

VISUAL BASIC 2005
DEMYSTIFIED

http://dx.doi.org/10.1036/0072261714

This page intentionally left blank

VISUAL BASIC 2005
DEMYSTIFIED

JEFF KENT

McGraw-Hill

New York Chicago San Francisco Lisbon London
 Madrid Mexico City Milan New Delhi San Juan

 Seoul Singapore Sydney Toronto

FM.indd iiiM i dd iii 11/4/2005 10:53:59 AM11/4/2005 10 53 59

http://dx.doi.org/10.1036/0072261714

Copyright © 2006 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-148675-5.

The material in this eBook also appears in the print version of this title: 0-07-226171-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or
omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for
any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072261714

http://dx.doi.org/10.1036/0072261714

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0072261714

I would like to dedicate this book to my younger
daughter, Emily Rebecca Kent. Being a teenager
is never easy and even more diffi cult during these
times. Emily, I am proud of your recent progress,
and hope it continues as you approach, all too
soon for a parent, becoming a young adult.
I love you very much.

—Dad

ABOUT THE AUTHOR

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley
College in Valley Glen, California. He teaches a number of programming languages,
including Visual Basic, C++, C#, Java, and, when he’s feeling masochistic,
Assembler. He also manages a network for a Los Angeles law firm whose employees
are guinea pigs for his applications, and as an attorney gives advice to young
attorneys whether they want to hear it or not. He also has written several books on
computer programming, recently Visual Basic.NET: A Beginner’s Guide and C++
Demystified (McGraw-Hill/Osborne), and, concurrently with this book, Visual C#
2005 Demystified (McGraw-Hill).

Jeff has had a varied career—or careers. He graduated from UCLA with a
Bachelor of Science degree in economics and then went on to obtain a Juris Doctor
degree from Loyola (Los Angeles) School of Law and to practice law. During this
time, when personal computers were still a gleam in Bill Gates’s eye, Jeff was also
a professional chess master, earning a third place finish in the United States Under-
21 Championship and, later, an international title.

Jeff does find time to spend with his wife, Devvie, which is not difficult since she
is also a computer science professor at Valley College. In addition to his other
career pursuits, he has a part-time job as personal chauffeur for his teenage daughter
Emily (his older daughter Elise now has her own driver’s license), and in what little
spare time he has, he enjoys watching international chess tournaments on the
Internet. His goal is to resume running marathons, since otherwise, given his losing
battle to lose weight, his next book may be Sumo Wrestling Demystified.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

vii

CONTENTS AT A GLANCE

PART ONE INTRODUCTION TO VISUAL BASIC 2005
CHAPTER 1 Getting Started with Your First Windows Program 3

CHAPTER 2 Writing Your First Code 19

CHAPTER 3 Controls 43

PART TWO PROGRAMMING BUILDING BLOCKS: VARIABLES,
DATA TYPES, AND OPERATORS

CHAPTER 4 Storing Information—Data Types and Variables 65

CHAPTER 5 Letting the Program Do the Math—Arithmetic
Operators 79

CHAPTER 6 Making Comparisons—Comparison
and Logical Operators 97

PART THREE CONTROLLING THE FLOW OF THE PROGRAM
CHAPTER 7 Making Choices—If and Select Case Control

Structures 115

CHAPTER 8 Repeating Yourself—Loops and Arrays 139

CHAPTER 9 Organizing Your Code with Procedures 157

viii Visual Basic 2005 Demystifi ed

PART FOUR THE USER INTERFACE
CHAPTER 10 Helper Forms 179

CHAPTER 11 Menus 197

CHAPTER 12 Toolbars 221

PART FIVE ACCESSING DATA
CHAPTER 13 Accessing Text Files 239

CHAPTER 14 Databases 255

CHAPTER 15 Web Applications 277

Final Exam 301

Answers to Quizzes and Final Exam 307

Index 325

ix

CONTENTS

Acknowledgments xix
Introduction xxi

PART ONE INTRODUCTION TO VISUAL BASIC 2005
CHAPTER 1 Getting Started with Your First Windows Program 3

Obtaining and Installing Visual Basic 2005 4
System Requirements 5
Choosing the Right Version 6
Installing Visual Basic 2005 6

Starting Your First Visual Basic 2005 Project 7
Starting the Program 7
Specifying the Type of New Project 7
Specifying the Name and Location

of the Project 10
Integrated Development Environment (IDE) 11
Run the Project! 12

What Is a Computer Program? 14
What Is a Programming Language? 15
Translating the Code for the Computer 16

Conclusion 17
Quiz 17

For more information about this title, click here

http://dx.doi.org/10.1036/0072261714

x Visual Basic 2005 Demystifi ed

CHAPTER 2 Writing Your First Code 19
Starting an Existing Project 20

Design View and Code View 22
Object Browser 25

Classes and Objects 26
Inherits 27
Namespaces 27
.NET Framework 28

Properties 28
Properties Window 29
Changing Properties at Design Time 31

What Is a Windows Application? 31
Windows Applications Are Gooey 32
Windows Applications Are Event-Driven 34
Classes Have Events 35

Creating an Event Procedure 35
Creating an Event Procedure Stub 36
Writing Code Inside the Event Procedure 38
Assignment Operator 39
Comments 40

Conclusion 41
Quiz 41

CHAPTER 3 Controls 43
Adding Controls to the Form 44

Toolbox 44
Copying a Control from the Toolbox

to the Form 46
Changing the Control’s Location 46
Changing the Control’s Size 48

Important Label Properties 50
Text Property 50
Name Property 51

The Label Control in Action 52
Mouse Coordinates 52
Creating the Application 53

How the Code Works 56
Line-Continuation Character 56
Using Event Procedure Parameters 56
Handles Clause 57
What If You Type the Wrong Code? 57

Conclusion 59
Quiz 60

PART TWO PROGRAMMING BUILDING BLOCKS: VARIABLES,
DATA TYPES, AND OPERATORS

CHAPTER 4 Storing Information—Data Types and Variables 65
Data Types 66

Numeric Data Types 67
Text Data Types 68
Data Types of Visual Basic Properties 68

Variables 70
Declaring a Variable 70
Where Do You Declare a Variable? 72

Constants 75
Declaring a Constant 75
Why Use Constants? 76

Conclusion 77
Quiz 77

CHAPTER 5 Letting the Program Do the Math—Arithmetic
Operators 79

Arithmetic Operators 80
The Addition Operator 80
The Subtraction Operator 81
The Multiplication Operator 81

CONTENTS xi

xii Visual Basic 2005 Demystifi ed

The Exponent Operator 81
The Division Operators 82
Operator Precedence 83
Combining Arithmetic and Assignment

Operators 83
The Parse and ToString Methods 84

Class Methods 86
Change Machine Project 86

Creating the Project 87
The Algorithm 90

Type Conversions 92
Conclusion 94
Quiz 95

CHAPTER 6 Making Comparisons—Comparison
and Logical Operators 97

Debugging 98
Comparison Operators 100

Numeric Comparison Operators 100
String Comparisons 102
Precedence 105

Logical Operators 106
And Operator 106
AndAlso Operator 107
Or Operator 108
OrElse Operator 109
Xor Operator 109
Not Operator 110
Precedence 110
Why AndAlso and OrElse in Addition

to And and Or? 111
Conclusion 111
Quiz 112

CONTENTS xiii

PART THREE CONTROLLING THE FLOW OF THE PROGRAM
CHAPTER 7 Making Choices—If and Select Case Control

Structures 115
The InputBox Function 116

Modal vs. Modeless 116
Displaying an Input Box 118
Return Value 118

If Control Structure 119
If...Then Statement 120
If…Then…Else Statement 121
If…ElseIf Statement 122

Input Validation 124
Exceptions 124

Controls Used for If Control Structure 128
CheckBox Control 128
RadioButton Control 130

Pizza Calculator 131
Creating the Project 131
How the Project Works 132
The Code 132

Select Case Control Structure 134
Syntax 135
The Is Keyword 135
Select Case Control Structure in Action 136
Choosing Between If…ElseIf and

Select Case 137
Conclusion 137
Quiz 138

CHAPTER 8 Repeating Yourself—Loops and Arrays 139
Loops 140

For...Next Statement 140

xiv Visual Basic 2005 Demystifi ed

While...End While Statement 147
Do Statement 150
For Each...Next Loop 152

Arrays 152
Declaring Arrays 153
Default Value 153

Conclusion 155
Quiz 155

CHAPTER 9 Organizing Your Code with Procedures 157
Types of Procedures 158

Built-In vs. Programmer-Defi ned
Procedures 158

Methods Contrasted 159
Subroutines 159

Declaring a Subroutine 159
Calling the Subroutine 162
Parameters 163

Functions 168
Declaring Functions 168
Calling Functions 170
How the Value Is Returned 171

Why Write Your Own Procedures? 174
Conclusion 175
Quiz 176

PART FOUR THE USER INTERFACE

CHAPTER 10 Helper Forms 179
Message Boxes 180

Creating the Project 181
Message Boxes Are Modal 182

CONTENTS xv

Show Method 182
Using the Show Method’s Return Value 186

Dialog Forms 188
Creating the Project 188
Showing the Dialog Form and Returning

Its Result 192
Accessing Values from the Dialog Form 194
Modal vs. Modeless 194

Conclusion 195
Quiz 195

CHAPTER 11 Menus 197
Creating a Main Menu 198

Adding a MenuStrip Control to a Form 199
Adding Menu Items to the MenuStrip 200
Enhancing the Menu Items 204
Adding Functionality to the Menu Items 207
Disabling Menu Items 208

Creating a Context Menu 209
Adding a ContextMenuStrip to a Form 210
Adding Menu Items to the

ContextMenuStrip 211
Adding Functionality to

Context Menu Items 214
Text Editor Project 217

Creating the Project 217
Explanation of the Code 219

Conclusion 220
Quiz 220

CHAPTER 12 Toolbars 221
Creating a Toolbar 222

Adding a Toolbar to a Form 222

xvi Visual Basic 2005 Demystifi ed

Adding Buttons to the Toolbar 224
Associating Images with Toolbar Buttons 227

Associating Code with Clicks of Toolbar Buttons 233
Conclusion 234
Quiz 234

PART FIVE ACCESSING DATA
CHAPTER 13 Accessing Text Files 239

Open and Save File Dialog Boxes 240
Adding an OpenFileDialog Control

to Your Form 240
Showing the OpenFileDialog Control 241
Determining Whether Open or Cancel

Has Been Chosen 242
Identifying the File to Open 243
SaveFileDialog Control 244

Reading from a Text File 246
StreamReader Class 246
Reading the Text File into the TextBox 248
Closing the Text File 249

Writing to a Text File 250
StreamWriter Class 250
Writing from the TextBox to the Text File 251
Closing the Text File 252

Conclusion 253
Quiz 253

CHAPTER 14 Databases 255
Installing the Database 256

Obtaining the Northwind Traders Database 256
Installing the Northwind Traders Database 256

Connecting to the Database 257

CONTENTS xvii

Using Server Explorer 260
Exploring the Database 261
Exploring the Customers Table 262

Database Project 264
What the Project Does 264
Creating the Form 264
Importing Data Namespaces 266
Creating a Connection 267
Creating a Command 269
Filling the DataGridView 271

Conclusion 275
Quiz 276

CHAPTER 15 Web Applications 277
ASP.NET 278
Internet Information Services 278

Determining If IIS Is Already Installed 279
Installing IIS 280
Start the IIS Admin Service 280
Starting the Default Website 282

URL 284
Your Computer as the Web Server 284
Virtual and Physical Paths 285

Creating a Web Application 287
ASP.NET Development Server 288
ASP.NET Application IDE 290

Creating a Database Web Application 292
Adding a GridView Control 292
Locating the Database on the Web Server 295
Adding Code 297

Conclusion 298
Quiz 298

xviii Visual Basic 2005 Demystifi ed

Final Exam 301

Answers to Quizzes and Final Exam 307

Index 325

xix

ACKNOWLEDGMENTS

It seems obligatory in acknowledgments for authors to thank their publishers (especially
if they want to write for them again), but I really mean it. This is my fifth book for
McGraw-Hill, and I hope there will be many more. It truly is a pleasure to work with
professionals who are nice people as well as very good at what they do (even when what
they are very good at is keeping accurate track of the deadlines I miss).

I first want to thank Wendy Rinaldi, who got me started with McGraw-Hill/
Osborne back in 1998 (has it been that long?). Wendy was also my first acquisitions
editor. She has since received several well-deserved promotions, but is still my
acquisitions editor. Indeed, this book was launched through a telephone call with
Wendy at the end of a vacation with my wife, Devvie, who, being in earshot and
with an are-you-insane tone in her voice, asked incredulously, “You’re writing
another book?”

I replied, “Of course not, honey...”
She interjected, “That’s a relief!”
I then continued, “…I’m writing two books.” (I wrote Visual C# 2005 Demystified

concurrently with this book).
I must also thank my acquisitions coordinator, Alexander McDonald, and my

project editor, LeeAnn Pickrell. Both were unfailingly helpful and patient, while
still keeping me on track in this deadline sensitive business (e.g., I’m so sorry you
broke both your arms and legs; you’ll still have the next chapter turned in by this
Friday, right?”).

Bart Reed did the copyediting. He was kind about my obvious failure during my
school days to pay attention to my grammar lessons. He improved what I wrote while
still keeping it in my words (that way if something is wrong it is still my fault).

Ron Petrusha was my technical editor. Ron’s suggestions were quite helpful and
added a lot of value to this book.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

xx Visual Basic 2005 Demystifi ed

There were many other talented people working behind the scenes who also
helped get this book out to press, and as in an Academy Award speech, I can’t list
them all. That doesn’t mean I don’t appreciate all their hard work, because I do.

I truly thank my wife, Devvie, who in addition to being my wife, best friend
(maybe my only one), and partner (I’m leaving out lover because computer
programmers aren’t supposed to be interested in such things), tolerated my incessant
muttering about unreasonable chapter deadlines and merciless editors (sorry, Alex)
while excusing myself from what she wanted to do (or wanted me to do). Similarly, I
would like to give thanks to my daughters, Elise and Emily, and my mom, Bea Kent,
for tolerating my absentmindedness while I was preoccupied with unreasonable
chapter deadlines and merciless editors (starting to notice a pattern here?). I also
should thank my family in advance for not having me committed when I talk about
writing my next book.

xxi

INTRODUCTION

One of my favorite movie lines was in Rocky III: Before their rematch, Mr. T,
playing a boxer called Clubber Lang who had beaten up Rocky badly in their first
fight, said, “Fool, you never should have come back.”

Visual Basic must be saying this to me. A few years ago I wrote a book, Visual Basic
.NET: A Beginner’s Guide, timed to be on the bookshelves for the release of Visual
Basic .NET. Writing such a “day and date” book is added pressure, especially since
Microsoft is famous (or infamous) for last minute changes from their most recent beta.

I must have a short memory or be a slow learner. With the next major change in
Visual Basic, Visual Basic 2005, here I go again writing another “day and date” book.

Why Did I Write This Book?
Given my griping about writing another “day and date” book, you may be wondering
why I wrote this book. I assure you that the reason was not because I thought it
would get me riches, fame, or beautiful women. I may be misguided, but I’m not
completely delusional or, in the case of my wife’s reaction to the beautiful women
part, suicidal.

To be sure, there likely will be many introductory-level books on Visual Basic
2005. Nevertheless, I wrote this book because I believe I bring a different and, I
hope, valuable perspective.

As you may know from my author biography, I teach computer science at Los
Angeles Valley College, a community college in the San Fernando Valley area of
Los Angeles, where I grew up and have lived most of my life. I also write computer
programs, but teaching programming has provided me with insights into how
students learn that I could never obtain from just writing programs. These insights
are gained not just from answering student questions during lectures; I spend hours
each week in our college’s computer lab helping students with their programs and

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

xxii Visual Basic 2005 Demystifi ed

more hours each week reviewing and grading their assignments. Patterns emerge
regarding which teaching methods work and which don’t, the order in which to
introduce programming topics, the level of difficulty at which to introduce a new
topic, and so on. I joke with my students that they are my beta testers in my never-
ending attempt to become a better teacher, but there is much truth in that joke.

Additionally, my beta testers… err, students, seem to complain about the textbook
no matter which book I adopt. Many ask me why I don’t write a book they could
use to learn Visual Basic. They may be saying this to flatter me (I’m not saying it
doesn’t work), or for the more sinister reason that they will then be able to blame
the teacher for a poor book as well as poor instruction. Nevertheless, having written
other books, these questions planted in my mind the idea of writing a book that, in
addition to being sold to the general public, could also be used as a supplement to
a textbook.

Who Should Read This Book
Anyone who will pay for it! Just kidding, though no buyers will be turned away.

It is hardly news that publishers and authors want the largest possible audience
for their books. Therefore, this section of the introduction usually tells you this
book is for you—whoever you may be and whatever you do. However, no
programming book is for everyone. For example, if you exclusively create game
programs using Java, this book may not be for you (though being a community
college teacher I may be your next customer if you create a space beasts vs.
community college administrators game).

While this book is not for everyone, it may very well be for you. Many people
need or want to learn Visual Basic, either as part of a degree program, job training,
or even as a hobby. Unfortunately many books don’t make learning Visual Basic
any easier, throwing at you a veritable telephone book of complexity and jargon. By
contrast, this book, as its title suggests, is designed to “demystify” Visual Basic.
Therefore, it goes straight to the core concepts and explains them in logical order
and in plain English.

What This Book Covers
I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters are illustrated by programs you can write using
tested and thoroughly explained code. You can run this code yourself, and also use
it as the basis for writing further programs that expand on the covered concepts.

The first part of this book is designed to get you up and running with Visual
Basic 2005. Chapter 1 is titled “Getting Started with Your First Windows Program.”
The first step in programming in Visual Basic 2005 is to obtain and install it. This
chapter advises you on how to do that. The chapter then shows you how to create
your first Visual Basic 2005 project and concludes by defining core concepts such
as computer program, programming language, and how your code is translated for
the computer.

Chapter 1 teaches you how to create a working Windows application without
having to write any code. However, you will need to write code for even the
simplest program. Thus, Chapter 2 is about “Writing Your First Code.” This
chapter explains key programming concepts, such as classes, objects, and
properties, as well as giving you a tour of the Visual Basic 2005 Integrated
Development Environment (IDE). The chapter then describes the event-driven
nature of a Windows application and shows you how to put this theory into
practice by creating an event procedure.

Chapters 1 and 2 focus on the form, perhaps the most important part of a Windows
application’s graphical user interface, or GUI. However, a form cannot possibly
meet all the requirements of a Windows application. For example, the form does not
have the functionality to permit the typing of text, listing of data, selecting of
choices, and so forth. You need other, specialized controls for that additional
functionality. Indeed, the form’s primary role is to serve as a host, or container, for
other controls that enrich the GUI of Windows applications, such as menus, toolbars,
buttons, text boxes, and list boxes. Chapter 3, “Controls,” explains how to add
controls to your form and manipulate their properties. This chapter then uses a
project to demonstrate how you can use a control’s events in an application.

Now that you are up and running with Visual Basic 2005, the next part of this
book covers the building blocks of your programs: variables, data types, and
operators, starting with Chapter 4, “Storing Information—Data Types and Variables.”
Most computer programs store information, or data. Data comes in different
varieties, such as numeric or text. The type of information, whether numeric, text,
or Boolean, is referred to as the data type and often is stored in a variable, which
not only reserves the amount of memory necessary to store information, but also
provides you with a name by which that information may be retrieved later. Finally,
this chapter covers constants, which are similar to variables, but differ in that their
initial value never changes while the program is running.

As a former professional chess player, I have marveled at the ability of chess
computers to play world champions on even terms. The reason the chess computers
have this ability is because they can calculate far more quickly and accurately than
we can. Chapter 5, “Letting the Program Do the Math—Arithmetic Operators,”
covers arithmetic operators, which we use in code to harness the computer’s
calculating ability.

INTRODUCTION xxiii

xxiv Visual Basic 2005 Demystifi ed

Now that we have covered the programming building blocks, we’ll use them in the
next part of this book to control the flow of your program. As programs become more
sophisticated, they often branch in two or more directions based on whether a condition
is true or false. For example, while a calculator program would use the arithmetic
operators you learned about in Chapter 5, your program first needs to determine
whether the user chose addition, subtraction, multiplication, or division before
performing the indicated arithmetic operation. Chapter 6, “Making Comparisons—
Comparison and Logical Operators,” introduces comparison and logical operators,
which are useful in determining a user’s choice. Chapter 7, “Making Choices—If and
Select Case Control Structures,” introduces the If and Select Case statements, which
are used to direct the path the code will follow based on the user’s choice.

When you were a child, your parents may have told you not to repeat yourself.
However, sometimes your code needs to repeat itself. For example, if an application
user enters invalid data, your code may continue to ask the user whether they want
to retry or quit until the user either enters valid data or quits. Chapter 8, “Repeating
Yourself—Loops and Arrays” introduces loops, which are used to repeat code
execution until a condition is no longer true. This chapter then discusses arrays.
Unlike the variables we have covered thus far in the book, which may hold only one
value at a time, arrays may hold multiple values at one time. Additionally, arrays
work very well with loops.

This book is several hundred pages long. Imagine how much harder this book
would be to understand if it consisted of only one, very long chapter, rather than
being divided into chapters, with each chapter being divided into sections? Chapter 9,
“Organizing Your Code with Procedures,” shows you how to similarly divide up
your code into separate procedures. This has advantages in addition to making your
code easier to understand. For example, if a method performs a specific task such
as sending output to a printer, which is performed several times in a program, you
only need to write the code necessary to send output to the printer once, and then
you call that method each time you need to perform that task. Otherwise, the code
necessary to send output to the printer would have to be repeated each time that task
had to be performed. Further, if you later have to fix a bug in how you perform that
task, or simply find a better way to perform the task, you have to change the code
in only one place rather than many.

The next part of this book focuses on the graphical user interface (GUI), starting
with Chapter 10, “Helper Forms.” Up until now, our applications have had one form
that serves as the main application window. This one form may be sufficient for a
simple application, but as your applications become more sophisticated, the main
application form will become unable to perform all the tasks required by the
application and need help from other forms. This chapter shows you how to create
and use two helper forms that will be workhorses in your applications: message
boxes and dialog forms. While these helper forms are, well, helpful, they also

present programming challenges involving communication between the main and
helper form. For example, the main form needs to know which button was clicked
on the helper form so it can execute the appropriate code depending on which button
was clicked. Additionally, since the dialog form contains controls, the main form
needs to know and take actions based on what the application user types, checks, or
selects in the controls in the helper form. This chapter will show you how to solve
these programming challenges.

Through the GUI of the application, users issue commands to an application, such as
to open, save, or close a file, print a document, and so on. Chapter 11, “Menus,” and
Chapter 12, “Toolbars,” cover the three most common GUI elements through which
users give commands to an application: the menu, shortcut or context menus, and
toolbars. Additionally, commands such as cut, copy, and paste are often duplicated in a
menu, a context menu, and a toolbar, providing the user with the convenience of having
three different ways to perform the same command. However, you don’t want to write
the same code three times, so these chapters show you how to connect corresponding
items in menus, context menus, and toolbars so they each execute the same code.

When I was finished writing this book for the evening, I closed Microsoft Word,
and maybe even shut down my computer. Of course, the next evening I did not have
to start over; what I had written the previous evening had been saved. However, up
until now the programs in this book don’t save data so it is available even after the
application exits. The next part of this book shows you how to save data. Chapter
13, “Accessing Text Files,” explains how to write code that reads from and writes to
a text file. This chapter also shows you how to add Open and Save dialog boxes,
such as those used in sophisticated programs like Microsoft Word, so you can open
a text file to read from it and save to a text file to write to it. Chapter 14, “Databases,”
explains how to write programs that access information stored in a database.

Throughout this book we have been writing Windows applications, which to be
sure are used heavily. However, many of us interact ever more frequently with the
subject of Chapter 15, “Web Applications.” This chapter shows you how to create a
Web application that displays information from a database, similar to the Windows
application you’ll create in Chapter 14.

How to Read This Book
I have organized this book to be read from beginning to end. While this may seem
patently obvious, my students often express legitimate frustration about books (or
teachers) that, in discussing a programming concept, mention other concepts that
are covered several chapters later or, even worse, not at all. Therefore, I have
endeavored to present the material in a linear, logical progression. This not only
avoids the frustration of material that is out of order, but also enables you in each
succeeding chapter to build on the skills you learned in the preceding chapters.

INTRODUCTION xxv

xxvi Visual Basic 2005 Demystifi ed

Special Features
Each chapter has detailed code listings so you can put into practice what you
learned. My overall objective is to get you up to speed quickly, without a lot of dry
theory or unnecessary detail. So let’s get started. It’s easy and fun to write Visual
Basic programs.

Contacting the Author
Hmmm… it depends why. Just kidding. While I always welcome gushing praise
and shameless flattery, comments, suggestions, and yes, even criticism can also be
valuable. The best way to contact me is via email; you can use jkent@genghiskhent
.com (the domain name is based on my students’ fond (?) nickname for me, Genghis
Khent). Alternately, you can visit my website, http://www.genghiskhent.com/.
Don’t be thrown off by the entry page; I use this site primarily to support the online
classes and online components of other classes that I teach at the college, but there
will be a link to the section that supports this book.

I hope you enjoy reading this book as much as I enjoyed writing it.

http://www.genghiskhent.com/

PART ONE

Introduction to
Visual Basic

 2005

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

3

CHAPTER
1

Getting Started
with Your First

Windows Program

You probably have seen on television an interviewer ask a victorious athlete for the
secret of their success. Can you imagine the athlete replying that they never trained
but instead just read about their sport a lot? I doubt it. The only way to become a
good swimmer, runner, or weightlifter is to swim, run, or lift weights. Of course,
good coaching helps, but a good swimmer must swim, a good runner must run, and
a good weightlifter must lift weights.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

4 Visual Basic 2005 Demystifi ed

Although computer programming is mental rather than physical exercise,
similarly you cannot become a good computer programmer only by reading about
computer programming. Instead, you have to write computer programs—lots of
them.

Don’t get me wrong, I’m not trying you to discourage you from buying a book,
especially this one! A good book is like a good coach, making your learning more
efficient and less frustrating. However, even with the best book, if you don’t write
computer programs, it will be difficult for you to learn computer programming.
Fortunately, it is easy to start writing computer programs; this chapter will show
you how.

Newcomers to programming sometimes shy away from writing programs because
something may go wrong in their program. They may think of a scene in an action
movie where someone has only seconds to defuse a bomb and they have to guess
which one of several wires to cut. The consequences in those circumstances of
making a mistake are life and death.

However, you are not defusing a bomb. You are writing a computer program. If
you do make a mistake in your program, neither you nor your computer will
disappear in a fireball. You just correct the mistake. Indeed, you learn best from
your mistakes.

Since I have given you this speech on the importance of writing programs, it is
only fair that I help you get started writing programs. The first step is for you to
obtain and install Visual Basic 2005. In this chapter, I first will help you choose the
edition of Visual Basic 2005 that is best for you, and assist you in ensuring that your
computer meets the hardware requirements of Visual Basic 2005. After you install
Visual Basic 2005, I will show you how to use it to create a Windows application.
Finally, you will learn just what a computer program is.

Obtaining and Installing Visual Basic 2005
Visual Basic 2005 comes in several editions. This section will help you choose the
one right for you. However, before you buy any edition of Visual Basic 2005, you
should confirm that the computer on which you will install Visual Basic 2005 meets
the hardware requirements of Visual Basic 2005.

Once you have purchased Visual Basic 2005 and verified that the installation
computer meets the hardware requirements, you are ready to install Visual Basic
2005. This section will give you tips on the installation.

CHAPTER 1 Getting Started with Your First Windows Program 5

System Requirements
Installing Visual Basic 2005 requires not only the right software, but hardware
sufficient to run the software. Therefore, you should first confirm that the computer
on which you are going to install Visual Basic 2005 meets the system requirements,
such as the operating system, processor, RAM, and available hard disk space.

NOTENOTE I will be referring in this chapter to Visual Basic 2005, but my comments
apply whether you are buying Visual Basic 2005 alone or one of the editions
of Visual Studio 2005, as discussed in the next section, “Choosing the Right
Version.”

Here are my recommendations on the key requirements. Keep in mind these
system requirements are truly minimum, and therefore Visual Basic 2005 may run
quite slowly if your computer only meets the bare minimum requirements.

• Operating system You must have Windows 2003, XP, or 2000; Windows
NT, 95, 98, or Me will not work. If you have not yet purchased an operating
system and are considering XP, I would recommend the Professional over
the Home Edition, especially if you are developing web applications, which
are discussed in Chapter 15.

• Available hard drive space The requirement varies with the edition
and type of installation and whether other components such as Internet
Explorer (IE) already are installed on your computer. You should
plan on the total installation taking between 2GB and 5GB (gigabytes).
A large (at least 80GB) hard drive is relatively inexpensive and
easy to install, so if remaining space on your existing hard drive
is scarce, you may wish to consider upgrading before installing
Visual Basic 2005.

• Processor According to Microsoft, a processor speed of 600 MHz
(megahertz) is the minimum and 1 GHz (gigahertz) is recommended.
Because upgrading a processor by replacing the motherboard is not so
inexpensive or easy, another alternative is boosting your system RAM,
discussed next, if you are on the borderline.

• RAM According to Microsoft, 128MB (megabytes) is the minimum, and
256MB is recommended. I would recommend 512MB, especially if you are
running other programs at the same time.

6 Visual Basic 2005 Demystifi ed

Additionally, Visual Basic 2005, in order to work properly, needs other software
to be on your computer—in particular, Internet Explorer. If you are installing Visual
Basic 2005 at work and your company restricts browsers to Netscape or another
non-IE browser, you should check first with your system administrator before
attempting to install Visual Basic 2005 there.

Choosing the Right Version
You can buy Visual Basic 2005 either by itself or as part of Visual Studio 2005,
which includes, in addition to Visual Basic, support for other programming
languages such as C++ and C#. I recommend Visual Studio 2005 if your budget
allows. The additional cost usually is not that substantial and you will have a
program that works with other commonly used languages if your education,
employment, or interests prompt you to work with other programming languages.
This is more likely than you may think. Once you learn one programming language,
learning additional ones becomes much easier because the concepts are essentially
the same. Indeed, most programmers don’t learn just one language.

If you buy Visual Basic 2005 by itself, you have one choice: the Express Edition.
If you instead buy Visual Basic 2005 as part of Visual Studio 2005, you have three
choices: Standard, Professional, and Team System Editions.

If you already have a copy of Visual Basic 2005 through your school or job, any
of these choices should work fine for this course. If you do not already have a copy
of Visual Basic 2005, I recommend that you obtain the Academic version of the
Professional Edition. The Academic version represents a substantial discount for
students and teachers.

Microsoft’s website on Visual Studio 2005, http://lab.msdn.microsoft.com/
vs2005/ at the time of this writing (Microsoft does reorganize its website from time
to time so this location may change), has a product matrix that lists the differences
between the editions.

Installing Visual Basic 2005
Now you are ready to install Visual Basic 2005! You will find it easy.

The Visual Basic 2005 installation may consist of more than one CD, depending
on the edition. It is a large program, so it takes some time to install. However, Visual
Basic 2005 is not difficult to install. Installation is simply a matter of following
directions and being patient. Patience is important in programming, and so it is with
the installation of Visual Basic 2005.

http://lab.msdn.microsoft.com/vs2005/
http://lab.msdn.microsoft.com/vs2005/

CHAPTER 1 Getting Started with Your First Windows Program 7

One unusual feature is that the help for Visual Basic 2005 is not built into the
program but instead is a separate program, MSDN Library. MSDN is an acronym
for Microsoft Developer Network. This help also comes on one or more CDs,
depending on the edition.

Starting Your First Visual Basic 2005 Project
Now you’re going to create your first Visual Basic 2005 project. You not only will
use this project for this lesson, but you also will use it as the starting point for the
project in the next lesson.

NOTENOTE The following instructions assume you purchased Visual Studio 2005.
However, the same basic information applies if you purchased Visual Basic 2005
Express Edition, though some of the screenshots may look slightly different.

Starting the Program
Although you use Visual Basic 2005 to create programs, it itself is a program. Start
Visual Basic 2005 by choosing All Programs from the Start menu, select the folder
called Microsoft Visual Studio 2005, and then click on the icon of the same name
that appears in the submenu.

When you first start Visual Studio 2005, a form, shown in Figure 1-1, will display,
asking you to choose your default environment settings.

I chose the General Development Settings option, but you can choose the
development settings for Visual Basic or one of the other programming languages.
I don’t consider this choice an important issue because the various settings are not
that different. I chose General Development Settings because that setting is the
most generic, and would work equally well if you also programmed in another
language supported by Visual Studio 2005 such as Visual C#.

The Start Page next will display, as shown in Figure 1-2.
Now you are ready to start. So let’s get going!

Specifying the Type of New Project
Because we want to create a new project, choose New from the File menu and then
Project from the New submenu to display the New Project dialog box shown in
Figure 1-3.

8 Visual Basic 2005 Demystifi ed

Figure 1-1 Choosing your default environment settings

Figure 1-2 The Start Page

CHAPTER 1 Getting Started with Your First Windows Program 9

The left pane of the New Project dialog box lists project types. There are project
types for each of the languages included in Visual Studio 2005. In addition to Visual
Basic, these are Visual C#, Visual C++, and Visual J#. Because this book is about
Visual Basic 2005, choose Visual Basic.

The right pane of the New Project dialog box lists templates for various types of
Visual Basic applications you can create. A project template helps you get started
by creating the initial files, code, and other settings for the selected project.

There certainly are a lot of templates to choose from. The ones starting with
Windows CE or Pocket PC can be run on handheld computers, and the ones starting
with Smartphone can be run from phones. However, for most of this book, we will
be creating Windows applications, so select Windows Application from the right
pane. I will be discussing in Chapter 2 what a Windows application is. For now,
Microsoft Word and Excel are examples of Windows applications. Each has a
window or windows in which you work, with a menu, toolbar, and other visual
components with which you can interact.

As shown in Figure 1-3, when you choose the Windows Application project
template, the description beneath the Project Types frame becomes “A project for
creating an application with a Windows user interface.”

Figure 1-3 The New Project dialog box

10 Visual Basic 2005 Demystifi ed

Specifying the Name and Location of the Project
The lower part of the New Project dialog box lists the name of and location for your
project. The default project name for your first project is WindowsApplication1.
For the second, the name is WindowsApplication2, and so on. You should change
this default name to one that will help you identify this project later. Otherwise,
after you have created many projects, you may not recall what WindowsApplication52
did as opposed to WindowsApplication53.

The location for your project is up to you; the default location should work fine.
Whatever your decision, I recommend you have a consistent method for where you
store your projects so you can easily find them later.

In Figure 1-4, I have changed the name of the project to FirstProject and the
location of the project to another drive, D, on my computer.

Once you are satisfied with the name and location of the project, click OK. Visual
Studio.NET then generates the files and folders for your first project. A folder with
the same name as the project is also created in the location displayed in the Location

Figure 1-4 Changing the default name of and location for the project

CHAPTER 1 Getting Started with Your First Windows Program 11

field, which contains the parent folder where your project files will be located.
Therefore, because in Figure 1-4 the project will be located in D:\Documents and
Settings\JAK\Visual Studio Projects\Visual Basic, and the name of the project is
FirstProject, a folder named FirstProject will be created at the specified location,
and the project files will be stored at D:\Documents and Settings\JAK\Visual Studio
Projects\Visual Basic\FirstProject.

Integrated Development Environment (IDE)
Figure 1-5 shows a view of the Windows application FirstProject that is created
after you click the OK button in the New Project dialog box.

Figure 1-5 displays what is called an Integrated Development Environment, or
IDE. The term “development environment” refers to Visual Studio.NET’s role as an
application to assist you in developing applications. The term “integrated” means
the tools to design your application and write, test, and run your code are all together
under one (software) roof.

Figure 1-5 A new project

12 Visual Basic 2005 Demystifi ed

The IDE is complex, with many windows that perform many different functions.
Don’t worry; you don’t need to know right away what they all do. Various
components of the IDE will be introduced, described, and explained in this and
succeeding lessons.

Run the Project!
We now will use the IDE to run the project. To run this project as an application,
you must build additional files. You do so, naturally enough, from the Build menu,
shown in Figure 1-6. From the Build menu, you choose one of the following four
options:

• Build Solution

• Rebuild Solution

• Build FirstProject

• Rebuild FirstProject

As will be explained later in this chapter, “building” means using the compiler to
translate your code into machine language the computer can understand.

NOTENOTE The name following Build in the third choice and Rebuild in the fourth
choice is FirstProject because we changed the name of the project to FirstProject.
If we had kept the default project name of WindowsApplication1, these menu items
instead would be Build WindowsApplication1 and Rebuild WindowsApplication1.

Figure 1-6 The Build menu

CHAPTER 1 Getting Started with Your First Windows Program 13

The difference between the Build menu items Build Solution and Build
FirstProject is that the first concerns a solution and the second a project. A project
contains all the files and links necessary for your application. A solution may
contain multiple projects. Because the current application is simple and concerns
only one project, there is no practical difference in this instance between the two
menu commands.

The difference between Build and Rebuild is that if you previously have built your
program, Build just builds the changes you made from the previous build, whereas
Rebuild starts over and rebuilds the whole program. Rebuild consequently takes
longer, so it’s used when there have been extensive changes since the last build.

As a practical matter, there is little difference between the two commands. If you
choose Build and the changes since the last build have been too extensive to avoid
a rebuild, Visual Basic 2005 will perform a rebuild instead. The additional time a
rebuild requires over a build is very minor, especially if you have a fast processor
and ample RAM.

You now have a working Windows program without writing a single line of
code! From the Debug menu, choose either Start or Start Without Debugging. The
result is a window named Form1, shown in Figure 1-7.

The state of your project while it is running is referred to as run time. The state
of your project before you run it, and after it stops running (such as when you click
the close button of the form), is referred to as design time.

You now have created a working computer program. However, just what exactly
is a computer program, and how does a programming language such as Visual Basic
2005 fit in? The next sections answer those questions.

Figure 1-7 A Windows application running

14 Visual Basic 2005 Demystifi ed

What Is a Computer Program?
You probably interact with computer programs many times during an average day.
I certainly do. The other day, I arrived at the community college where I teach and
found that my computer didn’t work, so I called tech support. At the other end of
the telephone line, a computer program forced me to navigate a voicemail menu
maze and then tortured me while I was on perpetual hold with repeated insincere
messages about how important my call was and false promises about how soon I
would get through.

Finally my computer got fixed. To calm down, I decided to take a break and log
on to my now-working computer to launch my favorite game program, in which
community college administrators do battle with hideous alien insects from the
planet Megazoid. While I was cheering on the insects, the network administrator
caught me goofing off using yet another computer program that monitors employee
computer usage. Fortunately, I was still employed, so an accounts payable program
generated my payroll check.

On my way home I decided I needed some cash and stopped at an ATM, where
a computer program confirmed (hopefully) I have enough money in my bank
account and then instructed the machine to dispense the requested cash and
(unfortunately) deduct that same amount from my account.

Computers are so widespread in our society because they have three advantages
over us humans. First, computers can store huge amounts of information. Second,
computers can recall that information quickly and accurately. Third, computers can
perform calculations with lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports such
as chess. I used to be a professional chess player. I have not played seriously for
many years, so am out of practice. However, I still was surprised that the chess
program on my little Pocket PC handheld computer defeated me with ease. Even
worse, the program, Pocket Fritz, taunted me in a German accent: “Dumpkopf, you
have blundered again. You will now be liquidated!” My one victory was finding the
mute button to silence this insolent program.

At least I have good company in defeat. In 1997, the computer Deep Blue beat
the world chess champion, Garry Kasparov, in a chess match. In 2003, Kasparov
was out for revenge against another computer, Deep Junior, but only drew the
match. Kasparov, while perhaps the best chess player ever, is only human, and
therefore no match for the computer’s ability to calculate and to remember prior
games.

However, we have one very significant advantage over computers. We think on
our own, whereas computers don’t—at least not yet, anyway. Indeed, computers
fundamentally are far more brawn than brain. A computer cannot do anything

CHAPTER 1 Getting Started with Your First Windows Program 15

without step-by-step instructions from us telling it what to do. These instructions
are called a computer program and of course are written by a human—namely, a
computer programmer. Computer programs enable us to harness the computer’s
tremendous power.

What Is a Programming Language?
When you enter a darkened room and want to see what is inside, you turn on a light
switch. When you leave the room, you turn the light switch off.

The first computers were not too different from that light switch. These early
computers consisted of wires and switches in which the electrical current followed
a path dependent on which switches were in the on (one) or off (zero) position.
Indeed, I built such a simple computer when I was a kid (which according to my
kids was when dinosaurs still ruled the earth).

Each switch’s position could be expressed as a number: 1 for the on position, 0
for the off position. Thus, the instructions given to these first computers, in the form
of positions on switches, essentially were a series of ones and zeroes.

Today’s computers of course are far more powerful and sophisticated than these
early computers. However, the language computers understand, called machine
language, remains the same, essentially ones and zeroes.

Although computers think in ones and zeroes, the humans who write computer
programs usually don’t. Additionally, a complex program may consist of thousands
or even millions of step-by-step machine language instructions, which would
require an inordinately long amount of time to write. This is an important
consideration because, due to competitive market forces, the amount of time within
which a program has to be written is becoming increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine
language. Instead, we can write instructions in a “higher-level” programming
language, such as Visual Basic 2005. The term “higher level” means that Visual
Basic 2005 (and other languages such as C#, C++, Java, and so on) are far closer to
the structure and syntax of human language than to the ones and zeroes understood
by a computer. By contrast, machine language, although a programming language,
is “low level” because it is far closer to the ones and zeroes understood by a computer
than it is to the structure and syntax of human language. Additionally, code can be
written much faster with programming languages than machine language because
programming languages abstract instructions; one programming language
instruction can cover many machine language instructions.

Visual Basic is but one of many programming languages. Other popular
programming languages include Java, C#, and C++, and there are many more.
Indeed, new languages are being created all the time. However, all programming

16 Visual Basic 2005 Demystifi ed

languages have essentially the same purpose, which is to enable a human
programmer to give instructions to a computer.

There really is no one “best” programming language, but Visual Basic is an
excellent choice, as for years it has been and continues to be widely used in the
industry.

You may be wondering how this discussion of programming language applies
since you didn’t have to write any code to achieve a working application. Although
you didn’t have to write any code, that doesn’t mean code wasn’t written. Remember
when you chose the project template? Visual Basic 2005 wrote code for you to
create a basic Windows application.

Translating the Code for the Computer
Although you will understand the Visual Basic code you will write, the computer
won’t. Computers don’t understand Visual Basic or any other programming
language. They understand only machine language.

Visual Basic 2005 includes a compiler. In general, a compiler translates the code
you write into corresponding machine language instructions. There are different
compilers for different programming languages, but the purpose of the compiler is
essentially the same, the translation of a programming language into machine
language, no matter which programming language is involved.

NOTENOTE As discussed in more detail in Chapter 2, the compiler in Visual Basic
2005 translates the code into an intermediate language that then is translated
into machine language.

A compiler translates the code you write into corresponding machine language
instructions, or into instructions that an operating system can understand and act
on. However, the compiler can perform this translation only if your code is in the
proper syntax for that programming language. Visual Basic 2005, like other
programming languages, and indeed most human languages, has rules for the
spelling of words and for the grammar of statements. If there is a syntax error, the
compiler cannot translate your code into machine language instructions, and instead
will call your attention to the syntax errors. Thus, in a sense, the compiler acts as a
spell checker and grammar checker.

CHAPTER 1 Getting Started with Your First Windows Program 17

The way to become a good computer programmer is to write programs. To get
started, you need to obtain and install Visual Basic 2005. In this chapter, you learned
about the different editions of Visual Basic 2005 that are available, and how to
ensure that your computer meets the hardware requirements of Visual Basic 2005.
After you installed Visual Basic 2005, you learned how to use Visual Basic 2005 to
create a Windows application.

This chapter then discussed what a computer program is. Computers can store
huge amounts of information, recall that information quickly and accurately, and
perform calculations with lightning speed and perfect accuracy. However, computers
cannot think on their own; they need step-by-step instructions from us telling them
what to do. These instructions are called a computer program, written by a human
computer programmer in a programming language such as Visual Basic 2005. A
compiler translates the computer program into machine language that a computer
understands.

The computer program in this chapter simply displayed an empty form, or
window. In the next chapter, you will examine that form further. In the process, you
will learn what a Windows application is and then write your first code!

Quiz
 1. What is the difference between Visual Basic 2005 and Visual Studio 2005?

 2. Which operating system do you need to install and run Visual Basic 2005?

 3. Which project template should you use to start creating a Windows application?

 4. What is an IDE?

 5. What is a computer program?

 6. What is a programming language?

 7. What is machine language?

 8. What does “higher level” mean in the context of a programming language?

 9. What does “lower level” mean in the context of a programming language?

 10. What is the purpose of a compiler?

Conclusion

This page intentionally left blank

19

CHAPTER
2

Writing Your
First Code

When I was an elementary school student (back when dinosaurs roamed the earth,
as far as my daughters are concerned), I learned through countless teacher-imposed
exercises to multiply and divide several-digit numbers in my mind. Fast-forwarding
more decades than I care to count, when I ask my daughters to compute the answers
to less complex math homework problems, they whip out their calculators and tell
me the answers—quite quickly and accurately, to be sure. When I then ask them
instead to calculate the answers in their heads, they look at me as a prehistoric relic
and tell me, “Aw, Dad, no one does that anymore.”

Calculators do make our lives easier. Imagine the long line at your local fast food
outlet if orders had to be calculated by pencil and paper rather than with the
calculators built into cash registers. In business, software programs such as Microsoft
Excel enable you to perform spreadsheet calculations in minutes that might take
you hours with pencil and paper.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

20 Visual Basic 2005 Demystifi ed

Calculators also have a negative side effect, however. Human nature being what
it is, if we don’t need to learn something, we may decide it is not worth the time and
trouble. Research suggests that the availability of calculators has contributed
substantially to a decline in students’ computational skills. Despite calculators,
computational skills still are necessary, not just in everyday situations in which a
calculator may not be available, but also as a foundation for students to develop
skills in creating algorithms and analyzing problems—skills essential in, among
other areas, computer programming.

Just as calculators automate computation, Visual Basic 2005 automates the
creation of applications. For example, creating a Windows application strictly
through code is difficult. By contrast, Chapter 1 shows that Visual Basic 2005
enables you to create a Windows application without writing a single line of code!
Granted, the resulting Windows application was basic, being no more than a window
with default functionality. Nevertheless, even creating such a basic Windows
application strictly through code would be no small undertaking.

There is a danger of Visual Basic 2005 doing too much for beginning programmers.
They may be seduced by how easy Visual Basic 2005 makes creating a Windows
application. Consequently, they may just plunge in and start writing programs
without really understanding the code they are writing or how the different parts of
the program fit together. I have witnessed this with programming students working
with prior versions of Visual Basic. They try to write more complex programs, are
unable to do so because they don’t understand the necessary foundation, become
frustrated, and quit.

Therefore, to make a long story short (“Too late,” as my daughters would say),
this chapter will explain what an event-driven Windows application is all about,
including how and why the code you write executes when the user takes an action
such as a mouse click. But don’t worry, this chapter is not all theory. You also will
put in practice what you have learned as well as write your first code!

Starting an Existing Project
Since you learn programming best by writing programs, start Visual Basic 2005. In
Chapter 1 you created a new Windows application project. In this chapter, we will
use that existing project instead of creating a new one. Of course, we could create a
new project, but you already learned in Chapter 1 how to do that. By instead using
an existing project, you will learn something new.

CHAPTER 2 Writing Your First Code 21

To open an existing project, choose Open from the File menu and then Project/
Solution from the Open submenu, as shown in Figure 2-1. This will display the
Open Project dialog box shown in Figure 2-2.

Figure 2-1 Opening an existing project

Figure 2-2 The Open Project dialog box

22 Visual Basic 2005 Demystifi ed

Using the Look In drop-down box, navigate to the folder where you saved
FirstProject when you created it in Chapter 1. You then will see a file with an .sln
extension, named FirstProject.sln in Figure 2-2. The .sln extension indicates a
solution file. As explained in Chapter 1, a solution contains one or more projects
(here, just one) used for your application.

Choose the .sln file and click the Open button in the Open Project dialog box.
The Open Project dialog box will close and your FirstProject then should open,
appearing as it did when you first created it in Chapter 1.

One of the windows in the project is called Solution Explorer, shown in Figure
2-3. If you don’t see it, you can display it by choosing Solution Explorer from the
View menu, as shown in Figure 2-4.

We will use Solution Explorer and the View menu to further examine features of
this project.

Design View and Code View
You learned in Chapter 1 that the state of your program when it is running is referred
to as run time, whereas the state of your program when it is not running is referred
to as design time. In this section, we will be working in design time.

Figure 2-3 Solution Explorer

CHAPTER 2 Writing Your First Code 23

You can view your application in two different ways during design time: designer
view and code view. You choose designer view when you want to design your form,
such as by resizing it or by adding to it controls such as buttons, labels and text
boxes. You choose code view when you want to view or write the code of your
application.

You implement designer view by first selecting form1.vb (the name of your form
file) in Solution Explorer and then choosing Design from the View menu. An
alternative is to right-click the form and choose View Designer from the shortcut
menu. Either way, you will see the form, as in Figure 2-5.

You implement code view by first selecting form1.vb in Solution Explorer and
then by choosing Code from the View menu. An alternative is to right-click the
form and choose View Code from the shortcut menu. Either way, you will see code,
as in Figure 2-6.

We will be working in both the designer and code views in this chapter.

Figure 2-4 The View menu

24 Visual Basic 2005 Demystifi ed

Figure 2-5 Form in designer view

Figure 2-6 Code view

CHAPTER 2 Writing Your First Code 25

Object Browser
While in designer view, display the Object Browser, either by choosing Object
Browser from the View menu or by using the shortcut key F2. The Object Browser
should appear as in Figure 2-7.

Click the expander (plus sign) next to FirstProject and then highlight Form1. The
Object Browser then should appear as in Figure 2-8.

The Object Browser, as its name suggests, permits you to browse, or examine,
objects in your project, including the form. As Figure 2-8 shows, the lower-right
pane of the Object Browser refers to “Public Class Form1.” The same reference to
Public Class Form1 is on the top line of the code shown in Figure 2-6. Additionally,
the lower-right pane of the Object Browser indicates that Public Class Form1
“inherits” from System.Windows.Forms.Form.

Figure 2-7 Object Browser

26 Visual Basic 2005 Demystifi ed

What this terminology means is important in understanding how your first project
and your future Windows application projects work. Therefore, let’s now discuss
this terminology.

Classes and Objects
Most programs keep track of information that relates to persons, places, or things in
the real world. Such information often is complex, consisting of numerous items.
For example, each of my readers is a person, and as such share certain characteristics
common to all persons, such as a name, height, weight, gender, age, and so forth.

Programming languages, including Visual Basic, use classes to represent a
person, place, thing, or concept. Thus, in programming parlance, each of us is an
object of the Person class. A class is a pattern or template for an object, and an
object is an instance of a class.

Figure 2-8 Object Browser showing information on Form1

CHAPTER 2 Writing Your First Code 27

To illustrate, if my classroom contains 29 students and me as the teacher, there
would be 30 objects of the Person class. Once again, each person’s name, height,
weight, gender, and age may differ from another’s, but each of us in the room, being
an object of the same class, Person, has certain common characteristics, such as a
name, height, weight, gender, and age. The value of these characteristics likely will
vary—two persons likely will have different names and heights, for example—but
the two persons will share the characteristics themselves of having a name, a height,
and so forth.

As another example, the form in our first project originated from the Form class.
The Form class represents, not surprisingly, a form. A form has a number of
characteristics, such as height, width, background color, text on its title bar, and so
forth. Although all forms have these characteristics in common, the values of these
characteristics may differ from form to form. Just as persons in a room may look
different, so can forms. Some forms may be short and wide and have a blue
background, and others may be tall and thin and have a yellow background.
However, each of these different-looking form objects is created from the same
Form class.

Inherits
The actual name of the class of the form in our application is not Form, but Form1.
The Form1 class inherits, or starts out with, all the characteristics of the Form class.
However, we can customize the Form1 class, even adding characteristics. We won’t
do that now, but we could.

Namespaces
As the lower-right pane of the Object Browser in Figure 2-8 indicates, the actual
name of the Form class is System.Windows.Forms.Form. This means that the Form
class is part of the System.Windows.Forms namespace.

To explain a namespace, let’s make an analogy to the taxonomy of life you may
have learned about in a biology class. All life is organized into separate kingdoms,
the most commonly known being Animalia for animals and Plantae for plants. The
animal kingdom is organized into several phylums, including Chordata for
vertebrates. The vertebrates in the Chordata phylum are organized into several
kingdoms, including Mammalia for mammals. The mammals in the Mammalia
kingdom belong to different orders, including Primates for primates. Primates are
subdivided into different families, including Hominidae, which in turn are subdivided
into different genera, including Homo, which finally are subdivided into species,
including Homo sapiens. Thus, while in biology humans generally are referred to

28 Visual Basic 2005 Demystifi ed

just by their species name, Homo sapiens, that species belongs to the Animalia
.Chordata.Mammalia.Hominidae.Homo namespace.

Similarly, the Form class is part of the System.Windows.Forms namespace. The
“Windows” in the namespace name stands for Windows applications.

One purpose of using namespaces is to organize code in a hierarchal manner.
Another purpose is the ability to use the same class name, but in another namespace.
For example, there is another Form class in the System.Web.UI.MobileControls
namespace. This namespace is used for forms in web applications accessed by
mobile devices, such as Pocket PCs. By contrast, the Form class in the System
.Windows.Forms namespace is used for Windows applications that run from desktop
or laptop computers. Both classes have the same name, Form, but may do so because
each belongs to a different namespace.

.NET Framework
The Form class and the System.Windows.Forms namespace are defined in the .NET
Framework. You will see references to the .NET Framework and .NET throughout
this book, so this would be a good time to briefly explain what these terms mean.

.NET is the name for Microsoft’s strategy of software that is independent of a
particular operating system or hardware. With respect to hardware, .NET projects
are not limited to the traditional desktop computer. Instead, as you may recall from
Chapter 1, the available templates for a Visual Basic project include ones that can
be run on handheld computers or phones. Visual Studio is a tool for the development
of .NET applications.

The .NET Framework consists of the Common Language Runtime (CLR) and
Class Libraries. As discussed in Chapter 1, a compiler translates the code you write
into machine language instructions that an operating system can understand and act
on. To make a long story short, the CLR acts as a middleman between the compiler
and the ultimate machine language instructions, translating intermediate language
created by the compiler into the instructions. The Class Libraries include the Form
class and the System.Windows.Forms namespace, as well as many other classes
that we will be using in this book.

Properties
A class generally has properties. For example, the Form class has properties such as
Height for its height, BackColor for its background color, and Text for text on its
title bar. Therefore, objects created from the Form class have these properties.

CHAPTER 2 Writing Your First Code 29

Similarly, objects created by classes that inherit from the Form class, such as the
Form1 class, also have these properties.

Different classes may have some properties in common. For example, the Form
class has a Height property, as would a Person class. However, often one class will
have a property another does not. For example, a Person class may have an
EyeColor property, which the Form class does not have, whereas the Form class has
a MinimizeBox property (pertaining to the minimize button at the upper right),
which a Person class would not have. At least I have never seen a person with a
minimize button!

Properties Window
While in designer view, choose Properties Window from the View menu. This will
display the Properties window, as shown in Figure 2-9.

Figure 2-9 The Properties window

30 Visual Basic 2005 Demystifi ed

The Properties window lists various attributes or characteristics of the form, such
as its height and width, background color, the text that appears in its title bar, and
so forth. These attributes or characteristics, also referred to as properties, are listed
in the left column. The values of these properties are listed in the right column. For
example, in Figure 2-9, the value of the Text property is Form1, which is the text
that appears in the title bar of the form in Figure 2-5.

The first button sorts the properties by category. This is the view in Figure 2-9.
The second button sorts the properties in alphabetical order. This is the view in
Figure 2-10. Don’t worry about the other three buttons for now.

Many of the properties in Figures 2-9 and 2-10 have values. You did not assign
those values to those properties. Rather, the IDE assigned those values because the
form needs some background color, size, and so forth when you first create the
application. These IDE-assigned values are referred to as default values. “Default”
in this context refers to a property’s value if you do nothing to change that value.

However, as the next section discusses, you may change default values.

Figure 2-10 Properties listed in alphabetical order

CHAPTER 2 Writing Your First Code 31

Changing Properties at Design Time
You can use the Properties window to view the properties of the form object in
your first project. You also can use the Properties window to change the value of
properties of that form object at design time. For example, in the Properties
window, change the value of the Text property to MyForm or some other name,
and then press ENTER. The text in the form’s title bar will change to MyForm or
whatever other text you typed.

However, you cannot use the Properties window to change the value of properties
of the form object at run time. Instead, you need to write code to change the value
of properties of the form object at run time. You will learn in this chapter how to do
that. However, before we get there, let’s first discuss what a Windows application
is, because the answer will help you understand the code you will be writing.

Figure 2-11 Notepad, a Windows application

What Is a Windows Application?
Nowadays the majority of applications are written for at least one if not more of the
Windows operating systems, which include Windows 9x, NT, 2000, XP, and 2003.
Figure 2-11 shows a familiar Windows application, Notepad, which is included by
default in the installation of all Windows operating systems.

32 Visual Basic 2005 Demystifi ed

Although the Windows operating system has virtually taken over the computer
world, it has not been with us that long. Windows was not introduced until 1985,
more than 20 years after the introduction of BASIC, the ancestor of Visual Basic,
and did not catch on until the introduction of Windows 3.0 in the early 1990s. Prior
to the 1990s, applications often ran in the DOS operating system. Figure 2-12 shows
a DOS text editor, the DOS equivalent of Notepad in the Windows operating system.
A comparison of the DOS text editor in Figure 2-12 and Notepad in Figure 2-11
shows that DOS applications have a decidedly different and less rich appearance
than Windows applications.

The difference between DOS and Windows applications is more than skin deep.
They also behave very differently. Let’s now look at both differences.

Windows Applications Are Gooey
The hallmark of a Windows application is that the application is displayed in … you
guessed it, a window. However, there is more to a Windows application than a
window. A Windows application has a graphical user interface, which is often is
referred to by the acronym GUI, pronounced “gooey.”

A GUI usually includes a menu, such as the File, Edit, Format, View, and Help
menus in Notepad (refer to Figure 2-11). The DOS text editor in Figure 2-12 also
includes a menu. However, a GUI is not limited to a menu, and normally includes
other visual components, such as buttons to click, edit boxes in which to type text,
and so on. DOS applications have few of these other visual components.

Figure 2-12 A console window for a DOS application

CHAPTER 2 Writing Your First Code 33

The GUI makes Windows applications prettier than console applications, but it serves
a more important purpose, which is to make Windows applications easier to use. For
example, the menu in Notepad makes it easy for you to open a file. Clicking the File
menu and then the Open submenu displays another visual component, the Open dialog
box (shown in Figure 2-13), from which you simply pick the file you want to open.

Figure 2-14 shows the Open dialog box in the DOS text editor. This Open dialog
box is far clumsier to use than the Windows counterpart in Figure 2-13.

Figure 2-13 The Open dialog box in Notepad

Figure 2-14 The Open dialog box in the DOS text editor

34 Visual Basic 2005 Demystifi ed

Of course, nothing is free in this world. The pretty GUI of a Windows application
comes at a programming price. Code, lots of it, some of it rather complex, is required
to create a window, not to mention to create the menu and other controls in the
window.

This is where Visual Basic once again eases your task. You do not need to write
copious, complex code to create a window. Instead, Visual Basic creates the
window for you when you start a new Windows application project, and it also
writes the code necessary to make that window work. This spares you substantial
grunt work.

Windows Applications Are Event-Driven
Windows applications behave differently as well as look different than their
predecessors.

Before Windows, applications often told the user what to do. For example, an
application may tell the operating system to print to the screen the text message
“Enter your name.” The user would then input their name and press the ENTER key.
The user could not have entered their name before this point, and they had to enter
data at this point or the program would not continue. The program then may tell the
operating system to print to the screen “Enter your age.” The user would then input
their age and press the ENTER key. Once again, the user could not have entered their
age before this point, and had to enter data at this point or the program would not
continue. Finally, the program may tell the operating system to output to the screen
a sentence that includes the name and age entered, followed by whether the user is
a minor, adult, or senior citizen, based on the age that was entered. The program
input and output might look like this:

Enter your name: Jeff
Enter your age: 53
Jeff, age 53, you are an adult.

In this application, often called procedural programming, the application, not the
user, determines the order in which things happen. However, Windows applications
are just the opposite; the user tells the application what to do. What happens next
after you open Notepad? The answer is, “It depends.” Specifically, it depends on
what you, as the user, do next. If you click the File | Open menu item, the Open
dialog box will display as shown previously in Figure 2-13. If instead you click the
Help | Help Topics menu item, Notepad Help will display. Of course, you may
decide you’re tired of Notepad and close it by using the File | Exit menu item or the
close button. Thus, in a Windows application, the user’s actions, not the application,
determine the order in which things happen.

CHAPTER 2 Writing Your First Code 35

A procedural program can be analogized to a recipe. The program follows the
instructions step by step. By contrast, a Windows application can be analogized to
a paramedic. The paramedic waits for a call. When a call comes, the paramedic
takes the equipment warranted by the call and goes to the location. When finished,
the paramedic returns to his or her station and waits for the next call, and when it
comes, takes the equipment warranted by that call and goes to the next location.

In the parlance of Windows programming, the user’s actions create events that
cause the operating system to send messages to the application. For example, the
user’s act of clicking Notepad’s File | Open menu item is an event that causes the
operating system to send a message to the Notepad window that the File | Open
menu command has been clicked. When Notepad receives that message, code in
Notepad displays the Open dialog box. Because the events resulting from the user’s
actions drive the application, Windows programming often is referred to as being
event-driven.

Classes Have Events
An event does not exist by itself. Rather, an event is something that happens to an
object, usually as the result of user interaction with the object, such as its being
clicked. For example, when the user clicks Notepad’s File | Open menu item, the
event is a click, and the object that is the subject of the event is the File | Open menu
item.

The File | Open menu item is an object that is created from a class. That MenuItem
class, and classes generally, have events in addition to having properties. For
example, a form object has a Click event that occurs when the user clicks the mouse
on the form.

As with properties, different classes may have some events in common, but
usually would not share the exact same set of events.

As discussed in the section “Windows Applications Are Event-Driven,” you write
code so the user’s action in clicking the File | Open menu item in Notepad will
display an Open dialog box that permits the user to choose and open a file. You want
this code to execute when, and only when, your application’s user clicks the File |
Open menu item. You use an event procedure to solve this problem, by associating
the code that displays the Open dialog box with the Click event of the File | Open
menu item object. The event procedure connects the mouse click of the File |
Open menu item to the code you want to run when the menu item is clicked.

Creating an Event Procedure

36 Visual Basic 2005 Demystifi ed

When the .NET Framework that underlies Visual Basic 2005 detects an event
such as a mouse click that happens to an object such as the menu item, it searches
for an event procedure that matches the object and event. If the .NET Framework
finds such an event procedure, it calls that event procedure, and the code inside the
event procedure executes.

In this section, we will write code that will change the text displayed in the
form’s title bar when you click the form. To accomplish this, we need to write code
for the Click event procedure of the form.

Writing code for an event procedure involves two steps. The first step is to create
the event procedure stub. As will be illustrated in the next section, an event procedure
stub is how the event procedure appears before you write any code. Your writing
code inside that event procedure code is the second step.

Creating an Event Procedure Stub
To start creating an event procedure stub, go to code view as shown in Figure 2-6. Click
on the left drop-down box and choose (Form1 Events), as shown in Figure 2-15.

Figure 2-15 Choosing the Form1 class’s events

CHAPTER 2 Writing Your First Code 37

Choosing (Form1 Events) from the left drop-down box enables you next to
choose an event of Form1 from the right drop-down box. To choose a Form1 class
event, click on the right drop-down box. This displays all the events of the Form1
class, as shown in Figure 2-16.

Choose the Click event from the right drop-down box. As shown in Figure 2-17,
this creates an event procedure stub for the Click event of the Form1 class.

The event procedure stub is shown here:

Private Sub Form1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Click

End Sub

NOTENOTE The first two lines actually should be one line in the code window;
otherwise you will receive an error when you attempt to compile the code.
That line is split into two lines in this text because of the limitation of how
many characters may appear in a single line of text on the printed page.

Figure 2-16 Listing of the Form1 class’s events

38 Visual Basic 2005 Demystifi ed

The first line of code (two lines in the text) begins the event procedure and is the
title of the event procedure. It includes the name of the class object (Form1) and
the name of the event (Click), separated by an underscore (Form1_Click). Don’t
worry about the rest of the first line of code for now; we’ll cover this more later in
the book.

The last line of code, End Sub, marks the end of the event procedure.
The code you will write goes between, naturally enough, the two lines. The next

section discusses writing that code.

Writing Code Inside the Event Procedure
The second step is to write code inside the event procedure that will change the text
displayed in the form’s title bar when you click the form. Type the following code
inside the event procedure:

Me.Text = "Eat at Joe's"

Figure 2-17 Event procedure stub

CHAPTER 2 Writing Your First Code 39

This code will be explained in the next section on the assignment operator.
Now your event procedure should read as follows:

Private Sub Form1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Click
 Me.Text = "Eat at Joe's"
End Sub

NOTENOTE I indented the code. This is not necessary, but it’s a good habit, for reasons
that will become more apparent as your code becomes more complex. Often the
IDE will indent the code for you.

Run the project by choosing Start Without Debugging from the Debug menu, as
shown in Figure 2-18.

When the form first appears, the text in its title bar is the same as the value of the
Text property shown in its Properties window. Now click on the form. The text in
the form’s title bar now should change to “Eat at Joe’s.”

Assignment Operator
Now that you have confirmed that the code does what it is supposed to do, I will
now explain the code, which again is

Me.Text = "Eat at Joe's"

What looks like an equals sign (=) in the middle of the code is not an equals sign
at all. Instead, it is called an assignment operator.

Figure 2-18 Running the project from the Debug menu

40 Visual Basic 2005 Demystifi ed

To the right of the assignment operator are words inside double quotation marks.
This is called a string. A string usually consists of two or more characters.
Characters may include a letter, a digit, a punctuation mark, or a space. The double
quotation marks indicate a string; numeric values are not placed inside double
quotation marks.

To the left of the assignment operator is the Me keyword, which is a reference to
the current Form1 object, and Text, a property of that object, separated by a dot or
period. The code Me.Text thus refers to the Text property of the current Form1
object.

The purpose of the assignment operator is to assign the value on its right to the
property on its left. Thus, the string “Eat at Joe’s” is assigned to the Text property
of the current Form1 object.

This code, being inside the Click event procedure of the form object, executes
(or runs) when, and only when, the form is clicked. When the form is clicked, the
string “Eat at Joe’s” is assigned to the Text property of the current Form1 object,
and therefore appears in the title bar of the form.

Comments
Change the line of code

Me.Text = "Eat at Joe's"

to instead read as follows:

Me.Text = "Eat at Joe's" 'Changes text in title bar

The program will run exactly the same. In fact, the code has not changed at all.
The portion of the line beginning with an apostrophe (‘) followed by “Changes text
in title bar” is a comment. The apostrophe indicates that it and what follows it on
the line are not part of the code, but rather a comment.

A comment is for the benefit of a programmer reading the code, the purpose
usually being an explanation of the code. An explanation may not be necessary for
a line of code changing the value of the text shown in a form’s title bar. However,
as your applications become more complex, explanations may be helpful to fellow
programmers who need to review your code. Indeed, you may find your own
explanation of your own code helpful to refresh your memory if you have to return
to your code months after you wrote it, either to enhance the code or to fix a
problem.

CHAPTER 2 Writing Your First Code 41

Visual Basic, like other programming languages, represents each person, thing, or
concept that is the subject of an application as a class. Objects are created, or
instantiated, from classes.

A class, and therefore the objects created from the class, usually have properties
and events. A property is an attribute of an object, such as its height. An event is
something that happens to an object, such as being clicked.

A Windows application is displayed in a window that has a graphical user
interface (GUI). Additionally, Windows applications are event-driven in that the
user’s actions, such as clicking a mouse, create events that cause the operating
system to send messages to the application. You can write code that will run when
those messages are received. That code is written inside an event procedure, which
executes, or runs, when a specified event happens to an object.

So far the GUI of our Windows application consists only of the form itself. We
will add to that GUI in the next chapter.

Quiz
 1. What is designer view?

 2. What is code view?

 3. What is a class in a programming language?

 4. What is an object of a class?

 5. What are namespaces used for?

 6. What is a property of a class?

 7. What are characteristics of a Windows application?

 8. What is an event of a class?

 9. What is an event procedure?

 10. What is the purpose of the assignment operator?

Conclusion

This page intentionally left blank

43

CHAPTER
3

Controls

Thus far we have focused on the Form class. The form is an important part of your
application’s GUI, perhaps the most important one. However, a form cannot possibly
meet all the requirements of a Windows application. For example, the form does not
have the functionality to permit typing of text, listing of data, selection of choices,
and so forth. You need other, specialized controls for that additional functionality.
Indeed, the form’s primary role is to serve as a host, or container, for other controls
that enrich the GUI of Windows applications, such as menus, toolbars, buttons, text
boxes, and list boxes.

You will learn in this chapter how to add controls to your form using the Toolbox.
You then will learn how to change the size or location of the controls on the form.

These controls, like the form itself, have their own properties, which can be
changed both at design time and at run time. This chapter will provide you with
guidelines on whether to assign values at design or run time in a given situation.

This chapter culminates with a project that uses a particular control, the Label
control, for two purposes: first, to display data that does not change during the
running of the application and, second, using event procedures, to display data that
does change during the running of the application. This project also shows you how
to use information, called parameters, available to an event procedure.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

44 Visual Basic 2005 Demystifi ed

Adding Controls to the Form
I, and perhaps you too, have been requested, when first visiting a website, to fill out
a registration form. Such forms may use many specialized controls. I may type my
name in a TextBox control. I also may choose my state or country from a list supplied
by a ListBox control. The purposes of the TextBox and ListBox controls are identified
by Label controls displaying “Name” and “State” or “Country.” When I am finished
filling in the required information, I click a Button control often labeled “Submit.”

Visual Basic 2005 supports many specialized controls. However, the TextBox,
Label, ListBox, and Button controls are perhaps the most commonly used.

The TextBox, Label, ListBox, Button, and other specialized controls cannot exist on
their own. They must be contained, or hosted, in another specialized type of control, a
container control. The form is the usual choice for a container control. Indeed, the
form’s primary purpose is to serve as a container or host for other controls.

Adding controls to a form through code is no easy task. Fortunately, Visual Basic
2005 enables you to easily add available controls to a form through the Toolbox.

Toolbox
Visual Basic uses a Toolbox to display controls that you can add to your form.
Figure 3-1 shows the Toolbox, which you can display by choosing Toolbox from
the View menu.

Figure 3-1 Toolbox

CHAPTER 3 Controls 45

NOTENOTE In following along, you can either start a new project as you did in
Chapter 1 or open an existing project as you did in Chapter 2.

As Figure 3-1 shows, the Toolbox has a number of categories, each preceded by
an expander (the + sign), to organize related items. If you see only the General
category, the reason probably is that you are in code view rather than designer view.
If so, simply switch to designer view.

The All Windows Forms category includes the controls used, naturally enough,
in Windows Forms. The Common Controls category includes, as its name suggests,
commonly used controls. Figure 3-2 shows the Toolbox with both categories
expanded. The Label control, which we will use in the next section, appears in both
categories.

Figure 3-2 Expanding of Toolbox categories

46 Visual Basic 2005 Demystifi ed

NOTENOTE The Toolbox may seem to disappear if you shift focus to Solution Explorer
or another part of the IDE. This is a behavior known as “auto hide.” To make the
Toolbox reappear, click on the Toolbox icon on the left border of the IDE. The idea
of auto hide behavior is to maximize screen space by hiding visual elements not
currently in use. If you don’t want the auto hide behavior, click the pushpin button
on the top of the Toolbox. Clicking the pushpin button toggles between auto hide
and no auto hide.

Copying a Control from the Toolbox to the Form
You have several methods of adding a control from the Toolbox to your form. One
way is to double-click the control in the Toolbox. The control will appear somewhere
in the form, such as the top-left corner. Another alternative is to click on the control
in the Toolbox, drag the control over the form, and then drop the control on to the
form, where the control will appear where you dropped it. Thus, with the double-
click method, the IDE positions the control, whereas with the drag-and-drop
method, you position the control.

Expand either the All Windows Forms or the Common Controls category to show
the Label control, and then use either the double-click or drag-and-drop method to
add the Label control to the form. Figure 3-3 shows the Label control after it is
added to the form.

Changing the Control’s Location
As mentioned previously, the double-click method situates the Label control
somewhere in the form, whereas the drag-and-drop method situates the Label
control wherever you dragged and dropped it on to the form. Either way, you can
reposition the Label control.

Put your mouse over the Label control. The mouse pointer should change to four
arrows, as shown in Figure 3-4.

Next, click down on the left mouse button (but don’t release it) and drag the
Label control to another location. Release the mouse button when the control is at
the desired location.

You can also change the position of the Label control relative to the form by
selecting it and then choosing either the Format | Center in Form | Horizontally
menu command or the Format | Center in Form | Vertically menu command,
depending on whether you want to center the control on the form horizontally or
vertically (or both).

CHAPTER 3 Controls 47

Figure 3-3 Label control inserted on the form

Figure 3-4 Mouse pointer before relocating control

48 Visual Basic 2005 Demystifi ed

If you have multiple labels, you can align the top, bottom, or sides of the controls
by selecting all labels involved (click each label while holding down the SHIFT or
CTRL key) and then choosing the Format | Align | Tops (or Middles, Bottoms, Lefts,
Centers, or Rights) menu command. The label selected first (and shown with a
darker highlight) will be the guide for the new alignment of all labels selected.

Changing the Control’s Size
Resizing the Label control involves an extra step. The Label control has an AutoSize
property. This property, when set to True (the default), automatically resizes the
label so it can display its text. Figure 3-5 shows the Label control’s Properties
window and the AutoSize property.

Figure 3-5 The AutoSize property in the Label control’s Properties window

CHAPTER 3 Controls 49

If you want to manually resize the Label control’s size, you first need to set the
AutoSize property to False, using the drop-down box for the value of the AutoSize
property. Next, select the Label control you want to resize. As Figure 3-6 depicts,
when you select the Label control, eight small squares appear on a box surrounding
the Label control, four at the corners and four halfway between the corners.

You can resize the label by holding the mouse over one of these small boxes. The
cursor should change to a two-headed arrow. Hold the mouse down and drag it to
resize the label.

If you have multiple labels and their AutoSize properties are all set to False, you
can make them the same width, height, or size by selecting all labels involved (click
each label while holding down the SHIFT or CTRL key) and then choosing, from the
Format | Make Same Size submenu, Width, Height, or Both. The size of the label
selected first will become the new width, height, or size of all labels selected.

Figure 3-6 Resizing the Label control

50 Visual Basic 2005 Demystifi ed

Important Label Properties
The Label class has many properties, but the Text and the Name properties likely
are the most important.

Text Property
The primary role of a label is to display text, and the value of the Text property
determines the text that will be displayed.

The text is “read-only” to the application user, who cannot type on the label to
change the label’s text. Other controls, in particular the TextBox control, enable the
user to type on the control to change the text.

The Print dialog box shown in Figure 3-7, and displayed in most Windows
applications with the File | Print menu command, illustrates two common purposes
of the text in a Label control.

One common purpose of the text displayed by a label is to identify another
control. In Figure 3-7, the “Number of Copies” label identifies the purpose of an
adjacent control that enables you to set (with the up and down arrows) the number
of copies you want to print.

Figure 3-7 The Print dialog box

CHAPTER 3 Controls 51

Another common purpose is to display data, such as the Label control showing
“Ready” next to Status.

As with the form object, you can change the value of the Label control’s Text
property either at design time or through code. You generally will use the Properties
window if the purpose of the label is to identify the purpose of another control
because that information usually will not change during the running of the
application. The “Number of Copies” label is an example.

By contrast, you generally will use code if the purpose of the label is to display
data that may change during the running of the application. For example, the Text
property of the label next to Status should be set through code because, during the
running of the application, the printer’s status may change between being ready and
going offline.

Name Property
The Name property is important because its value is how the label is referred to in code.

By default, the first label you add to your form is named Label1, the second Label2,
the third Label3, and so forth. The default name is fine if you will not be referring to
the label in your code. This would be the case if the purpose of the label simply is
to identify the purpose of another control.

However, using a default name can cause you difficulty if you are referring to the
label in code, such as if the purpose of the label is to display information that may
change when the application is running. The difficulties you may encounter increase
as the number of the labels in your application increase. For example, you may have
difficulty remembering if Label53 is the one that displays weather information or
the one that displays your bank account balance.

I recommend you use a naming convention when naming your controls. A
naming convention simply is a consistent method of naming controls. There are a
number of naming conventions. It is not particularly important which naming
convention you use. What is important is that you use one and stick to it.

One often-used naming convention is to name a control with a prefix, usually all
lowercase and consisting of three letters, that indicates the type of control it is,
followed by a word, first letter capitalized, that suggests its purpose. For example,
lblWeather would indicate a label that displays weather information. If you need
more than one word to describe the control’s purpose, you should combine the
words into one (because a name cannot have embedded spaces) but capitalize the
first letter of each word. For example, lblBankAccountBalance would indicate a
label that displays your bank account balance.

52 Visual Basic 2005 Demystifi ed

TIPTIP Be careful when you use prefixes such as lbl that you use a lowercase L and
not the number 1. Interchanging the two can cause typos that are hard for you to
see, and also will result in a compiler error because control names cannot start
with a number.

The Label Control in Action
In this section, you will create a project (or reuse an existing project) to display the
X and Y coordinates of the mouse pointer while the mouse is moving over the form.
Figure 3-8 shows what the application looks like when it is running. Of course, the
X and Y coordinates displayed will vary depending on where the mouse is located
over the form.

Mouse Coordinates
A brief explanation of how mouse coordinates work may be helpful before
explaining how the code works. Similar to the concept of coordinates in graphing,
mouse coordinates are expressed in two numbers. The first is usually referred to as
X and measures a horizontal distance from a reference point. The second is usually
referred to as Y and measures a vertical distance from a reference point. In the
context of a mouse moving over a form, the reference point is the top-left corner of
the form. Thus, the X coordinate measures the horizontal distance from the left side
of the form, and the Y coordinate measures the vertical distance from the top of the
form.

Figure 3-8 Application displaying mouse coordinates

CHAPTER 3 Controls 53

Coordinates by convention are expressed with the syntax X,Y. Therefore, the
top-left corner of the form would be the coordinate 0,0. If a coordinate is 60,77, the
mouse is 60 units to the right of the left edge of the form, and 77 units below the top
edge of the form.

The unit of measure is a pixel, a shortened term for “picture element,” which is
a dot representing the smallest graphic unit of measurement on a screen. Screen
resolutions such as 1024×768 are expressed in pixels.

Creating the Application
Implement the following steps to create the application:

 1. Either open an existing project or create a new one.

 2. Using the Toolbox, add four labels to the form, one label at a time.

 3. Using the Properties window, change the AutoSize property of all four
labels from the default, True, to False. This step will make easier the
customization of the labels in the following steps.

 4. Size and align the four labels as shown in Figure 3-8. The preceding
sections on “Changing the Control’s Location” and “Changing the
Control’s Size” explain how to align or size multiple labels.

 5. Using the Properties window, change the Text properties of the two labels on
the left to X Coordinate and Y Coordinate, respectively, because the purpose
of these labels is to identify the two labels on the right. You are changing the
value of the Text property of these labels at design time because the text on
these labels will not change while the project is running.

 6. Using the Properties window, change the Name properties of the two labels
on the right to lblX and lblY, respectively. As discussed in the preceding
section on the Name property, the prefix lbl (lowercase L, not the number
1) identifies these controls as labels to programmers reading the code, and
the suffixes X and Y note the purpose of the controls—to display the X and
Y coordinates, respectively. It is not so important to rename the two labels
on the left because it is unlikely you will need to refer to them in code.

 7. Again using the Properties window, change the BackColor property of lblX
and lblY to White (so they will be more visible after we delete their text
in the next step). When you click the value of the BackColor property, a
tabbed dialog box appears. Choose the Custom tab and then click on a box
that is white.

54 Visual Basic 2005 Demystifi ed

 8. Also using the Properties window, delete any value in the Text properties
of lblX and lblY so both are blank. We don’t want these labels’ names to
display as the labels’ text when the project first starts up.

 9. Create an event procedure stub for the MouseMove event of the form. The
process is similar to the one in Chapter 2, when you created a Click event
procedure for the form. In code view, choose (Form1 Events) from the left
drop-down box and then MouseMove from the right drop-down box. The
event procedure stub is shown in Figure 3-9.

NOTENOTE The first line is too long to be displayed entirely in the window without
horizontal scrolling. Later in this chapter, you will learn how to use the line-
continuation character so the one long line can be divided into several shorter
and more readable lines.

Figure 3-9 Event procedure stub for the MouseMove event of the form

CHAPTER 3 Controls 55

 10. Write the following code inside the event procedure stub:

lblX.Text = e.X
lblY.Text = e.Y

 The completed event procedure now is shown in Figure 3-10.

 11. Compile the project from the Build menu and then run the project from the
Debug menu. Move your mouse over the form. The two labels on the right
should display numeric values, as shown in Figure 3-8, and change as you
move the mouse.

Figure 3-10 Completed MouseMove event procedure

56 Visual Basic 2005 Demystifi ed

How the Code Works
Although we know that the code works, we also need to know how the code works.
However, before explaining how the code works, let’s try to make that long first line
of the event procedure easier to read.

Line-Continuation Character
The event procedure, after we’ve edited the long first line, reads as follows:

Private Sub Form1_MouseMove(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles Me.MouseDown
 lblX.Text = e.X
 lblY.Text = e.Y
End Sub

The long first line now is divided into three shorter lines. This is accomplished
using the line-continuation character, which is an underscore (_) preceded by a
space.

Without the line-continuation character, dividing the long first line into three
shorter lines would result in a compile error. The reason is Visual Basic assumes
each line of code is complete. The line-continuation character tells Visual Basic that
the three lines of code go together.

Using Event Procedure Parameters
The following two lines of code display the X coordinate of the mouse in the Text
property of the Label control lblX and the Y coordinate of the mouse in the
Text property of the Label control lblY:

lblX.Text = e.X
lblY.Text = e.Y

The “e” on the right side of the assignment operator also appears in the parentheses
of the event procedure:

 (ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs)

The parentheses of an event procedure contain its parameters. A parameter
represents information that is available to a procedure.

CHAPTER 3 Controls 57

An event procedure may have no parameters, one parameter, or two or more
parameters. An event procedure’s parameters are defined by Visual Basic and the
underlying .NET Framework; you cannot change them.

When a procedure has two or more parameters, the parameters are separated by
a comma. The MouseMove event procedure of the Form class has two parameters.

The second parameter, represented by e, is an object of the MouseEventArgs
class, which belongs to the System.Windows.Forms namespace.

The MouseEventArgs class has two properties, X and Y, whose values, in the
case of the MouseMove event, are the current X and Y coordinates of the mouse
cursor. Because e represents the instance of the MouseEventArgs class involved in
the current mouse movement, e.X represents the X coordinate of the mouse when
the mouse is moved, and e.Y represents the Y coordinate of the mouse when the
mouse is moved. With the assignment operator, these X and Y coordinates are
assigned to the Text properties of lblX and lblY, respectively, which then display
these coordinates. Each time the mouse moves, the MouseMove event occurs, and
therefore the code inside the event procedure executes, updating the text displayed
in the two labels.

Handles Clause
The end of the first line of the event procedure is

Handles Me.MouseDown

As explained in Chapter 2, when the .NET Framework that underlies Visual
Basic 2005 detects an event, such as the mouse button being held down, that happens
to an object such as the menu item, it searches for an event procedure that handles
that event for that object. If the .NET Framework finds such an event procedure, it
calls that event procedure, and the code inside the event procedure executes.

The Handles keyword is used to declare that a procedure handles a specified
event. That event is specified by Me.MouseDown. The keyword Me refers to the
current object of the Form1 class (that is, the form over which the mouse button is
being held down). MouseDown is the event. Accordingly, the Handles clause
indicates that this event procedure handles the MouseDown event of the form.

What If You Type the Wrong Code?
It is inevitable as you write more code that on occasion the syntax of your code will
be incorrect, such as if you misspell or leave out a term. For example, instead of
Text, you could type Txt so that the line of code

lblX.Text = e.X

58 Visual Basic 2005 Demystifi ed

instead is

lblX.Txt = e.X

Visual Basic 2005 tries to warn you even before you attempt to compile your
code. As Figure 3-11 shows, the term lbl.Txt will be underlined with a squiggly
line, similar to how Microsoft Word highlights misspellings.

If you hold your mouse over the highlighted code, a ToolTip shows with the
following warning: “The name ‘Txt’ is not a member of ‘System.Windows.Form.
Label.’” This warning means that Txt is not a property of the Label class (which is
part of the System.Windows.Form namespace) and therefore is not recognized by
the compiler. This is true because the property is spelled “Text,” not “Txt.”

Undeterred by this warning, you nevertheless attempt to build the project. As
Figure 3-12 shows, an Error List should display reporting, similarly to the ToolTip,
“The name ‘Txt’ is not a member of ‘System.Windows.Form.Label.’” Additionally,
the line containing the error is identified.

Figure 3-11 Incorrect code highlighted

CHAPTER 3 Controls 59

NOTENOTE If the Error List does not automatically display, you can display it with the
menu command View | Other Windows | Error List.

Of course, you still need to correct the code. However, the Visual Basic 2005
IDE does advise you of the nature and location of the syntax error.

Figure 3-12 Error List reporting an error

Conclusion
The form is perhaps the most important control. However, a single form without
controls could only satisfy the requirements of the simplest Windows application.
The form does not permit typing of text, listing data, selection of choices, and many
other tasks that an application may need to perform. You need other, specialized
controls for that additional functionality. Indeed, the form’s primary role is to serve

60 Visual Basic 2005 Demystifi ed

as a host, or container, for controls such as menus, toolbars, and buttons, which
enrich the GUI of Windows applications.

This chapter showed you how to add controls to your form using the Toolbox.
You then learned how to change the size or location of the controls. The project also
showed you how to control the size and location of multiple controls relative to
each other.

The Label class, like the Form class, has properties. Perhaps the most important
properties of the Label class are its Name and Text properties.

The Name property determines how you refer to a label in code. You should use
a naming convention when naming a label that you will refer to in code. This chapter
suggested a naming convention using a prefix, usually all lowercase and consisting
of three letters, that indicates the type of control it is, followed by a word, first letter
capitalized, that suggests its purpose.

The Text property determines the value of the text displayed by the label. Like
the Text property of the Form class, you can change the value of the Label control’s
Text property either at design time or through code. You generally will use the
Properties window if the purpose of the label is to identify the purpose of another
control because that information usually will not change during the running of the
application. By contrast, you generally will use code if the purpose of the label is to
display data that may change during the running of the application. This code often
will be located inside of an event procedure.

This chapter included a project that uses the Label control for both purposes—to
display data that does not change during the running of the application and to
display data that does change during the running of the application. Finally, you
learned how to use information, called parameters, available to an event
procedure.

Although it is impressive that you can create a working Visual Basic 2005
program that displays information using controls by writing only two lines of code,
most programs need to save information, or data. The next chapter will teach you
about different data types and how to create and use information storage locations
called variables.

Quiz
 1. What are examples of controls?

 2. What is the purpose of the Toolbox?

 3. How do you add a control from the Toolbox on to your form?

CHAPTER 3 Controls 61

 4. What is the purpose of the Name property of a control?

 5. What is a naming convention?

 6. What characteristic of the Label control does its Text property determine?

 7. What are purposes of the text displayed by a Label control?

 8. What is a line-continuation character?

 9. What is a parameter of an event procedure?

 10. What is a Handles clause?

This page intentionally left blank

PART TWO

Programming
Building Blocks:
Variables, Data

Types, and
Operators

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

65

CHAPTER
4

Storing
Information—Data

Types and Variables

I often am asked for my autograph. Unfortunately, my autograph usually is requested
by those who want my money, such as on credit card receipts when I purchase
groceries or gas, or on checks to pay my mortgage or auto insurance.

These companies who love sending me bills could not possibly keep track of
their thousands of customers using pencil and paper. Instead, they use computer
programs, which harness the computer’s unparalleled ability to store information
and make computations using that data.

These companies are not the only ones who need to store and retrieve data. Visual
Basic 2005 also needs to store and retrieve data, such as the height, width, and
background color of your startup form, necessary in order for your projects to run.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

66 Visual Basic 2005 Demystifi ed

Data comes in different varieties. Some data is numeric, such as the amount of
my gas bill or the height of a form. Some data is text, such as my name on my gas
bill or the text on the title bar of a form. Some data is Boolean (either true or false),
such as whether I qualify for the senior citizen discount or whether a form is
visible.

The type of information, whether numeric, text, or Boolean, is referred to as the
data type. I will explain in this chapter the different data types and how to select the
one that best fits your purpose.

You also will need to store data. Visual Basic forms and controls have many
built-in properties to store data, such as the Text property of a Label or TextBox
control. However, these properties are limited to storing the information they were
designed for. The Height property of a form only can store a form’s height, not
some other information you need to store.

Visual Basic 2005 enables you to create your own information storage locations,
called variables. I will show you in this chapter how to create and use variables.

Finally, certain values never change while a program is running. For example, if
you are writing a program to calculate the cost of a transaction, the percentage of
sales tax will not change while your program is running. These values that do not
change while your program is running are called constants. I will also show you in
this chapter how to create and use constants.

Data Types
Think of all the different types of information you need to keep in your mind. For
example, if you as a student were driving to school for the first day of class, you
would not want to be late. Therefore, you would consider the number of miles to
school in deciding what time to leave. You may wonder if you will be able to get
into the class and try to remember the name of the teacher you need to ask. The
class will be tough, so you think about the effect the class might have on your grade
point average.

Some of these items of information are numeric, such as the number of miles to
school and your grade point average. However, the name of the teacher is not
numeric, but text, and whether you will be able to get into the class will be either
yes or no. The type of information, whether text, numeric, or yes/no, is referred to
as the data type.

CHAPTER 4 Storing Information—Data Types and Variables 67

Numeric Data Types
Visual Basic has a number of data types—Integer being the most common—that
may be used for whole numbers. A whole number may be positive (55) or negative
(–55) or zero. However, the Integer data type should not be used for floating-point
numbers—that is, those that have numbers to the right of the decimal point, such as
–.5, 0.5, or 5.5.

The Integer keyword for this data type is an alias for the System.Int32 data
type in the .NET Framework. Indeed, each of the Visual Basic data type
keywords we will be discussing is an alias for a corresponding .NET Framework
data type.

An Integer would be a good choice for the number of miles to school. Normally,
you would think it is 8 miles to school, for example, not 8.3 miles, as there is no
need to be so precise as to figure out tenths of miles.

Visual Basic has several data types, such as Double, Single, and Decimal, that
may be used for floating-point numbers (for example, .5, 0.5, and 5.5). These data
types would be a good choice for the grade point average, such as 3.91, because
for a grade point average you want to take into account the digits to the right of
the decimal point. After all, if you worked hard to earn a 3.91 grade point average,
you would not want the .91 ignored, thus making your grade point average 3
instead.

NOTENOTE The Integer and Double data types can handle almost all numbers you may
use in a program. However, there are numbers that are too large for either data
type to handle, such as distances between galaxies in the universe. There also are
numbers that may be too small for the Double data type to handle, such as the size
of an atom. However, these circumstances are relatively rare.

The Boolean data type has only two possible values: True and False. The Boolean
data type would be a good choice to report whether you got into the class because
there are only two alternatives: yes (True) and no (False).

NOTENOTE The Boolean data type is considered numeric because 0 (zero) is
considered False and all nonzero numbers True.

68 Visual Basic 2005 Demystifi ed

Text Data Types
The String and Char data types are used for text.

A string is simply one or more characters, usually enclosed in double quotes to
indicate that a string is intended. The characters may be alpha (A–Z or a–z),
numeric (0–9), or virtually any other character you can type from your keyboard.
For example, the name “R2D2” is a string even though it includes the numeric
character 2. The String data type would be a good choice for the teacher’s name,
such as “Genghis Khent,” my students’ fond (?) nickname for me.

The Char data type represents a single character, also enclosed in double
quotes, followed by an upper- or lowercase c to indicate that it is a character
rather than a string. As with a string, the character may be alpha (A–Z or a–z),
numeric (0–9), or virtually any other character you can type from your keyboard.
The Char data type would be a good choice for the grade you hope to earn in the
class, such as an “A”.

There are other data types, some of which will be mentioned in later chapters.
However, these five data types, Integer, Double, String, Char, and Boolean, are the
ones principally used.

Data Types of Visual Basic Properties
Take a look at the Properties window of the form in your project. The form has
many different properties. These properties determine the form’s height and width,
background color, caption, visibility, and so on. Visual Basic 2005 uses these
properties when you start a project to determine the form’s size, background color,
and so forth.

Each of these properties stores a particular value. The Height property stores a
number that represents the height of the form. The Text property stores a string that
represents the title displayed by the form. The Visible property stores a Boolean
value that represents whether the form is visible (True) or hidden (False).

You can access the values of many properties when designing your application
(design time) simply by viewing them in the Properties window. You also can access
the values of many properties while your application is running through code (run
time). In Chapter 2, we changed the Text property of the form at run time; in Chapter 3,
we changed the Text property of labels at run time.

However, whether you are in design time or run time, the new value of a property
must be of the correct data type. To confirm this, in the Properties window of the
form, type Jeff next to the Height property, which you can access by expanding the
Size property, as shown in Figure 4-1. Then press ENTER. A dialog box will display,
as in Figure 4-2, warning you of an “invalid property value.”

CHAPTER 4 Storing Information—Data Types and Variables 69

Click the Details button of the dialog box in Figure 4-2. The dialog box then will
display the message, “Jeff is not a valid value for Int32.” As discussed previously,
System.Int32 is the name used in the .NET Framework for the Integer data type.

That Visual Basic 2005 prevents you from changing the value of the Height
property to “Jeff” makes sense. The height must be a number. Visual Basic does not
know how to make a form of the height “Jeff.”

Try exploring the properties of the form in the Properties window. You will see
there are many different data types for the different properties.

Figure 4-1 Setting the form’s Height property to an invalid value

Figure 4-2 Invalid property value warning

70 Visual Basic 2005 Demystifi ed

Variables
You can store, access, and change the value of a property. However, you cannot
change what the property stands for. For example, the Height property of a Form
object represents the height of a form; you cannot change that property so that it
instead represents the width of a form or the name of your favorite ice cream.

Instead, you can create a variable to store data of your choosing, such as the
name of your favorite ice cream, your social security number, and so on.

Declaring a Variable
Visual Basic knows that the form’s Height property stands for the height of the form
and that its data type is numeric because the Height property is built into the .NET
Framework class library. However, because you, not Visual Basic, create a variable,
you need to tell Visual Basic information about the variable. You do so by declaring
the variable.

You declare a variable with the following syntax:

[Access Specifier] [Variable Name] As [Data Type]

To make this syntax more understandable, here are two examples of declaring a
variable:

Dim intScore As Integer
Private strName As String

In the first example, Dim is the access specifier, intScore is the variable name,
and Integer is the data type. In the second example, Private is the access specifier,
strName is the variable name, and String is the data type.

There are other access specifiers, but Dim and Private will be the ones used in
this chapter.

You can choose any of the data types discussed in the preceding section on data
types, though logically, you should choose a data type that is appropriate for the
purpose of the variable. For example, if the variable represents someone’s name,
you likely will choose String as the data type, whereas if the variable represents
someone’s age, you instead may choose the Integer data type.

Naming a Variable
Variables, like people, have names. These names are used to identify the variable to
which you want to refer. There are only a few limitations on how you can name a
variable:

CHAPTER 4 Storing Information—Data Types and Variables 71

• The variable name cannot begin with any character other than a letter of the
alphabet (A–Z or a–z) or an underscore (_). Secret agents may be named
007, but not variables.

• The variable name cannot contain embedded spaces, such as My Variable,
or punctuation marks other than the underscore character (_), such as a
question mark (?), comma (,), period (.), backslash (\), forward slash (/),
or a parenthesis.

• The variable name cannot be longer than 255 characters (not that you
would want to create a variable name that long).

• The variable name cannot be the same as a keyword, such as Integer or
String, because that would confuse the compiler. (Technically, you can put
the keyword in brackets to use it as a variable name, but as your mother
may have told you, just because you can do something doesn’t mean you
should do it.)

• The variable name cannot have the same name as the name of another
variable of the same scope, because that also would confuse the compiler.
Scope is discussed later in this chapter.

Besides these limitations, you can name a variable pretty much whatever you
want. However, it is a good idea to give your variables names that are meaningful.
If you name your variables var1, var2, var3, and so on, through var17, you may find
it difficult to remember later the difference between var8 and var9. And if you find
it difficult, imagine how difficult it would be for another programmer who has to
make sense of your code.

In Chapter 3, I recommended you use a naming convention when naming
controls. I similarly recommend that you use a naming convention when naming
your variables. Analogous to Chapter 3, the naming convention I suggest is to name
a variable with a prefix, usually all lowercase and consisting of three letters, that
indicates its data type, followed by a word, first letter capitalized, that suggests its
purpose.

Here are some suggested prefixes for data types:

Integer int

String str

Boolean bln

Double dbl

72 Visual Basic 2005 Demystifi ed

Here are some examples that use these prefixes:

• intScore An Integer variable representing a score, such as on a test

• strName A String variable representing a name, such as a person’s name

• blnResident A Boolean variable representing whether or not someone is
a resident

• dblGPA A Double variable representing a student’s GPA

If you need more than one word to describe the variable’s purpose, you should
combine the words into one (because you cannot have embedded spaces) but
capitalize the first letter of each word, such as blnDidUserQuit.

What Happens If You Don’t Declare a Variable?
By default (and I would not change this default), Visual Basic 2005 requires you to
declare a variable before you refer to it in code.

For example, in either a new or existing Windows application, type the following
code in the Load event procedure of the form. This code, which attempts to assign
10 to intVar without previously declaring intVar as a variable, will not compile.

Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 intVar = 10
End Sub

Instead, on the line intVar = 10, the compiler will complain, “Name ‘intVar’ is
not declared.”

Where Do You Declare a Variable?
You can declare a variable in one of two places: inside a procedure or at the top of
the code module. Where you declare a variable affects its scope.

Local Variable
If you declare a variable inside a procedure, you can refer to that variable only in
that procedure. Stated in programming parlance, the variable is a local variable,
having scope only inside the procedure in which it was declared. The Dim access
specifier generally is used for local variables.

CHAPTER 4 Storing Information—Data Types and Variables 73

Assume the code in the Load and Click event procedures of the form read as
follows:

Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim intVar As Integer
End Sub

Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Click
 intVar = 10
End Sub

You will get a compile error “Name ‘intVar’ is not declared.” The line intVar = 10
inside the Click event procedure will be highlighted. The reason is that intVar only
has scope inside the Load event procedure in which it was declared and therefore is
not visible in the Click event procedure.

By contrast, assigning 10 to intVar inside the Load event is okay because intVar
was declared inside that event procedure. Try this by deleting the line of code in the
Click event procedure of your form and then changing the code in the Load event
procedure of your form so it reads as follows:

Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim intVar As Integer
 intVar = 10
End Sub

In this example, the variable intVar was declared in the first statement and
assigned a value in the second statement. You also can combine the two statements
as follows:

Dim intVar As Integer = 10

Combining the declaration and assignment of a variable within one statement is
called initialization.

Module-Level Variable
You also can declare a variable outside of and above any procedure. In
programming parlance, this is a module-level variable, having scope in all event
procedures and other code in that code module. Either the Dim or Private access
specifier may be used for module-level variables; there is essentially no
difference between them.

74 Visual Basic 2005 Demystifi ed

In the following example, because intVar is declared at the module level, it can
be accessed by both the Load and Click event procedures of the form, without
having been declared inside those event procedures:

Private intVar As Integer
Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 intVar = 10
End Sub

Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Click
 intVar = 5
End Sub

You may declare a module-level variable using initialization:

Private intVar As Integer = 10

However, you can assign a value to an already declared variable only inside a
procedure; you cannot do so at the top of the code module:

Private intVar As Integer
intVar = 10

Instead, you will get the compile error “Declaration expected.”

Why Not Always Declare Variables at the Module Level?
Given the potential for compiler errors resulting from variables being referenced
outside their scope, the temptation is to give your variables the widest possible
scope and make them module level instead of local. Resist temptation! Indeed, as a
general rule, you should make your variables local rather than module level, giving
them the least amount of scope possible.

One reason is, when debugging your code, if a variable can be accessed only
from one location in your program, you only need to check the code in that one
place. However, if the variable can be accessed from ten different locations in your
program, you need to check the code in all ten places, as well as determine the
effect of any interrelationships between the ten locations. In other words, the less
scope the variable has, the easier your task as a programmer. Why make your job
harder than it has to be?

Of course, there will be circumstances in which a variable should have
module-level scope. The point is that, in determining whether to declare a
variable locally in an event procedure or instead at the module level, you should
not declare the variable at the module level unless you can justify to yourself
why you need to do so.

CHAPTER 4 Storing Information—Data Types and Variables 75

Constants
A constant is similar to a variable, except that a constant’s value cannot change
during the life of the program.

Declaring a Constant
The syntax of declaring a constant is similar to a variable:

Const [Constant Name] As [Data type] = [value]

For example, the following statement declares a constant, MAX_SCORE, of the
data type Integer, whose value, 100, is the maximum score that can be obtained on
a test:

Const MAX_SCORE As Integer = 100

Let’s analyze the component parts of the constant declaration:

• Const Const is a keyword that indicates you are declaring a constant
instead of a variable.

• Constant name The naming convention for constants is different than
for variables. By convention, constant names, unlike variable names, do
not have a prefix such as int or str to specify the data type, but instead are
entirely descriptive. Additionally, by convention the name consists of
uppercase characters, so words are separated by an underscore character (_),
as in BRIBE_PAID.

• Data type Same as with variables.

• Assigning a value The main difference in syntax between declaring a
variable and declaring a constant is that a constant must be assigned a value
when declared. The reason why a constant must be assigned a value when
it is declared is that the value of a constant cannot be changed after it is
declared. Therefore, a constant must be given a value when it is declared
or it can never be given a value at all.

Where Do You Declare a Constant?
You can declare a constant at either local scope (inside an event procedure) or
module-level scope (outside and above the event procedures). The reasons why I
recommend you declare a variable locally, unless you have a specific reason to
declare the variable at the module level, don’t apply to constants because, as the
next section shows, you can’t change the value of a constant after you declare it.

76 Visual Basic 2005 Demystifi ed

Usually constants are declared at the module level, so they can be used by all of the
form’s event procedures. An access specifier may but need not be used when the
constant is declared at the module level.

Where Do You Assign a Value to a Constant?
The answer is that you only can assign a value to a constant when you declare it
(that is, initialization).

Because a constant’s value cannot be changed during the life of the program,
even attempting to assign a value to a constant will cause an error. Try this code in
the Windows application you have been using in this chapter:

Const MAX_SCORE As Integer = 100
Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 MAX_SCORE = 200 'error
End Sub

Why Use Constants?
Although it is important to know how a constant differs from a variable and how to
declare constants, you may be wondering, Why use constants at all? The reason is
that constants make your code easier to read and maintain.

Although constants are useful for values that never will change, constants perhaps
are even more useful for values that someday may change. For example, we’ve all
paid sales tax on purchases. Assuming the tax rate is 8%, the amount of the tax is
price * .08. Thus, throughout your code for a store you may have calculations such
as the following:

[price variable] * .08

One day the government decides to increase the sales tax to 8.25%. Now you
have to find all the places in your code where you referred to the sales tax rate and
change all those references from .08 to .0825. This not only is a pain, but the
potential for error is obvious.

Alternatively, you could have declared the sales tax rate as a constant:

Const SALES_TAX_RATE As Double = .08

Thus, the tax calculation in your code would be as follows:

[price variable] * SALES_TAX_RATE

CHAPTER 4 Storing Information—Data Types and Variables 77

Then, when the government increases the sales tax to 8.25%, you only have to
make the change in one place in your code, and you’re done:

Const SALES_TAX_RATE As Double = .0825

Conclusion
Most programs need to keep track of information. That information may be about
the subject of the program, such as the names and addresses of customers, or it may
be about the program itself, such as the height, caption, or visibility of a form.

Data comes in different forms. Data may be numeric (such as the height of a
form), text (such as the caption on a form), or Boolean (such as whether a form is
visible). The type of information, whether number, string, or Boolean, is referred to
as the data type.

Although the .NET Framework class library has many built-in properties to store
data, Visual Basic 2005 also enables you to create your own information storage
locations, called variables. Variables must be declared before they are used.

Variables may be declared at the top of the code module, in which case they are
called module-level variables, and will be available to all procedures in that module.
Variables also may be declared inside a procedure, in which case they are called
local variables and their scope is limited to the procedure in which they were
declared.

Finally, certain values never change during the life of the program. These
unchanging values are represented by constants, which are declared similarly to
variables. However, unlike variables, constants must be initialized when they are
declared, and their value cannot thereafter change during the lifetime of the
program.

In this chapter, you used the assignment operator to provide values to variables.
In the next chapter, you will learn about arithmetic operators, which enable you to
use the computer’s unparalleled ability to quickly and accurately perform
mathematical calculations.

Quiz
 1. What does a data type signify?

 2. What is a floating-point number?

78 Visual Basic 2005 Demystifi ed

 3. Can you change the data type of a built-in property of a form, such as
Height or Text?

 4. What is the purpose of a variable?

 5. Does Visual Basic 2005 by default require you to declare a variable before
you refer to it in code?

 6. What is a local variable?

 7. What is a module-level variable?

 8. Do you have to assign a value to a variable when you declare it?

 9. What is the difference between a constant and a variable?

 10. Do you have to assign a value to a constant when you declare it?

79

CHAPTER
5

Letting the
Program Do the

Math—Arithmetic
Operators

It is only fair that since my students have to listen to my recycled jokes, you have to
read my recycled introductions. Back in Chapter 2 I complained that nowadays
students don’t need to be able to calculate arithmetic in their heads because they can
rely on calculators. However, despite my complaining about calculators, they
certainly are far faster and more accurate than I could ever hope to be. The reason
is that a calculator is a computer, and computers are superstars when it comes to
calculating.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

80 Visual Basic 2005 Demystifi ed

You harness the computer’s calculating ability using arithmetic operators. You
will learn in this chapter how to enable your applications to make fast and accurate
calculations using arithmetic operators. At the end of this chapter, you will put what
you learned into practice with the Change Machine project, a type of calculator that
converts a number of pennies into dollars, quarters, dimes, nickels, and pennies.

Arithmetic Operators
Visual Basic 2005 can do your arithmetic, and because a computer is involved, it’s
much faster and more accurate than any human! Even better, the code is relatively
easy to write, because the syntax for arithmetic is quite similar to how you would
write the arithmetic calculation on paper or how you would use a calculator.

Table 5-1 lists the arithmetic operators.

The Addition Operator
The addition operator works exactly as you would expect it to with numeric values.
In the following code snippet, the third line of code adds the values of variables a
and b and then assigns the sum, 5, to variable a, changing its value from 2 to 5:

Dim a As Integer = 2
Dim b As Integer = 3
a = a + b

Operator Name What It Does

+ Addition Performs addition.

– Subtraction Performs subtraction.

* Multiplication Performs multiplication.

^ Exponentiation Raises a number to a specifi ed power.

/ Floating-point division Performs fl oating-point division; the remainder
is preserved and expressed as a decimal.

\ Integer division Performs integer division; the remainder is
dropped.

Mod Modulus division Used to obtain the remainder from division.

Table 5-1 Arithmetic Operators

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 81

The addition operator also works with String variables by concatenating, or
appending, one string to another. In the following code snippet, the third line of
code adds the values of variables a and b and assigns the concatenated string,
“JeffKent”, to variable a, changing its value from “Jeff” to “JeffKent”:

Dim a As String = "Jeff"
Dim b As String = "Kent"
a = a + b

NOTENOTE The & operator also performs the same function as the addition operator
with strings.

The Subtraction Operator
The subtraction operator also works exactly as you would expect it to with numeric
values. In the following code snippet, the third line of code subtracts the value of
variable b from variable a and assigns the difference, –1, to variable a, changing its
value from 2 to –1:

Dim a As Integer = 2
Dim b As Integer = 3
a = a - b

The Multiplication Operator
The multiplication operator also works exactly as you would expect it to with
numeric values. In the following code snippet, the third line of code multiplies the
value of variable a by the value of variable b and assigns the product to variable a,
changing its value from 2 to 6:

Dim a As Integer = 2
Dim b As Integer = 3
a = a * b

The Exponent Operator
The exponent operator (^) may not be as familiar, but its use is simple: 3 squared is
expressed as 3 ^ 2. In the following code snippet, the third line of code raises the

82 Visual Basic 2005 Demystifi ed

value of variable a (3) to the second power (the value of variable b) and then assigns
the result (9) to variable a, changing its value from 3 to 9:

Dim a As Integer = 3
Dim b As Integer = 2
a = a ^ b

The Division Operators
Whereas there is only one addition, subtraction, and multiplication operator, there
are three division operators. The operators /, \, and Mod all involve division.
However, one important difference among the three division operators is how they
report the results of the division.

Using as an example 11 divided by 4, the result is 2 remainder 3. In this example,
2 is the quotient and 3 is the remainder. The results reported by the three division
operators are as follows:

• The / operator reports the entire result, 2 remainder 3, expressed as a
decimal, 2.75.

• The \ operator reports only the quotient, 2, and drops the remainder. Integer
division does not round off. If it did, 11 \ 4 would be 3, not 2. Because
integer division reports only the quotient, the result necessarily is a whole
number.

• The Mod operator reports only the remainder, 3, and drops the quotient.
Because modulus division reports only the remainder, the result necessarily
is a whole number.

You often will use the / operator, which performs floating-point division, because
it provides you the complete result. However, the Change Machine project at the
end of this chapter shows you that the \ and Mod operators also can be very
useful.

TIPTIP Programmers sometimes find it difficult to recall which of the / and \ operators
is floating-point division and which is integer division. One mnemonic is that the /
is a forward slash, and the f in “forward” corresponds to the f in “floating point.”
Another memory technique is that the / looks more like the normal arithmetic
division operator than does the \ , and floating-point division produces the normal
quotient and remainder result of arithmetic division, whereas integer division
does not.

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 83

Operator Precedence
So far the arithmetic expressions have been simple, involving just one arithmetic
operator. However, sometimes arithmetic expressions are more complex, involving
two or more arithmetic operators. For example, does the arithmetic expression 2 +
3 * 4 equal 20 (by performing addition before multiplication) or 14 (by performing
multiplication before addition)?

One and only one of these two answers can be correct. Rules of operator
precedence are necessary to determine which of the two answers is correct.

Table 5-2 lists the order of precedence, or priority, among arithmetic operators.
Thus, 2 + 3 * 4 equals 14, because multiplication has a higher priority than

addition and therefore is performed first.
Because multiplication and division have equal priority, when both operators

occur together in an expression, priority goes from left to right. Therefore, whichever
of the two operators is on the left is performed before the one on the right. The same
left-to-right priority rule applies between addition and subtraction.

Parentheses can be used to override the order of precedence and force some parts
of an expression to be evaluated before others. Operations within parentheses are
always performed before those outside the parentheses. Thus, (2 + 3) * 4 equals 20,
not 14, because the parentheses force addition to be performed first.

Combining Arithmetic and Assignment Operators
As discussed earlier in this chapter, in the following code snippet, the third line of
code adds the values of variables a and b and assigns the sum, 5, to variable a,
changing its value from 2 to 5:

Dim a As Integer = 2
Dim b As Integer = 3
a = a + b

Priority Operator(s) Description

1 ^ Exponent

2 – Unary negation operator (not subtraction)

3 *, / Multiplication and fl oating-point division

4 \ Integer division

5 Mod Modulus (remainder)

6 +, – Addition and subtraction, string concatenation

Table 5-2 Operator Precedence

84 Visual Basic 2005 Demystifi ed

A precedence issue arises here in the third line of code. Even though there is only
one arithmetic operator, there are two operators, one arithmetic and the other
assignment. However, the precedence issue is easily resolved. Addition is performed
before assignment because all arithmetic operators have precedence over the
assignment operator.

The third statement can be shortened as follows and still accomplish the same
result:

a += b

The combined arithmetic/assignment operators are shown in Table 5-3.
These shorthand arithmetic/assignment operators make your code more readable.

The purpose of the following statement is to increment (increase by 1) the value of
variable a:

a += 1

The purpose of that statement is more readable (as well as shorter to type) than the
following statement:

a = a + 1

The Mod operator has no corresponding arithmetic/assignment operator because
the remainder of a variable divided by itself is always 0.

The Parse and ToString Methods
As discussed earlier in this chapter, the addition operator works with String values
as well as with numeric values. With String values, the addition operator concatenates,
or appends, one string to another.

The ability of the addition operator to perform double duty with String as well as
numeric values can backfire on you. To illustrate, assume your application has two

Operator Use Alternate

+= a += b a = a + b

–= a -= b a = a – b

*= a *= b a = a * b

/= a /= b a = a / b

\= a \= b a = a \ b

^= a ^= b a = a ^ b

Table 5-3 Combined Arithmetic/Assignment Operators

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 85

TextBox controls, txtOp1 and txtOp2, in which the user types two numbers to be
added, with the sum displayed in a Label control named lblResult. The application
may use the following code:

lblResult.Text = txtOp1.Text + txtOp2.Text

The user wants to add 2 + 2, so types 2 in each TextBox. However, the answer is
not the expected 4, but instead 22! This is not new math. Instead, Visual Basic
assumed you intended to concatenate two strings (“2” + “2” = “22”) instead of
adding two numbers (2 + 2 = 4) because the data type of the Text property of the
two TextBox controls is a String, not a numeric data type.

The solution is to explicitly direct, through code, that Visual Basic convert the
string representation of an integer (the Text property of txtOp1 and txtOp2) into
actual integer values before performing addition and then assigning that sum to be
displayed in lblResult. You can accomplish this conversion through the Parse
method of the Integer class. This method converts its argument, the string
representation of an integer, into an actual integer value before that value is assigned
to the Integer variable. The following code in the program converts the string
representations of each of the two integers (the Text properties of txtOp1 and
txtOp2, respectively) to the actual integer values before adding those values and
assigning the resulting sum to be displayed in lblResult:

lblResult.Text = Integer.Parse(txtOp1.Text) + _
 Integer.Parse(txtOp2.Text)

NOTENOTE The Double class also has a Parse method, which converts the string
representation of a floating-point number into an actual number (“123.45” into
123.45).

The ToString method is the converse of the Parse method. Whereas the Parse
method converts a string representation of a number into a number (“123” into
123), the ToString method converts a number into the string representation of a
number (123 into “123”). This can be useful when you want a number displayed in
a control whose Text property is a string. The following code first stores the sum in
the Integer variable sum and then uses the ToString method to convert that integer
into the string representation of an integer before assigning it to the label’s Text
property, whose data type is a String:

Dim sum As Integer
sum = Integer.Parse(txtOp1.Text) + _
 Integer.Parse(txtOp2.Text)
lblResult.Text = sum.ToString

86 Visual Basic 2005 Demystifi ed

All classes have a ToString method. What that method does depends on the class.
In the case of the Int32 class, which represents an integer, the ToString method
converts an integer to the string representation of the integer so it can be assigned
to the Text property of the Label controls.

The ToString method, as used with the Integer class, is preceded by the integer
value to be converted and then a dot (or period). It is followed by empty parentheses
because this method has no parameters.

We will be using the Parse and ToString methods in the Change Machine project
later in this chapter.

Class Methods
In previous chapters, we have discussed how classes have properties and events. A
property is a characteristic of an object of a class, such as the Text property of the
Button class being the text displayed on a button, such as “Calculate” or “Clear.” An
event is something that happens to an object of a class, such as the Click event of
the Button class being the event that occurs when a button is clicked.

Parse and ToString are not properties or events, but methods of a class, such as
Integer. A method is something an object of a class does. For example, as objects of
the Person class, our methods could include breathe, walk, talk, and so on. The
Form class (among others) also has methods, as you will learn in later chapters.

Change Machine Project
My mother was not above using a change machine to distract cranky or mischievous
young grandchildren. The youngsters poured hundreds of pennies into the top of
the machine and watched with fascination (fortunately youngsters are easily
fascinated) as the machine sorted the pennies into amounts of change that could be
taken to the bank and exchanged for dollars, quarters, and so on. The youngsters
were motivated as well as fascinated, because guess who got to keep the quarters?

Your project will ask the user to input the number of pennies. You can assume the
user will input a positive whole number and then click the Calculate button. The
code then will output in controls the number of dollars, quarters, dimes, nickels and
pennies. Figure 5-1 shows the result of running the program and inputting 392 for
the number of pennies.

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 87

Creating the Project
Implement the following steps to create the project:

 1. Start a new Windows application. I called my project name Change
Machine.

 2. Using the Toolbox, add controls to the form so that it appears as shown
in Figure 5-2. All the controls are labels except for the two buttons on the
bottom of the form and the text box across from the label caption “Enter
Pennies.”

 3. Using the Properties window, change the Name property of the TextBox
control to txtPennies and then delete any value in its Text property.

 4. Using the Properties window, change the AutoSize property of all labels
from the default True to False. This can be done by selecting all the labels
first, which changes the AutoSize property of each. This step will make
easier the customization of the labels in the following steps.

 5. Using the Properties window, change the Text properties of the labels on
the left so they are captions as they appear in Figure 5-2.

 6. Using the Properties window, change the Name properties of the labels on
the right to lblDollars, lblQuarters, lblDimes, lblNickels, and lblPennies,
respectively.

Figure 5-1 Change Machine project in action

88 Visual Basic 2005 Demystifi ed

 7. Again using the Properties window, change the BackColor property of the
labels on the right to White (so they will be more visible after we delete
their text in the next step). When you click the value of the BackColor
property, a tabbed dialog box appears. Choose the Custom tab and then
click on a box that is white.

 8. Also using the Properties window, delete any value in the Text properties
of the labels on the right so they are blank, to avoid these labels’ names
displaying as the labels’ text when the project first starts up.

Figure 5-2 Form in design mode

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 89

 9. Using the Properties window, change the Name property of the button on
the left to btnCalculate and its Text property to Calculate. Similarly, change
the Name property of the button on the right to btnClear and its Text
property to Clear.

 10. Create an event procedure stub for the Click event of btnCalculate and
write the following code (to be explained in the following section, “The
Algorithm”) inside the event procedure:

Private Sub btnCalculate_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click
 Dim intLeftover As Integer
 intLeftover = Integer.Parse(txtPennies.Text)
 lblDollars.Text = (intLeftover \ 100).ToString
 intLeftover = intLeftover Mod 100
 lblQuarters.Text = (intLeftover \ 25).ToString
 intLeftover = intLeftover Mod 25
 lblDimes.Text = (intLeftover \ 10).ToString
 intLeftover = intLeftover Mod 10
 lblNickels.Text = (intLeftover \ 5).ToString
 intLeftover = intLeftover Mod 5
 lblPennies.Text = intLeftover.ToString
End Sub

 11. Create an event procedure stub for the Click event of btnClear and write the
following code inside the event procedure:

Private Sub btnClear_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnClear.Click
 txtPennies.Text = ""
 lblDollars.Text = ""
 lblQuarters.Text = ""
 lblDimes.Text = ""
 lblNickels.Text = ""
 lblPennies.Text = ""
End Sub

This code simply resets the Text properties of the TextBox and the Label controls
on the right to blank, as they were when the application fi rst started. The result is
shown in Figure 5-3.

90 Visual Basic 2005 Demystifi ed

The Algorithm
As you learned in Chapter 1, the purpose of Visual Basic 2005, and indeed
programming languages generally, is to enable you, as the programmer, to give
instructions to the computer to carry out. Before you can formulate those instructions
in code, you first need to be able to articulate those instructions in English or
whatever other language you think in.

To write the Change Machine project, you need to come up with a step-by-step
logical procedure to convert the pile of pennies into neater stacks of dollars, quarters,
dimes, nickels, and pennies. A step-by-step logical procedure for solving a problem
is called an algorithm, pronounced “Al Gore rhythm.”

One algorithm for converting the pile of pennies into dollars, quarters, dimes,
nickels, and pennies is to first determine how many stacks of one hundred pennies
you can make from the pile. Each stack of one hundred pennies would then represent
one dollar. You then would work with the number of pennies left over to determine
the number of quarters, dimes, nickels, and, finally, pennies.

For example, assume there are 392 pennies in the pile. You might use the
following steps to determine the number of dollars, quarters, dimes, nickels, and
pennies in 392 pennies:

• There are 100 pennies in a dollar. You can make three stacks of 100 pennies
from 392 pennies. That means there are three dollars, with 92 pennies left
over, from which you will determine the number of quarters, dimes, nickels,
and pennies.

Figure 5-3 Form at run time after the Clear button has been clicked

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 91

• There are 25 pennies in a quarter. You can make three stacks of 25 pennies
from 92 pennies. That means there are three quarters, with 17 pennies left
over, from which you will determine the number of dimes, nickels, and
pennies.

• There are ten pennies in a dime. You can make one stack of ten pennies
from 17 pennies. That means there is one dime, with seven pennies left
over, from which you will determine the number of nickels and pennies.

• There are five pennies in a nickel. You can make one stack of five pennies
from seven pennies. That means there is one nickel, with two pennies left
over, which is the number of pennies.

Let’s now convert this algorithm from English to code.
The first step is to store the number of pennies entered by the user in the TextBox

control txtPennies into the Integer variable intLeftover. The following code does
this, first using the Parse method of the Integer class (discussed in the earlier section
“The Parse and ToString Methods”) to convert the string representation of an integer
(the Text property of txtPennies) to the actual integer value before that value is
assigned to the Integer variable (intLeftover):

intLeftover = Integer.Parse(txtPennies.Text)

When you divide the number of pennies (stored in intLeftover) by 100 (the
number of pennies in a dollar), the quotient is the number of dollars in the pennies,
and the remainder is the number of pennies left over. Integer division provides you
with the quotient but no remainder, and the Mod operator provides you with the
remainder:

lblDollars.Text = (intLeftover \ 100).ToString
intLeftover = intLeftover Mod 100

NOTENOTE As explained in the earlier section “The Parse and ToString Methods,” the
ToString method converts a number (intLeftover \ 100) into the string representation
of that number so it can be displayed as text in the Label control.

The quotient, representing the number of dollars in the pile of pennies, is
displayed in lblDollars. The remainder is stored in intLeftover, which will be used
in the code to determine the number of quarters, dimes, nickels, and pennies.

Next, you follow the same procedure, with two differences. First, you are not
dividing the total number of pennies, but instead the number of pennies left over,
represented by the current value of the variable intLeftover. Second, you are not
dividing by 100, but instead by 25, the number of pennies in a quarter. We already
have determined the number of dollars in the pile of pennies. Now we want to

92 Visual Basic 2005 Demystifi ed

determine the number of quarters in the remaining pennies. Accordingly, the code
reads as follows:

lblQuarters.Text = (intLeftover \ 25).ToString
intLeftover = intLeftover Mod 25

The remainder of the code follows the same process, except that next the divisor
is 10, the number of pennies in a dime, then 5, the number of pennies in a nickel:

lblDimes.Text = (intLeftover \ 10).ToString
intLeftover = intLeftover Mod 10
lblNickels.Text = (intLeftover \ 5).ToString
intLeftover = intLeftover Mod 5

The number of pennies left over after division by 5 cannot be converted into any
higher change, so there is no need for further division:

lblPennies.Text = intLeftover.ToString

You frequently will need to create and implement algorithms in writing a
computer program. Creating algorithms is a skill that can be developed from any
field that requires analytical thinking, including but not limited to mathematics and
computer programming.

Type Conversions
The following code in the Change Machine project uses the Parse method of the
Integer class to convert the string representation of an integer (the Text property of
txtPennies) to the actual integer value before that value is assigned to the Integer
variable (intLeftover):

intLeftover = Integer.Parse(txtPennies.Text)

Without using the Parse method of the Integer class, the code instead would have
read as follows:

intLeftover = txtPennies.Text

This code tries to assign a String value to an Integer variable. This appears to
look like the data type equivalent of trying to put a square peg in a round hole. Yet,
it works. The reason is that Visual Basic is smart enough to understand what you are
trying to do, and converts the string representation of an integer into an integer
before assigning the value to an Integer variable.

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 93

Because this conversion is done by Visual Basic behind the scenes, it is referred
to as an implicit conversion. By contrast, using the Parse method of the Integer class
to explicitly (through your code) convert the string representation of an integer into
an integer is referred to as an explicit conversion.

The problem with implicit conversion is that Visual Basic does not always
correctly guess your intentions. An example is the 2 + 2 = 22 result in the preceding
section “The Parse and ToString Methods.” Accordingly, to be on the safe side, you
can require conversions that have the potential for problems if done implicitly
instead of explicitly. You set this requirement by setting Option Strict to On (as
opposed to the default Off).

There are two ways of setting Option Strict to On. One way is the statement
Option Strict On at the top of your code:

Option Strict On
Public Class Form1
'remainder of code

Option Strict also can be set to On through the Options dialog box, which is
displayed by choosing Options from the Tools menu. Figure 5-4 shows the project
defaults, which are displayed by, in the left pane, selecting Projects and Solutions
and then VB Defaults. You change the setting for Option Strict from Off (the default)
to On using the drop-down box.

Figure 5-4 Project defaults

94 Visual Basic 2005 Demystifi ed

Once Option Strict is set to On, the following line of code will result in a
compiler error:

intLeftover = txtPennies.Text

The compiler will give the following error message: “Option Strict On disallows
implicit conversions from ‘String’ to ‘Integer.’”

Similarly, the following line in the Change Machine project uses the ToString
method to convert the Integer result of an expression (intLeftover \ 100) to a String
before assigning that result to a label’s Text property, whose data type is a string:

lblDollars.Text = (intLeftover \ 100).ToString

If instead you tried

lblDollars.Text = intLeftover \ 100

the result again would be a compiler error, the compiler giving you the following
error message: “Option Strict On disallows implicit conversions from ‘Integer’ to
‘String.’”

You might legitimately be wondering what is so great about creating compiler
errors that would not exist when Option Strict is Off. The answer is, it is much
easier to fix a compiler error than it is to try to figure out the cause of a logic error
such as 2 + 2 = 22. An easy-to-fix compiler error is a small price to pay to avoid the
headache of diagnosing a logic error.

Conclusion
Computers, in addition to being able to store vast amounts of data, can calculate far
faster and more accurately than we can. You harness the computer’s calculating
ability using arithmetic operators. Most of the arithmetic operators, such as those
for addition and multiplication, work the same as the arithmetic operators you have
used with pencil and paper. The division operators include integer division (\),
which returns just the quotient but not the remainder, and modulus division (Mod),
which returns just the remainder and not the quotient.

In the next chapter, you will learn about relational and logical operators, which
enable your program to take different actions depending on choices the user makes
while the program is running.

CHAPTER 5 Letting the Program Do the Math—Arithmetic Operators 95

Quiz
 1. Which arithmetic operator works with string as well as numeric variables?

 2. What is the significance of operator precedence?

 3. How can you override default operator precedence?

 4. Which operator raises a number to a specified power?

 5. What is the difference between the / operator and the \ operator?

 6. Which operator provides only the remainder resulting from division?

 7. Which operator has precedence, an arithmetic operator or the assignment
operator?

 8. What is the purpose of the Parse method of the Integer class?

 9. What is the purpose of the ToString method of the Integer class?

 10. What is a method of a class?

This page intentionally left blank

97

CHAPTER
6

Making
Comparisons—

Comparison and
Logical Operators

Can you imagine going to a restaurant that had only one item on its menu? Although
this would make it easy for you to decide what you want to order, this one-item
restaurant likely would not be in business long, because people like choices. Indeed,
life is full of choices—some pleasant (a good menu) and some not so pleasant (do
you want to pay by cash, check, or credit card?).

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

98 Visual Basic 2005 Demystifi ed

Up to now the programs we have discussed have been like the one-item restaurant,
offering no choices. However, as programs become more sophisticated, they often
branch in two or more directions. For example, in a calculator program, your
program first would give the user a choice of whether they want to add, subtract,
multiply, or divide. Your code then would need to determine which choice the user
made before performing the indicated arithmetic operation, which will be different,
and lead to a different result, depending on the user’s choice. Your code would
determine the user’s choice by comparing it with the alternatives—addition,
subtraction, multiplication, or division. You will learn in this chapter how to make
such a comparison using comparison operators.

A comparison operator can make only one comparison at a time. Sometimes you
need to combine several comparisons. For example, some years ago car washes had
Ladies Free Wednesdays, which meant that on Wednesdays (evidently a slow day
for car washes) women could have their cars washed for free. The car wash would
need to make two comparisons to determine eligibility for a free car wash. The
customer’s gender must be equal to female, and the day of the week must be equal
to Wednesday. Either comparison just by itself would not be enough to determine
eligibility for a free car wash; the two comparisons must be done together. You will
learn in this lesson how to combine several comparisons using logical operators.

The comparison and logical operators lay the groundwork for the following
chapters on control structures and loops, which use these operators to determine if
a condition, or a combination of conditions, evaluate as True or False.

Debugging
Before discussing the comparison and logical operators, let’s take a brief detour
into debugging. The immediate benefit of debugging is that it will enable you to test
code in this chapter without going to the trouble of adding controls to your form.
The longer-term benefit of debugging, which you will use in later chapters, is to
enable you to identify and solve “bugs,” a term that usually means a logic error in
your code (such as 2 + 2 = 22 instead of 4).

NOTENOTE The origin of the term “bug” is in dispute. One story is that during the pre-
PC era, when mainframe computers ruled the earth, a mainframe was producing
illogical results. The programmers checked and rechecked their punch cards but
could find no errors. In desperation, they opened up the mainframe. Inside they
saw a moth fried on one of the circuits.

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 99

The WriteLine method of the Debug class is useful in debugging programs. The
syntax of the WriteLine method is shown here:

Debug.WriteLine (parameter)

The WriteLine method outputs the value of the parameter to the Output window,
which you can display with the menu command View | Other Windows | Output.
For example, the following code outputs 10 to the Output window:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim A As Integer = 10
 Debug.WriteLine(A) ' Outputs 10
End Sub

The WriteLine method only outputs to the Output window if you start your
application with the Debug | Start menu command. There will be no output to the
Output window if you instead start your application with the Debug | Start Without
Debugging menu command. This is logical because you need to be debugging to
use the Debug class.

Finally, the output to the Output window from the WriteLine method usually is
not the only output in the Output window. The Output window normally also
contains information generated by Visual Basic 2005. As Figure 6-1 shows, the
output to the Output window from the WriteLine method usually is the last output
in the Output window.

When finished debugging, choose Stop Debugging from the Debug menu.

Figure 6-1 The Output window

100 Visual Basic 2005 Demystifi ed

Comparison Operators
Often your programs will need to compare two values. The comparison may be
whether the two values are equal, or whether one value is greater (or less) than
another. Regardless of which comparison is being made, the comparison may have
only one of two possible results, either True or False.

Earlier we used the example of a calculator program to show one use of
comparisons—to determine which of several choices the user made. Comparisons
also are used for error prevention. For example, in the calculator program, before
performing division, the program should compare the divisor to zero, because
division by zero is illegal and, if performed, will result in a run-time error. If the
divisor is equal to zero, the user should be warned and the division not performed.
Otherwise, the division may be performed.

Comparison operators usually are used to compare numerical values, but some
of them also may be used to compare strings, as discussed later in this chapter.

The syntax of a comparison is shown here:

[Expression1] [comparison operator] [Expression2]

In the following discussion, the term “left expression” refers to the expression on
the left side of the comparison operator (Expression1 in the sample syntax).
Similarly, the term “right expression” refers to the expression on the right side of
the comparison operator (Expression2 in the sample syntax).

Both the left and right expressions may be anything that has a value that can be
compared: literals, constants, variables, or properties. However, the data type of the
two expressions should be the same.

Numeric Comparison Operators
The following paragraphs list and describe the comparison operators used to
compare numbers and the circumstances under which they evaluate to True or
False.

The less than operator (<) results in the expression being True if the left expression
is less than the right expression, such as 4 < 5, but False if the left expression is
greater than or equal to the right expression, such as 5 < 4 or 5 < 5.

The less than or equal to operator (<=) results in the expression being True if the
left expression is less than or equal to the right expression, such as 4 <= 5 or 5 <= 5,
but False if the left expression is greater than the right expression, such as 5 <= 4.

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 101

The greater than operator (>) results in the expression being True if the left
expression is greater than the right expression, such as 5 > 4, but False if the left
expression is less than or equal to the right expression, such as 4 > 5 or 5 > 5.

The greater than or equal to operator (>=) results in the expression being True if
the left expression is greater than or equal to the right expression, such as 5 >= 4 or
5 >= 5, but False if the left expression is less than the right expression, such as 4 >= 5.

The equality operator (=) results in the expression being True if the left expression
is equal to the right expression, such as 5 = 5, but False if the left expression is less
than or greater than the right expression, such as 4 = 5 or 5 = 4.

NOTENOTE The equality comparison operator (=) is overloaded, also serving as an
assignment operator. The compiler can tell whether you are using the = operator
for assignment or comparison based on the context in which the operator is used.

The inequality operator (<>) works the opposite of the equality operator. The
inequality operator results in the expression being True if the left expression is less
or greater than the right expression, such as 4 <> 5 or 5 <> 4, but False if the left
expression is equal to the right expression, such as 5 <> 5.

Try running the following code in a new or existing project. The output for
each Debug.WriteLine statement, True or False, is in the comment accompanying
that line:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim A As Integer = 10
 Dim B As Integer = 8
 Dim C As Integer = 10
 Debug.WriteLine A > B ‘ Outputs True
 Debug.WriteLine A >= B ‘ Outputs True
 Debug.WriteLine A = B ‘ Outputs False
 Debug.WriteLine A <> B ‘ Outputs True
 Debug.WriteLine A < B ‘ Outputs False
 Debug.WriteLine A <= B ‘ Outputs False
 Debug.WriteLine A > C ‘ Outputs False
 Debug.WriteLine A >= C ‘ Outputs True
 Debug.WriteLine A = C ‘ Outputs True
 Debug.WriteLine A <> C ‘ Outputs False
 Debug.WriteLine A < C ‘ Outputs False
 Debug.WriteLine A <= C ‘ Outputs True
End Sub

102 Visual Basic 2005 Demystifi ed

String Comparisons
Comparing two strings is quite similar to comparing two numbers. For example,
“Jeff” = “Jeff” evaluates to True, whereas “Jeff” = “Kent” evaluates to False.

Programs often need to make string comparisons. For example, code that
authenticates users who are logging in needs to compare the user name entered with
a list of user names, and the password entered with the password for that user name.
Another example is the Find feature in Microsoft Word, Internet Explorer, and other
applications, which enables you to search text for specific words.

String comparisons are based on positive integer values of the characters in the
string. For the English language, the character set adopted by ANSI (American
National Standards Institute) and ASCII (American Standards Committee for
Information Interchange) uses the numbers 0–255 to cover all alphabetical characters
(upper- and lowercase), digits and punctuation marks, and even characters used in
graphics and line drawings. Table 6-1 lists the ASCII values of commonly used
characters.

The result of the comparison of string representations of numbers may not always
be what you might expect. As you might expect, “5” is greater than “4” because the
ASCII value of 5 (53) is greater than the ASCII value of 4 (52). However, “5” also
is greater than “4444” for the same reason. In comparing two strings, if the value of
the first character of one string is greater than the first character of the other, the
values of the remaining characters of the two strings do not matter. Thus, the string
“ZAAA” is greater than “AZZZ”. Only if the values of the first characters of the
two strings are the same are the second characters of the two strings compared. The
comparison will continue, character by character, until one of the following
happens:

• A character of one string is different from the character in the same
position (such as second, third, fourth, and so on) of the other string.
Thus, “Jeffrey” is larger than “Jeffery” because the fifth character of
the first string, “r,” has a higher ASCII value than the fifth character
of the second string, “e.”

• One string runs out of characters (that is, the two strings are of different
length), in which case the longer string is the greater. Thus, “Jeffrey” is
larger than “Jeff” because the second string (“Jeff”) runs out of characters
before the first string (“Jeffrey”).

• Both strings run out of characters at the same time (that is, the two strings
are of equal length), in which case the two strings are equal. Thus, “Jeffrey”
and “Jeffrey” are equal.

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 103

Option Compare
As discussed previously, the ASCII values of lowercase alphabetical characters are
greater than their uppercase counterparts—in other words, a is greater than A. The
default in Visual Basic is that string comparisons are case sensitive—that is, they
distinguish whether a character is uppercase or lowercase. Consequently, the string
“jeff” is greater than, rather than equal to, “Jeff”.

Depending on the context of your program, you may want to make case-insensitive
comparisons; that is, comparisons in which whether a character is uppercase or
lowercase is irrelevant. In validating a user who is attempting to log on, for example,
user names often are not case sensitive, whereas passwords often are.

You use the Option Compare statement to declare the default comparison method
to use when string data is compared. The Option Compare statement may be one,
but only one, of the following:

• Option Compare Binary

• Option Compare Text

Option Compare Binary is the default and is a case-sensitive comparison. Option
Compare Text is a case-insensitive comparison. Thus, under Option Compare
Binary, aaa is greater than AAA. However, under Option Compare Text, aaa is
equal to AAA.

You can change the default Option Compare setting by using the Options dialog
box shown in Figure 6-2. This dialog, which is displayed via the Tools | Options
menu command, also was discussed in Chapter 5 in connection with the Option
Strict statement.

You can change the Option Compare setting in one of two ways. One way is to
choose Text from the drop-down box in the Options dialog box. The alternative is
to declare an Option Compare Text statement above the beginning of the class
declaration:

Option Compare Text
Public Class Form1

Characters Values Comments

0 through 9 48–57 0 is 48; 9 is 57.

A through Z 65–90 A is 65; Z is 90.

a through z 97–122 a is 97; z is 122.

Table 6-1 ASCII Values of Commonly Used Characters

104 Visual Basic 2005 Demystifi ed

Like Operator
The Like operator is different from the preceding comparison operators in that it is
used with strings rather than numbers, returning True if a string matches a specified
pattern, False if it does not. Here is the syntax for the Like operator:

[string] Like [pattern]

Pattern matching often is used in everyday computing activities. For example, in
searching for a file on your computer that you know starts with “msado” and has the
extension .dll, you could do a search for the file msado*.dll, using the wildcard
character *.

Table 6-2 lists some of the pattern-matching characters.

Figure 6-2 The Options dialog box

Characters in Pattern Matches in String

? Any single character

* Zero or more characters

Any single digit (0–9)

Table 6-2 Pattern-Matching Characters

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 105

The wildcard character * is commonly used for searches, particularly when not
all of the details of the string being searched for are known or remembered. The
following comparison is True because “aBBBa” has an “a” at the beginning, an “a”
at the end, and any number of characters in between:

"aBBBa" Like "a*a"

The wildcard character ? provides for a more focused and therefore faster search
than * because, whereas the * wildcard character can represent zero or more
characters, the ? wildcard character represents one character, no more and no less.
The following comparison is True because “BAT” starts with a “B,” ends with a
“T,” and has exactly one character in between:

"BAT" Like "B?T"

The wildcard characters ? and *, like others, can be combined. The following
comparison is True because “BAT” starts with a “B,” followed by any single
character, followed by a “T,” and finally zero or more characters of any type:

"BAT123khg" Like "B?T*"

The wildcard character # provides for an even more focused search than the
wildcard character ? because, whereas the ? wildcard character can represent any
one character, the # wildcard character only can represent a character that is a digit.
The following comparison is True because “a2a” begins and ends with an “a” and
has exactly a single digit number in between:

"a2a" Like "a#a"

Precedence
Comparison operators rank lower than the arithmetic operators discussed in the
previous chapter and higher than the logical operators discussed in the next
section. All comparison operators are of equal precedence and are evaluated from
left to right.

106 Visual Basic 2005 Demystifi ed

Logical Operators
Sometimes a first comparison and a second comparison both must evaluate as True
for an action to take place. For example, a person may vote only if their age is at
least 18 and they are a citizen:

• First comparison: age >= 18

• Second comparison: USA citizenship = True

• Only if both comparisons are true: Allowed to vote

• If either comparison is false: Not allowed to vote

By contrast, at other times it is sufficient if either a first comparison or a second
comparison evaluates as True for an action to take place. For example, to be admitted
to a community college, the prospective student must be either at least 18 years old
or have a high school diploma:

• First comparison: age >= 18

• Second comparison: High school diploma = True

• If either comparison is true: Eligible for admission

• Only if both comparisons are false: Not eligible for admission

The combining of comparisons in either the conjunctive (and) or disjunctive (or)
involves logical operators named, not surprisingly, And and Or, respectively. The
following sections discuss these and other logical operators.

And Operator
As Table 6-3 shows, the And operator returns False unless both comparisons are True.

If the First Expression Is And the Second Expression Is The Result Is

True True True

True False False

False True False

False False False

Table 6-3 The And Operator

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 107

The following code shows the And operator in action:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim A As Integer = 10
 Dim B As Integer = 8
 Dim C As Integer = 6
 Debug.WriteLine A > B And B > C ' Outputs True
 Debug.WriteLine A > B And C > B ' Outputs False
 Debug.WriteLine B > A And B > C ' Outputs False
End Sub

In the first use of the And operator, A > B And B > C, 10 > 8 is True, and 8 > 6
is True. Because both expressions are True, the output is True.

By contrast, in the second use of the And operator, A > B And C > B, although
10 > 8 is True, 6 > 8 is False. Because only one expression is True and the other is
False, the output is False.

Similarly, in the third use of the And operator, B > A And B > C, 8 > 10 is False,
so even though 8 > 6 is True, because one of the two expressions is False, the output
is False.

Of course, if both expressions are False, the output is False.
The voting eligibility example discussed at the beginning of this section is a

good example of when you would use the And operator, because both conditions
(adult age and citizenship) must be True or the result (eligibility to vote) is False.

AndAlso Operator
The AndAlso operator is almost identical to the And operator in comparing two
Boolean expressions. As Table 6-4 shows, the only difference is that if the first
expression is False, the second expression is not evaluated.

The section “Why AndAlso and OrElse in Addition to And and Or?” later in this
chapter discusses the consequences of the second expression not being evaluated
and why you might use the AndAlso operator instead of the And operator.

If the First Expression Is And the Second Expression Is The Result Is

True True True

True False False

False (not evaluated) False

Table 6-4 The AndAlso Operator

108 Visual Basic 2005 Demystifi ed

Or Operator
As Table 6-5 shows, the Or operator returns True unless both comparisons are False.

The following code, which is the same as used for the And operator (except Or
is substituted for And), shows the Or operator in action:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim A As Integer = 10
 Dim B As Integer = 8
 Dim C As Integer = 6
 Debug.WriteLine A > B Or B > C ' Outputs True
 Debug.WriteLine A > B Or C > B ' Outputs True
 Debug.WriteLine B > A Or B > C ' Outputs True
End Sub

In the first use of the Or operator, A > B Or B > C, 10 > 8 is True, and 8 > 6 is
True. Because both expressions are True, the output is True.

In the second use of the Or operator, A > B Or C > B, 10 > 8 is True, so even
though 6 > 8 is False, because at least one expression is True, the output is True.

Similarly, in the third use of the Or operator, B > A Or B > C, whereas 8 > 10 is False,
8 > 6 is True, so again because at least one expression is True, the output is True.

Of course, if both expressions are False, the output is False.
The community college admission example discussed earlier is a good example

of when you would use the Or operator, because only one of the two conditions
(adult age or a high school diploma) needs to be True for the result (eligibility for
admission) to be True.

The Or operator is implied in the comparison operators >= and <=. For example,
the expression

A >= B

is the same as

A > B Or A = B

If the First Expression Is And the Second Expression Is The Result Is

True True True

True False True

False True True

False False False

Table 6-5 The Or Operator

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 109

OrElse Operator
The OrElse operator is to the Or operator what the AndAlso operator is to the And
operator. As Table 6-6 shows, the only difference between the OrElse operator and
the Or operator is that if the first expression is True, the second expression is not
evaluated.

The section “Why AndAlso and OrElse in Addition to And and Or?” later in this
chapter discusses the consequences of the second expression not being evaluated
and why you might use the OrElse operator instead of the Or operator.

Xor Operator
The Xor operator performs a logical exclusion operation on two Boolean expressions
and returns a Boolean value of True, as Table 6-7 shows, if one and only one of the
expressions evaluates to True, and otherwise returns False.

The following code shows how the Xor operator works with Boolean
expressions:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim A As Integer = 10
 Dim B As Integer = 8
 Dim C As Integer = 6
 Debug.WriteLine A > B Xor B > C ' Outputs False
 Debug.WriteLine A > B Xor C > B ' Outputs True
 Debug.WriteLine B > A Xor B > C ' Outputs True
End Sub

In the first use of the Xor operator, A > B Xor B > C, 10 > 8 is True, and 8 > 6 is
True. Because both expressions are True, the output is False.

In the second use of the Xor operator, A > B Xor C > B, 10 > 8 is True, and 6 >
8 is False. Because only one of the expressions is True, the output is True.

If the First Expression Is And the Second Expression Is The Result Is

True (not evaluated) True

False True True

False False False

Table 6-6 The OrElse Operator

110 Visual Basic 2005 Demystifi ed

Similarly, in the third use of the Xor operator, B > A Xor B > C, whereas 8 > 10 is
False, 8 > 6 is True. Because only one of the expressions is True, the output
is True.

Of course, if both expressions are False, the output is False.

Not Operator
The Not operator changes True to False and False to True. An example is when my
younger daughter tells me, “Dad, you look like Tom Cruise ... NOT!”

The Not operator is useful in situations in which Not True appears more intuitive
than False. For example, in the calculator program discussed earlier, in verifying
whether the divisor is equal to zero (division by zero being illegal), it may be more
intuitive to say that division may be performed if the divisor is not equal to zero
than to say that division may be performed if the divisor is greater than zero.

The Not operator is a unary operator, which means it operates on one operand.
This is different from the preceding operators, which are binary, operating on two
operands.

Precedence
Logical operators rank lower than the comparison operators discussed earlier in this
chapter. Table 6-8 lists the order of precedence among comparison operators, from
highest to lowest.

If the First Expression Is And the Second Expression Is The Result Is

True True False

True False True

False True True

False False False

Table 6-7 The Xor Operator

Priority Operator(s) Description

1 Not Negation

2 And, AndAlso Conjunction

3 Or, OrElse Disjunction

4 Xor Exclusion

Table 6-8 Precedence among Logical Operators

CHAPTER 6 Making Comparisons—Comparison and Logical Operators 111

If the logical operators of equal priority appear in the same statement, precedence
between them is from left to right.

Why AndAlso and OrElse in Addition to And and Or?
As previously discussed, the only difference between the And and AndAlso
operators is that the AndAlso operator does not evaluate the second expression if
the first expression is False. Similarly, the only difference between the Or and
OrElse operators is that the OrElse operator does not evaluate the second expression
if the first expression is True.

Not yet discussed is what difference does it really make whether you use And or
AndAlso, or Or or OrElse?

The answer is there is no real difference if the second expression is simply a
comparison, other than a slight savings in processor time for skipping the evaluation
of the second expression. However, the second expression may be more complex,
such as a function call that changes values. In that event, variables may have
different values depending on whether the second expression was evaluated.

Conclusion
As programs become more sophisticated, they often branch in two or more directions
based on whether a condition is True or False. For example, as discussed at the
beginning of this chapter, a calculator program, before performing division, should
check to see if the divisor is equal to zero, division by zero being illegal and if
performed results in a run-time error. The program branches by performing the
division if the divisor is not equal to zero, but warning the user if the divisor is equal
to zero.

You use comparison operators to determine if the divisor is equal (or is not equal)
to zero. There are comparison operators to test for equality or inequality, or whether
one value is greater than or less than another.

A comparison operator can make only one comparison at a time, and sometimes
you need to combine several comparisons. For example, to determine if someone is
eligible to vote, you have to compare both their age to the minimum voting age and
their country of citizenship to the United States. In this case, both comparisons
must evaluate as True or the person is not allowed to vote. However, in other
comparisons, only one of two conditions needs to be True. For example, you may
be permitted to attend a movie without having to pay for a ticket if you are either a
child or a senior citizen.

112 Visual Basic 2005 Demystifi ed

You use logical operators to combine several comparisons. The logical operators
include And, when both comparisons must evaluate as True for an action to be
taken, and Or, when only one of two comparisons must evaluate as True for an
action to be taken. There are other logical operators as well.

The comparison and logical operators lay the groundwork for the following
chapters, which use these operators to determine if a condition, or a combination of
conditions, evaluates as True or False.

Quiz
 1. What does the WriteLine method of the Debug class do?

 2. What is the data type of the result of a comparison performed by a
comparison operator?

 3. How can you tell if the = operator is being used for assignment or
comparison?

 4. Can you use comparison operators with strings as well as with numeric
data types?

 5. What is the significance of Option Compare?

 6. What does the Like operator do?

 7. Which operators have precedence, comparison or arithmetic?

 8. What is the purpose of a logical operator?

 9. Which logical operator operates on only one operand rather than two?

 10. Which operators have precedence, comparison or logical?

PART THREE

Controlling the
Flow of the

Program

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

115

CHAPTER
7

Making
Choices—If
and Select

Case Control
Structures

I showed you in Chapter 6 how to use comparison and logical operators to evaluate
an expression as True or False. I will show you in this chapter how to use that
information by employing control structures, specifically an If control structure or
a Select Case control structure, so that different blocks of code execute depending
on whether an expression evaluates as True or False.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

116 Visual Basic 2005 Demystifi ed

The application user interacts with your code, including If and Select Case
control structures, through the GUI of your application. You will learn in this chapter
how to use two controls that often are utilized with If and Select Case control
structures—the CheckBox and RadioButton controls.

The InputBox Function
Before discussing If and Select Case statements, let’s discuss the input box, because
it will be used in many of the code examples in this chapter.

Figure 7-1 shows an input box. It gets its name because the user may input text
in the edit portion of the input box.

Modal vs. Modeless
The input box is modal. This means the application user cannot return to the main
form without closing the input box, which is accomplished by choosing either the
OK or the Cancel button.

Many forms in Windows applications are modal. Modal forms also are called
dialog forms. One example is the Open dialog box shown in Figure 7-2, usually
displayed by the File | Open menu command, and used to select and open a file in
an application such as Microsoft Word. The Open dialog box is modal because you
cannot return to the application before closing the dialog box, either by selecting a
file and choosing Open, or by choosing Cancel.

Figure 7-1 The input box

CHAPTER 7 Making Choices—If and Select Case Control Structures 117

Not all forms are modal. For example, the Find form in Notepad, shown in Figure
7-3 and displayed with the Edit | Find menu command, is modeless, in that the
application user can edit text in the main application without having to close the
Find form.

Chapter 10 discusses modal dialog forms in more detail.

Figure 7-2 Modal Open dialog box

Figure 7-3 Modeless Find form

118 Visual Basic 2005 Demystifi ed

Displaying an Input Box
The input box is a form, but one built into Visual Basic, so you do not have to design
it. Instead, you display it by calling the InputBox function. The syntax of the
InputBox function is shown here:

InputBox([Prompt], [Title], [Default Value])

Table 7-1 lists the parameters of the InputBox function.
The following code displays the input box shown in Figure 7-1 with a prompt for

the application user to enter their name. Only the first, required parameter is used.

InputBox("Enter your name:")

Return Value
Choosing the OK button does more than close the input box and permit the
application user to return to the main form. Choosing the OK button also returns a
value of the String data type, the text the user entered in the input box.

The effect of returning a value is illustrated by the following code. If the user
typed “George” in the input box and chose the OK button, the value “George”
would be assigned to strName. Thus, the output of the Debug.WriteLine statement
would be “George”.

Dim strName As String
strName = InputBox("Enter your name: ")
Debug.WriteLine(strName) 'outputs George

Name Required? Purpose

Prompt Yes The text informing the user what to enter, such
as “Enter your name:” in Figure 7-1.

Title No The title of the input box. If this is omitted, the
name of the project is used as the title, as in
Figure 7-1.

Default Value No The value displayed in the input box when it
is fi rst displayed. If this is omitted, nothing (an
empty string) is displayed, as in Figure 7-1.

Table 7-1 Parameters of the InputBox Function

CHAPTER 7 Making Choices—If and Select Case Control Structures 119

Similarly, choosing the Cancel button does more than close the input box and
permit the application user to return to the main form. Choosing the Cancel button
also returns a value of the String data type, this time an empty string. An empty
string has the value “” (two double quotes) because a string always is enclosed in
double quotes, and there’s nothing in between the two double quotes because the
string is empty. Thus, in the preceding code, if the user chose the Cancel button,
regardless of what they had entered in the input box, the value assigned to strName
would be an empty string, and nothing would be output by the Debug.WriteLine
statement.

The concept of returning a value works quite similarly to the previous examples
of assignment statements. In an assignment statement, the value on the right side of
the assignment operator is assigned to the variable or property on the left side of the
assignment operator. Similarly, the value returned by a function on the right side of
the assignment operator is assigned to the variable or property on the left side of the
assignment operator.

In the preceding code example, the left side of the assignment statement was a
String variable, but it also may be a property whose data type is String. The following
code snippet assumes a Label control named lblName, whose Text property is
assigned the text input by the user in the input box:

lblName.Text = InputBox("Enter your name: ")

If Control Structure
The If control structure comes in three varieties, depending on the number of
alternative blocks of code:

• You use the If...Then statement if you want a block of code to execute if a
condition is True but no block of code to execute if the condition is False.
For example, if a purchaser is eligible for a senior citizen discount, you
adjust the price, but if not, there is no price change to make.

• You use the If...Then...Else statement if you want one block of code to
execute if a condition is True, and a second, different block of code to
execute if the condition is False. This code structure often is used when
there are two alternatives, such as Yes or No, or Male or Female.

120 Visual Basic 2005 Demystifi ed

• The If...ElseIf statement is similar to the If...Then...Else statement except
that the If...ElseIf statement is used when there are more than two choices.
For example, if your test score is 90 or better, your grade is an A; if your
test score is between 80 and 89, your grade is a B; if your test score is
between 70 and 79, your grade is a C, and so on.

If...Then Statement
You use an If...Then statement to execute code if, and only if, a condition is True.
If the condition is False, then the code dependent on the If...Then statement does
not execute. After the If...Then statement finishes executing, execution continues
with the code, if any, following the statement.

The syntax of an If...Then statement is shown here:

If [condition] Then
 [Code]
End If

NOTENOTE There also is a one-line version with no End If at the end. However, that
version does not work if there is more than one statement. Additionally, based on
my teaching experience, I don’t believe that one-line version is good practice
anyway. Accordingly, I am using in this book the version with an End If at the end.

Try the following code. It displays “You entered a positive number” to the Output
window only if the input is a positive number (greater than or equal to zero).
However, it displays “This line will always print” whether or not the input is a
positive number, because after the If...Then statement finishes executing, execution
continues with the code following the If...Then statement.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strScore As String
 Dim intScore As Integer
 strScore = InputBox("Enter a score")
 intScore = Integer.Parse(strScore)
 If intScore >= 0 Then
 Debug.WriteLine("You entered a positive number")
 End If
 Debug.WriteLine("This line will always print")
End Sub

CHAPTER 7 Making Choices—If and Select Case Control Structures 121

The first Debug.WriteLine statement is indented to show that this statement will
execute only if the If condition is True. This indenting is not required by the
compiler. Rather, it is helpful to the programmer to see the flow of the code, and
will be used in this and later chapters. Often the Visual Basic 2005 IDE will add the
indentation for you.

NOTENOTE This code assumes that the user entered a number in the input box and
clicked the OK button. Otherwise, an error would result. The “Input Validation”
section later in this chapter will discuss how to guard against this error.

The comparison may also use logical operators, as in the following code, which
validates a test score as being between 0 and 100.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strScore As String
 Dim intScore As Integer
 strScore = InputBox("Enter a score")
 intScore = Integer.Parse(strScore)
 If intScore >= 0 And intScore <= 100 Then
 Debug.WriteLine _
 ("You entered a valid test score (0 - 100)")
 End If
 Debug.WriteLine("This line will always print")
End Sub

This code displays “You entered a valid test score (0 - 100)” in the Output window
only if the input is between 0 and 100. However, it displays “This line will always
print” whether or not the input is between 0 and 100.

If…Then…Else Statement
You use the If...Then...Else statement if you want one block of code to execute if
the condition is True, and a second, different block of code to execute if the condition
is False. This differs from the If...Then statement in that some code in the If...
Then...Else statement will execute; the only question is which. By contrast, with the
If... Else statement, if the condition is False, then no code dependent on the If...
Then statement executes.

After the If...Then...Else statement completes executing, execution continues
with the code following the statement.

122 Visual Basic 2005 Demystifi ed

The syntax of an If...Then...Else statement is shown here:

If [condition] Then
 [Code]
Else
 [Code]
End If

No express condition follows the Else statement because the condition is implied
as being the negation of the condition following the If statement. In other words, the
code following the Else statement executes if the condition following the If statement
is not True.

Try the following code. It displays in the Output window “You entered a valid
test score (0 - 100)” if the input is between 0 and 100, but instead “You did not enter
a valid test score” if the input is less than 0 or greater than 100.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strScore As String
 Dim intScore As Integer
 strScore = InputBox("Enter a score")
 intScore = Integer.Parse(strScore)
 If intScore >= 0 And intScore <= 100 Then
 Debug.WriteLine _
 ("You entered a valid test score (0 - 100)")
 Else
 Debug.WriteLine _
 ("You did not enter a valid test score")
 End If
 Debug.WriteLine("This line will always print")
End Sub

Although you can have an If without an Else, as with the If…Then statement,
you cannot have an Else without an If. This is logical because Else means “none of
the above,” and without an If there is no “above.”

If…ElseIf Statement
You use the If...ElseIf statement if you have more than two alternative blocks of
code, the maximum possible with an If...Then...Else statement.

With an If...ElseIf statement, the first block of code whose condition is True
executes, and all following blocks of code are skipped. The first block of code

CHAPTER 7 Making Choices—If and Select Case Control Structures 123

follows the If clause, and each succeeding block of code coupled with a condition
is an ElseIf clause. You can have as many ElseIf clauses as you want. Finally, you
may optionally have an Else clause, which, as with an If...Then...Else statement,
acts as “none of the above.” After the If...ElseIf statement finishes executing,
execution continues with any code following the statement.

The syntax of an If...ElseIf statement is shown here:

If [condition] Then
 [Code]
ElseIf [condition] Then
 [Code]
Else
 [Code]
End If

Try the following code. It displays in the Output window “The test score is
valid” if the input is between 0 and 100, “Test score cannot be less than zero” if the
input is less than 0, or “Test score cannot be greater than 100” if the input is greater
than 100.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strScore As String
 Dim intScore As Integer
 strScore = InputBox("Enter a score")
 intScore = Integer.Parse(strScore)
 If intScore >= 0 And intScore <= 100 Then
 Debug.WriteLine("The test score is valid")
 ElseIf intScore < 0 Then
 Debug.WriteLine _
 ("Test score cannot be less than zero")
 Else
 Debug.WriteLine _
 ("Test score cannot be greater than 100")
 End If
 Debug.WriteLine("This line will always print")
End Sub

Although you can have as many ElseIf clauses as you want, none can appear
after an Else clause. The Else clause is optional; it serves the function of “none of
the above.”

As is the case with the Else clause, although you can have an If without an ElseIf,
you cannot have an ElseIf without an If.

124 Visual Basic 2005 Demystifi ed

Input Validation
The code used in the preceding section “If…ElseIf Statement” involves the entry of
a student’s test score. No matter how badly a student performs on a test, that student
will do no worse than 0. Similarly, no matter how well a student performs on a test,
that student will do no better than 100.

However, it is not prudent to assume that the application user has entered a number
between 0 and 100 in the input box and clicked the OK button. Human error is
inevitable. An application user may not even read directions, much less follow them.
Further, even a conscientious application user will make data-entry errors.

For example, if the application user entered in the input box a number less than
0 or larger than 100, that input necessarily is incorrect. If that incorrect input is
stored as the student’s test score, then the student’s records will be wrong. Even
worse, under the saying “garbage in, garbage out,” any calculation based on that
test score also will be wrong.

Accordingly, your code should guard against the possibility that the application
user’s input is incorrect. This is called validating the user’s input, or input validation.

The code used in the preceding section “If…ElseIf Statement” does perform
input validation. The following portion of that code checks if the user’s input is
between 0 and 100, and it warns the user if the input is incorrect:

If intScore >= 0 And intScore <= 100 Then
 Debug.WriteLine("The test score is valid")
ElseIf intScore < 0 Then
 Debug.WriteLine _
 ("Test score cannot be less than zero")
Else
 Debug.WriteLine _
 ("Test score cannot be greater than 100")
End If

Exceptions
The code used in the preceding section on the “If…ElseIf Statement” performs
some input validation, but not enough. For example, that code does not guard
against the possibility that the application user might enter a nonnumeric string and
press the OK button. To demonstrate this, run the project with the Debug | Start
Without Debugging menu command, or the CTRL-F5 menu command. When the
input box displays, enter “Jeff” (without the quotes) and click the OK button of the
input box. Your application will halt, and the message box shown in Figure 7-4 will
display with the message “Input string was not in a correct format.”

CHAPTER 7 Making Choices—If and Select Case Control Structures 125

Stop the project by clicking the Quit button. Run the project again with the Debug |
Start Without Debugging menu command. When the input box displays, click the
Cancel button of the input box. Your application will halt, and the message box
shown in Figure 7-5 will display with the message “Value cannot be null. Parameter
name: String.”

What Is an Unhandled Exception?
Figures 7-4 and 7-5 both refer to an “unhandled exception.” An exception is a
problem that occurs while the program is executing that must be dealt with before
the program can proceed. Examples of exceptions include the inability to open a
file because it cannot be found, the application user did not put in the floppy drive
the floppy disk that contains the file, the file is corrupt, the operating system does
not have enough available memory remaining to open the file, and so on. The
exception may be due to faulty code, application user error, or circumstances beyond
the control of either the programmer or the application user, such as a crash of the
operating system. Regardless of the cause, the program cannot proceed until the
exception is resolved.

It is possible through code to “handle” an exception. For example, if the
application user forgot to put in the floppy drive the floppy disk that contains the

Figure 7-4 An “Input string was not in a correct format” exception

Figure 7-5 A “Value cannot be null. Parameter name: String” exception

126 Visual Basic 2005 Demystifi ed

file, code warns the user and gives the user an opportunity either to put the floppy
disk in the floppy drive or quit the application.

Exception handling is an advanced subject, so it’s not covered here. For present
purposes, exceptions generally do not crash programs, unhandled exceptions
crash programs. That is why both Figures 7-4 and 7-5 refer to an “unhandled
exception.”

Determining Where the Exception Occurred
Although this explains what an unhandled exception is generally, what remains to
be explained is what caused the unhandled exception in this code. You can determine
the details of the exception by clicking the Details button. Figure 7-6 shows the
result of clicking the Details button of the message box depicted in Figure 7-5.

One of the lines in the details is shown here:

at System.Int32.Parse(String s)

This matches the following line of our code:

intScore = Integer.Parse(strScore)

As mentioned in an earlier chapter, Integer is an alias in the .NET Framework for
the Int32 data type.

The reason for the error is that the Parse method of the Integer class requires for
its parameter a string representation of an integer. Neither “Jeff” nor an empty

Figure 7-6 Exception details

CHAPTER 7 Making Choices—If and Select Case Control Structures 127

string is a string representation of an integer. Therefore, the Parse method is unable
to properly execute, and an exception occurs.

TryParse Method
The Integer class has a TryParse method in addition to a Parse method. Both methods
convert the string representation of an integer into an integer. However, the TryParse
method also returns a Boolean value (True or False) indicating whether the
conversion was successful. If the conversion is not successful, such as because the
argument is “Jeff” or an empty string, no exception occurs. Rather, the return value
is False.

NOTENOTE Other numeric classes, such as Double, also have a TryParse method. In
the case of the Double class, the method attempts to convert the string representation
of a Double into a Double.

The syntax of the TryParse method of the Integer class is shown here:

[Boolean] = Integer.TryParse([string], [integer])

The first parameter, the string, is the string representation of an integer. This
argument usually is a variable, though it also could be a property of the String data
type, such as the Text property of a Label control.

The second parameter, an integer, is where the integer equivalent of the string
representation will be stored. This argument usually is a variable, though it also
could be a property of the Integer data type.

The return value is Boolean and usually stored in a variable of that data type.
The following code snippet illustrates the TryParse method in action:

Dim strScore As String
Dim intScore As Integer
strScore = InputBox("Enter a score")
Dim blnInput As Boolean
blnInput = Integer.TryParse(strScore, intScore)
If blnInput = False Then
 ' Conversion unsuccessful.
 ' Don’t use intScore in further code
Else
 ' Conversion successful.
 ' Use intScore in further code
End If

128 Visual Basic 2005 Demystifi ed

The following code implements this logic and modifies the code used in the
preceding section “If…ElseIf Statement”:

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strScore As String
 Dim intScore As Integer
 strScore = InputBox("Enter a score")
 Dim blnInput As Boolean
 blnInput = Integer.TryParse(strScore, intScore)
 If blnInput = False Then
 Debug.WriteLine _
 ("Input does not evaluate to an integer")
 ElseIf intScore >= 0 And intScore <= 100 Then
 Debug.WriteLine("The test score is valid")
 ElseIf intScore < 0 Then
 Debug.WriteLine _
 ("Test score cannot be less than zero")
 Else
 Debug.WriteLine _
 ("Test score cannot be greater than 100")
 End If
 Debug.WriteLine("This line will always print")
End Sub

Controls Used for If Control Structure
The application user interacts with your code, including the If control structure,
through the graphical user interface (GUI) of your application. Two controls in
particular are used in conjunction with the If control structure. The CheckBox
control is used when a particular decision has only two choices, as in True or False,
Yes or No, and so on. The RadioButton control is used when there are multiple,
mutually exclusive choices, such as whether a student’s grade is an A, B, C, D, or F.

CheckBox Control
CheckBox controls are commonly used in Windows applications. For example, in
the Print dialog box shown in Figure 7-7, there are check boxes for Print to File and
Collate.

CHAPTER 7 Making Choices—If and Select Case Control Structures 129

The reason that CheckBox controls are often used is that they are ideal for
situations in which they are only two choices, such as Yes or No, Male or Female,
and so on. The CheckBox control being checked is considered True or Yes or On,
with unchecked being False or No or Off.

Each CheckBox control is independent of the others. They may all be checked,
or all unchecked, or any combination of checked and unchecked.

The CheckBox control has two properties that you will use often: Text and
Checked.

The Text property essentially is a label, built into the CheckBox control, that
identifies to the application user the purpose of the check box. When you add the
CheckBox control to the form, you have to draw it large enough (after first setting
AutoSize to False in the Properties window) to show the text portion as well as the
check box portion. The Text properties of the two CheckBox controls in Figure 7-7
are Print to File and Collate, respectively. The Text property usually is set at design
time.

The Checked property is of a Boolean data type. If the check box is checked, the
value of the Checked property is True. If the check box is not checked, the value of
the Checked property is False.

Figure 7-7 The Print dialog box

130 Visual Basic 2005 Demystifi ed

Because the Checked property has only two possible values, True and False,
often you use an If…Else statement based on the Checked property, as the following
code snippet illustrates:

If chkPizza.Checked = True Then
 Debug.WriteLine "I want pizza!"
Else
 Debug.WriteLine "I don’t want pizza."
End If

RadioButton Control
RadioButton controls also are commonly used in Windows applications. Taking
again the example of the Print dialog box in Figure 7-7, there are radio buttons for
printing all pages, just the current page, a range of pages, or the selected text.

The primary difference between CheckBox and RadioButton controls is that
whereas each check box is independent of another, all radio buttons in a group are
related in that only one of them can be chosen at any one time. Therefore, the
RadioButton control is ideal for situations in which there are choices, but only one
item can be chosen.

NOTENOTE If radio buttons are contained within a GroupBox or Panel control, then
those radio buttons are a group independent of any other radio buttons on the
form. This is useful when one set of radio buttons that, say, concerns age is
logically independent of another set of radio buttons that concerns income
level, for example.

As with the CheckBox control, the two properties you will use often with the
RadioButton control are Text and Checked. As with the CheckBox control, the
Checked property for a RadioButton has only two possible values: True and False.

In the event you have more than two RadioButton controls, often you’ll use an
If…ElseIf statement based on the Checked property:

If radLarge.Checked = True Then
 Debug.WriteLine "I want a large pizza."
ElseIf radMedium.Checked = True Then
 Debug.WriteLine "I want a medium pizza."
Else
 Debug.WriteLine "I want a small pizza."
End If

CHAPTER 7 Making Choices—If and Select Case Control Structures 131

Pizza Calculator

Figure 7-8 The Pizza Calculator project

This project calculates the cost of the programmer’s food of choice, pizza, using
radio buttons and check boxes. The cost of the pizza is based initially on whether
the pizza is a small ($5.00), medium ($7.50), or large ($10.00). There is an additional
cost of 50 cents for each topping.

Figure 7-8 shows the project in action. Because the application user has selected
a large pizza ($10.00) with pepperonis and anchovies ($1.00 for two toppings), the
total cost is $11.00.

Creating the Project
Radio buttons are used to represent the three alternative pizza sizes: small, medium,
and large. The radio buttons are named radSmall, radMedium, and radLarge,
respectively. Similarly, their Text properties are, respectively, Small, Medium, and
Large.

Check boxes are used to represent each topping choice: mushrooms, pepperoni,
or my favorite, anchovies (because no one else wants anchovies, I get the whole
pizza for myself). The check boxes are named chkMushroom, chkPepperoni, and
chkAnchovy, respectively. Similarly, their Text properties are, respectively,
Mushroom, Pepperoni, and Anchovy.

There are two Button controls. One is named btnCalculate, and its Text property
is Calculate. The other is named btnClear, and its Text property is Clear.

132 Visual Basic 2005 Demystifi ed

There also are two Label controls. The one that displays the total in Figure 7-8 is
named lblTotal. Its Text property initially is blank. I also have set its AutoSize
property to False and its BackColor property to HighlightText using the Properties
window to give it its white background. The other label has a Text property of Total.
It is not involved in the code, so you can retain its default name, such as Label1.

How the Project Works
The cost of the pizza is based initially on whether the pizza is a small ($5.00),
medium, ($7.50), or large ($10.00). There is an additional cost of 50 cents for each
topping.

Clicking the Calculate button calculates and displays the cost in the Label control
named lblTotal. Clicking the Clear button returns the application to its default
settings (large size, all toppings unchecked, cost blank).

The Code
The code will be written in three places:

• Constants at module level to represent the cost of the pizza sizes
and toppings

• Click event procedure of the Calculate button to calculate the cost
of the pizza

• Click event procedure of the Clear button to restore the application
to its default settings

Declaring the Constants
The following code is at module level, above and outside of the event procedures:

Const LARGE As Double = 10
Const MEDIUM As Double = 7.5
Const SMALL As Double = 5
Const TOPPING As Double = 0.5

These constants represent the costs of the different sizes of pizza and the extra
cost of each topping. The actual values instead could have been used in the code.
However, using constants makes the code easier to change if the costs of the different
sizes or the toppings ever change, because only one change would need to be made
(the value of the constant) rather than changing the value at all places it is used in

CHAPTER 7 Making Choices—If and Select Case Control Structures 133

the code. Similarly, the constants LARGE and SMALL are declared as a Double
instead of an Integer because someday the price may involve cents, such as the
price of a large pizza changing from $10.00 to $10.50.

NOTENOTE These constants could have been declared in the Click event procedure of
the Calculate button instead of in the General Declarations section because they
only are referred to in the Click event procedure of the Calculate button.

Calculating the Price
The following code is in the Click event procedure of the Calculate button:

Private Sub btnCalculate_Click _
(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click
 Dim dblTotal As Double
 If radLarge.Checked = True Then
 dblTotal = LARGE
 ElseIf radMedium. Checked = True Then
 dblTotal = MEDIUM
 Else
 dblTotal = SMALL
 End If
 If chkMushroom.Checked = True Then
 dblTotal += TOPPING
 End If
 If chkPepperoni. Checked = True Then
 dblTotal += TOPPING
 End If
 If chkAnchovy. Checked = True Then
 dblTotal += TOPPING
 End If
 lblTotal.Text = dblTotal.ToString("c")
End Sub

Most of the work is done in the Click event procedure of the Calculate button.
The variable dblTotal is used to store the total price. The data type of this variable
is Double instead of Integer because the number may be a floating-point number
(have cents as well as dollars).

An If…ElseIf…Else statement is used to assign to dblTotal the cost of the size
of pizza selected, based on which radio button’s value is True. An If…ElseIf…Else
statement is appropriate because one, but only one, of the radio buttons can be
selected.

134 Visual Basic 2005 Demystifi ed

By contrast, independent If statements are used to determine whether to add 50
cents for each topping, based on whether each check box’s value is True. Independent
If statements are appropriate because the value of each check box is independent
from that of the others. The user may choose all toppings, no toppings, or any
combination.

Finally, the value of dblTotal is displayed in the Total label. This involves two
steps. First, the value is converted from a Double to a String data type using the
ToString method because that value is being assigned to a property (Text) that is a
String data type. Second, the argument “c” is passed to the ToString method so the
total is formatted as currency, starting with the dollar sign ($) and having two
numbers, no more and no less, to the right of the decimal point.

NOTENOTE The argument “c” to the ToString method is a format specifier. There are
other format specifiers, such as “e” for exponential or scientific notation and “p”
for percentage.

Restoring the Application to Its Initial Settings
Finally, the following code in the Click event procedure of the Clear button returns
the application to its default settings (large size, all toppings unchecked, cost
blank):

Private Sub btnClear_Click _
(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnClear.Click
 radLarge.Checked = True
 radMedium.Checked = False
 radSmall.Checked = False
 chkMushroom.Checked = False
 chkPepperoni.Checked = False
 chkAnchovy.Checked = False
 lblTotal.Text = ""
End Sub

Select Case Control Structure
The Select Case control structure is quite similar to the If...ElseIf statement, but
they are not the same. The primary difference is that, in the If...ElseIf statement, the
If and ElseIf clauses each may evaluate completely different expressions, whereas

CHAPTER 7 Making Choices—If and Select Case Control Structures 135

a Select Case control structure may evaluate only one expression, which then must
be used for every comparison.

For example, the condition of an If clause could be whether Night > Day (the
condition of the following ElseIf clause), whether Citizenship = U.S. (the condition
of the next ElseIf clause), whether NumberOfClasses >= 4, and so on. Usually the
conditions evaluated by the If and ElseIf clauses are related, but they can be
completely independent of each other.

By contrast, the Select Case control structure evaluates one test expression, and
that test expression is used for all the following comparisons.

Syntax
The syntax of a Select Case control structure is shown here:

Select Case [test expression]
Case [expression or expression list]
 [code]
' More Case statements optional
Case Else 'also optional
 [code]
End Select

The test expression may be a variable, constant, property, or expression.
The expression or expression list following the Case clause is compared to the

expression or expression list, and may be one of the following:

• An expression, such as Case 80 This means that the condition is whether
the test expression equals the expression (in this example, whether the test
expression equals 80).

• An expression list, such as Case 80 To 90 This means that the condition
is whether the test expression equals a value within the expression list
(here, 80 through 90). If the values are not consecutive, then commas can
delimit them. For example, Case 1 To 4, 7 To 9, 11 means that the condition
is whether the test expression equals 1 through 4, or 7 through 9, or 11.

The Is Keyword
The Is keyword is combined with a comparison operator. For example, Case Is > 8
means that the condition is whether the test expression is greater than 8.

These alternatives can be combined. For example, Case 1 To 3, 5, Is > 8 means
that the condition is whether the text expression is 1 through 3, 5, or greater than 8.

136 Visual Basic 2005 Demystifi ed

Select Case Control Structure in Action
Although the Select Case control structure differs from the If...ElseIf...Else statement
in that it may evaluate only one expression that then must be used for every
comparison, it otherwise behaves quite similarly to the If...ElseIf...Else statement.

If the condition following an If (or ElseIf) clause in an If...ElseIf...Else statement
evaluates as True, the code following that clause executes, and none of the following
ElseIf (or Else) clauses is evaluated. Similarly, if the expression or expression list
following a Case clause matches the test expression, the code following the Case
clause executes, and any remaining Case clauses are not evaluated.

If the condition following an If (or ElseIf) clause in an If...ElseIf...Else statement
instead evaluates as False, the code following that clause does not execute, and each
of the following ElseIf (or Else) clauses is evaluated in order. Similarly, if the
expression or expression list following a Case clause does not match the test
expression, the code following that clause does not execute, and each of the
following Case clauses is evaluated in order.

If none of the conditions following the If and ElseIf clauses in an If...ElseIf...Else
statement evaluates as True, the code following the Else clause executes if there is
an Else clause. Similarly, if none of the conditions following the Case clauses in a
Select...Case control structure matches the test expression, the code following the
Case Else clause executes if there is a Case Else clause. The Case Else statement is
analogous to the Else clause, covering the “none of the above” circumstance.

Once execution of the If...ElseIf...Else statement is completed, the program
continues to the code following the End If statement. Similarly, once execution of
the Select…Case control structure is completed, the code program continues to the
code following the End Select statement.

Create a new Windows application and try running the following code. The user
inputs a score. The Select Case control structure evaluates the value of that variable
and then outputs either the grade based on that value or “Invalid score” if the score
is not between 50 and 100.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim intScore As Integer
 intScore = InputBox("Enter a score")
 Select intScore
 Case 90 to 100
 Debug.WriteLine "Your grade is an A"
 Case 80 to 89
 Debug.WriteLine "Your grade is a B"
 Case 70 to 79
 Debug.WriteLine “Your grade is a C"

CHAPTER 7 Making Choices—If and Select Case Control Structures 137

 Case 60 to 69
 Debug.WriteLine "Your grade is a D"
 Case 50 to 59
 Debug.WriteLine "Your grade is an F"
 Case Else
 Debug.WriteLine "Invalid score"
 End Select
End Sub

Choosing Between If…ElseIf and Select Case
The If… ElseIf statement and the Select Case control structure are similar.
However, in deciding whether to use If… ElseIf or Select Case, you may not have
a choice.

Although any code you write using a Select Case control structure also can be
written using an If statement, the reverse is not also true. If you need to evaluate
several different expressions in a block of code, then you cannot use a Select Case
control structure, which may evaluate only one expression that then must be used
for every comparison.

If you do have a choice, the decision is one of personal preference, concerning
which way is easier to write and easier to understand. Often your choice may be the
Select Case control structure. Its structure often is the more readable of the two. Try
writing the equivalent of Case 1 To 4, 7, 8 To 11, 14 in an If or ElseIf statement; you
will have a very long list of comparisons joined by a number of And and Or
operators.

Conclusion
In Chapter 6 you learned how to use comparison and logical operators to evaluate
an expression as True or False. You learned in this chapter how to use that information
by employing control structures, specifically an If or a Select Case control structure,
so that different blocks of code execute depending on whether an expression
evaluates as True or False.

The application user interacts with your code, including If and Select Case
control structures, through the GUI of your application. You learned in this chapter
how to use two controls that often are utilized with If and Select Case control
structures: the CheckBox and RadioButton controls.

In the next chapter I will show you how to apply this information with loops,
which enable you to repeat the execution of code statements.

138 Visual Basic 2005 Demystifi ed

Quiz
 1. What does modal mean?

 2. What is the converse of modal?

 3. What is the return value of the InputBox function if the OK button is
clicked?

 4. What is the return value of the InputBox function if the Cancel button is
clicked?

 5. What are the three varieties of an If control structure?

 6. What is an exception?

 7. What does the TryParse method of the Integer class do?

 8. Which two controls are commonly used with the If control structure?

 9. What is the primary difference between the If...ElseIf statement and the
Select Case control structure?

 10. What part of a Select Case control structure performs the same purpose as
an Else clause in an If control structure?

139

CHAPTER
8

Repeating
Yourself—Loops

and Arrays

Parents customarily remind their children not to repeat themselves. Indeed, parents
often illustrate another saying (“Do as I say, not as I do”) by continually repeating
that reminder.

Sometimes you also want your code to repeat itself. For example, if the user
enters invalid data, you may want to ask the user whether they want to retry or quit.
If they retry and still enter invalid data, you again would ask the user whether they
want to retry or quit. This process keeps repeating until the user either enters valid
data or quits.

You use a loop to repeat the execution of code statements. A loop is a structure
that repeats the execution of code until a condition becomes False. In the preceding
example, the condition is that the data is invalid and the user should retry. The
repeating code is the prompt asking the user whether they want to retry or quit and
then permitting them to retry if they want to.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

140 Visual Basic 2005 Demystifi ed

I will show you in this chapter the different types of loops available and how to
implement them.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes, starting with zero and then incrementing by one
for each additional element of the array. For example, to store sales for each day of
the week, you can create one array with seven elements, rather than declaring seven
separate variables. Using an array has several advantages. It is easier to keep track
of one variable than seven. Additionally, you can use a loop to access each
consecutive element in an array, whether to assign a value of that element or to
display that value.

I will show you in this chapter how to create and use arrays.

Loops
This section will introduce three types of loops: For...Next, While...End While,
and Do.

For...Next Statement
A For...Next statement generally is used to repeat the execution of a statement a
fixed number of times.

Syntax
The syntax of a For...Next statement is shown here:

For counter As DataType = start To end [Step increment]
 [statements]
Next [counter]

The variable following the For keyword normally is referred to as a “counter”
because its value determines the count of the number of loops. The data type of the
counter variable would be an Integer or other whole number data type.

If the counter variable was declared before the loop, then its data type would not
be declared in the For...Next statement. However, because counter variables
normally are not used outside of loops, they often will be declared in the For...Next
loop as in the preceding syntax and the following examples.

The next code example illustrates this syntax:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

CHAPTER 8 Repeating Yourself—Loops and Arrays 141

 For x As Integer = 1 To 5
 Debug.WriteLine(x)
 Next x
 Debug.WriteLine("This line will always print")
End Sub

This code will display the following in the Output window:

1
2
3
4
5
This line will always print

Where Is the Step Statement?
When you compare the code to the syntax of the For...Next statement, you
legitimately may wonder, Where is the Step statement?

The answer is that when the Step statement is left out, the default is Step 1.
Therefore, the following two lines of code are the same:

For x = 1 To 5
For x = 1 To 5 Step 1

NOTENOTE In following sections we will look at Step statements having different
values than the default 1.

Now that we have accounted for the Step statement, let’s analyze the other parts
of the For...Next statement.

Where’s the Comparison Operator?
As mentioned in the introduction, a loop is a structure that repeats the execution of
code until a condition becomes False. A condition usually involves the comparison
of a variable with a value. In a For...Next statement, the comparison is done with a
comparison operator, either >= or <=.

You won’t see a comparison operator in the For...Next statement. Instead, if the
value following the Step statement is positive, the comparison operator is >=.
Conversely, if the value following the Step statement is negative, the comparison
operator is <=.

Because in this code there is no Step statement, the default, Step 1, applies.
Because 1 is of course positive, the comparison operator is >=.

142 Visual Basic 2005 Demystifi ed

NOTENOTE In following sections we will look at Step statements in which the value is
negative and therefore the comparison operator is >=.

Which Values Are Being Compared?
An operator such as >= compares two values. The value on the left side of the
comparison usually is contained in a variable that immediately follows the For
keyword. That variable, here the Integer variable x, often is referred to as a
“counter.”

The value on the right side of the comparison operator is the end value. In the
following line from the code, the end value is 5:

For x = 1 To 5

Because the Step value, 1, is positive, the comparison is x <= 5.
Finally, the initial or starting value of the counter variable x is 1, the value that is

assigned to it (x = 1) immediately following the For keyword. Of course, that value
must change, or the comparison x <= 5 will always be the same, resulting in the
loop executing infinitely. The upcoming section “Execution of the Loop” will
discuss how the value of x will change.

Dependent Code
A loop is a structure that repeats the execution of code until a condition becomes
False. The code whose repeated execution is dependent on the condition being True
is between the line beginning with For and the line beginning with Next. That code
could be only one statement, or multiple statements. In this example, the code
whose execution is depending on x <= 5 being True is only one statement: Debug
.WriteLine(x).

By contrast, the line of code Debug.WriteLine(“This line will always print”) is
after the line beginning with Next. Therefore, that line of code is not part of the
For...Next statement and will execute regardless of whether x <= 5 is True.

Execution of the Loop
As discussed in the earlier section “Which Values Are Being Compared?”, the
condition is x <= 5, and the staring value of x is 1. Accordingly, the condition x <= 5
initially is True, because 1 <= 5.

CHAPTER 8 Repeating Yourself—Loops and Arrays 143

Because the condition is True, the dependent code, Debug.WriteLine(x), will
execute, and the value of x, currently 1, is printed to the Output window.

Execution next reaches the line beginning with Next. This line causes the value
of x to change by the value following the Step keyword. As discussed in “Where Is
the Step Statement?”, because there is no Step statement, Step 1 is implied, which
means that the value of x will increase by 1 to 2.

Execution now returns to the line beginning with the For keyword. The condition
x <=5 still is True because 2 <= 5. Accordingly, the value of x, now 2, is printed to
the Output window, and then the value of x is increased by 1 to become 3.

The condition x <=5 still is True because 3 <= 5. Accordingly, the value of x,
now 3, is printed to the Output window, and then the value of x is increased by 1 to
become 4.

The condition x <=5 still is True because 4 <= 5. Accordingly, the value of x,
now 4, is printed to the Output window, and then the value of x is increased by 1 to
become 5.

The condition x <=5 still is True because 5 <= 5. Accordingly, the value of x,
now 5, is printed to the Output window, and then the value of x is increased by 1 to
become 6.

When the value of x becomes 6, the condition x <= 5 is False. Therefore, the code
Debug.WriteLine(x) does not execute, so the value of x, 6, is not printed to the
Output window. Additionally, the implied Step 1 statement does not execute, so
the value of x is not increased by 1, but rather remains 6.

When the For...Next statement stops executing, execution continues with the
code that follows the For...Next statement, which is Debug.WriteLine “This line
will always print”.

Table 8-1 summarizes the execution of the loop.

Value of x x <= 5 Value of x Prints? New Value of x

1 True Yes 2

2 True Yes 3

3 True Yes 4

4 True Yes 5

5 True Yes 6

6 False No 6

Table 8-1 Summary of Execution of For...Next Loop

144 Visual Basic 2005 Demystifi ed

Iteration
The dependent code inside the For...Next statement executed five times in the
previous example. Each time the condition is True and the dependent code executes
is referred to as an “iteration.” Accordingly, there were five iterations of the loop in
the previous example.

Step Statement
If you want the value of the counter variable to change by a value other than 1, then
you need to include a Step statement.

The following code modifies the previous by including a Step 2 statement.
Accordingly, the values printed to the Output window will not be 1, 2, 3, 4, and 5
as in the previous example, but instead 1, 3, 5, followed of course by the line “This
line will always print”:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 For x As Integer = 1 To 5 Step 2
 Debug.WriteLine(x)
 Next x
 Debug.WriteLine("This line will always print")
End Sub

Because the value of increment following the Step statement is 2, the value of x
will increase by 2 every time the For...Next statement executes, until x is greater
than 5, when the For...Next statement will stop executing. Thus, the first value of x
that prints is its start value, 1, then 3, then 5. When the value of x becomes 7, it has
passed the end value, 5, so the For...Next statement stops executing, and execution
continues with the code that follows the For...Next statement.

So far the value following the Step statement has been a positive number, but it
may be a negative number instead. Try the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 For x As Integer = 1 To 5 Step -1
 Debug.WriteLine(x)
 Next x
 Debug.WriteLine("This line will always print")
End Sub

CHAPTER 8 Repeating Yourself—Loops and Arrays 145

This code will compile, but it does not print any numbers to the Output window,
just the line “This line will always print” that follows the conclusion of the For...
Next statement. The reason why is that when the value following the Step statement
is positive, the For...Next statement will execute so long as the counter variable <=
end. However, when the value following the Step statement is negative, the For...
Next statement will execute so long as the counter variable >= end, or here, x >= 5.
Because when the For...Next statement starts, the value of x is 1, and 1 >= 5 is
False, the code inside the For...Next statement never executes.

If we want this code to print numbers to the Output window, we should switch
the values of start and end so the code is as follows:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 For x As Integer = 5 To 1 Step -1
 Debug.WriteLine(x)
 Next x
 Debug.WriteLine("This line will always print")
End Sub

This code will print to the Output window 5 through 1, in descending order,
followed by “This line will always print.”

Exit For Statement
The Exit For statement transfers control immediately to the statement following the
Next statement. Stated another way, the Exit For statement prematurely ends the
execution of the For...Next statement before the condition becomes False.

The Exit For statement often is used in combination with the evaluation of a condition
by an If...Then...Else statement. For example, the following code will output only 1
through 3, not 1 through 5, because the loop ends prematurely when x equals 4:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 For x As Integer = 1 To 5
 If x > 3 Then
 Exit For
 End If
 Debug.WriteLine(x)
 Next x
 Debug.WriteLine("This line will always print")
End Sub

146 Visual Basic 2005 Demystifi ed

Nesting
As the preceding example in the section on the Exit For statement shows, you can
nest an If...End If statement in a For...Next statement. Try the following code, which
will print each number between 1 and 100 that is evenly divisible by 3:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 Debug.WriteLine _
 ("Every multiple of 3 between 1 and 100:")
 For x As Integer = 1 To 100
 If x Mod 3 = 0 Then
 Debug.WriteLine (x)
 End If
 Next x
 Debug.WriteLine ("This line will always print")
End Sub

You also can nest For...Next loops by placing one loop within another. Each loop
must have a different counter variable. Try the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load

 For I As Integer = 1 To 3
 For X As Integer = 1 To 3
 Debug.WriteLine ("I = " & I)
 Debug.WriteLine ("X = " & X)
 Next X
 Next I
 Debug.WriteLine ("This line will always print")
End Sub

The output is shown here:

I = 1
X = 1
I = 1
X = 2
I = 1
X = 3
I = 2
X = 1
I = 2
X = 2

CHAPTER 8 Repeating Yourself—Loops and Arrays 147

I = 2
X = 3
I = 3
X = 1
I = 3
X = 2
I = 3
X = 3
This line will always print

Nesting For...Next loops often is used to print values in the rows and columns of
a table. The outside For...Next loop represents the rows, and the inside For...Next
loop represents the columns.

While...End While Statement
The While...End While statement repeats the execution of a statement as long as a
given condition is True. The syntax is shown here:

While condition
 [statements]
End While

The following code example shows a While...End While statement in action. It
prints 1 through 5 to the Output window:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim x As Integer = 1
 While x <= 5
 Debug.WriteLine(x)
 x += 1
 End While
 Debug.WriteLine("This line will always print")
End Sub

The condition is x <= 5. If that condition is True, all the statements within the
While...End While statement are executed. When the End While statement is
reached, execution returns to the While statement and the condition is again checked.
If the condition is still True, the process is repeated. If it is False, execution resumes
with the statement following the End While statement.

The condition is x <= 5. The starting value of x is 1, so at the beginning, the
condition x <= 5 is True. Therefore, both statements within the While...End While
statement are executed; the value of x, at this time 1, is outputted, and then is
incremented so the new value of x is 2.

148 Visual Basic 2005 Demystifi ed

When the End While statement is reached, execution returns to the While
statement and the condition is again checked. The value of x is now 2, so the
condition still is True because 2 <= 5. Accordingly, once again the value of x is
outputted and then increased by 1 to become 3. The End While statement is reached,
so execution returns to the While statement and the condition is again checked. The
value of x is now 3, so the condition still is True because 3 <= 5. Accordingly, once
again the value of x is outputted and then increased by 1 to become 4.

The End While statement again is reached, so execution returns to the While
statement and the condition is checked once again. The value of x is now 4, so the
condition still is True because 4 <= 5. Accordingly, once again the value of x is
outputted and then increased by 1 to become 5. The End While statement is reached,
so execution returns to the While statement and the condition is again checked. The
value of x is now 5, so the condition still is True because 5 <= 5. Accordingly, once
again the value of x is outputted and then increased by 1 to become 6.

Now when execution returns to the While statement and the condition is checked,
the condition no longer is True because 6 <= 5 is False. Accordingly, the statements
within the While...End While statement are not executed. Instead, execution
continues with the code that follows the While...End While statement (“This line
will always print”).

Differences Between For...Next
and While...End While Loops

One significant difference between a While...End While statement and a For...Next
statement is that in a While...End While loop, you have to affirmatively change the
value of the variable (here x) used in the comparison that determines whether the
loop continues to execute. By contrast, in a For...Next loop, the Step statement,
whether express or implied, takes care of that detail for you.

Therefore, with a While...End While statement, you would have an infinite loop
if you did not change the value of x in the preceding While...End While statement.
In other words, instead of writing

While x <= 10
 Debug.WriteLine (x)
 x += 1
End While

you left out the x += 1 line, as shown here:

While x <= 10
 Debug.WriteLine (x)
End While

The loop would not stop until you stopped the application.

CHAPTER 8 Repeating Yourself—Loops and Arrays 149

Another difference between a While...End While statement and a For...Next
statement is that a For...Next statement generally is intended to run a fixed number
of times, whereas a While...End While statement may run an indefinite number of
times. For example, if you want a menu to display until the user chooses the option
to quit, the While...End While statement would be a better choice than the For...
Next statement because the programmer could not predict how many times the user
would choose to continue before selecting to quit.

Similarities Between For...Next
and While...End While Loops

Although there are significant differences between a While...End While statement
and a For...Next statement, there also are similarities. A While...End While
statement, like a For...Next statement, may never execute the statements inside it if
initially the condition is False. In the following example, no numbers will be written
to the Output window because the condition initially is False:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim x As Integer = 1
 While x >= 5
 Debug.WriteLine(x)
 x += 1
 End While
 Debug.WriteLine("This line will always print")
End Sub

You also can nest a While...End While statement inside another While...End
While statement, just as you can nest a For...Next statement inside another For...
Next statement.

Additionally, the Exit While statement serves the same function in a While... End
While statement as the Exit For statement does in the For...Next statement, ending
the While...End While loop prematurely. The following code will only output 1
through 3, not 1 through 5, to the Output window:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim x As Integer = 1
 While x <= 3
 If x = 4 Then
 Exit While
 End If
 Debug.WriteLine (x)
 x += 1

150 Visual Basic 2005 Demystifi ed

 End While
 Debug.WriteLine ("This line will always print")
End Sub

Do Statement
The Do statement, like the For...Next and While...End While statements, is used to
repeat the execution of a statement. However, the Do statement comes in two
varieties—one testing a condition at the top of the statement, the other at the
bottom.

Testing a Condition at the Top of a Do Statement
The syntax of a Do loop that tests the condition at the top of the statement is shown
here:

Do { While | Until } condition
 [statements]
Loop

You can use either While or Until, but you must use one (unless you have code
inside the loop that will end it), and you cannot use both in the same statement.

For example, the following code uses the While keyword to output to the Output
window 1 through 5, followed by “This line will always print”:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim x As Integer
 x = 1
 Do While x <= 5
 Debug.WriteLine(x)
 x += 1
 Loop
 Debug.WriteLine("This line will always print")
End Sub

The same result could be achieved by using the Until keyword:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim x As Integer
 x = 1
 Do Until x > 5
 Debug.WriteLine(x)
 x += 1

CHAPTER 8 Repeating Yourself—Loops and Arrays 151

 Loop
 Debug.WriteLine("This line will always print")
End Sub

Whether you use While or Until is a matter of choice, depending on which is
more intuitive to you.

Whether you use While or Until, it is important not to forget the statement x += 1
in the preceding code. If the value of x does not change, the loop will never stop
(you can still halt the program using the CTRL-BREAK keyboard combination). This is
not such an important issue with a For...Next statement, where if a Step statement
is omitted, a Step 1 statement is the default, increasing the value of the counter by 1
each time the loop executes. As with the While...End While statement, there is no
similar default with a Do statement.

The Exit Do statement performs the same purpose in a Do statement as the Exit
For statement does in a For...Next statement and the Exit While statement does in a
While...End While statement, prematurely ending execution of the loop.

Testing a Condition at the Bottom of a Do Statement
The variation of the Do statement that tests the condition at the top of the loop acts
essentially the same as a While...End While statement. However, the other variation
of the Do statement, which tests the condition at the end of the loop, is unique. Its
syntax is shown here:

Do
 [statements]
Loop { While | Until } condition

With this syntax, the statements inside the loop will always execute at least once,
because the first test is at the bottom of the loop after the statements. A menu is one
example of when you may want the statements inside the loop to execute at least
once. Try the following code, which requires the user either to input a numeric
value or quit by clicking the Cancel button (which returns an empty string):

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim strInput As String
 Dim intInput As Integer
 Dim blnInput As Boolean
 Dim strMsg As String
 strMsg = "Enter a number. Quit by clicking Cancel"
 Do
 strInput = InputBox(strMsg)
 blnInput = Integer.TryParse(strInput, intInput)

152 Visual Basic 2005 Demystifi ed

 If strInput = "" Then
 Debug.WriteLine _
 ("Nothing entered or Cancel selected")
 ElseIf blnInput = False Then
 Debug.WriteLine("You need to enter a number")
 Else
 Debug.WriteLine _
 ("You entered the number " & strInput)
 End If
Loop Until blnInput = True Or strInput = ""
 Debug.WriteLine("This line will always print")
End Sub

The test in this example should be at the bottom rather than at the top of the loop
because the user has to enter a value before there is anything to test.

For Each...Next Loop
The For Each...Next loop is similar to the For...Next loop, but it executes the
statement block for each element in a collection, instead of a specified number of
times. A collection is a group of usually like objects. The syntax is shown here:

For Each [variable] [As Data Type] In [Collection]
 'code
Next [variable]

For example, a form has a Controls collection, which is a collection of all the
controls on a form. The following code displays in the Output window the name of
each control in the form:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 For Each ctl As Control In Me.Controls
 Debug.WriteLine(ctl.Name)
 Next ctl
End Sub

Arrays
In previous chapters, I showed you how to declare variables of different data types
such as Integer or Double. Those variables are scalar variables. They can store only
one value at a time.

CHAPTER 8 Repeating Yourself—Loops and Arrays 153

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes. The index is a positive integer, starting with zero
and then incrementing by one for each additional element of the array.

Declaring Arrays
Array variables are declared the same way as other variables, with one difference.
The array name is followed by a pair of parentheses, and within the parentheses you
indicate the highest index of the array. For example, you would declare an array of
seven Integers, each element representing sales for a day of the week, as follows:

Dim arrSalesPerDay(6) As Integer

The number 6 within the parentheses may appear confusing because the array
has seven elements. However, the number within the parentheses is not the number
of elements in the array. Rather, it is the upper bound, or highest index of the array.
Because the number of the lowest index always is 0, the number of elements always
is one more than the highest index.

Default Value
When you first declare an array, each element of the array has a default value. The
specific default value depends on the data type of the array. If, as here, the data type
is Integer, each element of the array has a default value of 0. Try the following code,
which loops through the elements of the array and outputs seven zeros to the Output
window:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim arrSalesPerDay(6) As Integer

 For x As Integer = 0 To 6
 Debug.WriteLine(arrSalesPerDay(x))
 Next x
End Sub

You can assign a value to an element of an array by using the index of the element.
For example, the following code fragment assigns 73 to the second element of the
array:

arrSalesPerDay(1) = 73

However, you can use a loop to efficiently assign values to each element of the
entire array. Try the following code, which uses two loops. The first loop has the

154 Visual Basic 2005 Demystifi ed

user enter values for each day’s sales. The second loop outputs the values the user
entered:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim arrSalesPerDay(6) As Integer
 Dim strTemp As String

 For x As Integer = 0 To 6
 strTemp = InputBox("Enter a day's sales")
 arrSalesPerDay(x) = Integer.Parse(strTemp)
 Next x
 For x = 0 To 6
 Debug.WriteLine(arrSalesPerDay(x))
 Next x
End Sub

NOTENOTE In this example, the lower and upper bounds of the array, 0 and 6,
respectively, were known. You can obtain these values programmatically with
the GetLowerBound and GetUpperBound methods, and you can obtain the
number of elements in the array with the Length property.

You also can use arrays with loops to obtain a running total. Try the following
code, which outputs the total of the seven daily sales amounts entered by the user:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim arrSalesPerDay(6) As Integer
 Dim strTemp As String

 Dim total As Integer = 0
 For x As Integer = 0 To 6
 strTemp = InputBox("Enter a day's sales")
 arrSalesPerDay(x) = Integer.Parse(strTemp)
 Next x
 For x = 0 To 6
 total += arrSalesPerDay(x)
 Next x
Debug.WriteLine("Total Sales: " & total)
End Sub

As you can see, loops are very useful with arrays.

CHAPTER 8 Repeating Yourself—Loops and Arrays 155

NOTENOTE The arrays in this chapter have one dimension. You can have arrays with
two or more dimensions, two often representing rows and columns in a table or
spreadsheet, three a cubic space, and so forth.

Conclusion
Loops are used to repeat the execution of code statements. The For...Next statement
is used to repeat code execution a fixed number of times. The While...End While
statement is more flexible than the For...Next statement because the number of
times a While...End While statement repeats does not have to be determined when
you write the code, but may depend on user input. The Do statement has the
additional flexibility that it may test the condition at the bottom rather than only at
the top of the loop.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes, which start with zero and end at an index that is
one less than the number of elements in the array.

In the next chapter, you will learn how to use subroutines and functions to
organize your code more efficiently.

Quiz
 1. What is a loop?

 2. What is a difference between a While...End While statement and a For...
Next statement?

 3. What is a difference between the Do statement and the For...Next and
While...End While statements?

 4. What is a difference between the For Each...Next loop and the For...Next
loop?

 5. What are examples of nesting?

 6. What does an array variable permit you to do that a scalar variable
does not?

 7. What is the difference between declaring an array variable and a scalar
variable?

156 Visual Basic 2005 Demystifi ed

 8. What is the lowest index of an array?

 9. What is the relationship between the number of elements in an array and
the highest index in that array?

 10. If you declare an array without assigning a value to its elements, do its
elements have a default value?

157

CHAPTER
9

Organizing
Your Code with

Procedures

A procedure is a block of one or more code statements that execute when called
upon to do so, whether by an event, code, or the .NET Runtime. Most Visual Basic
code consists of procedures.

Visual Basic has many built-in procedures. One example is the InputBox function,
which displays an input box and returns the text the user enters in the input box.
Additionally, the definitions (name, parameters, return value, or lack thereof) of
event procedures, such as the MouseMove event procedure of a form and the Click
event procedure of a button, are built in, though of course you have to write the code
that goes inside of an event procedure.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

158 Visual Basic 2005 Demystifi ed

Additionally, you can write your own procedures. This chapter will explain two
different types of procedures—subroutines and functions—and how to write them.
This chapter also will explain how to call a procedure, necessary so the code within
it will execute, how to pass information to a procedure, and how, in the case of a
function, to return information to the code that called it.

Types of Procedures
This chapter will cover two important types of procedures:

• Subroutine Contains code that performs actions, but does not return a
value to the event or code that calls it. Event procedures are subroutines.

• Function The same as a subroutine except that a function returns a value
to the code that calls it. The InputBox function is an example of a function.

Because almost all Visual Basic code must be written within procedures, we
necessarily have been working with procedures, specifically subroutines and
functions, since the early chapters.

We started working with event procedures, procedures that contain a block of
code that executes when an event happens to an object. Event procedures are
subroutines. Although the code within them executes, they do not return a value as
a function does. Later we discussed a procedure that does return a value, the
InputBox function, which returns the value of text input by the application user.

Built-In vs. Programmer-Defined Procedures
Event procedures and the InputBox function have in common that they are built
into Visual Basic or the underlying .NET Framework.

The code inside the event procedure executes, seemingly automatically, when
the specified event happens to the specified object. You need not write any code to
cause the event procedure to execute when the specified event happens; code
provided automatically by the IDE does this for you. For example, the code inside
the Click event procedure of the form executes when you click the form.

Although you do not need to write any code to cause an event procedure to
execute, you do need to write code for the InputBox function to execute. However,
you do not need to write any code for the InputBox function to do what it does—
that is, display an input box and return the value typed by the application user in the
input box.

CHAPTER 9 Organizing Your Code with Procedures 159

Built-in procedures simplify your programming tasks. For example, you could
write a procedure that duplicates what the InputBox function does. However,
Visual Basic saves you the trouble by providing the InputBox function for
you. Visual Basic has many other built-in procedures that simplify your program-
ming tasks.

Although Visual Basic has numerous useful built-in procedures, not even the
creators of Visual Basic could anticipate every conceivable programming task and
supply a built-in procedure to perform that task. Indeed, even if they could, the
Visual Basic language might become too large and unwieldy. Therefore, many
times you will want to create your own procedures. Visual Basic enables you to do
so, and this chapter will show you how.

Methods Contrasted
We also have been using methods. For example, we have used the WriteLine method
of the Debug class to output, to the Output window, the value of its argument.

Methods are procedures, but not all procedures are methods. The primary
difference between a method and a procedure is that a method may only be called
from a specific class or object, whereas a procedure may be called independently
from a class or object.

For example, the WriteLine method belongs to the Debug class. You could not
call the WriteLine method from a Form object, or independently of any object. That
is why the Debug class and the dot (.) operator precede the WriteLine method. By
contrast, an event procedure, although it relates to a particular object, is not called
from that object.

Subroutines
There are two steps to using a subroutine. The first step is to create it, by declaring
the subroutine, much as you create a variable by declaring it. The second step is to
call the subroutine so the code within it executes. Additionally, you can pass
information to the subroutine by using arguments.

Declaring a Subroutine
Event procedures are built into Visual Basic and the underlying .NET Framework.
Therefore, you do not need to tell Visual Basic what these procedures are.

160 Visual Basic 2005 Demystifi ed

However, if you write your own procedures, you do need to tell Visual Basic what
they are. Otherwise, the compiler will not be able to recognize, much less execute, the
procedure. The result at best will be that nothing happens, or worse, a compiler error.

As you tell Visual Basic what a variable is by declaring it, you similarly tell
Visual Basic what a procedure is and does by declaring the procedure.

The syntax for declaring a subroutine is shown here:

[Accessibility] Sub name[(Parameter list)]
 Statements
 [Return | Exit Sub]
End Sub

Table 9-1 lists and describes the elements of declaring a subroutine.
The following programmer-defined subroutine, named PrintInput, illustrates this

syntax. This subroutine outputs to the Output window what the user types in an
input box, unless the user either did not type anything or chose the Cancel button of
the input box:

Private Sub PrintInput ()
 Dim strInput As String
 strInput = InputBox("Enter something")
 If strInput = "" Then
 Return ' or Exit Sub
 End If
 Debug.WriteLine(strInput)
End Sub

Element Required or Optional Description

Accessibility Optional Determines where the subroutine may
be called from. See Table 9-2.

Sub Required Keyword indicating the procedure is
a subroutine.

Name Required Name of the subroutine.

Parameter list Optional Information passed to the subroutine.

Statements Required Code that executes each time the
subroutine is called.

Return Optional Ends execution of the subroutine
before the End Sub statement.
Alternative to Exit Sub.

Exit Sub Optional Ends execution of the subroutine
before the End Sub statement.
Alternative to Return.

End Sub Required Ends execution of the subroutine.

Table 9-1 Elements of a Subroutine

CHAPTER 9 Organizing Your Code with Procedures 161

You can type this code either before or after any event procedure, as long as it is
before the End Class statement.

The accessibility specifier is Private. The keyword Sub indicates the procedure
is a subroutine. The name of the subroutine is PrintInput. This subroutine has no
arguments, so the parentheses are empty.

Turning to the body of the PrintInput subroutine, if strInput is an empty string,
because either the user did not input anything or chose the Cancel button of the
input box, then the Return statement, or alternatively an Exit Sub statement, ends
the execution of the subroutine, so the Debug.WriteLine(strInput) statement does
not execute. Otherwise, that statement does execute, and the subroutine then
continues, and ends, with the End Sub statement.

Accessibility
Table 9-2 lists the accessibility specifiers for a procedure. The accessibility specifier
is optional. If omitted, the accessibility specifier is Public.

These accessibility specifiers have essentially the same function with procedures
as they do with module-level variables. Therefore, if you declare the procedure
within a form and will only access the procedure from that form, you should declare
the procedure as Private. However, if, for example, your project has multiple forms,
and you plan to call the procedure declared in one form from another form, you
might declare the procedure as Friend.

TIPTIP As with module-level variables, you should declare procedures as Private
unless you really need to be able to access them outside the class.

Naming the Procedure
You have relative freedom in naming a procedure as you do in naming variables.
There are only a few limitations, such as no embedded spaces within the procedure
name. For example, Print Input is not a valid procedure name.

Declared Accessibility Meaning

Public The procedure may be called from the current project or essentially
any other project.

Protected Access is limited to the class in which the variable was declared or
the classes inherited from that class.

Friend Access is limited to the classes in the current assembly (or solution).

Protected Friend Combines access for Protected and Friend.

Private Access is limited to the class in which the variable was declared.

Table 9-2 Accessibility Specifi ers

162 Visual Basic 2005 Demystifi ed

Although Visual Basic imposes few limitations on how you name a procedure, as
with naming variables, you should name procedures so that what they do is
reasonably clear to you and other programmers who may have to review your code.
Procedure names such as Sub1, Sub2, Sub3, and so on are not very helpful. You,
and even more so your fellow programmers, will have trouble remembering which
of them does what. By contrast, descriptive procedure names such as PrintName,
PrintAddress, PrintCity, and so on, are quite helpful in describing what each
procedure does.

I agree with Microsoft’s recommendation that you use the NounVerb or VerbNoun
style to create a name that clearly identifies what the procedure does. For example,
the procedure name PrintName is a concatenation of the verb Print, which indicates
the action the procedure takes, and the noun Name, which indicates the information
printed. You might have more than one noun, such as PrintCustomerName. In any
event, the first letter of each noun and verb is capitalized.

Parameter List
The PrintInput subroutine has no parameters. The subject of parameters—
information given to a procedure that helps it perform its task—will be covered in
this chapter as soon as we have covered the subject of calling the subroutine. This
order will make the concept of parameters easier to understand. Accordingly, for
now, the procedures we will use have no parameters.

Return and Exit Sub Statements
The Return statement ends execution of a subroutine before the End Sub statement.
In the example PrintInput subroutine, if the Return statement executes (because the
user did not type anything), then it ends the execution of the subroutine, so the
Debug.WriteLine(strInput) statement does not execute.

Usually the Return statement is coupled with an If statement so that whether the
Return statement executes depends on a condition that evaluates to True or False.

The Exit Sub statement accomplishes the same result as the Return statement.
The two statements are interchangeable in subroutines.

Calling the Subroutine
Firefighters put out fires. However, they generally do not drive around looking for
fires. Instead, they go out to a fire when called upon to do so.

In the same way, a subroutine does not just execute by itself. The statements
within a subroutine do not execute until and unless the subroutine is called.

CHAPTER 9 Organizing Your Code with Procedures 163

A subroutine usually is called by code. The following code example calls the
PrintInput subroutine from the Click event procedure of the form:

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 PrintInput()
 Debug.WriteLine("When does this line display?")
End Sub

Calling a subroutine starts with the subroutine’s name (here, PrintInput), followed
by its arguments in parentheses, which in this case are empty because this subroutine
has no parameters.

Continuing the firefighter analogy, when firefighters arrive at the scene of the
fire, they take control and maintain that control until they put out the fire. Similarly,
once the subroutine is called, whether by user action or code, it takes control of the
application, and no other code executes without being called by the subroutine,
until the subroutine is finished. Thus, the line

Debug.WriteLine("When does this line display?")

in the Click event procedure of the form does not execute until the PrintInput
subroutine is finished executing.

NOTENOTE An exception is that two methods may execute independently in a
multithreaded application. Such an application is an advanced topic far
beyond the introductory scope of this book.

Completing the analogy, when the firefighters successfully put out the fire, they
pack up their equipment and go back to the fire station, relinquishing control of the
fire scene. Similarly, when the subroutine finishes executing, it relinquishes control
of the application, and whatever code (or user action) follows the call of the
subroutine determines the further flow of the application. Here, the line

Debug.WriteLine("When does this line display?")

in the Click event procedure of the form only executes after the PrintInput subroutine
finishes executing.

Parameters
Returning to our firefighter analogy, when firefighters are called to a fire, they need
to know the location of the fire, the type of fire (house fire, chemical fire, and so on)
so they know what equipment to bring, and other pertinent information. The
particular location and type of fire may well vary from call to call, but in each case
this information is necessary in order for the firefighters to do their job.

164 Visual Basic 2005 Demystifi ed

Similarly, a procedure often needs information in order to perform its task. For
example, a subroutine that outputs the square of a number to the Output window
needs to know the number to be squared. The value of that number may vary from
call to call, but in each case the procedure will need to know the particular number
to be squared. This information is called a parameter.

If a procedure has no parameters, the parentheses following the procedure name
are empty, and in fact are not required, though the IDE usually adds them. However,
if a procedure has one or more parameters, each parameter must be declared within
the parentheses.

The syntax for each parameter in the parameter list is as follows:

([ByVal|ByRef] parametername As datatype)

The keywords ByVal and ByRef will be discussed later in the section “ByVal vs.
ByRef.” Next, parametername is a name, similar to a variable name, that will be
used to refer to the parameter inside the body of the procedure. Finally, datatype is,
as the word suggests, the data type of the parameter.

NOTENOTE As with variable names, you should name your parameters descriptively.
For example, the parameter may be named “num” because that describes its
purpose in the Power procedure, the number that will be raised to the second
power.

Passing an Argument to a Procedure
In the following example, the Power subroutine has one parameter, num, whose
data type is an Integer. The body of the Power routine outputs the square of the
value of its parameter to the Output window:

Private Sub Power(ByVal num As Integer)
 Debug.WriteLine((num ^ 2).ToString)
End Sub

NOTENOTE The ToString method is used to convert an Integer into the String
representation of an Integer because the WriteLine method expects an
argument of the String data type.

You could call the Power subroutine passing an Integer argument (for example, 5)
from an event procedure such as the Click event of the form:

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 Power(5)
End Sub

CHAPTER 9 Organizing Your Code with Procedures 165

Once again, calling a subroutine starts with the subroutine’s name (here, Power),
followed by its argument in parentheses (here, one argument because this subroutine
was declared as having one parameter).

If you ran the program in debug mode and clicked the form, the value 25 would
be displayed in the Output window.

The statement Power(5) has the effect of assigning the value 5 to the parameter
num in Power. Therefore, the statement in Power

Debug.WriteLine((num ^ 2).ToString)

executes as follows when the value passed is 5:

Debug.WriteLine((5 ^ 2).ToString))

Multiple Parameters
A subroutine may require more than one argument in order to do its job. For
example, the Power subroutine is limited to raising its argument to the power of 2.
We can expand the functionality of this subroutine so it can raise the first argument
to a different power than 2 by including a second argument, which is the power to
which the first argument will be raised. The Power subroutine may be rewritten as
follows:

Private Sub Power(ByVal num As Integer, _
ByVal exponent As Integer)
 Debug.WriteLine(num ^ exponent)
End Sub

As this example illustrates, the only difference between declaring a procedure
with a single parameter and declaring a procedure with more than one parameter is
that a comma separates the parameters. Similarly, when you call the procedure, a
comma separates the arguments:

Power(5, 3)

The output with this call is 125, which is 5 to the power of 3.

The Parameters and Arguments Must Match
When you call a procedure, you must pass the same number of arguments as the
number of parameters specified in the procedure’s declaration. For example, let’s
return to our version of the Power subroutine with one parameter:

Private Sub Power(ByVal num As Integer)
 Debug.WriteLine((num ^ 2).ToString)
End Sub

Suppose you tried to call the Power procedure with no arguments, as shown
here:

Power()

166 Visual Basic 2005 Demystifi ed

In this case, the compiler would complain, “Argument not specified for the parameter
‘num’ of ‘Private Sub Power(num As Integer).’”

Similarly, suppose you tried to call the Power procedure with more than one
argument, as shown here:

Power(5, 3)

This time, the compiler would complain, “Too many arguments to ‘Private Sub
Power(num As Integer).’”

The argument passed also must be the same data type specified in the procedure’s
declaration. For example, try to call the Power subroutine with code (presumably
inside an event procedure) as follows:

Dim strInput As String
strInput = InputBox("Enter a number")
Power(strInput)

You are passing the correct number of arguments, one. Nevertheless, if Option
Strict is on as I recommended in Chapter 5, the compiler would complain, “Option
Strict On disallows implicit conversions from ‘String’ to ‘Integer.’” The reason is
that the expected data type of the argument is an Integer, not a String. Therefore, the
call would have to be rewritten as follows:

Power(Integer.Parse(strInput))

ByVal vs. ByRef
So far any arguments in the code examples have been preceded by the ByVal
attribute. This section will illustrate the difference between the ByVal and ByRef
attributes.

First, rewrite the Power function and the Click event procedure of the form to
read as follows:

Private Sub Power(ByVal num As Integer)
 Debug.WriteLine _
 ("In Power num starts at " & num.ToString)
 num = num ^ 2
 Debug.WriteLine _
 ("After num = num ^ 2 num = " & num.ToString)
End Sub

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 Dim x As Integer = 5
 Debug.WriteLine _
 ("Before calling Power x = " & x.ToString)

CHAPTER 9 Organizing Your Code with Procedures 167

 Power(x)
 Debug.WriteLine _
 ("After calling Power x = " & x.ToString)
End Sub

Run the application. The output would be the following:

Before calling Power x = 5
In Power num starts at 5
After num = num ^ 2 num = 25
After calling Power x = 5

As the output demonstrates, although the value of the parameter num in the
called procedure (Power) changed, the value of the corresponding argument x in the
calling procedure (Click event of the form) did not. In other words, when a parameter
has the ByVal attribute, any change to the value of the parameter in the called
procedure does not affect the value of the corresponding argument in the calling
procedure.

Stop the application and make one change to the code, changing the attribute of
the parameter in the Power subroutine from ByVal to ByRef. The code now should
read as follows:

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 Dim x As Integer = 5
 Debug.WriteLine _
 ("Before calling Power x = " & x.ToString)
 Power(x)
 Debug.WriteLine _
 ("After calling Power x = " & x.ToString)
End Sub

Private Sub Power(ByRef num As Integer)
 Debug.WriteLine _
 ("In Power num starts at " & num.ToString)
 num = num ^ 2
 Debug.WriteLine _
 ("After num = num ^ 2 num = " & num.ToString)
End Sub

Run the application. The output would be the following:

Before calling Power x = 5
In Power num starts at 5
After num = num ^ 2 num = 25
After calling Power x = 25

168 Visual Basic 2005 Demystifi ed

As the output demonstrates, when the value of the parameter num in the called
procedure (Power) changed, the value of the corresponding argument x in the calling
procedure (Click event of the form) also changed. In other words, when a parameter
has the ByRef attribute, any change to the value of the parameter in the called procedure
does affect the value of the corresponding argument in the calling procedure.

Normally you will use the ByVal attribute, which is the default. However, which
attribute you use simply depends on what you are trying to accomplish.

Functions
As with subroutines, functions need to be created by declaring them, and then
invoked by calling them. Also as with subroutines, you can pass information to
functions by using arguments. However, unlike subroutines, functions present an
additional consideration, the value they return.

Declaring Functions
The syntax for declaring a function is quite similar to that for declaring a
subroutine:

[Accessibility] Function name[(Parameter list)] As Type
 Statements
 [Exit Function]
 Return [or functionname = return value]
End Function

Table 9-3 lists and describes the elements of a function.
There is significant overlap between the syntax for declaring a function and the

syntax for declaring a subroutine. The discussion for subroutines regarding
accessibility, naming, argument lists, and statements applies equally to functions.
Similarly, the Exit Function and End Function statements are to functions what the
Exit Sub and End Sub statements are to subroutines. The sole difference is the
substitution of the Function keyword for the Sub keyword.

The substantive differences in syntax between subroutines and functions, in
addition to the use of the keyword Function rather than Sub, relate to the fundamental
difference between a subroutine and a function—that a function, unlike a subroutine,
returns a value. Here are two points to keep in mind:

CHAPTER 9 Organizing Your Code with Procedures 169

• A function has As Type after the parameter list to describe the data type
of the return value, whereas a subroutine does not because it does not
return a value.

• In a function the keyword Return is followed by the value to be returned,
or the function name is followed by an assignment operator and the value
to be returned, whereas in a subroutine the keyword Return appears by
itself because no value is being returned.

The following programmer-defined function, named ReturnInput, illustrates the
syntax of a function. This function returns what the user enters in the input box,

Element Required or
Optional

Description

Accessibility Optional Determines where the function
may be called from.

Function Required Keyword indicating the
procedure is a function.

Name Required Name of the function.

Parameter list Optional Same as in a subroutine, the
information passed to the
function.

As Type Required if Option
Strict is On;
otherwise, Optional

Data type of the return value.

Statements Required Code that executes each time the
function is called.

Return (or functionname = return
value)

Optional Returns the value of the function.
The Return statement also ends
execution of the function before
the End Function statement,
whereas name = return value
does not.

Exit Function Optional Ends execution of the function
before the End Function statement.

End Function Required Ends execution of the function.

Table 9-3 Elements of a Function

170 Visual Basic 2005 Demystifi ed

unless the user did not enter anything or clicked the Cancel button of the input box,
in which case the function returns the string “Nothing entered”:

Private Function ReturnInput() As String
 Dim strInput As String
 strInput = InputBox("Enter something")
 If strInput = "" Then
 Return "Nothing entered"
 End If
 ReturnInput = strInput
End Function

In the ReturnInput example, the As Type statement indicates that the data type of
the return value is a String. The data type being returned may be any data type
supported by .NET.

The Return statement executes if the value of strInput is an empty string, which
would be the case if the user either did not enter anything or clicked the Cancel
button of the input box. The Return keyword is followed by the value to be
returned—in this case, the string “Nothing entered.”

If the Return statement executes, the execution of the function ends.
However, if the value of strInput is not an empty string (that is, the user entered

something and clicked the OK button of the input box), then the execution of the
function continues with the following statement:

ReturnInput = strInput

This statement also returns a value (here, that of the variable strInput). The syntax
starts with the function name (ReturnInput), followed by the assignment operator
and the value to be returned.

The section “How the Value Is Returned,” later in this chapter, will discuss further
how a value is returned and the options in doing so.

Calling Functions
Calling a function is similar to calling a subroutine in that you refer to the function
by name, followed by the arguments of the function in parentheses, or empty
parentheses if the function has no arguments. The difference between calling a
function and calling a subroutine concerns, once again, the return value of the
function.

The most common scenario is to call the function on the right side of an
assignment statement, with the left side of the assignment statement containing a
variable or writable property of the same data type as the return value of the function.
For example, converting the Power subroutine discussed earlier into a function, the

CHAPTER 9 Organizing Your Code with Procedures 171

Power function declared as follows will return the result of raising its first argument
to the value of its second argument:

Private Function Power(ByVal num As Integer, _
ByVal exponent As Integer) As Double
 Return num ^ exponent
End Function

You could call this function, such as in the Click event of the form, as follows,
with the output being 125:

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 Dim dblResult As Double
 dblResult = Power(5, 3)
 Debug.WriteLine(dblResult.ToString)
End Sub

The steps are to declare a variable of the same data type as the return value of the
function and then to assign the return value of the function to that variable.

You also can call the function in an expression so that the body of the Click event
procedure of the form would be only one line:

Debug.WriteLine(Power(5, 3))

The output still would be 125. The difference between calling the function on the
right side of an assignment statement and calling the function in an expression is
that when you call a function on the right side of an assignment statement, its return
value is saved in a variable or writable property for later use. By contrast, when you
call a function in an expression, its return value is not available for later use. Of
course, this is not a problem unless you will need the return value later, which you
may not.

NOTENOTE You do not have to use the return value of the function. You can call the
function as you would call a subroutine, such as this: Power(5, 3). In that event,
the return value simply would not be used. However, whatever code was in the
function body still would execute.

How the Value Is Returned
The output of the preceding code is 125, but how exactly did that happen?
Let’s start with the call of the Power function by the following line:

dblResult = Power(5, 3)

172 Visual Basic 2005 Demystifi ed

The declaration of the Power function is shown here:

Private Function Power(ByVal num As Integer, _
ByVal exponent As Integer) As Double
 Return num ^ exponent
End Function

Because the values of the arguments passed are 5 and 3, in that order, the value of
the first parameter, num, is 5, and the value of the second parameter, exponent, is 3.
Therefore, the statement

Return num ^ exponent

in effect is

Return 5 ^ 3

which, in turn, is

Return 125

With the Return statement, the Power function finishes executing, and the value
125 is returned to the right side of the assignment statement. After the Power
function finishes executing, the statement

dblResult = Power(5, 3)

in effect is

dblResult = 125

Therefore, the following code outputs 125, the string representation of the value of
dblResult:

Debug.WriteLine(dblResult.ToString)

Options When Returning a Value
As discussed in the earlier section “Declaring Functions,” there are two syntax
options when returning a value: the Return statement, and assigning to the function
name the value to be returned. Both methods are used in the earlier example of the
ReturnInput function:

Private Function ReturnInput() As String
 Dim strInput As String
 strInput = InputBox("Enter something")
 If strInput = "" Then
 Return "Nothing entered"

CHAPTER 9 Organizing Your Code with Procedures 173

 End If
 ReturnInput = strInput
End Function

The difference between the two alternatives is that the Return keyword
immediately ends the execution of the function. In contrast, the syntax of returning
a value by assigning it to the function name (for example, ReturnInput = strInput)
does not end the execution of the function. The function continues executing until
a Return, Exit Function, or End Function statement is reached, and the return value
assigned to the function name will remain the function’s return value unless changed,
either by assigning a different return value to the function name or by using the
Return statement. You may use to your advantage that assigning a return value to
the function name does not end the execution of the function by assigning a
preliminary return value and adjusting it later in the function if necessary.

NOTENOTE Technically, a function does not have to explicitly return a value. If the
function ends, either by an Exit Function or End Function statement, without
previously returning a value by either the Return statement or assigning a value
to the function name, then the function returns the default value appropriate to the
data type of the return value. This is 0 for numeric data types; Nothing for Object,
String, and all arrays; and False for Boolean. However, it is good practice for
your functions to return a value.

Returning a Boolean Value
Functions that return a Boolean value often are called in an expression in an If…
Then control structure. For example, the following function, IsEmptyString,
returns True if the string that is its argument is an empty string, and otherwise
returns False:

Private Function IsEmptyString _
 (ByVal str As String) As Boolean
 If str = "" Then
 Return True
 Else
 Return False
 End If
End Function

The function may then be called following an If clause, and passed a string input
by the user in an input box. If the user did not enter anything in the input box or
clicked the Cancel button, the function will return True and the output will be, “You

174 Visual Basic 2005 Demystifi ed

didn’t enter anything.” If instead the user entered something in the input box and
clicked the OK button, the function will return False and the output will be, “You
entered something.”

Private Sub Form1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Click
 Dim strInput As String
 strInput = InputBox("Enter something")
 If IsEmptyString(strInput) Then
 Debug.WriteLine("You didn't enter anything")
 Else
 Debug.WriteLine("You entered something")
 End If
End Sub

The statement

If IsEmptyString(strInput) Then

also could have been written as follows:

If IsEmptyString(strInput) = True Then

The two statements have the same effect. Because isEmptyString returns a
Boolean value, it is unnecessary to compare that Boolean value to another Boolean
value to obtain a Boolean result. Therefore, the = True is unnecessary, though
harmless.

Why Write Your Own Procedures?
This chapter has explained how you can write your own procedures. However, it
has not yet explained why you would want to do so. Indeed, often you could write
all your code inside event procedures and never have to write your own
procedures.

By analogy, assume this book is a Visual Basic application, and each chapter is
an event procedure. Each chapter is divided into headings and subheadings to make
the chapter more readable. The headings and subheadings, which I would analogize
to programmer-defined procedures, are not necessary, but without them, each
chapter, averaging about 15 to 20 pages long, would be more difficult to read and
understand.

CHAPTER 9 Organizing Your Code with Procedures 175

Similarly, as your applications become more complex, the code in your event
procedures may become very long if not separated and organized into programmer-
defined procedures. Although lengthy code will run fine, it is more difficult to
understand and, if necessary, fix than code that is organized into brief code blocks.

Additionally, if you are performing essentially the same task from several places
in the program, you can avoid duplication of code by putting the code that performs
that task in one procedure, as opposed to repeating that code in each place in the
program that may call for the performance of that task. That way, if you later have
to fix a bug in how you perform that task, or simply find a better way to perform the
task, you only have to change the code in one place rather than many.

Conclusion
A procedure is a block of one or more code statements that execute when called
upon to do so by an event or code. Most Visual Basic code consists of procedures.

This chapter discussed two types of procedures: subroutines and functions.
The difference between them is that functions return a value, whereas subroutines
do not.

Visual Basic has many built-in procedures. Some, such as event procedures, are
subroutines. Others, such as the InputBox function, are functions.

Visual Basic also enables you to create your own procedures. There are several
reasons why you might want to create your own procedures. Your code is more
readable if divided up among several smaller procedures than all contained in one
procedure that contains pages of code. Additionally, if you are performing essentially
the same task from several places in the program, you can avoid duplication of code
by putting the code that performs that task in one place, as opposed to repeating that
code in each place in the program that may call for the performance of that task.
Further, if you later have to fix a bug in how you perform that task, or simply find a
better way to perform the task, you only have to change the code in one place rather
than many.

You also learned in this chapter how to pass information to a procedure using
arguments, and how to call a procedure so the code within it will execute. You also
learned how to return a value from a function, and how to assign that return value
when you call the function.

So far our applications have involved only one form. That will change in the next
chapter.

176 Visual Basic 2005 Demystifi ed

Quiz
 1. What is a procedure?

 2. What is the difference between a subroutine and a function?

 3. Is an event procedure a subroutine or a function?

 4. What does the Private access specifier do when applied to a procedure?

 5. Is there a difference between the Return and Exit Sub statements in
subroutines?

 6. What does calling a subroutine do?

 7. What is the difference between the ByVal and ByRef attributes of a
parameter?

 8. What is the difference between a subroutine and a function in the use of the
keyword Return?

 9. What are the two syntax options for a function returning a value?

 10. What are some reasons for writing your own procedures?

PART FOUR

The User
Interface

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

179

CHAPTER
10

Helper Forms

Forms are the most common user interface element in Visual Basic applications.
Indeed, it is difficult to conceptualize a Windows application without at least one
form. Forms are the windows, literally, through which application users view
information and interact with the application.

Visual Basic’s automated creation of a new Windows application project includes
a form that serves as the main application window. However, although the main
application window may be the star of the show, that form needs a supporting cast
of helper forms, because Windows applications generally are far too complex for
the main application window to perform all the tasks required by the application.

The message box is a helper form built into the .NET Framework. The message box
includes text that is either informative or a question, as well as buttons such as OK, Yes,
No, Cancel, and so on, for the application user’s response and to close the message box.

Message boxes are very common in Windows applications. One typical example,
discussed later in this chapter, is if you make changes to a document in Microsoft
Word and then try to close the document without saving the changes, you may be
presented with a message box asking if you want to save the file before closing,
with buttons for Yes, No, and Cancel. This chapter will show you how to create and
use a message box in your application.

Although the message box is very useful, sometimes you want the helper form to
have functionality that is beyond the capability of a message box to provide. For

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

180 Visual Basic 2005 Demystifi ed

example, the text displayed by a message box is limited to a prompt. However, most
Windows applications have an About dialog box, summoned by the main form’s
Help | About menu command, that displays more detailed information about the
application than can be provided in a message box.

The About dialog box is an example of a dialog form. However, although the
About dialog box simply is informational, dialog forms are not limited to the role
of passive purveyors of information, and instead typically are interactive. For
example, the Print dialog box, displayed with the File | Print menu command,
enables the user to choose among printers, decide which pages to print, the number
of copies to make, and so forth, and then starts the print job when the OK button is
clicked. This chapter will show you how to create and display a dialog form.

The ability of the user to interact with the Print dialog box is possible because
that dialog box contains controls that a message box cannot contain, such as a drop-
down list from which the user may select a printer, radio buttons and a text box
from which the user may designate which pages to print, a check box through which
the user can designate whether the pages should be collated, and so forth.

The ability of the user to interact with a dialog form presents programming
challenges involving communication between the main and helper forms. For example,
the main form needs to know which button was clicked on the helper form, and should
execute different code depending on which button was clicked. Additionally, because
the dialog form contains controls, the main form needs to know and take actions based
on what the application user typed, checked, or selected in the controls in the helper
form. This chapter will show you how to solve these programming challenges.

Message Boxes
Because the actions of the application user cause a Windows application to receive
messages from the operating system, it seems only fair that a Windows application
can send a message to the application user. Windows applications often use message
boxes to inform and obtain a response from the application user.

Message boxes are valuable tools to use in applications. For example, one late
evening, working bleary-eyed to finish a chapter under unceasing pressure from my
heartless editor, I forgetfully closed the document without first saving about an hour’s
worth of changes. Mercifully, up popped the message box shown in Figure 10-1,
asking if I wanted to save my unsaved changes before the document was closed.

This message box, in addition to conveying valuable information, also is able to
obtain and process my response. If I choose the Yes button, the unsaved changes are
saved before the document is closed. If I choose the No button (bad choice), the
unsaved changes are discarded and the document is closed. If I choose the Cancel
button, the state just before I attempted to close the document is restored; the
document is kept open, but the unsaved changes remain unsaved.

CHAPTER 10 Helper Forms 181

Creating the Project
In this project, you will create the message box shown in Figure 10-2, which asks
the user if they want to quit the application. If the user chooses Yes, the application
closes. If the user chooses No, the application will not close.

Create the project through the following steps:

 1. Create a new Windows application.

 2. Using the Toolbox, add a button to the form.

 3. Use the Properties window to change the Name property of the button
to btnClose and the Text property of the button to Close.

 4. Add this code to the Click event of btnClose:

Private Sub btnClose_Click _
 (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnClose.Click
 Dim drQuit As DialogResult
 drQuit = MessageBox.Show _
 ("Do you really want to quit?", _
 "Exit Confirmation", _
 MessageBoxButtons.YesNo, _
 MessageBoxIcon.Warning, _
 MessageBoxDefaultButton.Button2)
 If drQuit = DialogResult.Yes Then
 Me.Close()
 End If
End Sub

Figure 10-1 Message box in Microsoft Word

Figure 10-2 Project in action

182 Visual Basic 2005 Demystifi ed

Run the project and click the Close button to display the message box shown
previously in Figure 10-2. This type of message box is common in Windows
applications, providing the application user a last chance to decide whether they
really want to quit the application. If the application user chooses the Yes button,
the application will end. If instead the application user chooses the No button, just
the message box will close and the application user will be returned to the main
form. Thus, the clicking of the No button will restore the application to its state just
before the application user chose the Close button.

Message Boxes Are Modal
The code involves three logical steps:

 1. Display the message box, using the Show method.

 2. Obtain the application user’s choice, Yes or No, by the return value of the
Show method.

 3. If the choice is Yes, close the application.

However, before we analyze the code, let’s examine a feature that message boxes
share with the dialog forms discussed later in this chapter—both are modal.

The term “modal” refers to the fact that the user cannot return to the application until
the message box is closed by the user clicking one of the buttons of the message box.

Message boxes are always modal. However, not all forms are modal. This issue
will be discussed further in connection with dialog forms later in this chapter in the
section “Modal vs. Modeless.”

Show Method
You do not need to create or design the message box. The message box is a form
built into the .NET Framework. All you need to do to create and display a message
box, together with its buttons, icon, text, and title, is to call the aptly named Show
method of the MessageBox class, which is part of the class library of the .NET
Framework, and provide the appropriate arguments. The .NET Framework also
takes care of closing the message box. When you click a button, the message box
closes, automatically.

Parameters of Show Method
The Show method is overloaded. This means that you can call it several different
ways, depending on the number of parameters you include. The parameters of the
Show method are listed in Table 10-1.

CHAPTER 10 Helper Forms 183

The only parameter that is required is Text. In that case, the message box only
will have one button, OK, which closes the message box when clicked. This may
be sufficient if the message box simply provides information to the application
user. For example, when filling out a form in an application, you may have seen
a message box popping up telling you that you forgot to fill out a required field,
or that the field only takes numbers or that the password must be at least six
characters, and so on.

NOTENOTE The parameters are positional. This means you can’t skip or omit an
argument. Therefore, if you want to specify a default button, which is the last
parameter, all the previous arguments must also be supplied.

Parameter Description Required?

Text The prompt inside the message
box to convey a question or
information to the application
user (in this case, “Do you
really want to quit?”).

Yes

Title The title of the message
box (in this case, “Exit
confi rmation”) to provide a
visual cue to the application
user of the purpose of the
message box.

No. If omitted, no title.

MessageBoxButtons The buttons inside the message
box (in this case, Yes and No).
The choices are listed in
Table 10-2.

No. If omitted, only one
button (OK).

MessageBoxIcon The graphic inside the message
box, such as the ! in Figure
10-2. The choices are listed
in Table 10-3.

No. If omitted, no graphic.

MessageBoxDefaultButton The button outlined as a cue
that pressing ENTER is the
same as clicking the button
(in this case, the second, or
No button). The choices are
listed in Table 10-4.

No. If omitted, fi rst button is
the default.

Table 10-1 Parameters of the Show Method

184 Visual Basic 2005 Demystifi ed

MessageBoxButtons Enumeration
Although a message box with only an OK button is sufficient if the message box’s
purpose is purely information, here the objective of this project is to give the
application user a choice of Yes or No concerning whether they really want to quit.
You use buttons—here, Yes and No buttons—to give the application user this choice.
The MessageBoxButtons enumeration contains the available button combinations,
which are listed in Table 10-2.

The term “enumeration” means a list of related choices, which in this case represents
the various available button combinations. The syntax of an enumeration is

[Enumeration Name].[Choice Name]

For example, if the selected button combination is Yes and No, the syntax is

MessageBoxButtons.YesNo

Here, MessageBoxButtons is the name of the enumeration, and YesNo is the choice
from the enumerated list.

MessageBoxIcon Enumeration
The saying that a picture is worth a thousand words, while perhaps trite, has much
truth. The visual cue of an icon in a message box tells the application user the nature
and importance of the message, ranging from informational to warning or error.

Similar to the buttons, the available icon choices are contained in an enumeration,
this time named the MessageBoxIcon enumeration. Table 10-3 lists the available
icon choices.

Name Buttons Contained in Message Box

AbortRetryIgnore Abort, Retry, and Ignore.

OK OK. This is the default.

OKCancel OK and Cancel.

RetryCancel Retry and Cancel.

YesNo Yes and No.

YesNoCancel Yes, No, and Cancel.

Table 10-2 MessageBoxButtons Enumeration

CHAPTER 10 Helper Forms 185

MessageBoxDefaultButton Enumeration
The users of your application may be using the keyboard in lieu of the mouse to
choose a button. This may not simply be a matter of preference. Users with certain
disabilities may not be able to use a mouse and have to use the keyboard to choose
a button. Accordingly, you should designate a default button, which means that the
user pressing the ENTER key is the same as the user clicking that button.

The choices of the default button are contained in yet another enumeration, this
time called the MessageBoxDefaultButton enumeration. Table 10-4 lists the
available button choices.

Name Icon in Message Box

Asterisk White lowercase letter i in a circle with a blue background

Error White X in a circle with a red background

Exclamation Black exclamation point in a triangle with a yellow
background

Hand White X in a circle with a red background

Information White lowercase letter i in a circle with a blue background

None None

Question Blue question mark in a circle with a white background

Stop White X in a circle with a red background

Warning Black exclamation point in a triangle with a yellow
background

Table 10-3 MessageBoxIcon Enumeration

Member Name Description

Button1 The fi rst button on the message box is the default button.

Button2 The second button on the message box is the default button.

Button3 The third button on the message box is the default button.

Table 10-4 MessageBoxDefaultButton Enumeration

186 Visual Basic 2005 Demystifi ed

There are only three buttons in the enumeration because, as Table 10-2 indicates,
the maximum number of buttons is three—Abort, Retry and Ignore, or Yes, No,
and Cancel.

Usually you choose as the default button the one whose choice would have the
least drastic effect, if for no other reason than if the application user absentmindedly
presses the ENTER key, nothing horrible will happen. Here, the button with the least
drastic effect is the No button, which will simply restore the status quo.

Using the Show Method’s Return Value
The next step is to write code so the form knows if the application user clicked
the Yes or No button in the message box. The programming task is that one form
needs to know an action taken in another form, the other form here being the
message box.

You solve this problem by using the return value of the Show method. The
concept of a procedure returning a value was introduced with the InputBox function
and discussed further in Chapter 9 in the coverage of functions.

DialogResult Enumeration
The Show method returns a value that represents the button that the application user
clicked in the message box. Each button is represented by a member of the
DialogResult enumeration listed in Table 10-5.

Member Name Description

Abort The dialog box’s return value is Abort, usually sent from a button labeled
Abort.

Cancel The dialog box’s return value is Cancel, usually sent from a button labeled
Cancel.

Ignore The dialog box’s return value is Ignore, usually sent from a button labeled
Ignore.

No The dialog box’s return value is No, usually sent from a button labeled No.

None Nothing is returned from the dialog box. This means that the modal dialog
box continues running.

OK The dialog box’s return value is OK, usually sent from a button labeled OK.

Retry The dialog box’s return value is Retry, usually sent from a button labeled
Retry.

Yes The dialog box’s return value is Yes, usually sent from a button labeled Yes.

Table 10-5 DialogResult Enumeration

CHAPTER 10 Helper Forms 187

The DialogResult enumeration corresponds to the buttons in the
MessageBoxButtons enumeration listed previously in Table 10-2, and will be
returned if the corresponding button is chosen. Thus, if the application user chooses
the Yes button, the Show method returns the value DialogResult.Yes.

The return value usually is stored in a variable for later use in the application.
The data type of that return value should be the same as the data type returned by
the function or method.

Accordingly, you often use the DialogResult data type for the variable in which
you will save the return value of the Show method. You may declare that variable as
follows:

Dim drQuit As DialogResult

Once you have declared the variable, the next step is to use it to store the return
value of the Show method. The variable drQuit should be on the left side of the
assignment operator, so it will receive the return value of the Show method that is
called on the right side of the assignment operator:

drQuit = MessageBox.Show("Do you really want to quit?", _
 "Exit Confirmation", _
 MessageBoxButtons.YesNo, _
 MessageBoxIcon.Warning, _
 MessageBoxDefaultButton.Button2)

When this code statement executes, and the application user clicks a button in the
message box, closing the message box, the value of the variable drQuit will be
either DialogResult.Yes or DialogResult.No, depending on whether the application
user clicked the Yes or No button.

Processing the Returned DialogResult Value
The form object has a Close method that, as its name indicates, closes the form.
Because this is the only form in the project (other than the message box, which will
close when the user clicks the Yes or No button), closing the form ends the application
as well. However, we only want to close the form if the application user clicks Yes,
not if the application user clicks No.

The following code closes the form if, and only if, the application user’s choice
was Yes:

If drQuit = DialogResult.Yes Then
 Me.Close()
End If

This code statement first compares the value of drQuit and DialogResult.Yes
using the If keyword. If the user chose Yes, the value of drQuit is DialogResult.Yes,

188 Visual Basic 2005 Demystifi ed

so the comparison drQuit = DialogResult.Yes will be True and the Me.Close()
statement is executed. However, if the user chose No, the value of drQuit is
DialogResult.No, so the comparison drQuit = DialogResult.Yes will be False and
the Me.Close() statement will not be executed.

Dialog Forms
Although the message box is a valuable tool, it is limited in that it only can
contain a text prompt, buttons, an icon, and a title. Further, the only information
a message box can obtain from the application user is which button the user
clicked. The message box does not permit the application user to enter text in a
text box, choose an item from a drop-down list, select a check box or radio button,
and so on.

If you need a user interface richer than the message box, you may create a custom
and more complex version of a message box—the dialog form.

Creating the Project
A good way to illustrate how to create and use a dialog form is with a project. In
this project, you will create the dialog form shown in Figure 10-3. This dialog form
enables the user to change the text of the title bar of the main form, that title bar text
currently being “Form1” in Figure 10-3.

Figure 10-3 Dialog Form project in action

CHAPTER 10 Helper Forms 189

Clicking either the OK or Cancel button will close the dialog form. However, if the
user chooses the OK button in the dialog form, the text of the title bar of the main form
will be changed to the text the user typed into the text box of the dialog form. By contrast,
if the user instead chooses the Cancel button in the dialog form, the dialog form simply
will close, with no change made to the text of the title bar of the main form.

Try the following steps to create this project:

 1. Create a new Windows application.

 2. Using the Properties window, change the StartPosition property of the form
from the default (WindowsDefaultLocation) to CenterScreen to center the
form on the screen. This change is not required for the program to function,
but will permit both forms to be centered on the screen.

 3. Using the Toolbox, add a button to the form.

 4. Use the Properties window to change the values of the Name property of
the button to btnNewCaption and the Text property from the default (such
as Button1) to New Caption.

 5. You need to add a second form to the project to serve as the dialog form.
Use the Project | Add Windows Form menu command to display the Add
New Item dialog box shown in Figure 10-4, highlight Windows Form, and
then click the Add button. You can keep the default name, Form2.vb, for the
new form. Figure 10-5 shows the Solution Explorer, in which the second
form now appears.

Figure 10-4 Add New Item dialog box

190 Visual Basic 2005 Demystifi ed

 6. Using the Properties window, change the values of the following properties
of the second form:

• Text Change from Form2 to Dialog so you have a visual cue that you
are looking at the dialog form.

• ControlBox Change from the default (True) to False. This eliminates
the close, minimize, and maximize buttons in the top-right corner of
the window and the system menu, which also has close, minimize,
and maximize commands, in the top-left corner of the window. The
purpose is so the dialog form cannot be resized and can be closed
only by clicking one of the buttons that you will be adding next to
the form.

• StartPosition Change from the default (WindowsDefaultLocation)
to CenterParent so the dialog box is centered on the main form.

• FormBorderStyle Change from the default (Sizable) to FixedDialog.
This change is not required for the program to function, but does give
the form a more dialog box–like appearance.

 7. Using the Toolbox, add a button to the second form.

Figure 10-5 Solution Explorer after the second form is added

CHAPTER 10 Helper Forms 191

 8. Use the Properties window to change the values of the following properties
of the button you just added to the dialog form:

• Name Change from Button1 to btnOK.

• Text Change to OK.

• DialogResult Choose OK from the drop-down list. Because the dialog
form displayed by the MessageBox.Show method is a built-in Visual
Basic .NET form, clicking the OK button automatically returns OK as
the DialogResult value. By contrast, the dialog form is not a built-in
Visual Basic .NET form, but instead one that you create, so you need
to correlate the clicking of the OK button with OK as the DialogResult
value, both in order to return a DialogResult value and also to close the
dialog form when the button is clicked. You do so by setting the button’s
DialogResult property to OK.

 9. Using the Toolbox, add a second button to the dialog form.

 10. Use the Properties window to change the values of the following properties
of the second button you just added to the dialog form:

• Name Change from the default name (likely Button1 or Button2)
to btnCancel.

• Text Change to Cancel.

• DialogResult Choose Cancel from the drop-down list. This is done
for the same reason as when we set the DialogResult property of the
OK button to OK.

 11. Use the Properties window to change the values of the AcceptButton
property of the second dialog form to btnOK and the CancelButton
property of that form to btnCancel, using the drop-down list. Pressing
the ENTER key is the equivalent of clicking the button designated in the
AcceptButton property. Similarly, pressing the ESC key is the equivalent
of clicking the button designated in the CancelButton property.

 12. Using the Toolbox, add a TextBox control to the second form.

 13. Use the Properties window to change the values of the following properties
of the TextBox control you just added to the dialog form:

• Name Change to txtNewCaption.

• Text Delete the default so it is blank. This way, no text shows in the
text box when you run the application.

• TabIndex Change to 0 so when the second form appears the cursor
will start at the text box.

192 Visual Basic 2005 Demystifi ed

 14. Add the following code to the Click event of btnNewCaption in the
main form:

Private Sub btnNewCaption_Click _
 (ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnNewCaption.Click
 Dim frmCaption As New Form2()
 frmCaption.ShowDialog(Me)
 If frmCaption.DialogResult = DialogResult.OK Then
 Me.Text = frmCaption.txtNewCaption.Text
 End If
End Sub

Try out this code by running the project. Click the New Caption button in the
first form and then type some text in the second form. If you then click OK, the
second form will close, and the first form will have a new title, the text you typed
in the second form. If you instead click Cancel, the second form will still close, but
the title of the first form will not change.

Showing the Dialog Form and Returning Its Result
The dialog form is similar to the MessageBox class. For example, both are displayed
by another form and both are modal; that is, the application user cannot return to the
main form until they have dismissed the dialog form by clicking one of its buttons.
Another similarity is that both the dialog form and the MessageBox class return a
result based on which button was clicked. However, there are important differences
between the dialog form and a message box, both in how they are shown and in how
they return a result.

ShowDialog Method
You use the ShowDialog method of the Form object to display a dialog form. This
method is similar to the Show method of the MessageBox class in that it will show,
modally, the form that is invoking the method.

NOTENOTE You also could display the second form using the Show method instead of
the ShowDialog method, but then the second form would not be modal. This is
discussed further in the later section “Modal vs. Modeless.”

Because Form2 is a class (that is, a blueprint or template for an object), the code
first declares and creates an instance of Form2 before you show it using the

CHAPTER 10 Helper Forms 193

ShowDialog method. You do so by the following code, which goes in the Click
event procedure of the btnNewCaption button in the main form:

Dim frmCaption As New Form2()
frmCaption.ShowDialog(Me)

Let’s go through this code one line at a time.
The first line creates an object named frmCaption of the Form2 class. You use a

class to instantiate (create) an object of that class. The class in this example is
Form2. The New keyword is used to create the object. The object is represented by
a variable (here, frmCaption).

The second line of code displays the dialog form object created in the first line.
The Form2 object, represented by the variable frmCaption, calls the ShowDialog
method to display itself as a dialog form. The Me keyword is passed as the argument.
The Me keyword refers to the current form, which is the main form because we are
writing this code in the main form. This makes the current, main form instance the
owner of the dialog form.

Returning a DialogResult
Another difference between the MessageBox class and the dialog form is that
whereas the Show method of the MessageBox class indicates the button the user
clicked by returning a DialogResult value, the ShowDialog method of the Form
object indicates the button the user clicked by assigning that value to the dialog
form’s DialogResult property. Thus, the comparison is

If frmCaption.DialogResult = DialogResult.OK Then

You can make multiple comparisons. For example, if the dialog form had three
buttons, Yes, No and Cancel, the comparison could be the following:

If frmCaption.DialogResult = DialogResult.Yes Then
 ' do action based on user clicking yes button
ElseIf frmCaption.DialogResult = DialogResult.No Then
 ' do action based on user clicking no button
Else
 ' do action based on user clicking cancel button
End If

If DialogResult is anything besides None, the dialog form is closed and a
DialogResult value is returned. However, under certain circumstances you may
wish to prevent the dialog form from being closed, such as if the user has made an
input error that first needs to be corrected.

To prevent the dialog form from closing, the DialogResult property of the dialog
form needs to be set to None. The following code fragment sets the value of

194 Visual Basic 2005 Demystifi ed

the DialogResult property of the current form (represented by the Me keyword) to
a DialogResult of None:

Me.DialogResult = DialogResult.None

This code logically would be placed in the Click event of the OK button to
handle the situation where you want the user to fix an error on that dialog form
rather than closing the dialog form.

Accessing Values from the Dialog Form
If the value of the second form’s DialogResult property is OK, all that is left to do
is to change the title of the first form to the text you typed in the second form. The
following code in the Click event procedure of btnNewCaption therefore is
indicated:

Me.Text = frmCaption.txtNewCaption.Text

The Me keyword refers to the main form because this code is in its code module.
The Text property is the text in its title bar.

The reference to txtNewCaption, the text box in the dialog form, is preceded by
the name of the dialog form object, frmCaption. The reason why the name of the
control is preceded by the name of the form that contains it is that a reference to a
control, not preceded by a form object, is assumed to be to a control in the form
whose code is executing. However, the current code module is for the main form,
and txtNewCaption is not in that form, but instead in the dialog form. Therefore, a
reference to txtNewCaption.Text instead of frmCaption.txtNewCaption.Text would
result in the following compiler error message: “The name ‘txtNewCaption’ is not
declared.”

Modal vs. Modeless
Although all message boxes are modal, not all forms are. The second form in the
application we just created is a dialog form because it was displayed with the
ShowDialog method rather than the Show method. Had we instead displayed the
second form using the Show method, the second form would have been modeless.
This means that the application user could return to the main form without closing
the second form.

Some forms in Windows applications are modeless. Examples include the Find
and Replace forms in Microsoft Word. Because the Find form is modeless, you can
return to the main application window and edit a found word without having to
close the Find form.

CHAPTER 10 Helper Forms 195

It usually is easier to write code for modal forms because you don’t have to be
concerned about the user returning to the main application without first closing the
modal form. However, there are situations, such as the Find form in Microsoft
Word, in which a modeless form may be the better choice.

Conclusion
Visual Basic 2005’s automated creation of a new Windows application project
includes a form that serves as the main application window. The main application
window often needs a supporting cast of other forms, because Windows applications
generally are far too complex for the main application window to perform all the
tasks required by the application.

This chapter first showed you how to display a message box and determine which
button the user clicked. You also learned that a message box is modal, which means
that the user cannot return to the rest of the application until the message box is
closed, by clicking one of its buttons.

You next learned how to create and use a dialog form. The dialog form is similar
to the MessageBox class in that it is modal and returns a value based on the button
clicked to dismiss it. However, a dialog form, unlike a message box, also may
contain text boxes, check boxes, drop-down lists, and other controls.

There also are code differences between the dialog form and the message box.
You use the ShowDialog method instead of the Show method to display a dialog
form. Further, you first create an instance of the dialog form to use the ShowDialog
method. Additionally, the return value of the MessageBox class is a DialogResult
value, whereas the return value of the dialog form is in its DialogResult property.
You also learned how, through code in the main form, to determine values in controls
in the dialog form.

In the next chapter we will enhance the user interface of the form with a menu.

Quiz
 1. Is a message box modal or modeless?

 2. What value is returned by the Show method of the MessageBox class?

 3. Do you always have to call the Show method of the MessageBox class with
the same number of arguments?

196 Visual Basic 2005 Demystifi ed

 4. Do buttons in a message box automatically have a DialogResult value?

 5. What is the data type of a variable you may use to store the return value
of the Show method of the MessageBox class?

 6. What is an enumeration?

 7. What method do you use to display a modal form?

 8. What is the return value from showing a dialog form?

 9. Do buttons in a dialog form you create automatically have a DialogResult
value?

 10. What method do you use to display a form as modeless rather than modal?

197

CHAPTER
11

Menus

You often may encounter menus, perhaps at an elegant restaurant, or in my case, in
the drive through lane of a local fast food restaurant. Regardless of the quality of the
food, the menus at the two places serve the same purpose: to inform you of your
choices and the corresponding prices.

A Windows application also has a menu, but that menu serves a different purpose
than a restaurant menu. The application user generally knows what they want to do.
The menu provides a graphical user interface (GUI) to make it easier for the
application user to issue commands to the application, such as to open a file, print
a document, and so on.

The menu is not the only way through which the GUI may make it easier for the
application user to issue commands to the application. For example, toolbars, which
are covered in the next chapter, are another alternative. However, the menu has the
advantage of enabling the programmer to organize commands in a logical hierarchy.
For example, commands related to file operations, such as New, Open, and Save,
are under the File menu, whereas commands related to editing, such as Cut, Copy,
and Paste, are under the Edit menu. Additionally, menus save valuable screen space,
in that submenu items collapse unless the menu item above them is chosen. This
enables your application to remain uncluttered, by hiding commands that are not
immediately needed.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

198 Visual Basic 2005 Demystifi ed

There are two common types of menus. One is the main menu that usually
appears at the top of applications, with headings such as File, Edit, View, and Help.
The main menu is represented by the MenuStrip class. The other menu that appears
when you right-click, sometimes called a shortcut or context menu, is represented
by the ContextMenuStrip class.

This chapter will show you how to create a main menu and a context menu, and
link them to each other.

Creating a Main Menu
The MenuStrip class represents the main menu that usually appears at the top of a
Windows form. The MenuStrip object contains a collection of ToolStripMenuItem
objects, each of which is an item on the menu.

Each ToolStripMenuItem can be a command for your application. Figure 11-1
shows menu items under the File menu in Microsoft Word. Many of the menu items
are commands for the application, such as to open or save a file.

However, as Figure 11-2 shows, a menu item may also be a parent menu for
other menu items, each another ToolStripMenuItem. For example, Send To is the

Figure 11-1 Menu items under the File menu

CHAPTER 11 Menus 199

parent menu item for other menu items, including Mail Recipient and Microsoft
Office PowerPoint.

Creating a main menu is a two-step process. You first add a MenuStrip control to
your form, and then you append ToolStripMenuItem objects to it.

Adding a MenuStrip Control to a Form
You add a MenuStrip control to a form using the following steps, which are similar
to how you would add a control such as a Button to the form. Try the following,
which you could do with an existing project, though I would recommend a new
project to avoid any confusion with existing code:

 1. View the form in designer view.

 2. Double-click the MenuStrip component in the Toolbox. As shown in Figure
11-3, the MenuStrip component is added to the component tray below the
form. When this component is selected in the component tray, a rectangular
area appears underneath the top-left corner of the form displaying the text
“Type Here.”

Figure 11-2 Send To menu item as a parent to other menu items

200 Visual Basic 2005 Demystifi ed

 3. Using the Properties window, if not already set by default, set the
MainMenuStrip property of the form to the name of your MenuStrip
component (by default MenuStrip1). This links the MenuStrip to
your form.

Adding Menu Items to the MenuStrip
Once you have added a MenuStrip component to your Windows form, the next step
is to add menu items to it. Each menu item is an object of the ToolStripMenuItem
class. You can add ToolStripMenuItems to the MenuStrip by typing in the menu
items or by using the Items Collection Editor.

Typing in the Menu Items
You may add a menu item to the MenuStrip component by clicking the text “Type
Here” (after selecting the MenuStrip component in the component tray as mentioned
in step 2 in the preceding section) and typing the display name of the desired menu
item to add it. For example, you may add a File menu item by typing File—the File
menu usually is the first top-level item in Windows applications.

Figure 11-3 MenuStrip added to form

CHAPTER 11 Menus 201

Typing the name of the menu item sets its Text property. You also should change
the menu item’s Name property from the default. You set the Name property of the
menu item by right-clicking it, choosing Properties from the shortcut menu to
display the Properties window, and then changing the Name property in the
Properties window. One logical name for the File menu would be mnuFile, with the
“mnu” prefix indicating a menu item and “File” indicating the purpose of the menu
item.

Figure 11-4 shows the menu after the File menu item is added.
As Figure 11-4 shows, you now have “Type Here” options both below and to the

right of the File menu item. You may add items below the File menu item, such as
New and Open. You then should change the Name property of these menu items.
For example, I would name the menu item Open under the File menu mnuFileOpen,
with “mnuFile” being the name of the parent File menu and “Open” being descriptive
of the subsidiary menu item’s purpose.

You may add menu items to the right of the File menu as well as below it. For
example, you might add an Edit menu item to the right of the File menu item to be
consistent with other Windows applications. Following the same naming convention,
I would name the Edit menu item mnuEdit.

Figure 11-4 File menu item added

202 Visual Basic 2005 Demystifi ed

TIPTIP If you forget a menu item, right-click the menu item before which the new one
will be inserted and then choose Insert | New from the context menu. If you decide
you no longer want a menu item you previously added, right-click that item and
choose Delete from the context menu.

Items Collection Editor
One of the properties of the MenuStrip component is an Items collection, which is
a collection of the ToolStripMenuItems belonging to the MenuStrip. For example,
after the File and Edit menu items have been added, those menu items would belong
to the Items collection of the MenuStrip.

Figure 11-5 shows the Items collection listed in the Properties window of the
MenuStrip component.

Figure 11-5 Properties window showing the Items collection of MenuStrip

CHAPTER 11 Menus 203

Click the ellipsis (…) next to Items. This will open the Items Collection Editor,
which is shown in Figure 11-6 after two ToolStripMenuItems (for the File and Edit
menus) have been added.

You may add ToolStripMenuItems to the MenuStrip by choosing MenuItem (the
default selection) from the drop-down box and then clicking the Add button. Once
the ToolStripMenuItem is added, you then may select it and in the right pane change
its Name, Text, and other properties. Figure 11-6 shows properties for the Edit
menu item.

You also can add menu items to the File or Edit menu item. As Figure 11-7
shows, the File menu item (as well as the Edit menu item) has a DropDownItems
collection property. This is a collection of the ToolStripMenuItems belonging to
that menu item. For example, after the New and Open menu items have been added
to the File menu, those menu items would belong to the DropDownItems collection
of the File menu.

Clicking the ellipsis (…) next to DropDownItems will open the Items Collection
Editor for that menu item. Figure 11-8 shows the Items Collection Editor for the
Edit menu after menu items have been added to that menu item.

Figure 11-6 Items Collection Editor for MenuStrip

204 Visual Basic 2005 Demystifi ed

The procedure for adding subsidiary menu items to a menu item is essentially the
same as adding ToolStripMenuItems to the MenuStrip: You choose MenuItem from
the drop-down box and then click the Add button. You then may select the added
subitem and in the right pane change its Name, Text, and other properties.

Enhancing the Menu Items
You can enhance menu items in several ways. You can add access or shortcut keys
to facilitate keyboard access to menu items. You also can add separator bars to
group together related menu items.

Figure 11-7 Properties window showing DropDownItems collection of the File
menu item

CHAPTER 11 Menus 205

Access Keys
Although menu items usually are accessed by a mouse click, you also should enable
the user to access menu items via the keyboard. Being able to access menu items
via the keyboard instead of a mouse is an important convenience, as I have discovered
on an airplane flight trying to use my laptop while wedged between two sumo-sized
passengers. Indeed, for users with certain disabilities, the ability to access menu
items via the keyboard instead of a mouse can be a necessity.

An access key is one way of enabling the user to access menu items via the
keyboard. An access key is the keyboard combination of the ALT key plus a letter in
the menu item that is underlined. For example, the keyboard combination for the
File menu item is ALT-F, with the F in File being underlined.

To add an access key, in the menu item’s Text property, simply type an ampersand
(&) before the letter to be underlined. Figure 11-4 earlier in this chapter shows the
result of typing &File as the Text property for the File menu item (the F in File is
underlined).

Figure 11-8 Items Collection Editor for the Edit menu item

206 Visual Basic 2005 Demystifi ed

The access shortcut may not appear when you run the application until you press
the ALT key. This is standard behavior in Windows applications. As shown in Figure
11-9, in the Effects dialog (shown by choosing the Display applet from Control
Panel | Appearance tab | Effects button), the Hide Underlined Letters for Keyboard
Navigation Until I Press the Alt Key option is checked by default. If you want to
change that behavior, simply uncheck that box.

Shortcut Keys
Shortcut keys are another method of enabling the user to access menu items via the
keyboard. In Microsoft Word, the New menu item under the File menu can be
accessed with the shortcut key CTRL-N.

You can add a shortcut key at design time by selecting the menu item within the
Menu Designer, selecting the ShortcutKeys property from the Properties window,
and clicking the drop-down arrow. As Figure 11-10 shows, you can choose one or
more of CTRL, SHIFT, or ALT by checking a box and then choosing one of the values
offered in the drop-down list.

NOTENOTE You normally would not assign a shortcut key to a top-level menu item
such as File or Edit because an access key already can be used to open that
menu.

Figure 11-9 Setting whether the access shortcut is hidden until the ALT key is pressed

CHAPTER 11 Menus 207

Separator Bars
Separator bars are used to group related commands within a menu and make menus
easier to read. In Microsoft Word, under the File menu, a separator bar separates the
New, Open, and Close menu items from the menu items that follow them.

You may add a separator bar by setting the Text property of a menu item to a
dash. Alternatively, in the Menu Designer, right-click the location where you want
a separator bar and then choose Insert | Separator.

Adding Functionality to the Menu Items
The purpose of a menu item is to do something when it is clicked. Therefore, you
use the Click event procedure of the menu item to provide functionality for a
menu item.

Figure 11-10 Shortcut key options displayed in the Properties window

208 Visual Basic 2005 Demystifi ed

The Click event, of course, occurs when the user clicks the menu item. However,
the Click event also occurs if the user selects the menu item using the keyboard and
presses the ENTER key, or if the user presses an access key or shortcut key that is
associated with the menu item.

The Click event is not raised for all menu items. It only is raised for menu items
that do not have subsidiary menu items. The reason is when a menu item with
subsidiary items is clicked, the behavior is to display the subsidiary menu items.
Therefore, the Click event is not raised for parent menu items such as File and Edit.
Instead, the behavior when a parent menu item is clicked is to display its subitems,
such as, in the case of the File menu, New, Open, and Close.

You write code for the Click event procedure for a menu item by, in code view,
choosing the menu item by name from the left drop-down list and Click from the
right drop-down list. You then write within the created event procedure stub the
code you wish to run when the menu item is clicked. For example, the following
code outputs “New” to the Output window when a menu item named mnuFileNew
is clicked:

Private Sub mnuFileNew_Click _
 (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles mnuFileNew.Click
 Debug.WriteLine("New")
End Sub

Disabling Menu Items
Although menu items should be functional, there are times when you may not want
them to be functional. For example, in Microsoft Word, the menu items Cut and
Copy under the Edit menu initially are grayed out, or disabled. They are grayed out
because no text is selected; therefore, there is nothing to cut or copy. However, once
you select text, Cut and Copy are no longer grayed out—in other words, they are
enabled.

A menu item should not be enabled when the command it represents is not
available. It would be frustrating for the application user to click Cut or Copy and
see nothing happen. The application user might be misled into thinking there is
something wrong with your application. When you gray out, or disable, a menu
item, the application user is given a visual cue that the menu item is not available.

Disabling a menu item that should not be available has an additional advantage—
error prevention. The code for cutting text may understandably assume there is
selected text. If there is no selected text, executing the code for cutting text may
cause an error. By disabling the menu item when no text is selected, the code for
cutting text cannot be executed when no text is selected, thus avoiding the error.

CHAPTER 11 Menus 209

Menu items are enabled by default when they are created. However, you can
disable a menu item by setting its Enabled property to False. You can do this at
design time, when the menu item is selected in the Menu Designer, through the
Properties window. You also can disable a menu item via code:

mnuFileNew.Enabled = False

If you want a menu item to be disabled when the application starts up, you could
put this code in the Load event of the form.

Disabling the first or top-level menu item in a menu, such as the File menu item
in a traditional File menu, disables all the menu items contained within the menu.
Similarly, disabling a menu item that has submenu items disables the submenu
items.

TIPTIP If all the commands on a given menu are unavailable to the user, you should
hide as well as disable the entire menu. You hide the menu by setting the Visible
property of the topmost menu item to False. This presents a cleaner user interface
by not cluttering up your menu structure with disabled items. However, one caution:
Hiding the menu alone is not sufficient to disable it. You must also disable the
menu, because hiding alone does not prevent access to a menu command via a
shortcut key.

Figure 11-11 Context menu

Creating a Context Menu
Many Windows applications have context menus, which are displayed when the
user clicks the right mouse button over an area of the form or over a control on
the form. Figure 11-11 shows a context menu in Microsoft Word.

210 Visual Basic 2005 Demystifi ed

The word “context” in context menu derives from the fact that which particular
menu items are displayed often depends on the context, such as the application
state, or where on the form or control the right mouse button was clicked. Indeed,
in the .NET Framework, the ContextMenuStrip class represents shortcut or context
menus.

Context menus typically are used to make available different menu items from a
MenuStrip of a form that are useful for the user given the context of the application.
For example, you can use a context menu assigned to a TextBox control to provide
immediate access to menu items also found in the MenuStrip to cut, copy, and paste
text, find text, change the text font, and so on.

The ability of a context menu to immediately access menu items of the main
menu that might take several mouse clicks to access may be why a context menu
also is called a shortcut menu, because the menu items on the context menu are a
shortcut to menu items on the main menu. However, a context menu also may
contain menu items not found in the form’s MenuStrip.

Adding a ContextMenuStrip to a Form
The process of adding a context menu to a Windows form at design time and then
adding menu items to it is similar to the corresponding process discussed already in
this chapter in connection with the MenuStrip. You first add a ContextMenuStrip
object to your form, and then you append to it ToolStripMenuItem objects.

You add a context menu to a form via the following steps, which are similar to
how you add a MenuStrip to the form:

 1. View the form in designer view.

 2. Double-click the ContextMenuStrip component in the Toolbox. As
shown in Figure 11-12, this adds a ContextMenuStrip component to
the component tray.

 3. In the Properties window for that form or control, choose the
ContextMenuStrip object (the default name may be ContextMenuStrip1)
from the drop-down list for the form or control’s ContextMenuStrip
property. This associates the context menu with the form or a control
on the form. You also can change this value dynamically through code
when the program is running if the form has more than one context menu.

Unlike with the main menu, you often will be adding a context menu to a control
on the form, rather than the form itself. For example, in the Text Editor project
later in this chapter, the context menu will belong to a TextBox control rather than
the form.

CHAPTER 11 Menus 211

Adding Menu Items to the ContextMenuStrip
Once you have added a ContextMenuStrip component to your Windows form, the
next step is to add menu items to it. You can do so by typing in the menu items, by
using the Items Collection Editor, or by copying menu items from existing items on
the main menu and pasting them onto the context menu.

Typing in the Menu Items
You can add menu items to a context menu using the same method that you used to
add menu items to a main menu. You click the text “Type Here” and type the name
of the desired menu item to add it. If the text “Type Here” is not displayed, you may
display it by clicking the ContextMenuStrip component on the Windows form. To
add another menu item, click another “Type Here” area within the Menu Designer.

Figure 11-12 Adding a ContextMenuStrip component to a form

212 Visual Basic 2005 Demystifi ed

You click the area below the current menu item to add another menu item, or click
the area to the right of the current menu item to add submenu items.

You then should name these menu items. If the context menu item parallels one
on the main menu, one naming convention is to give the context menu item the
same name, other than the prefix, for which you may use “cmnu” (instead of mnu,
the c standing for context). For example, if a context menu item parallels the main
menu item Open under the File menu, named mnuFileOpen, you could name the
corresponding context menu item cmnuFileOpen.

NOTENOTE One difference between a context menu and a main menu is that a context
menu usually does not have a top-level item, such as File in the main menu.

Items Collection Editor
You also can use the Items Collection Editor to add items to a context menu as well
as to the main menu.

Figure 11-13 shows the Properties window for the ContextMenuStrip.

Figure 11-13 Properties window for the ContextMenuStrip

CHAPTER 11 Menus 213

You also can add items to the ContextMenuStrip. As Figure 11-13 shows, the
ContextMenuStrip has an Items collection property.

Clicking the ellipsis (…) next to Items will open the Items Collection Editor for
the ContextMenuStrip, which is shown in Figure 11-14 after menu items have been
added to the ContextMenuStrip.

You add ToolStripMenuItems to the ContextMenuStrip by choosing MenuItem
from the drop-down box and then clicking the Add button. You then may select the
added ToolStripMenuItem and in the right pane change its Name, Text, and other
properties. Figure 11-14 shows the properties for the first menu item on the context
menu.

Copying and Pasting
You may want the context menu to duplicate commands in the main menu. For
example, the Cut, Copy, and Paste menu commands in Microsoft Word’s Edit menu
are often duplicated in a menu when you click on the document.

Figure 11-14 Items Collection Editor for ContextMenuStrip

214 Visual Basic 2005 Demystifi ed

You do not need to re-create the entire menu structure when you want to duplicate
a given menu’s functionality. You may use the Menu Designer to copy menus by
following these steps:

 1. Within the Menu Designer, choose the MenuStrip component, select
the menu item or items (using the SHIFT key for multiple items) you
would like to duplicate, right-click them, and choose Copy, as shown
in Figure 11-15.

 2. Choose the ContextMenuStrip component, select the “Type Here” area
where you would like the first menu item to appear, and then right-click
and choose Paste, as shown in Figure 11-16.

 3. Figure 11-17 shows the end result.

Adding Functionality to Context Menu Items
You add functionality to menu items in a ContextMenuStrip the same way as you
add functionality to menu items in a MenuStrip—by using the Click event procedure
of the menu item.

Often a context menu item corresponds to a menu item on the main menu. For
example, on the main menu, you may have an Edit | Select All menu item, and on a
context menu, you may have a Select All context menu choice. If the user chooses

Figure 11-15 Copying items from the MenuStrip

CHAPTER 11 Menus 215

Select All from the context menu, rather than writing a duplicate event procedure,
you want the Click event procedure of the Edit | Select All menu item to run. You
have three alternatives for having the Click event procedure for the main menu item
also handle the Click event for the corresponding context menu item.

Figure 11-16 Pasting items into the ContextMenuStrip

Figure 11-17 Context menu now populated

216 Visual Basic 2005 Demystifi ed

AddHandler
The first alternative is to use the AddHandler keyword. This keyword associates an
event of a control to an event procedure that follows yet another keyword, AddressOf.
The following code assumes the context menu item is named cmnuEditSelectAll
and the corresponding main menu item is named mnuEditSelectAll:

AddHandler cmnuEditSelectAll.Click, _
 AddressOf Me.mnuEditSelectAll_Click

This code designates the Click event procedure of mnuEditSelectAll as handling
the Click event of cmnEditSelectAll. This code logically could be placed in the
Load event of the form.

AddHandler is used when you may not know at design time the precise event
handler that will be used at run time because, for example, the choice will depend
on user actions. One of the following two alternatives should be used instead if the
event handler is known at design time because AddHandler has a greater
performance cost.

Handles Clause
The second alternative is to expand the Handles clause of the Click event procedure
of the main menu item (here, mnuEditSelectAll). This event procedure already has
the clause Handles mnuEditSelectAll.Click. You add cmnuEditSelectAll.Click to
the Handles clause, using a comma to separate it from mnuEditSelectAll.Click, as
shown here:

Private Sub mnuEditSelectAll_Click _
 (ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles mnuEditSelectAll.Click, cmnuEditSelectAll.Click
 txtEdit.SelectAll()
End Sub

Calling Another Event Procedure
The third alternative is to call the Click event procedure of the main menu item
from the Click event procedure of the context menu item:

Private Sub cmnuEditSelectAll_Click _
 (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles cmnuEditSelectAll.Click
 mnuEditSelectAll_Click(sender, e)
End Sub

CHAPTER 11 Menus 217

NOTENOTE You must pass the arguments sender and e to the mnuEditSelectAll_Click
call because the Click event procedure of that main menu item expects those
arguments.

Figure 11-18 Text Editor project at run time

Text Editor Project
This project is a text editor. The application user can type and use the main menu or
the context menu to cut, copy, and paste. Figure 11-18 shows the Text Editor project
at run time with the context menu displayed.

Creating the Project
You can create the Text Editor project with the following steps:

 1. Create a new Windows application.

 2. Add a TextBox control to the form from the Toolbox. Name it txtEdit, set
its Multiline property to True, and delete any text in its Text property. You
also should resize the control so it is large enough to show multiple lines
of text.

 3. Add a MenuStrip component to the form from the Toolbox.

 4. Using the Menu Designer, add a menu whose top-level menu item is Edit
and subsidiary menu items are Cut, Copy, and Paste. Name the Edit menu
item mnuEdit, the Cut menu item mnuEditCut, the Copy menu item
mnuEditCopy, and the Paste menu item mnuEditPaste.

 5. Using the Properties window, set the MainMenuStrip property of the form
to the name of your MenuStrip component.

218 Visual Basic 2005 Demystifi ed

 6. Add a ContextMenuStrip component to the form from the Toolbox.

 7. Using the Properties window, set the ContextMenuStrip property of the
text box to the name of your ContextMenuStrip component. Also set
the ShowImageMargin property of the ContextMenuStrip control to
False so the context menu will not have a left-hand margin.

 8. Copy the Cut, Copy, and Paste menu items from the MenuStrip to
the ContextMenuStrip. Name these menu items in the context menu
cmnuEditCut, cmnuEditCopy, and cmnuEditPaste, respectively.

 9. In the Code editor, create a Click event procedure for the Edit | Cut menu
item (mnuEditCut) and write the following code in it:

Private Sub mnuEditCut_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles mnuEditCut.Click
 txtEdit.Cut()
End Sub

 10. In the Code editor, create a Load event procedure for the form and write the
following code in it:

AddHandler cmnuEditCut.Click, _
 AddressOf Me.mnuEditCut_Click

 11. In the Code editor, create a Click event procedure for the Edit | Copy menu
item (mnuEditCopy) and write the following code in it:

Private Sub mnuEditCopy_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles mnuEditCopy.Click, cmnuEditCopy.Click
 txtEdit.Copy()
End Sub

 12. In the Code editor, create a Click event procedure for the Edit | Paste menu
item (mnuEditPaste) and write the following code in it:

Private Sub mnuEditPaste_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles mnuEditPaste.Click
 txtEdit.Paste()
End Sub

 13. In the Code editor, create a Click event procedure for the Edit | Paste
context menu item (cmnuEditPaste) and write the following code in it:

Private Sub cmnuEditPaste_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cmnuEditPaste.Click
 mnuEditPaste_Click(sender, e)
End Sub

CHAPTER 11 Menus 219

Explanation of the Code
The TextBox class has Cut, Copy, and Paste methods. These methods work the
same as the Cut, Copy, and Paste menu items of the Edit menu in Microsoft Word
and other Windows applications. The Cut method copies the selected text to the
clipboard, but removes the selected text from the text box. The Copy method also
copies the selected text to the clipboard, but does not remove the selected text from
the text box. The Paste method copies the text in the clipboard to the text box,
beginning with the cursor location in the text box.

The Cut, Copy, and Paste methods of the TextBox class are called in the Click
event procedures of the corresponding Edit menu items: Edit | Cut (mnuEditCut),
Edit | Copy (mnuEditCopy), and Edit | Paste (mnuEditPaste).

The Cut, Copy, and Paste methods of the TextBox class also could be called in
the Click event procedures of the corresponding context menu items: Cut
(cmnuEditCut), Copy (cmnuEditCopy), and Paste (cmnuEditPaste). However, this
would be a duplication of code. Here, the duplication is short, but in other
circumstances it may not be. Therefore, it is useful instead to have each context
menu item’s functionality handled by the corresponding Edit main menu item.

The earlier section “Adding Functionality to ContextMenuStrip Menu Items”
discussed three different alternatives for having a context menu item’s functionality
handled by the corresponding main menu item. To illustrate the use of all three
alternatives, the AddHandler alternative is used for the Cut context menu item, the
Handles alternative is used for the Copy context menu item, and the alternative of
calling another event procedure is used for the Paste context menu item.

NOTENOTE AddHandler is used here just for illustration. As mentioned already,
because of its greater performance cost, you should use it only when you may
not know at design time the precise event handler that will be used at run time
(for example, because the choice will depend on user actions). Here, the correct
event handler is known at design time.

Run the application. Type some text in the text editor, select some text, and then
cut, copy, and paste using the main menu and the context menu.

This text editor certainly is not ready for the commercial market. The Cut, Copy,
and Paste items need to be disabled at the appropriate times. Additionally, further
commands are needed, such as Undo, Select All, and so on. Nevertheless, the Text
Editor project is useful in demonstrating how to link corresponding items on a main
menu and a context menu, as well as showing some methods of the TextBox
control.

220 Visual Basic 2005 Demystifi ed

Conclusion
Application users need to give commands to the application, such as to open, save,
or close a file, print a document, cut, copy, or paste text, and so on. Application
users give such commands through the GUI of the application. Two of the most
common GUI elements through which application users give commands to an
application are the main menu and the context or shortcut menu. In this chapter, you
learned how to create them and to handle and link their events.

There is another common GUI element through which application users also
give commands to an application—toolbars. In the next chapter, you will learn how
to create toolbars and coordinate them with your menus.

Quiz
 1. What class represents a main menu?

 2. What class represents each item on a main menu?

 3. What is an access key?

 4. Is the Click event raised for all menu items?

 5. How do you gray out a menu item so it is not available when it should
not be?

 6. What does the Items collection of the MenuStrip component contain?

 7. What class represents the shortcut or context menu?

 8. What class represents each item on a context menu?

 9. What does the Items collection of the ContextMenuStrip component
contain?

 10. What are different alternatives for having a context menu item’s
functionality handled by the corresponding main menu item?

221

CHAPTER
12

Toolbars

This chapter is all about bars, but not the kind that inspired the song “Looking for
Love in All the Wrong Places.” In this chapter, we’ll explore a kind of bar that will
enable you to enhance your application both visually and functionally.

The toolbar is a part of every Windows programmer’s life. You would be hard-
pressed to find a Windows application that doesn’t have a toolbar. Indeed, most
Windows applications have several of them.

The functionality of a toolbar button generally duplicates the functionality of a
menu item. For example, the toolbar button with the printer icon duplicates the
functionality of the File | Print menu item.

There are two good reasons for using a toolbar even though it may duplicate the
functionality of a menu. First, the buttons on the toolbar are immediately accessible.
By contrast, the items on the menus may be nested several levels deep and can be
accessed only by multiple mouse clicks or keystrokes. Second, a toolbar button
usually has an image, whereas a menu item usually is text. Quite simply, visual
items are more attractive and apparent to the application’s user than text items. This
is Visual Basic, after all!

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

222 Visual Basic 2005 Demystifi ed

This chapter will show you, through enhancing the Text Editor project you
created in Chapter 11, how to create toolbars for your forms, add buttons to
them, and add images to the buttons. You also will learn how to associate the
clicking of a particular toolbar button with the clicking of a corresponding menu
item.

Creating a Toolbar
Just as the main menu is represented by the MenuStrip class, the toolbar is
represented by the ToolStrip class. A ToolStrip object contains a collection of
buttons or other types of controls.

Creating a toolbar is a two-step process: First, you add a ToolStrip object to your
form. Second, you add buttons or other controls to the toolbar.

Adding a Toolbar to a Form
You add a ToolStrip object to a form using the following steps, similar to adding a
MenuStrip object to a form. Try the following steps to add a ToolStrip to the Text
Editor project that you created in Chapter 11:

 1. Open the Text Editor project.

 2. Open the form in designer view.

 3. Double-click the ToolStrip component in the Toolbox to add it to the
form. Figure 12-1 shows the ToolStrip component after it has been added
to the form.

As Figure 12-1 shows, the ToolStrip control, like the MenuStrip and
ContextMenuStrip components, appears in the component tray. The ToolStrip control
also appears as a large gray area under the menu area. This is where the toolbar will
be located.

Figure 12-2 shows that, when the ToolStrip control has focus or you click the
four vertical dots on the left side of the ToolStrip control, a drop-down box appears
on the left side of the ToolStrip control, and what is called a smart task arrow
appears on the right side of the ToolStrip control.

The ToolStrip control is automatically associated with the form. This is unlike
the ContextMenuStrip component, which is not associated with the form without
you first setting the ContextMenuStrip property of the form.

CHAPTER 12 Toolbars 223

Figure 12-1 ToolStrip component added to the form

Figure 12-2 ToolStrip with drop-down box and smart task arrow

224 Visual Basic 2005 Demystifi ed

NOTENOTE The toolbar we just added has the default name of ToolStrip1. You don’t
need to change this name because this project uses only one toolbar. However, if
your application uses more than one toolbar, as many applications do, then you
should choose logical names to differentiate among the different toolbars.

Adding Buttons to the Toolbar
The Button control, represented by the ToolStripButton class, is the most
common type of control on a toolbar, and therefore it’s the control covered in
this section. However, toolbars may contain other types of controls. For example,
in Microsoft Word, the formatting toolbar contains drop-down boxes for the type
and size of fonts.

There are several different alternative methods by which you can add buttons and
other controls to the toolbar. One alternative is the Items Collection Editor, which
we used in Chapter 11 to add items to the main menu. Figure 12-3 shows the Items
Collection Editor for the toolbar.

Figure 12-3 Items Collection Editor for the toolbar

CHAPTER 12 Toolbars 225

You can display the Items Collection Editor by displaying the Properties window
for the toolbar and then clicking the ellipsis (…) next to the Items collection property
shown here:

You also can display the Items Collection Editor by first clicking the smart task
arrow at the rightmost edge of the toolbar. This displays the ToolStrip Tasks pane
shown next. Clicking Edit Items… at the bottom of this pane displays the Items
Collection Editor.

226 Visual Basic 2005 Demystifi ed

Once you display the Items Collection Editor, you first select the type of item to
be added. The item usually is a Button control, but also may be another type of
control, as shown here.

Once you have chosen the control, you then click the Add button to add the
control to the toolbar. The following screenshot shows the Items Collection Editor
after three buttons have been added to the toolbar.

CHAPTER 12 Toolbars 227

As illustrated here, choosing one of the buttons in the left pane shows the button’s
properties in the right pane. You should change each button’s Name property. Later
in this chapter, I will be using these buttons to parallel the functionality of the Edit |
Cut, Edit | Copy, and Edit | Paste menu items. Accordingly, I named the three buttons
tbtnEditCut, tbtnEditCopy, and tbtnEditPaste. The “tbtn” prefix indicates a toolbar
button, and EditCut (or EditCopy or EditPaste) indicates the functionality of the
toolbar button.

Additionally, you should delete the value of the Text property of each button
because these buttons will be displaying images, not text.

Click OK to close the Items Collection Editor and create the buttons you
specified. Figure 12-4 shows the toolbar area after several buttons have been
added.

Associating Images with Toolbar Buttons
So far our toolbar is not very impressive. All the buttons look the same, with a
generic image that, as near as I can tell, looks like a sun over a mountain.

The most common visual cue for a toolbar button is an image. Figure 12-5 shows
a toolbar in Microsoft Word. The images show each toolbar button’s purpose, such
as New, Open, and Save.

We are now going to add images to the toolbar buttons for this project.
The first step concerns the DisplayStyle property of the ToolStripItem class.

This property, which is an enumeration, determines whether an image or text
may be displayed on a button. Table 12-1 lists the possible values for this
property.

Figure 12-4 Toolbar with added buttons

228 Visual Basic 2005 Demystifi ed

Using the Items Collection Editor, set each button’s DisplayStyle property to
Image (if necessary, since it is the default) because we intend each button to display
an image but no text. Text is helpful to identify the purpose of a toolbar button.
However, the small area of the button would be crowded by including text as well
as an image.

NOTENOTE You can set the ToolTipText property of the button to a short textual hint
of the button’s purpose. For example, you could set the ToolTipText property of
tbnEditCut to “Cut.” Then, when the user hovers the mouse cursor over the
button, a ToolTip of “Cut” will appear. A ToolTip has the advantage of providing
a textual explanation of the button’s purpose without taking up space on the small
area of the button.

The next step is to set the Image property of each button. This property, as its
name suggests, sets the image to be displayed in the button.

Figure 12-5 Images on toolbar buttons in Microsoft Word

Value Description

Image The ToolStripItem may display only an image, which is the default.

ImageAndText The ToolStripItem may display both an image and text.

None The ToolStripItem may not display either an image or text.

Text The ToolStripItem may display only text.

Table 12-1 DisplayStyle Enumeration Values

CHAPTER 12 Toolbars 229

Using the Items Collection Editor, go to the Image property of a button. Here,
you can see the Image property of the Cut button, which currently is set to System
.Drawing.Bitmap and shows the default image.

Click the ellipsis (…) next to System.Drawing.Bitmap. This will display the
Select Resource dialog box shown here. You use this dialog box to assign an image
to a form or control in a Windows application.

230 Visual Basic 2005 Demystifi ed

Choose the Local Resource radio button and then click the Import button
associated with it. This displays the Open dialog box shown next, which you use to
browse to and select an image file to be displayed on the button.

Visual Studio 2005 includes bitmap files you can use as toolbar images. These
files are located by default within the directory C:\Program Files\Microsoft Visual
Studio 8 \Common7\VS2005ImageLibrary. From there I went to the folder bitmaps\
commands\highcolor, shown here. As you can see, there are bitmap files (.bmp
extensions) for Cut, Copy, and (if you scroll further in the dialog box depicted in
this screenshot) Paste.

CHAPTER 12 Toolbars 231

NOTENOTE You may not have these bitmap files installed, or they may be installed at a
different location, depending on the particular edition you purchased or your
installation options.

Choose the Cut bitmap file for the Cut toolbar button and then click the Open button.
As shown here, the Select Resource dialog box now contains the image for Cut.

232 Visual Basic 2005 Demystifi ed

Click OK in the Select Resource dialog box. As shown here, the Items Collection
Editor now shows an image for the Image property of the Cut button.

Repeat the same process for the Copy and Paste buttons, except of course choose
Copy.bmp for the Copy button and Paste.bmp for the Paste button. When you’re
done, click OK to close the Items Collection Editor. Figure 12-6 shows the toolbar,
with images for Cut, Copy, and Paste.

Figure 12-6 Toolbar buttons with images for Cut, Copy, and Paste

CHAPTER 12 Toolbars 233

NOTENOTE The size of the bitmap and the size of the toolbar button may be different.
You can set the ImageScaling property to SizeToFit so the image will size to fit on
the toolbar button.

Associating Code with Clicks
 of Toolbar Buttons

The toolbar buttons look prettier now that each has an image on it, but they still
don’t do anything when they’re clicked.

In this section, we’ll write code so the Cut toolbar button provides the same cut action
as the Cut menu item and context menu item we worked on in Chapter 11. Similarly,
when you’re finished with this section, the Copy toolbar button will provide the same
copy action as the Copy menu item and context menu item, and the Paste toolbar button
will provide the same paste action as the Paste menu item and context menu item.

The Cut, Copy, and Paste methods of the TextBox class also could be called in
the Click event procedures of the corresponding toolbar buttons. However, as
discussed in Chapter 11 in connection with context menu items, this would be a
duplication of code. Here, the duplication is short, but in other circumstances it may
not be. Therefore, it is useful instead to have each toolbar button’s functionality
handled by the corresponding Edit main menu item.

Chapter 11, in the section “Adding Functionality to Context Menu Items,”
discussed three different alternatives for having a context menu item’s functionality
handled by the corresponding main menu item. The same discussion applies here to
having a toolbar button’s functionality handled by the corresponding main menu
item. To illustrate the use of all three alternatives, the AddHandler alternative is
used for the Cut toolbar button, the Handles alternative is used for the Copy toolbar
button, and the alternative of calling another event procedure is used for the Paste
toolbar button.

Add the following line of code to the Load event procedure for the form so the
Click event procedure of the Edit | Cut menu item handles the Click event of the Cut
toolbar button:

AddHandler tbtnEditCut.Click, _
 AddressOf Me.mnuEditCut_Click

Expand the Handles clause of the Click event procedure for the Edit | Copy menu
item (mnuEditCopy) so it also handles the Click event of the Copy toolbar button:

Private Sub mnuEditCopy_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _

234 Visual Basic 2005 Demystifi ed

Handles mnuEditCopy.Click, _
 cmnuEditCopy.Click, tbtnEditCopy.Click
 txtEdit.Copy()
End Sub

Finally, create a Click event procedure for the Paste toolbar button so it calls the
Click event procedure of the Edit | Paste menu item (mnuEditPaste):

Private Sub tbtnEditPaste_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles tbtnEditPaste.Click
 mnuEditPaste_Click(sender, e)
End Sub

Conclusion
Application users use toolbars as well as menu items to give commands to an
application. The functionality of a toolbar button generally duplicates the
functionality of a menu item. However, the purpose of this duplication is that toolbar
buttons have two advantages over menu items. First, toolbar buttons are immediately
accessible, whereas menu items may be nested several levels deep and can be
accessed only by multiple mouse clicks or keystrokes. Second, a toolbar button is
visual, which gives a more visual interface than the text of a menu item.

This chapter showed you how to create toolbars for your forms, add buttons to
them, and add images to the buttons. Transitioning from the graphical user interface
to code, you also learned how to associate the clicking of a particular toolbar button
with the clicking of a corresponding menu item.

So far our text editor is not able to read from or write to any file from the hard
drive. This functionality will be added in the next chapter.

Quiz
 1. What class represents a toolbar?

 2. What class represents each item on a toolbar?

 3. What does the Items collection of the ToolStrip component contain?

 4. Is a toolbar item limited to a button?

 5. What are advantages of a toolbar over a corresponding menu?

CHAPTER 12 Toolbars 235

 6. What are different alternatives for having a toolbar item’s functionality
handled by the corresponding main or context menu item?

 7. What does the DisplayStyle property of the ToolStripItem class determine?

 8. What does the Image property of the ToolStripItem class determine?

 9. What editor is useful in adding controls to a toolbar?

 10. What is a good prefix for naming a toolbar button?

This page intentionally left blank

PART FIVE

Accessing Data

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

239

CHAPTER
13

Accessing
 Text Files

Perhaps the most common purpose of Visual Basic applications is to access, view,
and modify data. The data is stored on the computer’s hard drive as a file or files so
the data will be available even after the application exits.

Text files long have been used to store data. Text files preceded databases, but
they often are not thought of as advanced as databases such as Oracle, SQL Server,
and Access. Indeed, databases do have advantages over text files. However, unlike
databases, which each has a different format and therefore often can be understood
only by applications that have the software for that particular database format, text
files generally are universally understood by applications. For this reason, text files
are used as a common language between applications that otherwise have
incompatible software for data transfer between them.

I will show you in this chapter how to read from and write to a text file. First,
however, I will show you how to add to your program Open and Save dialog boxes,
such as those used in sophisticated programs like Microsoft Word, so you can open
a text file to read from it as well as save to a text file to write to it.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

240 Visual Basic 2005 Demystifi ed

Open and Save File Dialog Boxes
In Microsoft Word and many other Windows programs, the application user may
open a file located with the Open dialog box, which they display with the File |
Open menu command or the Open toolbar button. Similarly, the application user
may save information to a file with the Save dialog box, which they display with the
File | Save menu command or the Save toolbar button.

The Open dialog box is a control of the OpenFileDialog class, and the Save
dialog box is a control of the SaveFileDialog class. In this section, I will show you
how to add Open and Save dialog boxes to your application.

Adding an OpenFileDialog Control to Your Form
Figure 13-1 shows an Open dialog box in Notepad.

You add an OpenFileDialog control to a form using the following steps, similar
to adding a MenuStrip or ToolStrip object to a form. Try the following steps to add
an OpenFileDialog control to the Text Editor project that you created in Chapter 11
and enhanced in Chapter 12:

 1. Open the Text Editor project.

 2. Open the form in designer view.

 3. Double-click the OpenFileDialog control in the Toolbox (it is in the
Dialogs section) to add it to the form.

Figure 13-1 Open dialog box in Notepad

CHAPTER 13 Accessing Text Files 241

Figure 13-2 shows the OpenFileDialog control after it has been added to the form.
OpenFileDialog won’t appear directly on your form, but instead in the component
tray below the form, as shown in Figure 13-2.

The default name of this control likely is OpenFileDialog1. Give this control a more
logical name, such as dlgOpen. The “dlg” prefix indicates the control is a dialog
box, and Open indicates that the purpose of the dialog box is to open a file. You
should also change the FileName property so that it doesn’t display the control’s
name in the dialog box. You don’t need to change any of the other default properties
of this control.

Showing the OpenFileDialog Control
The MenuStrip, ContextMenuStrip, and ToolStrip controls also appear in the
component tray. However, unlike these controls, the OpenFileDialog control won’t
appear on your form when you run your program. Instead, you need to write code
to display the OpenFileDialog control.

Figure 13-2 OpenFileDialog in the component tray

242 Visual Basic 2005 Demystifi ed

One of the methods of the OpenFileDialog class is ShowDialog. As the name
suggests, its purpose is to show the Open dialog box. You can call the ShowDialog
method by the following code, which starts with the name of the object (dlgOpen),
followed by a period separating the object name from the method name (ShowDialog),
followed by empty parentheses (because this method has no parameters):

dlgOpen.ShowDialog()

Let’s test this code in the Text Editor project. Add a button to the form named
btnRead with the Text property Read. Create the following Click event procedure
for this button:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 dlgOpen.ShowDialog()
End Sub

When you run the project and click the Read button, the OpenFileDialog control
will appear, similar to Figure 13-1. The OpenFileDialog control is modal, meaning
your application cannot continue until the user closes the Open dialog box by
clicking one of its two buttons, either Open (after selecting a file) or Cancel.

Determining Whether Open
or Cancel Has Been Chosen
Although choosing either the Open or Cancel button will close the Open dialog
box, it is important to know which button was chosen. If the Open button was
chosen, we would want our code to open the selected file. However, if the Cancel
button was chosen, we would not want our code to attempt to open a file because no
file was selected.

From the code we have written so far, you can’t tell whether the Open or Cancel
button was chosen. Now we will add to the code so we can determine which button
was chosen.

In addition to displaying the OpenFileDialog control, the ShowDialog method
also returns a DialogResult. The DialogResult was discussed in Chapter 10 in
connection with dialog forms. As discussed there, the value of the DialogResult that
is returned by the ShowDialog method corresponds to the button the user selected
to close the dialog box. For example, if the user chose the OK button, the value
returned by the ShowDialog method is DialogResult.OK. However, if the user
chose the Cancel button, the value returned by the ShowDialog method is
DialogResult.Cancel.

The Open dialog box has an Open button instead of an OK button, but the
DialogResult that corresponds to the user’s choice of the Open button still is

CHAPTER 13 Accessing Text Files 243

DialogResult.OK. Not surprisingly, the DialogResult is DialogResult.Cancel if the
user instead chose the Cancel button to close the Open dialog box.

Here is the syntax for using the return value of the ShowDialog method to
determine whether the user chose the Open or Cancel button:

Dim dr As DialogResult
dr = dlgOpen.ShowDialog()
If dr = DialogResult.OK Then
 ' Open button was clicked
Else
 'Cancel button was clicked
End If

This first statement creates a DialogResult variable because that is the data type
returned by the ShowDialog method. The second statement calls the ShowDialog
method and assigns its return value to the DialogResult variable we created in the
first statement. The following If/Else statement checks to see if the value of the
DialogResult variable is DialogResult.OK. If it is, the Open button was clicked.
Otherwise, the Cancel button was clicked.

Accordingly, modify the code in the Click event procedure of the Read button so
it reads as follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 MessageBox.Show("Open button was clicked")
 End If
End Sub

Run the project. Click the Read button to display the Open dialog box. Select a
file and click the Open button. The message box will display that the Open button
was clicked. Close the message box. Click the Read button again to redisplay the
Open dialog box. This time click the Cancel button. No message box will display,
indicating that the Cancel button was clicked.

Identifying the File to Open
We have made progress! We can now determine through code whether the user
chose the Open or Cancel button. The next step is to determine the name of the file
the user chose if they selected the Open button, because we need that name to know
which file to open.

244 Visual Basic 2005 Demystifi ed

The OpenFileDialog class has a FileName property whose value is a string
containing the path to and name of the file selected in the file dialog box. For
example, if we chose the file data.txt that is in the C:\temp directory, the FileName
property would be C:\temp\data.txt.

Usually you are interested in the FileName property only if the user chose the
Open button. If the user chose the Cancel button instead, the FileName property is
an empty string.

Modify the code in the Click event procedure of the Read button so it reads as follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 MessageBox.Show(dlgOpen.FileName)
 End If
End Sub

Run the project. Click the Read button to display the Open dialog box. Select a
file and click the Open button. The message box will display the path to and name
of the file. You can now close the message box, and then the form.

SaveFileDialog Control
You use a SaveFileDialog control to add to your application the ability to save files
using the built-in Save dialog box, which is shown in Figure 13-3.

NOTENOTE The Save dialog box often is titled “Save As” rather than “Save,” as in
Figure 13-3. The title depends on, among other factors, if the contents are being
saved to a different file than the one opened, or whether the file is being saved for
the first time. The discussion in this chapter about the Save dialog box applies
equally to the Save As dialog box.

Add a SaveFileDialog control to your form, as you did the OpenFileDialog
control earlier in this chapter. Name the SaveFileDialog control dlgSave. You don’t
need to change any of this control’s other default properties.

The SaveFileDialog control, like the OpenFileDialog control, is modal, meaning
your application cannot continue until the user closes the Save dialog by clicking
one of its two buttons, either Save or Cancel.

Once you have learned how to use an OpenFileDialog control, using the
SaveFileDialog control is easy. The reason is the ShowDialog method, the
DialogResult return value, and the FileName property work the same way with a

CHAPTER 13 Accessing Text Files 245

SaveFileDialog control as they do with an OpenFileDialog control. The DialogResult
returned by clicking the Save button is DialogResult.OK, just as is the case with
clicking the Open button in the OpenFileDialog control.

Let’s test this by adding another Button control to the form in the Text Editor
project. Name this button btnWrite with the Text property Write. Then create the
following Click event procedure for the button:

Private Sub btnWrite_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim dr As DialogResult
 dr = dlgSave.ShowDialog()
 If dr = DialogResult.OK Then
 MessageBox.Show(dlgSave.FileName)
 End If
End Sub

Run the project. Click the Write button to display the Save dialog box. Select a
file and click the Save button. A message box will display the path to and the name
of the file. Another message box always will advise you that the file already exists
and ask you if you want to replace it. Answer Yes to close the warning message box
(don’t worry, the file will not be replaced). The Save dialog box will close. Next,
click the Write button to display the Save dialog box again. This time click the
Cancel button. No message box will display, indicating that the Cancel button was
clicked. Then close the form to end the application.

Figure 13-3 Save dialog box

246 Visual Basic 2005 Demystifi ed

Reading from a Text File
I am always telling my students that the best way to learn computer programming
is to write programs. Therefore, you will learn in this section how to display in the
text box in the Text Editor project the contents of a text file selected in an Open
dialog box. When we are finished writing code, clicking the “Read” button will
display in the TextBox control the contents of a text file. Figure 13-4 shows how the
application will appear after the Read button is clicked and the contents of a text file
are displayed in the TextBox control.

Conversely, in the next section you will further enhance the project so that when
you click the “Write” button, the application will write to the text file the contents
of the TextBox control. Thus, if I make any changes to the text of the TextBox
control and click the Write button, the text file will be updated with those changes.

StreamReader Class
We will use the StreamReader class to read from the text file. The word “stream”
refers to a stream of data, moving from one place to another (in this case, from a
text file to your application). The word “reader” means the file is being read. As
you might now guess, when we want to write to the file, we will use the
StreamWriter class.

To use the StreamReader class, we first will declare a variable of that data type:

Dim readerVar As IO.StreamReader

The term “IO” precedes StreamReader or else the compiler will complain that
the term “StreamReader” is not defined. The reason is that the StreamReader class
is part of the System.IO namespace.

Figure 13-4 Application displaying the contents of a text fi le

CHAPTER 13 Accessing Text Files 247

Importing the System.IO Namespace
The compiler will not look in the System.IO namespace unless we tell it to. One
way to tell the compiler to look in the System.IO namespace is to precede
StreamReader with System.IO.

There is an easier way to tell the compiler to look in the System.IO namespace.
At the top of the code module, above Public Class Form1, type the following:

Imports System.IO
Therefore, your code will start with

Imports System.IO
Public Class Form1

Including this one Imports statement means that you don’t have to precede
StreamReader (or StreamWriter) with System.IO each time you use that term in
your code. Now you can declare the StreamReader variable readerVar in the Click
event procedure of the Read button without preceding StreamReader with IO, as
shown here:

Dim readerVar As StreamReader

Revise the code in your Read button Click event procedure to appear as
follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim readerVar As StreamReader
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 MessageBox.Show(dlgOpen.FileName)
 End If
End Sub

Instantiating a StreamReader Variable
Although we have created the StreamReader variable readerVar, right now that
variable does not relate to any text file. Therefore, the next step is to connect the
StreamReader variable readerVar to the text file we want to read. This process is
known as “instantiating the variable.”

We will instantiate the StreamReader variable with the following statement:

readerVar = New StreamReader(dlgOpen.FileName)

This line of code will replace the code that showed the message box, MessageBox
.Show(dlgOpen.FileName), because the message box was for illustration and we

248 Visual Basic 2005 Demystifi ed

are now actually about to open the selected file for reading rather than just display
its path and name.

Thus, so far your Read button Click event procedure should appear as follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim readerVar As StreamReader
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 readerVar = New StreamReader(dlgOpen.FileName)
 End If
End Sub

Now let’s take a careful look at the statement we’ve just added, starting from the
right side of the assignment statement.

The New keyword is used to create a new StreamReader instance that points
to the text file to be read. The term “StreamReader” in the statement New
StreamReader(dlgOpen.FileName) indicates the type of instance being created.
When the name of the function (here, StreamReader) is the same as the name of a
class (also StreamReader), as here, it is called a constructor. The constructor is used
to “construct” the new instance.

The constructor in this code example takes one argument: the name of the file to be
read. That file name is obtained from the FileName property of the Open dialog box.

The right side of the assignment operator returns the new instance, which then is
assigned to the StreamReader variable readerVar on the left side of the assignment
operator. Now the StreamReader variable readerVar is connected to the text file we
want to read.

Reading the Text File into the TextBox
The StreamReader class has a ReadToEnd method, which returns a string
representing the entire text of the text file. We then assign that string to the Text
property of txtEdit so that the text of the TextBox control will display the entire text
of the text file. Accordingly, add the following statement to your Read button Click
event procedure:

txtEdit.Text = readerVar.ReadToEnd()

Your Read button Click event procedure now should read as follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim readerVar As StreamReader
 Dim dr As DialogResult
 dr = dlgSave.ShowDialog()

CHAPTER 13 Accessing Text Files 249

 If dr = DialogResult.OK Then
 readerVar = New StreamReader(dlgOpen.FileName)
 txtEdit.Text = readerVar.ReadToEnd()
 End If
End Sub

The StreamReader class has other methods that are alternatives to ReadToEnd.
The Read method reads a specified number of characters, and the ReadLine method
reads a line. For example, if you want to load the data one line at a time into a row
of a control, the ReadLine method might be a logical choice.

Closing the Text File
Once we have read the entire contents of the text file, there is no further need to read
from it. Therefore, we should close the text file for reading. The StreamReader class
has a Close method to accomplish this. Accordingly, add the following line of code
to close the text file for reading:

readerVar.Close()

This completes the Read button Click event procedure, which now should read
as follows:

Private Sub btnRead_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnRead.Click
 Dim readerVar As StreamReader
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 readerVar = New StreamReader(dlgOpen.FileName)
 txtEdit.Text = readerVar.ReadToEnd
 readerVar.Close()
 End If
End Sub

Closing the text file for reading frees system resources, specifically memory.
This is important. Memory is required to keep a file open for reading (or writing).
When you don’t need to keep the file open anymore, you should give the memory
back to the operating system.

By analogy, a library would run out of books if patrons checked out books but never
returned them when they were finished reading the books. Similarly, your computer
only has so much available memory for applications (some memory is needed by the
operating system itself). If applications don’t return memory after checking it out, the
operating system eventually will run out of memory. The consequence of the operating
system running out of available memory for applications often is a general protection
fault or illegal exception, bringing the user’s work to a crashing halt.

250 Visual Basic 2005 Demystifi ed

Additionally, later in this chapter you may be writing to the same text file that
you read. Trying to open a file for writing that already is open for reading may
cause problems, which can be avoided by closing the file first before reopening it
for another purpose.

Run the project. Click the Read button. Use the resulting Open dialog box to
select and open a text file. The contents of that text file should be displayed in the
text box. You can then close the application.

Writing to a Text File
The next step in enhancing the Text Editor project will be to write to the text file by
copying the contents of the text box to the text file. The code to do this will be in
the Click event procedure of the Write button.

StreamWriter Class
We will now change the code previously in this chapter for the Click event procedure
for the Write button by replacing the code displaying the message box with the
following code:

Dim writerVar As StreamWriter
writerVar = New StreamWriter(dlgSave.FileName, False)

The code for the Click event procedure of the Write button should now look like
this:

Private Sub btnWrite_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim dr As DialogResult
 dr = dlgSave.ShowDialog()
 If dr = DialogResult.OK Then
 Dim writerVar As StreamWriter
 writerVar = New StreamWriter _
 (dlgSave.FileName, False)
 End If
End Sub

The two lines of code we just added may look familiar from the code we wrote
earlier in this chapter for the StreamReader. There we declared a StreamReader
variable and then instantiated that variable using the StreamReader constructor to
read a text file. Here we are declaring a StreamWriter variable and then instantiating
that variable using the StreamWriter constructor to write to a text file. As the name
suggests, the StreamWriter class is used when writing to a text file.

CHAPTER 13 Accessing Text Files 251

The first argument of the StreamWriter constructor is the name of the text file.
This is the same as the first argument of the StreamReader constructor. However,
the StreamWriter constructor has an additional, second argument.

NOTENOTE The StreamWriter constructor, like the Show method of the MessageBox
class, is overloaded, which means that it may be called with a different number
of arguments.

The data type of the second argument of the StreamWriter constructor is Boolean.
The value of this second argument is True if you want to add to the existing contents
of the text file, and False if instead you want to overwrite the existing contents of
the text file.

In this project, we want to overwrite rather than add to the existing contents of
the text file. Accordingly, the value of the second argument is False.

If you instead wanted to add to the existing contents of the file, you would use
True instead of False as the second argument of the StreamWriter constructor. One
example would be a log file, which logs events or problems. Normally you would
want to add a new event or problem to the prior list, not erase the prior list in the
process.

Writing from the TextBox to the Text File
The StreamWriter class has a Write method that writes the contents of its argument
to the text file at which the StreamReader instance is targeted. In this application,
we want to write the contents of the text box to the text file. Thus, the argument is
the Text property of the TextBox control. Accordingly, add the following code to
the Click event of the Write button:

writerVar.Write(txtEdit.Text)

The code for the Click event procedure of the Write button should now look
like this:

Private Sub btnWrite_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim dr As DialogResult
 dr = dlgSave.ShowDialog()
 If dr = DialogResult.OK Then
 Dim writerVar As StreamWriter
 writerVar = New StreamWriter _
 (dlgSave.FileName, False)
 writerVar.Write(txtEdit.Text)
 End If
End Sub

252 Visual Basic 2005 Demystifi ed

Closing the Text File
We are now finished writing to the text file. Accordingly, we should close the text
file for writing, as we closed the text file for reading earlier in this chapter. Therefore,
add the following statement to the Click event of the Write button:

writerVar.Close()

The completed code for the Click event procedure of the Write button should
now look like this:

Private Sub btnWrite_Click (ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim dr As DialogResult
 dr = dlgSave.ShowDialog()
 If dr = DialogResult.OK Then
 Dim writerVar As StreamWriter
 writerVar = New StreamWriter _
 (dlgSave.FileName, False)
 writerVar.Write(txtEdit.Text)
 writerVar.Close()
 End If
End Sub

CAUTIONCAUTION Your program may make changes to your text file, and you don’t want
those changes to cause any problems on your computer. Accordingly, before you
test this project, create a text file using Notepad or another plain text editor and
type in whatever contents you would like. However, don’t use Microsoft Word or a
comparable word processing program to create the text file because these programs
include formatting characters as well as text.

Run the project. Click the Read button. Use the resulting Open dialog box to
select and open the text file you created. The contents of that text file should be
displayed in the text box. Then, make changes in the text box. When done making
changes in the text box, click the Write button. When the Save dialog box displays,
find and choose the text file you created and then click the Save button. You may
see a message box that informs you that the file you are saving to already exists and
asking you if you want to replace it. Click the Yes button.

Run your application again and display the text file. The text should show the
changes you made when you first ran the application.

CHAPTER 13 Accessing Text Files 253

This application is not yet ready for prime time. For example, we should disable
the Write button until a file is opened with the Read button. We also should create
File | Open and File | Save menu items and link their Click events to the Click
events of the Read and Write buttons. You may wish to try to implement these
enhancements. Nevertheless, this project is useful in demonstrating how to read
from and write to a text file.

Conclusion
In this chapter, you learned how to add to your program Open and Save dialog
boxes that sophisticated programs such as Microsoft Word have. The Open dialog
box is a control of the OpenFileDialog class. Similarly, the Save dialog box is a
control of the SaveFileDialog class. You use the ShowDialog method to display
each dialog, and the DialogResult property to determine if the user chose the dialog
box’s Open or Save button, or instead the Cancel button. If the user chose the Open
(or Save) button, you use the FileName property to retrieve the file name chosen by
the user from the dialog box.

In this chapter, you also learned how to read from a text file using the StreamReader
class and to write to a text file using the StreamWriter class. Although text files may
not seem as advanced as databases, one advantage text files have over databases is
that they are universally understood by applications, whereas databases require
specialized software.

However, databases also have their advantages, so the next chapter will be
about them.

Quiz
 1. The Open dialog box is a control of which class?

 2. What method do you use to show an Open dialog box?

 3. What is the return value of showing an Open dialog box?

 4. What is the property of the OpenFileDialog class whose value is the file
chosen by the user in an Open dialog box?

 5. The Save dialog box is a control of which class?

254 Visual Basic 2005 Demystifi ed

 6. What method do you use to show a Save dialog box?

 7. What is the return value of showing a Save dialog box?

 8. What is the property of the SaveFileDialog class whose value is the name
of the file to be saved?

 9. What class may you use to read from a text file?

 10. What class may you use to write to a text file?

255

CHAPTER
14

Databases

Up until now, we have saved data in a text file. But text files have their limitations.
One limitation is that it is difficult to quickly retrieve specific data in a text file.
There’s usually no alternative to searching the text file from beginning to end, which
can take a long time if the text file contains a lot of data.

Another limitation of a text file is its inability to link different but related data.
For example, a store may have both a list of customers and a list of orders. Because
the orders come from customers, the two different lists are related. But with a text
file, there’s no easy way to link an order in one list with a customer in another list.

A database does not have these limitations—you can quickly retrieve specific
data using keys and indexes, and you can easily link different data.

Although there are many types of databases, fundamentally these different
database types share a number of common characteristics. Accordingly, you will be
able to apply what you learn here to different types of databases.

This chapter will get you started with databases. However, I’m not going to start
with a dry theoretical discussion of what a database is because that information can
be a little abstract if you haven’t first spent some time working with one. So let’s
roll up our sleeves (figuratively, of course) and get started working with a
database.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

256 Visual Basic 2005 Demystifi ed

Installing the Database
Databases come in different formats. Microsoft Access, Microsoft SQL Server, and
Oracle are among the most common, but there are many others, each with their
advantages, disadvantages, followers, and detractors.

I’ll be using a Microsoft Access database in this chapter solely because I believe
my readers are more likely to have Microsoft Access than other database products
such as Microsoft SQL Server and Oracle. Additionally, it is easier to get started
using Microsoft Access than with most other database products. However, you will
be able to apply what you learn here to other database formats such as Microsoft
SQL Server and Oracle.

Obtaining the Northwind Traders Database
We will be working with the Northwind Traders database. It is a Microsoft Access
database and is on the installation CD for Microsoft Access.

However, you can use the Northwind Traders database with Visual Basic 2005
without having Microsoft Access. Microsoft permits you to download, free of
charge, a version of this sample database for Access 2000. This version also will
work if you have Access XP or 2003.

The download link at the time of this book is

http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-
422b-8676-c632d66c529c&displaylang=en

This link may change, particularly when Microsoft periodically reorganizes its
website. In case you need to do a search, the title of the article is “Access 2000
Tutorial: Northwind Traders Sample Database.”

Installing the Northwind Traders Database
The name of the installation file is Nwind.exe. Once you download this file onto
your hard drive, double-click it to start the installation process. The installation
program will ask you to agree to a license to use the database and then ask where
you want to save the database. Save it wherever you wish on the hard drive; just
remember where you saved it.

The saved database may have the name Nwind.mdb or Northwind.mdb. The
.mdb extension is an abbreviation of “Microsoft database” and is used for Access
databases.

http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&displaylang=en

CHAPTER 14 Databases 257

If you have Access, you can view the Northwind Traders database from that
application.

You can also view the Northwind Traders database via Visual Basic 2005. You
don’t need to open or create a Windows application. However, you first need to
connect Visual Basic 2005 to the database.

To start the process of connecting Visual Basic 2005 to the Northwind Traders
database, choose the Tools | Connect to Database menu command. This will display
the Choose Data Source dialog box shown in Figure 14-1.

As Figure 14-1 shows, the upper pane of the Choose Data Source dialog box lists
different database formats, such as Access, SQL Server, and Oracle. Because
Northwind Traders is an Access database, choose Microsoft Access Database File.
Figure 14-2 shows the Choose Data Source dialog box after you choose Microsoft
Access Database File.

As Figure 14-2 shows, the drop-down box below the upper pane, blank in Figure
14-1, now lists the one available data provider: .NET Framework Data Provider for
OLE DB. A data provider is a code component that is used by your application to
connect to a specific database format. There are many database formats, so there are
many providers, at least one for each database format supported by the .NET
Framework. The .NET Framework may have several alternative data providers for
some database formats, but it just has one, the .NET Framework Data Provider for
OLE DB, for the Microsoft Access database format.

Figure 14-1 Choose Data Source dialog box

Connecting to the Database

258 Visual Basic 2005 Demystifi ed

As Figure 14-2 also shows, the Description area to the right of the upper pane,
blank in Figure 14-1, now contains the following text: “Use this selection to connect
to a Microsoft Access database file using the native Jet provider through the .NET
Framework Data Provider for OLE DB.” The reason for the term “Jet” is that
Microsoft Access uses the Jet database engine.

Finally, Figure 14-2 shows that once you have selected a data source and a data
provider, the Continue button, disabled in Figure 14-1, now is enabled.

Click the Continue button. This will display the Add Connection dialog box
shown in Figure 14-3.

Figure 14-2 Choose Data Source dialog box after the data source is selected

Figure 14-3 Add Connection dialog box

CHAPTER 14 Databases 259

Use the Browse button to find and choose the nwind.mdb file you saved on your
hard drive when you installed the Northwind Traders database. Once you have done
this, as shown in Figure 14-4, the path to and name of the database should appear
in the Database File Name text box.

NOTENOTE You don’t need to worry about the user name and password in the Add
Connection dialog box, unless you assigned a name and password to the database,
which you don’t need to do. This may be an issue with other database formats, but
it’s not an issue with Microsoft Access.

The next step is to test the connection. Click the Test Connection button. A message
box stating “Test Connection Succeeded” should display, as in Figure 14-5.

Click the OK button. This saves the changes you made and closes the Add
Connection dialog box.

Figure 14-4 Add Connection dialog box after the database is selected

Figure 14-5 Test connection succeeded.

260 Visual Basic 2005 Demystifi ed

Using Server Explorer
If you have Microsoft Access, you can use it to view the Northwind Traders database.
If you don’t, Visual Basic 2005 has a tool called Server Explorer that permits you
to view and make changes to databases on your computer or on any other computer
to which you have network access and permissions.

Indeed, you should learn how to use Server Explorer even if you have Microsoft
Access on your computer. First, you may find yourself working at another computer
that doesn’t have Microsoft Access. Second and perhaps more important, when
you’re working with other database formats such as SQL Server or Oracle, you
won’t be able to use Microsoft Access.

You can display Server Explorer using the View | Server Explorer menu command.
You don’t need to first open or create a Windows application. Figure 14-6 shows
Server Explorer after the Data Connections node was expanded by clicking the +
sign to its left.

Figure 14-6 Server Explorer

CHAPTER 14 Databases 261

NOTENOTE Server Explorer on your machine will likely have different content than
what’s shown in Figure 14-6. For example, PCKlub866 is listed under the Servers
node because that happens to be the name of the computer I used.

The node underneath the Data Connections node should list the path and file
name of the Microsoft Access database to which we just created a connection in the
previous section “Connecting to the Database.”

Exploring the Database
Click the + sign next to the Microsoft Access database under the Data Connections
node. As Figure 14-7 shows, four nodes appear: Tables, Views, Stored Procedures,
and Functions.

A table is a collection of data on a particular subject. In this chapter, we’ll be
discussing a particular table, Customers. The Northwind Traders database has other
tables, too, including those listing employees, products, orders, suppliers, and
shippers.

Figure 14-7 Server Explorer listing Tables, Views, Stored Procedures, and Functions

262 Visual Basic 2005 Demystifi ed

A view is a collection of data, often obtained from more than one table. Examples
of views in the Northwind Traders database include “Product Sales for 1995” and
“Ten Most Expensive Products.”

A stored procedure and a function each is generally a code component that
generates a predefined subset of the data. Examples of stored procedures in the
Northwind Traders database include “Alphabetical List of Products” and “Summary
of Sales by Year.” Examples of functions in the Northwind Traders database include
“Sales by Year.”

Exploring the Customers Table
Click the + sign next to the Tables node. As Figure 14-8 shows, this displays the
various tables in the Northwind Traders database.

Click the + sign next to the Customers table. As Figure 14-9 shows, this displays
the various fields of the Customers table.

Figure 14-8 Server Explorer listing Tables

CHAPTER 14 Databases 263

Right-click the Customers table node and choose Show Table Data from the
shortcut menu. As Figure 14-10 shows, the data in the Customers table then will be
displayed.

As Figure 14-10 shows, the data in the Customers table is displayed in rows and
columns. Each column, or field, represents a different piece of information, such as
a name, title, or address. Each row, or record, concerns one customer. Together, the
rows and columns provide information, such as the name, title, and address of each
customer.

Different tables have different fields and a different number of records.
Additionally, the fields are not always of a String data type, but instead may be of
another data type, such as Integer or Boolean. The one thing tables have in common
is that they’re composed of fields (columns) and records (rows).

Figure 14-9 Fields of Customers table

264 Visual Basic 2005 Demystifi ed

Database Project
As you have heard me say several times already in this book, the best way to learn
programming is to write programs. So let’s put that saying into practice once again.

What the Project Does
This project, when finished, will, when the application starts up, fill a DataGridView
control with data from four fields of the Customers table: CustomerID, ContactTitle,
CompanyName, and ContactName. Figure 14-11 shows the project in action.

Creating the Form
Create a new Windows application. Add two controls to the default form.

Figure 14-10 Data in Customers table

CHAPTER 14 Databases 265

The first control is an OpenFileDialog control. You learned about this control in
Chapter 13. Name this control dlgOpen and delete any value in its FileName
property. You do not need to change any of its other default properties.

The second control is a DataGridView control. This control displays data in a
row and column format, much like the Customers table shown in Figure 14-10, or
a spreadsheet.

When you add the DataGridView control, a DataGridView Tasks pane displays,
as shown in Figure 14-12.

You may accept the default values in this pane. However, center the DataGridView
control in your form and rename it dgvData.

Figure 14-11 DataGridView control fi lled with data from Customers table

Figure 14-12 DataGridView Tasks pane

266 Visual Basic 2005 Demystifi ed

Importing Data Namespaces
The code components used for database access are organized in the .NET class
library under the name ADO.NET. You’ve probably already figured out the “.NET”
portion of that name. ADO was an acronym for ActiveX Data Objects, a Microsoft
data-access technology that preceded ADO.NET.

Several ADO.NET classes, which we will use in this chapter, are part of the
System.Data.OleDb namespace. As you may remember from previous chapters,
the .NET library is organized in a hierarchal structure, each branch with its own
namespace. System is a top-level namespace. Data is one of several namespaces
belonging to System, and OleDb is one of several namespaces belonging to
System.Data.

NOTENOTE There are other namespaces supporting other database types, such as
OracleClient for Oracle databases and SqlClient for SQL Server databases.

Thus, the OleDbConnection class we will be using in the next section technically
is not just the OleDbConnection class but instead the System.Data.OleDb
.OleDbConnection class. However, typing a System.Data.OleDb prefix before
every reference to OleDbConnection or another ADO.NET class can quickly
become a pain.

Fortunately, you can avoid having to prefix every reference to an ADO.NET
class with System.Data.OleDb by using an Imports System.Data.OleDb statement
before your class declaration. While you are at it, also import the System.Data
namespace, because that namespace also will come in handy later. Thus, assuming
the class name of your form is Form1, the first three lines of code will be

Imports System.Data
Imports System.Data.OleDb
Public Class Form1

If the compiler does not recognize the root System.Data namespace, you may
need to add a reference to the assembly that contains the namespace. Choose Add
Reference from the Project menu to display the Add Reference dialog box shown in
Figure 14-13.

Choose System.Data from the list and click OK. Then the compiler will recognize
the root System.Data namespace.

CHAPTER 14 Databases 267

Creating a Connection
Your application will be giving commands to the database to retrieve certain data.
But before it can do so, your application needs to have a connection with the
database.

Persistent Connection vs. Disconnected Application
Although an application needs to have a connection to a database to retrieve or
change data, there is more than one way to design this connection. One alternative
is to create a single connection that remains active until the application ends. This
is called a persistent connection.

The alternative is to create a connection only to retrieve data, end the connection,
make changes to a local copy of the data while disconnected from the database, and
connect back to the database only when necessary to synchronize these changes
with the database. This is called a disconnected application because most of the
time, the application is disconnected from the database.

Figure 14-13 Add Reference dialog box

268 Visual Basic 2005 Demystifi ed

As with most choices in life, there are tradeoffs between a persistent connection
and a disconnected application. In general, Windows applications are more likely to
use persistent connections, whereas web applications are more likely to be
disconnected applications, but this is only a generalization, of course.

Because we are writing a Windows application, we will use a persistent
connection.

OleDbConnection Class
The OleDbConnection class represents a connection to a data source. The
following line of code not only declares an OleDbConnection variable, but also
instantiates it:

Dim myConn As New OleDbConnection

As explained in previous chapters, the term “instantiate” means to create a new
instance (in this case, a new connection). This instantiation is performed by using
the New keyword when declaring the OleDbConnection variable.

ConnectionString Property
The OleDbConnection class has a ConnectionString property. This property includes
the provider being used and the path to and the name of the data source file.

The provider is “Microsoft.Jet.OLEDB.4.0.” As mentioned in the earlier section
“Connecting to the Database,” the reason for the term “Jet” is that Microsoft Access
uses the Jet database engine. Additionally, as the Description area of the Choose
Data Source dialog box shown in Figure 14-2 reflects, the connection to a Microsoft
Access database uses the native Jet provider through the .NET Framework Data
Provider for OLE DB. That native Jet provider is Microsoft.Jet.OLEDB.4.0.

We will obtain the path to and the name of the data source file through the
OpenFileDialog control and its FileName property.

In this project, all the code will be written in the Load event of the form. Write
the following code:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider=" & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & ";"
 End If
End Sub

CHAPTER 14 Databases 269

Opening the Connection
Once you’ve instantiated an OleDbConnection object and created its connection
string, you may open the connection to your database using the OleDbConnection
object’s Open method:

myConn.Open()

Accordingly, our code now reads as follows:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & ";"
 myConn.Open()
 End If
End Sub

Creating a Command
Once you establish a connection, you’ll next want to execute commands, such as to
retrieve data that you want to view. You use an OleDbCommand object to execute
commands to a database. The OleDbCommand class, like the OleDbConnection
class, is part of the System.Data.OleDb namespace.

You instantiate an OleDbCommand object similar to how you instantiate an
OleDbConnection object:

Dim myCMD As New OleDbCommand

SQL Statement
Commands often are expressed in a SQL statement. SQL, alternatively pronounced
as separate letters (S-Q-L) or as sequel, is an acronym for Structured Query
Language. SQL is a standardized language for requesting information from a
database.

The following SQL SELECT statement retrieves data from the CustomerID,
ContactTitle, CompanyName, and ContactName fields from the Customers table:

SELECT CustomerID, ContactTitle, CompanyName, _
 ContactName FROM Customers

270 Visual Basic 2005 Demystifi ed

SELECT is a keyword that indicates the SQL statement retrieves records. The
SELECT statement does not change records. Other SQL statements, such as
INSERT, UPDATE, and DELETE, do change records, by adding, editing, and
deleting, respectively.

The names following the SELECT keyword are the names of table fields. Because
there is more than one field, the field names are separated by commas.

FROM is also a keyword. The name following it, Customers, is the name of the
table to which the fields belong.

CommandText Property
The OleDbCommand object has a CommandText property whose value may be a
SQL statement. Accordingly, we will assign the SQL SELECT statement we
discussed in the preceding section to the OleDbCommand object’s CommandText
property as follows:

myCMD.CommandText = "SELECT CustomerID, " & _
"ContactTitle, CompanyName, ContactName FROM Customers"

NOTENOTE The value of the CommandText property may also be a table name or the
name of a stored procedure.

Linking the Command to a Connection
The final step is to link the command to a connection to the database. The
OleDbCommand object has a Connection property whose value is the database
connection to be used by the command. Accordingly, the following code assigns the
existing OleDbConnection variable myConn to the Connection property of the
OleDbCommand object:

myCMD.Connection = myConn

Accordingly, our code now reads like this:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider=" & _

CHAPTER 14 Databases 271

 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & ";"
 myConn.Open()
 Dim myCMD As New OleDbCommand
 myCMD.CommandText = "SELECT CustomerID, " & _
 "ContactTitle, CompanyName, " & _
 "ContactName FROM Customers"
 myCMD.Connection = myConn
 End If
End Sub

Filling the DataGridView
We now have defined a database connection and command. Here are the remaining
tasks:

 1. Package that database connection and database command in an
OleDbDataAdapter object.

 2. Create a DataSet object.

 3. Use the OleDbDataAdapter object to fill the DataSet.

 4. Use the DataSet to fill the DataGridView.

Creating an OleDbDataAdapter
The OleDbDataAdapter class packages a database connection with a set of data
commands.

The first step is to instantiate an OleDbDataAdapter variable, similar to how we
previously instantiated the OleDbConnection and OleDbCommand variables:

Dim myAdapter As New OleDbDataAdapter

The OleDbDataAdapter class has a SelectCommand property whose value is a
command that contains a SQL SELECT statement. Accordingly, the following
code sets the OleDbDataAdapter variable’s SelectCommand property to the
OleDbCommand variable we instantiated and configured in the previous section:

myAdapter.SelectCommand = myCMD

This statement not only connects the OleDbDataAdapter variable to the data
command it will use, it also indirectly connects the OleDbDataAdapter variable to
the database connection, because the OleDbCommand variable is connected through
its Connection property to the OleDbConnection variable.

272 Visual Basic 2005 Demystifi ed

Accordingly, the code now reads as follows:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & ";"
 myConn.Open()
 Dim myCMD As New OleDbCommand
 myCMD.CommandText = "SELECT CustomerID, " & _
 "ContactTitle, CompanyName, " & _
 "ContactName FROM Customers"
 myCMD.Connection = myConn
 Dim myAdapter As New OleDbDataAdapter
 myAdapter.SelectCommand = myCMD
 End If
End Sub

Creating a DataSet
The data used to fill the DataGridView cannot come directly from the hard drive
where the database is stored. Instead, an intermediate step is required. The data
from the hard drive first must be loaded into memory, or RAM. Then, the data in
RAM is loaded into the DataGridView.

NOTENOTE This approach has advantages. For example, it frees the application from
having to exactly replicate the physical data and instead work with subsets,
supersets, calculated fields, and so forth.

A DataSet is a representation of the data (in this case, from several fields of the
Customers table, which is stored in RAM).

The DataSet class is part of the System.Data namespace, so you should add an
Imports System.Data statement, if you did not do so already earlier in this chapter
in the section “Importing Data Namespaces”:

Imports System.Data
Imports System.Data.OleDb
Public Class Form1

You also need to add a reference to the assembly that contains the namespace
System.XML. You do so the same way you added a reference to the assembly that

CHAPTER 14 Databases 273

contains the namespace System.Data earlier in this chapter in the section “Importing
Data Namespaces”: using the Add Reference dialog box shown in Figure 14-13.

You instantiate a DataSet variable via the following code, similar to how
we previously instantiated the OleDbConnection, OleDbCommand, and
OleDbDataAdapter variables:

Dim ds As New DataSet

The next steps are to clear and then fill the DataSet.
The DataSet object has a Clear method. This method, as its name suggests, clears

the DataSet of any leftover contents. There would be no leftover contents here
because the code is running on application startup, but often you will need to use
the Clear method, so it is a good idea to get into the habit of using it.

ds.Clear()

The OleDbDataAdapter object has a Fill method. This method, as its name
suggests, fills the DataSet with its contents, which, once the DataGridView is
connected to the DataSet (as discussed in the next section), then are displayed in the
DataGridView that is bound to the DataSet. The first argument is the DataSet to be
filled. The second argument is the name of the source table (here, Customers).

myAdapter.Fill(ds, "Customers")

Accordingly, the code now reads as follows:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & ";"
 myConn.Open()
 Dim myCMD As New OleDbCommand
 myCMD.CommandText = "SELECT CustomerID, " & _
 "ContactTitle, CompanyName, " & _
 "ContactName FROM Customers"
 myCMD.Connection = myConn
 Dim myAdapter As New OleDbDataAdapter
 myAdapter.SelectCommand = myCMD
 Dim ds As New DataSet
 ds.Clear()
 myAdapter.Fill(ds, "Customers")
 End If
End Sub

274 Visual Basic 2005 Demystifi ed

Connecting the DataGridView to the DataSet
The final step is to connect the DataGridView to the DataSet. This step involves two
properties of the DataGridView object: DataSource and DataMember.

The DataSource property is the data source of the data that the DataGridView is
displaying. That data source is represented by the DataSet variable ds:

dgvData.DataSource = ds

The DataMember property is the name of the table (here, Customers) in the data
source of the data that the DataGridView is displaying:

dgvData.DataMember = "Customers"

Accordingly, the completed code now reads like this:

Private Sub Form1_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim dr As DialogResult
 dr = dlgOpen.ShowDialog()
 If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
 strFile & "";"
 myConn.Open()
 Dim myCMD As New OleDbCommand
 myCMD.CommandText = "SELECT CustomerID, " & _
 "ContactTitle, CompanyName, " & _
 "ContactName FROM Customers”
 myCMD.Connection = myConn
 Dim myAdapter As New OleDbDataAdapter
 myAdapter.SelectCommand = myCMD
 Dim ds As New DataSet
 ds.Clear()
 myAdapter.Fill(ds, "Customers")
 dgvData.DataSource = ds
 dgvData.DataMember = "Customers"
 End If
End Sub

Run the project! The DataGridView control should fill with data, as shown earlier
in Figure 14-11.

CHAPTER 14 Databases 275

Text files, which we’ve used up until now to save data, have several limitations. One
limitation is a text file’s inability to quickly retrieve specific data. There’s usually
no alternative to searching the text file from beginning to end, which can take a long
time if the text file contains a lot of data.

Another limitation is the inability to store relations between different data. For
example, a store may have both a list of customers and a list of orders—the orders
come from customers. With a text file, there’s no easy way to link an order in one
list with a customer in another list.

A database does not have these limitations. Specific data may be quickly retrieved
through keys and indexes, and different data may be easily linked.

This chapter used the Northwind Traders database. First, you learned how to
obtain and install this database. After creating a new Windows application, you then
created a connection between Visual Basic 2005 and the database. In doing so, you
selected the database format, a provider suitable for that format, and the path to and
the name of the database.

Next, you learned how to use Server Explorer, a tool provided by Visual Basic
2005 that enables you to view databases on your computer without having to open
or create an application.

The code components used for database-access code are organized in the .NET
library under the name ADO.NET. ADO was an acronym for ActiveX Data Objects,
a Microsoft data-access technology that was the predecessor to ADO.NET.

As you learned in this chapter, accessing the Northwind Traders database involves
the following steps:

 1. Establish a connection to the database.

 2. Define the commands you want to make to the database.

 3. Define a data adapter that packages the database connection and commands.

 4. Create a DataSet and then fill it using the data adapter.

 5. Fill a control (for example, a DataGridView) from the DataSet.

You created an application that implemented these steps and filled a DataGridView
control with data from four fields of the Customers table of the Northwind Traders
database.

The project you created in this chapter is a Windows application. In the next
chapter, you will learn to create a similar project that is a web application.

Conclusion

276 Visual Basic 2005 Demystifi ed

Quiz
 1. What is a data provider?

 2. What does Server Explorer enable you to do?

 3. What is a table?

 4. What may each column in a table also be called?

 5. What may each row in a table also be called?

 6. What is ADO.NET?

 7. What class represents a connection to a data source?

 8. What class would you use to execute commands to a database?

 9. What class would you use to package a database connection with a set
of data commands?

 10. What is a DataSet?

277

CHAPTER
15

Web
Applications

Throughout this book we have been writing Windows applications. Indeed, many
of the applications with which you interact are Windows applications. For me, it is
a rare day that I don’t work with Microsoft Word and Outlook, for example.

However, I am, and perhaps you are as well, interacting ever more frequently
with web applications. One common type of web application is e-commerce, the e
standing for electronic. For example, if you go to the website of Amazon or another
online bookseller, you select a book (hint: this one) or another product, put the
selected product in a virtual shopping cart, when finished go to a virtual check-out
line, enter your credit card information (which better not be virtual), and make a
purchase. You then can go to the website of the overnight delivery service and track
the shipment as it wends its way across the country (or world) to you.

In this chapter, you will learn how to create a web application that displays
information from a database, similar to the Windows application you created in
Chapter 14.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

278 Visual Basic 2005 Demystifi ed

ASP.NET
ASP.NET is a term you likely will hear of soon after you start creating web
applications. ASP.NET refers to the code components used for web applications,
similar to how ADO.NET refers to the code components used for database access.

As with ADO.NET, you already know the “.NET” portion of ASP.NET. ASP is
an acronym for Active Service Pages, a Microsoft web application technology that
preceded ASP.NET. For those of you who are familiar with ASP, ASP.NET is much
easier to work with. ASP intermixed HTML with script code. By contrast, ASP
.NET enables you to develop web applications in almost the same manner as
Windows applications.

ASP.NET started with Visual Studio 2005’s predecessor, Visual Studio.NET.
The version number of ASP.NET then was 1.x (first 1.0, then 1.1). With Visual
Studio 2005, the version number is 2.x, starting with 2.0.

There are other, competing technologies for the creation of web applications.
ASP.NET is Microsoft’s, and consequently the one heavily supported in Visual
Studio 2005.

Internet Information Services
Visual Studio 2005 requires one of the following operating systems: Windows 2000
Professional, Windows XP Home or Professional, Windows 2000 Server, or
Windows 2003 Server. On all but Windows XP Home Edition, Internet Information
Services (IIS) is an optional component that may be installed with the operating
system. IIS may not actually be installed on your computer because it may not be
part of the default installation of your operating system. However, if IIS is not
installed, you can add it as described in this section.

NOTENOTE You cannot install IIS on Windows XP Home Edition unless you make some
Registry changes that are not supported by Microsoft and therefore probably are
not a good idea to try.

Unlike ASP.NET 1.x and Visual Studio.NET, ASP.NET 2.x and Visual Studio
2005 do not require you to install IIS to create web applications that run locally
(that is, on your computer). Nevertheless, unless you have Windows XP Home
Edition, installing IIS does give you more options, such as making your web pages
accessible from more than your local computer, and it costs you nothing.

CHAPTER 15 Web Applications 279

Determining If IIS Is Already Installed
To determine if IIS is already installed on your computer, open Add/Remove
Programs from the Control Panel. From the left menu bar, choose Add/Remove
Windows Components. This will display the Windows Components Wizard, shown
in Figure 15-1.

In Figure 15-1, Internet Information Services (IIS) is checked, but with a dark
background. This indicates some but not all of the components of IIS are installed.
If IIS is checked but with a white background, as is Internet Explorer in Figure 15-
1, then all of the components of IIS are installed. If IIS is unchecked, as is the
Indexing Service in Figure 15-1, then IIS is not installed.

If IIS is checked, but with a dark background as in Figure 15-1, then you need to
check which of its components are installed. To do so, in the Windows Components
Wizard, highlight Internet Information Services (IIS) and click the Details button.
This will display, as shown in Figure 15-2, a dialog box showing the individual
components of Internet Information Services (IIS).

In Figure 15-2, almost all of the check boxes are checked because those
components happen to be installed on my computer. This may not be the case on
your computer, depending on which components of IIS you previously may have
installed.

You don’t need the FTP (File Transfer Protocol) and SMTP (Simple Mail Transfer
Protocol) services, but I recommend you install the other components.

Figure 15-1 Windows Components Wizard

280 Visual Basic 2005 Demystifi ed

Installing IIS
If you do need to install IIS or components of it, first locate the installation CD of
your operating system, because you may need it. If IIS is unchecked in the Windows
Components Wizard (see Figure 15-1), first check it and then click the Next button.
If IIS is checked in the Windows Components Wizard but the check box has a dark
background, just click the Next button.

Clicking the Next button displays the Internet Information Services (IIS) dialog
box shown in Figure 15-2. Choose all of the components by checking the boxes that
are not already checked, again with the possible exception of the FTP and SMTP
services. Then click the OK button, which will return you to the Windows
Components Wizard. In the Windows Components Wizard, after verifying that you
have your operating system installation CD in your CD-ROM drive, click the Next
button and continue to proceed until you are finished adding the IIS components. If
prompted to do so, restart your computer.

Start the IIS Admin Service
The IIS Admin Service is, as its name suggests, a service used to administer IIS.
Although there are alternative methods of administering IIS, using the IIS Admin
Service may be the easiest.

Open the Administrative Tools folder in Control Panel. This folder is shown in
Figure 15-3.

Next, choose the Services shortcut to open the Services folder. Choose the Extended
tab and highlight IIS Admin. As Figure 15-4 shows, to the left is a description of the
IIS Admin service as well as options to stop, pause, and restart the service.

Figure 15-2 IIS components

CHAPTER 15 Web Applications 281

Figure 15-3 Administrative Tools folder in Control Panel

Figure 15-4 Services folder with IIS Admin service selected

282 Visual Basic 2005 Demystifi ed

The options are to stop, pause, and restart the service because the service already
is started. In that event, you have confirmed that the IIS Admin service has started,
and you are done with this step.

However, if the IIS Admin service had stopped or never started, the option instead
would be to start the service, as shown in Figure 15-5. In that event, you would
choose Start to start the service.

Starting the Default Website
Once you have confirmed that the IIS Admin service has started, close the Services
folder and go back to the Administrative Tools folder shown in Figure 15-3. Next,
choose the Internet Information Services shortcut to open the Internet Information
Services dialog box shown in Figure 15-6.

Click the + sign next to the local computer name (mine is JAKXP; yours is likely
different) and then click the + sign next to the Web Sites folder below it. Figure 15-7
shows a subfolder named Default Web Site.

If Default Web Site is followed by a parenthetical indicating it is stopped, right-
click Default Web Site and choose Start from the shortcut menu.

Figure 15-5 Option to start the IIS Admin service

CHAPTER 15 Web Applications 283

Figure 15-6 Internet Information Services dialog box

Figure 15-7 Default Web Site in the Internet Information Services dialog box

284 Visual Basic 2005 Demystifi ed

URL
Your home or apartment has an address by which it may be located. A web page
similarly has an address by which you may locate it through your web browser.

The address of your home or apartment usually is in the form of a number
followed by a street name, such as 1313 Mockingbird Lane. The address of a web
page, referred to as a URL (an acronym for Uniform Resource Locator), similarly
has a certain form.

The following explanation will use as an example the URL for Microsoft’s home
page, http://www.microsoft.com/default.aspx.

The first part of the address (here, http) indicates what protocol to use. HTTP is
an acronym for Hypertext Transfer Protocol. HTTP defines how messages are
formatted and transmitted, and what actions web servers and browsers should take
in response to various commands. For example, when you enter a URL in your
browser, this actually sends an HTTP command to the web server directing it to
fetch and transmit the requested web page.

There are protocols other than HTTP. One is similarly named HTTPS, a secure
form of HTTP often used for credit card transactions on the Internet. Another is
FTP, File Transfer Protocol, used for transferring files.

The second part of the address (here, www.microsoft.com) is the domain name
where the resource is located. Domain names commonly start with www, short for
World Wide Web, and end with com (for commercial) or another extension, such as
net or org. In between is a name (here, Microsoft), which often corresponds to the
organization or individual who owns the website. For example, my website is http://
www.genghiskhent.com, based on my students’ fond (?) nickname for me, Genghis
Khent.

The third part of the address is the specific web page being accessed (here,
default.aspx). Web pages are named in a similar fashion to other files, a descriptive
name followed by a dot and an extension.

In Windows applications, the extension indicates the application used to open the
file, such as .doc for Microsoft Word, .xls for Microsoft Excel, and so forth. Web
pages may have extensions such as .htm and .html. The .aspx extension indicates
that the web page is part of an ASP.NET application.

Your Computer as the Web Server
A web server is a computer that delivers (serves up) web pages. For example, if you
visit Microsoft’s home page, http://www.microsoft.com/default.aspx, by entering
that address in your web browser (such as Internet Explorer, Netscape, or Mozilla),

http://www.microsoft.com/default.aspx
www.microsoft.com
http://www.genghiskhent.com
http://www.genghiskhent.com
http://www.microsoft.com/default.aspx

CHAPTER 15 Web Applications 285

a computer somewhere on the Internet fetches a page on the Microsoft website and
sends its content to your browser, where that content then is displayed in your
computer’s web browser.

In this chapter, however, your computer will act as the web server for the web
applications you will be creating.

Type the URL http://localhost/ in your web browser (this won’t work if you
have Windows XP Home, as already mentioned). Figure 15-8 shows the web page
that then displays on the Windows XP operating system.

You may legitimately wonder, what is localhost? You have heard of microsoft
.com and other .com and .net URLs, but localhost may be a new one for you. The
answer is localhost is your computer, which now is acting as a web server.

Virtual and Physical Paths
When you type http://www.microsoft.com in your web browser, you are accessing
a page stored on the hard drive of a computer Microsoft is using as a web server.

Figure 15-8 Default web page

http://www.microsoft.com

286 Visual Basic 2005 Demystifi ed

Similarly, when you typed http://localhost and the web page shown in Figure 15-8
was displayed, that web page also was stored on your computer’s hard drive.

By default, http://localhost maps to the C:\Inetpub\Wwwroot folder on your hard
drive. You can confirm this by right-clicking Default Web Site (refer to Figure 15-7)
and choosing Properties from the shortcut menu to display the Default Web Site
Properties dialog box, which is shown in Figure 15-9 with the Home Directory tab
chosen. The local path is c:\Inetpub\Wwwroot.

The address bar in Figure 15-8 shows that the URL of the web page is http://
localhost/localstart.asp. Thus, the URL http://localhost/localstart.asp maps to the
file C:\Inetpub\Wwwroot\localstart.asp on your hard drive.

The web URL http://localhost/localstart.asp is known as the virtual path to the
web page. The file path C:\Inetpub\Wwwroot\localstart.asp is known as the physical
path to the web page. However, they both point to the same place.

Figure 15-9 Default Web Site Properties dialog box

CHAPTER 15 Web Applications 287

Creating a web application is different from creating a Windows application. You
use the File | New | Website menu command instead of the File | New | Project menu
command.

The File | New | Website menu command displays the New Web Site dialog box
shown in Figure 15-10.

The top pane shows available templates. Choose ASP.NET Web Site. This is the
proper choice for creating a website with ASP.NET support, which is what we want
to do here.

In the Location drop-down box, choose File System. The other choices, FTP and
HTTP, both protocols discussed earlier in this chapter, are for creating ASP.NET
websites on other computers. In this chapter, you will be creating the website on
your computer.

Figure 15-10 New Web Site dialog box

Creating a Web Application

288 Visual Basic 2005 Demystifi ed

In the Language drop-down box, choose Visual Basic. The other choices, Visual
C# and Visual J#, are other languages in Visual Studio 2005 that you may use to
create an ASP.NET application.

Click the Browse button to select where on your hard drive you wish to create the
files for the ASP.NET web application. I chose a Visual Basic folder I previously
had created in the Visual Studio Projects folder under My Documents. After the
path to the Visual Basic folder (for example, D:\Documents and Settings\JAK\My
Documents\Visual Studio Projects\Visual Basic\) I typed WebSite1 for the name of
the project. Of course, you could choose a different location or name for your
project.

When finished, click the OK button, and Visual Studio 2005 will create a
barebones but working ASP.NET application.

ASP.NET Development Server
When Visual Studio 2005 is finished creating the ASP.NET application, run the
application by choosing Start or Start Without Debugging from the Debug menu.
The result will be a blank web page, as shown in Figure 15-11.

Figure 15-11 ASP.NET web page

CHAPTER 15 Web Applications 289

The URL shown in the address bar of the web browser in Figure 15-11 is http://
localhost:1040/WebSite1/Default.aspx. The http://localhost part of the URL is
explained in the earlier section “Your Computer as the Web Server.” WebSite1 is the
name of the web application, and default.aspx is the name of the web page (or web
form) that Visual Studio 2005 creates by default, much like a Windows form is
created by default when you create a Windows application.

What is new, and its meaning may not be immediately clear, is the “:1040”
following localhost. The colon (:) means that the number following is a port number
(here, 1040).

NOTENOTE The particular port number assigned by Visual Studio 2005 may be
different from 1040.

A port is a logical (as opposed to physical) connection in a computer. For
example, when you access a web page with your web browser, your request (and
the web server’s response) goes through port 80.

As mentioned in the earlier section “Internet Information Services,” ASP.NET
2.x and Visual Studio 2005 do not require you to install IIS to create web applications
that run locally (that is, on your computer as opposed to a computer elsewhere on
the Internet). Instead, local web applications are handled through the ASP.NET
Development Server, which uses various port numbers (here, 1040).

You may have an icon for the ASP.NET Development Server in your system tray.
If so, double-click it. The ASP.NET Development Server dialog box will appear, as
shown in Figure 15-12.

Figure 15-12 ASP.NET Development Server dialog box

290 Visual Basic 2005 Demystifi ed

The ASP.NET Development Server dialog box shows the following information
(though not in this order from top down):

• Physical Path The location you chose in the New Web Site
dialog box shown in Figure 15-10

• Port The port chosen by the ASP.NET Development Server
for access to local web applications (here, 1040)

• Root URL The root or base for web applications (http://
localhost:1040), followed by the name of this
web application (here, WebSite1)

• Virtual Path The path from the root URL of http:/localhost:
1040 to your web application

That is about all we can do for now with this blank web application. Close the
ASP.NET Development Server dialog box shown in Figure 15-12 and the blank
web page shown in Figure 15-11.

ASP.NET Application IDE
Figure 15-13 shows the Integrated Development Environment (IDE) for the ASP
.NET application we created by clicking OK in the New Web Site dialog box shown
in Figure 15-10.

As with Windows applications, the form in web applications, often called a web
form, also has both a design view (shown in Figure 15-13), complete with a Toolbox
and Solution Explorer, and a code view, shown in Figure 15-14.

This similarity between the IDEs for Windows and web applications makes it
easier for you to learn to develop web applications.

Although the respective IDEs of Windows and web applications are similar,
they are not the same. For example, the web form has, in addition to design and
code views, an HTML view, shown in Figure 15-15 and accessed by clicking the
Source tab, in which you can view the HTML code of the form, which after all is
a web page.

CHAPTER 15 Web Applications 291

Figure 15-13 ASP.NET application IDE

Figure 15-14 Code view

292 Visual Basic 2005 Demystifi ed

Creating a Database Web Application
We will now create a web application that parallels the Windows application we
created in Chapter 14. That Windows application displayed in a DataGridView
control the contents of four fields of the Customers table of the Northwind Traders
database. The web application you will create similarly will display the contents of
the same four fields of the Customers table of the Northwind Traders database, but
in a web browser, as shown in Figure 15-16.

Adding a GridView Control
The Windows application we created in Chapter 14 has a DataGridView control
through which we viewed the database information. For whatever reason, the web
application equivalent of the Windows DataGridView control does not have the
same name, but a slightly different one, GridView.

Figure 15-15 HTML view of the form

CHAPTER 15 Web Applications 293

Start with the web application you created in the previous section. View the web
form in designer view and click the Design tab. Then look in the Toolbox for a
GridView in the Data group, as shown in Figure 15-17.

If you don’t see the GridView in the Toolbox, you need to add it. Right-click the
Toolbox and select Choose Items… from the shortcut menu. This will display the
Choose ToolBox Items dialog box shown in Figure 15-18.

Select the check box for the GridView whose namespace is System.Web
.UI.WebControls. Next, click the OK button to close the Choose ToolBox Items
dialog box. GridView should now be added to the Toolbox, as in Figure 15-17.

Once the GridView is in the Toolbox, you add it to the web form by dragging and
dropping or double-clicking, just as you would add a control to a Windows form.

Figure 15-16 Web application in action

294 Visual Basic 2005 Demystifi ed

Figure 15-17 GridView in Toolbox

Figure 15-18 Choose ToolBox Items dialog box

CHAPTER 15 Web Applications 295

When you add the GridView control, a GridView Tasks pane displays, as shown
in Figure 15-19. You may accept the default values in this pane. However, using the
Properties window, rename the GridView control (using its ID property) dgvData to
keep its name consistent with the DataGridView control in the Windows application,
because we are attempting to port the code from the Windows application to this
web application.

Locating the Database on the Web Server
The GridView is the only control we will be adding to the web form. There is no
web application equivalent of the OpenFileDialog control that we used in the
Windows application in Chapter 14.

Additionally, we would not want the user to select the location of the database.
In a Windows application, the database often may be on the user’s computer.
Therefore, it is logical to have the user locate and select the database file using the
OpenFileDialog control. By contrast, in a web application, the database will not be
on the user’s computer, but rather a web server elsewhere on the Internet. For
security reasons, the user should not be permitted to browse the files on the web
server as the user would for the files on their own computer. Instead, the web
application should specify where the database file is.

Often the database is located in a subfolder of the web application to ease the
task of locating it through code, as will be discussed next. By default, the ASP.NET
application created by Visual Studio 2005 has a subfolder named App_Data, likely
short for application data. Copy the nwind.mdb (or Northwind.mdb) file into the
App_Data folder from wherever you saved nwind.mdb when creating the Windows
database application in Chapter 14.

Now that you have located the database on your hard drive within the web
application files, the remaining task is how to locate the database in code.

As discussed in Chapter 14, the ConnectionString property of the
OleDbConnection object requires the path to and name of the database file. In
the Windows database application in Chapter 14, you obtained the path to and the

Figure 15-19 GridView Tasks pane

296 Visual Basic 2005 Demystifi ed

name of the database file (represented by the String variable strFile) by the
FileName property of the OpenFileDialog control:

Dim myConn As New OleDbConnection
Dim dr As DialogResult
dr = dlgOpen.ShowDialog()
If dr = DialogResult.OK Then
 Dim strFile As String = dlgOpen.FileName
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & strFile & ";"

You cannot obtain the path to and the name of the database file the same way in
this web application because there is no OpenFileDialog control. However, you
know where the database file is located, in the app_data subfolder of the web
application. Thus, the virtual path to the database is http://localhost:1040/WebSite1/
app_data/ nwind.mdb.

However, the ConnectionString property requires the physical path, not the
virtual path. In this case, you know the physical path because the database file is on
your computer. However, when you are working with remote web servers, you may
not always know the physical path, or even if you did, the administrator of that web
server may change it. Therefore, you need to be able to translate the virtual path
into a physical path.

The HttpServerUtility class, which also can be referred to as the Server class, has
a MapPath method that returns the physical file path that corresponds to (is mapped
to) the specified virtual path on the web server. The following statement assigns to
the String variable strFile the physical path to the database file:

Dim strFile As String = Server.MapPath _
 ("app_data\nwind.mdb")

NOTENOTE You may need to change the reference to nwind.mdb to Northwind.mdb if
the latter is the file name on your computer.

The MapPath method starts by mapping the physical path that corresponds with
the virtual path to the web application, http://localhost:1040/WebSite1. The argument
then is appended to that physical path. The method then returns the physical path
that corresponds with the full virtual path to the database file, http://localhost:1040/
WebSite1/app_data/nwind.mdb.

Accordingly, the preceding code from Chapter 14 would be replaced with the
following:

Dim myConn As New OleDbConnection
Dim strFile As String = Server.MapPath _

CHAPTER 15 Web Applications 297

 ("app_data\nwind.mdb")
myConn.ConnectionString = "Provider = " & _
"Microsoft.Jet.OLEDB.4.0;Data Source=" & strFile & ";"

Adding Code
The next step is to write code. To do so, go to the code view of the web form.

First, we will import the System.Data and System.Data.OleDb namespaces for
the same reason we did in Chapter 14. The two Imports statements go immediately
above the class name:

Imports System.Data
Imports System.Data.OleDb
Partial Class _default

Second, as in Chapter 14, all the code will go in the Load event, this time of the
web page. This event procedure belongs to the Page object, which represents the
web form.

To create an event procedure, similar to Windows forms, you choose (Page
Events) from the left drop-down box. Then you choose the event (here, Load) from
the right drop-down box. This creates an event procedure stub. Then you write code
so your Page_Load event procedure reads as follows:

Private Sub Page_Load (ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim myConn As New OleDbConnection
 Dim strFile As String = Server.MapPath _
 ("app_data\nwind.mdb")
 myConn.ConnectionString = "Provider = " & _
 "Microsoft.Jet.OLEDB.4.0;Data Source=" & strFile & ";"
 myConn.Open()
 Dim myCMD As New OleDbCommand
 myCMD.CommandText = "SELECT CustomerID, " & _
 "ContactTitle, CompanyName, ContactName FROM Customers"
 myCMD.Connection = myConn
 Dim myAdapter As New OleDbDataAdapter
 myAdapter.SelectCommand = myCMD
 Dim ds As New DataSet
 ds.Clear()
 myAdapter.Fill(ds, "Customers")
 dgvData.DataSource = ds
 dgvData.DataMember = "Customers"
 dgvData.DataBind()
End Sub

298 Visual Basic 2005 Demystifi ed

This code differs in only two substantive respects from the corresponding code
in the Form Load event procedure in Chapter 14. First is the use of the MapPath
method, as discussed in the earlier section “Locating the Database on the Web
Server.” The second is the last statement, the call to the DataBind method of the
GridView. This method is commonly used in web applications to bind data from a
source (here, a DataSet) to a control (here, a GridView).

CAUTIONCAUTION If you don’t call the DataBind method, the web application will run
without error, but the GridView will be blank, because it was not bound to the
data source.

Run your web application from the Debug menu, again just as you would a
Windows application. The web page should display, with the GridView filled with
information, as shown previously in Figure 15-16. When you are done, close the
web page using its close button to close the application.

Conclusion
Of course, there is much more to web applications. Entire courses and books are
devoted to web applications. However, this chapter should give you an overview of
how to create a working web application that displays information from a
database.

This is the last chapter in this book. However, it should not be the last chapter in
your learning Visual Basic 2005. Rather, this book hopefully has given you a good
foundation for learning more.

Quiz
 1. What is ASP.NET?

 2. What is a URL?

 3. What is HTTP?

 4. What does the .aspx extension indicate?

 5. What is the difference between a virtual and a physical path to a web page?

 6. What project template could you use to create a web application?

CHAPTER 15 Web Applications 299

 7. What is the web control that corresponds to the DataGridView control used
in Windows applications?

 8. What is the method of the HttpServerUtility class that returns the physical
file path that corresponds to (is mapped to) the specified virtual path on a
web server?

 9. What is the name of the class that is the web application equivalent of the
Form class in a Windows application?

 10. What is the method of the GridView that needs to be called in a web
application so the GridView will not be blank?

This page intentionally left blank

301

Final Exam

 1. What is an IDE?

 2. What is a computer program?

 3. What is a programming language?

 4. What is machine language?

 5. What does “higher level” mean in the context of a programming language?

 6. What does “lower level” mean in the context of a programming language?

 7. What is the purpose of a compiler?

 8. What is a class in a programming language?

 9. What is an object of a class?

 10. What are namespaces used for?

 11. What is a property of a class?

 12. What are characteristics of a Windows application?

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

302 Visual Basic 2005 Demystifi ed

 13. What is an event of a class?

 14. What is an event procedure?

 15. What is the purpose of the assignment operator?

 16. What is the purpose of the Toolbox?

 17. How do you add a control from the Toolbox onto your form?

 18. What is the purpose of the Name property of a control?

 19. What is a naming convention?

 20. What are purposes of the text displayed by a Label control?

 21. What is a parameter of an event procedure?

 22. What does a data type signify?

 23. What is the purpose of a variable?

 24. Does Visual Basic 2005 by default require you to declare a variable before
you refer to it in code?

 25. What is a local variable?

 26. Do you have to assign a value to a variable when you declare it?

 27. What is a difference between a constant and a variable?

 28. Do you have to assign a value to a constant when you declare it?

 29. What is the significance of operator precedence?

 30. Which operator provides only the remainder resulting from division?

 31. Which operator has precedence, an arithmetic operator or the assignment
operator?

 32. What is the purpose of the Parse method of the Integer class?

 33. What is the purpose of the ToString method of the Integer class?

 34. What is a method of a class?

 35. What does the WriteLine method of the Debug class do?

 36. What is the data type of the result of a comparison performed by a
comparison operator?

 37. Which operators have precedence, comparison or arithmetic?

 38. What is the purpose of a logical operator?

 39. Which logical operator operates on only one operand rather than two?

Final Exam 303

 40. Which operators have precedence, comparison or logical?

 41. What does modal mean?

 42. What is the return value of the InputBox function if the OK button
is clicked?

 43. What is the return value of the InputBox function if the Cancel button
is clicked?

 44. What is an exception?

 45. What does the TryParse method of the Integer class do?

 46. Which two controls are commonly used with the If control structure?

 47. What is the primary difference between the If...ElseIf statement and the
Select Case control structure?

 48. What is a loop?

 49. What is a difference between the Do statement and the For...Next and
While…End While statements?

 50. What is a difference between the For Each...Next loop and the
For...Next loop?

 51. What is an array?

 52. What is the difference between declaring an array variable and
a scalar variable?

 53. What is the lowest index of an array?

 54. What is the relationship between the number of elements in an array and
the highest index in that array?

 55. What is a procedure?

 56. What is the difference between a subroutine and a function?

 57. What does the Private access specifier do when applied to a method?

 58. What does calling a subroutine do?

 59. What is the difference between the ByVal and ByRef attributes of a
parameter?

 60. What are some reasons for writing your own procedures?

 61. Is a message box modal or modeless?

 62. What value is returned by the Show method of the MessageBox class?

304 Visual Basic 2005 Demystifi ed

 63. Do buttons in a message box automatically have a DialogResult value?

 64. What is the data type of a variable you may use to store the return value of
the Show method of the MessageBox class?

 65. What method do you use to display a modal form?

 66. What is the return value from showing a dialog form?

 67. Do buttons in a dialog form you create automatically have a DialogResult
value?

 68. What method do you use to display a form as modeless rather than modal?

 69. What class represents a main menu?

 70. Is the Click event raised for all menu items?

 71. How do you gray out a menu item so it is not available when it should
not be?

 72. What does the Items collection of the MenuStrip component contain?

 73. What class represents the shortcut or context menu?

 74. What does the Items collection of the ContextMenuStrip component
contain?

 75. What are the different alternatives for having a context menu item’s
functionality handled by the corresponding main menu item?

 76. What class represents a toolbar?

 77. What class represents each item on a toolbar?

 78. What does the Items collection of the ToolStrip component contain?

 79. What are advantages of a toolbar over a corresponding menu?

 80. What are different alternatives for having a toolbar item’s functionality
handled by the corresponding main or context menu item?

 81. What method do you use to show an Open dialog box?

 82. What is the return value of showing an Open dialog box?

 83. What is the property of the OpenFileDialog class whose value is the file
chosen by the user in an Open dialog box?

 84. What method of the SaveFileDialog class do you use to show a Save
dialog box?

 85. What is the return value of showing a Save dialog box?

Final Exam 305

 86. What is the property of the SaveFileDialog class whose value is the name
of the file to be saved?

 87. What class may you use to read from a text file?

 88. What class may you use to write to a text file?

 89. What is a data provider?

 90. What is a table?

 91. What may each column in a table also be called?

 92. What may each row in a table also be called?

 93. What is ADO.NET?

 94. What is a DataSet?

 95. What is ASP.NET?

 96. What is a URL?

 97. What is HTTP?

 98. What is the difference between a virtual and a physical path to a web page?

 99. What is the method of the HttpServerUtility class that returns the physical
file path that corresponds to (is mapped to) the specified virtual path on a
web server?

 100. What is the name of the class that is the web application equivalent of the
Form class in a Windows application?

This page intentionally left blank

307

Answers to
Quizzes and
Final Exam

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

308 Visual Basic 2005 Demystifi ed

Chapter 1

 1. Visual Studio 2005 includes, in addition to Visual Basic, support for other
programming languages such as C++ and C#.

 2. You need either the Windows 2003, XP, or 2000 operating system to install
and run Visual Basic 2005.

 3. You should use the Windows Application project template to start creating
a Windows application.

 4. IDE is an acronym for Integrated Development Environment. The term
“development environment” refers to Visual Basic 2005’s role as an
application to assist you in developing applications. The term “integrated”
means the tools to design your application and write, test, and run your
code are all together in one application.

 5. A computer cannot do anything without step-by-step instructions from us
telling it what to do. These instructions, written by a computer programmer,
are called a computer program.

 6. A programming language is used by computer programmers to write
instructions for computers.

 7. Machine language is a programming language that is understood by
computers.

 8. The term “higher level” means that a programming language such as Visual
Basic 2005 is far closer to the structure and syntax of human language than
to the ones and zeroes understood by a computer.

 9. The term “lower level” means that a programming language such as
machine language is far closer to the ones and zeroes understood by
a computer than it is to the structure and syntax of human language.

 10. In general, a compiler translates the code you write into corresponding
machine language instructions. The compiler in Visual Basic 2005
translates the code into an intermediate language that then is translated
into machine language.

Chapter 2

 1. Designer view is the view of your form you would choose when you
want to design your form, such as by resizing the form or adding
controls to it.

Answers to Quizzes and Final Exam 309

 2. Code view is the view of your form you would choose when you want to
view or write the code of your application.

 3. Programming languages, including Visual Basic, use classes to represent a
person, place, thing, or concept.

 4. An object of a class is a single instance of a class, just like each of us could
be said to be an object or instance of a Person class.

 5. Namespaces are used to organize code in a logical manner.

 6. A property is a characteristic or attribute of a class.

 7. A Windows application has a graphical user interface (GUI) and is
event-driven.

 8. An event is something that happens to an object of a class, such as a result
of user interaction.

 9. An event procedure contains code that executes when a specific event
happens to a specific object.

 10. The purpose of the assignment operator is to assign the expression to its
right to the variable or property to its left.

Chapter 3

 1. TextBox, Label, ListBox, and Button are examples of controls.

 2. The purpose of the Toolbox is to display controls that you can add to
your form.

 3. You may add a control from the Toolbox on to your form either by double-
clicking the control in the Toolbox or by dragging the control from the
Toolbox and then dropping it on to the form,

 4. The Name property of a control is used to identify that control in code.

 5. A naming convention is a consistent method of naming, such as for naming
controls.

 6. The value of the Text property of a Label control determines the text that
will be displayed by the label.

 7. The text displayed by a label may identify another, adjacent control, or it
may display data.

 8. The line-continuation character, an underscore (_) preceded by a space,
is used to divide one, usually long line of code into multiple shorter lines
of code.

310 Visual Basic 2005 Demystifi ed

 9. A parameter represents information that is available to an event procedure.

 10. The Handles clause indicates the object and the event of that object that is
handled by an event procedure.

Chapter 4

 1. A data type signifies whether the data is numeric, text, yes/no, and so forth.

 2. A floating-point number is a number that may have a value to the right of
the decimal point.

 3. No, you cannot change the data type of a built-in property of a form.

 4. The purpose of a variable is to store data of your choosing.

 5. Yes, Visual Basic 2005, by the default setting of Option Explicit as On,
requires you to declare a variable before you refer to it in code.

 6. A local variable is a variable declared inside of a procedure.

 7. A module-level variable is a variable declared outside of a procedure.

 8. No, you do not have to assign a value to a variable when you declare it.

 9. A constant’s value cannot change during the life of the program, whereas
a variable’s value may change during the life of the program.

 10. Yes, you have to assign a value to a constant when you declare it.

Chapter 5

 1. The addition operator works with string as well as numeric variables.

 2. Operator precedence determines, when there are two or more arithmetic
operators, which arithmetic operation is done first.

 3. You can override default operator precedence with parentheses.

 4. The ^ operator raises a number to a specified power.

 5. The / operator performs floating-point division, the remainder being
preserved and expressed as a decimal, whereas the \ operator performs
integer division, the remainder being dropped.

 6. The Mod operator provides only the remainder resulting from division.

 7. All arithmetic operators have precedence over the assignment operator.

Answers to Quizzes and Final Exam 311

 8. The Parse method of the Integer class converts the string representation of
an integer into actual integer values.

 9. The ToString method of the Integer class converts an integer into its string
representation.

 10. A method is something an object of a class does.

Chapter 6

 1. The WriteLine method of the Debug class outputs a line to the Output
window.

 2. The data type of the result of a comparison performed by a comparison
operator is Boolean, True or False.

 3. You can tell if the = operator is being used for assignment or comparison
based on the code context in which the operator is used.

 4. Yes, you can use comparison operators with strings as well as with numeric
data types.

 5. Option Compare determines whether a comparison is case sensitive
or not.

 6. The Like operator returns True or False depending on whether a string
matches a specified pattern.

 7. Arithmetic operators have higher precedence than comparison operators.

 8. A logical operator is used to combine multiple comparisons.

 9. Not is the logical operator that operates on only one operand rather
than two.

 10. Comparison operators have higher precedence than logical operators.

Chapter 7

 1. Modal means a form must be closed before the application user can return
to any other form in the application.

 2. Modeless.

 3. The return value of the InputBox function if the OK button is clicked is
whatever the user typed in the input box.

312 Visual Basic 2005 Demystifi ed

 4. The return value of the InputBox function if the Cancel button is clicked is
an empty string.

 5. If…Then, If…Then…Else, and If…ElseIf.

 6. An exception is a problem that occurs while the program is executing that
must be dealt with before the program can proceed.

 7. The TryParse method of the Integer class converts the string representation
of an integer into an integer, but also returns a Boolean value (True or False)
indicating whether the conversion was successful.

 8. The CheckBox and RadioButton controls.

 9. The primary difference is that, in the If...ElseIf statement, the If and ElseIf
clauses each may evaluate completely different expressions, whereas a
Select Case control structure may evaluate only one expression, which then
must be used for every comparison.

 10. The Case Else part of a Select Case control structure performs the same
purpose as an Else clause in an If control structure.

Chapter 8

 1. A loop is a structure that repeats the execution of code until a condition
becomes False.

 2. A difference between a While...End While statement and a For…Next
statement is that a For…Next statement generally is intended to run a
fixed number of times, whereas a While...End While statement may run
an indefinite number of times.

 3. A difference between the Do statement and the For...Next and While…End
While statements is that a Do statement may test a condition at the bottom
as well as the top of the statement, whereas the For...Next and While…End
While statements may test a condition only at the top of the statement.

 4. The For Each...Next loop executes the statement block for each element
in a collection, instead of a specified number of times as does the
For...Next loop.

 5. Examples of nesting are a loop within a loop, and an If control structure
within a loop.

 6. An array variable permits you to use a single variable to store multiple
values, whereas a scalar variable may only store one variable at a time.

Answers to Quizzes and Final Exam 313

 7. With an array variable, unlike a scalar variable, the array name is followed
by a pair of parentheses, and within the parentheses you indicate the
highest index of the array.

 8. The lowest index of an array is zero.

 9. The number of elements in an array is one greater than the highest index
in that array because the index of the first element is zero.

 10. Yes, if you declare an array without assigning a value to its elements,
its elements have a default value, the value depending on the data type
of the array.

Chapter 9

 1. A procedure is a block of one or more code statements that execute when
called upon to do so.

 2. A subroutine does not return a value, whereas a function does.

 3. An event procedure is a subroutine.

 4. The Private access specifier limits access to the class in which the
procedure was declared.

 5. There is no difference between the Return and Exit Sub statements in
subroutines; both end execution of the subroutine.

 6. Calling a subroutine causes it to execute.

 7. When a parameter has the ByVal attribute, any change to the value
of the parameter in the called procedure does not affect the value
of the corresponding argument in the calling procedure. By contrast,
when a parameter has the ByRef attribute, any change to the value
of the parameter in the called procedure does affect the value of the
corresponding argument in the calling procedure.

 8. The difference between a subroutine and a function in the use of the
keyword Return is that in a subroutine the keyword Return appears
by itself because no value is being returned, whereas in a function
Return is followed by the value to be returned.

 9. The two syntax options for a function returning a value are the
Return statement and assigning to the function name the value
to be returned.

314 Visual Basic 2005 Demystifi ed

 10. Writing your own procedures enables you to organize your code in smaller,
easier-to-read code blocks. Additionally, if you are performing essentially
the same task from several places in the program, you can avoid duplication
of code by putting the code that performs that task in one procedure, as
opposed to repeating that code in each place in the program that may call
for the performance of that task. Further, if you later have to fix a bug in
how you perform that task, or simply find a better way to perform the task,
you only have to change the code in one place rather than many.

Chapter 10

 1. A message box is modal.

 2. The Show method of the MessageBox class returns a member of the
DialogResult enumeration corresponding to the button the user clicked.

 3. No, you may call the Show method of the MessageBox class with a
different number of arguments because that method is overloaded.

 4. Yes, buttons in a message box automatically have a DialogResult value.

 5. You would use the DialogResult data type for a variable you would use
to store the return value of the Show method of the MessageBox class.

 6. An enumeration is a list of related choices.

 7. You use the ShowDialog method of the Form object to display a modal
form.

 8. The return value of showing a dialog form is the DialogResult property
of that form.

 9. No, buttons in a dialog form you create do not automatically have a
DialogResult value; you have to assign a value to the DialogResult
property of each button.

 10. You use the Show method of the Form object to display a modal form.

Chapter 11

 1. A main menu is represented by the MenuStrip class.

 2. Each item on a main menu is represented by the ToolStripMenuItem class.

 3. An access key is the keyboard combination of the ALT key plus a letter in
the menu item that is underlined.

Answers to Quizzes and Final Exam 315

 4. No, the Click event is raised only for menu items that do not have
subsidiary menu items, because when a menu item with subsidiary
items is clicked, the behavior is to display the subsidiary menu items.

 5. You gray out a menu item so it is not available when it should not be by
setting its Enabled property to False.

 6. The Items collection of the MenuStrip component contains a collection of
the ToolStripMenuItems belonging to the MenuStrip.

 7. The shortcut or context menu is represented by the ContextMenuStrip class.

 8. Each item on a context menu is represented by the ToolStripMenuItem
class.

 9. The Items collection of the ContextMenuStrip component contains a
collection of the ToolStripMenuItems belonging to the ContextMenuStrip.

 10. The different alternatives for having a context menu item’s functionality
handled by the corresponding main menu item are AddHandler, expanding
the Handles clause, and calling another event procedure.

Chapter 12

 1. The toolbar is represented by the ToolStrip class.

 2. Each item on the toolbar is represented by the ToolStripItem class.

 3. The Items collection of the ToolStrip component contains a collection of
the ToolStripItems belonging to the ToolStrip.

 4. No, a toolbar item is not limited to a button, but instead may be one of
several other types of controls.

 5. Toolbar buttons are immediately accessible, whereas menu items may be
nested several levels deep and can be accessed only by multiple mouse
clicks or keystrokes. Additionally, a toolbar button is visual, which gives
a more visual interface than the text of a menu item.

 6. Different alternatives for having a toolbar item’s functionality handled by
the corresponding main or context menu item are AddHandler, expanding
the Handles clause, and calling another event procedure.

 7. The DisplayStyle property of the ToolStripItem class determines whether
an image or text may be displayed on a button.

 8. The Image property of the ToolStripItem class determines the image
displayed on a button.

316 Visual Basic 2005 Demystifi ed

 9. The Items Collection Editor is useful in adding controls to a toolbar.

 10. One good prefix for naming a toolbar button is “tbtn,” where “t” stands for
toolbar and “btn” stands for button.

Chapter 13

 1. The Open dialog box is a control of the OpenFileDialog class.

 2. You use the ShowDialog method of the OpenFileDialog class to show an
Open dialog box.

 3. The return value of showing an Open dialog box is either DialogResult.OK
if the user chose the Open button or DialogResult.Cancel if the user chose
the Cancel button.

 4. The OpenFileDialog class has a FileName property whose value is a
string containing the path to and the name of the file selected in the
Open dialog box.

 5. The Save dialog box is a control of the SaveFileDialog class.

 6. You use the ShowDialog method of the SaveFileDialog class to show
a Save dialog box.

 7. The return value of showing a Save dialog box is either DialogResult.OK if
the user chose the Save button or DialogResult.Cancel if the user chose the
Cancel button.

 8. The SaveFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file to be saved.

 9. You may use the StreamReader class to read from a text file.

 10. You may use the StreamWriter class to write to a text file.

Chapter 14

 1. A data provider is a code component used by your application to connect
to a specific database format.

 2. Server Explorer enables you to view and make changes to databases on
your computer or on any other computer to which you have network
access and permissions.

Answers to Quizzes and Final Exam 317

 3. A table is a collection of data, usually on a particular subject such as
customers, employees, and so on.

 4. Each column in a table also may be called a field.

 5. Each row in a table also may be called a record.

 6. The code components used for database access in the .NET class library
are referred to by the name ADO.NET.

 7. The OleDbConnection class represents a connection to a data source.

 8. You use the OleDbCommand class to execute commands to a database.

 9. You use the OleDbDataAdapter class to package a database connection
with a set of data commands.

 10. A DataSet is a representation of the data stored in RAM.

Chapter 15

 1. The code components used for web applications in the .NET class library
are referred to by the name ASP.NET.

 2. A URL, an acronym for Uniform Resource Locator, represents an address
of a web page.

 3. HTTP is an acronym for Hypertext Transfer Protocol. HTTP defines how
messages are formatted and transmitted, and what actions web servers and
browsers should take in response to various commands.

 4. The .aspx extension indicates that the web page is part of an ASP.NET
application.

 5. A URL such as http://localhost/localstart.asp would be the virtual path to
the web page, whereas a file path such as C:\Inetpub\Wwwroot\localstart
.asp would be the physical path to the web page.

 6. You may use the ASP.NET Web Site project template to create a web
application.

 7. GridView is the web control that corresponds to the DataGridView control
used in Windows applications.

 8. MapPath is the method of the HttpServerUtility class that returns the
physical file path that corresponds to (is mapped to) the specified virtual
path on a web server.

318 Visual Basic 2005 Demystifi ed

 9. Page is the name of the class that is the web application equivalent of the
Form class in a Windows application.

 10. DataBind is the method of the GridView that needs to be called in a web
application so the GridView will not be blank.

Final Exam

 1. IDE is an acronym for Integrated Development Environment. The term
“development environment” refers to Visual Basic 2005’s role as an
application to assist you in developing applications. The term “integrated”
means the tools to design your application and to write, test, and run your
code are all together in one application.

 2. A computer cannot do anything without step-by-step instructions from us
telling it what to do. These instructions, written by a computer programmer,
are called a computer program.

 3. A programming language is used by computer programmers to write
instructions for computers.

 4. Machine language is a programming language that is understood by
computers.

 5. The term “higher level” means that a programming language such as Visual
Basic 2005 is far closer to the structure and syntax of human language than
to the ones and zeroes understood by a computer.

 6. The term “lower level” means that a programming language such as
machine language is far closer to the ones and zeroes understood by
a computer than it is to the structure and syntax of human language.

 7. In general, a compiler translates the code you write into corresponding
machine language instructions. The compiler in Visual Basic 2005
translates the code into an intermediate language that then is translated into
machine language.

 8. Programming languages, including Visual Basic, use classes to represent
a person, place, thing, or concept.

 9. An object of a class is a single instance of a class, just like each of us could
be said to be an object or instance of a Person class.

 10. Namespaces are used to organize code in a logical manner.

 11. A property is a characteristic or attribute of a class.

Answers to Quizzes and Final Exam 319

 12. A Windows application has a graphical user interface (GUI) and is
event-driven.

 13. An event is something that happens to an object of a class, such as a result
of user interaction.

 14. An event procedure contains code that executes when a specific event
happens to a specific object.

 15. The purpose of the assignment operator is to assign the expression to its
right to the variable or property to its left.

 16. The purpose of the Toolbox is to display controls that you can add
to your form.

 17. You may add a control from the Toolbox on to your form either by double-
clicking the control in the Toolbox or by dragging the control from the
Toolbox and then dropping it on to the form,

 18. The Name property of a control is used to identify that control in code.

 19. A naming convention is a consistent method of naming, such as naming
controls.

 20. The text displayed by a Label may identify another, adjacent control,
or it may display data.

 21. A parameter represents information that is available to an event procedure.

 22. A data type signifies whether the data is numeric, text, yes/no, and
so forth.

 23. The purpose of a variable is to store data of your choosing.

 24. Yes, Visual Basic 2005 by the default setting of On for Option Explicit
requires you to declare a variable before you refer to it in code.

 25. A local variable is a variable declared inside of a procedure.

 26. No, you do not have to assign a value to a variable when you declare it.

 27. A constant’s value cannot change during the life of the program, whereas
a variable’s value may change during the life of the program.

 28. Yes, you have to assign a value to a constant when you declare it.

 29. Operator precedence determines, when there are two or more arithmetic
operators, which arithmetic operation is done first.

 30. The Mod operator provides only the remainder resulting from division.

 31. All arithmetic operators have precedence over the assignment operator.

320 Visual Basic 2005 Demystifi ed

 32. The Parse method of the Integer class converts the string representation of
an integer into actual integer values.

 33. The ToString method of the Integer class converts an integer into its string
representation.

 34. A method is something an object of a class does.

 35. The WriteLine method of the Debug class outputs a line to the Output
window.

 36. The data type of the result of a comparison performed by a comparison
operator is Boolean (that is, True or False).

 37. Arithmetic operators have higher precedence than comparison operators.

 38. A logical operator is used to combine multiple comparisons.

 39. Not is the logical operator that operates on only one operand rather
than two.

 40. Comparison operators have higher precedence than logical operators.

 41. Modal means a form must be closed before the application user can return
to any other form in the application.

 42. The return value of the InputBox function if the OK button is clicked is
whatever the user typed in the input box.

 43. The return value of the InputBox function if the Cancel button is clicked is
an empty string.

 44. An exception is a problem that occurs while the program is executing that
must be dealt with before the program can proceed.

 45. The TryParse method of the Integer class converts the string representation
of an integer into an integer, but also returns a Boolean value (True or
False) indicating whether the conversion was successful.

 46. The CheckBox and RadioButton controls.

 47. The primary difference in the If...ElseIf statement and the Select Case
control structure is that the If and ElseIf clauses each may evaluate
completely different expressions, whereas a Select Case control structure
may evaluate only one expression, which then must be used for every
comparison.

 48. A loop is a structure that repeats the execution of code until a condition
becomes False.

 49. A difference between the Do statement and the For...Next and While…End
While statements is that a Do statement may test a condition at the bottom

Answers to Quizzes and Final Exam 321

as well as at the top of the statement, whereas the For...Next and While…
End While statements may test a condition only at the top of the statement.

 50. The For Each...Next loop executes the statement block for each element in
a collection, instead of a specified number of times.

 51. An array permits you to use a single variable to store multiple values.

 52. The difference between declaring an array variable and a scalar variable is
that with an array variable, unlike with a scalar variable, the array name
is followed by a pair of parentheses, and within the parentheses you
indicate the highest index of the array.

 53. The lowest index of an array is zero.

 54. The number of elements in an array is one greater than the highest index in
that array because the index of the first element is zero.

 55. A procedure is a block of one or more code statements that execute when
called upon to do so.

 56. A subroutine does not return a value, whereas a function does.

 57. The Private access specifier limits access to the class in which the
procedure was declared.

 58. Calling a subroutine causes it to execute.

 59. When a parameter has the ByVal attribute, any change to the value of
the parameter in the called procedure does not affect the value of the
corresponding argument in the calling procedure. By contrast, when a
parameter has the ByRef attribute, any change to the value of the parameter
in the called procedure does affect the value of the corresponding argument
in the calling procedure.

 60. Writing your own procedures enables you to organize your code in smaller,
easier-to-read code blocks. Additionally, if you are performing essentially
the same task from several places in the program, you can avoid duplication
of code by putting the code that performs that task in one procedure, as
opposed to repeating that code in each place in the program that may call
for the performance of that task. Further, if you later have to fix a bug in
how you perform that task, or simply find a better way to perform the task,
you only have to change the code in one place rather than many.

 61. A message box is modal.

 62. The Show method of the MessageBox class returns a member of the
DialogResult enumeration corresponding to the button the user clicked.

 63. Yes, buttons in a message box automatically have a DialogResult value.

322 Visual Basic 2005 Demystifi ed

 64. You would use the DialogResult data type for a variable you may use to
store the return value of the Show method of the MessageBox class.

 65. You use the ShowDialog method of the Form object to display a modal form.

 66. The return value of showing a dialog form is the DialogResult property of
that form.

 67. No, buttons in a dialog form you create do not automatically have a
DialogResult value; you have to assign a value to the DialogResult
property of each button.

 68. You use the Show method of the Form object to display a modeless form.

 69. A main menu is represented by the MenuStrip class.

 70. No, the Click event is raised only for menu items that do not have subsidiary
menu items, because when a menu item with subsidiary items is clicked, the
behavior is to display the subsidiary menu items.

 71. You gray out a menu item so it is not available when it should not be by
setting its Enabled property to False.

 72. The Items collection of the MenuStrip component contains a collection of
the ToolStripMenuItems belonging to the MenuStrip.

 73. The shortcut or context menu is represented by the ContextMenuStrip class.

 74. The Items collection of the ContextMenuStrip component contains a
collection of the ToolStripMenuItems belonging to the ContextMenuStrip.

 75. Different alternatives for having a context menu item’s functionality handled
by the corresponding main menu item include using AddHandler, expanding
the Handles clause, and calling another event procedure.

 76. The toolbar is represented by the ToolStrip class.

 77. Each item on the main menu is represented by the ToolStripItem class.

 78. The Items collection of the ToolStrip component contains a collection of
the ToolStripItems belonging to the ToolStrip.

 79. Toolbar buttons are immediately accessible, whereas menu items may be
nested several levels deep and can be accessed only by multiple mouse
clicks or keystrokes. Additionally, a toolbar button gives a more visual
interface than the text of a menu item.

 80. Different alternatives for having a toolbar item’s functionality handled by
the corresponding main or context menu item include using AddHandler,
expanding the Handles clause, and calling another event procedure.

Answers to Quizzes and Final Exam 323

 81. You use the ShowDialog method of the OpenFileDialog class to show an
Open dialog box.

 82. The return value of showing an Open dialog box is either DialogResult.OK
if the user chose the Open button or DialogResult.Cancel if the user chose
the Cancel button.

 83. The OpenFileDialog class has a FileName property whose value is a
string containing the path to and the name of the file selected in the
Open dialog box.

 84. You use the ShowDialog method of the SaveFileDialog class to show a
Save dialog box.

 85. The return value of showing a Save dialog box is either DialogResult.OK if
the user chose the Save button or DialogResult.Cancel if the user chose the
Cancel button.

 86. The SaveFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file to be saved.

 87. You may use the StreamReader class to read from a text file.

 88. You may use the StreamWriter class to write to a text file.

 89. A data provider is a code component used by your application to connect
to a specific database format.

 90. A table is a collection of data, usually on a particular subject, such as
customers, employees, and so on.

 91. Each column in a table also may be called a field.

 92. Each row in a table also may be called a record.

 93. The code components used for database access in the .NET class library are
referred to by the name ADO.NET.

 94. A DataSet is a representation of the data stored in RAM.

 95. The code components used for web applications in the .NET class library
are referred to by the name ASP.NET.

 96. A URL, an acronym for Uniform Resource Locator, represents an address
of a web page.

 97. HTTP is an acronym for Hypertext Transfer Protocol. HTTP defines how
messages are formatted and transmitted, and what actions web servers and
browsers should take in response to various commands.

324 Visual Basic 2005 Demystifi ed

 98. A URL such as http://localhost/localstart.asp would be the virtual path to
the web page, whereas a file path such as C:\Inetpub\Wwwroot\localstart
.asp would be the physical path to the web page.

 99. MapPath is the method of the HttpServerUtility class that returns the
physical file path that corresponds to (is mapped to) the specified virtual
path on a web server.

 100. Page is the name of the class that is the web application equivalent of the
Form class in a Windows application.

325

Numbers
0-9, ASCII values of, 103
:1040 after localhost, significance of, 289

Symbols
– (subtraction operator), using, 81
(pound sign) pattern-matching

character, using in string
comparisons, 104–105

& (ampersand)
preceding access keys with, 205
using, 81

() (parentheses), using with event
procedures, 56–57

(_) line-continuation character, using
with event procedures, 56

* (asterisk) pattern-matching character,
using in string comparisons, 104–105

* (multiplication operator), using, 81
*= arithmetic/assignment operator, uses

of, 84
/ (division operator), using, 82
/= arithmetic/assignment operator, uses

of, 84
? (question mark) pattern-matching

character, using in string
comparisons, 104–105

\ (division operator), using, 82
\= arithmetic/assignment operator, uses

of, 84
^ (exponent operator), using, 81–82
^= arithmetic/assignment operator, uses

of, 84
+ (addition operator), using, 80–81
+= arithmetic/assignment operator, uses

of, 84
< (less than operator), result of, 100
<= (less than or equal to operator), result

of, 100
<> (inequality operator), result of, 101

= (assignment operator), using with
event procedures, 39–40

= (equality operator), result of, 101
–= arithmetic/assignment operator, uses

of, 84
> (greater than operator), result of, 101
>= (greater than or equal to operator)

result of, 101
using Or logical operator

with, 108
' (apostrophe), using for comments, 40
" (quotation marks), using with strings

and event procedures, 40

AA
Abort choice, using with DialogResult

enumeration, 186
AbortRetryIgnore choice, using with

MessageBoxButtons
enumeration, 184

About dialog box as dialog form,
significance of, 180

access keys, using with menu items,
205–206

Accessibility element
of functions, 169
of subroutines, 160, 161

Add Connection dialog box, using with
Northwind Traders database,
258–259

Add New Item dialog box, using with
dialog forms, 189

Add Reference dialog box, using with
database project, 266–267

AddHandler keyword, using with
context menu items, 216, 219

addition operator (+), using, 80–81
ADO.NET classes, using with database

project, 266

algorithm, creating for Change Machine
project, 90–92

ALT key, using with menu items, 205–206
ampersand (&)

preceding access keys with, 205
using, 81

And logical operator
versus AndAlso operator, 111
overview of, 106–107

AndAlso logical operator
versus And operator, 111
overview of, 107

apostrophe ('), using for comments, 40
applications, viewing, 23. See also

Windows applications
arguments

matching with parameters,
165–166

passing to procedures, 164–168
arithmetic operators

addition operator (+), 80–81
combining with assignment

operators, 83–84
division operators (/ and \), 82
exponent operator (^), 81–82
multiplication operator (*), 81
precedence of, 83
subtraction operator (–), 81

arrays. See also variables
declaring, 153
default values for, 153–154
description of, 153
dimensions of, 155

As Type element
description of, 169
using with functions, 169
using with ReturnInput

function, 170
ASCII values of commonly used

characters, 103

INDEX

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use.

326 Visual Basic 2005 Demystifi ed

ASP.NET, overview of, 278
ASP.NET application IDE, significance

of, 290–291
ASP.NET Development Server, using,

288–290
ASP.NET support, including in

websites, 287
assignment operator (=)

combining arithmetic operators
with, 83–84

using with event procedures,
39–40

asterisk (*) pattern-matching character,
using in string comparisons, 104–105

Asterisk choice, using with
MessageBoxIcon enumeration, 185

auto hide behavior, impact on
Toolbox, 46

AutoSize property, using with Label
controls, 48–49

A-Z and a-z, ASCII values of, 103

BB
BackColor property, changing for

labels, 53
bitmap files, using as toolbar images,

230–231
blnResident prefix, using with data

types, 72
Boolean data types, using, 67
Boolean values, returning for functions,

173–174
btnClose, adding code to Click event

of, 181
btnNewCaption, adding code to Click

event of, 192, 194
btnWrite button, adding to form, 245
Build menu

options on, 13
running projects from, 12

Button1-3 MessageBoxDefaultButton
enumerations, descriptions of, 185

buttons. See toolbar buttons
ByVal and ByRef attributes, using with

procedures, 166–167

CC
“c” argument, using as format specifier

in Pizza Calculator, 134
Cancel button

determining selection of, 242–243
effect on input boxes, 119

Cancel choice, using with DialogResult
enumeration, 186

Change Machine project
creating, 87–89
creating algorithm for, 90–92
description of, 86

Char data types, using, 68
characters, ASCII values of, 103
CheckBox controls

versus RadioButton controls, 130
using with If control structures,

128–130
Checked property, using with CheckBox

control, 129
Choose Data Source dialog box, using

with Northwind Traders database,
257–258

class methods, significance of, 86
classes

and events, 35
and properties, 28–29
use of, 25–26

Clear method of DataSet object, effect
of, 273

Click event procedure
of btnCalculate, 89
of btnClear, 89
of btnClose, 181
of btnNewCaption, 192, 194
of Calculate button in Pizza

Calculator, 133
calling for context menu

items, 216
calling PrintInput subroutine

from, 163
handling for Cut toolbar

button, 233
of Paste toolbar button, 234
of Read button, 244, 248–249
using with menu items, 207–208
of Write button, 250–252

Close method of form object,
significance of, 187

code
associating with clicks of toolbar

buttons, 233–234
identifying errors in, 57–59
translating with compilers, 16
writing inside event procedures,

38–39
code view

implementing, 23
for web forms, 290–291

commands, creating for database
project, 269–271

CommandText property, using with
database project, 270

comments, indicating with apostrophe
('), 40

comparison operators
capabilities of, 98
and For...Next statements, 141
numeric comparison operators,

100–101
overview of, 100
precedence of, 105
string comparison operators, 102

comparisons
combining with logical

operators, 106
using Like operator with,

104–105
using Option Compare statement

with, 103
using pattern matching with, 104

compiler errors. See also errors
“Name ‘intVar’ is not

declared,” 73
“Option Strict On disallows

implicit conversions…,” 94
compilers, purpose of, 16
computer program, definition of, 15
connections

linking commands to, 270–271
opening for database project, 269

ConnectionString property of
OleDbConnection class

using with database project, 268
using with database web

applications, 296
console, example of, 32
constants

assigning values to, 76
declaring, 75–76
declaring for Pizza Calculator

project, 132–133
guidelines for use of, 76–77

context menu items
adding functionality to,

214–216
using AddHandler keyword with,

216, 219
using handles clause with, 216

context menus, features of, 209–210.
See also menus

INDEX 327

ContextMenuStrip objects
adding menu items to, 211–214
adding to forms, 210–211
pasting items into, 214–215

control structures
If control structures, 119–123
Select Case, 134–137

controls
copying from Toolbox to

forms, 46
relocating, 46–48
resizing, 48–49

coordinates in graphing, relationship to
Label controls, 52–53

Copy command, duplicating in context
and main menus, 213–214

Copy toolbar button, assigning image
to, 232

copying menus, 214
counter variables, using Step statements

with, 144
CTRL shortcut key, using with menu

items, 206–207
Customers table in Northwind Traders

database, features of, 262–263
Cut command, duplicating in context

and main menus, 213–214
Cut toolbar button

assigning image to, 232
using Click event procedure

with, 233

DD
data namespaces, importing for database

project, 266
data sources, connecting to, 268
data types

numeric data types, 67
overview of, 66
prefixes for, 71
text data types, 68
of Visual Basic properties, 68–69

database project. See also Northwind
Traders database; projects

creating command for, 269–271
creating connection for, 267–269
creating form for, 264–265
description of, 264
filling DataGridView control in,

271–274
importing data namespaces

for, 266

database web applications. See also web
applications

adding code, 297–298
adding GridView control to,

292–295
databases

locating on web servers, 295–297
tables in, 261

DataBind method of GridView,
relationship to database web
applications, 298

DataGridView control
connecting to DataSet, 274
filling, 271–274
using with database project, 265

DataSet class
connecting DataGridView to, 274
creating for database project,

272–273
dblGPA prefix, using with data types, 72
Debug menu, running projects from, 39
debugging

overview of, 98–99
projects, 125

Debug.WriteLine statement. See
WriteLine method of Debug class

Default Web Site, starting for IIS,
282–283, 286

design time
changing properties at, 31
explanation of, 13, 22

designer view
choosing and implementing, 23
displaying Object Browser

from, 25
opening Properties window

from, 29–30
dialog forms. See also forms; modal

versus modeless forms
About dialog box as, 180
accessing values from, 194
changing properties of, 190–191
creating project for, 188–192
versus MessageBox class,

192, 193
preventing from closing, 193–194
showing and returning results of,

192–193
DialogResult values

processing, 187–188
returning, 193–194
returning with ShowDialog

method, 242

Dim access specifier, using with
variables, 70

disconnected application versus
persistent connection, 267–268

DisplayStyle property, setting for
images on toolbar buttons, 228

division operators (/ and \), using, 82
Do statements

testing conditions at bottom of,
151–152

testing conditions at top of,
150–151

DOS versus Windows applications,
32–34

Double class, Parse method of, 85
Double data types, using, 67
DropDownItems collection property,

description of, 203

EE
Else clauses, characteristics of, 123
Enabled property of menu items, setting

to False, 209
End Function element, description

of, 169
End If, omission from If...Then

statements, 120
End Sub element of subroutines,

description of, 160
environment setting defaults,

choosing, 7–8
equality operator (=), result of, 101
Error choice, using with

MessageBoxIcon enumeration, 185
errors, identifying in code, 57–59. See

also compiler errors
event procedure stubs

creating, 36–38
creating for Click event of

btnCalculate, 89
creating for Click event of

btnClear, 89
creating for MouseMove form

event, 54
event procedures

creating for database web
applications, 297

detection of, 36
Handles clause in, 57
line-continuation character in, 56
parameters of, 56–57

328 Visual Basic 2005 Demystifi ed

purpose of, 35
writing code inside of, 38–39

events, relationship to Windows
programming, 35

exceptions
determining occurrence of,

126–127
overview of, 124–125
unhandled exceptions, 125–126

Exclamation choice, using with
MessageBoxIcon enumeration, 185

Exit For statements, using, 145
Exit Function element, description

of, 169
Exit Sub statements, using with

subroutines, 160, 162
Exit While statements, using, 149–150
expander, location of, 25
explicit versus implicit type

conversion, 93
exponent operator (^), using, 81–82
expressions, using with Select Case

control structure, 135

FF
fields, displaying in Customers table,

262–263
File menu item, adding, 201
FileName property of OpenFileDialog

control
using with database web

applications, 296
value of, 244

files, identifying for opening, 243–244
Fill method of OleDbDataAdapter

object, effect of, 273
Find form, modeless type of, 117
firefighter analogy, applying to calling

subroutines, 162–163
For Each...Next loops, using, 152
For...Next statements

and comparison operators, 141
execution of, 143
nesting If...End If statements

in, 146
and Step statements, 145
syntax of, 140–141
versus While...End While loops,

148–150
Form class, relationship to System.

Windows.Forms namespace, 27–28

Form object
Close method of, 187
ShowDialog method of,

192–193
Form1 class events

choosing, 36
listing, 37

format specifier, using in Pizza
Calculator project, 134

forms. See also dialog forms; helper
forms; modal versus modeless
forms; web forms

adding ontextMenuStrip objects
to, 210–211

adding labels to, 53
adding MenuStrip controls to,

199–200
adding OpenFileDialog control

to, 240–241
adding SaveFileDialog class to,

244–245
adding toolbars to, 222–223
copying controls to, 46
creating for database project,

264–265
displaying, 192
displaying in designer view,

23–24
modal versus modeless types of,

194–195
Friend accessibility specifier, meaning

of, 161
frmCaption object, creating, 193
Function element, description of, 169
functions

calling, 170–171
in databases, 262
declaring, 168–170
definition of, 158
elements of, 169
returning Boolean values for,

173–174
returning default values for, 173
returning values for, 171–174
versus subroutines, 168–169

GG
GetLowerBound and GetUpperBound

methods, using with arrays, 154
greater than operator (>), result of, 101

greater than or equal to operator (>=)
result of, 101
using Or logical operator

with, 108
GridView controls

adding to database web
applications, 292–295

DataBind method of, 298
GUIs (graphical user interfaces),

Windows applications as, 32–34

HH
Hand choice, using with

MessageBoxIcon enumeration, 185
Handles clause

expanding for Click event
procedure, 233–234

using with context menu
items, 216

using with event procedures, 57
hard drive space, requirements for, 5
helper forms, example of, 179–180.

See also forms
HttpServerUtility class, using with

database web applications, 296

II
IDE (Integrated Development

Environment)
for ASP.NET application, 290
displaying, 11
running projects with, 12–13

If control structures
RadioButton controls, 130
using CheckBox controls with,

128–130
using in Pizza Calculator project,

133–134
varieties of, 119–120

If...Else statements, using with
CheckBox controls, 130

If...ElseIf statements
versus Select Case control

structure, 137
using, 122–123
using TryParse method with, 128
using with RadioButton

controls, 130
If...End If statements, nesting in For...

Next statements, 146

INDEX 329

If...Then statements, using, 120–121
If...Then...Else statements

using, 121–122
using with Exit For

statements, 145
using with functions and

Boolean values, 173
Ignore choice, using with DialogResult

enumeration, 186
IIS (Internet Information Services)

determining installation of, 279
installing, 280
opening Default Web Site for,

282–283
overview of, 278

IIS Admin Service, starting, 280–282
images, associating with toolbar buttons,

227–232
ImageScaling property, setting to

SizeToFit, 233
implicit versus explicit type

conversion, 93
Imports statements, using with database

web applications, 297
inequality operator (<>), result of, 101
Information choice, using with

MessageBoxIcon enumeration, 185
inheritance by classes, explanation of, 27
initialization, relationship to local

variables, 73
“Input string was not in a correct

format” message, displaying,
124–125

input validation
and exceptions, 124–128
overview of, 124

InputBox function, using, 116–119
installing Visual Basic 2005, 6–7
Integer class, TryParse method of,

127–128
Integer data types, using, 67
intScore prefix, using with data types, 72
intVar variable, declaring, 73, 74
“Invalid score,” outputting with Select

Case control structure, 136–137
Is keyword, using with Select Case

control structure, 135
Items Collection Editor

adding items to context menus
with, 212–213

opening, 203, 225

using with images for toolbar
buttons, 228–229

using with toolbar buttons, 224
Items collection, using with MenuStrip

component, 202–204

KK
keyboard shortcuts, using with menu

items, 206–207

LL
Label class, properties of, 50–51
Label controls

situating in forms, 46
using, 52–55

labels, adding for forms, 53
less than operator (<), result of, 100
less than or equal to operator (<=), result

of, 100
Like operator, using with comparisons,

104–105
line-continuation character (_), using

with event procedures, 56
local scope, declaring constants at, 75
local variables, declaring, 72–73
logical operators

AndAlso logical operator, 107
AndAlso versus And

operator, 111
combining comparisons

with, 106
For Each...Next loops, 152
Not operator, 110
And operator, 106–107
Or operator, 108
OrElse operator, 109
OrElse versus Or operator, 111
overview of, 106
precedence of, 110–111
using If...Then statements

with, 121
Xor operator, 109–110

loops
and compared values, 142
definition of, 142
Do statements, 150–152
execution of, 142–143
Exit For statements, 145
For...Next statements, 140–145
and iteration, 144

nesting, 146–147
and Step statements, 144–145
using with arrays, 153–154
While...End While statements,

147–148

MM
machine language, explanation of, 15
main menus. See also menus

versus context menus, 212
creating, 198–199

MapPath method of HttpServerUtility
class, using with database web
applications, 296

.mdb extension, explanation of, 256
Me keyword, using with dialog

forms, 194
menu items

adding functionality to, 207–208
adding to MenuStrip

components, 200–201
adding to ContextMenuStrip

objects, 211–214
deleting, 202
disabling, 208–209
naming, 212
recalling, 202
setting Text properties for, 201
using access keys with, 205–206
using separator bars with, 207
using shortcut keys with,

206–207
menus. See also context menus;

main menus
copying, 214
hiding, 209

MenuStrip class
copying items from, 214
significance of, 198
using Items collection with,

202–204
MenuStrip controls, adding to forms,

199–200
message boxes

creating project for, 181–182
features of, 180–181
as helper forms, 179–180
modal aspect of, 182
using Show method with,

182–186

330 Visual Basic 2005 Demystifi ed

MessageBox class versus dialog forms,
192, 193

MessageBoxButtons parameter of Show
method

description of, 183
syntax of, 184

MessageBoxDefaultButton parameter of
Show method

description of, 183
overview of, 185–186

MessageBoxIcon parameter of Show
method

description of, 183
overview of, 184–185

methods
definition of, 86
as procedures, 159

Mod operator, using, 82
modal versus modeless forms, 116–117,

182. See also forms; dialog forms
module-level scope, declaring constants

at, 75
module-level variables, declaring, 73–74
mouse coordinates, relationship to Label

controls, 52–53
MouseEventArgs class, properties of, 57
MouseMove form event, creating event

procedure stub for, 54
multiplication operator (*), using, 81

NN
Name element

of functions, 169
of subroutines, 160

Name property of Label class, features
of, 51

namespaces
explanation of, 27–28
importing for database

project, 266
nesting, examples of, 146–147
.NET Framework, significance of, 28
New keyword, using with StreamReader

class, 248
New Project dialog box, displaying, 9
New Web Site dialog box,

displaying, 287
No choice, using with DialogResult

enumeration, 186
None choice

using with DialogResult
enumeration, 186

using with MessageBoxIcon
enumeration, 185

Northwind Traders database. See also
database project

connecting to, 257–259
Customers table in, 262–263
obtaining and installing, 256

Not logical operator, using, 110
numbers, converting to string

representations, 85–86
numeric comparison operators, using,

100–101
numeric data types, overview of, 67
nwind.mdb file, finding and

choosing, 259

OO
Object Browser, displaying from

designer view, 25
objects

and properties, 28–29
use of, 25–26

OK button, effect on input boxes, 118
OK choice

using with DialogResult
enumeration, 186

using with MessageBoxButtons
enumeration, 184

OKCancel choice, using with
MessageBoxButtons
enumeration, 184

OleDbCommand object,
instantiating, 269

OleDbConnection class, using with
database project, 266, 268–269

OleDbDataAdapter, creating for
database project, 271–272

On, setting Option Strict to, 93–94
Open button, determining selection of,

242–243
Open dialog box, displaying in Notepad

and DOS text editor, 33
Open method of OleDbConnection

object, using with database
project, 269

Open Project dialog box, opening, 21
OpenFileDialog class, FileName

property of, 244, 296
OpenFileDialog control

adding to forms, 240–241
showing, 241–242
using with database project, 265

operating system, requirements for, 5
operator precedence, explanation of, 83
operators. See arithmetic operators;

comparison operators; logical
operators

Option Compare statement, using with
comparisons, 103

Option Strict, setting to On, 93–94
Or logical operator

versus OrElse operator, 111
overview of, 108

OrElse logical operator
versus Or operator, 111
using, 109

Output window, outputting WriteLine
method to, 99

PP
Page_Load event procedure, coding for

database web applications, 297
Parameter list element

of functions, 169
of subroutines, 160

parameters
of InputBox function, 118
matching with arguments,

165–166
naming for use with

procedures, 164
of Power subroutine, 164
and procedures, 162, 163–164
of Show method, 182–183
using with event procedures,

56–57
parent menu item, example of, 198–199
parentheses (()), using with event

procedures, 56–57
Parse method of Integer class

relationship to type
conversions, 92

using, 85
Paste command, duplicating in context

and main menus, 213–214
Paste toolbar button

assigning image to, 232
using Click event procedure

with, 234
pattern matching, using with

comparisons, 104
persistent connection versus

disconnected application,
267–268

INDEX 331

physical and virtual paths, relationship
to URLs, 285–286

Pizza Calculator Input box,
displaying, 116

Pizza Calculator project
calculating price in, 133–134
code for, 132–133
creating, 131–132
functionality of, 132
restoring to initial settings, 134

port numbers, identifying for ASP.NET
Development Server, 289

pound sign (#) pattern-matching
character, using in string
comparisons, 104–105

Power function, calling, 171–172
Power subroutine

calling, 164–165
converting to Power function,

170–171
parameter of, 164

precedence
of arithmetic operators, 83
of comparison operators, 105
of logical operators, 110–111

prefixes for data types, examples of,
71–72

Print dialog box
interacting with, 180
relationship to Label controls, 50

PrintInput subroutine
calling from Click event

procedure, 163
elements of, 160–161

Private accessibility specifier, meaning
of, 161

procedural programming, explanation
of, 34–35

procedures. See also subroutines
accessibility specifiers for, 161
built-in versus programmer-

defined procedures, 158–159
procedures, declaring variables

inside of, 72
declaring with single and

multiple parameters, 165
definition of, 157
methods as, 159
naming, 161–162
and parameters, 163–164
passing arguments to, 164–168
writing, 174–175

processors, requirements for, 5
programming languages, examples of,

15–16
project types, displaying, 9
projects. See also database project

Change Machine project, 86–92
debugging, 125
dialog forms, 188–192
message box, 181–182
naming and specifying locations

of, 10–11
opening, 21
Pizza Calculator, 131–134
running, 12–13
running from Debug menu, 39
stopping, 125
Text Editor, 217–219

properties
changing at design time, 31
changing for dialog forms,

190–191
and data types, 68–69
displaying for buttons, 227
ImageScaling, 233
overview of, 28–29
relationship to class methods, 86
for ToolTipText, 228

Properties window
for ContextMenuStrip, 212
displaying Items collection of

MenuStrip in, 202
displaying shortcut key options

in, 207
opening, 29–30
showing DropDownItems

collection of File menu item
in, 204

Protected accessibility specifier,
meaning of, 161

Protected Friend accessibility specifier,
meaning of, 161

Public accessibility specifier, meaning
of, 161

QQ
Question choice, using with

MessageBoxIcon enumeration, 185
question mark (?) pattern-matching

character, using in string
comparisons, 104–105

quotation marks (=), using with strings
and event procedures, 40

quotient, displaying for Change
Machine project, 91

RR
RadioButton controls, using with If

control structures, 130
RAM (random access memory),

requirements for, 5
Read button

Click event procedure for,
248–249

completing Click event
procedure for, 249

modifying Click event procedure
of, 244

ReadToEnd method of StreamReader
class, description of, 248

Rebuild Solution option on Build menu,
explanation of, 13

records in databases, definition of, 263
resizing controls, 48–49
Retry choice, using with DialogResult

enumeration, 186
RetryCancel choice, using with

MessageBoxButtons
enumeration, 184

Return element
of functions, 169
of subroutines, 160

Return statements
using with functions, 172–173
using with Power function, 172
using with subroutines, 162

Return values
effect on input boxes, 118–119
of Show method, 186–188

ReturnInput function, using As Type
statement with, 170

run time, explanation of, 13, 22
running totals, obtaining with arrays and

loops, 154

SS
sales tax rates, declaring as constants,

76–77
SaveFileDialog class, adding to forms,

244–245
Select Case control structure

versus If...ElseIf statements, 137
and Is keyword, 135
overview of, 134–135

332 Visual Basic 2005 Demystifi ed

syntax of, 135
using, 136–137

Select Resource dialog box, assigning
images to forms from, 229, 231

SELECT statements, using with
database project, 269–270

separator bars, using with menu
items, 207

Server Explorer, using with databases,
260–263

SHIFT shortcut key, using with menu
items, 206–207

shortcut keys, using with menu items,
206–207

shortcut menus, features of, 209–210.
See also menus

Show method
using Return value of, 186–188
using with message boxes,

182–186
ShowDialog method

of Form object, 192–193
of OpenFileDialog class, 242
using return value of, 243

SizeToFit setting, using with
ImageScaling property, 233

.sln extension, explanation of, 22
smart task arrow, appearance of, 222, 225
Solution Explorer

displaying, 22
using with dialog forms, 190

solutions
building and rebuilding, 12–13
contents of, 22

SQL statements, using with database
project, 269–270

Start page, displaying, 7–8
Statements element

of functions, 169
of subroutines, 160

Step statements
and loops, 144–145
role in For...Next statements, 141

Stop choice, using with
MessageBoxIcon enumeration, 185

stored procedures in databases,
definition of, 262

StreamReader class, reading from text
files with, 246–248

StreamReader variables, instantiating,
247–248

StreamWriter class, writing to text files
with, 250–251

string comparison operators, overview
of, 102

String data types, using, 68
string representations of integers,

converting to Integer values, 85
strName prefix, using with data types, 72
stubs, creating for event procedures,

36–38
Sub element of subroutines, description

of, 160
subroutines. See also procedures

arguments of, 165
calling, 162–163, 164–165
declaring, 159–162
definition of, 158
versus functions, 168–169
using Return and Exit Sub

statements with, 162
subtraction operator (–), using, 81
system requirements for Visual Basic

2005, 5–6
System.Data namespace

importing for database web
applications, 297

using with database project, 266
System.IO namespace, importing for

StreamReader class, 247

TT
tables in databases, definition of, 261
templates, displaying, 9
“The test score is valid,” displaying in

Output window, 123
text data types, using, 68
Text Editor project

components of, 219
creating, 217–218
testing ShowDialog code in, 242

text files
closing, 249–250, 252–253
displaying contents of, 246
limitations of, 255
reading from, 246–248
reading into TextBox control,

248–249
writing to, 250–251

Text parameter of Show method,
description of, 183

Text property
of CheckBox control, 129
of Label class, 50–51
setting for menu items, 201
using with dialog forms, 194

TextBox class
methods of, 219
writing to text file to, 251

“This line will always print,” printing to
Output window, 145

Title parameter of Show method,
description of, 183

toolbar buttons
adding, 224–227
associating code with clicks of,

233–234
associating images with, 227–232
setting ToolTipText property

for, 228
toolbars, adding to forms, 222–223
Toolbox

adding GridView controls to,
293–294

copying controls from, 46
displaying, 44
expanding categories of, 45
unhiding, 46

ToolStrip objects, adding to forms,
222–223

ToolStripMenuItem objects
adding to ContextMenuStrip, 213
adding to MenuStrip

component, 203
inclusion in MenuStrip

objects, 198
ToolTipText property, setting for

buttons, 228
ToString method

using, 85–86, 91, 94
using with procedures, 164

totals, obtaining running totals with
arrays and loops, 154

True conditions, using If...Then
statements with, 120–121

TryParse method of Integer class, using,
127–128

type conversions, overview of, 92–94

INDEX 333

UU
unhandled exceptions, explanation of,

125–126
Until keyword, using with Do

statements, 150–151
URLs (Uniform Resource Locators),

relationship to web applications,
284–286

VV
values

accessing from dialog forms, 194
assigning to array elements,

153–154
assigning to constants, 76
comparing in loops, 142
options for returning of, 172–173
returning for functions, 171–174

variables. See also arrays
declaring, 70, 72–74
declaring inside procedures, 72
naming, 70–72

View menu, options on, 23
views in databases, definition of, 262
virtual and physical paths, relationship

to URLs, 285–286
Visible property, setting for menus, 209
Visual Basic 2005

choosing version of, 6
installing, 6–7
starting, 7
system requirements for, 5–6

Visual Basic 2005 projects. See projects

WW
Warning choice, using with

MessageBoxIcon enumeration, 185
web applications. See also database web

applications
ASP.NET, 278
creating, 287–291
IIS (Internet Information

Services), 278–283
and URLs (Uniform Resource

Locators), 284–286
web forms, design and code views of,

290–291. See also forms
web servers

computers as, 284–285
locating databases on, 295–297

website for Visual Basic 2005 editions, 6
While keyword, using with Do

statements, 150
While...End While loops

versus For...Next statements,
148–150

overview of, 147–148
Windows applications. See also

applications
versus DOS applications, 32–34
event-driven aspect of, 34–35
explanation of, 31–32
GUI (graphical user interface)

of, 32–34
Windows Components Wizard, checking

installation of IIS with, 279
Write button, Click event procedure of,

250, 251, 252

Write method of StreamWriter class,
effect of, 251

WriteLine method of Debug class
example of, 99, 101
relationship to loops, 142, 143
using with functions, 171
using with If...Then

statements, 121
using with subroutines, 163

XX
X and Y coordinates, displaying for

mouse pointer, 52–53, 56–57
Xor logical operator, using, 109–110

YY
Yes choice, using with DialogResult

enumeration, 186
YesNo choice, using with

MessageBoxButtons enumeration,
184

YesNoCancel choice, using with
MessageBoxButtons
enumeration, 184

“You didn’t enter anything” output,
receiving, 173–174

“You entered a positive number,”
displaying in Output window, 120

“You entered a valid test score (0-100),”
displaying in Output window, 122

“You entered something” output,
receiving, 174

www.osborne.com

	Contents
	Acknowledgments
	Introduction
	Part One: Introduction to Visual Basic 2005
	Chapter 1 Getting Started with Your First Windows Program
	Obtaining and Installing Visual Basic 2005
	Starting Your First Visual Basic 2005 Project
	What Is a Computer Program?
	Conclusion
	Quiz

	Chapter 2 Writing Your First Code
	Starting an Existing Project
	Classes and Objects
	Properties
	What Is a Windows Application?
	Creating an Event Procedure
	Conclusion
	Quiz

	Chapter 3 Controls
	Adding Controls to the Form
	Important Label Properties
	The Label Control in Action
	How the Code Works
	Conclusion
	Quiz

	Part Two: Programming Building Blocks: Variables, Data Types, and Operators
	Chapter 4 Storing Information—Data Types and Variables
	Data Types
	Variables
	Constants
	Conclusion
	Quiz

	Chapter 5 Letting the Program Do the Math—Arithmetic Operators
	Arithmetic Operators
	The Parse and ToString Methods
	Change Machine Project
	Type Conversions
	Conclusion
	Quiz

	Chapter 6 Making Comparisons—Comparison and Logical Operators
	Debugging
	Comparison Operators
	Logical Operators
	Conclusion
	Quiz

	Part Three: Controlling the Flow of the Program
	Chapter 7 Making Choices—If and Select Case Control Structures
	The InputBox Function
	If Control Structure
	Input Validation
	Controls Used for If Control Structure
	Pizza Calculator
	Select Case Control Structure
	Conclusion
	Quiz

	Chapter 8 Repeating Yourself—Loops and Arrays
	Loops
	Arrays
	Conclusion
	Quiz

	Chapter 9 Organizing Your Code with Procedures
	Types of Procedures
	Subroutines
	Functions
	Why Write Your Own Procedures?
	Conclusion
	Quiz

	Part Four: The User Interface
	Chapter 10 Helper Forms
	Message Boxes
	Dialog Forms
	Conclusion
	Quiz

	Chapter 11 Menus
	Creating a Main Menu
	Creating a Context Menu
	Text Editor Project
	Conclusion
	Quiz

	Chapter 12 Toolbars
	Creating a Toolbar
	Associating Code with Clicks of Toolbar Buttons
	Conclusion
	Quiz

	Part Five: Accessing Data
	Chapter 13 Accessing Text Files
	Open and Save File Dialog Boxes
	Reading from a Text File
	Writing to a Text File
	Conclusion
	Quiz

	Chapter 14 Databases
	Installing the Database
	Connecting to the Database
	Using Server Explorer
	Database Project
	Conclusion
	Quiz

	Chapter 15 Web Applications
	ASP.NET
	Internet Information Services
	URL
	Creating a Web Application
	Creating a Database Web Application
	Conclusion
	Quiz

	Final Exam
	Answers to Quizzes and Final Exam
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Acknowledgments:
	Introduction:
	Part One: Introduction to Visual Basic 2005:
	Chapter 1 Getting Started with Your First Windows Program:
	Obtaining and Installing Visual Basic 2005:
	Starting Your First Visual Basic 2005 Project:
	What Is a Computer Program?:
	Chapter 2 Writing Your First Code:
	Starting an Existing Project:
	Classes and Objects:
	Properties:
	What Is a Windows Application?:
	Creating an Event Procedure:
	Conclusion:
	Quiz:
	Chapter 3 Controls:
	Adding Controls to the Form:
	Important Label Properties:
	The Label Control in Action:
	How the Code Works:
	Chapter 4 Storing Information„Data Types and Variables:
	Data Types:
	Variables:
	Constants:
	Chapter 5 Letting the Program Do the Math„Arithmetic Operators:
	Arithmetic Operators:
	The Parse and ToString Methods:
	Change Machine Project:
	Type Conversions:
	Chapter 6 Making Comparisons„Comparison and Logical Operators:
	Debugging:
	Comparison Operators:
	Logical Operators:
	Part Three: Controlling the Flow of the Program:
	Chapter 7 Making Choices„If and Select Case Control Structures:
	The InputBox Function:
	If Control Structure:
	Input Validation:
	Controls Used for If Control Structure:
	Pizza Calculator:
	Select Case Control Structure:
	Chapter 8 Repeating Yourself„Loops and Arrays:
	Loops:
	Arrays:
	Chapter 9 Organizing Your Code with Procedures:
	Types of Procedures:
	Subroutines:
	Functions:
	Why Write Your Own Procedures?:
	Part Four: The User Interface:
	Chapter 10 Helper Forms:
	Message Boxes:
	Dialog Forms:
	Chapter 11 Menus:
	Creating a Main Menu:
	Creating a Context Menu:
	Text Editor Project:
	Chapter 12 Toolbars:
	Creating a Toolbar:
	Associating Code with Clicks of Toolbar Buttons:
	Part Five: Accessing Data:
	Chapter 13 Accessing Text Files:
	Open and Save File Dialog Boxes:
	Reading from a Text File:
	Writing to a Text File:
	Chapter 14 Databases:
	Installing the Database:
	Connecting to the Database:
	Using Server Explorer:
	Database Project:
	Chapter 15 Web Applications:
	ASP:
	NET:

	Internet Information Services:
	URL:
	Creating a Web Application:
	Creating a Database Web Application:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Index:
	Part Two: Programming Building Blocks: Variables, Data Types, and Operators:
	Copyright © 2006 by The McGraw-Hill Companies:
	 Click here for terms of use:

