filled in.

Figure 5-8 "Hand" and "Card" are associated unidrectionally, which means that "Hand"
has an attribute "Card."

<&

UML Demystified

Figuring out how to use aggregation and composition can be decided very sim-
ply. Aggregation is syntactical sugar and is no different from an association—you
don't need it. Composition is aggregation, except that the whole class is responsible
for creating and destroying the part class, and the part class cannot exist in any
other relationship at the same time. For example, a motorcycle's engine cannot be
in a second motorcycle at the same time—that's composition. As Fowler says, there
is a "no sharing" rule in a composition relationship, but part objects can be shared
in association and aggregation relationships.

Before you look at Figure 5-9, compare aggregation (or association) with com-
position by thinking of the popular poker game Texas hold 'em. In Texas hold 'em,
every player gets two cards, and then five cards are dealt. Every player makes the
best five-card hand possible by using his or her two cards and the five shared cards.
That is, every player's hand is an aggregate of five of the seven cards, five of which
are available to all players; i.e., five cards are shared. If we were writing a software
version of Texas hold 'em using our "Hand" abstraction, then every player would
have a reference to the five shared cards. Figure 5-9 shows aggregation on the left
and composition on the right.

Modeling Inheritance

It is important to keep in mind that the UML is a distinct language, distinct from your
favorite object-oriented programming language and distinct from object-oriented pro-
gramming languages in general. Thus, to be a UML modeler, one has to be multilingual;
UML modelers need to speak UML, and it really helps to speak the object-oriented
language that will be used to implement the design. In UML-speak, inheritance is
generalization. This means that programmers may say inheritance when they mean
generalization, and when they say generalization, they may mean inheritance.

NOTE Unfortunately, inheritance relationships suffer from a plethora of synonyms.
Inheritance, generalization, and is-a all refer to the same thing. The words parent
and child are also referred to as superclass or base class and subclass. Base, parent,
and superclass all mean the same thing. Child and subclass mean the same thing.
The terms you hear depend on whom you are talking to. To make matters worse,
sometimes these words are used incorrectly.

Figure 5-9 Aggregation is semantically identical to association, and composition means
that the composite class is the only class that has a reference to the owned class.

114J

CHAPTER 5 What Are the Things That Describe My Problem?

Generalization refers to an is-a or substitutability relationship and is reflected in
a UML class diagram by a solid line connector with a hollow triangle at one end.
The triangle points at the parent, and the other end is connected to the child.

In an inheritance relationship, the child class gets all the features of the parent
and then can add some features of its own. Polymorphism works because child
classes are substitutable for parent classes. Substitutability means that if an operation
or statement is defined to use an argument of a parent type, then any child type can
be substituted for the parent. Consider the Motown-jobs.com (www.motown-jobs.
com) example. If a class "Listing" is defined as a parent class and "Resume," "Job,"
and "Advertisement" are defined as child classes to the parent "Listing," then
anywhere a "Listing" argument is defined, it can be substituted with one of "Resume,"
"Job," or "Advertisement." This relationship is shown in Figure 5-10.

Any public or protected member of "Listing" becomes a member of "Job,"
"Resume," and "Advertisement." Private members are implicitly part of "Job,"
"Resume," and "Advertisement," but these child classes—and any child classes—
cannot access private members of the parent class (or parent classes if multiple
inheritance is supported).

Modeling Realizations

Realization relationships refer to inheriting from or realizing interfaces. The con-
nector is almost identical to a generalization connector except that the connector
line is a dashed line with a hollow triangle instead of a solid line with a hollow tri-
angle. When a class realizes, or inherits from, an interface, the class is basically
agreeing that it will provide an implementation for the features declared by the in-
terface. Figure 5-11 shows the visual representation of a "Radio" class realizing the

Figure 5-10 This figure shows that "Resume," "Job," and "Advertisement" all inherit
from "Listing."

115]

www.motown-jobs.com
www.motown-jobs.com

UML Demystified

Figure 5-11 Realization, or interface inheritance, can be shown in either style, as depicted
in the figure.

"IVolume" interface. (Keep in mind that the "I" prefix is simply a convention and
not part of the UML.)

To help you become familiar with interface inheritance, I added an alternate style
on the right of Figure 5-11. Many modeling tools support both styles. Pick one
style, and stick with it. (I prefer the style on the left in Figure 5-11, which is the
style described in the preceding paragraph.)

Modeling Dependency

The dependency relationship is one of client and supplier. One class, the client, is
dependent on a second class, the supplier, to provide a service. The symbol for
a dependency relationship looks like a unidirectional association except that the
line is dashed instead of solid (Figure 5-12).

Suppose, for example, that we decide to support several presentation styles
to users of "Blackjack." We might offer a console, Windows, or a Web graphical
user interface (GUI). Next, we could define a method "Print" that is dependent on
a specific "CardPrinter." If the "CardPrinter" is a graphical printer, then we might
display a bitmap of the card, but if the "CardPrinter" is a DOS-based printer, then

Figure 5-12 In this figure we are conveying that the "Card" is dependent on the
"CardPrinter," where "Card" is the client and "CardPrinter" is the supplier.

lie:

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-13 The dependency relationship now includes generalization showing specific
kinds of "CardPrinter" objects.

maybe we just write text to the console. Figure 5-13 shows the dependency rela-
tionship combined with generalization to reflect a variety of "CardPrinter"
classes.

TIP It is worth noting that Figure 5-13 introduces a concept: It is a good practice to
capture various facets of a design in separate diagrams. For example, in Figure 5-13,
we may not be showing all the classes in the game "Blackjack," but we are showing
useful relationships between the "Card" class and classes that supply printing.

Another useful feature is that connectors such as dependency are associated with
predefined stereotypes. A stereotype adds meaning. We will explore stereotypes in
Chapter 6 when we explore how classes are related in greater detail.

Stereotyping Classes
The stereotype is a means by which the UML aan be extended and evolve. Visu-
ally, stereotypes appear between guillemots («stereotype»). There are several
predefined stereotypes for UML symbols such as the classifier, and you are free to
adopt new stereotypes if the need arises. Figure 5-11 shows an example where the
«interface» stereotype was used to indicate that a classifier represents an interface.

TIP Some UML modeling tools will replace stereotypes with specific symbols,
changing the way a diagram looks, although the meaning is unchanged. For
example, both the classifier with the «interface» stereotype and the hollow circle
in Figure 5-11 accurately reflect the interface "IVolume."

117J

UML Demystified

Using Packages
The package symbol looks like a file folder. This symbol (Figure 5-14) is used generi-
cally to represent a higher level of abstraction than the classifier. Although a package
commonly may be implemented as a namespace or subsystem, with a stereotype,
a package can be used for general organization and simply represent a file folder.

TIP Namespaces solved a long-time problem of multiple development teams
using identical names for classes. A class named "Customer" in the Softconcepts
namespace is distinct from "Customer" in the IBM namespace.

The game "Blackjack" uses the APIs contained in the cards.dll that ships with Win-
dows (and is used in games such as Solitaire). We could use two packages and a
dependency to show that the game "Blackjack" is dependent on the APIs in cards.dll.

Using Notes and Comments
Annotating diagrams is an important aspect of modeling. The note is supported in
class diagrams, but see if you can convey as much meaning as possible without add-
ing a lot of notes. (See Figure 5-15 for an example of the dog-eared note symbol
used in the UML.)

Many tools support model documentation that is stored with the model but not dis-
played in the diagrams. Specific model documentation beyond notes, comments, and
constraints is not an actual part of the UML but is a good adjunct to creating models.

Constraints
Constraints use the same dog-eared symbol in every diagram. Constraints actually
can be a deceptively complex part of the UML and can include information that
greatly helps code generators. For instance, constraints can be written in plain text
or in Object Constraint Language (OCL). While I will provide examples of con-
straints throughout this book, a discussion of OCL is intentionally omitted as not
very demystifying.

Figure 5-14 The diagram shows that the "Blackjack" package is dependent on the
package "cards.dll," which uses the «subsystem» stereotype.

.118.

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-15 The dog-eared rectangle is used to attach notes or comments to elements of
UML diagrams.

To demonstrate a constraint, we can add the constraint symbol and enter a text
constraint that states that the number of cards in a "Deck" must be 52 (Figure 5-16).
It is also possible to express this without a constraint by changing the end multiplic-
ity from * to the number 52. Another example might be a constraint that expresses

Figure 5-16 This figure illustrates how we can mix in constraints—"Number of cards = 52"
in the figure—with other diagram elements to add precision to a diagram.

llg)

UML Demystified

Figure 5-17 The class diagram from Figure 5-16 modified to capture the fact that cards
can have dynamic face values.

something about the face value or the number and variety of suits, and we also
could express these elements with enumerations.

In Figure 5-16,1 included the constraint that the number of cards in a "Deck" has
to be 52, an enumeration to indicate that there are four suits, and an enumeration to
indicate that there are 14 possible unique face values. Unfortunately, the figure still
falls short because in the game "Blackjack," the ace does not have a unique, single
value. An analysis of this model with a domain expert might quickly reveal a pos-
sible problem with using an enumeration for "Face." Because of the dual value of
the ace, we may elect to redesign the solution to use a class—"Face"—and a gen-
eralization—specific face values, such as "Ace," "Two," "Three," etc.—to fix the
problem with aces (Figure 5-17).

Modeling Primitives
The UML defines primitives such as "Integer," "Boolean," "String," and "Unlimited-
Natural" for use in the UML specification, but most languages and tools define their
own primitive types. You can model primitives using a classifier, the «primitive»
stereotype, and the name of the type.

120

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-18 Imaginary numbers are real numbers multiplied by the imaginary number i,
which represents the square root of-1.

Generally, primitives are modeled as attributes of other classes. However, there
are instances where you may want to define your own primitives—the canonical
imaginary number being an example (Figure 5-18)—and some languages such as
Microsoft's Common Language Specification (CLS) for .NET where seemingly
primitive types actually represent objects and are treated as such.

Sometimes it is useful to elaborate on primitives, and it is acceptable to model
them as a class using the association connector, as demonstrated earlier in this
chapter. The diagram in Figure 5-18 documents an "ImaginaryNumber" and elabo-
rates on what the real and imaginary parts represent, as well as incorporating an
overloaded operator—an operator function—for the primitive type.

TIP Languages such as C++, C#, and recently, even Visual Basic.NET support
operator overloading—which means that behaviors for operators such as +, -, *,
and/ can be defined for new types. Modeling primitive types and languages that
support operator overloading can be very useful if you need to define extended
datatypes in your solution.

Modeling Enumerations
Enumerations are named values that have a semantic meaning greater than their
underlying value. For example, the integers 1,2,3, and 4 could be used to represent
the suits in a deck of playing cards, but an enumeration type "Suit" containing four
named values conveys more meaning (see Figure 5-17).

Many modern languages support a strong type system. This means that if you
define an enumeration argument, then only values defined by that enumeration are

12f

UML Demystified

Figure 5-19 The integer "Suit" on the left needs explanation by way of a constraint
to limit and clarify possible integer values, whereas the semantically stronger "Suit"
enumeration on the right needs no such explanation.

suitable values, and the compiler will enforce use of the semantically more mean-
ingful type's values. Contrasted with using a type of the underlying type—e.g.,
integers to represent suits—that would permit any value of the underlying type,
enumerations convey more information and rigor in code and more information in
UML models. This contrast is illustrated in Figure 5-19.

NOTE Sometimes modelers and programmers make tradeoffs. For example, we
may know that a well-named enumeration may convey more meaning but elect
not to use semantically stronger types anyway. Suppose that, tike Lucky Charms
cereal, diamonds, clubs, hearts, and spades might evolve in the future—a five-
suited deck could include clovers. If we were to use an enumeration, then we'd
have to open the code back up at that future time and redefine the enumeration.
However, if we used an integer and stored the range of values in a database, then
we could extend or change the possible values of "Suit" by executing an SQL
UPDATE command. Knowing about and making these kinds of value judgments
is one of those things that make software development challenging.

Indicating Namespaces
The namespace is a more recent invention in OOP languages. The namespace is
a way to group code elements. The problem originated as software companies
began using one another's tools to a greater extent until it became more common that

.1221

CHAPTER 5 What Are the Things That Describe My Problem?

Figure 5-20 Packages are often coded as namespaces and are shown in UML diagrams
on the left-hand side of the scope resolution operator, a double colon.

vendor A would produce useful software with similarly named entities as vendor B.
The namespace is a solution that permits two or more identically named elements to
coexist in the same solution; the namespace distinguishes these elements.

Often packages are visual representations of namespaces, and namespaces can
be shown in diagrams to distinguish elements with the same classifier name. The
scope operator:: is used to concatenate a namespace to an element in that namespace.
Namespaces can be nested, siblings, or arranged in any hierarchical way that makes
sense in the context of a problem. If the "Card" class is defined as an element in
the "Blackjack" namespace, then we can capture this by adding the "Card" class to
the "Blackjack" package, as depicted in Figure 5-20.

Figuring Out the Classes You Need
There are two modalities for object-oriented software development: consuming and
producing. Teams can work collaboratively in either or both modalities, but not
understanding whether a team's skill supports consuming objects, producing ob-
jects, or both can lead to problems.

It is perfectly acceptable to use components, controls, and objects produced by
others and piece together a solution as well as possible. The closest analogy to this
style of development is how C++ programmers think of Visual Basic programmers
(although this belief may be a bit unfair). In this modality, a team realizes that
its understanding of how to use objects is good but that its own production of ob-
jects is wanting. A second acceptable modality is that a team knows that it is
cognizant of design patterns, refactoring, and has a history of success in architect-
ing object-oriented solutions, including the production of its own objects. Both
modalities are acceptable, but it is important to know in which mode you have the
greatest opportunity for success. (As Dirty Harry said: "A man has got to know his
limitations.") If you are going to succeed at creating UML models that describe
something more than classes created by experts, then you will need to know how to
find classes, so let's talk about that for a few minutes.

123

UML Demystified

NOTE In 2005, author Richard Mansfield, in an editorial posted on DevX.com,
challenged OO as a valid paradigm. All jokes about old dogs and new tricks
aside, Mansfield made a point accidentally. The point is that if you know OO well
enough to consume it but try to produce it, then OO likely will be disappointing.
I suspect that many OO projects fail because accomplished OO consumers are not
so accomplished OO producers. Producing quality objects is difficult at best, and
without extemporaneous knowledge of patterns, refactoring, and experience, good
OO may be impossible to produce.

Finding the right classes is the hardest thing you will do. Finding the right classes
is much harder than drawing the diagrams. If you find the right classes, then napkins
are sufficient for modeling. If you can't find the right classes, then no matter how
much money you spend on tools, your designs probably will result in failed
implementations.

Using the Naive Approach

When I learned about OO, it was by teaching myself C++ first, a very painful pro-
cess, and then I got around to reading about OO. The first thing I learned was that
it was a matter of finding the nouns and then assigning verbs to the nouns. The
nouns became classes and the verbs methods. This is the easy part, but it probably
will yield only about 20 percent of the classes you will need.

If analysis leads to just the nouns and verbs described by the domain, then there
will be a shortfall of classes, and much hacking will ensue. Beginning with the
nouns and verbs of the domain is a good start, though.

Discovering More than Domain Analysis Yields

In addition to the things that your customers' experts tell you, you also will need to
figure out how to make these things available to your customers and in almost all
circumstances save the information that users provide. These pieces of information
are referred to genetically as boundary, control, and entity classes. A boundary
class is a class used to connect elements outside the system with elements inside.
Entity classes represent data. Typically, entities represent persisted data such as you
might find in a database, and control classes manage or act on other classes. Users
typically tell you a lot about entity classes and can help define GUIs based on how
they complete tasks, but you have to work harder to find control and boundary
classes.

.124J

CHAPTER 5 What Are the Things That Describe My Problem?

TIP If you ever work as an analyst, don't say, "You have told me about the entity
classes; now tell me about the boundary classes." Analysis is an important task
and probably should not be left to those with pencil protectors in their vest pockets.
Interpersonal skills and a low-tech, conversational approach elicit a good exchange
of ideas.

An important perspective is to know that business experts will tell you a lot about
the data they have to store, some about the processes they follow to get the data, and
a little about a good way to get that data into a computer. A second important per-
spective is that users—the ones assigned to explain things to software engineers are
called domain experts—may do a lot of things that don't make any sense to outsid-
ers. From a rational point of view, this means that a process engineer may have
never worked with his or her organization to examine what the organization does
and how it does it and to determine if there is a better way to do it. The result is that
you may get a lot of information that may not translate well to software—called
a low signal-to-noise ratio—but the domain expert may feel it is important.

TIP When it comes to analysis, the best advice I can offer is to buy an expensive
pen and a leather-bound notebook, engage actively in the conversation, and take
copious notes. In addition to users being flattered that so much lavish attention is
being paid to them, it is difficult to know early in analysis what constitutes signal
and what constitutes noise, so a lot of information is good.

Having learned about the entity classes from users, your job is to figure out what
the control and boundary classes are and how to model these things. The modeling
is easiest, so let's start there.

Quite simply, an entity class is data and usually is long-lived or persisted, and
entity classes can be modeled by adding the «entity» stereotype to the class symbol
or using the entity class symbol available in many modeling tools (Figure 5-21). A
control class is transient code that generally controls or acts on other classes and is
responsible for transporting data between entity classes and boundary classes. Con-
trol classes are modeled by adding the «control» stereotype to a class or by using
the class symbol (also shown in Figure 5-21). Boundary classes usually are found
between subsystems. Boundary classes can be modeled as shown in Figure 5-21 or
by adorning a class with the «boundary» stereotype.

A Nod to CRC Exercises

Class responsibility and collaborator (CRC) cards is a concept that involves a low-
tech use of 3 x 5 index cards. The idea is that a group of interested people get

125

UML Demystified

Figure 5-21 Rectangular class symbols and stereotypes can be replaced with symbols
that specifically represent boundary, control, and entity classes.

together and write the classes they have discovered at the top of an index card. Un-
derneath that they write a list of responsibilities, and adjacent to the responsibilities
they write the class collaborators needed to support those responsibilities. If a card
doesn't exist for a responsibility, then a new card is created.

The basic idea behind using small index cards is that they are too small to sup-
port a lot of behaviors, which is aimed at a reasonable division of responsibilities.

Creating CRC cards is a good idea, but you may want to get an expert to walk
your group through it the first couple of times. Since that is practical advice but
I can't stuff a CRC expert in this book, I will talk about alternatives, which are de-
scribed in the next three subsections.

Finding Entity Classes

As I mentioned earlier, entity classes represent the data you will need to store. They
also encompass logical entities. A logical entity is typically views or the result of
heterogeneous queries, e.g.,

select fieldl, field2 from customer, orders where order.customerid =
customer.id

Simplistically, this query yields a result from customer and orders, which repre-
sents a logical customer orders entity.

Finding entities and logical entities is relatively easy because relational database
theory is pretty well understood, and relational databases comprise a significantly

126J

CHAPTER 5 What Are the Things That Describe My Problem?

recurring repository for entities. You will need entities for single tables and hetero-
geneous views comprised of multiple tables. From that point on, the entities are
simply modeled as classes. You can use a «table» stereotype if the entities represent
tables or no particular stereotype if you use custom classes.

Finding Control Classes

Control classes represent the bridge between entity classes and boundary classes
and business logic in between. How you implement these classes depends on your
implementation style. If you pick an implementation style, then finding entity
classes can be derived from there.

Suppose that your implementation tool of choice predefines classes such as rows,
tables, and datasets. If you elect to use your tool's classes, then your entity classes
will be composed of those classes, and the classes that bridge to your entity classes
will be defined by your tool's framework. On the other hand, if you pick custom
entity classes, then your entity classes will be analogues to rows, tables, and data-
sets, but the control classes will still be framework classes that read and write to and
from your persistence store, usually a database.

Control classes can mange how data are marshaled to entity classes, how data are
marshaled to presentation classes, and how data are marshaled to other systems
through boundary classes. There are many patterns that include general control pat-
terns; the key is to recognize them. A famous pattern is called model view controller
(MVC). In MVC, the model is represented by business objects, the GUI is your
view, and control classes in between represent your controller. Implementing MVC
or recognizing an implementation of MVC requires further study and practice. For
example, Microsoft considers the ASP.NET pages in .NET to be an implementation
of MVC. The ASPX or HTML page is the view, the controller is the code-behind
page, and the model is the objects whose data are shown on the page. Implementing
a custom MVC pattern in this context would be redundant. There are many books
on patterns; Design Patterns (Reading, MA: Addison-Wesley, 1995) by Erich Gamma
is a good place to start.

NOTE There are many design patterns that can guide you when searching for
boundary, control, and entity classes. A key here is to pick an implementation
style and stick with it. You can compose a solution by finding entities first—called
database composition—or by finding business objects—called object composition—
or by designing GUIs first—called presentation composition or sometimes referred
to as hacking. Any of these composition styles can be successful, but some styles
work better than others depending on the size and complexity of the problem.
Unfortunately, there is no single best style for all circumstances, and opinions vary
greatly on this subject.

127]

UML Demystified

Finding Boundary Classes

Boundary classes are used to bridge subsystems. The objective here is to insulate
your system from direct interaction with external subsystems. In this way, if the
external subsystem changes, your implementation will only need to change in the
boundary classes. A good knowledge of patterns and a study of successful systems
can help here.

This book is about the UML and is not intended to be a how-to book on software
design. However, a scan of the Bibliography will lead you to some excellent books
on UML and software design.

Quiz
1. The same basic symbol is used for interfaces and classes.

a. True

b. false

2. When adding classes to a diagram, you should

a. show properties, fields, and methods.

b. show properties and fields only.

c. show properties and methods.

d. show fields and methods.

3. An attribute can be modeled as a feature of a class but not as an association
class.

a. True

b. False

4. When modeling attributes, it is

a. required that you model attribute methods.

b. recommended that you not show attribute methods.

c. recommended that you show the underlying fields for those attributes.

d. None of the above

5. Both simple types and complex types should be modeled as

a. attributes.

b. association classes.

IKM

CHAPTER 5 What Are the Things That Describe My Problem?

c. attributes and association classes.

d. Simple types are best modeled as attributes, and complex types are best
modeled as associations.

6. A unidirectional association has an arrow at one end called the source. The
other end is called the target.

a. The source will have a field whose type is the type of the target.

b. The target will have a field whose type is the source.

c. Neither

7. Are an aggregation and association

a. semantically similar?

b. directly opposite?

8. What is the most important difference between an aggregation and a
composition?

a. Composition means that the whole, or composite, class will be
responsible for creating and destroying the part or contained class.

b. Aggregation means that the whole aggregate class will be responsible
for creating and destroying the part or contained class.

c. Composition means that the whole, or composite, class is the only class
that can have an instance of the part class at any given time.

d. Aggregation means that the whole, or aggregate, class is the only class
that can have an instance of the part class at any given time.

e. a and c

f. b and d

9. Generalization means

a. polymorphism.

b. association.

c. inheritance.

d. composition.

10. An association is named. The name is

a. the type of the associated class.

b. the implied name of the association and represents a field name.

c. a dependency.

d. a generalization.

129J

UML Demystified

11. The «primitive» is used in conjunction with the class symbol. It introduces

a. existing simple types.

b. new semantically simple types.

c. existing complex types.

d. new semantically complex types.

Answers
1. a

2. d

3. b

4. b

5. a

6. a

7. e

8. c

9. b

10. b

11. b

130)

CHAPTER

Showing How
Classes Are

Related

Chapter 5 introduced class diagrams as static views of your system. By static view,
I mean that classes just lie there, but your classes define the things that are used to
explore dynamic behaviors described in interaction diagrams and state charts.

Because classes and class diagrams contain elements central to your system,
I will expand on the basic use of symbols and basic relationships from Chapter 5.
This chapter will explore more advanced relationships and more detailed class
information by looking at

• Diagrams with a greater number of elements

• Annotated relationships, including multiplicity

• Modeling abstract classes and interfaces

6

i3i;

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

• Adding details to class diagrams

• Comparing classification to generalization

Modeling Inheritance
There are benefits to inheritance as well as challenges. A child class inherits all the
features of its parent class. When an attribute is defined in a parent class, it is incor-
rect to repeat the attribute in child classes. If you repeat a method in a child class,
then you are describing method overriding. In addition to overriding, you can rede-
fine methods in the Unified Modeling Language (UML), and it is supported in some
languages but can lead to confusion. Method overriding is central to polymorphism;
use operation redefinition sparingly.

When you inherit classes, your child classes inherit the constraints defined by all
ancestors. Each element has the union of the constraints it defines and constraints
defined by its ancestors.

You have several inheritance options that I will explain in this section. This section
will look at single inheritance and multiple inheritance and compare generalization
with classification. To avoid deep inheritance trees, I also will explain interface inheri-
tance and composition in the two sections that follow.

Using Single Inheritance

Single inheritance is the easiest form of inheritance. A child class that inherits from
a parent class inherits all the features of the parent class but only has direct access
to public and protected members. Inheritance, called generalization in the UML, is
indicated by a single line extending from the child to the parent with a hollow tri-
angle attached to the parent. If multiple classes inherit from the same parent, then
you can use a single, merged line connecting to the parent.

Generalization versus Classification

In Chapter 5 I introduced an easy test to determine if an inheritance relationship
exists. This is called the is-a test. This test alone can be misleading and result in
incorrect results. Is-a implies strict transitivity. For example, if class B is a child of
class A and class C is a child of class B, then class C is a child of class A. (We say that
class C is a grandchild of class A or class A is an ancestor of class C.) However, the
transitivity implied by the is-a test is not strictly correct.

132;

CHAPTER 6 Showing How Classes Are Related

Suppose that we have the following true statements:

Paul is a C# Programmer.
C# Programmer is a Job Description.
Paul is a Person.
C# Programmer is a Person.

"Paul is a C# Programmer" works. "A C# Programmer is a Person" works, and "C#
Programmer is a Job Description" works, but "Paul is a Job Description" does not
work. The problem is that Paul is an instance of C# Programmer. This relationship is
described as a classification of Paul the C# Programmer, but generalization (i.e., in-
heritance) is used to describe relationships between subtypes. Therefore, be careful
when using is-a as a sole determinant of inheritance. A more precise test is to deter-
mine if something describes an instance (classification) or a subtype (generalization).

If class B is a subtype of class A, then you have inheritance. If the relationship
describes a classification—i.e., describes a context or role in which something is
true—then you have a classification relationship. Classifications can be better man-
aged with associations.

Dynamic Classification

The preceding discussion suggests that inheritance is sometimes misapplied.
Returning to our example, Paul is-a programmer describes a role, or classification,
more precisely than a generalization because Paul is also a husband, father, and
taxpayer. If we tried to generalize Paul as all those things through inheritance, we'd
have to use multiple inheritance, and the relationships would be pretty complex.

The way to model and capture classification is through association. In fact, we
can use a state behavior pattern to capture the dynamic and changing roles that
describe a person or how the instance Paul behaves in a given context. Using
association and, more specifically, the state behavior pattern, we can implement
dynamic classification. That is, we can change Paul's behavior based on the context
or the role he is playing at a given moment.

The state behavior pattern is implemented using an association and generalization.
Without trying to reproduce the entire discussion on this pattern—refer to Design
Patterns, by Erich Gamma et al.—we can summarize. The state behavior pattern is
called a behavior pattern because it is a pattern that describes how something acts.
The other general kinds of patterns are creational—how something is created—and
structural—how something is organized. The pattern is named the state pattern
because it describes how something behaves based on state. In our example, we would
use this pattern to describe how people behave based on some condition, the state. For
example, when Paul is at work, he behaves like a C# programmer. When Paul is at

533)

UML Demystified

home, he behaves like a husband when interacting with his wife and a father when
interacting with his children.

If we incorrectly modeled the classification of Paul using generalization, then we
would create a model that looked like Figure 6-1 showing all inheritance. However,
if we modeled Paul's roles more precisely using association, we would have a better
model (see Figure 6-2).

Figure 6-1 tries to show that a "Person" is an instance of "Programmer," "Hus-
band," and "Father." In reality, this implies that a different kind of object would have
to be created for Paul depending on context. In reality, however, Paul is always a per-
son, and people have roles. Sometimes a person is a spouse. Sometimes a person is a
parent. Sometimes a person is a worker, and so on. The association role means that
Paul is always an instance of a "Person," but a person's role changes dynamically. The
italicized class "Role" means that role is abstract, and the association (lowercase)
"role" is actually an instance of "C# Programmer," "Husband," or "Father."

The state behavior pattern is implemented mostly by the relationship between
"Person" and the abstract class "Role." What is missing to complete the pattern are
abstract behaviors that need to be defined by person and implemented by generaliza-
tions of role. For example, "Person" could have a method called "ExercisePatience,"
and that method would be declared in "Role" and implemented by calling "role."
"ExercisePatience," i.e., "Person's" behavior named "ExercisePatience," would be
implemented by a specific subclass of "Role." For instance, in the "C# Programmer"
role if you yell at customers, then you may lose your job, but yelling at your spouse

Figure 6-1 A UML class diagram showing a rigid generalization where the object
"Paul" is trying to incorrectly reflect "Father," "Husband," and "C# Programmer."

.134

CHAPTER 6 Showing How Classes Are Related

Figure 6-2 A second UML class diagram that uses association to a role reflecting how
people behave in certain roles.

may result in your sleeping on the couch. The specific role subtype determines the
behavior without changing the "Person" instance.

NOTE In today's complex society, modeling familial relationships, e.g., for
state government, could be exceedingly difficult. Children have multiple parents,
sometimes the gender of both parents is identical, and some people have multiple jobs
and nuclear families. However, this illustrates that something as seemingly simply as
people and their roles can be very complex depending on the problem domain.

If gender suited our design context, then we could further classify "Husband"
and "Father" as having an association with an enumeration, "Gender" (Figure 6-3).
The key is not to model everything you could model; instead, model what you need
to model to describe the problem suitably enough for your problem space.

Using Multiple Inheritance
Single inheritance can be hard because the is-a test isn't completely sufficient. Gen-
eralization implies subtype, but you could implement subtype relationships using
composition or association. Single inheritance is additionally challenging because
classification means that you are talking about an instance, and is-a seems to work
during verbal discussions but may be incorrect or too rigid to implement.

.135

UML Demystified

Figure 6-3 Abstracting gender from the roles of spouse and parent.

Multiple inheritance is even more difficult because we still have generalization
and classification problems, and these are exacerbated by having more than one
supertype. When a subtype inherits from more than one supertype, the subtype is
understood to contain the union of all the features of all the subtype's parents. So
far so good. A problem occurs when more than one supertype introduces a feature
that has the same name as another supertype. For instance, class C inherits from
class B and class A, and both class A and class B introduce an operation named
"Foo." Which version of "Foo" does "C.FooO" resolve to, "A.FooO" or "B.FooO"?
Although the UML supports dynamic conflict resolution, most implementations of
multiple inheritance require the programmer to resolve the conflict. This means that
the programmer has to decide that "C.FooO" calls "A.FooO," "B.FooO," or both
"A.FooO" and "B.FooO" (Figure 6-4). A good practice when using multiple inheri
tance is to resolve name conflicts explicitly.

Multiple inheritance is indicated when a class has more than one immediate
supertype. The movie Chitty Chitty Bang Bang was produced by Albert Broccoli
and Ian Fleming, the same pair who produced the James Bond flicks. In the movie,
the car also was a water-jet-propulsed hydrofoil and an airplane. In a class diagram,

.we:

CHAPTER 6 Showing How Classes Are Related

Figure 6-4 Resolve name conflicts in classes with multiple inheritence explicitly, shown
here using a constraint.

this could be modeled as a class (we'll call it "CCBB") inheriting from "Boat,"
"Automobile," and "Airplane." The problem arises because each mode used a dif-
ferent form of propulsion; consequently, "CCBB.PropulseO" might be hard to
resolve in a model and equally difficult to implement.

NOTE You might think that amphibious vehicles and the verb propulse a bit of
a stretch, but from real experience, I can tell you that such concepts presently exist
in designs. However, I am only aware of actual examples in military applications.

Because of real technical difficulties with multiple inheritance, many powerful
languages, such as C# and Java, do not support the idiom. Another reason multiple
inheritance is not universally supported is that you can simulate multiple inheritance
through composition and constituent feature promotion or through multiple-interface
inheritance. From the UML's perspective, composition and surfacing constituent
features mean that "CCBB" would be a car and would have plane and boat objects
contained within, and the features of boat and plane would be made available
indirectly by redefining features at the car level. These features then would be imple-
mented by invoking the internally composited boat or plane features. For example,
"CCBB.Fly" would invoke the internal "Plane.Fly" method. Multiple-interface in-
heritance means simply that a class will implement all the features defined by all the
realized interfaces.

Avoid multiple inheritance even if it is supported in your implementation lan-
guage of choice, and use composition or interface inheritance instead. Figure 6-5

.137.

UML Demystified

Figure 6-5 In this figure we show that "CCBB" inherits from "Automobile" but uses
composition to show its boat- and planelike capabilities.

shows one way that we could draw a class diagram to depict CCBB's aerodynamic
and amphibian features. In the figure, we understand the diagram to mean that
"CCBB" creates an instance of "Hydrofoil" named "boat" and an instance of "Single
Engine Land Aircraft" named "plane." "Skim()" would be implemented by calling
"boatPropulse," and "FlyO" would be implemented by calling "plane.Propulse."

Another option would be to define three interfaces: "Airplane," "Automobile,"
and "Boat." Each of these interfaces could define methods, "Fly," "Drive," and
"Propel." Then "CCBB" could implement each of these interfaces.

The solution shown in Figure 6-5 is not perfect, and it may not appeal to every-
one. However, it is important to keep in mind that what we are striving for with
models is good enough or attainable, not perfect.

138

CHAPTER 6 Showing How Classes Are Related

Modeling Interface Inheritance
There are three primary activities associated with modeling. Modelers have to
figure out a solution to problems quickly and often in group situations. Modelers
have to use UML tools, and this is often done by one person in isolation or a smaller
group, and finally, some supporting text documentation generally is requested.
Writing architectural documentation is beyond the scope of this book, but group
modeling on napkins and whiteboards and using UML tools are both important.
Sometimes I think whiteboards and napkins are more important than UML tools
because group modeling involves more people, and I am not completely convinced
that actual UML models are read by anyone other than the modelers and program-
mers and only the programmers occasionally.

Whiteboarding

Drawing models on a whiteboard can be convenient because it is easy to do, and
you can get feedback from the observing group and change the drawing. However,
if you try to use the formality and features found in UML tools on a whiteboard,
you get bogged down in drawing pretty pictures rather than solving problems. For
this reason, it is acceptable to use shorthand notations and smaller symbols, and it
is okay if your rectangles aren't perfect on a whiteboard.

For example, in the UML, we use italics to indicate that a class is abstract. On
a whiteboard, we can use an abbreviation for the keyword abstract (A) to mean that
a class is abstract. Instead of writing the stereotype «interface» for interfaces, we
can use «I» or the lollipop. Suppose that we were discussing properties of flight in
a group setting. We could define an interface "IFlyable" with methods "GetDrag,"
"GetLift," "GetThrust," and "GetWeight" and show that a parachute implements
these operations (although it is very hard to simulate a whiteboard in a book).
Figure 6-6 shows how we might render the UML on a whiteboard, and Figure 6-7
shows the same UML captured in our modeling tool.

Figure 6-7 is neater and better than UML, but many modelers, especially those
with just a little exposure to UML, will recognize that the two renderings represent
the same solution. Additionally, simply explaining what the lollipop is will satisfy
novices and is much easier to draw on a whiteboard.

NOTE "Lift," "Drag," "Weight," and "Thrust" are the values needed for the
principles of flight described by the physics of Bernoulli and Newton. These
properties actually came into play when I was discussing solutions for a peer-to-
peer networked collision-avoidance system for high-speed parachutes for high-
altitude, or Halo, jumpers.

139.

UML Demystified

Figure 6-6 The interface "IFlyable" shown realized by "Parachute," as we might draw it
on a whiteboard.

The point is that in a dynamic group situation, it is helpful to be quick because a
lot of information may be thrown out, sometimes all at once. Using a shorthand
notation may not always yield perfect UML, but the language is a tool for under-
standing and solving problems and is the means not the end. You always can draw
pretty UML when the meeting is over.

Using Realization

If generalization is overused, then realization is probably underused. Realization
means interface inheritance, and it is indicated by using a class with the «interface»
stereotype and a connector with a dashed line connected to a hollow triangle. The
triangle is attached to the interface, and the other end is attached to the class that
will implement the interface.

The lollipop symbol handdrawn in Figure 6-6 is still used by some modeling
tools and is a recognizable shorthand along with a solid-line connector for interface
inheritance. The difficulty in using multiple symbols to mean the same thing is
that it makes a language harder to understand and, if used imprecisely, may lead

Figure 6-7 The same diagram as shown in Figure 6-6 rendered in Visio.

.140

CHAPTER 6 Showing How Classes Are Related

to language lawyering by UML weenies. Language lawyering is almost always
a waste of time except by academics.

Provider Relationships and Required Relationships

In the UML, the lollipop actually is used to show relationships between interfaces
and classes. The lollipop means that the attached class provides the interface.
A half-lollipop or line with a semicircle means that an interface is required. If we
apply the symbols for provider and required relationships to our parachute example,
then we can model our high-speed parachutes as providing "IFlyable" (on the left)
and requiring "INavigable" on the right (Figure 6-8).

In Figure 6-8, the parachute itself has properties of flight, including "Lift,"
"Thrust," "Drag," and "Weight," even though "Thrust" is probably 0, but a naviga-
ble parachute may depend on a GPS (Global Positioning System) device that knows
about longitude and latitude and an altimeter that knows about altitude (and wind
speed and direction). We also could show the identical relationship using the real-
ization connector for "IFlyable" and the dependency connector for "INavigable"
(Figure 6-9). If you are interested in emphasizing the relationships, then you can
use lollipops; if you want to emphasize the operations, then the class symbol with
the stereotypes is a better choice.

Rules for Interface Inheritance

The basic idea behind interfaces is that an interface describes behavioral specifica-
tion without providing behaviors, such as navigability. In our parachute example,
we are only saying that our high-speed collision-avoiding parachutes will interact
with a device that acts as an aid to navigation, perhaps by increasing drag. The pres-
ence of the interface does not dictate what the device is; it only dictates the behaviors
the device supports.

TIP Using an adjective—e.g., attribute becomes attributable—/or interface names
is a common practice. Sometimes a good dictionary comes in handy.

Figure 6-8 "IFlyable" is an interface provided by "Parachute," and "INavigable" shows
an interface required by "Parachute."

141

UML Demystified

Figure 6-9 This figure depicts the same relationships as those described in Figure 6-8,
specifically, that "Parachute" realizes "IFlyable" and depends on "INavigable."

Interfaces do not provide behaviors; they only stipulate what they must be. The
rule is that an interface must be implemented through realization or inheritance.
This means that

• Given interface A, class B can implement all the behaviors described by
interface A.

• Given interface A and interface B, which inherits from interface A, class C
can implement all the behaviors described by interfaces A and B.

• Given interface A and classes B and C, where class C inherits from class
B or class B is composed of class C, together classes B and C implement
all the behaviors described by interface A. In the composition scenario,
B realizes A, and in the inheritance scenario, C realizes A.

Assuming that "INavigable's" behavioral specification included "GetLongi-
tude()," "GetLatitudeO," and "GetAltitude()," then "INavigable" in the first scenario
could be realize by a device that can determine longitude, latitude, and altidude. In
the second scenario, "INavigable" might inherit from an interface "lAltitudinal," and
both interfaces are realized by a single three-dimensionally orienting device. Finally,
in the third scenario, "INavigable" might define all three-dimensional positions and
be implemented by generalization or composition, as shown in Figure 6-10. (Just to
satisfy my curiosity, such a device does exist—the Garmin eTrex Summit GPS with
Electronic Compass and Altimeter. I want one.)

Again, it is worth noting that the three scenarios described all satisfy the require-
ment of navigability adequately. The actual scenario I design depends on what classes
I have available or what is convenient. If I already have part of the interface realized
by another class, then I might get the rest through inheritance of composition.
Remember that the design doesn't have to be perfect, but the models should describe
what you mean adequately. You always can change your mind if you have to.

142

CHAPTER 6 Showing How Classes Are Related

Figure 6-10 Implementing an interface through inheritance.

Describing Aggregation and Composition
Aggregation gets a mention here because it is the term most often used in object-
oriented software design when talking about composition, i.e., when talking about
one class being composed of others. Aggregation is the term used, but composition
is what is meant. As I said earlier, the aggregation connector—composed of a hol-
low diamond and a solid line—has an ambiguous meaning that is no different from
an association, and association is preferred.

Composition uses a solid diamond and a solid line. When you use composition,
it means that the class that represents the whole, or composite class, contains the
one and only instance of the class representing the part; it also means that the whole
class is responsible for the lifetime of the part class.

Composition means that the composite class must ensure that all its parts are
created and attached to the composite before the composite is wholly constructed.
As long as the composite exists, it can be implemented to rely on none of its parts
being destroyed by any other entity. When the composite is destroyed, it must
destroy the parts, or it can explicitly remove parts and hand them off to some other
object. The multiplicity of the composite is always 1 or 0.1.

To demonstrate composition, we can modify the relationship illustrated in
Figure 6-10. In this figure I demonstrated how to satisfy an interface through inheri-
tance, but the name of the child class, "GPSWithAltimeter," sounds like a composition
relationship. The word with suggests composition to me more than it suggests in-
heritance. In order to satisfy the interface, we can define "GPSWithAlitimeter" as the
composite, define "Altimeter" as the part, and promote the "GetAltitude" method

143

UML Demystified

Figure 6-11 Figure 6-10 revised to use composition to add the behavior of the altimeter.

from "Altimeter." Figure 6-11 shows the revision, and the listing that follows shows
how we might stub each of these elements in C#.

public interface INavigable

double GetLongitude
double GetLatitude () ;
double GetAltitudeO;

public class Altimeter

{
/// <summary>

/// Return meters MSL (mean sea level)
/// </summary>
/// <returnsx/returns>
public double GetAltitudeO

}
}
return 0;

public class GPSWithAltimeter : INavigable

private Altimeter altimeter;

public GPSWithAltimeter()

altimeter = new Altimeter();

}

144

{

{

{

{

{

}

():

CHAPTER 6 Showing How Classes Are Related

#region INavigable Members

public double GetLongitude()

return 0;

public double GetLatitude()

return 0;

public double GetAltitude()

return altimeter.GetAltitude();

#endregion

In this listing we can see that "GPSWithAltimeter" contains a private field
"altimeter." The constructor creates an instance of the altimeter, and "GetAltitude"
uses the altimeter to return the altitude. Because C# is a "garbage collected" lan-
guage, we do not have to show a destructor explicitly releasing the instance of the
altimeter part. (Now all that is left to do is implement the behaviors.)

m

Showing Associations
and Association Classes

Chapter 5 introduced the association. Let's take a moment to recap, and then I will
introduce some advanced concepts relative to associations.

When you see a field in a class, that is an association. However, an association in
a class diagram often is limited to classes rather than simple types. For example, an
array of cardinal values could be shown as an array field or an association to the
type cardinal with a multiplicity of 1 on the end representing the class that contains
the array and a multiplicity of many (*) on the cardinal type. In addition, fields and
associations support navigability, changeability, and ordering. That same array of
cardinal types could be represented by attaching the stick arrow connected to the
type cardinal. If we wanted to indicate that the array was read-only—perhaps after
initialization—then we could place the modifier {read only} on the field and on the
association. The meaning is the same. If the array were ordered, then we could

{

{

{

}

}

}

}

UML Demystified

Figure 6-12 We can add modifiers and details to associations just as we would add them
to fields.

place the {ordered} modifier on the array field or on the association. Figure 6-12
shows our array of cardinal values represented using a directed association of
ordered (sorted) cardinal values.

If an association has features, then we can use an association class. Think of an
association class as a linking table in a relational database, but it is a linking table
with behaviors. For example, we can indicate that an "Employer" is associated with
its "Employees." If we wanted to indicate that "Employees" is a collection that can
be ordered, then we can add an association class called "EmployeeList" and show
the "Sort" method in that class (Figure 6-13).

In our example, we can elect to use an association to reflect that employers
and employees are associated rather than an employer being a composite composed
of employees. This also works nicely because many people have more than one
employer.

An association class is a class that has an association connector attached to an
association between the classes it links. In the example, the class "Employer" would
have a field whose type is "EmployeeList," and "EmployeeList" has a method
"Sort" and is associated with (or contains) the "Employee" objects. If we left the
"EmployeeList" linking class out of the model and still maintained the one-to-many

Figure 6-13 An association class showing that the class "EmployeeList" links "Employer"
to "Employees" indirectly.

146

CHAPTER 6 Showing How Classes Are Related

relationship, then it would be assumed that some sort of collection exists, but the
programmer would be free to devise this relationship. The linking class clarifies the
relationship more precisely.

We also could model the relationship using by association the "Employer" to
the "EmployeeList" and the "EmployeeList" to the "Employee." The diagram in
Figure 6-14 shows three variations on basically the same thing.

The topmost part of Figure 6-14 implies an array or collection and, with simple
instructions, such as "Use a typed collection of Employee objects? is often suffi-
cient for a proper implementation. The bottom two diagrams in Figure 6-14 provide
slightly more information and indicate ownership of the sorting behavior, but the
implementation of any of the three figures should be almost identical.

Suppose further that we elected to show how a specific employee was accessed
from the collection by a type, perhaps an employee identification number. For ex-
ample, given an employee identification number, we could indicate that an
employee identification number results in a unique employee. This is called a qual-
ified association and can be modeled by adding the class of the qualifier, as shown
in Figure 6-15.

Figure 6-14 Three variations that reflect a one-to-many relationship between an
"Employer" and "Employees."

147

UML Demystified

Figure 6-15 The qualifier that yields a unique employee is the "Employeeld.'

When you see a qualifier, you will expect to see the qualifier used as a parameter
that yields a specific instance of the associated type. The code listing that follows
shows how we can implement this code in Visual Basic.NET using a typed collec-
tion of "Employee" objects, a class named "Employeeld," and an indexer.

Imports System.Collections

Public Class Employer
Private employees As EmployeeList

Public Sub New()
employees = New EmployeeList

End Sub

End Class

Public Class EmployeeList
Inherits System.Collections.CollectionBase

Default Public Property Item(ByVal id As EmployeelD) As Employee
Get

Return GetEmployee(id)
End Get
Set(ByVal Value As Employee)

SetEmployee(Value, id)
End Set

End Property

Public Function Add(ByVal value As EmployeeList) As Integer
Return List.Add(value)

End Function

Private Function Indexof(ByVal value As EmployeelD) As Integer
Dim i As Integer
For i = 1 To List.Count

If (CType(List(i), Employee).ID.IsEqual(value)) Then
Return i

End If
Next

148

CHAPTER 6 Showing How Classes Are Related
m

Throw New IndexOutOfRangeException ("id not found")
End Function

Private Function GetEmployee(ByVal id As EmployeelD) As Employee
Return List(Indexof(id))

End Function

Private Sub SetEmployee(ByVal value As Employee, _
ByVal id As EmployeelD)
List(Indexof(id)) = value

End Sub
End Class

Public Class Employee
Private FName As String
Private FID As Employeeld

Public Property NameO As String
Get

Return FName
End Get
Set(ByVal Value As String)

FName = Value
End Set

End Property

Public Property ID() As EmployeelD
Get

Return FID
End Get
Set(ByVal Value As EmployeelD)

FID = Value
End Set

End Property
End Class

Public Class EmployeelD
Private ssn As String

Public Sub New(ByVal value As String)
ssn = value

End Sub

Public Function IsEqual(ByVal value As EmployeelD) As Boolean
Return value.ssn.ToUpper() = ssn.ToUpper()

End Function
End Class

Even if you are unfamiliar with Visual Basic.NET, you can look at the class head-
ers and see all the classes shown in Figure 6-15 (which includes "Employer,"

UML Demystified

Figure 6-16 The revised diagram uses an association class to introduce the generalization
that shows that "EmployeeList" inherits from "System.Collections.CollectionBase."

"Employee," "Employeeld," and the implied "EmployeeList"). [The fact that
"EmployeeList" inherits from "System.Collections.CollectionBase" is specialized
knowledge that is required in any particular language or framework. You have the
option of showing the generalization of "Collections ase" by "EmployeeList," which
you could add to the diagram (Figure 6-16) if your developers needed a little extra
hand holding.]

The deciding factor that helps me to choose how much detail to add is my program-
mer audience. If my programmer partners are very experienced in the implementation
language and framework of choice, then I might leave off details about how to imple-
ment the collection of employees. For new programmers, it may be helpful to show
the added information in Figure 6-16. In practice, with very new programmers I usu-
ally add more detail and then code an exemplar that shows them how to implement the
construct, in this case a typed collection specific to Visual Basic.NET.

NOTE Even detailed UML diagrams aren 't always clear to everyone. For this
reason, it is often an important detail that modelers know how to implement the
diagrams they create in the target platform chosen or at least that one person on
the team can translate advanced aspects of the UML diagrams into code.

Exploring Dependency Relationships
A dependency is a relationship of client and supplier also referred to as source and
target. The dependency relationship is a dashed line with a stick arrow at the end.
The arrow is attached to the supplier, also called the target. I prefer the term source,
and target as target makes it easier to remember which end the arrow points to.

A dependency in a class diagram means that the source is dependent on the target
in some way. If the target changes, then the source is affected. This means that if the

150

CHAPTER 6 Showing How Classes Are Related

target's interface changes, then implementation of the source will be affected.
Dependencies are not transitive. For instance, if class A is dependent on class B and
class B is dependent on class C, then if class C's interface changes, class B's imple-
mentation may have to change but not necessarily class B's interface. However, if
dependencies are cyclic—class A depends on class B depends on class C depends
on class A—then changes to class C can have a cyclic effect that makes changes
very difficult, resulting in a brittle implementation. As a general rule, avoid compli-
cated and cyclic dependencies.

Directed associations, composition, and inheritance imply a dependency. If class A
has a directed association with class B, then class A is dependent on class B. If class
B inherits from class A, then class B is dependent on class A. Association and
generalization are more precise relationships with their own connotations; use
dependency when one of the more specific kinds of relationships doesn't apply.

Finally, before we explore some of the predefined stereotypes that apply to depen-
dencies, don't try to show all dependency relationships. Just draw the dependencies
that are important.

Table 6-1 shows the predefined stereotypes for dependencies. Often the implica-
tion of a dependency is clear by its context, but these stereotypes exist to clearly

access

bind

call

create

derive

instantiate

permit

realize

refine

send

substitute

trace

use

Private reference to another package's contents.

Describes a new element that is created when the template
parameter is assigned.

A method in the source calls a method in the target.

The source creates an instance of the target.

One object is derived from another.

The source creates an instance of the target.

The source can access the target's private members (e.g.,
implemented as a friend relationship in some languages).

The source implements the interface of the target. (The realization
connector is a better choice.)

The source refines the target. This is used for traceability between
models (e.g., between an analysis and design model).

Indicates a sender and receiver of a signal.

The source can be substituted for the target. (This is similar to how
a subclass can be substituted for its superclass.)

Used to link model elements.

The source needs the target to complete its implementation.

Table 6-1 A List of Stereotypes for Dependency Relationships Defined by the UML
Version 2.0

151

UML Demystified

state your intended use. (Following the table is a brief description of each of the
dependency relationships.)

Often it is enough to draw the occasional dependency connector in code and
implement what you mean. The following paragraphs elaborate on some of the
dependency relationships described in Table 6-1.

The "access" dependency supports importing packages privately. Some of these
concepts are new in UML version 2.0, and this is one I haven't had occasion to use.
The closest example that might apply here is the difference between the interface
and implementation use clauses in Delphi. Essentially, Delphi supports private
importation in its implementation use clauses.

If you have ever read The C++ Programming Language, by Bjarne Stroustrop,
then you would have read the discourse on template classes. In C with classes, tem-
plates originated as a weakly typed construct devised by using substitution and
macros. The result was that the new name created by concatenating the string type
resulted in a new class. With templates, the result is the same. When you define the
parameter for parameterized types—templates or generics—you have a new entity.
"Bind" exists for purposes of modeling this occurrence.

"Call" straightforwardly calls a method of the target class. "Create" indicates
that the source creates an instance of the target. You might see this relationship in
conjunction with the factory pattern. A factory's sole purpose is to perform all the
steps necessary to create the correct object.

"Derive," "realize," "refine," and "trace" are abstract dependencies. They exist to
represent two versions of the same thing. For example, the "realize" dependency
implies the same relationship as a realization—i.e., the implementation of an inter-
face. "Trace" is used to connect model elements as they evolve, e.g., use cases to
use case realizations.

"Instantiate" also might be used to indicate that the source creates instances of
the target. A better example has to do with runtime type information or reflection in
.NET. We could show that a metaclass (or the an instance of the "Type" object in
.NET) is used to create an instance of a class.

The "permit" stereotype is used to indicate that the source can invoke nonpublic
members of the target. This relationship is supported by the "Friend" modifier in
languages such as Visual Basic and through dynamic reflection.

A signal is like an event that occurs out of sequence. For example, when you are
asleep and your alarm begins to ring, this is a signal to wake up. The "signal" stereotype
is used to indicate that something has happened that needs a response. Think event.

The "substitute" stereotype applies when the source can be substituted with the
target. The clearest form of substitution is a child class in place of a parent.
Finally, the "use" stereotype is common. "Use" simply implies that the source needs
the target to be complete. "Use" is a more generalized form of "call," "create,"
"instantiate," and "send."

152

CHAPTER 6 Showing How Classes Are Related

Adding Details to Classes
The devil is in the details, as they say. Class diagrams can include a lot of informa-
tion that is conveyed by text characters, fonts, and what is included, as well as what
is excluded. I prefer to be explicit to the extent possible but not verbose and to be
personally present to resolve ambiguities during implementation. In this section I
want to point out a few details that you can look for and some respectable shortcuts
you can take to ensure that you understand UML diagrams created by others and
that others understand your diagrams. Because these basic guidelines are relatively
short, they are listed as statements.

• Underlined features indicate static features.

• Derived properties are demarked by a slash preceding the property name.
For example, given properties "hours worked" and "hourly wage," we can
derive the wage, which would appear as "/wage."

• Italicized class names indicate abstract classes. An abstract class has some
elements with no implementation and depends on subclasses for a complete
implementation.

• Model fields; properties are implied in languages that support properties. In
languages that don't support properties, methods prefixed with "get_" and
"set_" yield the same result.

• Constraints specify before (pre) and after (post) conditions. Use constraints
to indicate the state in which an object should be when a method is entered
and a method is exited. The "assertion" construct supports this style of
programming.

• When you are modeling operations, try to maintain a minimum number
of public operations, use private fields, and permit access to fields through
properties (if supported) or accessor methods (if properties are not supported).

Quiz
1. A subclass has access to a superclass's private members.

a. True

b. False

153

UML Demystified

2. If a child class has more than one parent and each parent introduces an
operation with the same name,

a. the programmer should resolve the name conflict explicitly.

b. all languages that support multiple inheritance resolve conflicts
implicitly.

c. Neither of the above. Conflicts are not allowed.

3. Which of the following statements is (are) true?

a. Generalization refers to subtypes.

b. Classification refers to subtypes.

c. Generalization refers to object instances.

d. Classification refers to object instances.

e. None of the above

4. To realize

a. means to inherit from a parent class.

b. means to implement an interface.

c. means to promote the constituent members in a composite class.

d. is a synonym for aggregation.

5. If a language does not support multiple inheritance, then the result can be
approximated by

a. an association and the promotion of constituent properties.

b. realization.

c. composition and the promotion of constituent properties.

d. aggregation and the promotion of constituent properties.

6. Dynamic classification—where an object is changed at runtime—can be
modeled using

a. generalization.

b. association.

c. realization.

d. composition.

7. An "association" class is referred to as a linking class.

a. True

b. False

154J

CHAPTER 6 Showing How Classes Are Related

8. An "association" qualifier

a. is used as a precondition to an association.

b. plays the role of a parameter used to return a unique object.

c. is used as a post condition to an association.

d. is the same thing as a directed association.

9. Pick the correct statements.

a. A provided interface means that a class implements an interface.

b. A required interface means that a class depends on an interface.

c. A provided interface means that a class depends on an interface.

d. A required interface means that a class implements an interface.

10. When a classifier symbol is italicized,

a. it means that the symbol represents an object.

b. it means that the symbol represents an abstract class.

c. it means that the symbol represents an interface.

d. it means that the symbol is a derived value.

Answers
1. b

2. a

3. a and d

4. b

5. c

6. b

7. a

8. b

9. a and b

10. b

Era

This page intentionally left blank

CHAPTER

Using State
Chart Diagrams

Historically, the difference between state charts and activity diagrams was muddled.
In the Unified Modeling Language (UML) version 2.0, state charts come into their
own as a distinct and separate diagram.

State charts (also known as state machines) are good at showing an object's state
over many use cases and good at defining protocols that describe a correct orchestra-
tion of messages, such as might be needed for database access or Transmission
Control Protocol (TCP) connectivity. State charts are ideally suited for describing
the behavior of user interfaces and device controllers for real-time systems. Whereas
interaction diagrams are good at understanding systems, state charts are good at in-
dicating behavior precisely. If you are working in real-time systems or with physical
device controllers, then you may use state charts frequently. However, a huge num-
ber of applications are business applications based on graphical user interfaces
(and databases and many programmers use modern rapid application development
tools to prototype interfaces rather than define their behaviors using state charts).

157

7

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

[I am not making a judgment about whether prototypes should be created without state
charts, but prototyping graphical user interfaces (GUIs) is not part of the UML.]

Part of demystifying the UML is making sure that you know that you don't need
to use every model element, create every kind of diagram, or model every aspect of
a system. Stick to modeling elements that are complicated and where model explo-
ration may lead to a better solution. For example, if you are using a well-understood
framework such as ADO.NET, it is unnecessary to create protocol diagrams that
show how to open a connection, read data, and close a connection. These processes
are prescribed by the framework, and time spent creating the model is time that
could be better spent elsewhere. This said, occasionally you will want or need state
charts, and in this chapter I will show you the elements of state charts and some
examples. You will learn

• About the elements used to create state charts

• How to create state charts

• The difference between behavioral and protocol state charts

• Common ways to implement state charts

Elements of a State Diagram
The simplest thing about the UML is that most diagrams are composed of simple
symbols and lines. This is true of state charts, which are composed significantly of
symbols called states and lines called transitions. The simplicity of the symbols is
the easiest part of modeling; identifying problems, grasping solutions, and captur-
ing this understanding are the aspects of UML modeling that can make modeling as
complex as programming.

Three things to remember are

• Knowing all the tokens and grammar does not imply that you have to use
them all.

• It is important to model the important aspects of the system and to model
those that aren't obvious.

• You don't need every kind of diagram for every kind of problem; be
selective.

This said, let's expand our knowledge of the UML and look at the various sym-
bols for state charts that evolved from their interspersed relationship with activity
diagrams.

158

CHAPTER 7 Using State Chart Diagrams

Exploring State Symbols

There are several state symbols. The most common is the rounded rectangle, or
simple state. Significantly state charts consist of simple states and transitions, but
there are other states that play important though less prominent roles.

In this section I will explain simple states with regular and do activities; orthogo-
nal and nonorthogonal composite states; initial, terminate, and final states; junctions,
choices, and history states; submachine states; and superstates, exit, and entry
points.

Using Initial, Final, and Terminate States

Recall that state charts and activity diagrams have a shared history. Consequently,
although their definitions in the UML version 2.0 are more clearly delineated, state
charts and activity diagrams still share some symbols in common. Three states,
initial, final, and terminal, use the same symbols found in activity diagrams but play
roles tailored to state charts.

The initial state is a solid circle representing a pseduostate in protocol state
machines—see "Creating Protocol State Machines" below—in the UML version 2.0.
You can use the initial state in state charts in general, but it is not used commonly.
The final state uses the same symbol—a solid circle with a circular outline—as the
final activity in activity diagrams and is used to indicate the end of a state chart—
see "Creating Behavioral State Machines" below. Final states don't have outgoing
transitions; don't have entry, exit, or do activities; don't reference submachines; and
aren't divided into regions. (These concepts are described in a moment.) The final
state is an endpoint without elaboration. The terminate state is an X used in protocol
state machines; think of it as a dead end.

Using Junction and Choice States

A choice state is a pseudostate that is used in protocol state machines. A choice
looks like a decision diamond and plays a similar role to a decision in activity dia-
grams. A choice has a single incoming transition and has more than one outgoing
transition. Outgoing transitions are taken depending on which guard condition eval-
uates to true. If more than one guard evaluates to true, then an arbitrary transition is
taken, but at least one guard must evaluate to true (Figure 7-1).

A junction is a solid circle, like the initial state, and is used to merge several in-
coming transitions into a single outgoing transition or split a single incoming transition
into multiple outgoing transitions (Figure 7-2).

EljCtJ

UML Demystified

Figure 7-1 A choice state showing a single incoming transition and two outgoing
transitions, each with a guard condition.

The biggest problem with using older-style notations and symbols is that if you
try to generate code, the tool probably will report an error. However, the state of
code generators is still iffy, and each tool has some limitations relative to the formal
specification of the UML.

Because of a state chart's shared history with activity diagrams, you might see
junctions modeled using the fork and join symbols employed in activity diagrams.
Both the fork/join and junction with their incoming and outgoing transitions clearly
indicate the intent of transitions splitting or merging.

Using Shallow and Deep History States

A shallow history is indicated by a circle with an H, and a deep history is indicated
by a circle with an H*. Histories are used in protocol state machines. A shallow
history is used to represent a recent substate for a composite state, and a deep his-
tory is used to represent a recursive history of substates. (Refer to the upcoming
section on composite states for more information.)

If a state machine transitions to a history state, then the most recent state is acti-
vated and executed. Think of history states as a means of modeling undo, redo, or

Figure 7-2 A junction showing multiple incoming transitions with a single outgoing
transition.

160

CHAPTER 7 Using State Chart Diagrams

Figure 7-3 A composite state showing a shallow history-
state of the microwave is stored when the door is opened.

-circle H—indicating that the

pause and resume behaviors. Figure 7-3 shows a composite state—see "Using Com-
posite States" below—representing a microwave oven. When the door is closed, we
could be heating, or the oven just could be off. When we are heating, a timer, a light,
and the microwave emitter are on; when we exit the heating mode, the timer, the
light, and the emitter are off. If the door is opened, then the light is on, and a history
is stored before we transition to the OFF state. The history is intended to permit re-
suming at the elapsed timer point if we start the oven again.

In the early part of the last century it was discovered that microwaves could be
bounced off objects and used to detect direction and range. The original application
was intended to detect German Messerschmitts during World War II. Dr. Percy
Spencer at Raytheon accidentally discovered that the microwave emitter melted
some chocolate in his pocket. Spencer tried some popcorn kernels in a paper bag
next, and the microwave oven was discovered. Owing to its original application as
radar, the oven was called the "radar range," and eventually the name was changed
to microwave oven. The first radar range was 6 feet high and cost $5,000.

Using State Activities

States are either active or inactive. A state becomes active when its entry activity is
executed. A state becomes inactive after its exit activity is executed. (You can see
examples of entry and exit activities in Figure 7-3.) A good demonstration of an
implementation of entry and exit activities can be seen in events written for when a
control gains focus and loses focus. For example, when we open a refrigerator door,
a light is turned on, and when we close the door, the light is turned off.

States can contain additional activities. These are divided into categories: regular
and do. A regular activity is something that happens instantaneously. An activity pre-
fixed with "do/" is called a do activity. Do activities happen over time. For example,

161

UML Demystified

a regular activity might be complete in a few uninterruptible machine instructions or
perhaps could be longer if it occurred within a thread critical section. A do activity
happens over many instructions and can be interrupted by an event, for example.

Consider the Visual SourceSafe application in Figure 7-4. If you click a high-
level node and choose the "Get Latest Version" option, then you could be waiting
a while because copying hundreds or thousands of files from a source code reposi-
tory across a network to a workstation is time-consuming. Conscientiously, such
a long-running operation should be interruptible. Using a simple do activity in
a state indicates that this is an intended part of design.

Comparing Simple and Composite States

A simple state is a state with no substructure. Having no substructure means that the
state is not divided into regions, and there are no substates. A composite state (also
called a superstate) has an internal structure that may include regions and does in-
clude substates. The "Door Closed" state in Figure 7-3 is a composite state. It is
also a nonorthogonal state.

A nonorthogonal composite state means that there are nested substates, and only
one is active at a time. For example, in Figure 7-3, only "Heating" or "Off" is active
at one time. An orthogonal composite state is a state divided into concurrently ex-
ecuting regions. Only one substate in each region is active at a time.

Figure 7-3 is an example of a nonorthogonal composite state. To create an or-
thogonal composite state, split the state symbol into regions, and place substates
into their respective regions. Figure 7-5 shows an orthogonal composite state repre-
senting a refrigerator freezer. Cooling and freezing happen concurrently in separate
compartments, but lighting happens when either door is opened.

TIP Visio doesn't do a great job of managing composite states. Visio supports
composite substates by adding a linked child state chart when you add a composite
state to a diagram. Advanced features such as composite orthogonal substates are
supported in more advanced (and more expensive) tools. Such tools may be worth
the price of admission if you are frequently using advanced features not found in
tools such as Visio.

Figure 7-4 A state with a "do/activity Getting Latest Version"; the "do/" means that this
state can be interrupted.

162

CHAPTER 7 Using State Chart Diagrams

Figure 7-5 A composite orthogonal state that represents simultaneous cooling and freezing.

Figure 7-3 was laboriously created using MS-Paint, whereas Figure 7-5 was cre-
ated much more quickly using Rational XDE. I do a lot of modeling, so it is worth
the price of admission to use Rational XDE, but on some projects, I have used
Visio, and it works fine for day-to-day modeling. Good tools are the mark of a good
craftsperson, but spending a lot of money is no guarantee of success.

Using Internal Activities

Internal activities are like self-transitions—refer to "Exploring Transitions" below.
An internal activity is a response that happens internally and triggers an activity
without executing an exit and entry activity. Internal activities use the same event,
guard, and activity notation that is used on transitions. I'll talk more about transi-
tions shortly.

Linking to Submachines

Instead of repeating state chart (state machine) diagrams, you want to reuse dia-
grams. This applies to state machines. The UML supports modeling submachines
by naming the substate machine after the state name, separated by a class name.
(This looks like the C++ variable-class name declaration statement.) For example,

mystate : MyStateMachine

indicates that "MyState" is an instance of the state machine named "MyState-
Machine."

If you are using Visio, then you can use the name, colon, state machine notation
to reference a substate machine. Other tools—such as Rational XDE, mentioned
previously—support a special symbol for submachines and will link the referenced
submachine dynamically.

.163.

UML Demystified

Exploring Transitions

Transitions are directed lines that connect states. Transitions occur based on some
triggering mechanism—commonly implemented as events—and may or may not
proceed based on a guard condition, resulting in some effect. This sort of cause-
and-effect relationship illustrates why state machines can be useful for modeling
user interfaces. This section will explore triggering mechanisms, examples of guard
conditions, and how to specify effects. I also will complete the discussion of inter-
nal and external transitions introduced in the section "Using Internal Activities."

Specifying Triggers

A transition has a source state, a transition event, a guard, an effect, and a target
state. Before the source state is exited, the exit activity occurs. When the transition
trigger occurs, a guard condition can be tested to determine if the transition is taken.
A taken transition results in an effect. Finally, the target's entry activity is executed.
The directed line that represents the transition is labeled with the optional trigger
event, guard, and effect. If the activities in a state finish, then the result is called
a triggerless or completion transition.

Triggers, or events, that signify a transition are categorized as call, change, sig-
nal, and timer events. A call event specifies a synchronous object call. A change
event represents a change in the result of a Boolean expression. A signal event indi-
cates an explicit, named synchronous message, and a timer event is a trigger that
occurs after a specific interval of time. The trigger is the first element, if present,
attached to a transition.

TIP Some tools may prefix specific kinds of transitions with labels such as "when"
in the case ofVisio and change events.

Specifying Guard Conditions

Guard conditions are placed in brackets and must evaluate to a testable Boolean
condition. (I have seen the notation for guard conditions on other diagrams, such as
activity and interaction diagrams.) If a guard condition is present, then it is evalu-
ated and must result in a true value for the transition to complete.

Guard conditions should be relatively simple and should not result in side ef-
fects. For example, "[x > 0]" is a good guard condition, but "increment x during the
evaluation like [X++ > 0]" is a guard with side effects because the value of x is
changed each time the guard is executed.

.164

CHAPTER 7 Using State Chart Diagrams

NOTE Formal modeling evolved after formal coding practices. Many good practices,
such as not writing conditional code with side effects, mirror practices desirable in
code, and generally, models end up as code.

Specifying Effects

Triggers, guards, and effects are all optional. The last element of a transition sym-
bol is the option effect (or activity). The effect is some activity that is to be performed
when the transition is triggered. The signature of a transition, including a trigger,
guard, and effect, is

Event [Guard] /Ef fec t

You also might see events referred to as triggers and effects referred to as activities.
Although a lot of synonyms can be confusing, these words are close enough to
convey their purpose.

According to the formal specification, there may be many triggers, one guard,
and one activity. Supporting zero to many triggers means that more than one event
may result in a transition. Supporting a single guard does not mean that the guard
cannot have multiple predicates (subexpressions that yield a Boolean result), and
a single effect does not mean that the effect cannot be a compound effect. (In addi-
tion, the target state can perform many activities too.) Figure 7-6 shows several
transitions with some or all of the elements described in this section.

Figure 7-6 A variety of transitions showing optional transition elements.

165

UML Demystified

In the figure, we are showing a state machine that reflects the state of a single-
engine aircraft between the off and idling states. The state machine models the
engine as a complex system with a progression of transitions and states, with the
final state being that the engine is running and idling.

NOTE In a digital system, it is easy to enforce such things as "the ignition must
be off before the master switch is turned on," but in an analog system, we could
easily turn a propeller into a human Cuisinart. As modelers, our job is to capture
the rules; sometimes rules cannot be enforced, especially in analog systems.

Reviewing Transition Kinds

I talked about several kinds of transitions. Let me take a moment to review those
here.

An entry transition occurs when a state is first entered before anything else in the
state happens. An exit transition is the last thing to happen before a state exits. An
external transition can be a self-transition or a transition to another state. A self-
transition occurs when a state exits and reenters itself. A self-transition is shown in
Figure 7-6 when the "Starting" state fails and we return to the "Starting" state for
an additional attempt. Finally, an internal transition is a response to an event that
doesn't result in a change of state. Internal transitions do not cause an exit and entry
activity to be executed.

Creating Behavioral State Machines
Behavior state machines are intended to model precise behavior and are implement-
ed as code. Consequently, behavioral state machines use most of the elements
available for creating state charts (or state machine diagrams). The UML version 2.0
precisely defines elements that are intended for protocol state machines and those
intended for behavioral state machines. However, if you need an element in a behav-
ioral state machine, then use it, even if it isn't specifically intended for a behavioral
state machine.

Figure 7-7 puts many of the elements together and describes a behavioral state
machine. This machine begins with a motorcycle in the stopped state and transi-
tions to prestart and running states, including a path for returning to the stopped
state. (The text in italics labels various elements of the diagram.)

A key to diagramming a behavioral state machine is to determine how much in-
formation to put in your model. The model in Figure 7-7 might describe enough

166

CHAPTER 7 Using State Chart Diagrams

Figure 7-7 A behavioral state machine that cycles through stopped and running states on
my motorcycle.

information for a rider starting a motorcycle, but if we needed to understand how
the fuel, transmission, and ignition systems worked too, then this diagram would be
insufficient. As with programming, the caveat "Divid et impera" applies here too.
What I mean by divide and conquer is that we probably would model the various
subsystems—ignition, fuel, and transmission—separately and use substate machine
references to incorporate those elements into the diagram in Figure 7-7. The prem-
ise is that our diagram is a good starting point, but adding too many elements,
resulting in a single monolithic diagram, is probably more complexity than can be
grasped at a glance. Complex diagrams counteract the value of modeling.

Creating Protocol State Machines
Protocol state machines have to do with defining a series of predictable, logical
sequences. Protocol state machines are not meant to be implemented, but they are
meant to describe the order of transitions and states. For this reason, protocol state
machines are used to describe interfaces. Because interfaces don't have definitions,
many of the elements you use in behavioral state machines just aren't needed in
protocol state machines.

Consider the ordered use of a database. We can say that a database connection is
created, the connection is opened, data are retrieved, and the connection is closed.
This describes a protocol that can be implemented as an interface (or interfaces) for
a predictable and reliable logical sequence of steps—a protocol—for ensuring that

167

UML Demystified

Figure 7-8 A protocol state machine that shows the logical, reliable sequence of events
that has to occur to use a database connection correctly every time.

a connection is used correctly every time. Figure 7-8 shows the protocol state machine
described here.

A protocol state machine can be used to show developers at a high level how to
use parts of the system correctly every time. By defining an interface with these
elements, you would provide them with a means of following the protocol. The
state machine shown in Figure 7-8 could be used as a training aid to ensure that a
valuable resource such as a database connection is not used incorrectly.

Implementing State Diagrams
Activity diagrams show how a single use case is supported. Interaction diagrams
show the time ordering of object creation and sent messages but are not good at
showing how objects are implemented. State machines show an object as it spans
several use cases and are designed to show how objects should be implemented.
Perhaps one of the reasons state machines seem to be used less often than interaction
diagrams is because state machines are closer to code than other kinds of diagrams,
and the closer we get to code, the more tempted programmers are to start coding.

In high-ceremony software development, there may be a mandate that dictates the
number and variety of diagrams to create. (I have worked on a couple, but they are
rare.) Because state machines are close to lines of code, I would only create state
machines for risky, complicated, or rare kinds of subsystems. GUI prototyping works
great for most applications and has an appeasing effect on users. State machines

168

CHAPTER 7 Using State Chart Diagrams

representing GUIs do not seem to satisfy the need for tangible evidence of progress,
as well as interactive, visually stimulating prototypes.

This said, Fowler (2000) states that a state machine can be implemented in one
of three ways: nested switch, the state behavior pattern, and state tables. A nested
switch statement is exactly what it sounds like: Some semantic constant value is
evaluated, and a series of if..conditionals, select, case, or switch statements deter-
mines which branch block of code to execute. Using a nested switch is the least
object-oriented way of implementing a state machine. The second listed choice is
the state pattern. The state pattern defines abstract behaviors, and the state machine
is implemented by calling specific instances of subclasses of the abstract state class.
This is a powerful object-oriented way of implementing stateful behavior. Finally,
we can use external state tables. A state table stores the source, trigger, guard,
effect, and target information in a database, XML file, or something similar. While
this isn't an object-oriented approach, it is the most flexible approach because we
can change the state table without modifying, rebuilding, and redeploying code.

The following listing shows how we might implement the microwave oven's
(from Figure 7-3) behavior using a switch statement. While this code is functional,
it can be the most difficult to implement, read, and maintain.
using System;
namespace MicrowaveOven

{
public enum DoorState{ Closed, Opened };
public enum LightState{ Off, On };
public enum MicrowaveEmitterState{ Off, On };
public enum TimerState{ Of f, Paused, On };

class Classl

{
private DoorState door;
private LightState light;
private MicrowaveEmitterState emitter;
private TimerState timer;

[STAThread]
static void Main(string [] args)

{
}
public DoorState Door

{
get{ return door; }
set{ door = value; }

public LightState Light

{
get{ return light; }
set{ light = value; }

169

}

UML Demystified

}
public MicrowaveEmitterState Emitter

{
get{ return emitter; }
set{ emitter = value; }

}
public TimerState Timer

get{ return timer; }
set{ timer = value; }

}
public void OpenDoor()

ChangeDoorstate(DoorState.Opened);

}
public void CloseDoor()

ChangeDoorstate(DoorState.Closed);

}
private void ChangeDoorstate(DoorState doorState)

switch(doorState)

case DoorState.Closed:
door = DoorState.Closed;
switch(timer)

case TimerState.Off:
light = LightState.Off;
break;

case TimerState.Paused:
timer = TimerState.On;
emitter = MicrowaveEmitterState.On;
light = LightState.On;
break;

case TimerState.On:
throw new Exception("your brain is being poached"),

break;

case DoorState.Opened:
switch(timer)

{
case TimerState.Off:
break;

case TimerState.On:
emitter = MicrowaveEmitterState.Off;
timer = TimerState.Paused;
break;

case TimerState.Paused:

.170.

}

{

{

{

{

{

{

CHAPTER 7 Using State Chart Diagrams

break;

}
light = LightState.On;
door = DoorState.Opened;
break;

We could implement the rules in a table and read the table for each transition
(Table 7-1). Although we would be unlikely to change the microwave states after
deployment, this approach is used commonly in Web application portals such as
dotnetnuke or IBUYSPY.

The prior code listing works pretty well because we can easily codify the nested
relationships reflecting the substates of "Heating" and "Off." Table 7-1 isn't com-
pletely satisfactory because we have to surface the nested substates to capture
desired behaviors when the door is closed and we resume nuking the food. (The
meaning is pretty clear in the table; we could add an additional column to clearly
indicate substates.) For an example of the state behavior pattern, see Chapter 9.

It is worth noting that the state pattern, a switch, or an external table won't imple-
ment an entire state machine. These three options represent a general approach, but
basic code and other patterns are useful here too. For example, we can use the
Memento behavior pattern to facilitate capturing and restoring an object's internal
state. For more information on patterns, see Chapter 9, and pick up a copy of
Design Patterns, by Erich Gamma et al.

Source

Door Closed

Door Opened

Heating

Off

Door Opened

Door Opened

Trigger

Open Door

Close Door

Open Door

Open Door

Close Door

Close Door

Guard Effect

Light On

Light Off

Light On,
Emitter Off,
Timer Paused

Light On

Light On,
Emitter On,
Timer On

Light Off

Target

Door Opened

Door Closed

Door Opened

Door Opened

Heating

Off

Table 7-1 This Table Could Be Externalized in a Database or XML File, Permitting
Behaviors to Be Changed Post-Deployment

171

}
}

}
}

UML Demystified

Quiz
1. State charts (or state machine diagrams) are good for

a. diagramming systems.

b. diagramming objects and messages for a single use case.

c. understanding a single use case.

d. specifying the behavior of an object across several use cases.

2. State machines are especially useful in exploring GUIs and real-time
controllers.

a. True

b. False

3. A junction is used to

a. merge several incoming transitions to a single outgoing transition.

b. split a single incoming transition into several outgoing transitions.

c. Both a and b

d. None of the above

4. History pseudostates are used to restore previous states.

a. True

b. False

5. A regular activity executes

a. over time and a do activity executes immediately but can be interrupted.

b. immediately and a do activity executes over time and can be interrupted.

c. over time and can be interrupted and a do activity executes over time.

d. over time and a do activity executes overtime; only the do activity can
be interrupted.

6. Transitions are directed lines labeled with

a. an optional trigger event, a guard, and an effect.

b. a trigger event, an optional guard, and an effect.

c. a trigger event, a guard, and an optional effect.

d. optionally, a trigger event, a guard, and an effect.

172

CHAPTER 7 Using State Chart Diagrams

7. Internal transitions cause an enter and exit activity to be executed.

a. True

b. False

8. Self-transitions cause an enter and exit activity to be executed.

a. True

b. False

9. A composite orthogonal state

a. is divided into regions, and only one region can be active at a time.

b. is divided into regions, and only one substate can be active at a time.

c. is divided into regions, and only one substate per region can be active
at a time.

d. is composed of a single region, and multiple substates can be active
simultaneously.

10. A composite nonorthogonal state

a. is composed of regions, and only one region can be active at a time.

b. is not divided into regions, and only one substate can be active at a time.

c. is not divided into regions, and multiple substates can be active at a time.

d. is divided into regions, and one substate per region can be active at a time.

Answers
1. d

2. a

3. c

4. a

5. b

6. a

7. b

8. a

9. c

10. b

173

This page intentionally left blank

CHAPTER

Modeling
Components

When I was 15,1 purchased my first car for $325. Go ahead and laugh—a $325 car
in 1981 was as bad as you'd imagine it to be. Of course, being industrious, I began
to find ways to refurbish the car and make it as roadworthy as I knew how. One of
the first things I realized about this 1974 Oldsmobile Cutlass rust bucket—besides
that the front seat didn't lock, causing the seat to slide all the way forward when
I stopped and all the way back when I accelerated, the football-sized hole in the
radiator, and four different sized tires—was that the serpentine belt needed replac-
ing. I thought replacing a serpentine belt was a task I could handle.

After I got the car home, I settled on replacing the serpentine belt. I began to
remove the radiator, water pump, and alternator. You get the picture. I realized that
this was a bigger job than I might be able to do and resolved to take the car to the

8

175

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

Firestone repair shop down the road. The Firestone guy loosened the alternator,
rotating it inward, slipped the belt over the fan and alternator, moved the alternator
back into place, tightened the bolts, and was finished in 10 minutes. I just received
my first $35 dollar lesson in the value of knowledge.

Why did I tell you this story? The answer is because when I tell you that you can
probably skim over this chapter and may not need component diagrams, you will
believe me.

To model components, we use many of the same symbols and connectors that we
have discussed in earlier chapters, but there is a difference. Components are au-
tonomous chunks of code—think subsystem—that can be reused by deploying
them independently. (Components don't have to be big, but they generally are much
more than a single class or a couple of loosely related classes.) Components gener-
ally have multiple provided and required interfaces and are found in large, complex
applications with dozens or hundreds of domain classes. Thus, if you are building
a simple client-server application, a basic Web site, or single-user Windows appli-
cation, then you probably don't need component diagrams. If you are building an
enterprise solution with hundreds of domain classes and reusable elements, then
you might need component diagrams.

Every class is not a domain class. Arrays, collections, and graphical user inter-
face (GUI) classes are not domain classes. Domain classes are the things that
capture the domain problem—student, registration, classes in an enrollment appli-
cation, bookings, people, cases, time served in a prison management application,
and deposits, withdrawals, and accounts in a banking system. If you have hundreds
of these kinds of classes, then you may need component diagrams.

Obvious examples of very complex components include such things as
Microsoft Office applications, Enterprise Java Beans, COM+, and CORE A. Per-
haps less complex components might include your custom database persistence
component.

This said, I encourage you to just skim this chapter, but you should read it thor-
oughly if you know you are building a big system or are trying to organize the
efforts of a large team and an overview of the system will help orchestrate the ef-
forts of all the developers. This chapter will show the straightforward mechanics
of creating component diagrams. For excellent guidelines on the circumstances
for building component diagrams, refer to Scott Ambler's The Object Primer:
Agile Model-Driven Development with UML 2.0, 3rd edition. In this chapter you
will learn

176

CHAPTER 8 Modeling Components

• How to describe components

• How to specify provided and required interfaces

• Alternate ways to specify a component based on the detail you want to convey

Introducing Component-Based Design
There are two general ways to derive components. One way is to use a top-down
approach, and another way is to use a bottom-up approach. Either way can
work. Let me explain what I mean by both approaches and why either way can
work.

Using a Top-Down Approach to Design

A top-down approach is a recommended approach by some. What a top-down
approach means is that you define the components first—the big pieces of the
system—and then define the component interfaces. Once the components and
interfaces are defined, you can divide the implementation of the system among
the participants by having various groups or team members build each compo-
nent. Since everyone theoretically has agreed to build to the interfaces, the deve-
lopers are free to implement the internal parts of the component any way they
choose.

I think that this approach can work if your team is using many well-established
components with well-known interfaces. However, defining all new components
from a top-down perspective can be very challenging to do well and to get right.

Additionally, using a top-down approach means that you are committing to
a complex implementation style from the get-go because component-based systems
have as many as three to five supporting interfaces and pass-through classes for
every domain class. (This is what components are—discrete, well-defined inter-
faces resulting in indirection and pass-through classes.)

Thus the problem with a top-down approach is that for every domain
class you might design (and implement), you need five support classes, and
this is why component-based systems can be time-consuming, expensive, and
risky.

177

UML Demystified

Using a Bottom-Up Approach to Design

A bottom-up approach means that you define domain classes first—i.e., the classes
that solve the business problem, not the architectural problem. The result is that
a significant amount of effort is spent on solving the problem first rather than de-
signing a complicated architecture first.

With domain classes and a bottom-up approach, you get more traction on solving
the problem, and you always can componentize the domain classes if the complexity
of your solution grows or you identify a group of classes that can be deployed and
reused more easily if they are encapsulated in components.

Either a top-down or a bottom-up approach can work. For small to medium-sized
applications, you probably don't need many components, and a bottom-up design
will work fine. For enterprise-scale applications, you need an experienced guide,
and a top-down approach may be best.

A critical concept is that decisions are easier to change in models than they are
in code. Thus, if you do create models, you can explore and change design deci-
sions more readily. This concept applies to component diagrams too.

Modeling a Component
In the Unified Modeling Language (UML), the component symbol was changed
from the unwieldy symbol shown in Figure 8-1 to a classifier symbol—
a rectangle—with the «component» stereotype (Figure 8-2) or a small icon that
looks like Figure 8-1 in the upper-right corner of the classifier symbol.

We have to compromise with some UML tools that aren't completely compati-
ble with UML version 2.0. The classifier in Figure 8-2 shows the attribute and
operation sections of the classifier symbol. This is acceptable.

If your tool supports the old-style symbol (shown in Figure 8-1), then you can use
that as well. Apparently, the reason for the symbol change was that the older-style
symbol's jutting rectangles made it more difficult to draw and attach connectors.

Figure 8-1 The old-style UML component symbol.

i??n

Figure 8-2 The revised component symbol in UML version 2.0.

Specifying Provided and Required Interfaces
In Chapter 6 we introduced provided and required interfaces. A provided interface is
represented by the lollipop extending from the interface, and a required interface is
represented by the half lollipop extending from the interface. In simple terms, a pro-
vided interface is an interface the component defines, and a required interface is one
that it needs to be complete. Figure 8-3 illustrates part of a financial system that shows
the account management component and the persistence (database, typically) layer.

Don't get hung up on the limitations of your modeling tool. More than likely, if
your tool generates code, then it will generate it based on the correct use of symbols
for the subset of the version of UML that your tool supports. For example, in
Figure 8-3 we see the jutting smaller rectangles, and we had to fabricate the ball-and-
socket look for required and provided interfaces, which for this version of UML
actually works to defeat the tool.

If your tool has the same limitation as Visio 2003—which doesn't support the
half lollipop—then you could indicate provided and required interface relationships
using the dependency connector (Figure 8-4).

NOTE The half-lollipop and full-lollipop connectors and classifiers are
metaphorically referred to as a wiring diagram. If you've ever seen a wiring
diagram, then you might see the similarities.

Figure 8-3 The "AccountManager" component provides the "Account" interface and
requires the "Persistence" interface.

179
CHAPTER 8 Modeling Components

UML Demystified

Figure 8-4 Using a dependency in place of the half lollipop to model a required interface
when UML version 2.0 isn't completely supported by your modeling tool.

Exploring Component Modeling Styles
There are different ways to diagram the same component based on the information
we want to show. If a diagram is for an implementer, then you may want to show
a whitebox—internal details shown—diagram of a component. If the diagram is for
a consumer, then you only need to show the provided and required interfaces. If you
want to show the implementation of provided interfaces, then you can use a classi-
fier and dependencies—because classifiers are better at showing implementation
details of interfaces.

In this section we will look at some variations on component diagrams, including
diagrams with more elements. (For this section of the chapter I switched to Posei-
don for UML version 3.1. Poseidon for UML version 3.1 has better support for
UML version 2.0 component diagrams than either of the copies of Rational XDE or
Visio. When modeling an actual application or system, I encourage you to use one
tool and to use the notation that is most readily available. However, in a book for-
mat, switching tools gives you an idea of some of the variety out there.)

Diagramming Components for Consumers

When you are creating component diagrams for consumers—other programmers
who will use the components—all you need to show them is a blackbox view of the
component. A blackbox view of a component provides the details of the provided
and required interfaces. If your tool supports it, you can use a component symbol
and list the provided and required interfaces, including the method signatures ex-
posed, or you can show classifiers stereotyped with «interface». Most tools support
the realizations, dependencies, and classifiers, so the latter style is easier to create.

180

CHAPTER 8 Modeling Components

A provided interface represents an interface that the component realizes; thus,
when using classifiers, the lollipop becomes the realization connector. A required
interface represents an interface in which the component depends; thus, when using
classifiers, the half lollipop becomes the dependency connector with a «use»
stereotype. Figure 8-5 is a blackbox diagram showing the provided interfaces "lEx-
ceptionXMLPublisher" and "lExceptionPublisher" and the required interface
"IConfigSectionHandler." (This is a partial component diagram of the Exception
Management Application Block for .NET offered by Microsoft and used in Motown-
jobs.com.)

In Figure 8-5, the reader knows that the "ExceptionManagement" component
realizes "lExceptionXMLPublisher" and "lExceptionPublisher," which are ele-
ments that the consumer will be able to use. The reader also knows that something
called "IConfigSectionHandler" is something that the component needs.

NOTE If you are interested in .NET and application blocks, then you can obtain
more information at www.microsoft.com. Application blocks basically are
components that solve reusable problems at a higher level of abstraction than
simply classes in a framework.

If the context is unknown, then this diagram doesn't provide enough information,
but once we place the component in a context—in this case, in the .NET framework—
the datatypes and the required interfaces become available to the consumer.

Figure 8-5 Provided and required interfaces modeled using realization and dependency
connectors and classifiers to elaborate on the definition.

181

www.microsoft.com

UML Demystified

Diagramming Components for Producers

If we are diagramming components for producers—those who will implement the
component—then we need more information. For producers, we need to show internal
components, classes, and relationships that the component implementer will have to
create as code. This is what I am referring to as a whitebox, or internal details, view.

We can elaborate on the component diagram in Figure 8-5 and add internal de-
tails about the "ExceptionManagement" component. Figure 8-6 shows the provided
and required interfaces as lollipops and expands the focus on internal elements of
the component.

Figure 8-6 shows the same provided and required interfaces, but our internal
whitebox view now shows how we support some of the external elements. Although
this view still may not provide every detail needed to implement the "Exception-
Management" component, we could add attributes and operations to classifiers and
combine the component diagram with other diagrams such as state charts, class
diagrams, and sequences. Collectively, the various diagrams would explain how to
implement the component.

It is worth noting that we are expressing the same kinds of relationships we have
seen before in class diagrams. It is also worth noting that components, like classes,
can contain nested elements such as nested components.

To experiment with component modeling, find a domain that you are familiar with
or an existing solution, such as the Northwind sample database. See if you can

Figure 8-6 This figure switches focus to emphasize the internal, or whitebox, view of
the component.

.182

CHAPTER 8 Modeling Components

describe a top-down view of a "componentized" version of elements of a customer
order-fulfillment system. (Of course, you can use any sample domain with which you
are familiar.)

Quiz
1. Every model should contain at least one component diagram.

a. True

b. False

2. A top-down approach to component diagrams means that you

a. define the components first and then decompose those components into
constituent parts.

b. define the constituent parts and then place the components on top of the
constituent parts.

c. None of the above

3. A bottom-up approach to design can be valuable because (pick all that apply)

a. components aren't really needed.

b. you get more traction solving domain problems first.

c. building infrastructure is expensive and time-consuming.

d. domain classes always can be organized into components at a later time.

4. Component symbols can be represented using a classifier with the
«component» stereotype.

a. True

b. False

5. A provided interface can be represented by a named lollipop

a. or a half lollipop.

b. or a dependency on a classifier with the «interface» stereotype.

c. or an «interface» stereotype on a classifier with a realization connector.

d. only by using the lollipop.

6. A required interface is an interface that the component realizes.

a. True

b. False

183

UML Demystified

7. A required interface can be represented by a named half lollipop

a. or a lollipop.

b. or a dependency on a classifier with the «interface» stereotype.

c. or an «interface» stereotype on a classifier with a realization connector.

d. only by using the half lollipop.

8. Components can contain nested components.

a. True

b. False

9. As a general rule, you only components and component diagrams for systems
with 100 or more domain classes.

a. True, but this is a general guideline. Components can help you to organize
a solution and build reusable elements that can be sold separately.

b. False, because building components is always cheaper in Hie long run.

10. For each domain class in a component-based architecture, you may need
three to five supporting classes.

a. True

b. False

Answers
1. b

2. a

3. b, c, and d

4. a

5. c

6. b

7. b

8. a

9. a

10. a

184

CHAPTER

Fit and Finish

I have worked on projects with budgets of less than $5 million that encompassed
20,000 person-hours to projects with budgets of over a billion dollars and hundreds
of thousands of person-hours. Some of these projects used almost no formal model-
ing and design, and others used so much modeling and design that all forward
momentum came to a halt. The lesson is that too little formality can result in a hacky,
shoddy product and too much formality can result in a stalled or canceled project.

It is also worth mentioning that I have worked for huge companies that don't do
any modeling but deliver software all the time. One has to wonder if the success of
those projects is related to how much money those companies had to throw at the
problem and also whether the software would be better, faster, and cheaper if some
modeling and design had occurred.

The answer is somewhere in between. In general, software models need to be as
complete and precise as the thing being designed. For example, if you are building
something as complex as a doghouse, then you probably don't need much in the
way of models. For something as complex as a house, you probably need models as

9

185

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

complex as a blueprint. Knowing the size, number of rooms, and building materials
will help you to size and budget a project while leaving some room for invention.
For instance, variations in lighting fixtures, color of paint, style of carpeting, and
the precise placement of electrical outlets can be left (within reason) to the ingenu-
ity of the specialists. For houses, specialists are carpenters, electricians, roofers,
and plumbers; for software, specialists are programmers, testers, DBAs, and graph-
ical user interface (GUI) designers.

The reality is that most software is more complex than a house, and much of it is
being built without blueprints (UML models) that would adequately describe
a doghouse. The reason is that software modeling is new and hard. Further, code can
be compiled, debugged, run, and tested with results that are superficially meas-
urable. In contrast, models aren't compiled but can only be "debugged" manually,
are not run, and there is no simple way to test them. I would wager that very few
software companies are doing code walk-throughs successfully, forget about Uni-
fied Modeling Language (UML) walkthroughs.

What all this means is that if you are reading this, then you are ahead of many of
your peers in terms of software modeling practices. It also means that defining
a process and finding a balance between too much and too little modeling are im-
portant. In this chapter I have provided some practical pointers in the context of
UML modeling and design that have helped me in the past. These pointers are
based on some projects that have succeeded and some that have failed. To help you
figure out how to complete your models, I will talk about

• A few basic dos and don'ts

• Using known patterns and refactorings

• When and how to add supporting documentation

• Validating your models

Modeling Dos and Don'ts
I thought about naming this section "Modeling Best Practices" but dos and don'ts
seems more demystifying.

I started modeling using the Booch notation in the early 1990s. In those days,
there were few places you could go to learn a language such as C++ from a sea-
soned pro and almost nowhere to learn modeling. This means that early on, the
few books I could get and my own mistakes were the only teachers available.
Over more than a dozen years, I have gotten better, but there are still few bona

186

CHAPTER 9 Fit and Finish

fide modeling experts, and as far as I can tell, many universities still aren't offer-
ing curricula for software architects (or even UML modelers); the art is too new.
Consequently, the advice I can give you is based on my own intensive study and
many years of feeling my way. Clearly, this all suggests that your local expert
may disagree with my opinion. You know your own people better than I do; if you
think that something won't work or that my advice is questionable, then look to
those few wise old men whom everybody recognizes as experts: James Rum-
baugh, Ivar Jacobson, Grady Booch, Erich Gamma, and Martin Fowler. There are
a few others, but you get the picture. When I have questions about the UML mod-
eling, these are the folks I turn too.

Don't Keep Programmers Waiting

The first rule is: Don 't keep programmers waiting on models. This means that you must
do a lot of design before you assemble your main programming team. A few program-
mers available to help you prototype will be helpful, but don't staff up completely until
you have a project plan and some of the analysis and design well under way.

Unfortunately, most projects aren't this organized. The whole team arrives, and
the pressure is on immediately to get everyone to work, including programmers.
Try to create models that are detailed enough to get programmers working but not
so detailed that they are stuck waiting. This is hard to do.

Work from a Macro View to a Micro View

Work on "big picture" items first. For example, identify the big parts of the system
first—Web GUI, custom macro language, Web services, and database persistence—
before working on classes and lines of code. If you can figure out the parts and how
they fit together, then work can be divided by subsystems. This is a top-down ap-
proach, but it supports a division of labor and gives you a context for smaller, more
detailed work.

Document Sparingly

Most documentation is part of the micro view. When modeling, keep in mind that
the UML is a shorthand language for text. (You could design a whole system in
plain English, right?) Analyze and design a solution as completely as needed without
adding a lot of notes and documentation. Often, additional diagrams can clarify
a diagram as readily as long-winded text.

187

UML Demystified

You also can save some of the documentation for the end of the project if your
models are hard deliverables. If your customer (internal or external) isn't paying for
the models, then spending resources polishing them may be a waste of your time
and money.

Find an Editor

Being a good UML modeler is not the same as being a good writer. In addition to
getting a second set of eyes to look at your UML diagrams, hire an English major
(or whatever language you speak) to review your documentation. Again, only do
this if models are hard deliverables.

Be Selective about Diagrams You Choose to Create
Why did the chicken cross the road? The answer is probably because she could.
Don't create diagrams because you can. Only create those that solve interesting
problems and only those that you really need. This approach also will help to elim-
inate the waiting programmer problem.

Don't Count on Code Generation

James McCarthy cautions against "flipping the bozo bit"—as in "that guy is a bozo"—
but if someone tells you that you are to model, model, model and flip a switch
generating an executable, theny?zp that bozo bit. We are a decade or two away from
the technology and education supporting generated applications. I have never seen
this approach work and have talked to several Rational consultants who agree with
me. Code generation is a good idea, but we are a long way from automating software
generation.

Model and Build from Most Risky to Least Risky
Software usually has a few very important business cases and a bunch of supporting
business cases. The guiding principle is to build the hardest and most important
parts of the software first. Tackling the hard problems first helps you to avoid nasty
surprises, and frequently, software can ship if the important business cases are

188

CHAPTER 9 Fit and Finish

supported even when some of the extra frills aren't so great. In my experience, this
is one of the biggest mistakes projects make: building easy things first.

If It's Obvious Don't Model It

Application blocks, components, third-party tools, and frameworks are all out of
your control. All you can do is use them—unless you own these elements too,
which is rare. Don't waste time modeling what you don't own. If you must model
third-party tools in order to help developers use them, then model them as black-
boxes: All you need to model is their presence and interfaces, and you only need to
model the interfaces you are actually using. If your developers can use ADO.NET
or the Data Access Application Block, for example, then simply indicate that you
are using it. That's enough.

Emphasize Specialization

Another mistake is team member generalization. Software teams consist of gener-
alists, but there is a tremendous amount of historical documentation and evidence
that specialization is a good thing: Adam Smith's Wealth of Nations, Henry Ford's
assembly lines, and the ancient Latin phrase "Divid et imperum." Dividing a prob-
lem, intensity of focus, specialization, and building the critical elements first will
take you a long way on the road to success.

Using Known State Patterns
Patterns are not an original idea or new. The application of patterns in software
seems to originate from a 1977 book entitled, A Pattern Language, by Christopher
Alexander et al. Oddly enough, this book is about designing cities and towns, and
patterns such as green spaces. The green space pattern means that towns should
have parks.

It is certainly a clever extrapolation to turn a book about designing cities into
a concept that revolutionizes software—does it happen any other way than by ex-
trapolation—but it has been demonstrated that good pattern usage helps to yield
good software. The question is: Since software patterns are documented, do you

189

UML Demystified

need to add them to your UML diagrams when you use them in your designs? The
answer is probably.

Software patterns are templates, but there is some latitude in how you implement
them. Each time a pattern is employed, you will have different class names based
on the solution domain, and many patterns can be implemented in different ways.
For example, events and event handlers are an implementation of the observer pat-
tern, but this is not precisely how observer is documented. Microsoft considers ASP
pages and code-behind for ASP.NET an implementation of model-view-controller
(MVC), but you won't see ASP.NET mentioned in the pattern definition. Thus the
answer is yes, in many instances, if you use a pattern, then you should incorporate
it into your models to place it in the context of your problem domain. However, if
you have a very experienced team, then you could just tell the developers to use the
MVC, observer, or state pattern here.

TIP A good tip is to identify patterns when you use them. Identifying well-
documented design patterns will eliminate or at least mitigate the need for
you to duplicate that documentation in your designs.

A good rule of thumb is that good software is based on patterns. The key is to
learn about design patterns, figure out key areas where they will help your design,
and then incorporate them into your designs.

Figure 9-1 demonstrates how we can model the state behavior pattern, borrowing
from the microwave oven in Chapter 7. This example demonstrates how we can

Figure 9-1 This figure is a classic implementation of the state behavior pattern for the
microwave oven example from Chapter 7.

190

CHAPTER 9 Fit and Finish

Figure 9-2 A classic diagram of the observer pattern, also known as publish-subscribe.

model a known pattern where only the names change. Figure 9-2 shows the classic
model of the observer pattern, and Figure 9-3 shows a variation of the observer pat-
tern reflecting variations in the classic model but observer nonetheless.

Notice that in the classic example of observer (see Figure 9-2) an interface is not
used. However, in Figure 9-3 I used an interface. The result is that anything can
implement "IListener" and play the role of listener. This implementation is useful
in singly inheriting languages and is useful for moving messages around an applica-
tion in a unified way. The reason for adding this model and indicating that it is an
implementation of observer is that it is different from the classic implementation,
but the documentation for observer still helps to clarify the rationale for its use.

Figure 9-3 A variation of the observer behavior pattern that I refer to as broadcast-listen,
which is very close to the publish-subscribe notion of observer.

191

UML Demystified

Refactoring Your Model
This book is not the best forum for teaching design patterns or refactoring. The
UML is distinct from patterns, but patterns are described using the UML and text in
other books. Refactoring is different from both the UML and patterns. While there
is some overlap between patterns and refactorings—e.g., Singleton and Factory are
both creational patterns and refactorings—refactoring is something that generally is
done after code has been written to improve the design of existing code. This said,
there is no reason you cannot refactor models.

Suppose, for example, that you have a message signature in an interaction dia-
gram that has several parameters. Before you release the diagram to your progra-
mmers, you could apply the refactoring "Introduce Parameter Object." "Introduce
Parameter Object" simply says to convert a long method signature into a short meth-
od signature by introducing a class that contains all the parameters needed for
a particular method and changing the method to accept an instance of that class.

There is no need to do anything other than introduce the parameter class and
change the method signature, but you would have to know about refactoring and the
justification for making this change. To learn more about refactoring, read Refac-
toring: Improving the Design of Existing Code, by Martin Fowler, for more information
on this subject.

Patterns and refactorings are not part of the UML, but they will help you to create
better UML diagrams. Good designs don't have to have grammatically perfect
UML, but patterns and refactorings will make your designs better.

Adding Supporting Documentation
Many modeling tools will take any documentation that you create and combine it
with your diagrams and spit out high-quality—generally HyperText Markup Lan-
guage (HTML)—cross-referenced and indexed model documentation. However, if
you use a tool such as Excel, Word, Notepad, or something besides your UML tool
to create your documentation, then you are defeating this feature of most tools.

I encourage you to convey as much meaning as possible with pictures. The simple
reason is that pictures convey more information in a concise format than reams of
text. If you need text, then try constraints and notes in the model, but keep these to a
minimum. Finally, if you must add a lot of documentation, don't hold the program-
mers up while you write it. You will be lucky if the programmers even read your

1Q?

CHAPTER 9 Fit and Finish

models—the truth hurts—let alone long-winded text. Unfortunately, many program-
mers are perfectly happy coding away whatever comes to mind or whatever they
coded on their last project. Complicated models may end up being ignored models.

Generally, for posterity, I like to include a written architectural overview in
a separate document that describes the system at a high level. Some people just can't
or won't read models—think managers or even future programmers—but I create
these documents near the end of the project when everyone else is busy debugging
and testing.

Keep in mind that the UML and modeling are just one facet of software develop-
ment. Modeling should help, not hinder, the overall process.

Validating Your Model
Many tools will validate models automatically. Unfortunately, every tool is different,
and every tool seems to support different aspects of the UML. You can drive yourself
crazy trying to remove bugs reported by validation tools from UML models.
I wouldn't spend my time here. Period.

Your time will be better spent coding examples that show developers how to
implement the model, teaching developers how to read the models, and walking
through the models with the developers to see if they make sense and can be imple-
mented. Generally, by the time you and the developers are happy with a particular
diagram, the program has most of what your diagram describes coded anyway.

Finally, just as I wouldn't ship code with warnings or errors, I don't want to ship
models with warnings or errors either. If model validation is reporting an error, then
it usually means that I am using a feature inconsistently with the implementation of
the UML my specific tool supports. Before I put a ribbon on a model and move on
to something else, I will try to resolve discrepancies reported by validation tools.
Historically, customers usually haven't been willing to pay for this effort, though.

Quiz
1. A model is only complete when it contains at least one of every kind

of diagram.

a. True

b. False

193

UML Demystified

2. Component diagrams are absolutely necessary.

a. True

b. False

3. I must pick either a top-down or a bottom-up approach to modeling but
cannot combine techniques.

a. True

b. False

4. Specialization has been argued to yield productivity gains.

a. True

b. False

5. Design patterns are part of the UML specification.

a. True

b. False

6. Refactoring is not part of the UML specification.

a. True

b. False

7. Most experts agree that patterns and refactorings will improve the
implementation of software.

a. True

b. False

8. The UML is a standard, and everyone agrees that it should be used.

a. True

b. False

9. Using a tool to validate models is essential.

a. True

b. False

10. All UML modeling tools are capable of effectively generating entire,
complete applications.

a. True

b. False

.194

CHAPTER 9 Fit and Finish

Answers
1. b

2. b

3. b

4. a

5. b

6. a

7. a

8. b

9. b

10. b

195

This page intentionally left blank

CHAPTER

Visualizing Your
Deployment

Topology

Deployment topology simply means what your system will look like when you put
it into use. You can diagram what your system will look like when deployed with
a deployment diagram. Deployment diagrams will show the reader the logical ele-
ments, their physical locations, and how these elements communicate, as well as
the number and variety of physical and logical elements.

Use deployment diagrams to show where your Web server is and whether you
have more than one. Use deployment diagrams to show where you database server is
and whether you have more than one and what the database server's relationship(s)
is(are) to other elements. Deployment diagrams can show how these elements are
connected, what protocols the elements are using to communicate, and what operating
systems or physical devices, including computers and other devices, are present.

10

197

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

Clearly, the implication is that if you don't have most of these elements, then you
probably don't need to create a deployment diagram. If you are creating a simple
stand-alone application or even a simple single-user database application, a Web site,
console application, or service, then you can skip creating a deployment diagram.

Deployment diagrams are not that hard to create, don't generally contain a large
number of elements, and are only needed for medium- to large-complexity applica-
tions. What deployment diagrams are good at doing is visualizing the landscape of your
deployment for systems with multiple elements. You are certainly welcome to create
a deployment diagram for every model, but here is an area where I would economize.

Modeling Nodes
Nodes are three-dimensional boxes that represent physical devices that can but don't
have to be computers or execution environments that can be computers, operating
systems, or containing environments such as COM+, IIS, or an Apache server.

Physical devices commonly include computers, but they can include any physical
device. Working on a project for Lucent Technologies years ago, I was writing soft-
ware for hoteling phones—moving phone settings from phone to phone and controlling
switching systems. In my deployment diagram, I showed computers, phones, and
phone switches. More recently, I was working on a project for Pitney Bowes. I was
writing a multinational shipping framework to support the concept of a universal car-
rier. Much of that framework used MSMQ—COM+ messaging queuing—so
the deployment diagram reflected nodes that represented a COM+ execution
environment.

The basic symbol for a node is a three-dimensional cube with the node name in the
cube (Figure 10-1). If you wanted to model several nodes of the same type, then you
could use a tag indicating the number of occurrences of that node, or you could add

Figure 10-1
diagram.

A single-named node in a Unified Modeling Language (UML) deployment

iEM

CHAPTER 10 Visualizing Your Deployment Topology

Figure 10-2 This diagram shows a tag indicating that there are two Web servers (left side)
and two physical node Web servers on the right side.

multiple nodes to the diagram. Figure 10-2 shows how you might model a Web farm
using the multiple-nodes tag on the left and multiple node symbols on the right.

In addition to using tags to indicate node multiplicity, we can use tags to indicate
information about the node. For instance, in our Web server example, we could indi-
cate that the nodes are all running IIS and Windows 2003 server. These additional
tags are shown in Figure 10-3.

Figure 10-3 A partial deployment diagram showing multiple nodes and details about the
operating system and version of Web server.

199

UML Demystified

TIP Virtual PC is a tool I use for having multiple logical computers on a single
computer. It is an excellent way to test beta software or have a clean machine for
local deployment, such as deploying a Web application to test for dependencies
and proper setup and configuration.

Finally, we can add one of two stereotypes to a node—«device» or «execution
environment—to indicate whether we are talking about a physical device or an
executon environment. An alternative diagram showing a single Web server running
in an instance of Virtual PC, an execution environment, is shown in Figure 10-4.

NOTE An interesting and recurring challenge is that on long projects developers
come and go. Generally, the result of a transition is that someone who has
remained on the project has to spend an afternoon or a day helping the newcomer
configure his or her machine. An installation project or a deployment diagram for
the development environment might be as useful as a deployment diagram for a
production system. (If you have a little extra time, try this out and see how it works.)

Figure 10-4 A node showing Virtual PC being used as an execution environment.

200

CHAPTER 10 Visualizing Your Deployment Topology

Showing Artifacts in Nodes
Artifacts are the things you are deploying. (If you are combining hardware and soft-
ware development, then you might be deploying your own nodes too, but I am talking
just about software.) Artifacts are modeled using the class symbol and an «artifact»
stereotype. Artifacts can be .EXEs, .DLLs, HTML files, documents, JAR files, as-
semblies, scripts, binary files, or anything else you deploy as part of your solution.
Commonly, binary artifacts are components, and we can use a tag to specify which
component an artifact represents. Figure 10-5 shows an artifact representing a .DLL,
and Figure 10-6 shows how we would place that artifact in a node.

Traditionally, you might find some overlap between component diagrams and
deployment diagrams. For example, if an artifact implements a component, you can
show the component implemented as a tag, or you can add the component to the
node showing the dependency between the artifact and the component. Figure 10-7
shows the component tag used to indicate that the shown artifact implements the
"ExceptionManagement" component used, and Figure 10-8 shows the same thing us-
ing the more verbose dependency attached to a component symbol. (The «manifest»
stereotype means that the artifact is a manifestation of the component.)

NOTE Dependencies also can be used between artifacts to indicate that one
artifact is dependent on a second. This supports the notion of references in .NET,
uses in Delphi, and includes C++. For example, the "ExceptionManagement.dll"
has a dependency on the "System.dll" (not shown) that contains the "EventLog"
class in .NET.

As an alternative to placing several nested class diagrams in a single node, the
UML supports listing artifacts as text. For example, an ASP.NET-based Web site
will contain a binary, several .ASPX files containing HTML and ASP, and possibly
other documents or elements such as script. Using the class symbol for more than

Figure 10-5 An artifact representing a binary that is the executable supporting a Web site.

201

UML Demystified

Figure 10-6 In deployment diagrams, artifacts are deployed to nodes, so we can show
an artifact nested in a node.

Figure 10-7 Specifying the component an artifact implements using a tag.

202

CHAPTER 10 Visualizing Your Deployment Topology

Figure 10-8 Specifying a component dependency using a component symbol.

a couple artifacts will result in the node being ridiculously large. List the artifacts
as text if there are many of them. Figure 10-9 shows how we can list several arti-
facts in a single node.

If we were deploying the Web site's .DLL file in a Web farm, then each Web
server node would be identical. In this instance, it would be easier to use the number-
deployed tag in a single node rather than to repeat each node and diagram identical
nodes.

Technically, you can add the combination of nodes, components, and artifacts
that you need, and you can vary styles—text or symbols—based on how many ele-
ments a node has. However, keep in mind that if you have too many elements, then
the diagram can become difficult to read. If you have a complicated deployment
diagram, then try implementing a macro view with nodes, artifacts, and connectors
and a micro view that expands on important aspects of the macro diagram. Show
details in one or more micro views associated with the macro deployment diagram.
For instance, consider showing the artifacts on the Web server, and if you want to

203

UML Demystified

Figure 10-9 The UML supports using text to list artifacts, too.

expand on the relationship between the "ExceptionManagement.dll" artifact, the
"ExceptionManagement" component, and the "EventLog," then create a separate
view of this aspect of the system.

Adding Communication Paths
If you only have one node, then you don't need a deployment diagram. If you have
more than one node, then you probably want a deployment diagram, and you will
want to show how those nodes are connected and how they communicate.

There are two types of connectors used between nodes and artifacts in a deploy-
ment diagram. The association represents a communication path between nodes.
The association shows the nodes that communicate, and a label on the association
can be used to show the communications protocol between nodes. Additionally, an
artifact can be drawn outside a node (a good approach for Visio, which doesn't
support nesting artifacts in nodes) and attached to a node with a dependency and
a «deploy» stereotype. The deploy dependency between an artifact and a node
means the same thing as a nested artifact or a listed text artifact—that that kind of
artifact is deployed on that kind of node.

Figure 10-10 demonstrates how we can externalize artifacts as an alternative way
of showing where artifacts are deployed, and it also shows additional nodes and
communication paths between those nodes. The communication paths are labeled
if there is any interesting communication venue between nodes.

204

CHAPTER 10 Visualizing Your Deployment Topology

Figure 10-10 This figure shows that three artifacts are deployed on the Web server and
that the Web server node communicates with a passport server via HTTP/TCP.

As is true with all diagrams, you can add notes, constraints, and documentation.
You also can add as much or as little detail as you'd like. I have found that with any
diagram, when you get past the point where the meaning can be understood at
a glance, the diagram begins to lose its value to the reader. A good practice is to
maintain some focus. If you want to show the entire system deployed, then show
nodes and connections. If you want to elaborate on a single node, then create a new
diagram and add detail for that node. Can you imagine how hard a single map of the
world would be to read if it contained air navigation information as well as states,
cities, towns, roads, railways, rivers, paths, trails, and topography? Think of UML
diagrams as maps of your software with varying levels of detail: Different kinds of
maps provide different kinds and levels of detail.

Now, having said all this, there has to be a way that as a modeler of a system you
can articulate these steps in the process. Deployment diagrams are one facet to
a living application deployment environment. Health monitoring and performance
testing provide continuous feedback to the modeler that his or her hard work is
working. I could go on at great length about this, but I feel that dropping a small
hint might entice you to think more about the end product than just drawing pic-
tures. Integrating those artifacts with real code and seeing the fruits of your labor
realized all the time is quite gratifying. This is interesting, but not directly related
to the UML. This has to do with incorporating "other" tools into a process.

205

UML Demystified

Quiz
1. A node always represents a physical device.

a. True

b. False

2. A node can represent (pick all that apply)

a. a computer.

b. any physical device.

c. an execution context such as an application server.

d. all the above.

3. The stereotypes that apply to nodes can be (pick all that apply)

a. «device».

b. «component».

c. «exceutionenvironment».

d. «manifest».

4. Tags are used to add details to a node.

a. True

b. False

5. A database server is an example of a node.

a. True

b. False

6. Artifacts use which symbol?

a. Package

b. Class

c. Activity

d. Object

7. An artifact can be represented as text in a node, a class in a node, and with
a realization connector and an external class symbol.

a. True

b. False

206

CHAPTER 10 Visualizing Your Deployment Topology

8. The connector and stereotype for an artifact shown outside a node is

a. realization and manifest.

b. dependency and deploy.

c. association and deploy.

d. dependency and manifest.

9. When an artifact is shown connected to a component, which stereotype applies?

a. «deploy»

b. «use»

c. «manifest»

d. «extends»

10. Which connector is used to show communication between nodes?

a. Dependency

b. Generalization

c. Association

d. Link

Answers
1. a

2. d

3. a and c

4. a

5. a

6. b

7. b

8. b

9. c

10. d

207

This page intentionally left blank

APPENDIX

Final Exam

1. What does the acronym UML mean?

a. Uniform Model Language

b. Unified Modeling Language

c. Unitarian Mock-Up Language

d. Unified Molding Language

2. The UML is only used to model software.

a. True

b. False

3. What is the name of the process most closely associated with the UML?

a. The modeling process

b. The rational unified process

c. Extreme programming

d. Agile methods

A

209

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

4. What is the name of the standards body that defines the UML?

a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. The Four Amigos

5. Use case diagrams are used to capture macro descriptions of a system.

a. True

b. False

6. Differentiate between sequence diagrams and collaboration diagrams
(choose all that apply).

a. Sequence diagrams are interaction diagrams; collaboration diagrams
are not.

b. Sequence diagrams represent a time ordering; collaboration diagrams
represent classes and messages, but time ordering is not implied.

c. Time order is indicating by numbering sequence diagrams.

d. None of the above

7. A class diagram is a dynamic view of the classes in a system.

a. True

b. False

8. A good UML model will contain at least one of every kind of diagram.

a. True

b. False

9. What is the nickname of the group of scientists who are most notably
associated with the UML?

a. The Gang of Four

b. The Three Musketeers

c. The Three Amigos

d. The Dynamic Duo

10. Sequence diagrams are good at showing the state of an object across many
use cases.

a. True

b. False

210

APPENDIX A Final Exam

11. What symbol represents an actor?

a. Aline

b. A directed line

c. A stick figure

d. An oval containing text

12. An actor can be a person or something that acts on a system.

a. True

b. False

13. What symbol represents an association (pick the best answer)?

a. Aline.

b. A line with a triangle pointing at the dependent element.

c. A dashed line with an arrow pointing at the dependent element.

d. A dashed line with an arrow pointing at the depended-on element.

14. Stereotypes are more common on

a. actors.

b. connectors.

c. use cases.

d. None of the above.

15. An inclusion relationship is used for modeling optional features reusing
behavior modeled by another use case.

a. True

b. False

16. An extension relationship is used for modeling behavior captured by
another use case.

a. True

b. False

17. Generalization is synonymous with

a. polymorphism.

b. aggregation.

c. inheritance.

d. interfaces.

211

UML Demystified

18. Every capability of a system must be represented by a use case.

a. True

b. False

19. In an includes relationship, the arrow points at the

a. base use case.

b. inclusion use case.

20. It is important to implement the hard use cases first to mitigate risk early.

a. True

b. False

21. Synonyms for a transition are connector and flow.

a. True

b. False

22. In general, activity diagrams consist of (pick all that apply)

a. nodes.

b. transitions.

c. decisions.

d. edges.

23. Exceptions are not supported in activity diagrams.

a. True

b. False

24. A join and merge node use

a. different symbols.

b. identical symbols.

c. either identical or differing symbols depending on context.

d. All nodes symbols are the same.

25. Multiple flows entering an action node are not

a. an implicit merge.

b. an implicit join.

.212

APPENDIX A Final Exam

26. Flows wait at a merge until

a. all flows have arrived.

b. the first flow has arrived.

c. you tell it to leave.

d. It depends.

27. The swimlane metaphor is still in use.

a. True

b. False

28. Actions can exist in only one activity partition at the same time.

a. True

b. False

29. A join and fork node is represented by

a. an oval.

b. a circle.

c. a rectangle.

d. a diamond.

30. Activity diagrams are identical to flowcharts.

a. True

b. False

31. A collaboration diagram is an example of

a. a sequence diagram.

b. a class diagram.

c. an activity diagram.

d. an interaction diagram.

32. A collaboration diagram shows how an object's state evolves over many
use cases.

a. True

b. False

213

UML Demystified

33. Collaboration diagrams were renamed communication diagrams in the
UML version 2.0.

a. True

b. False

34. Sequence diagrams cannot be used to model asynchronous and multithreaded
behavior.

a. True

b. False

35. Interaction frames use a (fill in the blank) to control when and
which fragment of the frame to execute.

a. merge

b. join

c. guard

d. asynchronous message

36. The alt interaction frame is used to

a. model optional behavior.

b. model multithreaded behavior.

c. model conditional logic.

d. capture error conditions.

37. Sequence diagrams and communication diagrams show complementary
views.

a. True

b. False

38. An activation symbol shows

a. the lifetime of an object in a communication diagram.

b. object creation.

c. the lifetime of an object in a sequence diagram.

d. object destruction.

39. A nested numbering scheme is valid UML used in

a. sequence diagrams.

b. activity diagrams.

c. use cases.

d. communication diagrams.

214

APPENDIX A Final Exam

40. Sequence diagrams are perfect for modeling lines of code.

a. True

b. False

41. The same basic symbol is used for enumerations and interfaces.

a. True

b. False

42. When adding classes to a diagram, you should show fields and

a. methods.

b. fields only.

c. properties.

d. properties and methods.

43. A property can be modeled as a feature of a class and

a. a subclass.

b. an association class.

c. a dependent class.

d. an interface.

44. When modeling attributes, it is

a. required that you model attribute methods.

b. recommended that you not show attribute methods.

c. recommended that you show the underlying fields for those attributes.

d. None of the above

45. Simple types should be modeled as features and complex types as (pick the
best one)

a. features too.

b. association classes.

c. attributes.

d. features or association classes.

46. A unidirectional association has an arrow at one end called the source. The
other end is called the target.

a. True

b. False

215

UML Demystified

47. An aggregation is most like

a. inheritance.

b. association.

c. composition.

d. generalization.

48. What is the most important difference between an aggregation and
composition?

a. Composition means that the whole, or composite, class will be
responsible for creating and destroying the part or contained class.

b. Aggregation means that the whole, aggregate class will be responsible
for creating and destroying the part or contained class.

c. Composition means that the whole, or composite, class is the only class
that can have an instance of the part class at any given time.

d. Aggregation means that the whole, or aggregate, class is the only class
that can have an instance of the part class at any given time.

e. a and c

f. b and d

49. Realization means

a. polymorphism.

b. association.

c. interface inheritance.

d. composition.

50. A named association is modeled as a

a. method.

b. property.

c. field and property.

d. dependency.

51. A subclass has access to a superclass's protected members.

a. True

b. False

52. A child class may only have one parent class.

a. True

b. False

.216

APPENDIX A Final Exam

53. Which of the following statements is false?

a. Generalization refers to subtypes.

b. Classification refers to subtypes.

c. Generalization refers to object instances.

d. Classification refers to object instances.

e. None of the above

54. Realization refers to

a. class inheritance.

b. interface inheritance.

c. promoting the constituent members in a composite class.

d. aggregation.

55. Multiple inheritance can be approximated through

a. an association and the promotion of constituent properties.

b. realization.

c. composition and the promotion of constituent properties.

d. aggregation and the promotion of constituent properties.

56. Dynamic classification—where an object's type changed at runtime—can
be modeled using

a. generalization.

b. association.

c. realization.

d. composition.

57. An association class is not referred to as a linking class.

a. True

b. False

58. A parameter used to return a unique type is called

a. a realization.

b. an association qualifier.

c. an association postcondition.

d. directed association.

217

UML Demystified

59. Pick the correct statements.

a. A provided interface means that a class implements an interface.

b. A required interface means that a class depends on an interface.

c. A provided interface means that a class depends on an interface.

d. A required interface means that a class implements an interface.

60. When a classifier symbol is underlined, it means that

a. the symbol represents an object.

b. the symbol represents an abstract class.

c. the symbol represents an interface.

d. the symbol is a derived value.

61. State charts (or state machine diagrams) are good for

a. diagramming systems.

b. diagramming objects and messages for a single use case.

c. understanding a single use case.

d. specifying the behavior of an object across several use cases.

62. State machines should not be used to explore graphical user interfaces
(GUIs) and real-time controllers.

a. True

b. False

63. A junction is used to

a. merge several incoming transitions to a single outgoing transition.

b. split a single incoming transition into several outgoing transitions.

c. Both a and b

d. None of the above

64. History pseudostates are used to restore previous states.

a. True

b. False

65. A do activity executes

a. over time and a regular activity executes immediately but can be
interrupted.

b. immediately and a regular activity executes over time but can be
interrupted.

218

APPENDIX A Final Exam

c. over time and can be interrupted, and a regular activity executes
immediately.

d. over time and a regular activity executes immediately but cannot be
interrupted.

66. Transitions are directed lines labeled with

a. an optional trigger, an event, and an effect.

b. a trigger, an optional event, and an effect.

c. a trigger, an event, and an optional effect.

d. a trigger, an event, and an effect optionally.

67. External transitions cause an enter and exit activity to be executed.

a. True

b. False

68. Self-transitions cause an enter and exit activity to be executed.

a. True

b. False

69. A composite orthogonal state

a. is divided into regions, and only one region can be active at a time.

b. is divided into regions, and only one substate can be active at a time.

c. is divided into regions, and only one substate per region can be active at
a time.

d. is composed of a single region, and multiple substates can be active
simultaneously.

70. A composite nonorthogonal state

a. is comprised of regions, and only one region can be active at a time.

b. is not divided into regions, and only one substate can be active at a time.

c. is not divided into regions, and multiple substates can be active at a time.

d. is divided into regions, and one substate per region can be active at a time.

71. Every model should contain at least one component diagram.

a. True

b. False

219

UML Demystified

72. A bottom-up approach to component diagrams means that you

a. define the components first and decompose those components into
constituent parts.

b. define the constituent parts and place the components on top of the
constituent parts.

c. Neither of the above

73. A bottom-up approach to design can be valuable because (pick all
that apply)

a. components aren't really needed.

b. you get more traction solving domain problems first.

c. building infrastructure is expensive and time-consuming.

d. domain classes always can be organized into components at a
later time.

74. Component symbols can be represented using a classifier with the
«component» stereotype.

a. True

b. False

75. A required interface can be represented by a named half lollipop

a. or a lollipop.

b. or a dependency on a classifier with the «interface» stereotype.

c. or by connecting to an interface with a dependency.

d. only by using the half lollipop.

76. A provided interface is an interface that a component realizes.

a. True

b. False

77. A required interface can be represented by a named half lollipop and is
equivalent to a dependency between a component and an interface.

a. True

b. False

78. Components may not contain nested components.

a. True

b. False

a220

APPENDIX A Final Exam

79. As a general rule, you only use components and component diagrams for
systems with 100 or more domain classes.

a. True, but this is a general guideline. Components can help you organize
a solution and build reusable elements that can be sold separately.

b. False, because building components is always cheaper in the long run.

80. For each domain class in a component-based architecture, you may need
two to three supporting classes.

a. True

b. False

81. A model is only complete when it contains at least one of every kind of
diagram.

a. True

b. False

82. Component diagrams are only needed for large systems.

a. True

b. False

83. I must pick either a top-down or a bottom-up approach to modeling but
cannot combine techniques.

a. True

b. False

84. Specialization has been argued to yield productivity gains.

a. True

b. False

85. Design patterns are not part of the UML specification.

a. True

b. False

86. Refactoring is part of the UML specification.

a. True

b. False

87. Few experts agree that patterns and refactorings will improve the
implementation of software.

a. True

b. False

221

UML Demystified

88. The UML is a standard, and everyone agrees that it should be used.

a. True

b. False

89. Using a tool to validate models is essential.

a. True

b. False

90. All UML modeling tools are capable of effectively generating entire,
complete applications.

a. True

b. False

91. A node always represents a physical device.

a. True

b. False

92. A node can represent (pick all that apply)

a. a computer.

b. any physical device.

c. an execution context such as an application server.

d. All the above

93. The stereotypes that apply to nodes are (pick all that apply)

a. «device».

b. «component».

c. «executionenvironment».

d. «manifest».

94. Tags are not used to add details to a node.

a. True

b. False

95. A database server is an example of a node.

a. True

b. False

96. Artifacts use which symbol?

a. Package

b. Class

.22

APPENDIX A Final Exam

c. Activity

d. Object

97. An artifact can be represented as text in a node, a class in a node, and with
a realization connector and an external class symbol.

a. True

b. False

98. The connector and stereotype for an artifact shown outside a node is

a. realization and manifest.

b. dependency and deploy.

c. association and deploy.

d. dependency and manifest.

99. When an artifact is shown connected to a component, which stereotype
applies?

a. «deploy»

b. «use»

c. «manifest»

d. «extends»

100. Which connector is used to show communication between nodes?

a. Dependency

b. Generalization

c. Association

d. Link

Answers
1. b 7. b 13. a

2. b 8. b 14. b

3. b 9. c 15. b

4. c 10. b 16. b

5. a 11. c 17. c

6. b 12. a 18. b

223

UML Demystified

19. b

20. a

21. b

22. aandd

23. b

24. a

25. a

26. a

27. a

28. b

29. c

30. b

31. d

32. b

33. a

34. b

35. c

36. c

37. b

38. c

39. d

40. b

41. a

42. a

43. b

44. b

45. d

46. a

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

c
7

C

C

a

b

b andc

b

c

b

b

b

a andb

a

d

b

c

a

c

d

a

a

c

b

b

b

b, c, and d

a

75. c

76. a

77. a

78. b

79. a

80. b

81. b

82. b

83. b

84. a

85. a

86. b

87. b

88. b

89. b

90. b

91. b

92. d

93. a andc

94. b

95. a

96. b

97. b

98. b

99. c

100. c

224

SELECTED
BIBLIOGRAPHY

Ambler, Scott. The Object Primer: Agile Model-Driven Development with UML2.0,
3d ed. New York: Wiley, 2004.

Booch, Grady. Object Solutions. Reading, MA: Addison-Wesley, 2005.
Booch, Grady, Ivar Jacobson, and James Rumbaugh. The Unified Modeling

Language, 2d ed. Reading, MA: Addison-Wesley, 2005.
Eriksson, Hans-Erik, Magnus Penker, Brian Lyons, and David Fado. UML 2 Toolkit.

Indianapolis: Wiley, 2004.
Fowler, Martin. UML Distilled Third Edition: A Brief Guide to the Standard Object

Modeling Language. Reading, MA: Addison-Wesley, 2004.
Love, John F. McDonald's: Behind the Arches. New York: Bantam, 1995.
Overgaard, Gunnar, and Karen Palmkvist. Use Cases: Patterns and Blueprints.

Reading, MA: Addison-Wesley, 2005.

225

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

INDEX

Symbols
« and » (guillemots), 24
- (minus) symbol, 107
+ (plus) symbol, 107
(pound) symbol, 107

A
Accept signal (activity diagrams), 67
Action nodes (activity diagrams), 52, 53, 56-62

adding preconditions/postconditions,
58-62

modeling subactivities, 62
naming actions, 57-58

Activating lifelines, 84-85
Active states, 161-162
Activities (state chart diagrams), 165
Activity diagrams, 7-8, 47-77

action nodes, 56-62
actions that span partitions, 67
control flow, 52, 53
creating, 72-73
decision nodes, 62-63
determining number of, 77
examples of, 51
flowcharts vs., 48, 51
forks, 63
goal of, 47
guard conditions, 52-54

initial node, 52
input parameters, 70
joins, 63
merge nodes, 62-64
multidimensional partitions, 67, 68
naming actions, 57-58
partitioning responsibility, 63-68
preconditions and postconditions, 58-62
in reengineering process, 73-76
showing exceptions in, 70, 71
showing flows in, 54-56
subactivities, 62
swimlanes, 63-68
terminating, 71-72
time signal, 67-69
uses of, 48, 49-51

Activity final node (activity diagrams), 71-72
Activity partitions (See Swimlanes [activity

diagrams])
Actor symbols, 7, 21

defining, 36-39
Esaw, 1,2, 10, 11
function of, 18
lifelines attached to, 83, 84

Aggregation relationships, 112-114, 143
(See also Composition relationships)

Agile process, 14, 92
Alexander, Christopher, 189

227

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

UML Demystified

Alternative interaction frame, 90, 91
Ambler, Scott, 176
Ancestor (as term), 132
Annotations:

class diagrams, 118
use case diagrams, 27-28 (See also

Documentation [use case diagrams])
Arrays:

association, 145-147
attribute, 110, 111

Artifacts (deployment diagrams), 201-204,
204,205

Association classes, 146-150
directed, 146, 151
qualified, 147

Association relationships, 145-150
class diagrams, 108-109, 112, 113
use cases, 22

Attributes, 103
arrays and multiplicity, 110, 111
with association, 108-109
in classifier symbol, 106, 107
declaring, 107-108, 107-109
decorating, 106-107
primitives as, 121
uniqueness of, 110-111
using, 107-111

Automobile engineering, 4

B
Babbage, Charles, 4
Balancing Agility and Discipline

(Barry Boehm), 14
Base class, 114
Behavior state machines, 159, 166-167
Behaviors, 103
Behind the Golden Arches, 73
Boehm, Barry, 14
Booch, Grady, 4, 187
Bottom-up design approach, 178
Boundary classes, 124, 125, 128
Broccoli, Albert, 136

C
C++, 4
The C++ Programming Language (Gjarne,

Stroustrop), 152
Call events, 164
Change events, 164
Child (as term), 114, 132
Chitty Chitty Bang Bang (film), 136-137
Choice state, 159, 160
Class diagrams, 8-9, 101-128

adding details to classes, 153
adding operations to classes,

111,112
attributes, 107-111
boundary classes, 128
classifier, 103-107
comments, 118
constraints, 118-120
control classes, 127
datatypes, 105
decorating classes, 106-107
entity classes, 126-127
enumerations, 121-122
features, 103
generic types, 105
identifying classes needed, 123-128
interfaces, 104-105
metaclasses, 105-106
namespaces, 122-123
notes, 118, 119
object diagrams, 104
packages, 118
parameterized types, 105
primitives, 120-121
relationships in, 111, 113-117
stereotypes, 117

Class responsibility and collaborator (CRC)
cards, 125-126

Classes:
adding details to, 153
association, 146-150

228

INDEX

boundary, 124, 125, 128
in class diagrams, 8-9
classifiers, 103-107
control, 124, 125, 127
decorating, 106
discovering, 102
domain, 176
entity, 124, 125, 126-127
features of, 103
lifeline representing, 84
metaclasses, 105-106
relationships among (See Relationships)
simple, 104

Classification:
dynamic, 133-136
generalization vs., 132-133

Classifier role (collaboration diagrams), 94
Classifiers, 103-107

attributes in, 106, 107
half- and full-lollipop, 179
operations in, 111

Cobol, 4
Coding, initiation of, 96-97
Collaboration (communication) diagrams,

9,11,82,94-95
Combined fragments (See Interaction frames)
Comments (class diagrams), 118
Communication diagrams (See Collaboration

diagrams)
Communication paths (deployment diagrams),

204-205
Completion transition, 164
Component diagrams, 11-12, 175-182

bottom-up design approach, 178
for consumers, 180-181
for producers, 182-183
specifying interfaced, 179-180
top-down design approach, 177

Components, 176
Composite states, 162-163
Composition relationships, 112-114, 143-145

Computers, history of, 4
Connector nodes (activity diagrams), 54-55
Connectors:

class diagrams, 112-117
collaboration diagrams, 94
deployment diagrams, 204
half- and full-lollipop, 179
stereotypes associated with, 117
use case diagrams, 22-25

Constraints:
class diagrams, 118-120
sequence diagrams, 87

Consumers, component diagrams for, 180-181
Control classes, 124, 125, 127
Control flow (activity diagrams), 52, 53
CRC cards (See Class responsibility and

collaborator cards)
Create, read, update, and delete (CRUD)

behavior, 51
Creational patterns, 133
CRUD (create, read, update, and delete)

behavior, 51
Customers, communicating with, 20

D
Datatypes, 105
Decision diamonds (flowcharts), 62
Decision nodes (activity diagrams), 56, 62-63
Decorating classes, 106-107
Deep history state, 160, 161
Dependency relationships, 150-152

class diagrams, 112, 116-117
extend stereotypes, 26-27
include stereotypes, 25-26
inserting references to, 32
stereotypes for, 151-152
use cases, 22, 25-27, 32

Deployment topology diagrams, 12, 197-205
communication paths, 204-205
nodes on, 198-200
showing artifacts in nodes, 201-205

229

UML Demystified

Design:
bottom-up, 178
top-down, 177
use case-driven, 43-44

Design by contract, 58, 59
Design patterns, 127, 133-134
Design Patterns (Erich Gamma), 97, 127,

133,171
Diagrams, 7-12

activity, 7-8
choosing, 188
class, 8-9
component, 11-12
deployment topology, 12
interaction, 9-10
size and complexity of, 13
state, 10, 11
text supplementing, 13
use case, 7
when to create, 12

Directed association, 146, 151
Directed/directional association, 113
Do activities, 161-162
Documentation (in general):

amount of, 187-188
editing of, 188
with models, 192-193
(See also Comments; Notes)

Documentation (use case diagrams),
13,28-32, 42

forms of, 28
notes as, 27-28
outlines for, 29-32
of primary and secondary

requirements, 20
Domain classes, 176
Domain experts, 49, 125
Dynamic classification, 133-136

E
Eckert, Presper, 4
Edge (See Control flow)
Editing of documentation, 188
Entity classes, 124, 125, 126-127
Enumerations (class diagrams), 121-122
Esaw, 1,2, 10, 11
Exception handler (activity diagrams), 70, 71
Exceptions (activity diagrams), 70, 71
Extension use case, 25-27
extreme Programming (XP), 6, 14

F
Feature(s):

of classes, 103
meaning of term, 106, 107
as processes, 48
symbols identifying, 107

Feedback,13
Fields, 107, 145
Final state, 159
Fleming, Ian, 136
Flow (See Control flow)
Flow final node (activity diagrams), 71-72
Flowcharts:

activity diagrams vs., 48, 51
decision diamonds in, 62

Fork nodes (activity diagrams), 56, 63
Found messages, 85
Fowler, Martin, 97, 187, 192
Full-lollipop, 179

G
Gamma, Erich, 97, 127, 133, 171, 187
Gates, Bill, 3
Generalization relationships:

class diagrams, 112, 114, 115
use cases, 22, 23
(See also Inheritance relationships)

230

INDEX

Generics, 105
Grammar, 102-103
Grandchild (as term), 132
Guard conditions:

activity diagrams, 52-54, 58-62
sequence diagrams, 90
state chart diagrams, 164, 165

Guillemots («and»), 24

H
Half-lollipop, 179
History states, 160, 161
Hopper, Grace, 4

I
Idioms, 10
Inactive states, 161
Inclusion use case, 25-26
Inheritance, 104-105

multiple, 135-138
single, 132, 135

Inheritance relationships, 132-143
class diagrams, 112, 114-115, 115
interface inheritance, 139-143
multiple inheritance, 135-138
single inheritance, 132
state behavior pattern, 133-135
(See also Generalization relationships)

Initial node (activity diagrams), 52
Initial state, 159
Interaction diagrams, 9-10, 81-97

and code writing, 96-97
collaboration diagrams, 9,11
collaboration (communication)

diagrams, 82, 94-95
sequence diagrams, 9-10, 82-94

Interaction frames (combined fragments),
87-91

Interface inheritance, 139-143
provided interfaces, 141
required interfaces, 141

rules for, 141-143
whiteboard modeling, 139-140
(See also Realization relationships)

Interfaces:
class diagrams, 104-105
implementation of, 142
provided, 141, 179
required, 141, 179, 180

Internal activities (state chart diagrams), 163
Is-a relationships, 114, 115, 132-133

J
Jacobson, Ivar, 4, 187
Join nodes (activity diagrams), 63
Junction state, 159, 160

L
Lifelines (sequence diagrams), 83-84

activating, 84-85
staggering, 91

Living application deployment
environment, 205

Loop frame, 89-90
Lost messages, 85
Low signal-to-noise ratio, 125

M
McCarthy, James, 188
McDonald's, 73
Macro approach, 19, 187
Macro phase (modeling), 111
Mansfield, Richard, 124
Mauchly, John, 4
Merge nodes (activity diagrams),

62-64
Messages (sequence diagrams):

defined, 85
discovering, 92-94
found, 85
lost, 85
sending, 85-87

.231

Metaclasses, 105-106
Metadata, 106
Methods:

behaviors as, 103
decorating, 106-107
discovering, 102
use of term, 111

Micro approach, 19, 187
Micro phase (modeling), 111
Microsoft:

and cost of software, 6
SOA, 14

Microwave ovens, 161
Minus (-) symbol, 107
Model view controller (MVC), 127
Modeling:

dos and don'ts for, 186-189
experts in, 187
and future software development, 5
goal of, 10
macro and micro phases in, 111
primary activities associated

with, 139
reasons for, 5
using known state patterns, 189-191
(See also specific topics)

Modeling languages:
development of, 4
process vs., 14

Modeling tools, 5-6, 13
Models:

adding documentation to, 192-193
definition of, 2
evaluating completion of, 12
notes in, 118
refactoring, 192
text supplementing, 13
using, 6
validating, 193
value of, 2

UML Demystified

Motown-jobs.com (example), 34—44
defining actors, 36-39
dividing into multiple diagrams,

39^3
guard conditions, 53, 54
search design for, 92-94
sequence diagram for, 86

MSDN, 6
Multidimensional activity partitions, 67, 68
Multiple inheritance, 135-138
Multiple-diagram use cases, 39^43
Multiplicity:

attributes, 110
connectors, 24

MVC (model view controller), 127

N
Namespaces (class diagrams), 118,

122-123
Naming actions (activity diagrams), 57-58
Navigation, 113
Nested call, 85
Nested numbering schemes, 95
Nested switch statement, 169
Nodes (deployment diagrams), 198-200
Nonorthogonal states, 162
Notes:

class diagrams, 118, 119
sequence diagrams, 87, 88
use case diagrams, 27-28 (See also

Documentation [use case diagrams])
Numbering schemes, 95

0
Object Constraint Language (OCL), 87, 118
Object diagrams, 104
Object lifelines (sequence diagrams),

83-84, 84-85
Object Management Group (OMG), 3
The Object Primer (Scott Ambler), 176

232

INDEX

Object-oriented analysis and design:
basic principle of, 48
challenge to, 124
UML support for, 17

Objects:
in activity diagrams, 55
discovering, with sequence diagrams,

92-94
OCL (See Object Constraint Language)
OMG (Object Management Group), 3
Opdike, William, 97
Operations, 111
Operator overloading, 121
Option effect (state chart diagrams), 165-166
Orthogonal states, 162, 163
Outlines (as use case documentation), 29-32
Outsourcing of software development, 5
Ovals (See Use case ovals)

p
Package symbol, 118
Parameterized types, 105
Parent (as term), 114
Partitions (See Swimlanes [activity diagrams])
A Pattern Language (Christopher

Alexander), 189
Pins (in activity diagrams), 55-56
Plus (+) symbol, 107
Polymorphism, 115, 132
Postconditions (activity diagrams),

56,58-62
Pound (#) symbol, 107
Preconditions (activity diagrams), 56, 58-62
Primitives (class diagrams), 120-121
Prioritizing capabilities, with use case

diagrams, 19-20
Problem domain, 48
Process(es):

features as, 48
modeling languages vs., 14

Process reengineering, 73
Producers, component diagrams

for, 182-183
Property, 107
Protocol state machines, 159, 160, 167-168
Provided interfaces, 141, 179

Q
Qualified association, 147

R
Radar range, 161
Rational Unified Process (RUP), 14, 92
Read-write behavior, 51
Realization relationships:

class diagrams, 112, 115-116
interface inheritance, 139-143

Redundant diagrams, 81, 82
Reengineering process, 73-76
Refactoring, 97, 192
Refactoring (Martin Fowler), 97, 192
Regular activities, 161
Relationships:

aggregation, 112-114, 143
association, 22, 108-109, 112, 113,

145-150
in class diagrams, 111, 113-117
composition, 112-114, 143-145
dependency, 25-27, 32, 112,

116-117, 150-152
generalization, 22, 23, 112, 114, 115
inheritance, 112, 114-115, 132-143
is-a, 114, 115, 132-133
realization, 112, 115-116
in use cases, 22, 23, 25-27, 32

Required interfaces, 141, 179, 180
Reusing diagrams, 163
Role specialization, 93
Roomba® cleaner, 33
Rose XDE, 6

233

Rumbaugh, James, 4, 187
RUP (See Rational Unified Process)

s
Search engine, 92, 93
Send signal (activity diagrams), 67, 69
Sequence diagrams, 9-10, 82-94

activating lifelines, 84-85
constraints, 87
discovering objects/messages with, 92-94
interaction frames, 87-91
notes, 87, 88
object lifelines, 83-84
sending messages, 85-87
usefulness of, 91-92

Service Oriented Architecture (SOA), 14
Shallow history state, 160, 161
Signal, 152
Signal events, 164
Signal-to-noise ratio, 125
Simple states, 162
Single inheritance, 132, 135
Smalltalk, 4
SOA (Service Oriented Architecture), 14
Software design:

complexity of, 186
evolution of, 3-5
(See also Modeling)

Solution domain, 48
Sort algorithms, 105
Source (of connector), 113, 150
Specialization (software teams), 189
Spencer, Percy, 161
State behavior pattern, 133-136, 190-191
State chart diagrams (state diagrams/state

machines), 10, 11, 157-171
active/inactive states, 161-162
behavior state machines, 166-167
choice state, 159, 160
deep history state, 160, 161

UML Demystified

final state, 159
history states, 160, 161
implementing, 168-171
initial state, 159
internal activities, 163
junction state, 159, 160
linking to submachines, 163
protocol state machines, 167-168
shallow history state, 160, 161
simple/composite states, 162-163
symbols for, 158-159
terminate state, 159
transitions, 164-166

State patterns, 169, 171, 189-191
State table, 169
States symbol, 158
Static diagrams, 101, 131 (See also

Class diagrams)
Stereotypes, 24-25

class diagrams, 117
datatypes, 105
for dependencies, 151-152
extend, 26-27
include, 25-26

Stroustrop, Bjarne, 4, 152
Structural patterns, 133
Subactivity(-ies):

in activity diagrams, 62
reengineering, 74-76

Subclass, 114
Submachines, linking to, 163
Substitutability, 115
Superclass, 114
Superstate (See Composite states)
Swimlanes (activity diagrams), 63-68

T
Target (of connector), 150-151
Templates (C++), 105
Terminate state, 159

234

INDEX

Text (use case diagrams), 13, 19, 28, 32
(See also Documentation [use case
diagrams])

Time signals (activity diagrams), 67-69
Timer events, 164
To-do lists, use case diagrams as, 19
Together, 6
Top-down design approach, 177
Transitions (state chart diagrams),

158, 164-166
Triggerless transition, 164
Triggers, 164, 165
Turing, Aolan, 4

U
Unified Modeling Language (UML), 2

decomposing/recomposing problems
with, 49

development of, 4
and evolution of software design, 3-5
grammar of, 103
as a language, 2, 3, 82
precise communication in, 102

Unified modeling process, 4
Unified Process, 14
Uniform Resource Locators (URLs), 28
Use case diagrams (use cases), 7, 17^44

actor symbols in, 21
adding supporting documentation

to, 28-29
annotating, 27-32
communicating with, 20
connectors in, 22-25
creating, 32-34
deceptive simplicity of, 18-19
deciding on number of, 34
defining actors in, 36-39
dividing, into multiple diagrams, 39^43

and documenting your ideas, 42
driving design with, 43^4
example using, 34^-3
inserting notes in, 27-28
objective of, 42
prioritizing capabilities with, 19-20
purpose of, 17
simplicity of, 18-19
success and failure scenarios in, 92
text with, 13, 19
as to-do lists, 19
use case symbol, 21
using outlines to document, 29-32

Use case ovals, 7, 18
Use case symbols (in use case diagrams), 21
Use case-driven design, 43-44
Users, communicating with, 20

V
Validating models, 193
Visio, 3, 6

adding documentation, 29
composite states, 162
connector nodes with, 54-55
extends stereotype, 25
and half-lollipop, 179
interaction frame, 89
linking to submachincs, 163
multidimensional partition

simulation, 67
subactivities, 62
time signal simulation, 68

W
Whiteboarding, 139-140

X
XP (See extreme Programming)

235

This page intentionally left blank

The fast and easy way to
understanding computing
fundamentals
• No formal training needed
• Self-paced, easy-to-follow, and user-friendly
• Amazing low price

0-07-225454-8 0-07-225363-0 0-07-225514-5 0-07-225359-2 0-07-225370-3

0-07-225364-9 0-07-225878-0 0-07-226134-X 0-07-226171-4 0-07-226170-6

0-07-226141-2 0-07-226182-X 0-07-226224-9 0-07-226210-9

For more information on these and other McGraw-Hill/Osborne titles,
visit www.osbome.com.

ID S B CD R N E DELIVERSRESU l_ T S ! KJjH Osborne

www.osborne.com

	Copyright © 2005 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Chapter 1 A Picture Is Worth a Thousand Lines of Code:
	Understanding Models:
	Understanding the UML:
	The Evolution of Software Design:
	If No One Is Modeling, Why Should You?:
	Modeling and the Future of Software Development:
	Modeling Tools:
	Using Models:
	Creating Diagrams:
	Reviewing Kinds of Diagrams:
	Finding the Finish Line:
	How Many Diagrams Do I Create?:
	How Big Should a Diagram Be?:
	How Much Text Should Supplement My Models?:
	Get a Second Opinion:
	Contrasting Modeling Languages with Process:
	Chapter 2 Start at the Beginning with Use Cases:
	Making the Case for Use Cases:
	Prioritizing Capabilities:
	Communicating with Nontechnophiles:
	Using Use Case Symbols:
	Actor Symbols:
	Use Cases:
	Connectors:
	Including and Extending Use Cases:
	Annotating Use Case Diagrams:
	Creating Use Case Diagrams:
	How Many Diagrams Is Enough?:
	Example Use Case Diagrams:
	Driving Design with Use Cases:
	Quiz:
	Answers:
	Chapter 3 Diagramming Features as Processes:
	Elaborating on Features as Processes:
	A Journey toward Code:
	Understanding Activity Diagram Uses:
	Using Activity Diagram Symbols:
	Initial Node:
	Control Flow:
	Actions:
	Decision and Merge Nodes:
	Transition Forks and Joins:
	Partitioning Responsibility with Swimlanes:
	Indicating Timed Signals:
	Capturing Input Parameters:
	Showing Exceptions in Activity Diagrams:
	Terminating Activity Diagrams:
	Creating Activity Diagrams:
	Reengineering Process:
	Reengineering a Subactivity:
	Knowing When to Quit:
	Chapter 4 Discovering Behaviors with Interaction Diagrams:
	Elements of Sequence Diagrams:
	Using Object Lifelines:
	Activating a Lifeline:
	Sending Messages:
	Adding Constraints and Notes:
	Using Interaction Frames:
	Understanding What Sequences Tell Us:
	Discovering Objects and Messages:
	Elements of Collaboration (or Communication) Diagrams:
	Equating Design to Code:
	Chapter 5 What Are the Things That Describe My Problem?:
	Elements of Basic Class Diagrams:
	Understanding Classes and Objects:
	Modeling Relationships in Class Diagrams:
	Stereotyping Classes:
	Using Packages:
	Using Notes and Comments:
	Constraints:
	Modeling Primitives:
	Modeling Enumerations:
	Indicating Namespaces:
	Figuring Out the Classes You Need:
	Using the Naive Approach:
	Discovering More than Domain Analysis Yields:
	Chapter 6 Showing How Classes Are Related:
	Modeling Inheritance:
	Using Single Inheritance:
	Using Multiple Inheritance:
	Modeling Interface Inheritance:
	Whiteboarding:
	Using Realization:
	Describing Aggregation and Composition:
	Showing Associations and Association Classes:
	Exploring Dependency Relationships:
	Adding Details to Classes:
	Chapter 7 Using State Chart Diagrams:
	Elements of a State Diagram:
	Exploring State Symbols:
	Exploring Transitions:
	Creating Behavioral State Machines:
	Creating Protocol State Machines:
	Implementing State Diagrams:
	Chapter 8 Modeling Components:
	Introducing Component-Based Design:
	Using a Top-Down Approach to Design:
	Using a Bottom-Up Approach to Design:
	Modeling a Component:
	Specifying Provided and Required Interfaces:
	Exploring Component Modeling Styles:
	Diagramming Components for Consumers:
	Diagramming Components for Producers:
	Chapter 9 Fit and Finish:
	Modeling Dos and Don'ts:
	Don't Keep Programmers Waiting:
	Work from a Macro View to a Micro View:
	Document Sparingly:
	Find an Editor:
	Be Selective about Diagrams You Choose to Create:
	Don't Count on Code Generation:
	Model and Build from Most Risky to Least Risky:
	If It's Obvious Don't Model It:
	Emphasize Specialization:
	Using Known State Patterns:
	Refactoring Your Model:
	Adding Supporting Documentation:
	Validating Your Model:
	Chapter 10 Visualizing Your Deployment Topology:
	Modeling Nodes:
	Showing Artifacts in Nodes:
	Adding Communication Paths:
	Appendix A: Final Exam:
	Selected Bibliography:
	Index:

