

• Table of
Contents

• Index
• Reviews
• CD-ROM

• Reader
Reviews

• Errata

VB.NET Language in a Nutshell, 2nd Edition

By Paul Lomax, Ron Petrusha, Steven Roman, Ph.D.

Publisher: O'Reilly
Pub Date: May 2002

ISBN: 0-596-00308-0
Pages: 682
Slots: 1

VB.NET Language in a Nutshell begins with a brief overview of the new Visual
Basic .NET language, covering basic programming concepts and introduces
the .NET Framework Class Library and programming with attributes. The bulk
of the book presents an alphabetical reference to Visual Basic .NET
statements, procedures, functions, and objects. Also included is a CD-ROM
that allows the reference section of the book to integrate with Visual Studio
.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews
• CD-ROM

• Reader
Reviews

• Errata

VB.NET Language in a Nutshell, 2nd Edition

By Paul Lomax, Ron Petrusha, Steven Roman, Ph.D.

Publisher: O'Reilly
Pub Date: May 2002

ISBN: 0-596-00308-0
Pages: 682
Slots: 1

 Copyright

 Preface

 Why Another VB Book?

 Who This Book Is For

 How This Book Is Structured

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: The Basics

 Chapter 1. Introduction

 Section 1.1. Why VB.NET?

 Section 1.2. What Is VB.NET?

 Section 1.3. What Can You Do with VB.NET?

 Chapter 2. Program Structure

 Section 2.1. Getting a VB Program to Run

 Section 2.2. The Structure of a VB Program

 Chapter 3. Variables and Data Types

 Section 3.1. Variables

 Section 3.2. Declaring Variables and Constants

 Section 3.3. Data Types

 Section 3.4. Arrays

 Section 3.5. Object Variables and Their Binding

 Section 3.6. The Collection Object

 Section 3.7. Parameters and Arguments

 Chapter 4. Introduction to Object-Oriented Programming

 Section 4.1. Why Learn Object-Oriented Techniques?

 Section 4.2. Principles of Object-Oriented Programming

 Section 4.3. Classes and Objects

 Section 4.4. Inheritance

 Section 4.5. Interfaces, Abstract Members, and Classes

 Section 4.6. Polymorphism and Overloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.7. Accessibility in Class Modules

 Chapter 5. The .NET Framework: General Concepts

 Section 5.1. Namespaces

 Section 5.2. Common Language Runtime (CLR), Managed Code, and Managed Data

 Section 5.3. Managed Execution

 Section 5.4. Assemblies

 Section 5.5. Assemblies and VB.NET

 Chapter 6. The .NET Framework Class Library

 Section 6.1. The System Namespace

 Section 6.2. Other Namespaces

 Chapter 7. Delegates and Events

 Section 7.1. Delegates

 Section 7.2. Events and Event Binding

 Chapter 8. Attributes

 Section 8.1. Syntax and Use

 Section 8.2. Defining a Custom Attribute

 Section 8.3. Using a Custom Attribute

 Chapter 9. Error Handling in VB.NET

 Section 9.1. Error Detection and Error Handling

 Section 9.2. Runtime Error Handling

 Section 9.3. Dealing with Logical Errors

 Section 9.4. Error Constants

 Part II: Reference

 Chapter 10. The Language Reference

 #Const Directive

 #If . . . Then . . . #Else Directive

 #Region...#End Region Directive

 Abs Function

 Acos Function

 AddHandler Statement

 AddressOf Operator

 AppActivate Procedure

 Application Class

 Application.CompanyName Property

 Application.DoEvents Method

 Application.ExecutablePath Property

 Application.ProductName Property

 Application.ProductVersion Property

 Array Class

 Array.BinarySearch Method

 Array.Copy Method

 Array.IndexOf Method

 Array.LastIndexOf Method

 Array.Reverse Method

 Array.Sort Method

 Asc, AscW Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AssemblyVersion Attribute

 Asin Function

 Atan Function

 Atan2 Function

 AttributeUsage Attribute

 Beep Procedure

 Call Statement

 CallByName Function

 CBool Function

 CByte Function

 CChar Function

 CDate Function

 CDbl Function

 CDec Function

 Ceiling Function

 ChDir Procedure

 ChDrive Procedure

 Choose Function

 Chr, ChrW Functions

 CInt Function

 Class Statement

 Clipboard Class

 Clipboard.GetDataObject Method

 Clipboard.SetDataObject Method

 CLng Function

 CLSCompliant Attribute

 CObj Function

 Collection Class

 Collection.Add Method

 Collection.Count Property

 Collection.Item Method

 Collection.Remove Method

 ColorDialog Class

 COMClass Attribute

 Command Function

 Const Statement

 Cos Function

 Cosh Function

 CreateObject Function

 CShort Function

 CSng Function

 CStr Function

 CType Function

 CurDir Function

 DateAdd Function

 DateDiff Function

 DatePart Function

 DateSerial Function

 DateString Property

 DateValue Function

 Day Function

 DDB Function

 Debug Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Debug Class

 Debug.Assert Method

 Debug.AutoFlush Property

 Debug.Close Method

 Debug.Flush Method

 Debug.Indent Method

 Debug.IndentLevel Property

 Debug.IndentSize Property

 Debug.Listeners Property

 Debug.Unindent Method

 Debug.Write Method

 Debug.WriteIf Method

 Debug.WriteLine Method

 Debug.WriteLineIf Method

 Declare Statement

 DefaultMember Attribute

 Delegate Statement

 DeleteSetting Procedure

 Dim Statement

 Dir Function

 DirectCast Function

 Directory Class

 Directory.CreateDirectory Method

 Directory.Delete Method

 Directory.Exists Method

 Directory.GetCreationTime Method

 Directory.GetDirectories Method

 Directory.GetDirectoryRoot Method

 Directory.GetFiles Method

 Directory.GetFileSystemEntries Method

 Directory.GetLogicalDrives Method

 Directory.GetParent Method

 Directory.Move Method

 Do...Loop Statement

 E Field

 End... Statement

 Enum Statement

 Environ Function

 EOF Function

 Erase Statement

 Erl Property

 Err Object

 Err.Clear Method

 Err.Description Property

 Err.GetException Method

 Err.HelpContext Property

 Err.HelpFile Property

 Err.LastDLLError Property

 Err.Number Property

 Err.Raise Method

 Err.Source Property

 Error Statement

 ErrorToString Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Event Statement

 Exception Class

 Exit Statement

 Exp Function

 File Class

 File.Exists Method

 FileAttr Function

 FileClose Procedure

 FileCopy Procedure

 FileDateTime Function

 FileGet, FileGetObject Procedures

 FileLen Function

 FileOpen Procedure

 FilePut, FilePutObject Procedures

 FileWidth Procedure

 Filter Function

 Fix Function

 Flags Attribute

 Floor Function

 FontDialog Class

 For...Next Statement

 For Each...Next Statement

 Format Function

 FormatCurrency, FormatNumber, FormatPercent Functions

 FormatDateTime Function

 FreeFile Function

 Friend Keyword

 Function Statement

 FV Function

 Get Statement

 GetAllSettings Function

 GetAttr Function

 GetChar Function

 GetObject Function

 GetSetting Function

 GetTimer Function

 GetType Operator

 GoTo Statement

 Guid Attribute

 Handles Keyword

 Hashtable Class

 Hashtable.Add Method

 Hashtable.Clear Method

 Hashtable.ContainsKey Method

 Hashtable.ContainsValue Method

 Hashtable.CopyTo Method

 Hashtable.Count Property

 Hashtable.Item Property

 Hashtable.Keys Property

 Hashtable.Remove Method

 Hashtable.Values Property

 Hex Function

 Hour Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Hour Function

 IDataObject Interface

 IDataObject.GetData Method

 IDataObject.GetDataPresent Method

 IDataObject.GetFormats Method

 IEEERemainder Function

 If...Then...Else Statement

 IIf Function

 Implements Keyword

 Implements Statement

 Imports Statement

 Inherits Statement

 Input Procedure

 InputBox Function

 InputString Function

 InStr Function

 InStrRev Function

 Int Function

 Interface Statement

 IPmt Function

 IRR Function

 Is Operator

 IsArray Function

 IsDate Function

 IsDBNull Function

 IsError Function

 IsNothing Function

 IsNumeric Function

 IsReference Function

 Join Function

 Kill Procedure

 LBound Function

 LCase Function

 Left Function

 Len Function

 Like Operator

 LineInput Function

 Loc Function

 Lock Procedure

 LOF Function

 Log Function

 Log10 Function

 LSet Function

 LTrim Function

 MarshalAs Attribute

 Max Function

 Me Operator

 Mid Function

 Mid Statement

 Min Function

 Minute Function

 MIRR Function

 MkDir Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Mod Operator

 Module...End Module Statement

 Month Function

 MonthName Function

 MsgBox Function

 MTAThread Attribute

 MyBase Keyword

 MyClass Keyword

 Namespace Statement

 Now Property

 NPer Function

 NPV Function

 Obsolete Attribute

 Oct Function

 On Error Statement

 OpenFileDialog Class

 Option Compare Statement

 Option Explicit Statement

 Option Strict Statement

 Out Attribute

 ParamArray Attribute

 Partition Function

 Pi Field

 Pmt Function

 Pow Function

 PPmt Function

 Print, PrintLine Procedures

 Private Statement

 Property Statement

 Protected Keyword

 Public Statement

 PV Function

 QBColor Function

 Queue Class

 Queue.Clear Method

 Queue.Contains Method

 Queue.CopyTo Method

 Queue.Count Property

 Queue.Dequeue Method

 Queue.Enqueue Method

 Queue.Peek Method

 Queue.ToArray Method

 RaiseEvent Statement

 Randomize Procedure

 Rate Function

 ReDim Statement

 Rem Statement

 RemoveHandler Statement

 Rename Procedure

 Replace Function

 Reset Procedure

 Resume Statement

 Return Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return Statement

 RGB Function

 Right Function

 RmDir Procedure

 Rnd Function

 Round Function

 RSet Function

 RTrim Function

 SaveFileDialog Class

 SaveSetting Procedure

 ScriptEngine Property

 ScriptEngineBuildVersion Property

 ScriptEngineMajorVersion Property

 ScriptEngineMinorVersion Property

 Second Function

 Seek Function

 Seek Procedure

 Select Case Statement

 Send, SendWait Methods

 Set Statement

 SetAttr Procedure

 Shadows Keyword

 Shell Function

 Sign Function

 Sin Function

 Sinh Function

 SLN Function

 Space Function

 Spc Function

 Split Function

 Sqrt Function

 Stack Class

 Stack.Clear Method

 Stack.Contains Method

 Stack.CopyTo Method

 Stack.Count Property

 Stack.Peek Method

 Stack.Pop Method

 Stack.Push Method

 Stack.ToArray Method

 STAThread Attribute

 Static Statement

 Stop Statement

 Str Function

 StrComp Function

 StrConv Function

 StrDup Function

 StrReverse Function

 Structure...End Structure Statement

 Sub Statement

 Switch Function

 SYD Function

 SyncLock Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SystemTypeName Function

 Tab Function

 Tan Function

 Tanh Function

 ThreadStatic Attribute

 Throw Statement

 TimeOfDay Property

 Timer Property

 TimeSerial Function

 TimeString Property

 TimeValue Function

 Today Property

 Trim Function

 Try...Catch...Finally Statement

 TypeName Function

 UBound Function

 UCase Function

 Unlock Procedure

 Val Function

 ValDec Function

 VarType Function

 VBFixedArray Attribute

 VBFixedString Attribute

 VbTypeName Function

 WebMethod Attribute

 WebService Attribute

 Weekday Function

 WeekdayName Function

 While...End While Statement

 With Statement

 WithEvents Keyword

 Write Procedure

 WriteLine Procedure

 Year Function

 Part III: Appendixes

 Appendix A. What's New and Different in VB.NET

 Section A.1. Language Changes for VB.NET

 Section A.2. Changes to Programming Elements

 Section A.3. Obsolete Programming Elements

 Section A.4. Structured Exception Handling

 Section A.5. Changes in Object-Orientation

 Appendix B. Language Elements by Category

 Section B.1. Array Handling

 Section B.2. Clipboard

 Section B.3. Collection Objects

 Section B.4. Common Dialogs

 Section B.5. Conditional Compilation

 Section B.6. Conversion

 Section B.7. Date and Time

 Section B.8. Debugging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section B.8. Debugging

 Section B.9. Declaration

 Section B.10. Error Handling

 Section B.11. Filesystem

 Section B.12. Financial

 Section B.13. IDataObject Interface

 Section B.14. Information

 Section B.15. Input/Output

 Section B.16. Integrated Development Environment

 Section B.17. Interaction

 Section B.18. Mathematics

 Section B.19. Program Structure and Flow

 Section B.20. Programming

 Section B.21. Registry

 Section B.22. String Manipulation

 Appendix C. Operators

 Section C.1. Arithmetic Operators

 Section C.2. Assignment Operators

 Section C.3. Concatenation Operators

 Section C.4. Comparison Operators

 Section C.5. Logical and Bitwise Operators

 Section C.6. Operator Precedence

 Appendix D. Constants and Enumerations

 Section D.1. Visual Basic Intrinsic Constants

 Section D.2. ControlChars Class

 Section D.3. Visual Basic Enumerations

 Appendix E. The VB.NET Command-Line Compiler

 Section E.1. Compiler Basics

 Section E.2. Command-Line Switches

 Section E.3. Using a Response File

 Appendix F. VB 6 Language Elements Not Supported by VB.NET

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2002, 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. The association of the image of a catfish and the topic of VB.NET
language is a trademark of O'Reilly & Associates, Inc. ActiveX, IntelliSense, JScript, Microsoft,
MS-DOS, Outlook, Visual Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT
are registered trademarks, and Visual C# is a trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and author(s)
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
Microsoft Visual Basic began its life just eleven years ago as a kind of amalgamation of
Microsoft's QBasic programming language and a graphical interface design program developed in
part by Alan Cooper. Since then, it has become by far the most popular programming language in
the world, with an installed base that is estimated at five to eight million developers worldwide.

The tenth anniversary of Visual Basic coincided with the announcement of Microsoft's new .NET
platform, and with a totally revised and revamped version of VB named Visual Basic .NET. The
language has been streamlined and modernized, and many old "compatibility" elements have
been dropped from the language, while other language elements that were implemented as
statements are now either functions or procedures.

In addition, many of you will be glad to hear that Visual Basic is now a fully object-oriented
programming language, with the inclusion of the long sought-after class inheritance, as well as
other OOP features.

We suspect that many of you will greet with mixed emotions, as do we, the fact that Microsoft's
Component Object Model (COM), the technology that was at the core of Visual Basic since the
release of Version 4.0, has been abandoned in favor of the .NET platform. On the one hand, we
find this to be a great relief, because COM can be so complex and confusing. On the other hand,
we find this somewhat irritating, because we have invested so much time and effort in learning
and using COM. Finally, we find this change somewhat frightening; who knows what pitfalls await
us as we become more familiar with this new technology?

The best news of all is that, whereas in the past, Visual Basic served as a "wrapper" that
simplified and hid much of the complexity of Windows and the Windows operating system, at long
last Visual Basic is an "equal player" in the .NET Framework; Visual Basic programmers have full
and easy access to the features of the .NET platform, just as Visual C++ and C# programmers
do.

The extensive changes to the language and the introduction of the .NET platform make a
reference guide to the Visual Basic language more essential than ever. At the same time, they
make it easy to delineate this book's subject matter. This is a book that focuses on the language
elements of Visual Basic .NET — on its statements, functions, procedures, directives, and objects
(notably the Err and Collection objects).

While it's important to emphasize that this book focuses on the Visual Basic language
components for the .NET platform, it's also important to emphasize what this book is not:

It is not a reference guide to Visual Basic for Applications (VBA), the programming
language used in all of the major applications in the Microsoft Office suite, as well as in
dozens of other third-party applications. As you probably know, VBA is the programming
language in previous versions of Visual Basic and in the major Office applications.
However, VBA is not the programming language for VB.NET. Indeed, until VB.NET is
incorporated into a release of Microsoft Office for .NET, the two languages will differ
significantly.

It is not a reference guide to the .NET Framework Class Library. To be sure, the
Framework Class Library is discussed in these pages, and a number of its classes and
their members are documented in this book's reference section. But that documentation
just scratches the surface; the Framework Class Library consists of over 90 namespaces
(one of which, incidentally, is Microsoft.VisualBasic, the namespace that defines the objects
of the Visual Basic language), several thousand types (classes, interfaces, delegates, and
enumerations), and an enormous number of members. In selecting the .NET Framework
classes to document in this book, we've tried to focus on .NET elements that replace
commonly used features in previous versions of Visual Basic, as well as on .NET elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commonly used features in previous versions of Visual Basic, as well as on .NET elements
that expand and enhance the functionality of existing Visual Basic .NET elements in
significant ways.

It is not a reference guide to the attributes that you can apply to program elements. To be
sure, Chapter 8 introduces attribute-based programming, and there are entries for
important language-based attributes in the reference section. But of the more than 200
attributes available in the .NET Framework Class Library, only language-related attributes
and the general-purpose attributes VB developers are most likely to use are documented in
this book.

It is not a guide to developing applications or components using Visual Basic .NET. In
documenting the language, we'll show you some simple code fragments that illustrate the
relevant issues and show you how a language element works. On the other hand, we won't
show you, for example, how to use the Windows Forms package to build a Windows
application, how to develop a web application using ASP.NET, or how to implement a web
service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Another VB Book?

There are literally hundreds of books lining the shelves on how to program using Visual Basic,
and they will no doubt be joined by a flood of books on how to program in VB.NET. The majority of
these books assume that you're a complete novice and slowly introduce you to such concepts as
variables, arrays, and looping structures.

This is a different kind of book, however. It is a detailed, professional reference to the VB.NET
language — a reference that you can turn to if you want to jog your memory about a particular
language element or a particular parameter. You're also looking for a reference that you can turn
to when you're having difficulty programming and need to review the rules for using a particular
language element, or when you want to check that there isn't some "gotcha" you've overlooked
that is associated with a particular language element.

In addition, we believe this book will serve as the main reference for VB 6 programmers who are
upgrading to VB.NET. To this end, we have devoted considerable space to the extensive
language differences between VB 6 and VB.NET. For each relevant language entry, we have
included a "VB.NET/VB 6 Differences" section that details the differences in the operation of the
language element between VB 6 and VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who This Book Is For

Just like any reference (such as a dictionary), this book will be useful to many types of readers:

Developers who have used previous versions of Visual Basic

Developers who are new to Visual Basic, but who have been developing applications in
other programming languages, such as C++

Those who are learning VB.NET as their first language and would like to have a definitive
language reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the
first half of the book, which discusses many important areas of programming under VB.NET,
including variables, data types, the basic principles of object-oriented programming, and error-
handling techniques.

VB and VBScript Developers New to VB.NET

Some critics have argued that VB.NET is an entirely new language. While we wouldn't go quite
that far, we do agree not only that the language changes have been extensive, but that the new
.NET platform will result in a paradigm shift that affects the way we think about application
development. So in many ways, as a VB or VBScript developer new to VB.NET, you may find
yourself in a position similar to that of a developer who is new to all forms of VB.NET.

However, one of our goals was to develop a book that will ease the thorny transition to VB.NET
from earlier versions of VB. In particular, the first nine chapters of the book offer a rapid
introduction to VB.NET and its new features. Appendix A discusses many of the major language
changes between VB 6 and VB.NET, while Appendix F lists VB 6 language elements that are no
longer supported in VB.NET. Finally, if version differences exist in a language element, we
include a "VB.NET/ VB 6 Differences" section that shows you precisely how the behavior of that
element has changed from VB 6 to VB.NET.

Existing VB.NET Developers

As we write the second edition of this book, VB.NET is brand new (the initial version of the .NET
Framework and Visual Studio .NET have just been released to manufacturing), so existing
VB.NET developers are a rarity. But we believe that, given the strengths of VB.NET, this situation
will change quickly. As you continue to develop in VB.NET, we believe you will find that VB.NET
Language in a Nutshell retains its value. As an experienced developer, you can delve into the
book to get the lowdown on a language element that interests you or that seems to be behaving
erratically or unexpectedly in your code. Appendix B details all of the language elements by
category to help you find the relevant entry in the language reference more easily.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How This Book Is Structured

VB.NET Language in a Nutshell is divided into three parts. The first part of the book, The Basics,
is an introduction to the main features and concepts of Visual Basic programming. Given the
newness of VB.NET, even seasoned VB professionals should find items of interest here. If you're
new to VB, this part of the book is essential reading. It's divided into the following chapters:

Chapter 1

In this chapter, you'll see how Visual Basic has evolved into the VB.NET language of today
and get some sense of how and why VB.NET is different from previous versions of Visual
Basic.

Chapter 2

This chapters discusses the entry points that allows the .NET runtime to execute your code
and shows how to structure the code in a Visual Basic program.

Chapter 3

This chapter looks at the standard Visual Basic data types and how you use them. Behind
the scenes, Visual Basic takes advantage of the .NET Framework's common type system,
so the chapter also examines the .NET data types and the way in which VB wraps these
data types.

Chapter 4

With the release of its .NET version, Visual Basic finally becomes a fully object-oriented
programming language. This chapter discusses the basic concepts of object-orientated
programming and shows how you implement VB's object-oriented features in your
programming.

Chapter 5

This chapter surveys some of the new features of the .NET Framework that most impact
the VB developer. These include namespaces, the Common Language Runtime (CLR),
and assemblies.

Chapter 6

The .NET Framework Class Library replaces portions of the Win32 API, as well as many of
the individual object models that VB programmers have worked with over the past five
years, with a single class library. This chapter offers a very fast-paced overview of the
Framework Class Library and some of its features.

Chapter 7

While handling events was more or less automatic in previous versions of VB and even in
VBScript, you typically have to "wire" events to your code in VB.NET. This chapter shows
how to do that.

Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Framework supports attributes, an extensible mechanism that allows you to store
customized items of information about a particular program element in an assembly's
metadata. This makes it possible to modify the behavior of the compiler, of a design time
environment, or of the runtime environment if a particular attribute is present. This chapter
explains what attributes are in greater detail, introduces the syntax of attribute-based
programming, and shows you how to define and consume custom attributes.

Chapter 9

Visual Basic now offers two techniques for error handling. The first, which uses the On
Error statement, is termed unstructured error handling and is a traditional part of VB. The
second, which uses the Try...Catch... Finally construct, is termed structured
exception handling and is new to VB.NET. In this chapter, we'll show you how to use both.

The second part of this book, Part II, consists of one large chapter, Chapter 10, which thoroughly
details all the functions, statements, directives, objects, and object members that make up the
VB.NET language.

The third and final section consists of the following appendixes:

Appendix A

A discussion of language changes from VB 6 to VB.NET.

Appendix B

A listing of all VB.NET functions, statements, and major keywords by category.

Appendix C

A list of the operators supported by VB.NET, along with a slightly more detailed treatment
of the Boolean and bitwise operators.

Appendix D

A list of VB.NET intrinsic constants, as well as VB.NET enumerations and their members.

Appendix E

For the first time, Visual Basic includes a command-line compiler — you can actually use
NotePad as your primary "development environment" for Visual Basic (although we are not
necessarily recommending this approach) and use the compiler to compile your code. This
appendix documents the operation of the Visual Basic command-line compiler.

Appendix F

A list of the language elements that have dropped out of the Visual Basic language as a
result of its transition to the .NET Framework.

The Format of the Language Reference

The following template has been used in preparing the entries for functions, procedures,
statements, properties, and methods that appear in Chapter 10:

Class

For functions, procedures, classes, or class members, the class to which the item belongs.

Named Arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Typically, we indicate if a function, procedure, or method does not accept named
arguments. Otherwise, you can assume that the language element supports both named
and positional arguments.

Syntax

This section uses standard conventions to give a synopsis of the syntax used for the
language item. It also lists parameters and replaceable items (and indicates whether
they're optional or not), lists their data types, and provides a brief description.

Return Value

For functions, this section provides a brief description of the value or data type returned by
the function. For properties, it describes the data type of the property.

Description

A short description of what the language element does, and when and why it should be
used.

Rules at a Glance

This section describes the main points of how to use the function. The dos and don'ts are
presented in the form of a bulleted list to let you quickly scan through the list of rules. In the
vast majority of cases, this section goes well beyond the basic details found in the VB
documentation.

Example

We've tried to avoid the kind of gratuitous examples commonly found in documentation that
only manage to illustrate the obvious. Instead, we've used short code fragments that help
to enhance your understanding of how the language element is used.

Programming Tips and Gotchas

This is the most valuable section of Chapter 10, in our opinion, and it is gained from years
of experience using the VB language in a variety of projects and applications. The
information included here will save you countless hours of head scratching and
experimentation. Often, this is the stuff Microsoft doesn't tell you!

See Also

A simple cross-reference list of related or complimentary language elements.

A modified version of the template has been used for statements and attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Constant width

Constant width in body text indicates a language construct, such as a VB.NET statement
(like For or Do While), an enumeration, an intrinsic or user- defined constant, a structure
(i.e., a user-defined type), an operator, a declaration, a directive, or an expression (like
dblElapTime = Timer - dblStartTime). Code fragments and code examples appear
exclusively in constant-width text. In syntax statements and prototypes, text set in constant
width indicates such language elements as the function or procedure name and any
invariable elements required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter names. In syntax statements or
prototypes, constant width italic indicates replaceable parameters. In addition, constant
width italic is used in both body text and code fragments to denote variables.

Italic

Italicized words in the text indicate intrinsic or user-defined functions and procedure names.
Many system elements, such as paths and filenames, are also italicized. In addition, URLs
and email address are italicized. Finally, italics are used the first time a term is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

It's our hope that as the Visual Basic language continues to grow and evolve, so too will VB.NET
Language in a Nutshell, and that the book will come to be seen by VB developers as the official
(so to speak) unofficial documentation on the Visual Basic language. To do that, we need your
help. If you see errors here, we'd like to hear about them. If you're looking for information on some
VB language feature and can't find it in this book, we'd like to hear about that, too. And finally, if
you would like to contribute your favorite programming tip or gotcha, we'll do our best to include it
in the next edition of this book. You can request these fixes, additions, and amendments to the
book at our web site, http://www.oreilly.com/ catalog/vbdotnetnut2/.

In addition, Steven Roman maintains a web site at www.romanpress.com that includes
information on his other books published by O'Reilly (and others), articles on VB/VBA and
VB.NET, and a variety of software.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are
grateful to our spouses and families for their support in helping to bring this project through to
completion. Steve would like to thank Donna; Ron would like to thank Vanessa, Sean and Ami;
and Paul would like to thank Deb, Russel, and Victoria.

In commemorating the tenth anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a
reality. Truly, it has been a monumental accomplishment that has transformed the way in which
applications are created.

We'd also like to thank the book's technical reviewers, Daniel Creeron, Budi Kurniawan, and Matt
Childs, for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter, Chris
Dias, Amanda Silver, and Sam Spencer at Microsoft for their help in answering our annoying
questions and for reviewing portions of the manuscript.

The on-line Visual Studio .NET edition of this book was made possible by the work of many
individuals. Mike Sierra of O'Reilly converted the Language Reference to Microsoft Help 2.0
format and did the work necessary to make its content available through the Visual Studio .NET
dynamic help system. Kipper York, Shane McRoberts, and Etka Mittal of the Microsoft Help team
provided invaluable technical assistance at crucial moments in the project, and Eric Promislow
and Vladimir Baikalov of ActiveState built the install package that plugs our Help collection into
Visual Studio .NET. Frank Gocinski of the Visual Studio .NET Integration Program was
instrumental in helping us become full partners in the program. A special tip of the hat to Rob
Howard of Microsoft who supported our original vision and helped us make the right connections
with the Visual Studio .NET team to get this project off the ground.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: The Basics
This section serves as a general introduction to Visual Basic .NET, Microsoft's
version of Visual Basic for the .NET platform. Taken together, these chapters form
an extremely fast-paced introduction to the most critical VB.NET programming
topics. If you're an experienced programmer who is learning VB.NET as a second (or
additional) programming language, the material should familiarize you with VB.NET
in as short a time as possible.

In addition to its role as a tutorial, Chapter 3 is an essential reference to the data
types supported by VB.NET.

Part I consists of the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Introduction
Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact,
in slightly more than a decade, it has become the world's most widely used programming
language, with an installed base of somewhere between three and five million developers
(depending on the particular source you use and whether the estimate includes only the retail
versions of the Visual Basic product or the hosted version of Visual Basic for Applications (VBA)
as well).

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application
development (RAD) environment for corporate and commercial applications. Second, Visual
Basic offers a programming language and development environment noted for its simplicity and
ease of use, making it an extremely attractive choice for those new to programming.

With the release of its new .NET platform, Microsoft also released a new version of the Visual
Basic language, Visual Basic .NET. VB.NET is a from-the-ground-up rewrite of Visual Basic that
not only adds a number of new features, but also differs significantly from previous versions of
Visual Basic. From a high-level view, two of these differences are especially noteworthy:

Until the release of VB.NET, Microsoft focused on creating a unified version of VBA, the
language engine used in Visual Basic, which could serve as a "universal batch language"
for Windows and Windows applications. With Version 6 of Visual Basic, this goal was
largely successful: VB 6.0 featured VBA 6.0, the same language engine that drives the
individual applications in the Microsoft Office 2000 suite, Microsoft Project, Microsoft
FrontPage, Microsoft Visio, and a host of popular third-party applications such as
AutoDesk's AutoCAD and Corel's WordPerfect Office 2000. With the release of VB.NET,
this emphasis on a unified programming language has, for the moment at least, faded into
the background, as the hosted version of Visual Basic continues to be VBA rather than
VB.NET.

Since Version 4, Visual Basic had increasingly been used as a kind of "glue language" to
access COM components and their object models, such as ActiveX Data Objects (ADO),
Collaborative Data Objects (CDO), or the Outlook object model. Although VB.NET supports
COM for reasons of backward compatibility, VB.NET is designed primarily to work with the
.NET Framework rather than with COM.

You may be wondering why Microsoft would totally redesign a programming language and
development environment that is so wildly successful. As we shall see, there is some method to
this madness.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 Why VB.NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in
need of application and utility software. Although Windows 3.0 itself had proven successful, the
graphical applications that offered native support for Windows — and upon whose release the
ultimate success or failure of Windows would depend — were slow in coming. The major problem
was that C and C++ programmers, who had produced the majority of applications for the MS-
DOS operating system, were faced with a substantial learning curve in writing Windows
applications and adapting to Windows' event-driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming
model that was thoroughly consistent with Windows' graphical nature. Although Windows marked
a radical change in the way programs were written, C and C++ programmers continued to
produce code as they always had: a text editor was used to write source code, the source code
was compiled into an executable, and the executable was finally run under Windows. Visual Basic
programmers, on the other hand, worked in a programming environment that its critics derisively
labeled a "drawing program." Visual Basic automatically created a form (or window) whenever the
developer began a new project. The developer would then "draw" the user interface by dragging
and dropping controls from a toolbox onto the form. Finally, the developer would write code
snippets that responded to particular events (such as the window loading or the window being
resized). In other words, Visual Basic's initial success was due to its ease of use, which in turn
reflected that Visual Basic offered a graphical programming environment that was entirely
consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a
simple "Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in
Visual Basic (see Example 1-2). While the former program is over two pages long, its Visual Basic
counterpart takes only three lines of code — and two of them are provided automatically by the
Visual Basic environment itself.

Example 1-1. "Hello World" in C

// "Hello World" example

//

// The user clicks a command button, and a "Hello World"

// message box appears.

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 PSTR szCmdLine, int iCmdShow)

 {

 static char szAppName[] = "SayHello" ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 static char szAppName[] = "SayHello" ;

 HWND hwnd ;

 MSG msg ;

 WNDCLASSEX wndclass ;

 wndclass.cbSize = sizeof (wndclass) ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;

 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;

 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION) ;

 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW) ;

 wndclass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH) ;

 wndclass.lpszMenuName = NULL ;

 wndclass.lpszClassName = szAppName ;

 wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION) ;

 RegisterClassEx(&wndclass) ;

 hwnd = CreateWindow(szAppName, "Hello World",

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow(hwnd, iCmdShow) ;

 UpdateWindow(hwnd) ;

 while (GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TranslateMessage(&msg) ;

 DispatchMessage(&msg) ;

 }

 return msg.wParam ;

 }

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM wParam,

 LPARAM lParam)

 {

 int wNotifyCode ;

 HWND hwndCtl ;

 static HWND hwndButton ;

 static RECT rect ;

 static int cxChar, cyChar ;

 HDC hdc ;

 PAINTSTRUCT ps ;

 TEXTMETRIC tm ;

 switch (iMsg)

 {

 case WM_CREATE :

 hdc = GetDC(hwnd) ;

 SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 GetTextMetrics(hdc, &tm) ;

 cxChar = tm.tmAveCharWidth ;

 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC(hwnd, hdc) ;

 GetClientRect(hwnd, &rect) ;

 hwndButton = CreateWindow("BUTTON", "&Say Hello",

 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

 (rect.right-rect.left)/20*9,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (rect.right-rect.left)/20*9,

 (rect.bottom-rect.top)/10*4,

 14 * cxChar, 3 * cyChar,

 (HWND) hwnd, 1,

 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;

 return 0 ;

 case WM_SIZE :

 rect.left = 24 * cxChar ;

 rect.top = 2 * cyChar ;

 rect.right = LOWORD (lParam) ;

 rect.bottom = HIWORD (lParam) ;

 return 0 ;

 case WM_PAINT :

 InvalidateRect(hwnd, &rect, TRUE) ;

 hdc = BeginPaint(hwnd, &ps) ;

 EndPaint(hwnd, &ps) ;

 return 0 ;

 case WM_DRAWITEM :

 case WM_COMMAND :

 wNotifyCode = HIWORD(wParam) ;

 hwndCtl = (HWND) lParam ;

 if ((hwndCtl == hwndButton) && (wNotifyCode == BN_CLICKED))

 MessageBox(hwnd, "Hello, World!", "Greetings", MB_OK) ;

 ValidateRect(hwnd, &rect) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ValidateRect(hwnd, &rect) ;

 break ;

 case WM_DESTROY :

 PostQuitMessage (0) ;

 return 0 ;

 }

 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

 }

Example 1-2. "Hello World" in Visual Basic

Private Sub Command1_Click()

MsgBox "Hello, World", vbOKOnly Or vbExclamation, "Hi!"

End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm
commitment to Visual Basic and worked very hard to increase its power and flexibility with each
new release. By the time Version 3.0 was released, Visual Basic offered a programming paradigm
that was completely intuitive, making it easy for novice programmers to get started and produce
simple applications very quickly. At the same time, particularly through its ability to access the
Windows Application Programming Interface (API) and through its support for add-on controls,
Visual Basic had become a programming tool capable of creating applications of considerable
sophistication and complexity.

Like VB.NET, Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit
family of operating systems, was a complete rewrite of Visual Basic. It featured limited support for
object-oriented programming in the form of class modules (CLS files) and the ability to generate
not only Windows executables, but ActiveX DLLs (also known as COM components) as well.

In the periods shortly before and after the release of VB 4, the character of programming changed
dramatically. The rise of the Internet as an application platform meant that standalone Windows
applications were becoming less and less necessary. The increased prominence of distributed
applications that assumed the presence of the Internet marked another change in programming
paradigms. Yet Visual Basic's real strength remained as it always had been: a great platform for
developing standalone Windows applications.

This disparity between Visual Basic's strengths and the prevailing programming paradigm, which
emphasized distributed applications and the Internet, created something of a contradiction. On
the one hand, Visual Basic excelled at graphically depicting the Windows interface. On the other
hand, developers were creating fewer and fewer Windows interfaces. Instead, they were now
using Visual Basic primarily to write source code that would eventually be compiled into middle-
tier components. Ironically, a programming environment whose real strength and point of
departure was its graphical character was now being used as a text editor, in very much the same
way the first generation of Windows programmers used text editors to create C source code for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

way the first generation of Windows programmers used text editors to create C source code for
Windows applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a
particularly good platform for developing Internet applications. With VB 6, Microsoft introduced
Web Classes as the preferred technology for Internet application development. Yet, the metaphor
presented by Web Classes (which focused on separating a web application's presentation from its
programmatic functionality) was confusing to developers, and, as a result, Web Classes never
became popular. While VB remained critically important for developing middle-tier components for
distributed applications, both it and the Visual Basic community that grew up around it remained
strangely isolated from the Internet as an application platform.

Numerous detractors have labeled VB.NET as an entirely new language with little relationship to
previous versions of Visual Basic — a dubious innovation foisted on the Visual Basic community
by Microsoft in an attempt to sell a new version of its development products. However, we don't
agree. Instead, we view the introduction of VB.NET as a logical and even necessary step forward
in the development of Visual Basic as a premier programming language. The goal of VB.NET is to
address the limitations of Visual Basic as a development environment and bring it into the Internet
age so that it can remain the major platform for developing applications of all kinds. Very much
like Visual Basic 1.0 offered a graphical interface that was suitable for Windows applications,
VB.NET and Visual Studio .NET aim to provide a graphical interface that is suitable for developing
web applications and for taking full advantage of the Internet as an application-development
platform, as well as for developing Windows applications and components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 What Is VB.NET?

VB.NET is a programming language designed to create applications that work with Microsoft's new
.NET Framework. The .NET platform in turn addresses many of the limitations of "classic" COM,
Microsoft's Component Object Model, which provided one approach toward application and
component interoperability. These limitations included type incompatibilities when calling COM
components, versioning difficulties ("DLL hell") when developing new versions of COM
components, and the need for developers to write a certain amount of code (mostly in C++) to
handle the COM "plumbing." In contrast to VB, with its reliance on COM, VB.NET offers a number
of new features and advantages. Let's take a look at some of these.

1.2.1 Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and in
the process became an object-oriented programming language. Yet the debate persists about
whether Visual Basic is a "true" object-oriented language or whether it only supports limited
features of object orientation.

The debate centers around Visual Basic's support for inheritance, an object- oriented programming
concept that allows a class to derive its properties and its functionality from another class.
Proponents of the view that Visual Basic is object- oriented point to Visual Basic's support for
interface-based programming and the use of virtual base classes. Yet relatively few VB
programmers take advantage of interface-based programming. And interface-based programming
itself does not allow a derived class to inherit the functionality of a base class; only virtual base
classes can be inherited using the Implements keyword.

While the object-oriented character of previous versions of VB may be in doubt, there is no
question that VB.NET is an object-oriented programming language. In fact, even if VB.NET is used
to write what appears to be procedural code, it is object-oriented "under the hood," so to speak.
Let's take as a simple example the clearly procedural, nonobject-oriented program shown in
Example 1-3. If we use ILDASM (.NET's intermediate language disassembler) to look at the IL
generated for this source code (see Figure 1-1), we see that internally, modMain is in fact defined
as a class that has two methods, Increment and Main.

Figure 1-1. A procedural program shown using ILDASM

Example 1-3. A procedural program for VB.NET

Public Module modMain

Public Sub Main()

 Dim x As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim x As Integer

 x = 10

 MsgBox(Increment(x))

End Sub

Private Function Increment(iVar As Integer)

 Return(iVar+1)

End Function

End Module

1.2.2 A Common Type System

Traditionally, one of the problems of calling routines written in other languages from Visual Basic or
of calling Visual Basic routines from other languages is that such inter-language calls presuppose
a common type system. This is the case when calling Win32 API functions from Visual Basic, but it
is also applies to attempts to call methods in a VB COM component from other languages or to call
methods in a non-VB COM component from VB.

For instance, until the addition of the AddressOf operator, which allows us to pass a pointer to a
function or subroutine, there was no way to provide a callback function, which is required by most
Win32 API enumeration functions. As another example, it is expected that members of structures
passed to Win32 API functions be aligned on their natural boundaries, something that VB
programmers had great difficulty accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to
call and pass arguments to COM components. An excellent example is the attempt to pass an
array from a script written in JScript to a COM component, since COM sees JScript arrays as a
string of comma-delimited values rather than a COM-compatible array (called a SafeArray).

The .NET platform removes these difficulties by providing a common type system. Ultimately, all
data types are either classes or structures defined by or inherited from the .NET Framework Class
Library. This common type system means that .NET components will be truly language-
independent and that a .NET component written in one language will be seamlessly interoperable
with .NET components written in any other .NET language. The problem of incompatible types
simply disappears.

On the surface, VB has retained its old type system. VB still supports the Long data type, for
instance, although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB 6.
Casual inspection of the code shown in Example 1-4 suggests that VB has retained its type
system. However, if we use ILDASM to examine the IL generated from this Visual Basic code, we
see that VB data types are merely wrappers for data types provided by the .NET Framework. (See
Figure 1-2.)

Figure 1-2. Wrapping the .NET type system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 1-4. Using the Visual Basic type system

Public Module modMain

Public Sub Main()

Dim s As String = "This is a string."

Dim l As Long = 12344

Dim i As Integer = 10

End Sub

End Module

The simple program in Example 1-5 also supports this conclusion. The program instantiates an
integer of type Long, a standard Visual Basic data type. It then calls the ToString method — a
method of the Int64 class — to convert that number to its string representation. In other words, the
variable l in Example 1-5 is really an Int64 data type masquerading as a traditional VB Long data
type.

Example 1-5. Calling .NET type methods from a VB data type

Public Module modMain

Public Sub Main()

Dim l As Long = 64.31245

Dim s As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim s As String

s = l.ToString

MsgBox(s)

End Sub

End Module

1.2.3 Access to System Services: The Framework Class Library

Ever since VB added support for calls to routines in the Windows and Win32 APIs, many Visual
Basic programmers came to regard API programming as a kind of black art. Not only was there a
confusing and seemingly limitless array of functions that might be called, but also passing
parameters to routines and receiving their return values often seemed to be a mysterious process.
Moreover, with the growing emphasis on object-oriented programming, the Win32 API, with its
function-based approach to programming, seemed more and more archaic.

Although the Declare statement remains in VB and programmers can still call the Win32 API and
routines in other external Windows DLLs, many of the common system services provided by the
Win32 API, as well as by some COM components, are now provided by the .NET Framework
Class Library. The Framework Class Library is a collection of types (classes, structures, interfaces,
delegates, and enumerations) organized into namespaces.

To get some sense of the difference in programming style between the Win32 API and the .NET
Framework Class Library, as well as to appreciate the simplicity and ease with which the
Framework Class Library can be accessed, compare Examples 1-6 and 1-7. Example 1-6 is a VB
6 routine that creates a value entry in the registry to load a particular program on Windows startup.
Note that all API constants must be defined, as must the API functions themselves.

In addition, the API functions must be called correctly. In particular, to avoid passing a BSTR rather
than a C null-terminated string to the RegSetValueEx function, the string must be passed using the
ByVal keyword. This is a common oversight that usually causes an application crash. In contrast,
Example 1-7 shows the comparable VB.NET code that uses the RegistryKey class in the
Microsoft.Win32 namespace of the .NET Framework Class Library. Note that the code is short and
simple and, therefore, far less error-prone.

Example 1-6. Writing to the registry using the Win32 API

Private Const ERROR_SUCCESS = 0&

Private Const HKEY_CLASSES_ROOT = &H80000000

Private Const HKEY_CURRENT_CONFIG = &H80000005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Const HKEY_CURRENT_CONFIG = &H80000005

Private Const HKEY_CURRENT_USER = &H80000001

Private Const HKEY_DYN_DATA = &H80000006

Private Const HKEY_LOCAL_MACHINE = &H80000002

Private Const HKEY_PERFORMANCE_DATA = &H80000004

Private Const HKEY_USERS = &H80000003

Private Const REG_SZ = 1

Private Const KEY_SET_VALUE = &H2

Private Declare Function RegCloseKey Lib "advapi32.dll" _

 (ByVal hKey As Long) As Long

Private Declare Function RegOpenKeyEx Lib "advapi32.dll" _

 Alias "RegOpenKeyExA" _

 (ByVal hKey As Long, ByVal lpSubKey As String, _

 ByVal ulOptions As Long, ByVal samDesired As Long, _

 phkResult As Long) As Long

Private Declare Function RegSetValueEx Lib "advapi32.dll" _

 Alias "RegSetValueExA" _

 (ByVal hKey As Long, ByVal lpValueName As String, _

 ByVal Reserved As Long, ByVal dwType As Long, lpData As Any, _

 ByVal cbData As Long) As Long

Private Sub LoadByRegistry()

 Const cPGM As String = "C:\Test\TestStartup.exe"

 Dim hKey As Long, nResult As Long

 nResult = RegOpenKeyEx(HKEY_CURRENT_USER, _

 "Software\Microsoft\Windows\CurrentVersion\Run", 0, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Software\Microsoft\Windows\CurrentVersion\Run", 0, _

 KEY_SET_VALUE, hKey)

 If nResult = ERROR_SUCCESS Then

 RegSetValueEx hKey, "MyVBApp", 0, REG_SZ, ByVal cPGM, Len(cPGM)

 RegCloseKey hKey

 End If

End Sub

Example 1-7. -Writing to the registry using the Framework Class Library

Private Const cPGM As String = "C:\VB Forum\startup\TestStartup.exe"

Private Shared Sub LoadByRegistry()

 Dim oReg As RegistryKey = Registry.CurrentUser

 Dim oKey as RegistryKey = _

 oReg.OpenSubKey("Software\Microsoft\Windows\CurrentVersion\Run", _

 True)

 oKey.SetValue("MyVBApp", cPGM)

End

Sub

1.2.4 A Common Runtime Environment

Although VB had traditionally shielded the developer from many of the intricacies of Windows as
an operating system or of COM as a method for interoperability, nevertheless, some slight
knowledge of how the system worked was essential, or the developer was sure to run into trouble
sooner or later. For instance, consider the following code fragment for VB 6:

Dim oObj As New cSimpleClass

Set oObj = Nothing

If oObj Is Nothing Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If oObj Is Nothing Then

 ' Perform cleanup

End If

Because of an idiosyncrasy of VB, objects declared and instantiated using the New keyword on the
same line of code are not actually created until the first reference to that object. As a result, our
attempt to determine if the object oObj is Nothing instead recreates the object, and our cleanup
code never executes.

This, at least, is usually a relatively benign error. Much more pernicious, however, are circular
object references, where COM objects hold references to one another and therefore cannot be
released, even though they've been set to Nothing in code. This situation creates a memory leak
that eventually can result in a General Protection Fault.

Under .NET, many problems like these are eliminated because of the .NET platform's Common
Language Runtime (CLR). The CLR, as its name clearly implies, provides a variety of services to
applications and processes running under the .NET platform, regardless of the language in which
they were originally written. These services include memory management and garbage collection.
They also include a unified system of exception handling, which makes it possible to use the same
set of debugging tools on all code, regardless of the particular .NET language in which it was
written.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 What Can You Do with VB.NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is
a thoroughly modernized language that will likely become the premier development tool for
creating a wide range of .NET applications. In the past, Visual Basic was often seen as a
"lightweight" language that could be used for particular kinds of tasks, but was wholly unsuitable
for others. (It was often argued, sometimes incorrectly, that you couldn't create such things as
Windows dynamic link libraries or shell extensions using Visual Basic.) In the .NET Framework,
VB.NET emerges as an equal player; Microsoft's claim of language independence — that
programming language should be a lifestyle choice, rather than a choice forced on the developer
by the character of a project — is realized in the .NET platform.

This means that VB.NET can be used to create a wide range of applications and components,
including the following:

Windows console mode applications

Standard Windows applications

Windows services

Windows controls and Windows control libraries

Web (ASP.NET) applications

Web services

Web controls and web control libraries

.NET classes and namespaces

Accessing application object models (such as those of the individual applications in the
Microsoft Office suite) using COM automation

Most importantly, for the first time with the release of VB.NET, Visual Basic becomes an all-
purpose development environment for building Internet applications, an area in which it has
traditionally been weak. This means that the release of this newest version should revitalize
Visual Basic, allowing it to remain the tool of choice for developing state-of-the-art software for the
next generation of software development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Program Structure
VB.NET, unlike previous versions of Visual Basic, is fully object-oriented. Also unlike previous
versions, VB.NET is fully integrated with its underlying platform, the .NET Framework and the
.NET Common Language Runtime. As shown in this chapter, these two factors, perhaps more
than any others, influence the structure of a VB.NET program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Getting a VB Program to Run

Any Visual Basic executable — i.e., a Windows Forms or Windows console application — has a single
application-level entry point, a subroutine named Main. Main must be a method of the executed class.

The web applications (either ASP.NET applications or web service applications)
that you develop with Visual Studio are not executables. They exist as dynamic
link libraries (DLLs) in the system's disk storage. ASP.NET applications may
also rely on just-in-time compilation and be resident solely in memory.

Main must not only exist, it must also be:

A public routine

In VB 6, Main could be either public or private. In VB.NET, it must be public to be visible as an
entry point.

A static or shared routine

Its declaration must include the Shared keyword. A single Main method must be shared by all
application instances; it cannot be an instance method. Thus, all methods called by Main must
also be static (or shared) methods; a shared method is unable to invoke an instance method.

This section focuses on executable programs. These programs exclude code
libraries, as well as ASP.NET applications and web service applications, all of
which are compiled as dynamic link libraries.

2.1.1 Console Applications

The requirement that there must be a subroutine named Main capable of serving as the executable's
entry point is clear in a console application like the one shown in Example 2-1. The routine creates a
module named modMain; that module in turn contains a subroutine named Main, which is the sole
executable routine in the application. At runtime, Main serves as the program entry point; the Common
Language Runtime finds the Main procedure, displays a message to the console, and then terminates
the program.

Example 2-1. A simple console application

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Public Module modMain

Public Sub Main

 Console.WriteLine("This is a console application.")

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

End Module

The code in Example 2-1 should be familiar to Visual Basic programmers, since it depicts one of the
methods used to define a program entry point in VB 6. In VB 6, this program would be stored in a
separate standard module (.bas) file, which is shown in Example 2-2. As long as Main is identified as
the startup point for the Visual Basic project, the VB runtime would find Main and execute it.

Example 2-2. A VB 6 version of a simple console application

Option Explicit

Private Sub Main()

 MsgBox "A simple console application."

End Sub

Although the VB.NET program in Example 2-1 seems similar to the VB 6 program in Example 2-2, under
the hood, we would find important differences. If we use ILDASM to graphically depict the members
the VB.NET console application, as Figure 2-1 shows, we see that the VB.NET compiler translates our
code module into a public class and gives it a single method, Main. If we examine the intermediate
language (or IL) for Main (see Figure 2-2), we see that it is marked as the program entry point and that it
is a shared method, rather than an instance method. The VB.NET compiler and the .NET Common
Language Runtime, it would seem, have transformed our simple code module into a self-executing
class.

Figure 2-1. The modMain module in ILDASM

Figure 2-2. IL for the Main procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1.2 Windows Forms Applications

The notion of a self-executing class is novel.[1] However, if we use Visual Studio .NET to create the
simple Windows Forms application shown in Example 2-3, it is unclear exactly how the application is
able to start, since the only entry point appears to be New, the class constructor. Because New
executes when the New keyword is encountered (and as a result, the class is instantiated), it clearly
cannot serve as a program entry point.

[1] If you designate a form as an application's startup object, previous versions of Visual Basic appear to create self-executing
forms. This appearance applies only to forms, not to other Visual Basic classes (.cls files). In fact, it's not really true of forms;
Visual Basic supplies the startup code, which includes the code used to instantiate the startup form. The program entry point is
not located in the form.

Example 2-3. A simple Windows Forms application

Public Class Form1

 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 Friend WithEvents Button1 As System.Windows.Forms.Button

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Me.Button1 = New System.Windows.Forms.Button()

 Me.SuspendLayout()

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(104, 48)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(88, 48)

 Me.Button1.TabIndex = 0

 Me.Button1.Text = "Button1"

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(292, 165)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.Button1})

 Me.Name = "Form1"

 Me.Text = "Form1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.Text = "Form1"

 Me.ResumeLayout(False)

 End Sub

#End Region

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 MsgBox("This is a Windows Forms application.")

 End Sub

End Class

However, ILDASM gives a slightly different picture of this Windows Forms application. In Figure 2-3, we
see that in addition to the methods defined in the source code either by us or in the code autogenerated
by Visual Studio, the VB.NET compiler has generated a Main method automatically and transparently.

When examining the IL for the Main method (see Example 2-4), it becomes clear why code for the Main
method is not more obvious and how the method itself works. As Example 2-4 shows, the method is
declared public but is marked as hidden. Once again, the method is declared static or shared. The
method operates by invoking the class constructor, then calling the Application object's Run method to
launch an instance of the form. Note that the Application object's Run method is a shared or static
method, rather than an instance method.

Figure 2-3. The Windows Forms application in ILDASM

Example 2-4. IL for the Main method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.method public hidebysig static void Main() cil managed

{

 .entrypoint

 .custom instance void

 [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)

 // Code size 14 (0xe)

 .maxstack 8

 IL_0000: nop

 IL_0001: newobj instance void WinApp1.Form1::.ctor()

 IL_0006: call void

 [System.Windows.Forms]System.Windows.Forms.Application::Run(

 class [System.Windows.Forms]System.Windows.Forms.Form)

 IL_000b: nop

 IL_000c: nop

 IL_000d: ret

} // end of method Form1::Main

We can simplify our Windows Forms application by coding outside of Visual Studio. The result is shown
in Example 2-5.

Example 2-5. A simple Windows forms application created without Visual Studio

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.ComponentModel

Imports System.Windows.Forms

Public Class MyForm

 Inherits Form

 Public Shared Sub Main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Application.Run(New MyForm)

 End Sub

 Public Sub New()

 MyBase.New()

 End Sub

 Public Sub Form_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 MsgBox("The Windows Forms application.")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 The Structure of a VB Program

Broadly speaking, programs can be either procedure driven or event driven. In a procedure-driven
program, program flow is predefined. A classic example is a console application: program flow
begins at the program entry point (in the case of a .NET console application, it begins with the
Main routine) and proceeds along a predictable path until it reaches program termination. In an
event-driven program, on the other hand, program flow is not predetermined and is instead
controlled by external events (i.e., by the program's interaction with the user and the system), and
possibly by internal events as well.

From the perspective of program structure, the difference between procedure-driven and event-
driven programs is less sharp than is usually thought. Both rely on a procedure as an entry point,
which in turn can call other functions and subroutines that are visible to it. The major difference is
that a procedure-driven program has a single entry point, whereas an event-driven program has
multiple entry points. For event-driven programs, these entry points (in addition to the required
Main procedure) are event handlers, which are invoked automatically by the .NET Common
Language Runtime in response to an event within the code itself or in its environment.

Therefore, regardless of whether an application is procedure driven or event driven, Visual Basic
code can be divided into three main categories:

Entry point code

For procedural applications, this code is a routine named Main. For an event-driven
application, it is a routine named Main, supplemented by code that you write to handle
events such as a button being clicked by the user. These latter procedures are called event
handlers.

Custom procedures

In these procedures, you create the main functionality of your application. When these
custom procedures are located within a class, they are termed methods and are typically
used to perform an operation.

Property procedures

These procedures are used in form and class modules, typically to retrieve or set the value
of a class attribute.

For the rest of this section, we'll discuss program structure by focusing on applications that fire
events, which ultimately control program flow.

2.2.1 Events: The Starting Point

Aside from the obligatory Sub Main, which serves as the initial entry point for an application, an
event provides an entry point into your code for any event-driven program. In other words, once
the application is launched and the code in the application entry point has executed, an
application can have numerous entry points that are invoked by the Common Language Runtime
in response to particular events. An event can be system generated, such as the Load event of a
form or a Timer control event, or it can be a user-generated event, such as the Click event on a
command button. In can also be a custom event that you define in your code. For example, a
stock monitoring application might generate a Positive event when a stock's value changes from
negative to positive, and a Negative event when its value changes from positive to negative.

For a discussion of events and the way in which procedures can be
defined to handle events, see Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.1.1 Windows Forms events

For a Windows Form application in which a form serves as the startup object, the order of
execution of code is as follows:

The Main procedure
The New constructor
The Load event
The Activated event
The Closing event
The Closed event
The Dispose event

Individual controls also expose events.

2.2.1.2 ASP.NET events

ASP.NET exposes a more complex event model, in which events can be trapped at the
application, session, and page level. Table 2-1 illustrates the sequence of application, session,
and page events for an ASP.NET application.

Table 2-1. ASP.NET events
Event Type Description

Start Application Fired when the application starts. The event handler must reside in
global.asaz.

Start Session Fired when a user session is created. The event handler must reside in
global.asaz.

Init Page Fired when the page is initialized.

Load Page Fired when the page is loaded.

PreRender Page Fired when the page is about to be rendered.

Unload Page Fired when the page is unloaded.

Disposed Page Fired when the page is released from memory.

End Session Fired when a user session ends or times out.

End Application Fired when an application ends. The event handler must reside in
global.asaz.

Individual controls also expose events.

For a full discussion of the events that fire when an object reference
becomes null or when an application ends, see Section 4.3.8 in Chapter
4.

2.2.1.3 Event arguments

Typically, when an event is fired, the CLR passes two arguments to the event handler:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sender

An object of type Object that represents the instance of the class raising the event

e

An object of type EventArgs or of a type derived from EventArgs that contains information
about the event

For example, Example 2-6 shows an event handler for a Button object's Click event in a Windows
application.

Example 2-6. A Button object's event handler

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Drawing

Imports System.Windows.Forms

Public Class CEvent

 Inherits System.Windows.Forms.Form

Friend WithEvents oBtn As Button

Private Sub New()

 oBtn = New Button

 Dim x As Integer = CInt(Me.Width/2 - oBtn.Width / 2)

 Dim y As Integer = CInt(Me.Height/2 - oBtn.Height / 2)

 Me.oBtn.Location = New System.Drawing.Point(x, y)

 Me.oBtn.Text = "Event Information"

 Me.Controls.Add(oBtn)

End Sub

Public Shared Sub Main

 Application.Run(New CEvent)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Application.Run(New CEvent)

End Sub

Private Sub oBtn_Click(sender As Object, e As EventArgs) _
 Handles oBtn.Click
 MsgBox(sender.GetType.ToString & vbCrLf & _
 e.GetType.ToString)
End Sub
End Class

When the event is fired, the dialog shown in Figure 2-4 is displayed.

Figure 2-4. A dialog box displaying event information

The EventArgs class itself has no useful members; all of its members are inherited from the
Object class. Most event handlers are passed an instance of the EventArgs class. Sometimes,
however, the event handler is passed useful information about the event. In this case, the event
handler's second parameter is an instance of a class derived from EventArgs; its added members
provide information about the event. For example, the Button and ImageButton controls in the
System.Web.UI.WebControls namespace raise a Command event that is fired when the control is
clicked. Instead of an instance of the EventArgs class, the CLR passes the event handler an
instance of the CommandEventArgs class. It has the following properties:

CommandName property

The name of the command to be executed. It corresponds to the Button or ImageButton
control's CommandName property.

CommandArgument property

Any optional arguments passed along with the command.

In some cases, an event's default action can be cancelled by modifying the member of the class
instance derived from EventArgs. For instance, the CancelEventArgs class is derived from
EventArgs and is the base class of InputLanguageChangingEventArgs,
TreeViewCancelEventArgs, and PrintEventArgs. By setting its Cancel property to True, you can
cancel a pending application print job programmatically, cancel a change of language, or cancel
the checking, expansion, collapse, or selection of a TreeView item.

2.2.2 Calling Routines from Event Handlers

An event handler, in turn, can call methods, functions, or procedures and can set and retrieve

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An event handler, in turn, can call methods, functions, or procedures and can set and retrieve
property values. These values can reside in the .NET Framework Class Library, or they can be
custom functions in code modules or methods in custom classes that you wrote. For example, in
Example 2-7, the Click event from a Button control named btnSave demonstrates this approach
to event handling.

Example 2-7. Calling an external routine from an event handler

Private Sub btnSave_Click(sender As Object, e As EventArgs) _

 Handles btnSave.Click

Try

 If SaveDetails(strFileName) Then

 MsgBox("Details Saved OK", vbInformation)

 Else

 MsgBox("Details have not been saved", vbCritical)

 End If

Catch ex As Exception

 MsgBox(ex.Message)

End Try

End Sub

Because the SaveDetails method contains all the code to actually save the details, the function
can be called from anywhere in the class.

2.2.3 Writing Custom Procedures

Placing all code in event handlers is often inconvenient. Particularly when more than one event
handler needs to execute the same code, it is preferable to write that code only once and call it
from each event handler or any other routine that needs to access it. For this purpose, Visual
Basic supports custom procedures. To create a new procedure, move to the bottom of the code
window and type the Function or Sub definition before the End Module or End Class statement.

The three main types of custom procedures in Visual Basic include:

Functions

Sub procedures

Properties

2.2.3.1 Functions

A function is a collection of related statements and expressions used to perform a particular task.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A function is a collection of related statements and expressions used to perform a particular task.
When it completes execution, the function returns a value to the calling statement. If you don't
specify an explicit return value for the function, the default value of the return data type is
returned. If you write a custom function in a class module and declare it as Public, it will become
a class method.

Here's a quick example of a function used to provide a minimum number:

Private Function MinNumber(ByVal iNumber As Integer) As Integer

 If iNumber >= 500 Then

 MinNumber = iNumber

 Else

 MinNumber = 500

 End If

End Function

Because functions return a value, you can use them as part of an expression in place of a value.
In the following snippet, the string passed to the VB Instr function is a custom function that returns
the customer name corresponding to a customer code:

If InStr(1, GetCustomerName(sCustCode), "P") > 0 Then

For full details on the syntax and use of functions, see the entry for the Function statement in
Chapter 10.

2.2.3.2 Sub procedures

A Sub procedure is used just like a function, except it does not return a value and therefore
cannot be used as part of an argument. Visual Basic uses Sub procedures to provide event
handling.

Generally, you should use functions rather than Subs to create custom procedures. Functions
allow you to return a value, which, minimally, could be a Boolean True or False, to inform the
caller that the function has succeeded or failed. Tests indicate that there is no performance hit for
coding a routine as a function instead of a procedure.

Like a function, if you write a custom Sub in a class module and declare it as Public, it will
become a class method.

For full details of the syntax and use of Sub procedures, see the entry for the Sub statement in
Chapter 10.

2.2.3.3 Property procedures

Property procedures are specialized procedures used to assign and retrieve custom property
values. They can only be included in class definitions marked by the Class...End Class
statement. Property procedures are defined within a Property...End Property statement and
can take either of two forms:

Property accessors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Retrieve the value of a property, returning it to the caller

Property mutators

Assign a value to or modify a property's value

Example 2-8, which defines a simple class with only one property, illustrates the syntax for
property procedures.

Example 2-8. A property

Public Class CPerson

Dim sName As String

Public Property Name As String

 Get ' Property accessor

 Return sName

 End Get

 Set ' Property mutator

 sName = Value

 End Set

End Property

End Class

Internally, properties are implemented as methods. Visual Basic implements each property
accessor as a get_propertyname method, while each mutator is implemented as a
set_propertyname method. This implementation is evident in Figure 2-5, in which ILDASM
displays two additional methods for the CPerson class that we created in Example 2-8, and
Figure 2-6, in which ILDASM displays the IL for the Name property and shows that property
references are resolved as separate calls to the get_Name and set_Name methods.

Figure 2-5. CPerson class members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-6. IL for the Name property

2.2.4 Controlling Execution Flow

Now you've got your event handlers. These handlers will spring into life when the user clicks a
button or a form loads. You've also written some useful functions that do all the work behind the
scenes. How do you link the two together?

2.2.4.1 Calling sub and function procedures

Methods and functions or procedures can be called in one of two ways. In the case of a
procedure, or in the case of a method or function whose return value is to be discarded, the Call
statement can be used. Its syntax is:

Call routine([argumentlist])

where routine is the name of the function, procedure, or a class or class instance along with the
name of its method, and argumentlist is a comma-delimited list of arguments expected by the
routine. The argument list must always be enclosed in parentheses. For example:

Call Console.WriteLine("The Save operation completed successfully.")

or

Call SaveDetails(sFileName)

The Call statement can also be omitted. If it is omitted, the syntax for a method or function
whose return value is being stored to a variable is:

retval = routine([argumentlist[)

where retval is the function or method's return value, routine is the name of the function,
procedure, or a class (or class instance along with its method), and argumentlist is a comma-
delimited list of arguments expected by the routine. The argument list must always be enclosed in
parentheses. The syntax for a method or procedure that does not return a value is:

routine([argumentlist])

Note again that the argument list must be enclosed in parentheses. This requirement contrasts
with VB 6, which allows only a single parameter to be enclosed in parentheses in this instance.

2.2.4.2 Setting and retrieving property values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property values can be set using a simple assignment statement with the property on the left side
of the equals sign. The syntax is:

object.property = value

where object is the name of a shared class or an object instance, property is the property
name, and value is the value to be assigned to the property. When dealing with property arrays
(an array or collection of property values), an index into the property array is also required. The
syntax is:

object.property(index) = value

where index is the zero-based ordinal position of the property array element whose value is to
be changed, or the key value if the property array supports access by keys.

Property values can also be retrieved by using a simple assignment statement with the property
on the right side of the equals sign. The syntax is:

value = object.property

where value is the value of the property, object is the name of a shared class or an object
instance, and property is the property name. When dealing with property arrays (an array or
collection of property values), an index into the property array is also required. The syntax is:

value = object.property(index)

where index is the zero-based ordinal position of the property array element whose value is to
be changed, or the key value if the property array supports access by keys.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Variables and Data Types
Many programmers take the concept of a variable for granted. In this chapter, we take a close
look at variables and their properties, discussing such things as the scope and lifetime of a
variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify the variable in code. In VB.NET, a variable name can
start with a Unicode alphabetic character or an underscore, and can be followed by
additional underscore characters or various Unicode characters, such as alphabetic,
numeric, formatting, or combined characters.

Address

Every variable has an associated memory address, which is the location in memory at
which the variable's value is stored. Note that in many circumstances, the address of a
variable will change during its lifetime, so it would be dangerous to make any assumptions
about this address.

Type

The type of a variable, also called its data type, determines the possible values that the
variable can assume. We discuss data types in detail later in the chapter.

Value

The value of a variable is the contents of the memory location at the address of the
variable. This is also sometimes referred to as the r-value of the variable, since it is what
really appears on the right side of an assignment statement. For instance, in the code:

Dim i As Integer

Dim j As Integer

i = 5

j = i

the final statement can be read as "assign the value of i to memory at the address of j." For
similar reasons, the address of a variable is sometimes called its l-value.

Scope

The scope of a variable determines where in a program that variable is visible to the code.
Scope is discussed in detail in the next section.

Lifetime

A variable's lifetime determines when and for how long a particular variable exists. It may or
may not be visible (that is, be in scope) for that entire period. For a detailed discussion of
lifetime, see Section 3.1.2 section later in this chapter.

3.1.1 Variable Scope

Variables (and constants) have a scope, which indicates where in the program the variable is
recognized or visible to the code — that is, where it can be referred to in code.

3.1.1.1 Local variables: block-level and procedure-level scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If a variable is declared inside a code block (a set of statements that is terminated by an End...,
Loop, or Next statement), then the variable has block-level scope; that is, it is visible only within
that block.

For example, consider the following code:

If x <> 0 Then

 Dim rec As Integer

 rec = 1/x

End If

MsgBox CStr(rec)

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement produces an error.

It is important to note that the lifetime of a variable always refers to the entire procedure, even if
the variable's scope is block-level. (We discuss this in Section 3.1.2 later in this chapter.) This
implies that if a block is entered more than once, a block-level variable will retain its value from
the previous time the block code was executed.

A variable declared using the Dim keyword within a Visual Basic procedure but not within a code
block has procedure-level scope. Its scope consists of the procedure in which it is declared.

A variable that has block-level scope or procedure-level scope is called a local variable. One of
the advantages of local variables is that the same name can be used in different procedures
without conflict, since each variable is visible only to its own procedure. Another is that the
memory allocated to the variable can be released as soon as control leaves the procedure,
making our code easier to maintain.

3.1.1.2 Module-level and project-level scope

There are differences in the way scope is handled for variables declared in the Declarations
section of a standard module and a class module. We restrict our discussion here to standard
modules, postponing a discussion of class modules until Chapter 4.

We first note that a standard module itself can be declared using one of the access modifiers
Public, Friend, or Private (this is the default). Using such a modifier simply restricts the
individual members to that level of access at most. Thus, for instance, a Public variable
declared in a Friend module has only Friend scope.

3.1.1.2.1 Private access

A variable declared in the Declarations section of a standard module using the Private access
modifier has module-level scope; that is, it is visible in the entire module, but nowhere else. Using
the Dim keyword also gives the variable module-level scope, but its use is not as clear and should
be avoided for readability sake.

3.1.1.2.2 Friend access

A variable declared in the Declarations section of a standard module using the Friend access
modifier is visible in the entire project and thus has project-level scope. However, it is not visible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modifier is visible in the entire project and thus has project-level scope. However, it is not visible
to other projects.

3.1.1.2.3 Public access

A variable declared in the Declarations section of a Public standard module using the Public
access modifier is visible not only to the project in which it is declared, but also to any external
project that holds a reference to the project. For instance, consider the following module declared
in Project1:

Public Module Module1

 Public iModulePublic As Integer

 Friend iModuleFriend As Integer

End Module

If Project2 has a reference to Project1, then we can write:

Project1.Module1.iModulePublic = 100

However, the code:

Project1.Module1.iModuleFriend = 100

generates a "not accessible" syntax error.

3.1.2 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple. Lifetime
refers to when, or at what time during program execution the variable is valid; scope refers to
where in the program the variable is recognized by (visible to) the code.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()

 Dim LocalVar As Integer = 0

 Call ProcedureB

 LocalVar = 1

End Sub

Note that LocalVar is a local variable. When the line:

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being
executed, the variable LocalVar is out of scope since it is local to ProcedureA. But it is still valid.
In other words, the variable still exists and has a value. It is simply not accessible to the code in
ProcedureB. In fact, ProcedureB could also have a local variable named LocalVar, which would
have nothing to do with the variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalVar = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LocalVar = 1

which is a valid instruction, since the variable LocalVar is back in scope.

Thus, the lifetime of the local variable LocalVar extends from the moment ProcedureA is
entered to the moment it is terminated, including the period during which ProcedureB is being
executed as a result of the call to this procedure, even though during that period, LocalVar is
out of scope.

We mention again that the lifetime of a block-level variable is the lifetime of the procedure in
which it is defined.

3.1.2.1 Static variables

We have seen that a variable may go in and out of scope during its lifetime. However, once the
lifetime of a variable expires, the variable is destroyed and its value is lost. It is the lifetime that
determines the existence of a variable; its scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

End Sub

Sub ProcedureB()

 Dim x As Integer

 x = 5

 . . .

End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time ProcedureB is
called, the local variable x is created anew and destroyed at the end of that call. Thus, x is
created and destroyed five times.

Normally, this is just what we want. However, there are times when we would like the lifetime of a
local variable to persist longer than the lifetime of the procedure in which it is declared. For
example, we may want a procedure to do something special the first time it is called, but not in
subsequent times.

A static variable is a local variable whose lifetime is the lifetime of the entire program. The
following VB code shows how one might use a static variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub test()

Static bFirstTime As Boolean = True

If bFirstTime Then

 Debug.WriteLine("first time")

 bFirstTime = False

Else

 Debug.WriteLine("not first time")

End If

End Sub

Note that we can initialize a static variable, provided that we do so within the variable declaration.
The following code illustrates this point:

Sub StaticTest()

 Static st As Boolean = True ' initialize static variable

 MsgBox(st)

 st = False

End Sub

Private Sub button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles button1.Click

 StaticTest()

End Sub

The first time we hit the button1 command button, StaticTest displays the message True,
because the static variable st has been initialized to True. However, all subsequent times we hit
the button, StaticTest returns False. This ability to initialize a static variable was missing and was
a very annoying oversight in earlier versions of VB.

We could accomplish the same effect by using a module-level variable to keep a record of
whether the procedure has been called, instead of a static local variable. However, it is
considered better programming style to use the most restrictive scope possible, which, in this
case, is a local variable with an "extended" lifetime. This helps prevent accidental alteration of the
variable in other portions of the code. (Remember that this code may be part of a much larger
code module, with a lot of things going on.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Declaring Variables and Constants

A variable declaration is an association of a variable name with a data type. In and of itself, this
does not imply variable creation. However, for nonobject variables, a variable declaration does
create a variable. A declaration such as:

Dim x As Integer

creates an Integer variable named x. We can also write:

Dim x As Integer = New Integer()

which emphasizes the role of the constructor function for the Integer data type. (The constructor is
the function that VB.NET uses to create the variable.)

When multiple variables are declared on the same line, if a variable is not declared with an
explicit type declaration, then its type is that of the next variable with an explicit type declaration.
Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type
Variant, which is VB 6's default data type.)

VB.NET permits the initialization of variables in the same line as their declaration (at long last!).
Thus, we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more
than one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

Note that in this case, each variable that you declare must explicitly be assigned a data type. You
cannot assign each variable an explicit value without explicitly declaring the data type of each
variable.

Object variables are declared in the same manner:

Dim obj As MyClass

However, this declaration does not create an object variable, and the variable is equal to
Nothing at this point. Object creation requires an explicit call to the object's constructor, as in:

Dim obj As New MyClass()

or:

Dim obj As MyClass = New Myclass()

or:

Dim obj As MyClass

obj = New MyClass()

Variables and constants can be declared with any of the following access modifiers:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public

Private

Friend

Protected

Protected Friend

Note also that the Dim keyword can be used as well, but it often defaults to one of the previously
mentioned access modifiers. This is potentially confusing, so the Dim keyword should be used
only when required, as it is for local variables.

Access modifiers help to specify the scope and accessibility of the variable. We discuss the
meaning of these access variables in detail in Chapter 4.

Constant declarations are analogous to variable declarations and have the form:

AccessModifier Const Name As Type = Value

where AccessModifier is one of the access modifiers defined earlier. Note that when Option
Strict is On (the default), all constant declarations must have a declared type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which
defines the data types that are supported by the CLR. Thus, each of the languages in the .NET
Framework (VB, C#, JScript, and Managed C++) implements a subset of a common set of data
types. We say subset because, unfortunately, not all of the CTS types are implemented by
VB.NET. For instance, the CTS includes some unsigned integer data types that are not
implemented in VB.

As an aside, it is possible to use the VB-unsupported data types in VB by direct use of the
corresponding Framework Class Library class. Here is an example illustrating the ability to use
the unsigned 16-bit integer data type, whose range of values is 0 to 65,535. Note the use of the
ToUInt16 method of the Convert class to actually get an unsigned 16-bit integer:

Dim ui As UInt16

ui = Convert.ToUInt16(65535)

MsgBox(ui.ToString)

Thus, the native VB data types are wrappers for the CTS data types. To illustrate, the VB Integer
data type is a wrapper for the Int32 structure that is part of the .NET Framework's System
namespace. One of the members of the Int32 structure is MaxValue, which returns the maximum
value allowed for this data type. Thus, even though MaxValue is not officially part of VB.NET (nor
is it mentioned in the VB documentation), we can write:

Dim i As Integer

MsgBox(i.Maxvalue) ' Displays 2147483647

3.3.1 Value and Reference Types

The types defined in the CTS fall into three categories:

Value types

Reference types

Pointer types

However, pointer types are not implemented in VB, so we will not discuss these types.

The difference between value and reference types is how variables of the corresponding type
represent that type. When a value-type variable is defined, as in:

Dim int As Integer = 5

a memory location is set aside to hold the actual data (in this case the number 5). In contrast,
when a reference-type variable is defined, as in:

Dim obj As New CEmployee

the VB compiler creates the object in memory, but then sets the variable obj to a 4-byte memory
location that contains the address of the object.

In short, value-type variables contain the data, whereas reference-type variables point to the data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The distinction between value type and reference type has several consequences, one of which is
in the way assignments work. To illustrate, consider the following class, which has a single
property:

Public Class MyClass

 Public Age As Short

End Class

and the structure MyStruct, also with a single property:

Structure MyStruct

 Public Age As Short

End Structure

Classes are reference types, whereas structures are value types. Now consider the following
code, which is thoroughly commented:

' Declare two class variables and two structure variables.

Dim objRef1 As MyClass

Dim objRef2 As MyClass

Dim objValue1 As MyStruct

Dim objValue2 As MyStruct

' Instance the class.

objRef1 = New MyClass()

' Set the Age property to 20.

objRef1.Age = 20

' Set the second variable to the first variable.

' This is an equating of object *references* because

' classes are reference types.

objRef2 = objRef1

' Set the Age property of objRef2 to 30.

objRef2.Age = 30

' Check the values of the Age property.

Debug.WriteLine(objRef1.Age)

Debug.WriteLine(objRef2.Age)

' Do the same thing with the structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Do the same thing with the structure

' Instance the structure.

objValue1 = New MyStruct()

' Set the Age property to 20.

objValue1.Age = 20

' Set the second variable to the first variable.

' This is an equating of object *values* because

' structures are value types.

objValue2 = objValue1

' Set the Age property of objValue2 to 30.

objValue2.Age = 30

' Check the values of the Age property.

Debug.Writeline(objValue1.Age)

Debug.Writeline(objValue2.Age)

Now, the output is:

30

30

20

30

To understand what is happening, we need to realize that the reference assignment:

objRef2 = objRef1

sets both variables to the same value. But that value is the address of the object, and so both
variables point to the same object. Hence, when we change the Age property using the second
variable, this change is also reflected in the first variable.

On the other hand, the value assignment:

objValue2 = objValue1

causes a second structure to be created, setting the new structure's properties to the same value
as the original structure. Thus, changing one structure's Age property does not affect the other
structure's Age property.

Note that the VB Array type is also a reference type. To illustrate, consider the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim iArray1() As Integer = {1, 2, 3}

Dim iArray2() As Integer

iArray2 = iArray1

iArray1(0) = 100

msgbox(iArray2(0))

The message box displays 100, indicating that both array variables point to the same array.

The String data type is a reference type, implemented by the String class. However, it has some
characteristics of a value type. To illustrate, consider the following code:

Dim s1, s2 As String

s1 = "String 1"

s2 = s1

s2 = "String 2"

MsgBox(s1)

Since this is a reference type, we would expect the last line to produce the message "String
2", but instead we get "String 1". The reason can be found in Microsoft's documentation:

An instance of String is "immutable" because its value cannot be modified once it
has been created. Methods that appear to modify a String actually return a new
instance of String containing the modification.

Thus, the code:

s2 = s1

points s2 to the same string as s1, as is usual with reference types. Then the attempt to modify
the string in the code:

s2 = "String 2"

does not produce the expected result because strings are immutable. Instead, we get a new
string pointed to by s2, while s1 retains its value.

The following code supports this conclusion:

Dim s1, s2 As String

s1 = "String 1"

' s2 poitns to same string as s1

s2 = s1

' Show s2 before any changes to the string

MsgBox(s2) ' Displays "String1"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBox(s2) ' Displays "String1"

' Change the string

s2 = "String 2"

' Set s1 to Nothing

s1 = Nothing

' Now s1 is nothing and displays accordingly

MsgBox(s1) ' Displays nothing

' s2 is a new string

MsgBox(s2) ' Displays "String 2"

Enjoy!

3.3.2 VB Data Types: A Summary

The following lists the data types supported by VB.NET, along with their underlying .NET type,
storage requirements, and range of values:

Boolean

.NET CTS type: System.Boolean

Type: Value (Structure)

Storage: 2 bytes

Value range: True or False

Byte

.NET CTS type: System.Byte

Type: Value (Structure)

Storage: 1 byte

Value range: 0 to 255 (unsigned)

Char

.NET CTS type: System.Char

Type: Value (Structure)

Storage: 2 bytes

Value range: A character code from 0 to 65,535 (unsigned)

Date

.NET CTS type: System.DateTime

Type: Value (Structure)

Storage: 8 bytes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value range: January 1, 1 CE to December 31, 9999

Decimal

.NET CTS type: System.Decimal

Type: Value (Structure)

Storage: 12 bytes

Value range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest
nonzero number is +/-0.0000000000000000000000000001

Double (double-precision floating point)

.NET CTS type: System.Double

Type: Value (Structure)

Storage: 8 bytes

Value range: -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer

.NET CTS type: System.Int32

Type: Value (Structure)

Storage: 4 bytes

Value range: -2,147,483,648 to 2,147,483,647

Long (long integer)

.NET CTS type: System.Int64

Type: Value (Structure)

Storage: 8 bytes

Value range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Object

.NET CTS type: System.Object

Type: Reference (Class)

Storage: 4 bytes

Value range: Any type can be stored in an Object variable.

Short

.NET CTS type: System.Int16

Type: Value (Structure)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Storage: 2 bytes

Value range: -32,768 to 32,767

Single (single precision floating point)

.NET CTS type: System.Single

Type: Value (Structure)

Storage: 4 bytes

Value range: -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values

String (variable-length)

.NET CTS type: System.String

Type: Reference (Class)

Storage: 10 bytes + (2 * string length)

Value range: 0 to approximately 2 billion Unicode characters

User-Defined Type (structure)

.NET CTS type: (inherits from System.ValueType)

Type: Value (Structure)

Storage: Sum of the sizes of its members

Value range: Each structure member has range determined by its data type and is
independent of the ranges of the other members.

Note that the CTS data types are either structures (which are value types) or classes (which are
reference types) and are located within the .NET System namespace.

3.3.3 Simple Data Types in Visual Basic

In this section, we discuss data types in general and VB.NET data types in particular.

Simple data types can be classified into groups as follows. Note that these groups are not
mutually exclusive:

Numeric data type

A data type in which the underlying set is a set of numbers and for which the set of
operations includes the arithmetic operations.

Integer data type

A numeric data type in which the underlying set is a set of integers. (As we will see, VB has
several integer data types.)

Floating-point data type

A noninteger data type whose underlying set is a subset of the rational numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean data type

A data type whose underlying set has size 2. This set is usually thought of as {True,
False}.

Character data type

A data type whose underlying set is a set of characters. Of course, each value must be
represented in memory as a binary string, which can also be interpreted as a number.
Nevertheless, this interpretation is not part of a character data type.

Let us consider the Visual Basic .NET data types individually.

3.3.3.1 Boolean data type

The Boolean is a 16-bit data type that can only represent two values: True and False. The VB
keywords True and False are used to assign these values to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to True, and
zero is converted to False. In the other direction, False is converted to zero, and True is
converted to -1. (Incidentally, in C, C#, and C++, True is converted to 1. This change was made
in Beta 1 of VB.NET to bring it in line with the other languages, but was subsequently changed
back in Beta 2.)

The underlying .NET data type for Boolean is System.Boolean.

3.3.3.2 Byte data type

The Byte data type is an 8-bit unsigned data type whose range is the set of integers from 0 to
255. According to the documentation, the Byte data type "is used for containing binary data."
Since ordinary arithmetic operations can be used with Byte variables, the data type is, in this
sense, an integer data type. Also, there do not appear to be any special operators, such as shift
operators, that would give the type a "binary data" flavor. Oh well.

The underlying .NET data type for Byte is System.Byte.

3.3.3.3 Char data type

The Char data type is a 16-bit character data type with a character code ranging from 0 to 65,535,
which represent a single Unicode character. As a data type, Char is new to VB.NET; there was no
equivalent in previous versions of Visual Basic.

It is important not to confuse the Char and String data types. (We discuss this data type in Section
3.3.3.12.) A string consisting of a single character is not the same as a Char. To illustrate,
consider defining a new string and initializing it to a sequence consisting of a repeated single
character, for example, "AAAAA." In earlier versions of VB, this was done as follows:

Dim s As String

s = String$(5, "A")

In VB.NET, this is done using the String class constructor, which has the syntax:

Dim variable As New String(Character, Integer)

If we turn strict type checking on with the Option Strict On statement, the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we turn strict type checking on with the Option Strict On statement, the code:

Dim s As New String("A",5)

produces the error message, "Option Strict disallows implicit conversions from String to Char."

To get a Char, we must append a c to the end of the string literal. Thus, the following works:

Dim s As New String("A"c, 5)

The underlying .NET data type for Char is System.Char.

3.3.3.4 Date data type

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January
1, 0001 to December 31, 9999 (which should be plenty), and times from 0:00:00 to 23:59:59.

Literal strings must be enclosed in number signs (#) to be recognized as dates. The VB.NET
compiler changes date formats automatically. For instance, if we enter the code:

Dim d As Date

d = #November 9, 1948#

Msgbox(d)

the compiler changes the second line to:

d = #11/9/1948#

or whatever the regional settings on the host system dictate. The .NET equivalent of Date is
System.DateTime.

3.3.3.5 Decimal data type

Values of the Decimal data type are stored as 96-bit (12-byte) signed integers, along with an
internal scale factor ranging from 0 to 28, which is applied automatically when we set a value for a
Decimal variable. This allows us to enter values from a number of different ranges.

For instance, we can use integers (no decimal part) in the range:

+/-79,228,162,514,264,337,593,543,950,335

in which case the scale factor is set to 0. On the other extreme, we can use values in the range:

-7.9228162514264337593543950335 to -0.0000000000000000000000000001

on the negative side, or:

0.0000000000000000000000000001 to 7.9228162514264337593543950335

on the positive side. In this case, the scale factor is set to 28.

To write a literal Decimal, append a D, as in:

123456.789D

The type identifier for Decimal is the symbol @, as in:

Dim dec@

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim dec@

The underlying .NET data type for Decimal is System.Decimal. This class has some useful
members, such as MaxValue and MinValue, which give the maximum and minimum values of the
decimal type.

By the way, in previous versions of VB, the Decimal existed only as a Variant data subtype —
there were no variables of type Decimal.

3.3.3.6 Double data type

Values of type Double are IEEE 64-bit (8-byte) floating-point numbers with the range:

-1.79769313486231E308 to -4.94065645841247E-324

on the negative side, and:

4.94065645841247E-324 to 1.79769313486232E308

on the positive side.

To write a literal Double, we must append an R, as in:

12345.678R

The type identifier for a Double is #, as in:

Dim dbl#

The underlying .NET data type for Double is System.Double.

3.3.3.7 Integer data type

The Integer data type is a 32-bit data type that stores signed integers ranging from:

-2^31 to 2^31-1

or:

-2,147,483,648 to 2,147,483,647

Note that this is the native word size on a 32-bit processor, and so the Integer data type provides
superior performance as compared to integer data types of other sizes.

Note also that this data type size is new for VB.NET. In VB 6 and earlier, the Integer data type
was a 16-bit data type.

To define a literal Integer, append an I, as in:

123I

The Integer type identifier is the percent sign (%), as in:

Dim int%

The underlying .NET data type for Integer is System.Int32.

3.3.3.8 Long data type

The Long data type is a 64-bit integer data type that stores signed integers ranging from:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-2^63 to 2^63-1

or:

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Note that this data type size is new for VB.NET. In VB 6 and earlier, the Long data type was a 32-
bit data type.

To define a literal Long, append an L, as in:

123L

The Long type identifier is the ampersand sign (&), as in:

Dim lng&

The underlying .NET data type for Long is System.Int64.

3.3.3.9 Object data type

The Object data type is a pointer data type. That is, a value of type Object is an address that
references the object in memory. In VB.NET, the Object data type is the universal data type; an
Object variable can refer to (point to) data of any other data type. For instance, the following code
places a Long value in an Object variable:

Dim obj As Object

obj = 123L

The underlying .NET data type for Object is System.Object.

It is worth noting that when we use variables of type Object, we do pay a performance penalty
because VB.NET cannot bind the object's method invocations to the actual method code until
runtime. This is referred to as late binding. On the other hand, declaring variables of a specific
object type allows early binding at compile time, which is much more efficient. Thus, code such
as:

Dim obj As Object

. . .

obj.AMethod

is much less efficient than:

Dim obj As System.Data.DataSet

. . .

obj.AMethod

We revisit this issue in more detail later in this chapter.

As we have seen, the Object data type is universal. Just as in VB 6, in which you can use the
VarType function to determine the data subtype of a Variant, in VB.NET you can use the VarType
function to determine the data subtype of an object.

In addition, the Object class in the Framework Class Library's System namespace has a method
named GetType that returns an object of type Type. Thus, if obj is a variable of type Object, then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

named GetType that returns an object of type Type. Thus, if obj is a variable of type Object, then
the code:

obj.GetType

returns a Type object. In turn, the Type class, which is also a member of the Framework Class
Library's System namespace, has two methods that return information about the subtype of the
object:

ToString returns a string that describes the subtype of the data. It is roughly equivalent to
calling the VB.NET TypeName function, except that the former method uses the data type
name from the .NET Framework Class Library, whereas the latter function uses the Visual
Basic name.

GetTypeCode returns an enumeration value from the TypeCode enumeration. It is roughly
equivalent to calling the VB6 VarType function, which, as we have said, is no longer
supported in VB.NET.

For reference, the following code generates the values in Table 3-1:

Dim obj As Object

obj = ???
debug.write(obj.GetType.ToString)

Debug.Write(TypeName(obj))

debug.writeline(Type.GetTypeCode(obj.GetType))

Table 3-1. Values of ToString and GetTypeCode
obj = ??? ToString TypeName GetType

obj = True System.Boolean Boolean 3

obj = CByte(100) System.Byte Byte 6

obj = #1/1/2000# System.DateTime Date 16

obj = CDec(100) System.Decimal Decimal 15

obj = CDbl(100) System.Double Double 14

obj = CInt(100) System.Int32 Integer 9

obj = CLng(100) System.Int64 Long 11

obj = CShort(100) System.Int16 Short 7

obj = CSng(100) System.Single Single 13

obj = "Donna" System.String String 18

3.3.3.10 Short data type

The Short data type is a 16-bit integer data type that stores signed integers ranging from:

-2^15 to 2^15-1

or:

-32,768 to 32,767

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that in earlier versions of Visual Basic, the Short data type is called the Integer data type.

To define a literal Short, append an S, as in:

123S

The underlying .NET data type for Short is System.Int16.

3.3.3.11 Single data type

Values of type Single are IEEE 32-bit (4-byte) floating-point numbers with the range:

-3.402823E38 to -1.401298E-45

on the negative side, and:

1.401298E-45 to 3.402823E38

on the positive side.

To write a literal Single, we must append an F (for floating point), as in:

12345.678F

The type identifier for a Single is an exclamation point (!), as in:

Dim sng!

The underlying .NET data type for Single is System.Single.

3.3.3.12 String data type

The String data type represents Unicode strings of up to approximately 2 billion characters. The
type identifier for the string data type is a dollar sign ($). The underlying .NET data type for this
type is System.String.

To create a new string, we can declare a variable and assign it a string as follows:

Dim sName As String

sName = "Donna"

or equivalently, in one statement:

Dim sName As String = "Donna"

The type identifier for a String is a dollar sign ($), as in:

Dim str$

3.3.3.13 Structure data type: user-defined types

In VB.NET, the Structure type is a powerful data type that has many properties in common with
classes.

To declare a structure, we use the Structure statement, whose syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To declare a structure, we use the Structure statement, whose syntax is:

[Public|Private|Friend] Structure StructureName

 Nonmethod member declarations

 Method member declarations

End Structure

The members of a structure can be variables, properties, methods, or events. Note, however, that
each member must be declared with an access modifier: Public (or Dim), Private, or Friend.

The simplest and most common use of structures is to encapsulate related variables. For
instance, we might define a structure as follows:

Structure strPerson

 Public Name As String

 Public Address As String

 Public City As String

 Public State As String

 Public Zip As String

 Public Age As Short

End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Note that structure members can be other structures or other objects. Structures can also be
passed as arguments to functions, or as the return type of a function.

As mentioned, structures are similar to classes. For instance, consider the following structure:

Structure strTest

 ' A public nonmethod member

 Public Name As String

 ' A private member variable

 Private msProperty As String

 ' A public method member

 Public Sub AMethod()

 Msgbox("Structure method. Property is: " & msProperty)

 End Sub

 ' A public property member

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' A public property member

 Public Property AProperty() As String

 Get

 AProperty = msProperty

 End Get

 Set

 msProperty = Value

 End Set

 End Property

End Structure

Now we can set the structure's property and invoke its method as follows:

Dim str As strTest

str.AProperty = "Donna"

str.AMethod()

Although structures are similar to classes, they do not support the following class features:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors.

Member declarations cannot include initializers nor can they use the As New syntax or
specify an initial array size.

For a reference to the object-oriented terminology, see Chapter 4.

3.3.4 Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A
cast operator can be applied to a literal value or to a variable of a given type. For instance, we
have:

Dim lng As Long

Dim int As Integer = 6

' Cast an Integer variable to a Long

lng = CLng(Int)

' Cast a literal integer to a Long

lng = CLng(12)

A cast can be widening or narrowing. A widening cast is one in which the conversion is to a target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A cast can be widening or narrowing. A widening cast is one in which the conversion is to a target
data type that can accommodate all values in the source data type, such as casting from Short to
Integer or Integer to Double. In such a case, no data is ever lost, and the cast will not generate an
error. A narrowing cast is one in which the target data type cannot accommodate all values in the
source data type. In this case, data may be lost, and the cast may not succeed.

Under VB.NET, conversions are made in two ways: implicitly and explicitly. An implicit conversion
is done by the compiler when circumstances warrant it (and if it is legal). For instance, if we write:

Dim lng As Long

lng = 54

then the compiler casts the Integer 54 as a Long.

The type of implicit conversion that the compiler will do depends in part on the setting of the
Option Strict value. For instance, if Option Strict is On, only widening casts can be
implicit; so then the following code:

Dim b As Boolean

b = "True"

generates a type conversion error, whereas if we add the line:

Option Strict Off

to the beginning of the module, then the previous code executes without error.

Explicit conversion requires explicitly calling a conversion function (or cast operator). The type
conversion functions supported by VB.NET all have the form:

Cname(expression)

where expression is an expression that is in the range of the target data type. Specifically, we
have the following conversion functions:

CBool

Converts any valid String or numeric expression to Boolean. When a numeric value is
converted to Boolean, any nonzero value is converted to True, and zero is converted to
False.

CByte

Converts any numeric expression in the range 0 to 255 to Byte, while rounding any
fractional part.

CChar

Takes a string argument and returns the first character of the string as a Char data type.

CDate

Converts any valid representation of a date or time to Date.

CDbl

Converts any expression that can be evaluated to a number in the range of a Double to
Double.

CDec

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts any expression that can be evaluated to a number in the range of a Decimal to
Decimal.

CInt

Converts any numeric expression in the range of Integer (-2,147,483,648 to 2,147,483,647)
to Integer, while rounding any fractional part.

CLng

Converts any expression that can be evaluated to a number in the range of a Long to Long,
while rounding any fractional part.

CObj

Converts any expression that can be interpreted as an object to Object. For instance, the
code:

Dim obj As Object

obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

CShort

Converts any numeric expression in the range -32,768 to 32,767 to Short, while rounding
any fractional part.

CSng

Converts any expression that can be evaluated to a number in the range of a Single to
Single. If the numeric expression is outside the range of a Single, an error occurs.

CStr

If the expression input to CStr is Boolean, the function returns one of the strings "True" or
"False." For an expression that can be interpreted as a date, the return value is a string
representation of that date, in the date format defined by the regional settings of the host
computer. For a numeric expression, the return value is a string representing the number.

CType

A general-purpose conversion function, CType has the following syntax:

CType(expression, typename)

where expression is an expression or variable, and typename is the data type to which
it will be converted. The function supports conversions to and from the standard data types,
as well as to and from object data types, structures, and interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Arrays

The array data type is a fundamental data type in most languages, including Visual Basic. An
array is used to store a collection of similar data types or objects.

Many authors of programming books misuse the terms associated with arrays, so let's begin by
establishing the correct terminology. In fact, if you will indulge us, we would like to begin with a
formal definition of the term array.

3.4.1 Definition of Array

Let S1, S2 ..., SN be finite sets, and let T be a data type (such as Integer). Then an array of type T
is a function:

arr:S1 · S2 · ... · SN T

where S1 · S2 · ... · SN is the Cartesian product of the sets S1, S2 ..., SN. (This is the set of all n-
tuples whose coordinates come from the sets Si.)

For arrays in VB.NET (and the other languages that implement the Common Language Runtime),
the sets Si must have the form:

Si={0,1,...,Ki}

In other words, each set Si is a finite set of consecutive integers starting with 0.

Each position in the Cartesian product is referred to as a coordinate of the array. For each
coordinate, the integer Ki is called the upper bound of the coordinate. The lower bound is 0 for all
arrays in VB.NET.

3.4.2 Dimension of an Array

The number N of coordinates in the domain of the function arr is called the dimension (or
sometimes rank) of the array. Thus, every array has a dimension (note the singular); it is not
correct to refer to the dimensions of an array (note the plural). An array of dimension 1 is called a
one-dimensional array, an array of dimension 2 is called a two-dimensional array, and so on.

3.4.3 Size of an Array

Along with a dimension, every array has a size. For instance, the one-dimensional array:

arr:{0,1,...,5} T

has size 6. The two-dimensional array:

arr:{0,1,...,5}·{0,1,...,8} T

has size 6·9. The three-dimensional array:

arr:{0,1,...,5}·{0,1,...,8}·{0,1} T

has size 6·9·2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.4 Arrays in VB.NET

In VB.NET, all arrays have lower bound 0. This is a change from earlier versions of VB, where we
could choose the lower bound of an array.

The following examples show various ways to declare a one-dimensional array:

' Implicit constructor: No initial size and no initialization

Dim Days() As Integer

' Explicit constructor: No initial size and no initialization

Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization

Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization

Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization

Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

' Explicit constructor, Initial size and initialization

Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that an array declaration can:

Call the array's constructor implicitly or explicitly. (The constructor is the function that
VB.NET uses to create the array.)

Specify an initial size for each dimension or leave the initial size unspecified.

Initialize the elements of the array or not.

It is important to note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array elements are ArrayName(0)
through ArrayName(X), and the array has X+1 elements.

Multidimensional arrays are declared similarly. For instance, the following example declares and
initializes a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))

Debug.Write(X(0, 1))

Debug.Writeline(X(0, 2))

Debug.Write(X(1, 0))

Debug.Write(X(1, 1))

Debug.Write(X(1, 2))

123

456

In VB.NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the
ReDim statement. Note, however, that the dimension of an array cannot be changed.

Moreover, unlike with VB 6, the ReDim statement cannot be used for array declaration, but can be
used only for array redimensioning. All arrays must be declared initially using a Dim (or
equivalent) statement.

3.4.4.1 Redimensioning arrays

The ReDim statement is used to change the size of an array. This is referred to as redimensioning
— a term no doubt invented by someone who didn't know the difference between the dimension
of an array and the size of an array! In any case, redimensioning changes the size of the array,
not its dimension. In fact, as we have already mentioned, the dimension of an array cannot be
changed.

The UBound function returns the upper limit of an array coordinate. Its syntax is:

UBound(MyArray, CoordinateIndex)

where CoordinateIndex is the index of the coordinate for which we want the upper bound.

Here is an example of array redimensioning:

Dim MyArray(10, 10) As Integer

Msgbox(UBound(MyArray, 2)) ' Displays 10

ReDim MyArray(15, 20)

Msgbox(UBound(MyArray, 2)) ' Displays 20

When an array is redimensioned using the ReDim statement without qualification, all data in the
array is lost; that is, the array is reinitialized. However, the Preserve keyword, when used with
ReDim, redimensions the array while retaining all current values. Note that when using the
Preserve keyword, only the last coordinate of an array can be changed. Thus, referring to the
array defined earlier, the following code generates an error:

ReDim Preserve MyArray(50, 20)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReDim Preserve MyArray(50, 20)

You will probably not be surprised to learn that redimensioning an array is a time- intensive
process. Hence, when redimensioning, we face the ubiquitous dichotomy between saving space
and saving time. For instance, consider the code segment used to populate an array:

Dim MyArray(100) As Integer

Dim i As Integer, iNext As Integer

iNext = 0

Do While (Some condition)

 If (some condition here) Then

 ' Add element to array

 If ubound(MyArray) < iNext Then

 ReDim Preserve MyArray(iNext + 100)

 End If

 MyArray(iNext) = (whatever)

 iNext = iNext + 1

 End If

Loop

The key issue here is to decide how much to increase the size of the array each time resizing is
necessary. If we want to avoid using any extra space, we could increase the size of the array by 1
each time:

ReDim Preserve MyArray(iNext + 1)

But this would be very inefficient. Alternatively, we could kick up the size by 1,000:

ReDim Preserve MyArray(iNext + 1000)

But this uses a lot of extra space. Sometimes experimentation is required to find the right
compromise between saving space and saving time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 Object Variables and Their Binding

In VB.NET, classes and their objects are everywhere. Of course, there are the classes and
objects that we create in our own applications. There are also the classes in the .NET Framework
Class Library. In addition, many applications take advantage of the objects that are exposed by
other applications, such as ActiveX Data Objects (ADO), Microsoft Word, Excel, Access, various
scripting applications, and more. The point is that for each object we want to manipulate, we will
need to declare a variable of that class type. For instance, if we create a class named CPerson,
then in order to instantiate a CPerson object, we must declare a variable:

Dim APerson As CPerson

Similarly, if we decide to use the ADO Recordset object, we will need to declare a variable of type
ADO.Recordset:

Dim rs As ADO.Recordset

Even though object variables are declared in the same manner as nonobject variables, there are
some significant differences. In particular, the declaration:

Dim obj As MyClass

does not create an object variable — it only binds a variable name with a class name. To actually
construct an object and set the variable to refer to that object, we need to call the constructor of
the class. This function, discussed in detail in Chapter 4, is responsible for creating objects of the
class.

Constructors are called using the New keyword, as in:

Dim obj As MyClass = New MyClass()

or:

Dim obj As MyClass

obj = New MyClass()

VB.NET also provides a shortcut that does not mention the constructor explicitly:

Dim obj As New MyClass()

(In earlier versions of VB, we use the Set statement, which is no longer supported.)

3.5.1 Late Binding Versus Early Binding

The object-variable declaration:

Dim obj As Class1

explicitly mentions the class from which the object will be created (in this case it is Class1).
Because of this, VB can obtain and display information about the class members, as we can see
in VB's Intellisense, shown in Figure 3-1.

Figure 3-1. Intellisense showing member list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you know, Intellisense also shows the signature of a method, as shown in Figure 3-2.

Figure 3-2. Intellisense showing method signature

Of course, Intellisense is very helpful during program development. However, more important is
that the previous object-variable declaration allows VB to bind the object's methods to actual
function addresses at compile time. This is known as early binding.

An alternative to using a declaration that specifically mentions that class is a generic object-
variable declaration that uses the As Object syntax:

Dim obj As Object

While it is true that obj can hold a reference to any object, we pay a major penalty for this
privilege. VB can no longer get information about the class and its members because it does not
know which class the object obj belongs to!

As a result, VB's Intellisense cannot help us with member syntax. More importantly, we pay a
large performance penalty because VB cannot bind any of the classes, properties, or methods at
compile time — it must wait until runtime. This is referred to as late binding.

In summary, explicit object-variable declarations allow for early binding and thus are much more
efficient than generic declarations, which use late binding. Hence, explicit object-variable
declarations should be used whenever possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 The Collection Object

VB.NET implements a special object called the Collection object that acts as a container for
objects of all types. In fact, Collection objects can hold other objects, as well as nonobject data.

In some ways, the Collection object is an object-oriented version of the Visual Basic array. It
supports the following four methods:

Add

Adds an item to the collection. Along with the data itself, you can specify a key value by
which the member can be referenced.

Count

Returns the number of items in the collection.

Item

Retrieves a member from the collection either by its index (or ordinal position in the
collection) or by its key (assuming that a key was provided when the item was added to the
collection).

Remove

Deletes a member from the collection using the member's index or key.

For example, the following code defines a collection object named colStates to hold information
about U.S. states and then adds two members to it, using the state's two-letter abbreviation as a
key:

Dim colStates As New Collection

colStates.Add("New York", "NY")

colStates.Add("Michigan", "MI")

Like members of an array, the members of a collection can be iterated using the For
Each...Next construct. Also like arrays, collection members are accessible by their index value,
although the lower bound of a collection object's index is always 1.

Arrays and collections each have advantages and disadvantages. Some of the advantages of
collections over arrays are:

New collection members can be inserted before or after an existing member in index order.
Moreover, indexes are maintained automatically by VB, so we don't need to adjust the
indexes manually.

Collection members can be referenced by key value. This feature makes collections similar
to associative arrays (which are used by languages such as Perl).

Note that when deleting collection members by index, it is important to iterate though the indexes
in reverse order because member deletion changes the indexes of other members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 Parameters and Arguments

The terms parameter and argument are often used interchangeably, although they have entirely
different meanings. Let us illustrate with an example. Consider the following function, which
replicates a string a given number of times:

Function RepeatString(ByVal sInput As String, ByVal iCount As Integer) _

 As String

 Dim i As Integer

 For i = 1 To iCount

 RepeatString = RepeatString & sInput

 Next

End Function

The variables sInput and iCount are the parameters of this function. Note that each parameter
has an associated data type.

Now, when we call this function, we must replace the parameters by variables, constants, or
literals, as in:

s = RepeatString("Donna", 4)

The items that we use in place of the parameters are called arguments.

3.7.1 Passing Arguments

Arguments can be passed to a function in one of two ways: by value or by reference. Incidentally,
argument passing is often called parameter passing, although it is the arguments and not the
parameters that are being passed.

The declaration of RepeatString given earlier contains the keyword ByVal in front of each
parameter. This specifies that arguments are passed by value to this function. Passing by value
means that the actual value of the argument is passed to the function. This is relevant when an
argument is a variable. For instance, consider the following code:

Sub Inc(ByVal x As Integer)

 x = x + 1

End Sub

Dim iAge As Integer = 20

Inc(iAge)

Msgbox(iAge)

The final line:

Msgbox(iAge)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Msgbox(iAge)

actually displays the number 20. In other words, the line:

Inc(iAge)

does nothing. The reason is that the argument iAge is passed to the procedure Inc by value.
Since only the value (in this case 20) is passed, that value is assigned to a local variable named x
within the procedure. This local variable is increased to 21, but once the procedure ends, the local
variable is destroyed. The variable iAge is not passed to the procedure, so its value is not
changed.

On the other hand, if we modify the definition of the procedure Inc, replacing ByVal with ByRef,
the story is different:

Sub Inc(ByRef x As Integer)

 x = x + 1

End Sub

In this case, what is passed to the procedure Inc is a reference to the argument iAge. Hence,
the procedure actually operates on the variable passed to it, incrementing the value of iAge to
21. Put another way, the variable represented by the parameter x is actually the passed variable
iAge.

In VB.NET, the default method of argument passing for arguments is by value. This is a change
from earlier versions of VB, in which the default method was by reference.

3.7.2 Passing Objects

There is a subtlety in argument passing with parameters of any object type. Actually, the subtlety
occurs because an object variable is a pointer ; that is, it contains a reference to (or the address
of) the object.

If we pass an object variable by value, we are passing the contents of the variable, which is the
address of the object. Thus, any changes made in the called procedure affects the object itself,
not a copy of the object. This seems like passing by reference, but it is not. Think of it this way:
passing the value of an object's address is passing a reference to the object.

On the other hand, if we pass an object variable by reference, we are passing the address of the
variable. In other words, we are passing the address of the address of the object! In languages
that support pointers, this is referred to as a double pointer.

Let us illustrate with an example. Consider the following code, and imagine that the form
containing this code has two textboxes: TextBox1 with text "TextBox1" and TextBox2 with text
"TextBox2":

Public Function GetText(ByVal txt As TextBox) As String

 ' Change reference to textbox

 txt = Textbox2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 txt = Textbox2

End Function

Sub Doit

 Dim t As TextBox

 t = TextBox1

 GetText(t)

 msgbox(t.Text) ' Displays TextBox1 when ByVal, _

 ' TextBox2 when ByRef

End Sub

Now, here is what happens when we execute DoIt. Note that the argument is passed to GetText
by value in this case.

The TextBox variable t is assigned to TextBox1, as shown in Figure 3-3.

Figure 3-3. Assigning an object reference

GetText is called, passing t by value. Since t contains the address aaaa of the TextBox1
object, the local variable txt is given the value aaaa, as shown in Figure 3-4.

Figure 3-4. Passing an object by value

The single line of code in GetText is executed, which now causes txt to point to TextBox2,
as shown in Figure 3-5.

Figure 3-5. Assigning a new object reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Upon return from GetText, t is unaffected, so the MsgBox function displays the string
"TextBox1."

Now suppose we change the ByVal keyword to ByRef in GetText. Here is what happens:

The TextBox variable t is assigned to TextBox1, as shown previously in Figure 3-3.

GetText is called, passing t by reference. Hence, txt is t. This is quite different from txt
and t containing the same value, as in the ByVal case. The situation is shown in Figure 3-
6.

Figure 3-6. Passing an object by reference

The single line of code in GetText is executed, which now causes txt (and hence t) to
point to TextBox2, as shown in Figure 3-7.

Figure 3-7. Assigning a new object reference

Upon return from GetText, t is now pointing to TextBox2, so the MsgBox function displays
the string "TextBox2."

3.7.3 Optional Arguments

In VB.NET, parameters can be declared as optional using the Optional keyword, as shown in
the following code:

Sub Calculate(Optional ByVal Switch As Boolean = False)

In VB.NET, all optional parameters must declare a default value, which is passed to the
procedure if the calling program does not supply that parameter.

The following rules apply to optional arguments:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every optional argument must specify a default value, and this default must be a constant
expression (not a variable).

Every argument following an optional argument must also be optional.

Note that in earlier versions of VB, you could omit the default value and, if the parameter was of
type Variant, you could use the IsMissing function to determine if a value was supplied. This is not
possible in VB.NET, and the IsMissing function is not supported.

3.7.4 ParamArray

Normally, a procedure definition specifies a fixed number of parameters. However, the
ParamArray keyword, which is short for Parameter Array, permits us to declare a procedure with
an unspecified number of parameters. Therefore, each call to the procedure can use a different
number of parameters.

Suppose, for instance, that we want to define a function to take the average of a number of test
scores, but the number of scores may vary. Then we declare the function as follows:

Function GetAverage(ByVal ParamArray Scores() As Single) As Single

 Dim i As Integer

 For i = 0 To UBound(Scores)

 GetAverage = GetAverage + CSng(Scores(i))

 Next

 GetAverage = GetAverage / (UBound(Scores) + 1)

End Function

Now we can make calls to this function with a varying number of arguments:

Msgbox(GetAverage(1, 2, 3, 4, 5))

Msgbox(GetAverage(1, 2, 3))

The following rules apply to the use of ParamArray:

A procedure can only have one parameter array, and it must be the last parameter in the
procedure.

The parameter array must be passed by value, and you must explicitly include ByVal in the
procedure definition.

The parameter array must be a one-dimensional array. If the type is not declared, it is
assumed to be Object.

The parameter array is automatically optional. Its default value is an empty one-
dimensional array of the parameter array's data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Introduction to Object-Oriented Programming
In this chapter, we present a brief and succinct introduction to object-oriented programming. Since
this is not a book on object-oriented programming per se, we will confine our attention to those
topics that are important to VB.NET programming.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Why Learn Object-Oriented Techniques?

As you may know, Visual Basic has implemented some features of object-oriented programming
since Version 4. However, in terms of object-orientation, the move from Version 6 to VB.NET has
been dramatic. Many people did not consider VB 6 (or earlier versions) to be a truly object-
oriented programming language. Whatever your thoughts may have been on this matter, it seems
clear that VB.NET is an object-oriented programming language by any reasonable definition of
the term.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my
programming." This is something you could easily have gotten away with in VB 6. But in VB.NET,
the structure of the .NET Framework — specifically the .NET Framework Class Library — as well
as the documentation, is so object-oriented that you can no longer avoid understanding the basics
of object-orientation, even if you decide not to use them in your applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Principles of Object-Oriented Programming

It is often said that there are four main concepts in the area of object-oriented programming:

Abstraction

Encapsulation

Inheritance

Polymorphism

Each of these concepts plays a significant role in VB.NET programming at one level or another.
Encapsulation and abstraction are "abstract" concepts providing motivation for object-oriented
programming. Inheritance and polymorphism are concepts that are directly implemented in
VB.NET programming.

4.2.1 Abstraction

Simply put, an abstraction is a view of an entity that includes only those aspects that are relevant
for a particular situation. For instance, suppose that we want to create a software component that
provides services for keeping a company's employee information. For this purpose, we begin by
making a list of the items relevant to our entity (an employee of the company). Some of these
items are:

FullName

Address

EmployeeID

Salary

IncSalary

DecSalary

Note that we include not only properties of the entities in question, such as FullName, but also
actions that might be taken with respect to these entities, such as IncSalary, to increase an
employee's salary. Actions are also referred to as methods, operations, or behaviors. We will use
the term methods, since this term is used by VB.NET.

Of course, we would never think of including an IQ property, since this would not be politically
correct, not to mention discriminatory and therefore possibly illegal. Nor would we include a
property called HairCount, which gives the number of hairs on the employee's right arm, because
this information is of absolutely no interest to us, even though it is part of every person's being.

In short, we have abstracted the concept of an employee — we have included only those
properties and methods of employees that are relevant to our needs. Once the abstraction is
complete, we can proceed to encapsulate these properties and methods within a software
component.

4.2.2 Encapsulation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The idea of encapsulation is to contain (i.e., encapsulate) the properties and methods of an
abstraction, and expose only those portions that are absolutely necessary. Each property and
method of an abstraction is called a member of the abstraction. The set of exposed members of
an abstraction is referred to collectively as the public interface (or just interface) of the abstraction
(or of the software component that encapsulates the abstraction).

Encapsulation serves three useful purposes:

It permits the protection of these properties and methods from any outside tampering.

It allows the inclusion of validation code to help catch errors in the use of the public
interface. For instance, it permits us to prevent the client of the employee software
component from setting an employee's salary to a negative number.

It frees the user from having to know the details of how the properties and methods are
implemented.

Let us consider an example that involves the Visual Basic Integer data type, which is nicely
encapsulated for us by VB. As you undoubtedly know, an integer is stored in the memory of a PC
as a string of 0s and 1s called a binary string. In Visual Basic, integers are interpreted in a form
called two's-complement representation, which permits the representation of both negative and
non-negative values.

For simplicity, let us consider 8-bit binary numbers. An 8-bit binary number has the form
a7a6a5a4a3a2a1a0, where each of the axs is a 0 or a 1. We can think of it as appearing in memory
as shown in Figure 4-1.

Figure 4-1. An 8-bit binary number

In the two's-complement representation, the leftmost bit, a7 (called the most significant bit), is the
sign bit. If the sign bit is 1, the number is negative. If the sign bit is 0, the number is positive.

The formula for converting a two's-complement representation a7a6a5a4a3a2a1a0 of a number to
a decimal representation is:

decimal rep. = -128a7 + 64a6 + 32a5 + 16a4 + 8a3 + 4a2 + 2a1 + a0

To take the negative of a number when it is represented in two's-complement form, we must take
the complement of each bit (that is, change each 0 to a 1 and each 1 to a 0) and then add 1.

At this point you may be saying to yourself, "As a programmer, I don't have to worry about these
details. I just write code like:

x = -16

y = -x

and let the computer and the programming language worry about which representation to use and
how to perform the given operations."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is precisely the point behind encapsulation. The details of how signed integers are
interpreted by the computer (and the compiler), as well as how their properties and operations are
implemented, are encapsulated in the integer data type itself and are thus hidden from us, the
users of the data type. Only those portions of the properties and operations that we need in order
to work with integers are exposed outside of the data type. These portions form the public
interface for the Integer data type.

Moreover, encapsulation protects us from making errors. For instance, if we had to do our own
negating by taking Boolean complements and adding 1, we might forget to add 1! The
encapsulated data type takes care of this automatically.

Encapsulation has yet another important feature. Any code that is written using the exposed
interface remains valid even if the internal workings of the Integer data type are changed for some
reason, as long as the interface is not changed. For instance, if we move the code to a computer
that stores integers in one's-complement representation, then the internal procedure for
implementing the operation of negation in the integer data type will have to be changed. However,
from the programmer's point of view, nothing has changed. The code:

x = -16

y = -x

is just as valid as before.

4.2.3 Interfaces

As VB programmers, we must implement encapsulation through the use of software components.
For instance, we can create a software component to encapsulate the Employee abstraction
discussed earlier.

In VB.NET, the methods of an interface are realized as functions. On the other hand, a property,
as we see later in this chapter, is realized as a private variable that stores the property's value
together with a pair of public functions — one to set the variable and one to retrieve the variable.
These functions are sometimes referred to as accessor methods of the property. It is the set of
exposed functions (ordinary methods and accessor methods) that constitute the interface for an
abstraction.

In general, a software component may encapsulate and expose more than one abstraction —
hence, more than one interface. For example, in a more realistic setting, we might want a
software component designed to model employees to encapsulate an interface called
IIdentification (the initial "I" is for interface) that is used for identification purposes. This
interface might have properties such as name, Social Security number, driver's license number,
age, birthmarks, and so on. Moreover, the software component might also encapsulate an
interface called IEducation for describing the employee's educational background. Such an
interface might implement properties such as education level, degrees, college attended, and so
on.

The interface of each abstraction exposed by a software component is also referred to as an
interface of the software component. Thus, the Employee component implements at least two
interfaces: IIdentification and IEducation. Note, however, that the term interface is often
used to refer to the set of all exposed properties and methods of a software component, in which
case a component has only one interface.

Referring to our original Employee abstraction, its interface might consist of the functions shown
in Table 4-1. (Of course, this interface is vastly oversimplified, but it is more than sufficient to
illustrate the concepts.)

Table 4-1. Members of the Employee interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type Name
Property FullName: GetFullName(), SetFullName()

Property Address: GetAddress(), SetAddress()

Property EmployeeID: GetEmployeeID(), SetEmployeeID()

Property Salary: GetSalary(), SetSalary()

Method IncSalary()

Method DecSalary()

Using the term interface as a set of functions, while quite common, poses a problem. Just listing
the functions of the interface by name (as done previously) does not provide enough information
to call those functions. Thus, a more useful definition of interface would be the set of signatures of
the public functions of a software component.

To clarify this, let us discuss one of the most important distinctions in object- oriented
programming — the distinction between a function declaration and an implementation of that
function.

By way of example, consider the following sorting function:

Function Sort(a() as Integer, iSize as Integer) as Boolean

 For i = 1 to iSize

 For j = i+1 to iSize

 If a(j) < a(i) Then swap a(i), a(j)

 Next j

 Next I

 Sort = True

End Function

The first line in this definition:

Function Sort(a() as Integer, iSize as Integer) as Boolean

is the function declaration. It supplies information on the number and types of parameters and the
return type of the function. The body of the function:

For i = 1 to iSize

 For j = i+1 to iSize

 If a(j) < a(i) Then swap a(i), a(j)

 Next j

Next i

Sort = True

represents the implementation of the function. It describes how the function carries out its
intended purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that it is possible to alter the implementation of the function without changing the declaration.
In fact, the current function implementation sorts the array a using a simple selection-sort
algorithm, but we could replace that sorting method with any one of a number of other methods
(bubble sort, insertion sort, quick sort, and so on).

Now consider a client of the Sort function. The client only needs to know the function declaration
in order to use the function. It need not know (and probably doesn't want to know) anything about
the implementation. Thus, it is the function declaration, and not the implementation, that forms the
interface for the function.

The signature of a function is the function name and return type, as well as the names, order, and
types of its parameters. A function declaration is simply a clear way of describing the function's
signature. Note that Microsoft does not consider the return type of a function to be part of the
function's signature. By signature, they mean what is generally termed the function's argument
signature. The reasons for doing this become clearer later in the chapter when we discuss
overloading, although it would have been better (as usual) if they were more careful with their
terminology.

Under this more specific definition of interface, the interface for our employee component might
be as follows (in part):

Function GetFullName(lEmpID As Long) As String

Sub SetFullName(lEmpID As Long, sName As String)

. . .

Sub IncSalary(sngPercent As Single)

Sub DecSalary(sngPercent As Single)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Classes and Objects

Generally speaking, a class is a software component that defines and implements one or more
interfaces. (Strictly speaking, a class need not implement all the members of an interface. We
discuss this later when we talk about abstract members.) In different terms, a class combines
data, functions, and types into a new type. Microsoft uses the term type to include classes.

4.3.1 Class Modules in VB.NET

Under Visual Studio.NET, a VB class module is inserted into a project using the Add Class menu
item on the Project menu. This inserts a new module containing the code:

Public Class ClassName

End Class

Although Visual Studio stores each class in a separate file, this isn't a requirement. It is the
Class...End Class construct that marks the beginning and end of a class definition. Thus, the
code for more than one class as well as one or more code modules (which are similarly delimited
by the Module...End Module construct) can be contained in a single source code file.

The CPerson class defined in the next section is an example of a VB class module.

4.3.2 Class Members

In VB.NET, class modules can contain the following types of members:

Data members

This includes member variables (also called fields) and constants.

Event members

Events are procedures that are called automatically by the Common Language Runtime in
response to some action that occurs, such as an object being created, a button being
clicked, a piece of data being changed, or an object going out of scope.

Function members

This refers to both functions and subroutines. A function member is also called a method. A
class' constructor is a special type of method. We discuss constructors in detail later in this
chapter.

Property members

A property member is implemented as a Private member variable together with a special
type of VB function that incorporates both accessor functions of the property. We discuss
the syntax of this special property function in Section 4.3.5 later in the chapter.

Type members

A class member can be another class, which is then referred to as a nested class.

The following CPerson class illustrates some of the types of members:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class CPerson

 ' -------------

 ' Data Members

 ' -------------

 ' Member variables

 Private msName As String

 Private miAge As Integer

 ' Member constant

 Public Const MAXAGE As Short = 120

 ' Member event

 Public Event Testing()

 ' ----------------

 ' Function Members

 ' ----------------

 ' Method

 Public Sub Test()

 RaiseEvent Testing()

 End Sub

 Property Age() As Integer

 Get

 Age = miAge

 End Get

 Set(ByVal Value As Integer)

 ' Some validation

 If Value < 0 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("Age cannot be negative.")

 Else

 miAge = Value

 End If

 End Set

 End Property

 ' Property

 Property Name() As String

 ' Accessors for the property

 Get

 Name = msName

 End Get

 Set(ByVal Value As String)

 msName = Value

 End Set

 End Property

 ' Overloaded constructor

 Overloads Sub New()

 End Sub

 ' Constructor that initializes name

 Overloads Sub New(ByVal sNewName As String)

 msName = sNewName

 End Sub

 Sub Dispose()

 ' Code here to clean up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Code here to clean up

 End Sub

End

Class

4.3.3 The Public Interface of a VB.NET Class

We have seen that, when speaking in general object-oriented terms, the exposed members of a
software component constitute the component's public interface (or just interface). Now, in
VB.NET, each member of a class module has an access type, which may be Public, Private,
Friend, Protected, or Protected Friend. We discuss each of these in detail later in this
chapter. Suffice it to say, a VB.NET class module may accordingly have Public, Private,
Friend, Protected, and Protected Friend members.

Thus, we face some ambiguity in defining the concept of the public interface of a VB.NET class.
The spirit of the term might indicate that we should consider any member that is exposed outside
of the class itself as part of the public interface of the class. This would include the Protected,
Friend, and Protected Friend members, as well as the Public members. On the other
hand, some might argue that the members of the public interface must be exposed outside of the
project in which the class resides, in which case only the Public members would be included in
the interface. Fortunately, we need not make too much fuss over the issue of what exactly
constitutes a VB.NET class' public interface, as long as we remain aware that the term may be
used differently by different people.

4.3.4 Objects

A class is just a description of some properties and methods and does not have a life of its own
(with the exception of shared members, which we discuss later). In general, to execute the
methods and use the properties of a class, we must create an instance of the class, officially
known as an object. Creating an instance of a class is referred to as instancing, or instantiating,
theclass.

There are three ways to instantiate an object of a VB.NET class. One method is to declare a
variable of the class' type:

Dim APerson As CPerson

and then instantiate the object using the New keyword as follows:

APerson = New CPerson()

We can combine these two steps as follows:

Dim APerson As New CPerson()

or:

Dim APerson As CPerson = New CPerson()

The first syntax is considered shorthand for the second.

4.3.5 Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties are members that can be implemented in two different ways. In its simplest
implementation, a property is just a public variable, as in:

Public Class CPerson

 Public Age As Integer

End Class

The problem with this implementation of the Age property is that it violates the principle of
encapsulation; anyone who has access to a CPerson object can set its Age property to any
Integer value, even negative integers, which are not valid ages. In short, there is no opportunity
for data validation. (Moreover, this implementation of a property does not permit its inclusion in
the public interface of the class, as we have defined that term.)

The "proper" object-oriented way to implement a property is to use a Private data member along
with a special pair of function members. The Private data member holds the property value; the
pair of function members, called accessors, are used to get and set the property value. This
promotes data encapsulation, since we can restrict access to the property via code in the
accessor functions, which can contain code to validate the data. The following code implements
the Age property:

Private miAge As Integer

Property Age() As Integer

 Get

 Age = miAge

 End Get

 Set(ByVal Value As Integer)

 ' Some validation

 If Value < 0 Then

 MsgBox("Age cannot be negative.")

 Else

 miAge = Value

 End If

 End Set

End Property

As you can see from the previous code, VB has a special syntax for defining the property
accessors. As soon as we finish typing the line:

Property Age() As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Age() As Integer

the VB IDE automatically creates the following template:

Property Age() As Integer

 Get

 End Get

 Set(ByVal Value As Integer)

 End Set

End Property

Note the Value parameter that provides access to the incoming value. Thus, if we write:

Dim cp As New CPerson()

cp.Age = 20

then VB passes the value 20 into the Property procedure in the Value argument.

4.3.6 Instance and Shared Members

The members of a class fall into two categories:

Instance members

Members that can only be accessed through an instance of the class, that is, through an
object of the class. To put it another way, instance members "belong" to an individual
object rather than to the class as a whole.

Shared (static) members

Members that can be accessed without creating an instance of the class. These members
are shared among all instances of the class. More correctly, they are independent of any
particular object of the class. To put it another way, shared members "belong" to the class
as a whole, rather than to its individual objects or instances.

Instance members are accessed by qualifying the member name with the object's name. Here is
an example:

Dim APerson As New CPerson()

APerson.Age = 50

To access a shared member, we simply qualify the member with the class name. For instance,
the String class in the System namespace of the .NET Framework Class Library has a shared
method called Compare that compares two strings. Its syntax (in one form) is:

Public Shared Function Compare(String, String) As Integer

This function returns 0 if the strings are equal, -1 if the first string is less than the second, and 1 if
the first string is greater than the second. Since the method is shared, we can write:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim s As String = "steve"

Dim t As String = "donna"

MsgBox(String.Compare(s, t)) ' Displays 1

Note the way the Compare method is qualified with the name of the String class.

Shared members are useful for keeping track of data that is independent of any particular
instance of the class. For instance, suppose we want to keep track of the number of CPerson
objects in existence at any given time. Then we write code such as the following:

' Declare a Private shared variable to hold the instance count

Private Shared miInstanceCount As Integer

' Increment the count in the constructor

' (If there are additional constructors,

' this code must be added to all of them.)

Sub new()

 miInstanceCount += 1

End Sub

' Supply a function to retrieve the instance count

Shared Function GetInstanceCount() As Integer

 Return miInstanceCount

End Function

' Decrement the count in the destructor

Overrides Protected Sub Finalize()

 miInstanceCount -= 1

 MyBase.Finalize

End Sub

Now, code such as the following accesses the shared variable:

Dim steve As New CPerson()

MsgBox(CPerson.GetInstanceCount) ' Displays 1

Dim donna As New CPerson()

MsgBox(CPerson.GetInstanceCount) ' Displays 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.7 Class Constructors

When an object of a particular class is created, the compiler calls a special function called the
class' constructor or instance constructor. Constructors can be used to initialize an object when
necessary. (Constructors take the place of the Class_ Initialize event in earlier versions of VB.)

We can define constructors in a class module. However, if we choose not to define a constructor,
VB uses a default constructor. For instance, the line:

Dim APerson As CPerson = New CPerson()

invokes the default constructor of our CPerson class simply because we have not defined a
custom constructor.

To define a custom constructor, we just define a subroutine named New within the class module.
For instance, suppose we want to set the Name property to a specified value when a CPerson
object is first created. Then we can add the following code to the CPerson class:

' Custom constructor

Sub New(ByVal sName As String)

 Me.Name = sName

End Sub

Now we can create a CPerson object and set its name as follows:

Dim APerson As CPerson = New CPerson("fred")

or:

Dim APerson As New CPerson("fred")

Note that because VB.NET supports function overloading (discussed later in this chapter), we can
define multiple constructors in a single class, provided each constructor has a unique argument
signature. We can then invoke any of the custom constructors simply by supplying the correct
number and type of arguments for that constructor.

Note also that once we define one or more custom constructors, we can no longer invoke the
default (that is, parameterless) constructor with a statement such as:

Dim APerson As New CPerson()

Instead, to call a parameterless constructor, we must specifically add the constructor to the class
module:

' Default constructor

Sub New()

 ...

End Sub

4.3.8 Finalize, Dispose, and Garbage Collection

In VB 6, a programmer can implement the Class_Terminate event to perform any clean up
procedures before an object is destroyed. For instance, if an object held a reference to an open
file, it might be important to close the file before destroying the object itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, the Terminate event no longer exists, and things are handled quite differently. To
understand the issues involved, we must first discuss garbage collection.

When the garbage collector determines that an object is no longer needed (which it does, for
instance, when the running program no longer holds a reference to the object), it automatically
runs a special destructor method called Finalize. However, it is important to understand that,
unlike with the Class_Terminate event, we have no way to determine exactly when the garbage
collector will call the Finalize method. We can only be sure that it will be called at some time after
the last reference to the object is released. Any delay is due to the fact that the .NET Framework
uses a system called reference-tracing garbage collection, which periodically releases unused
resources.

Finalize is a Protected method. That is, it can be called from a class and its derived classes, but it
is not callable from outside the class, including by clients of the class. (In fact, since the Finalize
destructor is automatically called by the garbage collector, a class should never call its own
Finalize method directly.) If a class' Finalize method is present, then it should explicitly call its
base class' Finalize method as well. Hence, the general syntax and format of the Finalize method
is:

Overrides Protected Sub Finalize()

 ' Cleanup code goes here

 MyBase.Finalize

End Sub

The benefits of garbage collection are that it is automatic and it ensures that unused resources
are always released without any specific interaction on the part of the programmer. However, it
has the disadvantages that garbage collection cannot be initiated directly by application code and
some resources may remain in use longer than necessary. Thus, in simple terms, we cannot
destroy objects on cue.

We should note that not all resources are managed by the Common Language Runtime. These
resources, such as Windows handles and database connections, are thus not subject to garbage
collection without specifically including code to release the resources within the Finalize method.
But, as we have seen, this approach does not allow us or clients of our class to release resources
on demand. For this purpose, the Framework Class Library defines a second destructor called
Dispose. Its general syntax and usage is:

Class classname

 Implements IDisposable

Public Sub Dispose() Implements IDisposable.Dispose

 ' cleanup code goes here

 ' call child objects' Dispose methods, if necessary, here

End Sub

' Other class code

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Note that classes that support this callable destructor must implement the IDisposable
interface — hence the Implements statement just shown. IDisposable has just one member,
the Dispose method.

It is important to note that it is necessary to inform any clients of the class that they must call this
method specifically in order to release resources. (The technical term for this is the manual
approach!)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Inheritance

Perhaps the best way to describe inheritance as it is used in VB.NET is to begin with an example.

The classes in a given application often have relationships to one another. Consider, for instance,
our Employee information application. The Employee objects in the class CEmployee represent
the general aspects common to all employees — name, address, salary, and so on.

Of course, the executives of the company will have different prerequisites than, say, the
secretaries. So it is reasonable to define additional classes named CExecutive and CSecretary,
each with properties and methods of its own. On the other hand, an executive is also an
employee, and there is no reason to define different Name properties in the two cases. This would
be inefficient and wasteful.

This situation is precisely what inheritance is designed for. First, we define the CEmployee class,
which implements a Salary property and an IncSalary method:

' Employee class

Public Class CEmployee

 ' Salary property is read/write

 Private mdecSalary As Decimal

 Property Salary() As Decimal

 Get

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

 End Property

 Public Overridable Sub IncSalary(ByVal sngPercent As Single)

 mdecSalary = mdecSalary * (1 + CDec(sngPercent))

 End Sub

End Class

Next, we define the CExecutive class:

' Executive Class

Public Class CExecutive

 Inherits CEmployee

 ' Calculate salary increase based on 5% car allowance as well

 Overrides Sub IncSalary(ByVal sngPercent As Single)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Overrides Sub IncSalary(ByVal sngPercent As Single)

 Me.Salary = Me.Salary * CDec(1.05 + sngPercent)

 End Sub

End Class

There are two things to note here. First, the line:

Inherits CEmployee

indicates that the CExecutive class inherits the members of the CEmployee class. Put another
way, an object of type CExecutive is also an object of type CEmployee. Thus, if we define an
object of type CExecutive:

Dim ceo As New CExecutive

then we can invoke the Salary property, as in:

ceo.Salary = 1000000

Second, the keyword Overrides in the IncSalary method means that the implementation of
IncSalary in CExecutive is called instead of the implementation in CEmployee. Thus, the code:

ceo.IncSalary

raises the salary of the CExecutive object ceo based on a car allowance. Note also the presence
of the Overridable keyword in the definition of IncSalary in the CEmployee class, which
specifies that the class inheriting from a base class is allowed to override the method of the base
class.

Next, we define the CSecretary class, which also inherits from CEmployee but implements a
different salary increase for secretary objects:

' Secretary Class

Public Class CSecretary

 Inherits CEmployee

 ' Secretaries get a 2% overtime allowance

 Overrides Sub IncSalary(ByVal sngPercent As Single)

 Me.Salary = Me.Salary * CDec(1.02 + sngPercent)

 End Sub

End Class

We can now write code to exercise these classes:

' Define new objects

Dim ThePresident As New CExecutive()

Dim MySecretary As New CSecretary()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim MySecretary As New CSecretary()

' Set the salaries

ThePresident.Salary = 1000000

MySecretary.Salary = 30000

' Set Employee to President and inc salary

Debug.Writeline("Pres before: " & CStr(ThePresident.Salary))

ThePresident.IncSalary(0.4)

Debug.WriteLine("Pres after: " & CStr(ThePresident.Salary))

Debug.Writeline("Sec before: " & CStr(MySecretary.Salary))

MySecretary.IncSalary(0.3)

Debug.Writeline("Sec after: " & CStr(MySecretary.Salary))

The output in this case is:

Pres before: 1000000

Pres after: 1450000

Sec before: 30000

Sec after: 39600

The notion of inheritance is quite simple, as put forth in Microsoft's documentation:

If Class B inherits from Class A, then any object of Class B is also an object of Class
A and so includes the public properties and methods (that is, the public interface) of
Class A. In this case, Class A is called the base class and Class B is called the
derived class. On the other hand, in general, the derived class can override the
implementation of a member of the base class for its own use.

We have seen in the previous example that inheritance is implemented using the Inherits
keyword.

4.4.1 Permission to Inherit

There are two keywords used in the base class definition that affect the ability to inherit from a
base class:

NotInheritable

When this is used to define a class, as in:

Public NotInheritable Class InterfaceExample

the class cannot be used as a base class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MustInherit

When this is used to define a class, as in:

Public MustInherit Class InterfaceExample

objects of this class cannot be created directly. Objects of a derived class can be created,
however. In other words, MustInherit classes can be used as base classes and only as
base classes.

4.4.2 Overriding

There are several keywords that control whether a derived class can override an implementation
in the base class. These keywords are used in the declaration of the member in question, rather
than in the class definition:

Overridable

Allows but does not require a member to be overridden. Note that the default for a Public
member is NotOverridable. Here is an example:

Public Overridable Sub IncSalary()

NotOverridable

Prohibits overriding of the member. This is the default for Public members of a class.

MustOverride

Must be overridden. When this keyword is used, the member definition is restricted to just
the declaration line, with no implementation and no End Sub or End Function line. For
example:

Public MustOverride Sub IncSalary()

Note also that when a class module contains a MustOverride member, then the class
itself must be declared as MustInherit.

Overrides

Unlike the other modifiers, this modifier belongs in the derived class and indicates that the
modified member is overriding a base class member. For example:

Overrides Sub IncSalary()

4.4.3 Rules of Inheritance

In many object-oriented languages, such as C++, a class can inherit directly from more than one
base class. This is referred to as multiple inheritance. VB.NET does not support multiple
inheritance, and so a class can inherit directly from at most one other class. Thus, code such as
the following is not permitted:

' Executive Class

Public Class CExecutive 'INVALID

 Inherits CEmployee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inherits CEmployee

 Inherits CWorker

 . . .

End Class

On the other hand, Class C can inherit from Class B, which, in turn, can inherit from Class A, thus
forming an inheritance hierarchy. Note also that a class can implement multiple interfaces through
the Interface keyword. We discuss this issue later in this chapter.

4.4.4 MyBase, MyClass, and Me

The keyword MyBase provides a reference to the base class from within a derived class. If you
want to call a member of the base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived
class also has a member of the same name.

The MyBase keyword can be used to call the constructor of the base class in order to instantiate
a member of that class, as in:

MyBase.New(...)

Note that MyBase cannot be used to call Private class members.

Visual Basic looks for the most immediate version in parent classes of the procedure in question.
Thus, if Class C derives from Class B, which derives from Class A, a call in Class C to:

MyBase.AProc

first looks in Class B for a matching procedure named AProc. If none is found, then VB looks in
Class A for a matching procedure. (By matching, we mean a method with the same argument
signature.)

The keyword MyClass provides a reference to the class in which the keyword is used. It is similar
to the Me keyword, except when used to call a method. To illustrate the difference, consider a
class named Class1 and a derived class named Class1Derived. Note that each class has an
IncSalary method:

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.1)

 End Function

 Public Sub ShowIncSalary(ByVal sSalary As Single)

 MsgBox(Me.IncSalary(sSalary))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(MyClass.IncSalary(sSalary))

 End Sub

End Class

Public Class Class1Derived

 Inherits Class1

 Public Overrides Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.2)

 End Function

End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()

Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1

c1var.IncSalary(10000) ' Shows 11000, 11000

c1var = c2

c1var.IncSalary(10000) ' Shows 12000, 11000

The first call to IncSalary is made using a variable of type Class1 that refers to an object of type
Class1. In this case, both of the following calls:

Me.IncSalary

MyClass.IncSalary

return the same value, because they both call IncSalary in the base class Class1.

However, in the second case, the variable of type Class1 holds a reference to an object of the
derived class, Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas
MyClass still refers to the base class Class1 wherein the keyword MyClass appears. Thus,

Me.IncSalary

returns 12000 whereas the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyClass.IncSalary

returns 10000.

4.4.5 Shadowing

VB.NET has a feature referred to as shadowing that is similar to overriding, but with some very
important differences. Shadowing can apply to element types associated with any of the following
statements:

Class Statement
Constant Statement
Declare Statement
Delegate Statement
Dim Statement
Enum Statement
Event Statement
Function Statement
Interface Statement
Property Statement
Structure Statement
Sub Statement

The best way to illustrate shadowing and the differences between shadowing and overriding is
with an example. Consider two classes, Class1 and Class2, where Class2 derives from Class1:

Public Class Class1

 Public x As Integer = 1

 Public Overridable Sub TestOverride()

 MsgBox("Class1 method to override")

 End Sub

 Public Sub TestShadow()

 MsgBox("Class1 method to shadow")

 End Sub

End Class

Public Class Class2

 ' Derived class

 Inherits Class1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inherits Class1

 Public Shadows x As Integer = 2

 Public Overrides Sub TestOverride()

 MsgBox("Class2 method that overrides")

 End Sub

 Public Shadows Sub TestShadow()

 MsgBox("Class2 method that shadows")

 End Sub

End Class

Class1 has two methods, TestOverride and TestShadow. Note that TestOverride is declared with
the Overridable keyword. Class2 also defines two methods with the names TestOverride and
TestShadow. Note that TestOverride is declared with the Overrides keyword, and TestShadow
is declared with the Shadows keyword. Finally, note the presence of a public instance field, x, in
each class.

Now, consider the following test code:

Dim c2 As Class2 = New Class2()

c2.TestOverride()

c2.TestShadow()

MsgBox("x=" & c2.x)

Because the object reference c2 is to an object of Class2, the calls to the TestOverride and
TestShadow methods, as well as the public variable x, all refer to code in Class2, so the output
messages are as expected:

Class2 method that overrides

Class2 method that shadows

x = 2

Now consider the code:

Dim c1 As Class1 = New Class2()

c1.TestOverride()

c1.TestShadow()

MsgBox("x=" & c1.x)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBox("x=" & c1.x)

Here, we have a variable of type Class1 that refers to an object of Class2. The output in this case
is:

Class2 method that overrides

Class1 method that shadows

x = 1

To explain this, note that overriding works as follows: the method that is called is the version that
is implemented not in the type (class) of the variable, but in the type (class) of the object to which
that variable refers. This is a key feature of overriding and is generally referred to as a form of
polymorphism. (The variable c1 takes on many forms, based on the type of object to which it
refers, rather than its own type.)

On the other hand, shadowing is different from overriding: the process is not polymorphic, and so
it is the type of the variable itself and not the referenced object that determines the
implementation that is used. Since the variable has type Class1, the VB.NET compiler ignores the
"extra goodies" that exists because c1 happens to point to a derived class object and looks only
at the Class1 portion of the object, so to speak. There is no polymorphism here.

Note that member variables, such as x, can only be shadowed; they cannot be overridden.

One other difference between shadowing and overriding is that any element type in the preceding
list can shadow any other element type. For instance, a method in the derived class can shadow
a variable of the same name in the base class.

Unfortunately, the Microsoft documentation makes this point at the expense of the real issue, that
of polymorphism. After all, it would seem to be bad programming practice to shadow elements of
different types. But shadowing methods may make some sense.

Shadowing occurs in another context that is referred to as shadowing by scope . For example, if a
module contains a Public variable declaration and one of the procedures within the module
contains a variable declaration of the same name but perhaps a different data type, then within
the procedure, the local variable will shadow the module-level variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Interfaces, Abstract Members, and Classes

We have alluded to the fact that a class may implement all, some, or none of the members of the
interfaces that it defines. Any interface member that does not have an implementation is referred
to as an abstract member. The purpose of an abstract member is to provide a member signature
(a template, if you will) that can be implemented by one or more derived classes, generally in
different ways.

Let us clarify this with an example. Recall from our discussion of inheritance that the CEmployee
class defines and implements an IncSalary method that increments the salary of an employee.
Recall also that the CExecutive and CSecretary derived classes override the implementation of
the IncSalary method in the base class CEmployee.

Suppose that, in a more complete employee model, there is a derived class for every type of
employee. Moreover, each of these derived classes overrides the implementation of the IncSalary
method in the base class CEmployee. In this case, the implementation of IncSalary in the base
class will never need to be called! So why bother to give the member an implementation that will
never be used?

Instead, we can simply provide an empty IncSalary method, as shown here:

' Employee class

Public Class CEmployee

 . . .

 Public Overridable Sub IncSalary(ByVal sngPercent As Single)

 End Sub

End Class

Alternatively, if we want to require that all derived classes implement the IncSalary method, we
can use the MustOverride keyword, as shown here:

' Employee class

Public MustInherit Class CEmployee

 . . .

 Public MustOverride Sub IncSalary(ByVal sngPercent As Single)

End Class

As mentioned earlier, when using MustOverride, there is no End Sub statement associated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As mentioned earlier, when using MustOverride, there is no End Sub statement associated
with the method. Note also that when using the MustOverride keyword, Microsoft requires that
the class be declared with the MustInherit keyword. This specifies that we cannot create
objects of type CEmployee.

In each of the previous cases, the IncSalary member of the base class CEmployee is an abstract
member.

Any class that contains at least one abstract member is termed an abstract class. (Thus, the
CEmployee class as defined earlier is an abstract class.) This terminology comes from the fact
that it is not possible to create an object from an abstract class because at least one of the
object's methods would not have an implementation.

There are also situations where we might want to define a class in which all members are
abstract. In other words, this is a class that only defines an interface. We might refer to such a
class as a pure abstract class, although this terminology is not standard.

For example, imagine a Shape class called CShape that is designed to model the general
properties and actions of geometric shapes (ellipses, rectangles, trapezoids, etc.). All shapes
need a Draw method, but the implementation of the method varies depending on the type of
shape — circles are drawn quite differently than rectangles, for example. Similarly, we want to
include methods called Rotate, Translate, and Reflect, but, as with the Draw method, each of
these methods require a different implementation based on the type of shape.

Thus, we can define the CShape class in either of the following ways:

Public Class Class2

 Public Overridable Sub Draw()

 End Sub

 Public Overridable Sub Rotate(ByVal sngDegrees As Single)

 End Sub

 Public Overridable Sub Translate(ByVal x As Integer, _

 ByVal y As Integer)

 End Sub

 Public Overridable Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

 End Sub

End Class

or:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public MustInherit Class CShape

 Public MustOverride Sub Draw()

 Public MustOverride Sub Rotate(ByVal sngDegrees As Single)

 Public MustOverride Sub Translate(ByVal x As Integer, _

 ByVal y As Integer)

 Public MustOverride Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

End Class

Now we can define derived classes such as CRectangle, CEllipse, and CPolygon. Each of these
derived classes will (or must, in the latter case) implement the members of the base class
CShape. (We won't go into the details of such an implementation here, since it is not relevant to
our discussion.)

4.5.1 Interfaces Revisited

We have seen that interfaces can be defined in class modules. VB.NET also supports an
additional method of defining an interface, using the Interface keyword. The following example
defines the IShape interface:

Public Interface IShape

 Sub Draw()

 Sub Rotate(ByVal sngDegrees As Single)

 Sub Translate(ByVal x As Integer, ByVal y As Integer)

 Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

End Interface

Note that we cannot implement any of the members of an interface defined using the Interface
keyword — that is, not within the module in which the interface is defined. However, we can
implement the interface using an ordinary class module. Note the use of the Implements
statement (which was also available in VB 6, but could be applied only to external interfaces):

Public Class CRectangle

' Implement the interface IShape

Implements IShape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implements IShape

Public Overridable Sub Draw() Implements IShape.Draw

 ' code to implement Draw for rectangles

End Sub

Public Overridable Sub Spin() Implements IShape.Rotate

 ' code to implement Rotate for rectangles

End Sub

End Class

Note also the use of the Implements keyword in each function that implements an interface
member. This keyword allows us to give the implementing function any name — it does not need
to match the name of the method (see the Spin method earlier in this section, which implements
the IShape interface's Rotate method). However, it is probably less confusing (and better
programming practice) to use the same name.

The main advantage of using the Implements keyword approach to defining an interface is that
a single class can implement multiple interfaces, whereas VB.NET does not permit a single class
to inherit directly from multiple base classes. On the other hand, the main disadvantage of the
Interface keyword approach is that no implementation is possible in the module that defines
the interface. Thus, all interface members must be implemented in every class that implements
the interface. This can mean code repetition if an interface member has the same implementation
in more than one implementing class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6 Polymorphism and Overloading

Fortunately, we don't need to go into the details of polymorphism and overloading, which is just as
well, because they tend to be both confusing and ambiguous. For instance, some computer
scientists say that overloading is a form of polymorphism, whereas others say it is not. We will
discuss only those issues that are directly relevant to the .NET Framework.

4.6.1 Overloading

Overloading refers to an item being used in more than one way. Operator names are often
overloaded. For instance, the plus sign (+) refers to addition of integers, addition of singles,
addition of doubles, and concatenation of strings. Thus, the plus symbol (+) is overloaded. It's a
good thing, too; otherwise, we would need separate symbols for adding integers, singles, and
doubles.

Function names can also be overloaded. For instance, the absolute value function, Abs, can take
an integer parameter, a single parameter, or a double parameter. Because the name Abs
represents several different functions, it is overloaded. In fact, if you look at the documentation for
the Abs member of the Math class (in the System namespace of the Framework Class Library),
you will find the following declarations, showing the different functions using the Abs name:

Overloads Public Shared Function Abs(Decimal) As Decimal

Overloads Public Shared Function Abs(Double) As Double

Overloads Public Shared Function Abs(Integer) As Short

Overloads Public Shared Function Abs(Integer) As Integer

Overloads Public Shared Function Abs(Long) As Long

Overloads Public Shared Function Abs(SByte) As SByte

Overloads Public Shared Function Abs(Single) As Single

Note the use of the Overloads keyword, which tells VB that this function is overloaded.

Specifically, a function name is overloaded when two defined functions use the same name but
have different argument signatures. For instance, consider a function that retrieves a current
account balance. The account could be identified either by the person's name or by the account
number. Thus, we might define two functions, each called GetBalance:

Overloads Function GetBalance(sCustName As String) As Decimal

Overloads Function GetBalance(sAccountNumber As Long) As Decimal

Note also that VB.NET permits function overloading only because the argument signatures of the
two functions are different, so that no ambiguity can arise. The function calls:

GetBalance("John Smith")

GetBalance(123456)

are resolved by the compiler without difficulty, based on the data type of the argument. This type
of overloading is often referred to as overloading the function GetBalance. On the other hand,
there are two different functions here, so it seems more appropriate to say that the function name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there are two different functions here, so it seems more appropriate to say that the function name
is being overloaded. Overloading is very common and not exclusive to object-oriented
programming.

4.6.2 Polymorphism

The term polymorphism means having or passing through many different forms. In the .NET
Framework, polymorphism is tied directly to inheritance. Again, let us consider our Employee
example. The function IncSalary is defined in three classes: the base class CEmployee and the
derived classes CExecutive and CSecretary. Thus, the IncSalary function takes on three forms.
This is polymorphism, VB.NET style.

In case you are interested, many computer scientists would not consider this to be polymorphism.
They would argue that the function IncSalary takes on only one form. It is the implementation that
differs, not the function. They would refer to the situation described here for IncSalary as function
overloading. The main point here is that there is a lot of confusion as to how Microsoft and others
use the terms overloading and polymorphism, so you should be on guard when reading
documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7 Accessibility in Class Modules

The notion of accessibility (or scope) in class modules is more involved than it is in standard
modules. As far as local variables (block-level and procedure-level) are concerned, there is no
difference — we have block scope and procedure-level scope.

However, members of a class module can be assigned one of the following access modifiers:

Public

Private

Friend

Protected

Protected Friend

(For standard modules, only Public, Private, and Friend are allowed.)

Actually, we can dispense with the Protected Friend modifier in one statement: Protected
Friend is equivalent to Protected or Friend. Put another way, if Protected sets a specific
range of accessibility (or inheritance — see below) and Friend sets a different range, then
Protected Friend sets accessibility to the union of those ranges — if a member falls into either
range, it passes the accessibility (or inheritance) criterion.

Note that class modules themselves can be declared with any one of the three access modifiers:
Public, Private, or Friend (Protected is not allowed). When a class module declaration
specifies one of these access modifiers, this simply restricts all of its members to that level of access,
unless a member's access is further restricted by the access modifier on the member declaration
itself. For instance, if the class has Friend access, no member can have Public access. (Put
another way, the Public access is overridden by the Friend class access.)

On the other hand, all four access modifiers apply to members of the class module — that is, to
variable, constant, enum, and procedure declarations within the class module.

To avoid confusion in discussing the access modifiers, it helps to separate the issue of accessibility of
members from that of inheritance of members.

4.7.1 Member Inheritance

Let us first address member inheritance. Suppose that a class named Class1 has a derived class
named Class1Derived, as shown in the following:

Public Class Class1

 Public pub As Integer = 1

 Private priv As Integer = 1

 Protected p As Integer = 1

 Friend f As Integer = 1

 Protected Friend pf As Integer = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Protected Friend pf As Integer = 1

End Class

Public Class Class1Derived

 Inherits Class1

 Public Sub test()

 ' Not allowed - private members are not inherited

 Me.priv = 4

 ' Allowed only in derived classes in the same project as base class

 Me.f = 4

 ' Allowed in all derived classes

 Me.pub = 4

 Me.p = 4

 Me.fp = 4

 End Sub

End Class

Note that the Me. syntax is optional, and we could write, for instance, simply:

pub = 4

p = 4

f = 4

fp = 4

The fact that the code:

Me.p = 4

is valid in Class1Derived means that this class has inherited the member p. In other words, an object
of class Class1Derived has a member variable named p. The fact that:

Me.f

fails to work in Class1Derived if Class1Derived is in a different project than Class1 means that such
classes do not inherit the member f.

Now, the rules of inheritance are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private members are never inherited.

Public members are inherited by all derived classes.

Protected members are inherited by all derived classes (and therefore so are Protected Friend
members).

Friend members are inherited by all derived classes in the same project as the base class only.

4.7.2 Member Accessibility

Now we come to member accessibility. Unfortunately, the term accessibility is used quite loosely in
most documentation, but to make absolutely clear sense of the issue, we must be specific. Many
writers simply refer to a member's accessibility, but this is ambiguous. To illustrate, consider the code:

Public Class Class1

 Public x As Integer = 1

End Class

Public Class Class2

 Inherits Class1

End Class

Now, it makes sense to ask about the accessibility of the Public member x of Class1 or the (inherited)
Public member x of Class2. It does not make sense to ask about the accessibility of the member x
alone, without mention of the class involved. Indeed, we say that the Public member x of Class1 is
accessible from a class Class3 if the following is legal:

Public Class Class3

 Public Sub Test()

 Dim c1 As new Class1()

 c1.x = 5

 End Sub

End Class

On the other hand, the Public member x of class Class2 is accessible from Class3 if we can write:

Public Class Class3

 Public Sub Test()

 Dim c2 As new Class2()

 c2.x = 5

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

With this in mind, we can describe the accessibility rules clearly:

Private

If ClassA is a class with a Private member m, we cannot access the member m of ClassA from
any other class.

Public

If ClassA is a class with a Public member m, we can access the member m of ClassA from any
other class.

Friend

If ClassA is a class with a Friend member m, we can access the member m of ClassA from any
other class that is in the same project as ClassA.

Protected

Let m be a Protected member of ClassA. Then from any subclass ClassB of ClassA, we can
access the member m of ClassB or the member m of any subclass of ClassB. Another way to
phrase this is as follows. Let m be declared as Protected in a class ClassA. Let Class B be a
subclass of ClassA. Then the member m of ClassB is accessible in each class between ClassB
and ClassA in the inheritance hierarchy.

Clearly, the definition of Protected needs clarification. To do so, consider a chain of derived
classes (that is, ClassN+1 is derived from ClassN):

Class1

Class2

.

.

.

ClassA

 ' This is the first appearance of the protected method MyMethod

 ' Thus, all classes below inherit MyMethod

 Protected Sub MyMethod()

.

.

.

ClassB

 ' ClassB can call MyMethod because it has been inherited

 ' This is accessibility of MyMethod for ClassB

 MyMethod()

 ' Note that this is equivalent to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Note that this is equivalent to

 Me.MyMethod()

 ' Can access MyMethod for any Class at or below this class

 ' For example, the following are legal:

 Dim b As New ClassB

 b.MyMethod()

 Dim c As New ClassC

 c.MyMethod()

 ' But the following is not legal

 Dim a As New ClassA

 a.MyMethod()

.

.

.

ClassC

 ' Can access MyMethod for any Class at or below this class

 ' For example, the following are legal:

 Me.MyMethod()

 Dim c As New ClassC

 c.MyMethod()

 Dim d As New ClassD

 d.MyMethod()

 ' But the following is not legal

 Dim b As New ClassB

 b.MyMethod()

.

.

.

ClassD

.

.

.

ClassN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClassN

As you can see, the rules for Protected mode access are a bit involved. Actually, Protected
mode should be used with some care. For instance, declaring a member variable Protected
violates one of the principal rules of good object-oriented programming, encapsulation, as does
declaring the member Public. Thus, it should be done only if you are certain that derived
classes will be well behaved (or are willing to accept the risk). The same applies to Protected
methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. The .NET Framework: General Concepts
In this chapter, we discuss some of the main concepts in the .NET Framework. This is intended
as a general overview, just to give you the "lay of the .NET land," so to speak. For more
information, see Thuan Thai and Hoang Q. Lam's .NET Framework Essentials (O'Reilly, 2001).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a
namespace is a logical grouping of types for the purpose of identification. For example, imagine
that in a certain business there is an executive named John Smith, a secretary named John
Smith, and a custodian named John Smith.

In this case, the name John Smith is ambiguous. When the paymaster stands on a table and calls
out the names of people to receive their pay checks, the executive John Smith won't be happy if
he rushes to the table when the paymaster calls out his name and the envelope contains the
custodian John Smith's pay check.

To resolve the naming ambiguity, the business can simply define three namespaces: Executive,
Secretarial, and Custodial. Now the three individuals can be unambiguously referred to by their
fully qualified names:

Executive.John Smith

Secretarial.John Smith

Custodial.John Smith

The .NET Framework Class Library (FCL), which we look at in more detail in Chapter 6, consists
of several thousand classes and other types (such as interfaces, structures, and enumerations)
that are divided into over 90 namespaces. These namespaces provide basic system services,
such as:

Basic and advanced data types and exception handling (the System namespace)

Data access (the System.Data namespace)

User-interface elements for standard Windows applications (the System.Windows.Forms
namespace)

User-interface elements for web applications (the System.Web.UI namespace)

In fact, the VB.NET language itself is implemented as a set of classes belonging to the
Microsoft.VisualBasic namespace. (The C# and JScript languages are also implemented as a set
of classes in corresponding namespaces.)

For information on accessing the members of a namespace, see Section 5.5 later in this chapter.

Namespaces are not necessarily unique to the Framework Class Library; you can also create
your own namespaces by using the Namespace statement at the beginning of a code file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Common Language Runtime (CLR), Managed Code, and
Managed Data

The Common Language Runtime (CLR) is an environment that manages code execution and
provides application-development services. Compilers such as VB.NET expose the CLR's
functionality to enable developers to create applications. Code that is created under this
environment is called managed code. Note that COM components are not managed code,
although they (as well as other unmanaged code) can be used in applications that are built under
the CLR.

The output of a compiler includes metadata, which is information that describes the objects that
are part of an application, such as:

Data types and their dependencies

Objects and their members

References to required components

Information (including versioning information) about components and resources that were
used to build the application

Metadata is used by the CLR to do such things as:

Manage memory allocations

Locate and load class instances

Manage object references and perform garbage collection

Resolve method invocations

Generate native code

Make sure that the application has the correct versions of necessary components and
resources

Enforce security

The metadata in a compiled software component makes the component self- describing. This
implies that components, even those written in another language, can interact with the given
component directly.

Objects that are managed by the CLR are referred to as managed data. (It is also possible to use
unmanaged data in applications.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Managed Execution

Managed execution is the name given for the process of creating applications under the .NET
Framework. The steps involved are as follows:

1. Write code using one or more .NET compilers. Note that for software components to be
useable by components that are written in other languages, these components must be
written using only language features that are part of the Common Language Specification
(CLS).

2. Compile the code. The compiler translates source code to Microsoft Intermediate
Language (MSIL) and generates the necessary metadata for the application.

3. Run the code. When code is executed, the MSIL is compiled into native code (which is
CPU-specific code that runs on the same computer architecture as the compiler) by a Just
In Time (JIT) compiler. If required, the JIT checks the code for type safety. If the type-safety
check fails, an exception is thrown.

Code that cannot access invalid memory addresses or perform other illegal operations that may
result in an application crash is called type-safe code. Code that is verified to be type-safe by the
JIT is called verifiably type-safe code. Due to limitations in the verification process, code can be
type-safe and yet not be verifiably type-safe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Assemblies

The purpose of an assembly is to specify a logical unit, or building block, for .NET applications
that encapsulate certain properties.

The term assembly refers to both a logical construct and a set of physical files. To draw an
analogy on the logical side, we might use the term neighborhood to refer to a zip code, a
neighborhood name, and a list of street addresses. On the physical side, a neighborhood consists
of the actual houses that are located at those addresses. Thus, we can speak of physically
moving (i.e., deploying) the neighborhood.

A .NET application consists of one or more assemblies. Logically speaking, an assembly is just a
set of specifications. In particular:

An assembly specifies the (MSIL) code that is associated with the assembly. This code lies
in a Portable Executable (PE) file. (PE files are the traditional file types for Microsoft's code,
but the format is extended for .NET applications.)

An assembly specifies security permissions for itself, if any.

An assembly specifies a list of data types and provides scoping for those types. Every data
type in a .NET application must specify the assembly to which it belongs. The scoping
provided by an assembly means that different types may have the same name, as long as
they belong to different assemblies and can therefore be distinguished by means of the
assembly to which they belong. Microsoft refers to this by saying that an assembly provides
atype boundary.

An assembly specifies rules for resolving external types and external references, including
references to other assemblies. In this way, assemblies form a reference scope boundary.
Included in this information are any version dependencies for the external references.

An assembly specifies which of its parts are exposed outside the assembly and which are
private to the assembly itself.

In addition to these specifications listed, an assembly is an object (or logical unit) that possesses
certain properties:

An assembly has version properties. This includes a major and minor version number, as
well as a revision and build number. Indeed, an assembly is the smallest unit that has
versioning properties. Put another way, all elements of an assembly (types and resources)
are versioned as a unit — they are assigned the version numbers of the assembly to which
they belong. In other words, an assembly is a versioning unit.

An assembly forms a deployment unit. More specifically, at any given time, a .NET
application only needs access to the assemblies that specify the code under execution.
Other assemblies that make up the application need not be present if the code they specify
is not currently needed for execution. These assemblies can be retrieved upon demand, so
that the downloading of applications can be more efficient.

Finally, we note that multiple versions of a single assembly can be run at the same time, on the
same system, or even in the same process. This is referred to as side- by-side execution.

The specifications in an assembly are collectively referred to as the assembly's manifest. The
data in the manifest is also called metadata. Specifically, the manifest contains:

The name of the assembly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Version information for the assembly

Security information for the assembly

A list of all files that are part of the assembly

Type reference information for the types specified in the assembly

A list of other assemblies that are referenced by the assembly

Custom information, such as a user-friendly assembly title, description, and product
information (company name, copyright information, and so on)

Physically, an assembly consists of one or more files — files that contain code, as well as
resources, such as bitmaps. The assembly's manifest can be a separate file or part of another file
in the assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Assemblies and VB.NET

To a VB.NET programmer, an assembly is similar to a traditional DLL or EXE file, except that it
contains additional information, such as reference and type information (which in COM was often
contained in a separate OLB or TLB file, called a type library). When a VB.NET application is
compiled, the compiler creates an assembly for the target EXE or DLL.

In the .NET environment, namespaces are part of assemblies. An assembly can contain many
namespaces, and namespaces can be nested.

For instance, the System namespace is the fundamental namespace in the .NET environment.
This is not the time to go into details, but one example will be useful. The System namespace
identifies the Array class (Microsoft likes to say that the namespace contains classes.) One of the
members of the Array class is the Copy method, which copies a portion of one array to another
array. Thus, we can write code such as the following:

Imports System ' Optional since System is always imported

Dim array1() As Integer = {1, 2, 3, 4}

Dim array2(3) As Integer

Array.Copy(array1, array2, 3)

To use an existing assembly in a VB.NET project, you must do two things:

Add a reference to the assembly to your project. There are two exceptions to this rule,
however. A reference to the assembly containing the System namespace (mscorlib.dll) is
added automatically, as is a reference to the assembly containing the language being used
(for VB.NET, this is Microsoft.VisualBasic.dll).

Access the member or members of the namespace, as described later in this section.

To access a member of a namespace, you can use its fully qualified name. For example, to
create an instance of the Timers class, which is found in the System. Timers namespace, you can
use a code fragment like the following:

Dim oTimer As New System.Timers.Timer(2000)

Since using fully qualified names tends to be relatively cumbersome, you can include an
Imports statement at the beginning of a code file, before any references to variables or classes.
Its syntax is:

Imports [aliasname =] namespace

where aliasname is an optional alias for the namespace, and namespace is its fully qualified
name. For example, if you import the System.Timers namespace as follows:

Imports System.Timers

you do not have to qualify a reference to the Timer class, which can be instantiated as follows:

Dim oTimer As New Timer(2000)

In the event that there is a naming conflict (either two namespaces have identically named types,
or a named type conflicts with a name in your project), you can specify an alias for the
namespace, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports TI = System.Timers

and then instantiate a Timer object as follows:

Dim oTimer As New TI.Timer(2000)

If you're using the Visual Basic command-line compiler, you have to
explicitly import the Microsoft.VisualBasic namespace, or your code will
not compile. If you're using Visual Studio, VB's language elements are
accessed automatically without your having to import the namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. The .NET Framework Class Library
VB.NET is about classes, classes, and more classes. Even something as simple as a string is
implemented in a class (the String class of the System namespace). As we mentioned in Chapter
5, the .NET Framework defines an extensive network of classes and namespaces called the
Framework Class Library (FCL). This consists of a set of namespaces that provide basic system
services (like the System namespace, whose classes define .NET data types, provide exception
handling, and handle garbage collection, among other things). It also includes additional
namespaces, such as System.Data, System.Windows. Forms, and System.Web.UI, which
provide application services. In total, there are over 90 namespaces containing several thousand
classes, interfaces, structures, enumerations, and other items (such as delegates) in the .NET
Framework Class Library.

The System namespace is at the top of the namespace hierarchy, and the Object class is at the
top of the object hierarchy. All types in the .NET Framework Class Library derive from the Object
class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for its
description. In this chapter, we provide just a brief introduction and some examples. This should
prepare you to dive into the Microsoft Class Library documentation. Note also that the reference
portion of this book, Chapter 10, documents selected language elements from the Framework
Class Library that seem particularly useful to VB programmers. For more on which classes are
included in the reference section, see its introduction.

Before becoming intimidated by the size of the Framework Class Library, we should also keep in
mind that VB.NET provides wrappers for some elements of the Framework Class Library, so we
can often just call a VB function rather than resort to accessing the classes in the Framework
Class Library directly. More generally, while the class library does have much to offer a VB
programmer and should not be ignored, it can be studied and used on an "as needed" basis.

Let us illustrate a simple case in which the FCL has something to offer. We mentioned in Chapter
3 that the built-in VB data types are wrappers for a corresponding BCL class (for reference types)
or structure (for value types). However, the Visual Basic language typically does not implement all
of the members of the BCL class. For instance, if we want to verify that a user has entered a
number that lies within the range of type Integer, we can use code such as the following:

Dim s As String

Dim i As Integer

s = InputBox("Enter an integer")

If IsNumeric(s)

 If (CDbl(s) >= i.MinValue) And (CDbl(s) <= i.MaxValue) Then

 i = CInt(s)

 Else

 Debug.WriteLine("Invalid number")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Debug.WriteLine("Invalid number")

 End If

Else

 Debug.WriteLine("Non-numeric value")

End If

Because the VB Integer data type is a wrapper for the BCL's Int32 structure, the MinValue and
MaxValue properties of the Int32 data type are accessible to the Integer variable i. Incidentally,
because the MaxValue and MinValue members are shared, we could also have written:

If IsNumeric(s)

 If (CDbl(s) >= Integer.MinValue) _

 And (CDbl(s) <= Integer.MaxValue) Then

which, in my opinion, is more readable.

In order to prevent a compiler error when compiling this code with Option Strict On, we've
converted the String s to a Double before comparing its value with the Integer class's MinValue
and MaxValue properties. This is because a Double is the least restrictive numeric data type, and
we want to be sure that the numeric equivalent of the String s is within the range of a more
restrictive numeric (integer) data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 The System Namespace

The System namespace contains classes for such broad ranging things as:

Data types

Data type conversions

Method-parameter manipulation

Events and event handlers

Mathematics

Program invocation

Application-environment management

6.1.1 Data Type Conversion

To illustrate data type conversion, the System namespace defines a class called Convert. If you
check the documentation, you'll find that one of the methods of the Convert class is ToBoolean.
The documentation lists the following for ToBoolean:

Overloads Public Shared Function ToBoolean(String) As Boolean

Overloads Public Shared Function ToBoolean(Double) As Boolean

Overloads Public Shared Function ToBoolean(Single) As Boolean

Overloads Public Shared Function ToBoolean(Char) As Boolean

Overloads Public Shared Function ToBoolean(Byte) As Boolean

Overloads Public Shared Function ToBoolean(Object) As Boolean

Overloads Public Shared Function ToBoolean(Boolean) As Boolean

Overloads Public Shared Function ToBoolean(Long) As Boolean

Overloads Public Shared Function ToBoolean(Integer) As Boolean

As you can see, there are many ToBoolean functions — each one with a different argument
signature — to take care of converting various data types to Boolean.

Now, just for exercise, we can write:

Dim s As String

Dim b As Boolean

s = "false"

b = System.Convert.ToBoolean(s)

msgbox(b)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msgbox(b)

Because the System namespace is always available (or if we are programming outside of Visual
Studio, we can import it using the Imports statement), we can omit the System qualifier and
write:

b = Convert.ToBoolean(s)

Of course, we can also use the built-in VB.NET function CBool.

The Convert class contains methods for converting data to the standard Visual Basic data types,
as well as to the data types supported by the .NET Framework but not wrapped by Visual Basic,
such as the unsigned-integer data types. The most important of these methods are shown in
Table 6-1.

Table 6-1. Members of the System.Convert class
Method Description

ToBoolean Converts a value to a Boolean

ToByte Converts a value to a Byte

ToChar Converts a value to a Char

ToDateTime Converts a value to DateTime (Date in Visual Basic)

ToDecimal Converts a value to Decimal

ToDouble Converts a value to Double

ToInt16 Converts a value to Int16 (Short in Visual Basic)

ToInt32 Converts a value to Int32 (Integer in Visual Basic)

ToInt64 Converts a value to Int64 (Long in Visual Basic)

ToSByte Converts a value to SByte, the unsigned-byte data type in the BCL

ToSingle Converts a value to Single

ToString Converts a value to String

ToUInt16 Converts a value to UInt16, an unsigned 16-bit integer

ToUInt32 Converts a value to UInt32, an unsigned 32-bit integer

ToUInt64 Converts a value to UInt64, an unsigned 64-bit integer

6.1.2 The Array Class

The Array class contains useful methods for dealing with arrays. For instance, the Array object
has a Sort method (at last) that sorts the elements of an array. Here is an example:

Sub sortArray()

Dim i As Integer

Dim intArray() As Integer = {9, 8, 12, 4, 5}

For i = 0 To 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

Array.Sort(intarray)

Console.WriteLine("Sorted:")

For i = 0 To 4

 console.WriteLine(intArray(i))

Next

End Sub

The output is:

9

8

12

4

5

Sorted:

4

5

8

9

12

Some of the more important methods of the Array class are shown in Table 6-2.

Table 6-2. Some members of the System.Array class
Method Description

BinarySearch Searches a sorted one-dimensional array for a value

IndexOf Returns the first occurrence of a particular value in a one-dimensional array

LastIndexOf Returns the last occurrence of a particular value in a one-dimensional array

Reverse Reverses the order of the elements in a one-dimensional array or a portion of a
one-dimensional array

Sort Sorts a one-dimensional array

6.1.3 The Math Class

The Math class has a number of mathematical-function methods (such as trigonometric
functions), as well as some more useful methods, such as Max and Min. Therefore, we can just
write:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBox(Math.Max(4,7))

Table 6-3 shows the members of the Math class.

Table 6-3. The members of the Math class
Topic Description

Abs function Absolute value

Acos function Arccosine

Asin function Arcsine

Atan function Arctangent; returns the angle whose tangent is a specified number

Atan2 function Arctangent; returns the angle whose tangent is the quotient of two
specified numbers

Ceiling function Returns the smallest integer greater than or equal to the argument
number

Cos function Cosine

Cosh function Hyperbolic cosine

E field The natural number e

Exp function Exponential function

Floor function Returns the largest integer less than or equal to the argument number

IEEERemainder
function Returns the remainder after dividing x by y

Log function Natural (base e) logarithm

Log10 function Common (base 10) logarithm

Max function Maximum

Min function Minimum

Mod operator Returns the modulus, that is, the remainder when number1 is divided by
number2

Pi field Pi, the ratio of the circumference of a circle to its diameter

Pow function Generalized exponential function

Randomize
statement Initializes the random number generator

Rnd function Returns a random number

Round function Rounds a given number to a specified number of decimal places

Sign function Determines the sign of a number

Sin function Sine

Sinh function Hyperbolic sine

Sqrt function Square root

Tan function Tangent

Tanh function Hyperbolic tangent

6.1.4 The String Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The String class implements a collection of methods for string manipulation, including methods for
locating substrings, concatenation, replacement, padding, trimming, and so on. One interesting
method is Insert, which inserts a new string into an existing string.

The VB.NET String data type is equivalent to the System.String class, so we can apply the
methods of System.String directly to VB strings, as in:

Dim s As String = "To be to be"

msgbox(s.Insert(6, "or not "))

This displays the message "To be or not to be." Table 6-4 shows the members of the String class.

Table 6-4. The members of the String class
Member Description

Chars property Returns the character at a specified character position in the string

Clone method Returns a reference to an instance of the string

Compare method A shared method that compares two string objects

CompareOrdinal
method

A shared method that compares two string objects without considering
localization

CompareTo
method Compares a string with a designated object

Concat method Concatenates one or more instances of string

Copy method A shared function that creates a new instance of a string with the same
content as a designated string

CopyTo method Copies a number of characters from a string to a specified position in an
array of Unicode characters

Empty field A read-only field that represents an empty string.

EndsWith method Determines whether the end of a string matches a specified string

Equals method Determines whether the string is equal to another string

Format method Replaces a format specification with its textual equivalent

IndexOf method Returns the position of the first occurrence of a substring within a string

IndexOfAny
method

Returns the position of the first occurrence in a string of any of a set of
characters

Insert method Inserts a substring into a string

Join method A shared method that concatenates a string separator and the elements of a
string array

LastIndexOf
method Returns the position of the last occurrence of a substring within a string

LastIndexOfAny
method

Returns the position of the last occurrence in a string of any of a set of
characters

Length property Returns the number of characters in the string

PadLeft method Right aligns the characters in a string

PadRight method Left aligns the characters in a string

Deletes a specified number of characters from a string starting at a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remove method Deletes a specified number of characters from a string starting at a
particular position

Replace method Replaces all occurrences of a substring in a string with another substring

Split method Splits a delimited string into a string array

StartsWith
method Determines whether the beginning of a string matches a particular substring

Substring method Extracts a substring from a string

ToCharArray
method Copies the characters in a string to a character array

ToLower method Converts a string to lowercase

ToUpper method Converts a string to uppercase

Trim method Removes all occurrences of a set of characters from the beginning and end
of a string

TrimEnd method Removes all occurrences of a set of characters from the end of a string

TrimStart method Removes all occurrences of a set of characters from the beginning of a
string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Other Namespaces

Nested just below the System namespace are a number of second-level namespaces, which
contain such classes as:

System.CodeDOM

Contains classes representing the elements and structure of a source code document.

System.Collections

Contains interfaces and classes that define various collections of objects, such as lists,
queues, arrays, hashtables, and dictionaries.

System.ComponentModel

Contains classes that are used to implement the runtime and design-time behavior of
components and controls.

System.Configuration

Contains classes that allow the creation of custom installers for software components.

System.Data

Consists mostly of the classes that constitute the ADO.NET architecture and are used for
database connectivity.

System.Diagnostics

Contains classes that allow debugging of applications and code tracing.

System.DirectoryServices

Contains classes that provide access to the Active Directory from managed code.

System.Drawing

Contains classes that provide access to GDI+ basic graphics functionality. (More advanced
functionality is provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.)

System.IO

Contains classes that allow synchronous and asynchronous reading from and writing to
data streams and files.

System.Net

Contains classes that provide a simple programming interface to many of the common
network protocols, such as FTP and HTTP. (The System.Net.Sockets namespace provides
lower-level network access control.)

System.Reflection

Contains classes and interfaces that provide a managed view of loaded types, methods,
and fields, with the ability to create and invoke types dynamically.

System.Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contains classes for managing resources (culture-specific resources and resource files).

System.Security

Contains classes that provide access to the underlying structure of the .NET Framework
security system.

System.ServiceProcess

Contains classes that allow us to install and run services. (Services are long- running
executables that run without a user interface.)

System.Text

Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as
well as abstract base classes for converting blocks of characters to and from blocks of
bytes, and more.

System.Text.RegularExpressions

Contains classes that provide access to the .NET Framework regular expression engine.

System.Threading

Provides classes and interfaces that enable multithreaded programming.

System.Timers

Contains classes that provide the Timer component, which allows you to raise an event on
a specified interval.

System.Web and related namespaces

Contain classes and interfaces that enable browser/server communication and that allow
you to develop ASP.NET applications and web services.

System.Windows.Forms

Contains classes for creating Windows-based applications that take full advantage of the
rich user-interface features available in the Microsoft Windows operating system. In this
namespace, you will find the Form class and many other controls that can be added to
forms to create user interfaces.

System.Xml

Contains classes that provide standards-based support for processing XML.

Let's take a look at some of these other classes in the BCL.

6.2.1 System.Collections

This namespace contains classes for implementing a variety of collection types, such as stacks
and queues. As you may know, a queue is a first-in, first-out data structure. The following code
illustrates the use of the Queue class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim s As String

Dim q As New Collections.Queue()

q.Enqueue("To")

q.Enqueue("be")

q.Enqueue("or")

q.Enqueue("not")

Do While q.Count > 0

 s = s & " " & CStr(q.Dequeue)

Loop

msgbox(s)

The output is "To be or not".

6.2.2 System.Data

System.Data and its nested namespaces, notably System.Data.OleDb and
System.Data.SqlClient, provide data access using ADO.NET. The OleDb and SqlClient
namespaces are responsible for defining data providers that can connect to a data source,
retrieve data from a data source, write data back to a data source, and execute commands
against the data source. The most important class in each of these namespaces is a data adapter
class (in the OleDb namespace, it's the OleDbDataAdapter class; in the SqlClient namespace, it's
the SqlDataAdapter class) which is responsible for retrieving data from a data source and writing
it to a dataset. A dataset in turn is a collection of related data that's disconnected from its original
data source.

ADO.NET is not the same thing as ADO, nor is ADO.NET a new version
of ADO. Instead, ADO (or ActiveX Data Objects) is a COM-based object
model for data access. ADO.NET is an entirely new model for data access
that is based on the disconnected dataset.

6.2.3 System.IO

The System.IO namespace contains classes that provide a variety of input/output functionality,
such as:

Manipulating directories (Directory class) and files (File class)

Monitoring changes in directories and files (FileSystemWatcher class)

Reading and writing single bytes, mulitbyte blocks, or characters to and from streams

Reading and writing characters to and from strings (StringReader and StringWriter)

Writing and reading data types and objects to and from streams (BinaryWriter and
BinaryReader)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Providing random access to files (FileStream)

It appears that, for VB programmers, the System.IO namespace and its classes are intended to
take the place of the FileSystemObject object model that is part of the Microsoft Scripting
Runtime. The System.IO namespace is certainly much more extensive. The File and Directory
classes duplicate the functionality of the FileSystemObject. For more on these classes, see their
entries in this book's reference section.

6.2.4 System.Text.RegularExpressions

The System.Text.RegularExpressions namespace contains classes that provide access to the
.NET Framework's regular expression engine. This is not the place to go into details about regular
expressions, but we can make a few comments.

In its simplest form, a regular expression is a text string that represents a pattern that other
strings may or may not match. In this way, regular expressions form a very powerful method of
string matching. In more complicated forms, a regular expression is a kind of programming
statement. For instance, the expression:

s/ab*c/def

says to match the given string against the regular expression ab*c (strings that start with ab and
end with c). If a match exists, then replace the given string with the string def. Here are some
simple regular expressions for pattern matching:

Single character

This is matched only by itself.

Dot (.)

This is matched by any character except the newline character.

[string of characters]

This matches any single character that belongs to the string of characters. For example,
[abc] matches the single character a, b, or c. A dash can also be used in the character
list, for instance, [0-9] matches any single digit. We can also write [0-9a-z] to match
any single digit or any single lowercase character, and [a-zA-Z] to match any single
lower- or uppercase character.

The ^ symbol can be used to negate the match. For instance, [^0-9] matches any
character except a digit.

Special match abbreviations

\d matches any single digit; \D matches any single nondigit.

\w is equivalent to [a-zA-Z_], thus matching any letter or underscore; \W is the negation
of \w.

Asterisk (*)

The occurrence of an asterisk within a regular expression gives a match if and only if there
are zero or more repeated instances of the single character preceding the asterisk. For
example, the regular expression \da*\d is matched by any string beginning with a single
digit, continuing with zero or more as and ending with a single digit, as with 01 or 0aaa1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

digit, continuing with zero or more as and ending with a single digit, as with 01 or 0aaa1.

Plus sign (+)

The occurrence of a plus sign within a regular expression gives a match if and only if there
are one or more repeated instances of the single character preceding the plus sign. For
example, the regular expression \da+\d is matched by any string beginning with a single
digit, continuing with one or more as and ending with a single digit, as with 0aaa1 (but not
01).

Question mark (?)

The occurrence of a question mark within a regular expression gives a match if and only if
there are zero or one instances of the single character preceding the question mark. For
example, the regular expression \da?\d is matched by any string beginning with a single
digit, continuing with zero or one as and ending with a single digit, as with 01 and 0a1.

General multiplier

The occurrence of the substring {x,y}, where x and y are nonnegative integers within a
regular expression, gives a match if and only if there are at least x but at most y instances
of the single character preceding the opening bracket. For example, the regular expression
\da{5,10}\d is matched by any string beginning with a single digit, continuing with at
least 5 but at most 10 as and ending with a single digit, as with 0aaaaaa1.

Note that you can leave out one of x or y. Thus, {x,} means "at least x," and {,y} means
"at most y."

The System.Text.RegularExpressions namespace has a Regex class, whose objects represent
regular expressions. Here's a simple example of the use of the Regex class:

' Define a new Regex object with pattern \da{3,5}\d

Dim rx As New System.Text.RegularExpressions.Regex("\da{3,5}\d")

' Do some matching

MsgBox(rx.IsMatch("0a1")) ' Displays False

MsgBox(rx.IsMatch("0aaa1")) ' Displays True

The System.Text.RegularExpressions namespace contains classes for string replacement as
well, but we do not go into these matters in this brief introduction.

6.2.5 System.Windows.Forms

This namespace is the mother of all namespaces for creating Windows applications. To quote the
documentation:

The System.Windows.Forms namespace contains classes for creating Windows-
based applications that take full advantage of the rich user interface features
available in the Microsoft Windows operating system. In this namespace you will find
the Form class and many other controls that can be added to forms to create user
interfaces.

In fact, each new form added to a VB.NET project contains the line:

Imports System.Windows.Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Windows.Forms

Fortunately, Visual Studio provides the functionality of the System.Windows.Forms namespace to
us as VB programmers, so we don't need to program directly against this namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Delegates and Events
In this chapter, we discuss delegates and events, two additional .NET framework topics that are
important to VB programmers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Delegates

In a never-ending effort to deny VB programmers the right to use pointers, Microsoft has implemented a feature called delegates that, according
to the documentation, provide a safe alternative to function pointers.

As you may know, a pointer variable (or pointer) is simply a variable whose value is interpreted by the compiler as a memory address. The
address to which the pointer points is the target of the pointer, and we say that the pointer variable points
address is a variable of data type Integer, for example, then we say that the pointer is of type Integer or is an Integer pointer. Thus, the
pointer is the type of the target variable. (We have seen that, as reference types, variables of type Object and String are
values point to the address of the data in memory.)

A pointer can also point to a function, that is, contain the address of a function. Even though a function is not a variable, it does have
location in memory and so can be the target of a pointer. (Actually, it's reasonable to think of a function as
story.) In this case, we have a function pointer.

Function pointers are very useful in certain situations for calling or specifying functions. This is commonly done in the C++ programming
language, where function pointers are supported directly.

One area in which function pointers are used is in the context of callback functions. To illustrate, if we want to enumerate all of
given system, the Windows API provides a function called EnumFontFamiliesEx, defined as follows:

Public Declare Function EnumFontFamiliesEx Lib "gdi32" _

 Alias "EnumFontFamiliesExA" (_

 ByVal hdc As Long, _

 lpLogFont As LOGFONT, _

 ByVal lpEnumFontProc As Long, _

 ByVal lParam As Long, _

 ByVal dw As Long) _

As Long

The third parameter requires the address of a function we must declare, called a callback function. The reason for this term is that
call our callback function for each font in the system, passing information about the font in the parameters of the function.
documentation, the callback function must have a particular form:

Public Function EnumFontFamExProc(ByVal lpelfe As Long, _

 ByVal lpntme As Long, _

 ByVal FontType As Long,

 ByRef lParam As Long) As Long

The point here is that to use EnumFontFamiliesEx, we need to pass the address of a function as one of the parameters. As you may know, this is
done in VB using the AddressOf operator. In earlier versions of VB, this operator is described as follows:

A unary operator that causes the address of the procedure it precedes to be passed to an API procedure that expects a function
pointer at that position in the argument list.

Put another way, the AddressOf operator is implemented in VB 6 for the express purpose of passing function

In VB.NET, the AddressOf operator returns a delegate, which is, as the documentation states:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, the AddressOf operator returns a delegate, which is, as the documentation states:

A unary operator that creates a procedure delegate instance that references the specific procedure.

So let us discuss delegates. We begin with a rather unhelpful definition: a delegate is an object of a class
or the MulticastDelegate class. These two classes are abstract, so no objects of these classes can be created.
be derived from these classes, and objects can be created from these derived classes.

In VB.NET, delegates can be used to call methods of objects or to supply callback functions. In addition, VB.NET uses delegates to bind
handlers to events. Fortunately, VB.NET also supplies tools (such as the AddHandler method) to automate this process, so we
delegates directly for this purpose.

A delegate object inherits a number of properties and methods from the Delegate or MulticastDelegate class. In particular, a delegate

A Target property that references the object or objects whose method or methods are to be called

A Method property that returns a MethodInfo object that describes the method or methods associated with the delegate

An Invoke method that invokes the target method or methods

By now you have probably guessed that there are two delegate classes because delegates derived from the Delegate class can only call a
method, whereas delegates derived from MulticastDelegate can call multiple methods.

7.1.1 Using a Delegate to Call a Method

To call a method using a delegate, we call the Invoke method of the delegate. To illustrate, consider the class

Public Class Class1

 Public Sub AMethod(ByVal s As String)

 Msgbox(s)

 End Sub

End Class

Now, in a module with a Windows Form (referred to as a form module in earlier versions of VB), we declare a (single cast) delegate with the
same parameters as the target method we wish to call:

Delegate Sub AMethodDelegate(ByVal s As String)

The following code then uses the delegate to call the AMethod of Class1:

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 ' Object of type Class1 _

 Dim obj As New Class1()

 ' Declare a new delegate

 Dim delg As ADelegate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim delg As ADelegate

 ' Define the delegate, passing the address

 ' of the object's method

 delg = New ADelegate(AddressOf obj.AMethod)

 ' Now call the method using the delegate's Invoke method

 delg.Invoke("test")

End Sub

Note that the documentation describes the delegate constructor as taking two parameters, as in:

delg = New ADelegate(TargetObject, PointerToMethodOfObject)

However, Visual Basic is not capable of handling the second parameter, so VB supports the special syntax:

delg = New ADelegate(AddressOf obj.AMethod)

We point this out only to warn you about the documentation on the delegate class constructor.

7.1.2 Using a Delegate as a Function Pointer

The following example illustrates the use of a delegate in the context of a callback function. In this example, we want to create a generic sort
function for sorting integer arrays. The function uses the bubble sort algorithm for sorting, but it's generic in the sense that one of
is a compare function that is used to do the comparison of adjacent integers. Thus, by varying the external
the type of sorting (ascending, descending, or some other method) without changing the main sort function. The compare function is a callback
function, since it is a function we supply that is called by the main sort function. (In this case, the callback function is not supplying us with
information, as in the font enumeration case described earlier. Instead, it is called to help the sort function do its sorting.)

First, we declare a delegate. As part of the declaration of a delegate, we must specify the signature of the method that is
delegate, which, in our case, is the compare function. Since the compare function should take two (adjacent)
if we need to swap the integers in the bubble sort algorithm, we declare the delegate as follows:

' Returns True if need to swap

Delegate Function CompareFunc(ByVal x As Integer, _

 ByVal y As Integer) _

 As Boolean

Here are two alternative target methods for the delegate — one for an ascending sort and one for a descending sort:

Function SortAscending(ByVal x As Integer, ByVal y As Integer) As Boolean

 If y < x Then

 SortAscending = True

 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If

End Function

Function SortDescending(ByVal x As Integer, _

 ByVal y As Integer) As Boolean

 If y > x Then

 SortDescending = True

 End If

End Function

Now we can define the sort routine. Note the call to the Invoke method of the delegate:

Sub BubbleSort(ByVal CompareMethod As CompareFunc, _

 ByVal IntArray() As Integer)

 Dim i, j, temp As Integer

 For i = 0 To Ubound(IntArray)

 For j = i + 1 To Ubound(IntArray)

 If CompareMethod.Invoke(IntArray(i), IntArray(j)) Then

 Temp = IntArray(j)

 IntArray(j) = IntArray(i)

 IntArray(i) = Temp

 End If

 Next j

 Next i

End Sub

Here is some code to exercise this example:

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim i As Integer

 Dim iArray() As Integer = New Integer() {6, 2, 4, 9}

 BubbleSort(AddressOf SortAscending, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Debug.WriteLine(CStr(iArray(i)))

 Next

 Debug.WriteLine

 BubbleSort(AddressOf SortDescending, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

End Sub

Alternatively, we can define delegate variables instead of using the Addressof operator directly:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

 Dim i As Integer

 ' Instances of the delegate type CompareFunc

 Dim dlgAsc As New CompareFunc(AddressOf SortAscending)

 Dim dlgDesc As New CompareFunc(AddressOf SortDescending)

 Dim iArray() As Integer = New Integer() {6, 2, 4, 9}

 BubbleSort(dlgAsc, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

 Debug.WriteLine("")

 BubbleSort(dlgDesc, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

 End Sub

The output is, as you would expect:

2

4

6

9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9

6

4

2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Events and Event Binding

An event is an action that occurs. This action can take place on the part of the user of an
application (such as when the user clicks a command button), on the part of application code
(such as when a change is made to a record in a recordset), or on the part of the operating
system (such as a timer event). When an event occurs, we say that the event is raised, or fired.

Each event has a source. This is the object to which the action is applied, such as the button that
was clicked. The source is responsible for alerting the operating system that an event has
occurred. It does so by sending an event notification message, generally to its parent or container
window. For this reason, Microsoft refers to the event source as the sender.

An event often has an event argument, which is simply data that pertains to the event. For
instance, the press of a keyboard key generates an event that includes event arguments
describing the keycode of the key pressed and information on the state of modifier keys (the Shift,
Alt, and Ctrl keys). The event arguments are part of the message sent by the event source.

An event handler is a procedure (or method) that is executed as a result of event notification. The
process of declaring an event handler for an event is called binding the procedure to the event.

7.2.1 Control-Related Events

Most controls have a large number of built-in events associated with them. For instance, the
textbox control has events associated with changing the text in the textbox, hitting a key while the
textbox has the focus, clicking on the textbox with the mouse, dragging the mouse over the
textbox, and more.

The VB IDE can be used to insert an empty event handler, complete with the proper event
parameters, for any built-in control. The procedure is simply to select the control, then click the
Events button in the Properties window. This displays a list of built-in events for the control.
Selecting one of these events causes the VB IDE to insert an empty event handler for that event
into the code editor window.

Note that each control has a default event. For instance, the default event for the command
button is the Click event. As a shortcut, we can get the VB IDE to insert an empty event handler
for the default event simply by double clicking the control. For instance, double clicking a
command button produces the following code:

Private Sub button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles button1.Click

End Sub

The sender variable is the source of the event. The second parameter is an object whose
properties describe the event arguments.

Note the Handles clause, which tells the compiler that this procedure handles the button1.Click
event. Using this clause, we can assign any procedure to handle this event. We will discuss this
further when we talk about AddHandler later in this chapter.

As another example, double clicking a Windows form causes the VB IDE to insert the following
empty event handler:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

End Sub

7.2.2 WithEvents

To define a custom event in a class module, we can use the WithEvents keyword. To illustrate
with a very simple example, suppose we create the class module shown here:

Public Class Class1

 ' Declare an event

 Public Event AnEvent(ByVal EventParam As Integer)

 ' Method to raise the event

 Public Sub RaiseTheEvent(ByVal iEventNumber As Integer)

 RaiseEvent AnEvent(iEventNumber)

 End Sub

End Class

In a class module with a Windows form, we declare a variable of type Class1 using the
WithEvents keyword to hook the class' events:

Public WithEvents ev As Class1

This automatically causes the VB IDE to add the variable name ev to the left-hand drop-down list
above the code window. When we select this variable, the right- hand drop-down list displays the
events for this class. In this case, the list contains only the ev_AnEvent event. Selecting this event
places an empty event shell in the code editor window (to which we have added a single line of
code):

Public Sub ev_AnEvent(ByVal EventParam As System.Integer) _

 Handles ev.AnEvent

 MsgBox("Event raised: " & EventParam)

End Sub

Finally, in a button click event, we can place code to implement our simple example:

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 ' Define a new Class1 instance

 ev = New Class1()

 ' Raise the event

 ev.RaiseTheEvent(7)

End Sub

We should note that the WithEvents keyword approach to event handling has one slight
drawback. Namely, we cannot use the New keyword with WithEvents, as in:

Public WithEvents ev As New Class1

Thus, the object must be instantiated separately from the variable declaration, as we did in the
previous example.

7.2.3 AddHandler and RemoveHandler

The AddHandler statement can be used to bind an event handler to a built-in or custom event
using code. This makes it possible to bind several event handlers to a single event. To illustrate,
proceed as follows. Add the default event handler for a form's Click event:

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 MsgBox("Default Click Event")

End Sub

Next, add another procedure with the same signature as the default event handler:

Protected Sub Form1Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 msgbox("Custom Click Event")

End Sub

Finally, we use the AddHandler statement, which must be executed in order to bind the custom
Form1Click event handler to the Click event:

AddHandler Form1.Click, AddressOf Me.Form1Click

This is actually shorthand for:

AddHandler Form1.Click, New EventHandler(AddressOf Me.Form1Click)

In general, the AddHandler statement has the following syntax:

AddHandler NameOfEventSender, AddressOf NameOfEventHandler

Note that the binding can also be accomplished using the Handles keyword, as shown in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that the binding can also be accomplished using the Handles keyword, as shown in the
default event syntax. However, using AddHandler and RemoveHandler allows dynamic binding
of event handlers to events.

The syntax for RemoveHandler is the same as that of AddHandler:

RemoveHandler NameOfEventSender, AddressOf NameOfEventHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Attributes
Attributes are declarative tags that can be used to annotate types or class members, thereby
modifying their meaning or customizing their behavior. This descriptive information provided by
the attribute is stored as metadata in a .NET assembly and can be extracted either at design time
or at runtime using reflection.

To see how attributes might be used, consider the <WebMethod> attribute, which might appear in
code as follows:

<WebMethod(Description:="Indicates the number of visitors to a page")> _

 Public Function PageHitCount(strULR As String) As Integer

Ordinarily, public methods of a class can be invoked locally from an instance of that class; they
are not treated as members of a web service. In contrast, the <WebMethod> attribute marks a
method as a function callable over the Internet as part of a web service. This <WebMethod>
attribute also includes a single property, Description, which provides the text that will appear in
the page describing the web service.

You may wonder why attributes are used on the .NET platform and why they are not simply
implemented as language elements. The answer comes from the fact that attributes are stored as
metadata in an assembly, rather than as part of its executable code. As an item of metadata, the
attribute describes the program element to which it applies and is available through reflection both
at design time (if a graphical environment such as Visual Studio .NET is used), at compile time
(when the compiler can use it to modify, customize, or extend the compiler's basic operation), and
at runtime (when it can be used by the Common Language Runtime or by other executable code
to modify the code's ordinary runtime behavior).

The behavior of interface objects (i.e., controls) in Visual Studio .NET illustrates the importance of
attributes. Since Visual Studio offers drag-and-drop placement of controls on forms or web pages,
it is necessary for controls to have a design time behavior in addition to their runtime behavior.
For instance, when you double click on a control in a designer, you ordinarily want the code or the
code template for its default event handler to be displayed. Note that the question posed here is
not how the control should respond to a double-click event, since the DoubleClick event occurs at
runtime and, if an event handler is present, causes that event handler's executable code to be
executed. Because we're concerned with the standard behavior of a control in its design time
environment, an attribute provides an excellent solution. Indeed, the .NET Framework provides
the <DefaultEvent> attribute, which allows you to define a control's default event. Since
information on the attribute is stored in the assembly's metadata, Visual Studio can simply look to
see whether a <DefaultEvent> attribute is attached to a particular control when it is double-
clicked in a designer window.

The attribute-based system of programming implemented in .NET is extensible. In addition to the
attributes predefined by Visual Basic or by the .NET Framework, you can define custom attributes
that you apply to program elements. For an attribute to be meaningful, there must also be code
that attempts to detect the presence of the attribute at design time, at compile time, or at runtime,
and accordingly that performs an action dictated by the attribute's presence.

This chapter discusses the syntax and use of attributes, and then shows how to define and use
custom attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Syntax and Use

In Visual Basic, an attribute appears within angle brackets (a less-than (<) and a greater-than
symbol (>)). The attribute name is followed by parentheses, which are used to enclose arguments
that might be passed to the attribute. For example, the <Obsolete> attribute marks a type or
type member as obsolete. We can apply <Obsolete> as a parameter-less attribute as follows:

<Obsolete()>

If no arguments are assigned to the attribute, we can omit the trailing parentheses:

<Obsolete>

If more than one attribute is applied to a single program element, the attributes are enclosed in a
single set of angle brackets and delimited from one another by a comma. For example:

<Obsolete(), WebMethod()> Public Function PageCount(_

 strURL As String) As Integer

Each attribute corresponds to a class derived from System.Attribute. (In fact, the VB.NET
compiler actually treats an attribute as an instance of the attribute's class.) By convention, we
drop the trailing string "Attribute" from the class name to form the attribute name, although the
attribute name can also be identical to the class name. Thus, for example, the <WebMethod>
attribute corresponds to the WebMethodAttribute class in the System.Web.Services namespace,
which in turn is found in System.Web.Services.dll. Alternately, you can also specify the attribute
as <WebMethodAttribute>. If the namespace containing the attribute class is not automatically
accessible to the Visual Basic compiler or to Visual Studio, the Imports directive should be
used, and a reference should be added to the project either using the References dialog in Visual
Studio or the /r switch in the command-line compiler.

If the shortened attribute name is a Visual Basic .NET keyword, use an
attribute name that's identical to the attribute's class name to prevent a
compiler error. For example, the following declaration produces an error
because ParamArray is a VB.NET keyword:

<ParamArray()> lScores As Long)

However, the following code compiles correctly:

<ParamArrayAttribute()> lScores As Long)

The attribute class constructor or constructors determine whether any arguments are required.
For example, the <VBFixedString> attribute corresponds to the VBFixedStringAttribute class,
which has the following constructor:

New(ByVal Size As Integer)

Hence, the <VBFixedString> attribute can be used as follows:

<VBFixedString(10)> Private sID As String

Attribute constructors can be overloaded. Any required arguments must
correspond to those expected by one of the constructors in number and
data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Required arguments must be supplied to the attribute as positional arguments only ; named
arguments are not accepted. A comma separates all arguments, whether named or positional.

Optional arguments correspond to class properties and can be supplied to the attribute as named
arguments. For example, in addition to its constructor, which indicates to what language elements
the attribute applies, the <AttributeUsage> attribute, which is used to define the language
elements to which a custom attribute applies, has a Boolean property, Inherited, that indicates
whether the attribute is inherited by derived classes and overridden members. Its default value is
True. To set it to False, you could use the attribute as follows:

<AttributeUsage(AttributeTargets.Class, Inherited:=False)> _

Public Class MyCustomClass

Be sure to recognize that attributes are evaluated at compile time, when their data is written to the
assembly's metadata. This means that only literal values can be passed as arguments to the
attribute's constructor.

Unless it has a modifier, an attribute immediately precedes the language element to which it
applies and must be on the same logical line as that language element. If they are on different
lines, the Visual Basic .NET line continuation character (the underscore, or _) must be used. This
syntax is valid for attributes applied to the following language elements:

Class
Constructor
Delegate
Enum
Event
Field
Interface
Method
Parameter
Property
Return Value
Structure

For example, the following Class statement illustrates this general usage of an attribute:

<AttributeUsage(AttributeTargets.All)> _

Public Class MyCustomAttrAttribute

The following statement indicates how attributes are used with parameter declarations:

Public Sub MyFunction(strName As String, _

 <ParamArrayAttribute()> lValues As Long)

There are two exceptions to this rule. Some attributes must be prefaced with a modifier (either
Assembly: or Module:) indicating the program element to which the attribute applies. In that
case, the attribute must be placed at the top of the source file (i.e., immediately following any
Option and Imports statements), along with any other attributes that require a modifier. This
syntax is valid for an attribute applied to an assembly or a module only.

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Strict On

Imports System.Data.SqlClient

<Assembly: AssemblyDescription("Supplementary data access library")>

Namespace SqlAccess

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Defining a Custom Attribute

An attribute is merely a class that inherits from System.Attribute, which makes it very easy to
implement a custom attribute. In this section, we'll build a custom attribute called
<DeveloperNote>, which allows a developer to add assorted information (the developer's name,
the date, a comment, and whether a code modification was a response to a bug) to code. The
steps are as follows:

1. Define a public class that inherits from System.Attribute or another attribute class derived
from System.Attribute. For example:

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

Note that, by convention, the name of the class ends with the substring "Attribute".

2. Apply the <AttributeUsage> attribute, which defines the language elements to which the
custom attribute can be applied, to the class (as shown in the following code fragment). The
attribute's only required argument is one of the following members of the
AttributeTargets enumeration:

All
Assembly
Class
Constructor
Delegate
Enum
Event
Field
Interface
Method
Module
Parameter
Property
ReturnValue
Struct

If an attribute applies to multiple programming elements, but not all elements, the relevant
constants can be ORed together. In the case of our <DeveloperNote> attribute, we want
the attribute to apply to all program elements. In addition, we want to make the
<DeveloperNote> attribute extensible through inheritance, so we set the
<AttributeTarget> attribute's Inherited argument to True. Finally, we want to allow
the application of multiple attributes to the same program element; hence, we want to set
the AllowMultiple argument to True as well. In view of this setting, our code should look
as follows:

<AttributeUsage(AttributeTargets.All, _

 Inherited:=True, _

 AllowMultiple:=True)> _

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

3. Create the class constructor (the New subroutine), which is called when the attribute is
applied to a particular language element. The class constructor defines the attribute's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

required or positional arguments. At a minimum, we'll want a developer to record his or her
name, a comment, and the date. Our constructor appears as follows:

Public Sub New(Name As String, Comment As String, _

 DateRecorded As String)

 MyBase.New()

 strName = Name

 strComment = Comment

 datDate = CDate(DateRecorded)

End Sub

Note that the date is passed to the constructor as a String type. There is some restriction on
the data types that can be used as attribute parameters. Parameters can be any integral
data type (Byte, Short, Integer, Long) or floating point data type (Single and Double), as well
as Char, String, Boolean, an enumerated type, or System.Type. Thus, Date, Decimal,
Object, and structured types cannot be used as parameters.

Each required parameter also corresponds to a class property or field. These parameters
are added to the class in the next step.

4. Declare properties or fields. The attribute's public properties and fields correspond both to
parameters required by the class constructor and to optional parameters supplied when the
attribute is applied to a language element. In the case of our attribute, we'll want properties
that correspond to each attribute, as well as an additional Bugs property that indicates
whether or not the comment corresponds to a code modification that resulted from a bug.
The code is:

Public Property Name As String

 Get

 Return strName

 End Get

 Set

 strName = Value

 End Set

End Property

Public Property Comment As String

 Get

 Return strComment

 End Get

 Set

 strComment = Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strComment = Value

 End Set

End Property

Public Property DateRecorded As Date

 Get

 Return datDate

 End Get

 Set

 datDate = Value

 End Set

End Property

Public Property Bug As Boolean

 Get

 Return blnBug

 End Get

 Set

 blnBug = Value

 End Set

End Property

The complete code for the attribute class is shown in Example 8-1.

Example 8-1. The DeveloperNoteAttribute attribute class

Option Strict On

Imports System

Namespace Extensions.CustomAttributes

<AttributeUsage(AttributeTargets.All, _

 Inherited:=True, _

 AllowMultiple:=True)> _

Public Class DeveloperNoteAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

Protected strName, strComment As String

Protected blnBug As Boolean

Protected datDate As Date

Public Sub New(Name As String, Comment As String, DateRecorded As String)

 MyBase.New()

 strName = Name

 strComment = Comment

 datDate = CDate(DateRecorded)

End Sub

Public Property Name As String

 Get

 Return strName

 End Get

 Set

 strName = Value

 End Set

End Property

Public Property Comment As String

 Get

 Return strComment

 End Get

 Set

 strComment = Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strComment = Value

 End Set

End Property

Public Property DateRecorded As Date

 Get

 Return datDate

 End Get

 Set

 datDate = Value

 End Set

End Property

Public Property Bug As Boolean

 Get

 Return blnBug

 End Get

 Set

 blnBug = Value

 End Set

End Property

End Class

End Namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Using a Custom Attribute

The Visual Basic compiler and .NET platform automatically recognize the meaning of the
attributes based on attribute classes in the .NET Framework Class Library. This recognition isn't
true, however, for custom attributes. Thus, not only must you define them, you must also develop
a set of routines that will identify the presence of an attribute so your code can handle them.

NET assemblies are self-describing; when the compiler creates the .NET assembly, it writes
metadata describing the assembly and its classes and methods to the assembly manifest. This
metadata is then accessed programmatically at runtime by using the .NET Framework's reflection
classes.

An assembly's metadata is similar to a COM type library. In addition to
their greater accessibility through .NET Framework APIs, assembly
metadata is always stored along with the assembly. In contrast, although
a type library can be stored in the EXE or DLL containing the COM object
(as did previous versions of Visual Basic), it is most commonly stored in a
file different from the file containing the COM objects it describes.

The .NET Framework provides support for reflection in the Type class (in the System namespace)
and in the types found in the System.Reflection namespace. The following code creates a console
mode application that uses the reflection classes to extract information about the
<DeveloperNote> custom attribute and the program elements to which it is applied:

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Reflection

Imports System.Text

Imports Extensions.CustomAttributes

Module modComments

Public Sub Main()

 Dim strFile As String = Command()

 Dim sOutput As String

 If strFile = "" Then

 Console.WriteLine("Syntax is: " & vbCrLf & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console.WriteLine("Syntax is: " & vbCrLf & _

 " DevNotes <filename>")

 Exit Sub

 End If

 ' Load assembly

 Dim oAssem As System.Reflection.Assembly = _

 System.Reflection.Assembly.LoadFrom(strFile)

 ' Get any assembly-level attributes

 Dim oAttribs() As Attribute = Attribute.GetCustomAttributes(oAssem)

 if UBound(oAttribs) >= 0 Then

 sOutput = DisplayDeveloperNotes(oAttribs)

 if sOutput <> "" Then

 Console.WriteLine(oAssem.GetName.Name & _

 " Assembly Developer Notes:" & vbCrLf)

 Console.WriteLine(sOutput)

 End If

 End If

 ' Get any module-level attributes

 Dim oMod As System.Reflection.Module

 Dim oMods() As System.Reflection.Module = oAssem.GetModules()

 For Each oMod in oMods

 oAttribs = Attribute.GetCustomAttributes(oMod)

 If UBound(oAttribs) >= 0 Then

 sOutput = DisplayDeveloperNotes(oAttribs)

 If sOutput <> "" Then

 Console.WriteLine(oMod.Name & " Module Developer Notes: " _

 & vbCrLf)

 Console.WriteLine(sOutput)

 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If

 End If

 Next

 ' Enumerate types

 EnumerateTypes(oAssem)

End Sub

' Show information about each attribute

Public Function DisplayDeveloperNotes(oAttribs() As Object) As String

 Dim sMsg As New StringBuilder

 Dim oAttrib As Attribute

 Dim oNote As DeveloperNoteAttribute

 For Each oAttrib in oAttribs

 Try

 oNote = CType(oAttrib, DeveloperNoteAttribute)

 sMsg.Append(" Developer: " & oNote.Name & vbCrLf)

 sMsg.Append(" Comment: " & oNote.Comment & vbCrLf)

 sMsg.Append(" Date: " & oNote.DateRecorded & vbCrLf)

 sMsg.Append(" Bug: " & oNote.Bug & vbCrLf)

 Catch

 ' No need to do anything

 End Try

 Next

 Return sMsg.ToString

End Function

Private Sub EnumerateTypes(oObj As Object)

 Dim sOutput As String

 Dim oType, oTypes() As Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If oObj.GetType.ToString = "System.Reflection.Assembly" Then

 Dim oAssem As System.Reflection.Assembly = CType(oObj, _

 System.Reflection.Assembly)

 oTypes = oAssem.GetTypes()

 Else

 oTypes.SetValue(oObj, 0)

 End If

 For each oType in oTypes

 Dim strType, strTypeAttr, strMeth As String

 If oType.IsClass Then

 strType = "Class"

 ElseIf oType.IsValueType Then

 strType = "Structure"

 ElseIf oType.IsInterface Then

 strType = "Interface"

 ElseIf oType.IsEnum Then

 strType = "Enum"

 End If

 sOutput = strType & " " & oType.Name & ":" & vbCrLf

 ' Get any type-level attributes

 Dim oCustAttribs() As Object = oType.GetCustomAttributes(False)

 If oCustAttribs.Length > 0 Then

 strTypeAttr = DisplayDeveloperNotes(oCustAttribs)

 End If

 strMeth = EnumerateTypeMembers(oType)

 ' Display Type and Member Info

 If strMeth <> "" Or strTypeAttr <> "" Then

 Console.WriteLine(sOutput)

 If strTypeAttr <> "" Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If strTypeAttr <> "" Then

 Console.WriteLine(strTypeAttr)

 End If

 If strMeth <> "" Then

 Console.WriteLine(strMeth & vbCrLf)

 End If

 End If

 Next

End Sub

Private Function EnumerateTypeMembers(oType As Type) As String

 Dim strMeth, strRetVal As String

 Dim oAttribs() As Object

 ' Get members of type

 Dim oMembersInfo(), oMemberInfo As MemberInfo

 oMembersInfo = oType.GetMembers

 For Each oMemberInfo in oMembersInfo

 ' Determine if attribute is present

 oAttribs = oMemberInfo.GetCustomAttributes(False)

 If oAttribs.Length > 0 Then

 ' determine member type

 Select Case oMemberInfo.MemberType

 Case MemberTypes.All

 strMeth = " All "

 Case MemberTypes.Constructor

 strMeth = " Constructor "

 Case MemberTypes.Custom

 strMeth = " Custom method "

 Case MemberTypes.Event

 strMeth = " Event "

 Case MemberTypes.Field

 strMeth = " Field "

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strMeth = " Field "

 Case MemberTypes.Method

 strMeth = " Method "

 Case MemberTypes.NestedType

 strMeth = " Nested type "

 Case MemberTypes.Property

 strMeth = " Property"

 Case MemberTypes.TypeInfo

 strMeth = " TypeInfo"

 End Select

 If oMemberInfo.Name = ".ctor" Then

 strMeth = "New " & strMeth

 Else

 strMeth = oMemberInfo.Name & strMeth

 End If

 strMeth = strMeth & vbCrLf & DisplayDeveloperNotes(oAttribs) _

 & vbCrLf

 strRetVal = strRetVal & strMeth

 End If

 Next

 Return strRetVal

End Function

End Module

The program's entry point, the Main routine, first instantiates an Assembly object (in the
System.Reflection namespace) representing the assembly by calling the LoadFrom method and
passing it the filename containing the assembly. It then calls the Attribute class' shared
GetCustomAttributes method, passing it a reference to an Assembly object, which returns an
array of Attribute objects representing each custom attribute, if any exist. These attributes are
then displayed by calling the DisplayDeveloperNotes method.

The shared GetCustomAttributes method of the Attribute class has several overloads that allow
you to retrieve custom attributes belonging to assemblies, modules, class members, and
parameters. (Unfortunately, the method does not retrieve the custom attributes belonging to
types.) Since derived classes call the base class implementation, you can also retrieve attributes
of a specific custom type with the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim oAttribs() As Attribute = _

 DeveloperNoteAttribute.GetCustomAttributes(oAssem)

After listing any DeveloperNoteAttributes applied to the assembly, the code retrieves the modules
in the assembly by calling the Assembly object's GetModules method, which returns an array of
Module objects. The code then iterates these modules and again calls the Attribute class' shared
GetCustomAttributes method, this time passing it a Module object (to retrieve an array of custom
Attribute objects belonging to that module). These objects are also displayed by calling the
DisplayDeveloperNotes method.

Finally, Main calls the EnumerateTypes method, a generic routine that it uses to iterate the types
in the Assembly object. (The routine could also be called from a type to extract information about
custom attributes in its nested types.) This iteration casts the generic object passed as a
parameter to an Assembly object, and then calls the Assembly object's GetTypes method to
return an array of Type objects (defined in the System namespace) containing information about
each type (such as a class, interface, delegate, structure, or num) in the assembly. Each Type
object's GetCustomAttributes method is then called and its custom attributes are displayed.

While iterating the type objects, the EnumerateTypes method also calls the
EnumerateTypeMembers method, which is responsible for iterating the members of each type
and extracting their custom DeveloperNoteAttribute attributes. The EnumerateTypeMembers
method first extracts an array of MemberInfo objects corresponding to each member by calling
the GetMembers method of oType, the Type object passed to it as a parameter. GetMembers
returns an array of MemberInfo objects, each element of which corresponds to a member of the
type. The method then calls the MemberInfo object's GetCustomAttributes method to extract
information about any custom types. Instead, it could also have called the Attribute object's
GetCustomAttributes method, passing it a MemberInfo object representing the member whose
custom attribute information was to be retrieved.

The program can be easily extended by adding recursion (allowing it to retrieve information about
custom attributes in a nested class and its members), as well as by retrieving information about
custom attributes applied to parameters belonging to individual methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Error Handling in VB.NET
In this chapter, we take a concise look at error-handling techniques in VB.NET. Note that the
terms exception and error are used synonymously throughout the VB.NET documentation, and so
we use them interchangeably in this chapter.

VB.NET supports the On Error Goto style of error handling, which is supported by earlier
versions of Visual Basic (with some new wrinkles). This type of error handling is referred to as
unstructured error handling. However, unlike earlier versions of Visual Basic, VB.NET also
supports the structured exception handling technique familiar to C++ programmers, which is now
the preferred method of error handling in VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 Error Detection and Error Handling

Let us begin by clarifying some terminology. We agree to say that handling an error means
responding to a detected error. Thus, there is a clear distinction between error detecting and error
handling. The reason for this distinction is that these processes can take place at different times
and in different locations within the code of an application. We also agree to refer to the
procedure (or module) in which an error occurs as the offending procedure (or module).

There are two types of errors that can occur in a running program. (We will not discuss compile-
time or syntax errors.) A runtime error occurs when Visual Basic attempts to perform an operation
that is impossible to perform, such as opening a file that does not exist or dividing by 0. Visual
Basic automatically takes care of error detection for runtime errors because it has no other
choice. On the other hand, proper error handling of runtime errors is up to the programmer, for
otherwise Visual Basic itself handles the error by presenting an error message and terminating
the application, which is not a good solution to the problem.

A logical error is often defined as the production of an unexpected result. It might be better to
define it as the production of an unexpected and incorrect result (although even this is still
somewhat ambiguous). For instance, consider a function that returns the IQ for an individual
based on a set of IQ test scores. If the individual is very smart, we might expect an IQ in the
range of 120 or more. A result of 100 might be unexpected, but it is not necessarily an error. On
the other hand, if the function returns an IQ of -350, that is a logical error.

Visual Basic (or, for that matter, any other language) does not provide error detection for logical
errors, because to Visual Basic, no error has occurred. However, a logical error may
subsequently result in a runtime error, which Visual Basic will certainly recognize. For instance,
code that is intended to retrieve a positive integer for later use in an integer variable may instead
retrieve 0. This is a logical error. But if that integer is later used as a denominator in some other
part of the application, we can surely expect a runtime error.

Thus, it is up to the programmer to anticipate logical errors and provide both error detection and
error handling. From this perspective, logical errors are far more serious and much more difficult
to deal with than runtime errors. After all, a runtime error won't be completely overlooked — at
least Visual Basic will do something about it, even if that consists only of presenting an error
message to the user and terminating the application.

The problem with an overlooked logical error is that it may give the user specious information
(that is, invalid information that looks valid). This is no doubt the most insidious behavior a
program can produce. If we are lucky, a logical error will generate a runtime error at some later
time, but we may still have great difficulty determining the location of the logical error from the
runtime error message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Runtime Error Handling

As we have mentioned, VB currently supports both unstructured and structured error handling.
Let us first look at unstructured error handling.

9.2.1 Unstructured Error Handling

Error-handling techniques that revolve around the various On Error... statements are referred to
as unstructured error-handling techniques. These techniques generally use the Err object and the
Visual Basic call stack.

9.2.1.1 The Err object

Visual Basic's built-in error object, called Err, is one of the main tools for unstructured error
handling. This object has several properties and methods, as shown in Tables Table 9-1 and
Table 9-2, respectively.

Table 9-1. Properties of the Err object
Property Description

Description A short string describing the error.

HelpContext The context ID for a help topic associated with the error.

HelpFile The fully qualified filename of the associated help file, if any.

LastDLLError

The return code from a call made to a function in an external DLL. Note,
however, that this property may change value at any time, so it is wise to store
the current value in a variable immediately upon return from the DLL call. Note
also that even if the DLL call resulted in an error, this is not considered an error
by VB. (VB has no way of knowing the meaning of return values from external
functions, after all.)

Number This is the error number of the error.

Source

A string that specifies the object that generated the error. When the error is
generated within your application, the Source property is the project's name,
which is more or less useless. (It would have been nice to get the name of the
offending procedure.) However, when the error is generated by an external COM
component, the Source property returns the programmatic ID of that component,
which has the form application.objectname, as in Excel.Application,
for example.

Table 9-2. Methods of the Err object
Method Description

Clear

Clears the values of all properties of the Err object. Its syntax is:

Err().Clear()

Note that the Clear method is called implicitly when any of the following statements is
executed: a Resume statement of any type; an Exit Sub, Exit Function, or Exit
Property statement; or any On Error statement.

Causes Visual Basic to generate a runtime error and sets the properties of the Err
object to the values given by the parameters of the Raise method. Its syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Raise
Err.Raise(Number, Source, Description, _

 HelpFile, HelpContext)

where all but the first named argument is optional. Each parameter corresponds to the
property of the same name.

9.2.1.2 Dealing with runtime errors

Visual Basic detects a runtime error as soon as it occurs, sets the properties of the Err object, and
directs the flow of execution to a location that the programmer has specified by the most recent
On Error... line. This location can be one of the following:

The line of code immediately following the line that caused the error.

Another location within the offending procedure.

The procedure that called the offending procedure, if there is one. If not, VB issues an error
message itself and terminates the application.

Let us take a closer look at each of these possibilities.

9.2.1.2.1 In-line error handling

Code execution will be "redirected" to the line following the offending line of code (that is,
execution will continue immediately following the offending line) if the most recent preceding On
Error statement is:

On Error Resume Next

This is referred to as in-line error handling. Here is an example that involves renaming a file. Note
the typical use of a Select Case statement to handle the error based on the value of
Err.Number. Incidentally, one way to obtain error numbers is to deliberately invoke a particular
error and break execution (with a breakpoint) to examine Err.Number:

Dim sOldName, sNewName As String

On Error Resume Next

' Ask for an existing file name

sOldName = InputBox("Enter the file name to rename")

' Ask for new name

sNewName = InputBox("Enter the new file name")

' Rename file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Rename file

Rename("c:\" & sOldName, "c:\" & sNewName)

' Deal with error

If Err().Number = 53 Then

 ' File not found error

 MsgBox("File " & sOldName & " not found")

 Exit Sub

Else

 ' All other errors

 MsgBox(Err().Number & ": " & Err().Description)

 Exit Sub

End If

9.2.1.2.2 Centralized error handling

While in-line error handling does have its uses, there is much to be said for centralizing error
handling within a procedure. (This often improves readability and makes code maintenance
easier.) We can direct code execution to a central error handler using the code:

On Error Goto label

This is outlined in the following code shell:

Sub Example()

On Error Goto ErrHandler

'' If run-time error occurs here

'' Visual Basic directs execution to ErrHandler

Exit Sub

ErrHandler:

'' Code can be placed here to handle errors

'' or pass them up the calls list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'' or pass them up the calls list.

'' We have knowledge of Err().Number, Err().Description,

'' and Err().Source.

End Sub

Once the On Error Goto label line is executed, we say that the error handler beginning at the
label ErrHandler is active.

Once code execution is directed to the error handler, there are several possibilities for dealing
with the error. The most common possibility is simply to handle the error in the active error
handler, perhaps by displaying an error message asking the user to take corrective action.

Another common (and useful) approach is passing information about an error to the calling
procedure with parameters or with the return value of the offending function. For instance, if a
function is designed to rename a file, the function might return an integer error code indicating the
success or failure of the operation. This is quite common among the Win32 API functions. In
particular, the error code might be 0 for success, -1 if the file does not exist, -2 if the new filename
is invalid, and so on.

A third possibility is to pass the error to the calling procedure by invoking the Err.Raise method
within the active error handler, as in:

Err.Raise(Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext)

This triggers the calling procedure's error handler (or more precisely, the next enabled error
handler in the calls list). This process is called regenerating or reraising the error.

Note that it is possible to deactivate an active error handler using the line:

On Error Goto 0

If there is no active error handler, then VB reacts to errors just as though no error handler existed
in the procedure. We describe this situation in the next section.

9.2.1.2.3 No enabled error-handler

If there is no enabled error handler in the offending procedure, either because there is no
OnErrorstatement in the procedure or because error handling has been disabled with an On
Error Goto 0 statement, then Visual Basic automatically sends the error to the calling
procedure's error handler. If the calling procedure has no error handler, the error continues up the
calls list until it reaches an enabled error handler. If none is found, then Visual Basic handles the
error by displaying an error message and terminating the application.

9.2.2 Structured Exception Handling

Structured exception handling uses a Try...Catch...Finally structure to handle errors. As we
will see, VB.NET's structured exception handling is a much more object-oriented approach,
involving objects of the Exception class and its derived classes.

9.2.2.1 Try...Catch...Finally

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The syntax of the Try...Catch...Finally construct is given here:

Try

 tryStatements

[Catch1 [exception [As type]] [When expression]

 catchStatements1

[Exit Try]

Catch2 [exception [As type]] [When expression]

 catchStatements2

[Exit Try]

. . .

Catchn [exception [As type]] [When expression]

 catchStatementsn]

[Exit Try]

[Finally

 finallyStatements]

End Try

The tryStatements (which are required) constitute the Try block and are the statements that
are monitored for errors by VB. Within the Try block, we say that error handling is active.

The Catch blocks (of which there can be more than one) contain code that is executed in
response to VB "catching" a particular type of error within the Try block. Thus, the Catch blocks
consist of the error handlers for the Try block.

The phrases exception [As type] and [When expression] are referred to as filters in the
VB.NET documentation. In the former case, exception is either a variable of type Exception,
which is the base class that "catches" all exceptions, or a variable of one of Exception's derived
classes.

(We provide a list of these classes a bit later.) For instance, the variable declared as:

Catch e As Exception

will catch (that is, handle) any exception. The variable declared as:

Catch e As ArgumentNullException

catches (handles) any exception of class ArgumentNullException. In short, type is the name of
one of the exception classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The When filter is typically used with user-defined errors. For instance, the code in the following
Try block raises an error if the user does not enter a number. The Catch block catches this
error:

Try

 Dim sInput As String

 sInput = Inputbox("Enter a number.")

 If Not IsNumeric(sInput) Then

 Err.Raise(1)

 End If

Catch When Err.Number = 1

 Msgbox("Error1")

End Try

Note that code such as:

Dim x As Integer

Try

 x = 5

Catch When x = 5

 MsgBox(x)

End Try

does not work (that is, the Catch statements are never executed) because no error was
generated.

The Exit Try statement is used to break out of any portion of a Try...Catch... Finally block.
The optional finallyStatements code block is executed regardless of whether an error occurs
(or is caught), unless an Exit Try statement is executed. This final code can be used for
cleanup in the event of an error. (By placing an Exit Try at the end of the Try block, the
finallyStatements are not executed if no error occurs.)

As with unstructured error handling, VB may pass an error up the call stack when using structured
error handling. This happens in the following situations:

If an error occurs within a Try block that is not handled by an existing Catch block

If an error occurs outside any Try block (provided, of course, that no On Error-style error
handlers are active).

9.2.2.2 Exception classes

The System namespace contains the Exception class, which is the base class for a substantial
collection of derived exception classes, listed as follows. Note that the indentation indicates class
inheritance. For example, EntryPointNotFoundException (the fifth from the last entry in the list)
inherits from TypeLoadException.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Exception

 ApplicationException

 SystemException

 AccessException

 FieldAccessException

 MethodAccessException

 MissingMemberException

 MissingFieldException

 MissingMethodException

 AppDomainUnloadedException

 AppDomainUnloadInProgressException

 ArgumentException

 ArgumentNullException

 ArgumentOutOfRangeException

 DuplicateWaitObjectException

 ArithmeticException

 DivideByZeroException

 NotFiniteNumberException

 OverflowException

 ArrayTypeMismatchException

 BadImageFormatException

 CannotUnloadAppDomainException

 ContextMarshalException

 CoreException

 ExecutionEngineException

 IndexOutOfRangeException

 StackOverflowException

 ExecutionEngineException

 FormatException

 InvalidCastException

 InvalidOperationException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InvalidOperationException

 MulticastNotSupportedException

 NotImplementedException

 NotSupportedException

 PlatformNotSupportedException

 NullReferenceException

 OutOfMemoryException

 RankException

 ServicedComponentException

 TypeInitializationException

 TypeLoadException

 EntryPointNotFoundException

 TypeUnloadedException

 UnauthorizedAccessException

 WeakReferenceException

URIFormatException

As Microsoft states: "Most of the exception classes that inherit from Exception do not implement
additional members or provide additional functionality." Thus, it is simply the class name that
distinguishes one type of exception from another. The properties and methods applied to an
exception object are inherited from the Exception base class.

When writing Catch blocks, we always face the question of whether to simply trap the generic
exception class, as in:

Sub test()

 Try

 ...

 Catch e As Exception

 ...

 End Try

End Sub

or whether to trap specific exception classes. Of course, the time to trap specific exception
classes is when we want to handle errors differently based on their class. For instance, this may
take the form of issuing different custom error messages for different exception types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, there are occasions when we may want to take advantage of members of a particular
exception class that are not implemented in the Exception base class. For instance, the
ArgumentException class has a ParamName property that returns the name of the parameter that
causes the exception. Now, if we simply trap the generic Exception class, as in the following code:

Sub test()

 Try

 Dim s, d As String

 s = "c:\temp.txt"

 ' Attempt to copy a file to a nonvalid target

 FileCopy(s, d)

 Catch e As Exception

 MsgBox(e.Message)

 End Try

End Sub

then we cannot take advantage of the ParamName property. On the other hand, if we specifically
trap the ArgumentException class, as in the following code:

Sub test1()

 Try

 Dim s, d As String

 s = "c:\temp.txt"

 ' Attempt to copy a file to a nonvalid target

 FileCopy(s, d)

 Catch e As ArgumentException

 MsgBox(e.Message & " Parameter: " & e.ParamName)

 End Try

End Sub

then we can retrieve the name of the offending parameter.

Now let us take a look at some of the members of the Exception class:

Message property

A string containing an error message.

Source property

A string that describes the application or object that threw the exception.

StackTrace property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A string that contains the stack trace immediately before the exception was thrown. We
provide an example of this in a moment (although in this case its value is Nothing.

TargetSite property

A string that gives the method that threw the exception.

ToString method

A string that returns the fully qualified name of the exception, possibly the error message,
the name of the inner exception, and the stack trace. Its syntax is simply:

ToString()

The best way to get a feel for these members is with an example. Consider the following code,
which consists of three subroutines. The first subroutine, Exception0, contains a Try...Catch...
statement. In the Try code block, the subroutine Exception0 calls the subroutine Exception1,
which simply calls Exception2.

Sub Exception0()

 Dim s As String

 Try

 Exception1()

 Catch e As Exception

 s = "Message: " & e.Message

 s = s & ControlChars.CrLf & "Source: " & e.Source

 s = s & ControlChars.CrLf & "Stack: " & e.StackTrace

 s = s & ControlChars.CrLf & "Target: " & e.TargetSite.Name

 s = s & ControlChars.CrLf & "ToString: " & e.ToString

 debug.writeline(s)

 End Try

End Sub

Sub Exception1()

 Exception2()

End Sub

Sub Exception2()

 Throw New ArgumentNullException()

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

In Exception2, there is a single line of code that executes the Throw statement, which throws an
exception. This is similar to raising an error with the Err.Raise method. However, as you can see
by the New keyword, the Throw statement actually creates an object of one of the exception
types.

The output from the call to Exception0 is:

Message: argument can't be null

Source:

Stack: at WindowsApplication3.Form1.Exception2()

 in C:\VBNET\Form1.vb:line 68

 at WindowsApplication3.Form1.Exception1()

 in C:\VBNET\Form1.vb:line 66

 at WindowsApplication3.Form1.Exception0()

 in C:\VBNET\Form1.vb:line 53

Target: Exception2

ToString: System.ArgumentNullException: argument can't be null

 at WindowsApplication3.Form1.Exception2()

 in C:\VBNET\Form1.vb:line 68

 at WindowsApplication3.Form1.Exception1()

 in C:\VBNET\Form1.vb:line 66

at WindowsApplication3.Form1.Exception0()

 in

C:\VBNET\Form1.vb:line 53

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Dealing with Logical Errors

Since Visual Basic makes the handling of runtime errors a relatively straightforward process, it
seems reasonable to try to mimic this process for logical errors.

9.3.1 Detecting Logical Errors

To detect a logical error, we place error-detection code immediately following the potential
offender. For instance, consider the following procedure shell for getting a sequence of positive
integers from the user, starting with the number of integers:

Public Sub GetSomeData()

Dim DataCt As Integer

DataCt = CInt(InputBox("Enter number of items."))

' Code here to get the individual data values ...

End Sub

The proper place for error-detecting code is immediately following the InputBox function, where
we can check for a nonpositive integer:

Public Sub GetSomeData()

Dim DataCt As Integer

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 ' something here

End If

' Code here to get the individual data values ...

End Sub

Note that the alternative to immediate detection of logical errors is to place the error-detecting
code just prior to using the value of DataCt, but this is both dangerous and inefficient. It is
dangerous since we might forget to place the code, and it is inefficient since we may use DataCt
in a variety of locations in the program, each of which would require error-detecting code.

9.3.2 Where to Handle a Logical Error

Once a logical error is detected, we have three choices as to where to handle that error.

9.3.2.1 Handling the error on the spot

A logical error can be handled at the location where it was detected. Here is an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub GetSomeData()

TryAgain:

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 If MsgBox("Number must be a positive integer." & _

 " Try again or cancel.", vbQuestion+vbOKCancel) _

 = vbOK then

 Goto TryAgain

 Else

 Exit Sub

 End If

End If

'' Code here to get the individual data values ...

End Sub

Handling a logical error on the spot may be appropriate when the required code is short. It is also
appropriate in Property procedures, which often amount to little more than a single line that sets a
private instance variable, preceded by data validation, which is essentially logical-error detection.

9.3.2.2 Handling the error in the offending procedure's error handler

We can duplicate the procedure that Visual Basic uses for runtime errors simply by raising our
own runtime error. Here is an example using structured exception handling:

Try

 Dim DataCt As Integer = CInt(InputBox("Enter number of items."))

 ' Check for error

 If DataCt <= 0 Then

 ' Throw an exception

 Throw New Exception("Must enter a positive number.")

 End If

Catch ex As Exception

 MsgBox(ex.Message)

End Try

Note that the Exception class constructor (in one of its overloaded forms) is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overloads Public Sub New(String)

where String is the error message to be associated with the error.

Here is an example of error raising using unstructured error handling:

Public Sub GetSomeData()

On Error Goto ErrGetSomeData

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 ' Raise an error

 Err().Raise Number:= ErrBadDataCt

End If

' Code here to get the individual data values ...

Exit Sub

' Error-handler

ErrGetSomeData:

Select Case Err().Number

 Case ErrBadDataCt

 '' Deal with this error by displaying

 '' message and getting help from user

 Case Else

 '' Deal with other errors

End Select

Exit Sub

End Sub

9.3.2.3 Passing the error to the calling procedure

As with runtime errors, passing the error to the calling procedure can be done in a parameter of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with runtime errors, passing the error to the calling procedure can be done in a parameter of
the offending procedure or as the return value of the offending function. Also, the calling
procedure's error handler can be called by throwing (or raising) an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Error Constants

To raise our own errors using the Err.Raise method, we need error numbers that do not conflict
with those used by Visual Basic. The Visual Basic documentation says that error numbers in the
range vbObjectError to vbObjectError + 65535, where vbObjectError is a built-in constant
whose value is the signed integer -2147220991 (or &H80040000 as an unsigned hexadecimal
integer), are designed to signal an error generated by an object.

It further says that error numbers below vbObjectError + 512 may conflict with values
reserved for OLE, so these numbers are verboten. Thus, we are left with numbers in the range
vbObjectError + 512 to vbObjectError + 65535, which should be plenty.

Many programmers like to assign symbolic constants to error numbers, since it tends to improve
readability and cut down on the need for comments. For instance, we could add the line:

Public Const ErrBadDataCt = vbObjectError + 1024

in a standard module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Reference
This section consists only of one very long chapter (Chapter 10), which contains an
alphabetic reference to VB.NET language elements. The chapter documents the
following:

Statements, such as AddHandler or Structure...End Structure.

Procedures, such as AppActivate or Rename. These were statements in
previous versions of Visual Basic, but now they are methods of one class or
another within the Microsoft.VisualBasic namespace. The official
documentation describes them as functions, but since they don't return a
value, we've chosen to describe them as procedures.

Functions, such as Format or IsReference.

Compiler directives, such as #Const or #If.

Visual Basic classes and their members. The two intrinsic objects available in
Visual Basic are the Collection class and the Err object.

Selected classes in the .NET Framework Class Library, along with their
members. Documentation of the Framework Class Library, however, is highly
selective; we've chosen classes and their members either because they
replace language elements that were present in VB 6, or because they provide
much needed functionality that supplements existing language elements.

Attributes, such as <AttributeUsage> and <VBFixedString>. Of the
approximately 100 attributes available in the .NET Framework, we've
documented only those of greatest interest to the VB programmer.

When you're looking for a particular language element but don't quite remember
what it's called, an alphabetic reference is of little value. For this reason, we've
included Appendix B.

Finally, two language elements are covered in the appendixes rather than in Part II.
With a few exceptions (notably, Like and Is) that are documented in Part II, Visual
Basic operators are covered in Appendix C. And Visual Basic constants and
enumerations are listed in Appendix D.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. The Language Reference
This long chapter documents VB.NET language elements. To help you speed the process of
finding the right element to perform a particular task, you can use Appendix B to determine what
language elements are available for the purpose you require. If you're using Visual Studio .NET,
you can also make use of its Object Browser to browse the Microsoft.VisualBasic namespace.

In documenting the VB.NET language, we've tried to provide a consistent and uniform treatment
of particular types of language elements. These language elements are:

Functions

The entry for each function provides the standard information that you'd expect for a
function: its syntax, parameters (if it has any), return value, and description. In addition, we
list rules for using the function (see the "Rules at a Glance" section), discuss tips and tricks
related to the function (see the "Programming Tips and Gotchas" section), frequently
provide examples, and list related language elements.

In addition, each VB.NET function is in fact a method, since it is a member of a particular
class in the Microsoft.VisualBasic namespace. In each case, we've listed the class to which
the function belongs.

For the first time, Visual Basic supports both named and positional arguments for all
functions, procedures, and methods, with just a few exceptions. Functions, procedures, or
methods that accept parameter arrays as arguments don't accept named arguments if the
ParamArray parameter is present. And "functions" that are actually resolved by the
compiler at compile time (the conversion functions fall into this category) do not accept
named arguments. To see how named arguments work, let's look at the syntax of the Mid
function:

Mid(Str As String, Start As Integer, Length As Integer)

Using positional arguments, you might call the function as follows:

iPos = Mid(strName, 12, 10)

The same function call using named arguments might appear as follows:

iPos = Mid(start:=12, str:=strName, length:=10)

Since named arguments are nearly universally accepted, we only note when you can't use
named arguments with a particular function. The name of each argument is provided in the
function's syntax statement.

Finally, we've noted any differences between the operation of the function under previous
versions of Visual Basic and under VB.NET.

Procedures

Procedures are really functions that don't return a value to the caller. Consequently, except
for the absence of a return value, the same information is presented for procedures as for
functions.

Procedures are interesting as a separate language category. Under previous versions of Visual
Basic, they were statements. With the rationalization and streamlining of Visual Basic for its .NET
version, they were moved into classes in the Microsoft.VisualBasic namespace and became
procedures. The official documentation describes them as functions, although they do not return a
value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Statements

Visual Basic statements are not class members, don't support named arguments, and don't
return a value. Aside from these three items, the same information is presented for
statements as for procedures and functions.

Directives

Visual Basic directives are really statements that provide instructions to the VB.NET
compiler or to a .NET development environment like Visual Studio. Like statements, they
are not class members, don't support named arguments, and don't return a value. In
general, the same information is presented for directives as for statements.

Classes and Objects

Entries for classes and objects identify the namespace to which the class belongs
(something that is particularly important in the case of the Framework Class Library) and
indicate whether the class is createable. If a class is createable, a new instance of that
class can be created by using the New keyword, as in:

Dim colStates As New Collection()

In some cases, the entry for the class or object also includes a summary listing of the class'
members, along with their syntax and a brief description.

Class Members (Properties, Methods, and Events)

When the members of a class seem to be particularly interesting or important, we've
devoted separate entries to each. These contain the same items of information as
functions.

Attributes

Attributes are classes derived from System.Attribute that allow us to store information with
an assembly's metadata. We've included only the attributes that VB programmers are most
likely to use. The standard format for presenting information about attributes include some
standard information (Class, Description, etc.), as well as the class constructors (these
define the attribute's required arguments) and properties (which define the attribute's
optional arguments).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#Const Directive

Syntax

#Const constantname = expression
constantname (required; String literal)

Name of the constant

expression (required; literal)

Any combination of literal values, other conditional compilation constants defined with the
#Const directive, and arithmetic or logical operators except Is

Description

Defines a conditional compiler constant.

By using compiler constants to create code blocks that are included in the compiled application
only when a particular condition is met, you can create more than one version of the application
using the same source code. This is a two-step process:

Defining the conditional compiler constant. This step is optional; conditional compiler
constants that are not explicitly defined by the #Const directive, but are referenced in
code, default to a value of Nothing.

Evaluating the constant in the conditional compiler #If...Then statement block.

A conditional compiler constant can be assigned any string, numeric, or logical value returned by
an expression. However, the expression itself can only consist of literals, operators other than Is,
and another conditional compiler constant.

When the constant is evaluated, the code within the conditional compiler #If... Then block is
compiled as part of the application only when the expression using the conditional compiler
constant evaluates to True.

Rules at a Glance

Conditional compiler constants are evaluated by the conditional compiler #If... Then
statement block.

You can use any arithmetic or logical operator in the expression except Is.

You cannot use other constants defined with the standard Const statement in the
expression.

You cannot use intrinsic functions or variables in expression.

Constants defined with #Const can only be used in conditional code blocks.

You can place the #Const directive anywhere within a source file. If placed outside of all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can place the #Const directive anywhere within a source file. If placed outside of all
modules, the defined constant is visible throughout the source file, but is not visible to any
other source files in the project. If placed in a module, the scope of the constant is that
module. If placed in a procedure, the scope is that procedure and all called procedures.

The #Const directive must be the first statement on a line of code. It can be followed only
by a comment. Note that the colon, which is used to combine two complete sets of
statements onto a single line, cannot be used on lines that contain #Const.

Programming Tips and Gotchas

Conditional compiler constants help you debug your code, as well as provide a way to
create more than one version of your application. You can include code that only operates
when run in debug mode. The code can be left in your final version and does not compile
unless running in the debugger. Therefore, you don't need to keep adding and removing
debugging code.

Conditional compiler constants may be defined in terms of other conditional compiler
constants. For example, the following code fragment works as expected:

#Const Flag1 = 1

#Const Flag2 = 1

#Const Flags = Flag1 + Flag2

A conditional compiler constant can be defined at the command line using the /define or
/d switch.

It is important to remember that the constant defined by #Const is evaluated at compile
time and therefore does not return information about the system on which the application is
running.

See Also

#If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#If . . . Then . . . #Else Directive

Syntax

#If expression Then

 statements

[#ElseIf furtherexpression Then

 [elseifstatements]]

[#Else

 [elsestatements]]

#End If

expression (required)

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to True or False

statements (required)

One or more lines of code or compiler directives, which is executed if
expressionevaluates to True

furtherexpression (optional)

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to True or False. furtherexpression is only evaluated if the preceding
expression evaluates to False

elseifstatements (optional)

One or more lines of code or compiler directives, which is executed if
furtherexpression evaluates to True

elsestatements (optional)

One or more lines of code or compiler directives, which are executed if expression or
furtherexpression evaluates to False

Description

Defines a block or blocks of code that are only included in the compiled application when a
particular condition is met, allowing you to create more than one version of the application using
the same source code.

Conditionally including a block of code is a two-step process:

Use the #Const directive to assign a value to a conditional compiler constant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Evaluate the conditional compiler constant using the #If...Then...#End If statement
block.

Only code blocks whose expressions evaluate to True are included in the executable. You can
use the #Else statement to execute code when the #If...Then expression evaluates to
False. You can also use an #ElseIf statement to evaluate more expressions if previous
expressions in the same block have evaluated to False.

Some uses of conditional compilation code are:

To provide blocks of debugging code that can be left within the source code and switched
on and off using a conditional constant. Since debug statements such as Debug.Write have
no effect in compiled executables, they do not need to be included in conditional
compilation code for the purpose of removing them from the final executable.

To provide blocks of code that can perform different functions based on the build required
by the developer. For example, you may have a sample version of your application that
offers less functionality than the full product. This can be achieved using the same source
code and wrapping the code for menu options, etc., within conditional compiler directives.

To provide blocks of code that reference different components depending upon the build
criteria of the application.

Rules at a Glance

Unlike the normal If...Then statement, you cannot use a single-line version of the
#If...Then statement.

All expressions are evaluated using Option Compare Text, regardless of the setting of
Option Compare.

If a conditional compiler constant is undefined, comparing it to Nothing, 0, False, or an
empty string ("") returns True.

Example

#Const ccVersion = 2.5

Private oTest as Object

Sub GetCorrectObject()

#If ccVersion = 2.5 Then

 Set oTest = New MyObject.MyClass

#Else

 Set oTest = New MyOtherObject.MyClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set oTest = New MyOtherObject.MyClass

#End If

End Sub

Programming Tips and Gotchas

You can negate the evaluation of the expression in the #If...Then or #ElseIf...Then
statements by placing the Not operator before the expression. For example, #If Not
ccVersion = 5 Then forces the code after this line to compile in all situations where
ccVersion does not equal 5.

Conditional compilation helps you debug your code, as well as provides a way to create
more than one version of your application. You can include code that will only operate
when run in debug mode. The code can be left in your final version and will not compile
unless running in the debugger; therefore, you don't need to keep adding and removing
code.

See Also

#Const Directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#Region...#End Region Directive

Syntax

#Region "identifier_string"

' code goes here

#End Region

identifier_string (required; String literal)

The title of the code block (or region)

Description

Marks a block of code as an expandable and collapsible region or code block in the Visual Studio
.NET editor

Rules at a Glance

Code blocks delineated with the #Region...#End Region directive are collapsed by
default.

identifier_string serves as the title to identify the region when it is collapsed.

Code blocks defined by other directives (such as #If) must be entirely contained within the
#Region...#End Region block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Abs Function

Class

System.Math

Syntax

Math.Abs(value)

value (required; any valid numeric expression)

A number whose absolute value is to be returned

Return Value

The absolute value of value. The data type is the same as that of the argument passed to the
function.

Description

Returns the absolute value of value. If value is an uninitialized variable, the return value is 0

Rules at a Glance

Only numeric values can be passed to the Abs function.

This is a Shared member of the Math class, so it can be used without creating any objects.

Example

In this example, the LineLength function is used to determine the length of a line on the screen. If
the line runs from left to right, X1 is less than X2, and the expression X2 - X1 returns the length of
the line. If, however, the line runs from right to left, X1 is greater than X2, and a negative line
length is returned. As you know, in most circumstances it does not matter which way a line is
pointing; all you want to know is how long it is. Using the Abs function allows you to return the
same figure whether the underlying figure is negative or positive:

Function LineLength(X2 as Integer) as Integer

 Dim X1 As Integer

 X1 = 100

 LineLength = Math.Abs(X2 - X1)

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Function

Programming Tips and Gotchas

Because the Abs function can only accept numeric values, you may want to check the value you
pass to Abs using the IsNumeric function to avoid generating an error. This is illustrated in the
following code snippet:

If IsNumeric(sExtent) Then

 Math.Abs(sExtent)

 ...

End If

VB.NET/VB 6 Differences

In VB 6, Abs is an intrinsic VB function. In the .NET platform, it is a member of the Math class in
the System namespace, and so it is not part of the VB.NET language.

See Also

Sign Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acos Function

Class

System.Math

Syntax

Math.Acos(d)

d (required; Double or any valid numeric expression)

A cosine, which is a number greater than or equal to -1 and less than or equal to 1

Return Value

A Double between 0 and pi that is the arccosine of d in radians

Description

Returns the arccosine of d in radians

Rules at a Glance

If d is out of range (less than -1 or greater than 1), Acos returns NaN.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB.NET/VB 6 Differences

The Acos function did not exist in VB 6.

See Also

Asin Function, Atan Function, Atan2 Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddHandler Statement

Syntax

AddHandler NameOfEventSender, AddressOf NameOfEventHandler

NameOfEventSender (required; String literal)

The name of a class or object instance and its event, such as Button1.Click

NameOfEventHandler (required; String literal)

The name of a subroutine that is to serve as the event handler for NameOfEventSender

Description

Binds an event handler to a built-in or custom event. This makes it possible to bind several event
handlers to a single event.

NameOfEventSender takes the form class.event or object.event.

You can stop handling events defined by the AddHandler statement by calling the
RemoveHandler statement.

Example

For an illustration, see Section 7.2.3 in Chapter 7.

Programming Tips and Gotchas

The Handles keyword can be used to receive event notification for the lifetime of an object. In
contrast, AddHandler and RemoveHandler can be used to dynamically add and remove event
notification at runtime.

See Also

RemoveHandler Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddressOf Operator

Syntax

AddressOf procedurename

procedurename (required)

The name of a procedure that is referenced by the procedure delegate

Description

The AddressOf operator returns a procedure delegate instance that references a specific
procedure.

The AddressOf operator is used in the following situations:

If a parameter to a procedure (a VB procedure or a Win32 API function) requires a function
pointer (the address of a function), then we can pass the expression:

AddressOf functionname

where functionname is the name of the function. This function is called a callback
function.

AddressOf is also used to create delegate objects, as in:

delg = New ADelegate(AddressOf obj.AMethod)

AddressOf is used to bind event handlers to events through the AddHandler statement:

AddHandler Form1.Click, AddressOf Me.Form1Click

Examples of all three applications of AddressOf can be found in Section 7.1 in Chapter 7.

VB.NET/VB 6 Differences

In VB 6, the AddressOf operator can only be used in a call to a Windows API function.
Moreover, the argument passed to AddressOf must be the name of a procedure in a standard
code module. However, in VB.NET these restrictions no longer apply.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppActivate Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

[Interaction.]AppActivate(title)

title (required; String or Integer)

The name of the application as currently shown in the application window title bar. This can
also be the task ID returned from the Shell function.

Description

Activates a window based on its caption

Rules at a Glance

AppActivate performs a case-insensitive search on all top-level windows for a window
caption that matches title. If an exact match is found, the window is activated. If no match
is found, then the window captions are searched for a prefix match (title matches the
beginning of the window caption). For example, the title "Microsoft Word" matches
"Microsoft Word - MyDocument.doc". If a prefix match is found, the window is
activated. Note that if multiple prefix matches are found, there is no way to predict which
matching window will be activated.

The window state (Maximized, Minimized, or Normal) of the activated application is not
affected by AppActivate.

If a matching application cannot be found, an exception of type System.ArgumentException is
raised, and runtime error 5, "Invalid procedure call or argument," is generated.

Example

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button2.Click

 Dim bVoid As Boolean

 bVoid = ActivateAnApp("Microsoft Excel")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Function ActivateAnApp(vAppTitle As String) As Boolean

 On Error GoTo Activate_Err

 ActivateAnApp = False

 AppActivate(vAppTitle)

 ActivateAnApp = True

 Exit Function

Activate_Err:

 MsgBox ("Application " & vAppTitle & _

 " could not be activated")

End Function

Programming Tips and Gotchas

AppActivate searches only top-level windows.

You can also use the task ID returned by the Shell function with the AppActivate
statement, as this simple example demonstrates:

Option Explicit

Private vAppID

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 vAppID = Shell("C:\Program Files\Internet Explorer\IEXPLORE.EXE")

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Handles Button2.Click

 AppActivate vAppID

End Sub

AppActivate is very difficult to use with applications whose application titles change to
reflect the state or context of the application. Microsoft Outlook illustrates an excellent
example of this problem. If the user has Outlook in the Calendar section, the title bar reads
"Calendar - Microsoft Outlook," whereas if in the Inbox section, the title bar reads "Inbox -
Microsoft Outlook." In situations such as this, we must resort to other techniques, such as
using Win32 API methods, to enumerate all windows and check the captions directly.

AppActivate is often used to give the focus to a particular window before keystrokes are
sent to it using the SendKeys statement, which sends keystrokes to the active window only.

VB.NET/VB 6 Differences

In VB 6, AppActivate has a second optional parameter, wait, a Boolean that determines
whether the application calling AppActivate must have the focus for the window indicated by
title to be activated. In VB.NET, wait is not supported.

See Also

Shell Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application Class

Namespace

System.Windows.Forms

Createable

No

Description

The Application object provides a diverse range of functionality, including support for
multithreaded programming, access to the system registry, and support for subclassing
(intercepting messages sent to application windows). It also includes a variety of informational
functions, such as properties to retrieve the company name, to retrieve the application's
executable path, and to retrieve the application's name and version.

Application objects can be created as follows:

Dim obj As Application

However, because all of the Application object's members are shared, you do not need to
instantiate the Application object to access its properties and methods. Hence, you can retrieve
the executable path of your application, for instance, with the code fragment:

Dim sPath As String = Application.ExecutablePath

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Properties

AllowQuit
CommonAppDataPath
CommonAppDataRegistry
CompanyName +
CurrentCulture
CurrentInputLanguage
ExecutablePath +
LocalUserAppDataPath
MessageLoop
ProductName +
ProductVersion +
SafeTopLevelCaptionFormat
StartupPath
UserAppDataPath
UserAppDataRegistry

Public Shared Methods

AddMessageFilter
DoEvents +
Exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ExitThread
OleRequired
OnThreadException
RemoveMessageFilter
Run

Public Shared Events

ApplicationExit
Idle
ThreadException
ThreadExit

See Also

Application.CompanyName Property, Application.DoEvents Method, Application.ExecutablePath
Property, Application.ProductName Property, Application.ProductVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.CompanyName Property

Class

System.Windows.Forms.Application

Syntax

Application.CompanyName()

Return Value

A String containing the company name for the application

Description

Gets the company name for the application. This is a read-only property.

The value of the CompanyName property can be defined by including the <AssemblyCompany>
attribute in the AssemblyInfo file for the application. Its syntax is:

<Assembly: AssemblyCompany("sCompany")>

where sCompany is a string literal containing the company name.

See Also

Application Class, Application.ProductName Property, Application.ProductVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.DoEvents Method

Class

System.Windows.Forms.Application

Syntax

Application.DoEvents()

Description

Allows the operating system to process events and messages waiting in the message queue.

For example, you can allow a user to click a Cancel button while a processor- intensive operation
is executing. In this case, without DoEvents, the click event is not processed until after the
operation had completed. With DoEvents, Windows allocates time for the Cancel button's Click
event to fire and the event handler to execute.

Example

The following example uses a form with two command buttons to illustrate DoEvents. Suppose
the user clicks CommandButton1. Then the Do loop in the click event executes indefinitely.
However, if the user clicks CommandButton2, its click event is processed when the DoEvents
statement in CommandButton1_Click is executed. This sets the Boolean flag to False, which
terminates the Do loop.

Option Explicit

Private lngCtr As Long

Private blnFlag As Boolean

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 blnFlag = True

 Do While blnFlag

 lngCtr = lngCtr + 1

 DoEvents()

 Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Loop

 MsgBox("Loop interrupted after " & lngCtr & _

 " iterations.")

End Sub

Private Sub CommandButton2_Click()

 blnFlag = False

End Sub

Programming Tips and Gotchas

While DoEvents can be indispensable for increasing the responsiveness of your
application, it should at the same time be used judiciously, since it entails an enormous
performance penalty. For example, the following table compares the number of seconds
required for a simple For...Next loop to iterate one million times when DoEvents isn't
called, on the one hand, and when it's called on each iteration of the loop, on the other.

Without DoEvents 0.01 seconds

With DoEvents 49.26 seconds

If most of a procedure's processing occurs inside of a loop, one way to avoid too many
calls to DoEvents is to call it conditionally every ten, hundred, or thousand iterations of the
loop. For example, the following code calls DoEvents every thousand iterations:

Dim lCtr As Long

For lCtr = 0 To 1000000

 If (lCtr Mod 1000) = 0 Then

 DoEvents

 End If

Next

DoEvents should not be used in any event procedure or callback routine that is invoked
automatically by the operating system. Doing so causes re-entrance problems. (The event
or routine may be called again during the processing of the DoEvents method.) For the
same reason, DoEvents should not be used in in-process COM objects created with Visual
Basic.

See Also

Application Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.ExecutablePath Property

Class

System.Windows.Forms.Application

Syntax

Application.ExecutablePath()

Return Value

A String containing the complete path of the executable file for the application

Description

Gets the complete path of the executable file for the application. This is a read- only property.

VB.NET/VB 6 Differences

The ExecutablePath property in the .NET Framework corresponds to the App.Path property in VB
6.

See Also

Application Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.ProductName Property

Class

System.Windows.Forms.Application

Syntax

Application.ProductName()

Return Value

A String containing the product name of the application

Description

Gets the product name of the application. This is a read-only property.

The value of the ProductName property can be defined by including the <AssemblyProduct>
attribute in the application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyProduct("sProduct")>

where sProduct is a string literal containing the product name.

VB.NET/VB 6 Differences

The ProductName property in the .NET Framework corresponds to the App. ProductName
property in VB 6.

See Also

Application Class, Application.CompanyName Property, Application.ProductVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.ProductVersion Property

Class

System.Windows.Forms.Application

Syntax

Application.ProductVersion()

Return Value

A String containing the product version of the application

Description

Gets the product version of the application.

This is a read-only property. The product version typically has the form:

MajorVersionNumber.MinorVersionNumber.BuildNumber.PrivatePartNumber

Its default value is "1.0.*", which indicates that Visual Studio maintains default build and
revision numbers.

The value of the ProductVersion property can be defined by including the <AssemblyVersion>
attribute in the application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyVersion("maj.min.bld.rev")>

where maj is the major version number, min is the minor version number, bld is the build
number, and rev is the revision number.

VB.NET/VB 6 Differences

The ProductVersion property in the .NET Framework corresponds to the App. Major, App.Minor,
and App.Revision properties in VB 6.

See Also

Application Class, Application.CompanyName Property, Application.ProductName Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array Class

Namespace

System

Createable

Yes

Description

An Array object (that is, an instance of the Array class) that represents an array.

Arrays defined in VB.NET are Array objects, so they support the members of the Array class.
Array class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Instance Properties

IsFixedSize
IsReadOnly
IsSynchronized
Length
Rank
SyncRoot

Public Shared Methods

BinarySearch +
Clear
Copy +
CreateInstance
IndexOf +
LastIndexOf +
Reverse +
Sort +

Public Instance Methods

Clone
CopyTo
Equals
GetEnumerator
GetHashCode
GetLength
GetLowerBound
GetType
GetUpperBound
GetValue
Initialize
SetValue
ToString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.BinarySearch Method

Class

System.Array

Syntax

Array.BinarySearch(array , value , [comparer])
Array.BinarySearch(array , index , length , value , [comparer])

array (required; any array)

The one-dimensional array to be searched

value (required in first overloaded function; any)

The value to search for in array

index (required in second overloaded version; Integer)

The array element at which the search is to start

length (required in second overloaded version; Integer)

The number of array elements to be searched

comparer (optional; IComparer)

A BCL or user-defined class implementing the IComparer interface that determines how two
items are compared for equality.

Return Value

An Integer representing the zero-based ordinal position of the element matching value

Description

This method provides a quick way to search for a value in a sorted one-dimensional array, returning
the smallest index whose element is that value. It uses a binary search algorithm, which tends to take
log2(n) comparisons to find an item in an array of length n. For example, if n = 100,000, the number of
comparisons is on the order of 17.

To illustrate, if arr is an array of names in alphabetical order, then the code:

Array.BinarySearch(arr, "steve")

returns the smallest index with element "steve." If no such element exists, BinarySearch returns the
negative number whose bitwise complement is the index of the first element that is larger than "steve."

Rules at a Glance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The array must be a one-dimensional array sorted in ascending order.

If value is not found in the array, the method returns a negative number, which is the bitwise
complement of the index of the first element that is larger than value. To extract this value, you
can use the Not operator, as in the following code fragment:

iResult = Array.BinarySearch(lArr, lSearch)

if iResult >= 0 Then

 MsgBox(iResult)

Else

 MsgBox(iResult & vbcrlf & Not iResult)

End If

By default, the System.Collections.Comparer class is used to compare value with the
members of array. This means that string comparisons are case sensitive.

Programming Tips and Gotchas

If an array contains Boolean values, the method fails to correctly identify the position of the first
False value in the array.

In addition to the Comparer class, you can also pass an instance of the
System.Collections.CaseInsensitiveComparer class as the comparer argument. It provides for
case-insensitive comparisons. For example:

Dim sArr() As String = {"Alaska", "ALASKA", "Michigan", "MICHIGAN",

 "New York", "NEW YORK"}

Dim sSearch As String

Dim lResult As Long

Dim oComp As New CaseInsensitiveComparer

sSearch = "MICHIGAN"

iResult = Array.BinarySearch(sArr, sSearch, oComp)

In this case, because of the case-insensitive comparison, the value of lResult is 2.

See Also

Array.IndexOf Method, Array.LastIndexOf Method, Array.Sort Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.Copy Method

Class

System.Array

Syntax

Array.Copy(sourceArray, destinationArray, length)

Array.Copy(sourceArray, sourceIndex, destinationArray, _

 destinationIndex, length)

sourceArray (required; any array)

The array to be copied

sourceIndex (required in second overloaded version; integer)

The index in sourceArray at which copying begins

destinationArray (required; any array)

The target array

destinationIndex (required in second overloaded version; Integer)

The index in destinationArray where the first element is to be copied

length (required; Integer)

The number of elements to copy

Return Value

None

Description

Makes a copy of all or part of an array.

Since arrays are reference types, when we set one array variable equal to another, we are just
assigning a new reference to the same array. For instance, consider the following code:

Dim a() As Integer = {1, 2, 3}

Dim b() As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim b() As Integer

' Array assignment

b = a

' Change b

b(0) = 10

' Check a

MsgBox(a(0)) 'Displays 10

The fact that changing b(0) also changes a(0) shows that a and b point to the same array.

Rules at a Glance

Using the first syntax, you can copy a range of values from the beginning of sourceArray
to the beginning of destinationArray. Using the second syntax, you can copy a range
of values from anywhere in destinationArray to anywhere in targetArray.

sourceArray and destinationArray must have the same number of dimensions.

length is the total number of elements to be copied. If sArr1 is a two- dimensional array,
for example, the statement:

Array.Copy(sArr1, 0, sArr2, 0, 3)

copies the values from sArr(0,0), sArr(0,1), and sArr(1,0) to sArr2.

To copy all elements, you can supply UBound(sourceArray) + 1 as an argument to
length.

If sourceArray and destinationArray are the same, and destinationIndex lies
within the range of values being copied (that is, if the source and target ranges overlap), no
data will be lost. The method behaves as if it copies length elements from sourceArray
to a temporary buffer, then copies from the temporary buffer to destinationArray.

Example

Dim a() As Integer = {1, 2, 3}

Dim c() As Integer

' Array copy

ReDim c(UBound(a) + 1)

Array.Copy(a, c, UBound(a) + 1)

'Change c

c(0) = 20

'Check a

MsgBox(a(0)) 'Displays 1

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since arrays were not a reference type in VB 6, you could simply create a copy of an existing
array through assignment, thus eliminating the need for a Copy method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.IndexOf Method

Class

System.Array

Syntax

Array.IndexOf(Array, Value[, startIndex[, count]])

Array (required; any array)

The array to be searched

Value (required; any)

The object that is searched for

startIndex (optional; Integer)

The index at which to start the search

count (optional; Integer)

The number of items to search

Return Value

The index of the first occurrence of Value in Array, or -1

Description

Returns an Integer representing the index of the first occurrence of value in Array

Rules at a Glance

Array must be a one-dimensional array.

By default, the IndexOf method searches for Value from the beginning to the end of
Array.

If startIndex is provided without count, IndexOf searches from startIndex to the last
element of Array.

If both startIndex and count are provided, the method searches count elements
starting at startIndex. In other words, it searches from array(startIndex) to
array(startIndex + count - 1).

If startIndex is present and is outside of the range of the elements in Array, the
method returns -1.

If count is present and startIndex + count - 1 exceeds the total number of elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If count is present and startIndex + count - 1 exceeds the total number of elements
in Array, the method call generates an ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer

Dim a(99999) As Integer

For i = 0 To 99999

 a(i) = CInt(Rnd() * 100000)

Next

MsgBox(Array.IndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to
search. For example:

Array.IndexOf(array:=a, value:=136500, startIndex:=100, _

 count:=1000)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.LastIndexOf Method

Class

System.Array

Syntax

Array.LastIndexOf(Array, Value[, startIndex, count])

Array (required; any array)

The array to be searched

Value (required; any)

The object that is searched for

startIndex (optional; Integer)

The index at which to start the search

count (optional; Integer)

The number of elements to search

Return Value

An Integer containing the index of the last occurrence of Object in Array

Description

Returns the index of the last occurrence of Object in Array

Rules at a Glance

Array must be a one-dimensional array.

The LastIndexOf method has the same syntax as the IndexOf method and works the same
way as IndexOf, except that it searches from the end of the array and returns the largest
index of a matching element.

By default, the LastIndexOf method searches for Value from the end to the beginning of
Array.

If startIndex is provided without count, LastIndexOf searches from startIndex to the
first element of Array.

If both startIndex and count are provided, the method searches count elements
backward starting at startIndex. In other words, it searches from array(startIndex)
to array(startIndex - count + 1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to array(startIndex - count + 1).

If startIndex is present and is outside of the range of the elements in array, the
method returns -1.

If count is present and startIndex < count - 1, the method call generates an
ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer

Dim a(100000) As Integer

For i = 0 To 99999

 a(i) = CInt(Rnd() * 100000)

Next

MsgBox(Array.LastIndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to
search. For example:

Array.LastIndexOf(array:=a, value:=136500, startIndex:=100, _

 count:=50)

See Also

Array.IndexOf Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.Reverse Method

Class

System.Array

Syntax

Array.Reverse(array[, startindex, endindex])

array (required; any array)

The array to be reversed

startIndex (optional; Integer)

The index at which to start the reversal process

endIndex (optional; Integer)

The index at which to end the reversal process

Return Value

None

Description

Reverses a portion of or all of the elements of an array

Example

Dim a() As Integer = {1, 2, 3, 4, 5}

Dim i As Integer

array.Reverse(a, 1, 3)

For i = 0 To 4

 debug.Write(a(i))

Next

This code prints the sequence 14325, which is the original array 12345 with the middle section
from index 1 to index 3 reversed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.Sort Method

Class

System.Array

Syntax

Array.Sort(array)

Array.Sort(array, comparer)

Array.Sort(array, index, length)

Array.Sort(array, index, length, comparer)

Array.Sort(keys, items)

Array.Sort(keys, items, comparer)

Array.Sort(keys, items, index, length)

Array.Sort(keys, items, index, length, comparer)

array (required; any array)

The array of objects to be sorted.

keys (required; any array)

The array of keys to use for sorting. This array is also sorted.

items (required; any array)

A parallel array of values to be sorted in the order of keys, their corresponding keys.

index (required; Integer)

The index at which to start the sort.

length (required; Integer)

The index at which to end the reversal process.

comparer (required; IComparer interface)

An object implementing the IComparer interface to be used for sorting. If Nothing, then
the IComparable implementation of each element (in the case of arrays of keys) or value
type (in the case of arrays).

Return Value

None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

Sorts a portion of, or sorts an entire one-dimensional array, with an optionally specified key array
and an optionally specified IComparer interface

Example

Sub sortArray()

Dim i As Integer

Dim intArray() As Integer = {9, 8, 12, 4, 5}

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

System.Array.Sort(intarray)

Console.WriteLine("Sorted:")

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

End Sub

The output is:

9

8

12

4

5

Sorted:

4

5

8

9

12

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asc, AscW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

Asc(string)

AscW(str)

string, str (required; String or Char)

Any expression that evaluates to a nonempty string

Return Value

An Integer that represents the character code of the first character of the string. The range for the returned
value is 0 - 255 on nonDBCS systems, and -32768 to 32767 on DBCS systems.

Description

Returns an Integer representing the character code for the first character of the string passed to it. All
other characters in the string are ignored

Rules at a Glance

The string expression passed to the function must contain at least one character or a runtime error
is generated.

Only the first character of the string is evaluated by Asc or AscW.

Example

Dim sChars As String

Dim iCharCode As Integer

sChars = TextBox1.Text

If Len(sChars) > 0 Then

 iCharCode = Asc(sChars)

 If iCharCode >= 97 And iChar <= 122 Then

 MsgBox "The first character must be uppercase"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox "The first character must be uppercase"

 End If

End If

Programming Tips and Gotchas

Check that the string you are passing to the function contains at least one character using the
function, as the following example shows:

If Len(sMyString) > 0 Then

 iCharCode = Asc(sMyString)

Else

 MsgBox("Cannot process a zero-length string")

End If

Use Asc within your data-validation routines to determine such conditions as whether the first
character is upper- or lowercase and whether it is alphabetic or numeric, as the following example
demonstrates:

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

Dim sTest As String

Dim iChar As Integer

sTest = TextBox1.Text

If Len(sTest) > 0 Then

 iChar = Asc(sTest)

 If iChar >= 65 And iChar <= 90 Then

 MsgBox "The first character is UPPERCASE"

 ElseIf iChar >= 97 And iChar <= 122 Then

 MsgBox "The first character is lowercase"

 Else

 MsgBox "The first character isn't alphabetical"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox "The first character isn't alphabetical"

 End If

Else

 MsgBox "Please enter something in the text box"

End If

End Sub

Use the Asc function and the related Chr function to create rudimentary encryption methods. Once
you have obtained the character code for a particular character, you can perform calculations on
this code to come up with a different number and then convert this to a character using the Chr
function. To decrypt your string, simply reverse the calculation. You may want to avoid character
codes less than 20, however, since these can be interpreted as special nonprinting characters and
cause undesirable effects if displayed or printed.

Private Sub CommandButton2_Click()

Dim MyEncryptedString, MyDecryptedString As String

Dim MyName As String = "Paul Lomax"

Dim i As Integer

For i = 1 To Len(MyName)

 MyEncryptedString = MyEncryptedString & _

 Chr(Asc(Mid(MyName, i, 1)) + 25)

Next i

MsgBox("Hello, my name is " & MyEncryptedString)

For i = 1 To Len(MyName)

 MyDecryptedString &= Chr(Asc(Mid(MyEncryptedString, i, 1)) - 25) Next i

MsgBox("Hello, my name is " & MyDecryptedString)

End Sub

See Also

Chr, ChrW Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AssemblyVersion Attribute

Class

System.Reflection.AssemblyVersionAttribute

Applies To

Assembly

Description

Specifies the version of the assembly. The version is represented as a four-part number, as
follows:

<major_version>.<minor_version>.<build_number>.<revision>

Ordinarily, the .NET runtime considers a difference in any one of these four-part numbers to
indicate a different version.

A wildcard indicates that an assembly can be used with clients requesting any value for the
wildcard elements. For example, if the version is set to 1.0.*, the assembly can be used for clients
requesting version 1.0.1681.0, 1.0.1723.0, and 1.0.1723.2.

In Visual Studio .NET, the <AssemblyVersion> attribute is automatically
added to the AssemblyInfo.vb file and its value is set to 1.0.*.

Constructor

New(version)

version (String)

The version of the assembly

Properties

Version (String)

Read-only. The version of the assembly. Its value is set by the required version parameter
of the attribute's class constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asin Function

Class

System.Math

Syntax

Math.Asin(d)

d (required; Double or any valid numeric expression)

A number representing a sine, which can range from -1 to 1

Return Value

A Double between -pi/2 and pi/2 that is the arcsine of d in radians

Description

Returns the arcsine of d, in radians

Rules at a Glance

If d is out of range, the function returns NaN.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB.NET/VB 6 Differences

The Asin function did not exist in VB 6.

See Also

Acos Function, Atan Function, Atan2 Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Atan Function

Class

System.Math

Syntax

Math.Atan(d)

d (required; Double or any valid numeric expression)

A number representing a tangent

Return Value

A Double that is the arctangent in radians of d, in the range -pi/2 to pi/2

Description

Takes the ratio of two sides of a right triangle (d) and returns the corresponding angle in radians.
The ratio is the length of the side opposite the angle divided by the length of the side adjacent to
the angle.

Rules at a Glance

If d is out of range, the function returns NaN.

This is a Shared member, so it can be used without creating any objects.

Example

Private Sub Main()

 Dim dblSideAdj As Double

 Dim dblSideOpp As Double

 Dim dblRatio As Double

 Dim dblAtangent As Double

 dblSideAdj = 50.25

 dblSideOpp = 75.5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dblRatio = dblSideOpp / dblSideAdj

 dblAtangent = Math.Atan(dblRatio)

 'convert from radians to degrees

 dblDegrees = dblAtangent * (180 / 3.142)

 MsgBox dblDegrees & " Degrees"

End Sub

Programming Tips and Gotchas

To convert radians to degrees, multiply radians by 180/pi.

Do not confuse Atan with the cotangent. Atan is the inverse trigonometric function of Tan,
whereas the cotangent is the reciprocal of the tangent.

VB.NET/VB 6 Differences

The Atan function corresponds to the VB 6 Atn intrinsic function.

See Also

Acos Function, Asin Function, Atan2 Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Atan2 Function

Class

System.Math

Syntax

Math.Atan2(y, x)

x (required; Double)

The x coordinate of a point

y (required; Double)

The y coordinate of a point

Return Value

A Double that is the arctangent of the ratio x/y, in radians

Description

Returns the angle in the Cartesian plane formed by the x-axis and a vector starting from the origin
(0,0) and terminating at the point (x, y). More specifically, the return value q satisfies the following:

For (x, y) in quadrant 1, 0 < q < pi/2.

For (x, y) in quadrant 2, pi /2 < q < pi.

For (x, y) in quadrant 3, -pi < q < -pi /2.

For (x, y) in quadrant 4, -pi /2 < q < 0.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Atan2 function does not exist in VB 6.

See Also

Acos Function, Asin Function, Atan Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AttributeUsage Attribute

Class

System.AttributeUsageAttribute

Applies to

Class

Description

Defines the program elements to which a custom attribute can be applied. Its use is required
when defining a custom attribute.

Constructor

New(validOn)

validOn (System.AttributeTargets)

Indicates the program elements to which a custom attribute can be applied. Possible
values are All, Assembly, Class, Constructor, Delegate, Enum, Event, Field,
Interface, Struct, Method, Module, Parameter, Property, and ReturnValue.

Properties

AllowMultiple (Boolean)

Indicates whether the attribute can be used more than once on a single program element.
Its default value is False.

Inherited (Boolean)

Indicates whether attribute is automatically inherited by derived classes and overridden
members. Its default value is True.

ValidOn (AttributeTargets enumeration)

Read-only. Indicates the program elements to which the attribute can be applied. Its value
is set by the required validon parameter of the class constructor.

Example

See Section 8.2 in Chapter 8 for more details and an example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beep Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

Beep

Description

Sounds a tone through the computer's speaker

Example

Private Sub Main()

 iVoid = DoSomeLongFunction()

 Beep

 MsgBox "Finished!"

End Sub

Programming Tips and Gotchas

We have found the Beep statement to be completely unreliable, and therefore we never
use it in applications intended for distribution.

If you do decide to use the Beep statement, please remember that its overuse will not
endear you to your users!

The frequency and duration of the tone depends on the computer's hardware. Bear in mind
that on some systems, a mouse click is louder than the beep!

Since the successful operation of the Beep statement does not require the presence of any
multimedia hardware (such as a sound card, for example), it can be used when a system is
not configured to support sound. For example, if the following is defined in the declarations
section of a code module:

Declare Function waveOutGetNumDevs Lib "winmm.dll" () As Long

Declare Function PlaySound Lib "winmm.dll" _

 Alias "PlaySoundA" (ByVal lpszName As String, _

 ByVal hModule As Long, ByVal dwFlags As Long) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal hModule As Long, ByVal dwFlags As Long) _

 As Long

Public Const SND_APPLICATION = &H80

Public Const SND_ASYNC = &H1

Public Const SND_FILENAME = &H20000

Public Const SND_NODEFAULT = &H2

Public HasSound As Boolean

Public Function IsSoundSupported() As Boolean

 If (waveOutGetNumDevs > 0) Then _

 IsSoundSupported = True

End Function

then the following procedure takes advantage of any existing sound hardware to play a
wave file or simply beeps the built-in PC speaker if no sound hardware is found.

Private Sub Form_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 Dim intCtr As Integer

 HasSound = IsSoundSupported()

 If HasSound Then

 Call PlaySound("c:\windows\media\tada.wav", 0, _

 SND_FILENAME Or SND_NODEFAULT)

 Else

 For intCtr = 0 To 3

 Beep

 Next

 End If

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call Statement

Syntax

[Call] procedurename[(argumentlist)]

procedurename (required; n/a)

The name of the subroutine being called

argumentlist (optional; any)

A comma-delimited list of arguments to pass to the subroutine being called

Description

Passes execution control to a procedure, function, or dynamic-link library (DLL) procedure or
function

Rules at a Glance

Use of the Call keyword is optional.

Regardless of whether the Call keyword is used, argumentlist, if it is present, must be
enclosed in parentheses.

If you use Call to call a function, the function's return value is discarded.

Example

Call myProcedure(True, iMyInt)

Sub myProcedure(blnFlag as Boolean, iNumber as Integer)

...

End Sub

Programming Tips and Gotchas

To pass a whole array to a procedure, use the array name followed by empty parentheses.

Some programmers suggest that code is more readable when the Call keyword is used to
call subroutines.

VB.NET/VB 6 Differences

In VB 6, parentheses had to be omitted if the Call keyword was omitted and
procedurename had more than one argument. In VB.NET, parentheses are required
whenever arguments are present.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB 6, if argumentlist consisted of a single argument, enclosing it in parentheses and
omitting the Call statement reversed the method by which the argument was passed to
the called function. Thus, an argument ordinarily called by value would be called by
reference, and vice versa. In VB.NET, this confusing behavior is not supported.

In VB 6, when calling an external routine defined using the Declare statement, you can
override the default method of passing an argument by specifying the ByVal or ByRef
keywords before the argument. In VB.NET you cannot change whether an argument is
passed by value or by reference in the call to the routine.

See Also

CallByName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CallByName Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

Yes, if Args() is omitted

Syntax

CallByName(Object, ProcName, UseCallType, Args())

Object (required; Object)

A reference to the object containing the procedure being called.

ProcName (required; String)

The name of the procedure to call.

UseCallType (required; CallType constant)

A constant of the type CallType indicating what type of procedure is being called.
CallType constants are listed in the following table.

Constant Value Description
Method 1 The called procedure is a method.

Get 2 The called procedure retrieves a property value.

Let 4 The called procedure sets the value of a property.

Args (optional; any)

A ParamArray argument representing the arguments required by the procedure being
called.

Return Value

Depends on the return value (if any) of the called procedure

Description

Provides a method for calling a class member by name.

Since ProcName is a string expression, rather than the literal name of a routine, it is possible to
call routines dynamically at runtime using a string variable to hold the various procedure names.

Rules at a Glance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The return type of CallByName is the return type of the called procedure.

ProcName is not case sensitive.

UseCallType can either be a numeric value or a constant of the CallType enumeration.
In the latter case, the enumeration name must be specified along with the constant name,
as in CallType.Method.

Args() must be a parameter array. A parameter array is an array used to contain
function, procedure, or property arguments that can have a variable number of elements.

Programming Tips and Gotchas

Since the member to be called is not known at compile time, the performance of
CallByName is inferior to calling members directly by literal name.

Using CallByName does not necessarily require that Option Strict be set Off.

Example

The following example uses a parameter array to call the Multiply method of a class named Math:

Imports Microsoft.VisualBasic

Imports System

Module modMain

Public Sub Main()

Dim oMath As New Math

Dim dArr() As Double = {1,2,3}

' Call using ParamArray

MsgBox(CallByName(oMath, "Multiply", CallType.Method, dArr))

End Sub

End Module

Public Class Math

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function Multiply(a() As Double) As Double

Dim result as double = 1.0

Dim intCtr As Integer

Dim intIndex As Integer = 0

for intIndex = 0 to ubound(a)

 result = result * a(intIndex)

next

Multiply = result

End Function

End Class

VB.NET/VB 6 Differences

In VB 6, you don't have to specify VbCallType as the name of the enumeration to access its
constants. In VB.NET, you must specify CallType as the name of the enumeration to access its
constants.

See Also

Call Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CBool Function

Named Arguments

No

Syntax

CBool(expression)

expression (required; String or Numeric)

Any numeric expression or a string representation of a numeric value

Return Value

expression converted to Boolean data type (True or False)

Description

Casts expression as a Boolean data type

Rules at a Glance

When a numeric value is converted to Boolean, any nonzero value is converted to True, and
zero is converted to False.

If the expression to be converted is a string, the string must be capable of being evaluated as a
number, or it must be "True" or "False". Any other string generates a runtime error. For
example, CBool("one") results in a type mismatch error, whereas CBool("1") is converted to
True, and CBool("True") is converted to True.

Programming Tips and Gotchas

You can check the validity of the expression prior to using the CBool function by using the
IsNumeric function.

Like most of the conversion functions, CBool is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CByte Function

Named Arguments

No

Syntax

CByte(expression)

expression (required; String or Numeric)

A string or numeric expression that evaluates to a number between 0 and 255

Return Value

expression converted to Byte data type

Description

Converts expression to a Byte data type

Rules at a Glance

If the expression to be converted is a string, the string must be capable of conversion to a
numeric expression; this can be checked using the IsNumeric function.

If expression evaluates to less than 0 or more than 255, a runtime error is generated.

If the value of expression is not a whole number, CByte rounds the number prior to
conversion.

Example

If IsNumeric(sMyNumber) Then

 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then

 BytMyNumber = CByte(sMyNumber)

 End If

End If

Programming Tips and Gotchas

Check that the value you pass to CByte is neither negative nor greater than 255.

Use IsNumeric to ensure that the value passed to CByte can be converted to a numeric
expression.

When using CByte to convert floating point numbers, fractional values up to but not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When using CByte to convert floating point numbers, fractional values up to but not
including .5 are rounded down, while values above but not including .5 are rounded up.
Values whose fractional component is exactly equal to .5 are rounded up if their integral
component is odd and down if their integral component is even.

The CByte function converts an expression to an unsigned byte data type. To convert
expression to a signed byte data type, create an instance of the SByte class and call its
Parse method.

Like most of the conversion functions, CByte is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CChar Function

Named Arguments

No

Syntax

CChar(expression)

expression (required; String)

Any string expression

Return Value

A value of type Char

Description

Converts the first character in a string expression to a Char data type

Rules at a Glance

CChar extracts the first character of expression and converts it to a Char data type.

Example

MsgBox(CChar("abc")) ' Displays a

MsgBox(CChar("56")) ' Displays 5

Programming Tips and Gotchas

If you wish to convert a numeric code to its corresponding Char data type, use the ChrW
function.

Like most of the conversion functions, CChar is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Chr, ChrW Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDate Function

Named Arguments

No

Syntax

CDate(expression)

expression (required; String or Numeric)

Any valid representation of a date and time

Return Value

expression converted into a Date data type

Description

Converts expression to a Date data type.

The format of expression — the order of day, month, and year — is determined by the locale
setting of the local computer. To be certain a date is recognized correctly by CDate, the month,
day, and year elements of expression must be in the same sequence as the local computer's
regional settings; otherwise, the CDate function has no idea, for example, that 4 was supposed to
be the fourth day of the month, not the month of April.

Rules at a Glance

You can use any of the date delimiters specified in your computer's regional settings; for
most systems, this includes ,, /, -, and .

The earliest date that can be handled by the Date data type is 01/01/100. The latest date
that can be handled by the Date data type is 12/31/9999.

Programming Tips and Gotchas

Use the IsDate function to determine if expression can be converted to a date or time.

If you pass an empty string to CDate, an error is generated.

A modicum of intelligence has been built into the CDate function. It can determine the day
and month from a string, regardless of their position in the string; this applies only where
the day number is larger than 12, which automatically distinguishes it from the number of
the month. For example, if the string "30/12/97" is passed into the CDate function on a
system expecting a date format of mm/dd/yy, CDate sees that 30 is too large to represent
a month and thus treats it as the day. This can lead to problems because if we accidentally
pass a string such as "30/12/97" instead of the intended "3/12/ 97," then VB does not issue
an error message!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we pass a string whose year specification is less than three characters in length, then VB
interprets the year as belonging to the twenty-first century. For instance, the string "1/1/1" is
interpreted as "1/1/2001."

If you do not specify a year, the CDate function uses the year from the current date on your
computer.

Like most conversion functions, CDate is not actually a function in the Microsoft.
VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDbl Function

Named Arguments

No

Syntax

CDbl(expression)

expression (required; Numeric or String)

-1.79769313486232E308 to -4.94065645841247E-324 for negative values, and
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Return Value

expression cast as a Double data type

Description

Converts expression to a Double data type

Rules at a Glance

If the value of expression is outside the range of the double data type, an overflow error
is generated.

expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

Example

Dim dblMyNumber as Double

If IsNumeric(sMyNumber) then

 dblMyNumber = CDbl(sMyNumber)

End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric value, the data type
conversion functions, such as CDbl, are preferable to the older function, Val. This is
because the data type conversion functions take account of the system's regional settings,
whereas Val recognizes only the period as a decimal separator. For example, if a user
inputs a value of 6,231,532.11, CDbl correctly converts it to a double with a value of
6231532.11, while Val returns a value of 6.

Use IsNumeric to test whether expression evaluates to a number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like most conversion functions, CDbl is not actually a function in the Microsoft. VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the
function call into inline code.

See Also

CSng Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDec Function

Named Arguments

No

Syntax

CDec(expression)

expression (required; Numeric or String)

The range is +/-79,228,162,514,264,337,593,543,950,335 for numbers with no decimal
places. The range is +/-7.9228162514264337593543950335 for numbers with up to 28
decimal places. The smallest possible nonzero number is
0.0000000000000000000000000001.

Return Value

expression cast as a Decimal type

Description

This function casts expression as a Decimal value.

Rules at a Glance

If the value of expression is outside the range of the Decimal data type, an overflow error
is generated.

expression must evaluate to a numeric value; otherwise a type-mismatch error is
generated. To prevent this, it can be tested beforehand with the IsNumeric function.

Example

Dim decMyNumber As Decimal

If IsNumeric(sMyNumber) then

 decMyNumber = CDec(sMyNumber)

End If

Programming Tips and Gotchas

The Decimal data type replaces the VB 6 Currency data type and is appropriate for very
large, very small, or very high precision numbers.

Use IsNumeric to test whether expression evaluates to a number.

When converting a string representation of a number to a numeric, you should use the data
type conversion functions — such as CDec — instead of Val, because the data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type conversion functions — such as CDec — instead of Val, because the data type
conversion functions take account of the system's regional settings. In particular, the CDec
function recognizes the thousands separator if it is encountered in the string representation
of a number. For example, if the user inputs the value 1,827,209.6654, CDec converts it to
the decimal value 1827209.6654, while Val converts it to a Double value of 1.

Like most of the conversion functions, CDec is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ceiling Function

Class

System.Math

Syntax

Math.Ceiling(a)

a (required; Double)

Return Value

A Double containing the smallest integer greater than or equal to the argument a

Description

Returns the smallest integer greater than or equal to the argument a

Example

Console.WriteLine(Math.Ceiling(12.1)) ' Returns 13

Console.WriteLine(Math.Ceiling(12.5)) ' Returns 13

Console.WriteLine(Math.Ceiling(-12.5)) ' Returns -12

Console.WriteLine(Math.Ceiling(-12.8)) ' Returns -12

Rules at a Glance

Because this function can accept only numeric values, you may want to check the value
you pass using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Ceiling function is new to the .NET Framework.

See Also

Floor Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

ChDir(path)

path (required; String)

The path of the directory to set as the new default directory

Description

Changes the current working (default) directory.

Rules at a Glance

path can be an absolute or relative reference.

Changing the default directory does not change the default drive; it only changes a
particular drive's default directory.

Example

ChDir("c:\program files\my folder\")

ChDir("..") 'c:\program files is now the default directory.

Programming Tips and Gotchas

The single dot (".") represents the current directory and the double dot ("..") represents
the parent of the current directory. If the root directory is the current directory, the
statement:

ChDir("..")

does not change the current directory and does not produce a syntax error.

If path is not found, or a FileNotFoundExeception exception, 76, "Path not found," is
generated. However, if path refers to another machine on the network, error 75, "Path/File
access error," is generated.

Although you can use a network path such as \\NTSERV1\d$\TestDir\ to change the
current directory on the network admin share \\NTSERV1\d$, you can't access this drive
using ChDrive without having the drive mapped to a drive letter, which makes using
network paths with ChDir a little pointless!

Use CurDir to determine the current directory for a particular drive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB.NET/VB 6 Differences

In VB.NET, ChDir is implemented as a procedure (a method of the FileSystem class). In VB 6, it
is implemented as a statement. As a result, the VB.NET version requires parentheses around the
path argument.

See Also

ChDrive Procedure, CurDir Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChDrive Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

ChDrive(drive)

drive (required; String or Char)

The letter of the drive (A-Z) to set as the new default drive

Description

Changes the current working (default) disk drive

Rules at a Glance

If a zero-length string is supplied, the drive is not changed.

If driveletter consists of more than one character, only the first character is used to
determine the drive.

Example

The following example demonstrates a utility function that uses ChDrive to determine if a given
drive is available. By centralizing the test, this reduces the amount of coding required each time
you need to use ChDrive.

Private Function IsAvailableDrive(sDrive As String) _

 As Boolean

 'if an error occurs goto to the next line of code

 On Error Resume Next

 Dim sCurDrv As String

 'get the letter of the current drive

 sCurDrv = Left$(CurDir, 1)

 'attempt to change the drive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'attempt to change the drive

 ChDrive(sDrive)

 'did an error occur?

 If Err.Number = 0 Then

 'no - this drive is OK to use

 IsAvailableDrive = True

 Else

 'yes - don't use this drive

 IsAvailableDrive = False

 End If

 'set the drive back to what it was

 ChDrive(sCurDrv)

End Function

The following code snippet shows how this function could be implemented within your application:

 If IsAvailableDrive(sDrv) Then

 ChDrive(sDrv)

 Else

 MsgBox ("Cannot use Drive " & sDrv & ":\")

 End If

Programming Tips and Gotchas

The current directory is unaffected by the ChDrive procedure.

Since ChDrive only processes the first letter of the drive string, it's not possible to supply
a piped name as a network drive name (for example, \\NTServer\). Instead, the machine on
which your program runs must have a drive letter mapped to the network resource using
Explorer or other network commands. If drive is specified as a UNC path, the function
raises error number 5, "Invalid procedure call or argument," or generates an
ArgumentException exception.

If drive is invalid, the function returns error number 68, "Device unavailable," or generates
an IOException exception.

To determine which drive is current, call the CurDir function with no arguments. Then use
the Left function to extract its first character, as the following code fragment illustrates:

Dim sDrive As String = Left(CurDir(), 1)

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, ChDrive is implemented as a procedure (a method of the FileSystem class). In VB 6,
it is implemented as a statement. As a result, the VB.NET version requires parentheses around
the drive argument.

See Also

ChDrive Procedure, CurDir Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Choose Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax

Choose(index, item_1[,item_2, ...[, item_n]])

index (required; Single)

An expression that evaluates to the (1-based) index of the object to choose from the list

item_1-item_n (required; any)

A comma-delimited list of values from which to choose, or a ParamArray containing values
from which to choose

Return Value

The object chosen from the list.

Description

Programmatically selects an object from a predefined list of objects (which are passed as
parameters to the function) based on its ordinal position in the list. Using Choose is a simpler
alternative to populating an array with fixed values.

Rules at a Glance

The list of items is based from 1, rather than the more usual VB default base of 0.

Because the list consists of objects, you can mix data types within the list; you are not
forced to use the same data type for each item in the list. For example, item_1 can be a
string, while item_2 can be a long integer, and item_3 can be a floating point number.

If the rounded value of index does not correspond to an item in the list, the function
returns a null string.

Programming Tips and Gotchas

If index is not a whole number, it is rounded before being used.

It is important to note that all items in the list are evaluated. Thus, if we use functions or
expressions as parameters, all of the functions are called or all of the expressions are
evaluated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By providing item_1 through item_n in the form of a ParamArray, the list of values can
be expanded or contracted programmatically at runtime.

You can save memory and create more efficient and self-documenting code by using the
Choose function instead of creating an array and populating it with fixed values each time
the program executes. As the following example illustrates, you can turn several lines of
code into one:

Dim vMyArray(3)

vMyArray(1) = "This"

vMyarray(2) = "That"

vMyArray(3) = "The Other"

...

Sub chooseFromArray(iIndex as Integer)

 vResult = vMyArray(iIndex)

End Sub

Sub chooseFromChoose(sglIndex as Single)

 vResult = Choose(sglIndex, "This", "That", "The Other")

End Sub

VB.NET/VB 6 Differences

In VB 6, item_1 through item_n must only take the form of a comma-delimited list. In
VB.NET, these arguments can also take the form of an array. This allows the list of choices
to be modified dynamically at runtime.

In VB 6, idx must be greater than .5 and less than .5 plus the number of items in the list,
or a runtime error results. In VB.NET, if idx is out of range, the function returns a null
string.

See Also

Switch Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chr, ChrW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

Chr(charcode)

ChrW(charcode)

charcode (required; Integer)

An expression that evaluates to a Unicode character code

Return Value

A Char that contains the character represented by charcode

Description

Returns the character represented by the charcode

Programming Tips and Gotchas

Use Chr(34) to embed quotation marks inside a string, as shown in the following
example:

sSQL = "SELECT * FROM myTable _

 where myColumn = " & Chr(34) & sValue & Chr(34)

The following table lists some of the more commonly used character codes that are
supplied in the call to the Chr function:

Code Constant Description

0 vbNullChar For C/C++ string functions, the null character required to terminate
standard strings

8 vbBack A backspace character

9 vbTab A tab character

10 vbLf A linefeed character

13 vbCr A carriage return character

34 ControlChars.Quote A quotation mark

VB.NET/VB 6 Differences

The ChrB function is no longer supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VB 6 version of the Chr function returns a String; the VB.NET version returns a Char.

See Also

Asc, AscW Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CInt Function

Named Arguments

No

Syntax

CInt(expression)

expression (required; Numeric or String)

The range of expression is -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value

expression cast as an Integer

Description

Converts expression to an Integer; any fractional portion of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expression is outside the range of the Integer data type, an overflow error
is generated.

When the fractional part of expression is exactly .5, CInt always rounds it to the nearest
even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim iMyNumber as Integer

If IsNumeric(sMyNumber) then

 iMyNumber = CInt(sMyNumber)

End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric data type, you should
use the data type conversion functions — such as CInt — instead of Val, because the data
type conversion functions take into account the system's regional settings. In particular,
CInt recognizes the thousands separator if it's present in expression, whereas Val does
not. For example, if expression is 1,234, then CInt successfully converts it to the integer
value 1234, while Val converts it to 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use IsNumeric to test whether expression evaluates to a number before performing the
conversion.

CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same type of value as was passed in.

CInt converts an expression to a signed 32-bit integer. To convert an expression to an
unsigned 32-bit integer, create an instance of the UInt32 structure, and call its Parse
method.

Like most of the conversion functions, CInt is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB.NET/VB 6 Differences

The VB.NET CInt function actually corresponds to the VB 6 CLng function, since both return 32-
bit integers.

See Also

CLng Function, CShort Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class Statement

Syntax

[accessmodifier] [Shadows] [inheritability] Class Name

 statements

End Class

accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, and Friend. For more
information, see Section 4.7 in Chapter 4.

Shadows (optional; Keyword)

Indicates that the Name class shadows any element of this same name in a base class.

inheritability (optional; Keyword)

One of the keywords, MustInherit or NotInheritable, must be used. MustInherit
specifies that objects of this class cannot be created, but that objects of derived classes
can be created. NotInheritable specifies that this class cannot be used as a base
class.

Name (required; String literal)

The name of the class.

Description

Defines a class and delimits the statements that define that class' variables, properties, and
methods. For a detailed discussion with examples, see Chapter 4.

Rules at a Glance

If the Inherits or Implements statements appear in a class module, they must appear
before any other statements in the module. Moreover, the Inherits keyword must appear
before the Implements keyword.

Name follows standard Visual Basic variable-naming conventions.

Within a class code block, members are declared as Public, Private, Protected,
Friend, or Protected Friend. The Dim keyword is equivalent to Private when used
in class modules (but it is equivalent to Public in structures). Property declarations are
automatically Public.

The Class...End Class construct can include the following elements:

Private variable or procedure declarations

These items are accessible within the class, but do not have scope outside of the
class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public variable or procedure declarations

Public variables are public properties of the class; Public procedures are public
methods of the class.

Property declarations

These are the public properties of the class. Default properties can be declared by
using the Default keyword.

To define a custom constructor within a class module, define a subroutine called New. Note
that the New subroutine (like any other procedure) can be overloaded.

To define a destructor within a class module, define a function called Destruct. Destructors
cannot be overloaded.

To create an object of a class, use syntax such as:

Dim oObj As CClass

oObj = New CClass(arguments_for_constructor)

or:

Dim oObj = New CClass(arguments_for_constructor)

or:

Dim oObj As CClass = New CClass(arguments_for_constructor)

The Shadows keyword has the following meaning: If this class is derived from a base class
and if Name is used in the base class as the name of any element type (property, method,
constant, enum, etc.), then any use of Name in classes derived from the class Name refers
to the Name class rather than the Name element in the base class. For more on shadowing,
see Chapter 4.

Programming Tips and Gotchas

A property defined as a simple public variable cannot be designated the class' default
member.

According to accepted object-oriented programming practices, public properties should be
defined using the Property statement, since this allows the value of a property to be
modified in a controlled and predictable way. It allows you to validate data and allows your
program to know when a property value is being changed. Because this is not possible
using simple public variables, defining a public variable that is accessible outside of the
class is considered poor programming practice.

The Me or MyClass keywords can be used within the Class...End Class construct to
reference the class.

VB.NET/VB 6 Differences

The Class...End Class construct is new to VB.NET. In VB 6, each class was defined in its
own class module, which corresponded to a separate CLS file.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Statement, Structure...End Structure Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard Class

Namespace

System.Windows.Forms

Createable

No

Description

The Clipboard object represents the Windows Clipboard, an object that allows data to be shared
across processes. The members of the Clipboard class allow data to be placed in and retrieved
from the Clipboard.

The Clipboard object can be created as follows:

Dim obj As Clipboard

However, because the Clipboard object's members are shared, you do not need to instantiate the
Clipboard object to access its properties and methods. Hence, you can place data on the
Clipboard, for instance, with the following code fragment:

Clipboard.SetDataObject(strData)

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Methods

GetDataObject +
SetDataObject +

See Also

Clipboard.GetDataObject Method, Clipboard.SetDataObject Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard.GetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax

Clipboard.GetDataObject()

Return value

An IDataObject object that represents the data currently on the clipboard

Description

Retrieves data from the Clipboard

Rules at a Glance

If the Clipboard contains no data, the GetDataObject method returns Nothing.

Once you have an IDataObject object, you can use the members of the IDataObject
class to get information about the Clipboard data, as shown in the following example. The
relevant IDataObject members for Clipboard manipulation in VB are GetData,
GetDataPresent, and GetFormats.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject

Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

' Fire GetData method of IDataObject object to get clipboard data

obj = di.GetData(DataFormats.Text, False)

' Show the text, if any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Show the text, if any

If obj Is Nothing Then

 MsgBox("No text on clipboard.")

Else

 MsgBox(CStr(obj))

End If

VB.NET/VB 6 Differences

While the .NET Base Class Library uses the GetDataObject method to retrieve all data from the
Clipboard, the Clipboard object in VB 6 included the GetFormat, GetData, and GetText methods
to retrieve Clipboard data.

See Also

Clipboard Class, Clipboard.SetDataObject Method, IDataObject Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard.SetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax

SetDataObject(data)

data (required; any)

Data to place on the Clipboard

Description

Places data on the Clipboard

Example

The following example places text on the clipboard:

Dim s As String = "donna"

clipboard.SetDataObject(s)

VB.NET/VB 6 Differences

While the .NET Base Class Library uses the SetDataObject method to place all data on the
Clipboard, the Clipboard object in VB 6 includes two methods, SetData and SetText, depending
on the format of the data to be placed on the Clipboard.

See Also

Clipboard Class, Clipboard.GetDataObject Method, IDataObject Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLng Function

Named Arguments

No

Syntax

CLng(expression)

expression (required; Numeric or String)

Ranges from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807; fractions are
rounded.

Return Value

expression cast as a Long data type

Description

Converts expression to a long integer; any fractional element of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expression is outside the range of the Long data type, an overflow error is
generated.

When the fractional part is exactly .5, CLng always rounds it to the nearest even number.
For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim lngMyNumber as Long

If IsNumeric(sMyNumber) then

 lngMyNumber = CLng(sMyNumber)

End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric, you should use the data
type conversion functions — such as CLng — instead of Val, because the data type
conversion function takes into account the system's regional settings. In particular, CLng is
able to recognize the thousands separator if it's included in expression, while Val cannot.
For example, if a user enters a value of 1,098,234 into a textbox, CLng converts it to the
long integer 1098234, but Val converts it to a value of 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use IsNumeric to test whether expression evaluates to a number.

CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same type of value as was passed in.

CLng converts an expression to a signed long integer. To convert an expression to an
unsigned long integer, create an instance of the UInt64 structure and call its Parse method.

Like most of the conversion functions, CLng is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB.NET/VB 6 Differences

The VB.NET CLng function returns a 64-bit integer, whereas the VB 6 CLng function returns a 32-
bit integer.

See Also

CInt Function, CShort Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLSCompliant Attribute

Class

System.CLSCompliantAttribute

Applies to

All

Description

Indicates whether the program element compiles with the Common Language Specification. If the
CLSCompliant attribute is not present, the VB.NET compiler does not enforce CLS compliance.
This can prevent other languages from successfully accessing components written in VB.NET.

If a particular program element is marked as CLS-compliant, it is assumed that all contained
program elements are CLS-compliant as well unless they are explicitly marked otherwise.

By default, Visual Studio adds the <CLSCompliant> attribute to the AssemblyInfo.vb file and
sets its value to True.

Constructor

New(isCompliant)

isCompliant (Boolean)

Indicates whether the program element must be CLS-compliant

Property

IsCompliant (Boolean)

Read-only. Indicates whether the program element must be CLS-compliant. Its value is set
by the required isCompliant parameter of the class constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CObj Function

Named Arguments

No

Syntax

CObj(expression)

expression (required; any)

Return Value

expression cast as an Object data type

Description

Converts any expression that can be interpreted as an object to Object

Rules at a Glance

expression can be any data type, including a strongly typed object, as the following code
fragment illustrates:

Dim oSomeClass As New CSomeClass

Dim oObj As Object

oObj = CObj(oSomeClass)

Example

The following code:

Dim obj As Object

obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

Programming Tips and Gotchas

The operation of the CObj function is possible because all VB.NET data types are either
structures or objects.

Once a data type is converted to type Object, you can display its value by calling its
ToString method, as in the following code fragment:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim bFlag As Boolean = True

oObj = CObj(bFlag)

MsgBox(oObj.ToString)

Instead of using the CObj function to convert a strongly typed object to a generic Object
data type, you can also use simple assignment, as the following code fragment illustrates:

Dim oSomeClass As New CSomeClass

Dim oObj As Object

oObj = oSomeClass

Like most of the conversion functions, CObj is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB.NET/VB 6 Differences

The CObj function is new to VB.NET. The closest equivalent in VB 6 is CVar, which converts a
data type to a Variant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection Class

Namespace

Microsoft.VisualBasic

Createable

Yes

Syntax

Dim objectvariable As [New] Collection

objectvariable (required; Collection)

The name of the Collection object

Description

A Collection object allows you to store members of any data type, including object data types or
even other collection objects, and to retrieve them using a unique key.

Collection objects allow us to create a form of associative array, which is an array whose
members are indexed by something more meaningful than an integer. The real power of a
collection comes by using collections with class objects. The Collection object is discussed in
more detail in Chapter 3.

Collection objects are created in exactly the same way as other objects, as in:

Dim obj As New Collection

or:

Dim obj As Collection

obj = New Collection

In the former syntax, the Collection object is created at the time that the obj variable is declared,
which may be sooner than you actually need the Collection object. The latter syntax gives you
more control over the creation process.

Rules at a Glance

You can use a Collection object to store data of any data type, including object types and
even other Collection objects.

The Add method of the Collection object is used to add items to the collection (see the
Collection.Add entry).

Members of a collection can be accessed using either their ordinal number or their key,
assuming that one was assigned at the time that the member was added to the collection
(see the Collection.Item entry).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first member in a collection is stored at ordinal position 1 (not at 0, as with arrays).

The Count method returns the number of members in the collection (see the
Collection.Count entry).

The Remove method removes items from a collection (see the Collection.Remove entry).

Example

This example shows how you can nest one collection within another collection. We create 10
instances of colSubCollection, each containing two integer values. These
colSubCollection objects are stored in the collection named colMainCollection. The
code also shows how to read the values of colMainCollection and colSubCollection:

Sub testCollection()

 'declare objects for the main and sub collections

 'creating a new instance of the main collection

 'in the process

 Dim colMainCollection As New Collection

 Dim colSubCollection As Collection

 Dim i As Integer

 For i = 1 To 10

 'create a new instance of the sub collection object

 colSubCollection = New Collection

 'populate the sub collection with two integer values

 colSubCollection.Add(Item:=i + 6, _

 Key:="MySixPlusVal")

 colSubCollection.Add(Item:=i + 3, _

 Key:="MyThreePlusVal")

 'now add the sub collection to the main collection

 'using the count converted to a string as the key

 colMainCollection.Add(Item:=colSubCollection, _

 Key:=CStr(i))

 'destroy the reference the sub collection

 colSubCollection = Nothing

 Next i

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next i

 MsgBox(colMainCollection.Count)

 For i = 1 To colMainCollection.Count

 'use the Item method to obtain a reference to the

 'subcollection

 colSubCollection = _

 colMainCollection.Item(CStr(i))

 'display the values held in the sub collection.

 Console.WriteLine("6 + " & i & " = " & _

 colSubCollection.Item("MySixPlusVal"))

 Console.WriteLine("3 + " & i & " = " & _

 colSubCollection.Item("MyThreePlusVal"))

 'destroy the reference to the sub collection

 colSubCollection = Nothing

 Next i

End Sub

Programming Tips and Gotchas

A highly efficient method of enumerating the members of a collection is to use the For
Each...Next loop, as the following example shows:

Dim colMyCollection As New Collection

Dim colSubCollection As Collection

For i = 1 To 10

 Set colSubCollection = New Collection

 colSubCollection.Add Item:=i + 6, _

 Key:="MySixPlusVal"

 colSubCollection.Add Item:=i + 3, _

 Key:="MyThreePlusVal"

 colMyCollection.Add Item:=colSubCollection, _

 Key:=CStr(i)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Key:=CStr(i)

 Set colSubCollection = Nothing

Next i

For Each colSubCollection In colMyCollection

 MsgBox colSubCollection.Item("MySixPlusVal")

Next

Interestingly, although most Visual Basic data types are merely wrappers for data types in
the Base Class Library, the Collection object is a "native" VB data type that's derived from
System.Object and implements the ICollection, IEnumerable, and IList interfaces.
This can be seen from the following code fragment:

Dim oColl As New Collection

Dim oType As Type, oInt As Type

oType = oColl.GetType()

Console.WriteLine("Type: " & oType.ToString)

Console.WriteLine("Base Type: " & oType.BaseType.ToString)

Dim oTypes() As Type = oType.GetInterfaces

For Each oInt in oTypes

 Console.WriteLine("Interface: " & oInt.ToString)

Next

See Also

Collection.Add Method, Collection.Count Property, Collection.Item Method, Collection.Remove
Method, Hashtable Class, Queue Class, Stack Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection.Add Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Add item [, key, before, after]

objectvariable (required; Collection Object)

The name of the Collection object to which an item is to be added

item (required; Object)

An object of any type that specifies the member to add to the collection

key (optional; String)

A unique string expression that specifies a key string that can be used, instead of a
positional index, to access a member of the collection

before (optional; Object)

The member to be added placed in the collection before the member identified by the
before argument (more on this in Section)

after (optional; Object)

The member to be added placed in the collection after the member identified by the after
argument (more on this in Section)

Description

Adds an object to a collection

Rules at a Glance

If you do not specify a before or after value, the member is appended to the end of the
collection (in index order).

If you do not specify a key value, you cannot access this member using a key, but instead
must access it either by using its ordinal number or by enumerating all the members of the
collection with the For Each...Next construct. Thus, keys are highly recommended.

The before or after argument can refer to an index or a key. For instance, consider the
following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim c As New Collection()

c.Add("donna", "111")

c.Add("steve", "222")

'c.Add("bill", "333", "222")

'c.Add("bill", "333", 2)

MsgBox(c.Item(2))

Both of the commented lines of code adds the item "bill" between "donna" and "steve." The
first line uses the key to specify the before object, and the second line specifies the
ordinal position of the before object.

Key values must be unique or an error (runtime error 457, "This key is already associated
with an element of this collection") is generated.

You can specify a before or after position, but not both.

Example

colComposers.Add(Item:="Ludwig von Beethoven" _

 Key:="Beethoven")

Programming Tips and Gotchas

Using named parameters helps to self-document your code:

colMyCollection.Add Item:="VB.NET Language in a Nutshell" _

 Key:="Title"

If your key parameter is a value being brought in from outside your program, you must
ensure that each value is always unique. One method for doing this is illustrated in the
entry for the Collection.Item Method.

See Also

Collection Class, Collection.Count Property, Collection.Item Method, Collection.Remove Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection.Count Property

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Count

objectvariable (required; Collection Object)

Object variable referring to a Collection object

Description

Returns an Integer containing the number of members in the collection

Rules at a Glance

Collections are 1-based; that is, the index of the first element of a collection is 1. In contrast,
arrays are 0-based; the index of the first element of an array is 0.

Example

For i = 1 To colMyCollection.Count

 Set colSubCollection = colMyCollection.Item(CStr(i))

 MsgBox colSubCollection.Item("Name")

 Set colSubCollection = Nothing

Next i

Programming Tips and Gotchas

Because collections are 1-based, you can iterate the members of a collection by using index
values ranging from 1 to the value of objectvariable.Count.

See Also

Collection Class, Collection.Add Method, Collection.Item Method, Collection.Remove Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection.Item Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Item(index)

objectvariable (required; Collection Object)

An object variable of type Collection

index (required; Integer or String)

Either the index (the ordinal position) of the object in the collection, or the unique key name
belonging to the object

Description

Returns the member of the collection for the specified key or ordinal position

Programming Tips and Gotchas

When writing wrapper classes for collections, you can make your object model more
readable by making the name of the property that wraps the Item method the same as the
name of the object obtained from the collection. For example, if your collection class is
called Employees and is a collection of Employee records, your object model reads much
better to have an Employee Property procedure, as follows:

Public Property Employee(vKey as Object) As Boolean

 Get

 Employee = mcolEmployees.Item(vKey)

 End Get

. . .

End Property

Note that in the previous Property procedure, the parameter is passed as an object so that
the argument can be either a string (the item's key) or an integer (the item's ordinal
position).

There is no Exists method in the Collection object, so you cannot find out in advance if a
particular key exists within the collection. However, you can create an Exists function by
calling the Item method with a given key and returning an appropriate value based on
whether an error occurred, as the following code shows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function Exists(ByVal oKey As Object) As Boolean

 Try

 moValue = mCollection.Item(oKey)

 Exists = True

 Catch e As NullReferenceException

 Exists = False

 End Try

End Function

The Item method is the default member of the Collection object, and since it is
parameterized, we do not need to include an explicit call to the Item method. The following
two statements, for example, are identical to one another:

set objMember = objCollection.Item(6)

set objMember = objCollection(6)

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Remove Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection.Remove Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Remove (index)

or:

objectvariable.Remove (key)

objectvariable (required; Collection Object)

An object variable of the Collection type

index (required; Integer)

The ordinal position of the item to remove

key (required; String)

The key of the item to remove

Description

Removes a member from a collection

Example

colMyCollection.Remove ("Name")

Programming Tips and Gotchas

Members of the collection that follow the removed member are automatically moved
downward by one ordinal position; therefore, no gaps are left in the collection.

Because the collection is reindexed after each deletion, you should be sure not to delete a
member of the collection based on a stored numeric value of index, since this value could
change. Instead, you should either delete the member by key or retrieve the index value
just before calling the Remove method.

If you are deleting multiple members of a collection by numeric index value, you should
delete them backwards — from highest index value to lowest — because the collection is
reindexed after each deletion.

If you are using a collection as the basis for a class module, or if you are using functions in
your application to wrap and enhance the limited functionality of a collection, you can
include a Clear method to remove all the members in your collection. The method should
be written to remove the member in position 1 until no members are left, as the following
code demonstrates:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Clear()

 Dim i As Integer

 For i = 1 To mcolMyCollection.Count

 mcolMyCollection.Remove(1)

 Next i

End Sub

Alternately, you could do the same thing by working from the end of the collection forward,
as the following code illustrates:

Dim intCtr As Integer

For intCtr = objCollec.Count To 1 Step -1

 objCollec.Remove(intCtr)

Next

When using named arguments, providing an index value with the key:= keyword or
providing a key name with the index:= keyword generates a runtime error.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Item Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ColorDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting a color.

The ColorDialog object has properties for setting the initial appearance and functionality of the
color dialog box, a property for returning the color selected by the user, and a method for showing
the dialog box.

Selected ColorDialog Members

The following provides a brief description of the more important members of the ColorDialog
class:

AllowFullOpen property

Returns or sets a Boolean value indicating whether the user can use the dialog box to
define custom colors. The default is True.

AnyColor property

Returns or sets a Boolean value indicating whether the dialog box displays all available
colors, although in Beta 2 of VB.NET, this property seems to have no effect. The default is
False.

Color property

Returns an instance of a Color structure, which contains information about the color
selected by the user. The Color structure, which is a type belonging to the System.Drawing
namespace, has a number of members, including:

Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip,
MistyRose, and MediumSeagreen. These properties return a Color structure.

The Name property, which returns the name of the color, or its ARGB value for
custom colors. (The A component is the alpha component of the color, which
determines the color's opacity.)

The R property, G property, and B property, which return a byte specifying the red,
green, or blue color component of the RGB color value, respectively.

The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give
information about the color.

CustomColors property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Represents an array of Integers used to set or return the set of custom colors that will be
shown in the ColorDialog dialog box.

FullOpen property

Represents a Boolean property that sets or retrieves the value indicating whether the
dialog box is opened with the controls used to create custom visible controls. (The default
is False, but the user can always click the Custom Colors button to display the custom
colors controls.)

Reset method

Resets the dialog box by setting all options and custom colors to their default values and
setting the selected color to black.

SolidColorOnly property

For systems displaying 256 colors or less, if this property is set to True, restricts the dialog
box to solid colors only, that is, to colors that are not composites of other colors.

VB.NET/VB 6 Differences

While the ColorDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces
are almost completely different.

Example

The following code asks the user for a color and displays that color:

Dim cd As New ColorDialog()

Dim c As New Color()

If cd.ShowDialog() = DialogResult.OK Then

 Console.WriteLine(cd.Color.ToString)

 Console.WriteLine(cd.Color.Name)

Else

 Console.WriteLine("No color chosen")

End If

Note the use of the DialogResult enumeration to check user action on the dialog box. Here is
the precise output if red is selected:

Color [Alpha=255, Red=255, Green=0, Blue=0]

ffff0000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMClass Attribute

Class

Microsoft.VisualBasic.COMClassAttribute

Applies to

Class

Description

Adds metadata that allows a .NET class to be exposed as a COM object. You can supply the
attribute with a class identifier, an interface identifier, and an event identifier. All are globally
unique identifiers (GUIDs) that can be generated either by using the guidgen.exe utility or
automatically by using the COM Class Wizard. They ensure that the COM component retains the
same GUIDs when it is recompiled.

Constructor

New([[[classID], interfaceID], eventID])

classID (String)

The class identifier (CLSID) that will uniquely identify the COM class

interfaceID (String)

The interface identifier (IID) that uniquely identifies the class' default COM interface

eventID (String)

The event identifier that uniquely identifies an event

Properties

ClassID (String)

Read-only. Provides the class identifier (CLSID) that uniquely identifies a COM class. Its
value is set by the classID parameter of the class constructor.

EventID (String)

Read-only. Provides the GUID that uniquely identifies an event. Its value is set by the
eventID parameter of the class constructor.

InterfaceID (String)

Read-only. Provides the interface identifier (IID) that uniquely identifies a COM interface. Its
value is set by the interfaceID parameter of the class constructor.

InterfaceShadows (Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Indicates whether the COM interface name is the same as the name of another member of
the class or the base class. Its default value is False.

Example

The example defines a simple class named CContact that includes the <ComClass> attribute.
Note that the GUIDs are in standard registry format except for the beginning and closing brace.

<ComClass(CContact.ClassID, CContact.InterfaceID, CContact.EventID), _

Description("COM Contact Class")> Public Class CContact

Friend Const ClassID As String = _

 "C7BA6669-DCFB-43d6-9A74-B1BCC6EE467B"

Friend Const InterfaceID As String = _

 "72663B50-6A44-46e7-83B6-F1A4F149FF5F"

Friend Const EventID As String = _

 "BD2C0D5E-C0D7-4e1e-A9E8-AD29C8003D4B"

Private sName As String

Private sCity, sState, sZip As String

Public Property Name() As String

Get

 Return sName

End Get

Set(ByVal Value As String)

 sName = Value

End Set

End Property

Public Sub New()

 MyBase.New()

End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Command()

Return Value

A String containing the command-line arguments

Description

Returns the arguments used when launching VB or an application created with VB

Rules at a Glance

For applications created with VB and compiled into an EXE, Command returns a string
containing everything entered after the executable filename.

If the executable has been launched with no command-line arguments, Command returns
a null string.

Programming Tips and Gotchas

Once you've used the Command function to retrieve the command-line arguments, you still
have to parse the string it returns. This should be as simple as a call to the Split function,
as shown in the following code fragment:

Dim sCmdLineStr, sCmdLine() As String

sCmdLineStr = Command()

If Not sCmdLineStr = "" Then

 sCmdLine = Split(Command, " ")

End If

Instead of calling the Command function, you may find it easier to use the shared
GetCommandLineArgs method of the System.Environment class. It returns a string array
whose first element is the program name and whose remaining elements are the
command-line arguments. The following code fragment determines whether any command-
line arguments are present:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim sArgs() As String = System.Environment.GetCommandLineArgs()

If sArgs.Length > 1 Then

 ' handle the command line arguments

End If

Example

The following example demonstrates how to parse command-line arguments to set up a series of
options in your executable. This example (which is bereft of all error handling) looks for a hyphen
or a forward slash in the command-line arguments and assumes that the character following it is a
command-line switch. Given the command-line arguments:

-d:50 -f -g -k

the program displays the following in the Immediate window:

Got option d

Option d Parameter = 50

Got option f

Got option g

Got option k

The source code is as follows:

Private Sub ParseCommandLine()

 Dim i As Integer

 Dim s, sChar, sParam As String

 Dim sPattern As String = "[-/]"

 For i = 1 To Len(Command)

 sChar = mid(Command, i, 1)

 If sChar = "-" or sChar = "/" Then

 s = Mid(Command, i + 1, 1)

 Select Case s

 Case "d"

 Console.WriteLine("Got option d")

 sParam = Mid(Command, i + 3, 2)

 Console.WriteLine("Option d Parameter = " & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console.WriteLine("Option d Parameter = " & _

 sParam)

 Case "f"

 Console.WriteLine("Got option f")

 Case "g"

 Console.WriteLine("Got option g")

 Case "k"

 Console.WriteLine("Got option k")

 Case "l"

 Console.WriteLine("Got option l")

 End Select

 End If

 Next I

End Sub

Programming Tips and Gotchas

During the development phase, you can pass arguments to your program using the
Command Line Arguments textbox, which can be found on the Property Pages dialog box
for the project (right-click the project name in the Solution Explorer window). In particular,
the textbox is found under Start Options in the Debugging subnode of the Configuration
Properties node.

To handle command-line arguments, you must write a routine similar to the one shown
earlier to parse the string returned by Command, since the function only returns a single
string containing all input after the name of the executable file.

Command-line arguments are ideal for specifying various options on unattended
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Const Statement

Syntax

[accessmodifier] Const constantname [As type] = constantvalue

accessmodifier (optional; Keyword)

One of the keywords Public, Private, Protected, Friend, or Protected Friend.
For more information, see Section 4.7 in Chapter 4.

constantname (required; String literal)

The name of the constant.

type (optional; Keyword)

The data type; it can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, or String, as well as any of the data types defined in the Base
Class Library.

constantvalue (required; Numeric or String)

A literal, constant, or any combination of literals and constants that includes arithmetic or
logical operators, except Is.

Description

Associates a constant value with a name. This feature is provided to make code more readable.
The name is referred to as a symbolic constant.

Rules at a Glance

The rules for constantname are the same for those of any variable: the name can be up
to 255 characters in length and can contain any alphanumeric character, although it must
start with an alphabetic character. In addition, the name can include almost any other
character except a period or any of the data type definition characters ($, &, %, !).

The constantvalue expression cannot include any of the built-in functions or objects,
although it can be a combination of absolute values and operators. The expression can
also include previously defined constants. For example:

Private Const CONST_ONE = 1

Private Const CONST_TWO = 2

Private Const CONST_THREE = CONST_ONE + CONST_TWO

Scoping rules are the same as for variables. For more on scope, see Chapter 4.

If Option Strict is on, the data type of the constant must be defined by using the As
type clause.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Const MY_CONSTANT = 3.1417

Programming Tips and Gotchas

Your code may be more readable if you take advantage of the fact that VB allows lengthy
constant (and variable) names. This allows you to choose these names in a more
meaningful way.

If you are building a large application with many different modules, you may find your code
easier to maintain if you create a single separate code module to hold your Public
constants.

If two or more constants are related, you should define them as members of an
enumeration using the Enum statement.

See Also

Enum Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cos Function

Class

System.Math

Syntax

Math.Cos(d)

d (required; Double or numeric expression)

An angle in radians

Return Value

A Double data type denoting the cosine of an angle

Description

Takes an angle specified in radians and returns a ratio representing the length of the side
adjacent to the angle divided by the length of the hypotenuse

Rules at a Glance

The cosine returned by the function is between -1 and 1.

This is a Shared member, so it can be used without creating any objects.

Example

Dim dblCosine as Double

dblCosine = Math.Cos(dblRadians)

Programming Tips and Gotchas

To convert degrees to radians, multiply degrees by pi/180.

To convert radians to degrees, multiply radians by 180/pi.

VB.NET/VB 6 Differences

In VB 6, Cos was an intrinsic VB function. In the .NET platform, it is a member of the Math class
in the System namespace, and so it is not part of the VB.NET language.

See Also

Cosh Function, Sin Function, Tan Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cosh Function

Class

System.Math

Syntax

Math.Cosh(value)

value (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic cosine of the angle

Description

Returns the hyperbolic cosine of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Cosh function is new to the .NET platform; it did not exist in VB 6.

See Also

Cos Function, Sinh Function, Tanh Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CreateObject Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax

objectvariable = CreateObject(progid [, servername])

objectvariable (required; Object)

A variable to hold the reference to the instantiated object

progid (required; String)

The programmatic identifier (or ProgID) of the class of the object to create

servername (optional; String)

The name of the server on which the object resides

Return Value

A reference to a COM or ActiveX object

Description

Creates an instance of an OLE Automation (ActiveX) object.

Prior to calling the methods, functions, or properties of a COM or ActiveX object, you are required
to create an instance of that object. Once an object is created, reference it in code using the
object variable you defined.

Rules at a Glance

If your project does not include a reference to the object, you must declare the object
variable type as Object; this allows the variable to reference any type of object.

If an instance of the ActiveX object is already running, CreateObject may start a new
instance when it creates an object of the required type.

CreateObject can only be used to create instances of COM (or ActiveX) objects; it cannot
be used to instantiate .NET components.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following routine defines a generic Object variable, as well as an Excel application object. It
then uses the Timer function to compare the performance of the code fragment that uses late
binding to instantiate the Excel application object with the one that uses early binding. (For a
discussion of late and early binding, see the second item under Section .)

Private Sub TestBinding()

Dim dblTime As Double

Dim strMsg As String

' Calculate time for late binding

dblTime = Timer()

Dim objExcelLate As Object

objExcelLate = CreateObject("excel.application")

objExcelLate = Nothing

strMsg &= "Late Bound: " & Timer() - dblTime

strMsg &= vbCrLf

' Calculate time for early binding

dblTime = Timer()

Dim objExcelEarly As Excel.Application

objExcelEarly = Excel.Application

objExcelEarly = Nothing

strMsg &= "Early Bound: " & Timer() - dblTime

MsgBox (strMsg, vbOKOnly, "Late and Early Binding")

End Sub

Programming Tips and Gotchas

The ProgID is defined in the system registry and usually takes the form library.class
or application.class.

The Object data type is the most generic of Visual Basic objects. When an object variable
has been defined as type Object, CreateObject performs what is termed late binding. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has been defined as type Object, CreateObject performs what is termed late binding. This
means that, because the precise object type is unknown at compile time, the object cannot
be bound into your program when it is compiled. Instead, this binding occurs only at
runtime, when the program is run on the target system and the CreateObject function is
executed. This need to determine the object type by referencing the relevant interfaces at
runtime is time-consuming and results in poor performance. You can vastly improve this
performance by utilizing early binding. Early binding necessitates adding a reference to the
required object to your project.

The servername parameter permits the specification of the name of the server on which
the ActiveX object is registered. This means that you could even specify different servers
depending upon prevailing circumstances, as this short example demonstrates:

Dim sMainServer As String

Dim sBackUpServer As String

sMainServer = "NTPROD1"

sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then

 CreateObject("Sales.Customer",sMainServer)

Else

 CreateObject("Sales.Customer",sBackUpServer)

End If

To use a current instance of an already running ActiveX object, use the GetObject function.

If an object is registered as a single-instance object — i.e., an out-of-process ActiveX EXE
— only one instance of the object can be created. Regardless of the number of times
CreateObject is executed, you will obtain a reference to the same instance of the object.

It is considered good programming practice (and often a necessary one) to tidy up after you
have finished using an object by setting objectvariable to Nothing. This has the effect
of freeing the memory taken up by the instance of the object, and, if there are no other
"live" references to the object, shutting it down. For example:

objectvariable = Nothing

See Also

GetObject Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CShort Function

Named Arguments

No

Syntax

CShort(expression)

expression (required; Numeric or String)

The range of expression is -32,768 to 32,767; fractions are rounded.

Return Value

expression cast as a Short

Description

Converts expression to a Short value; any fractional portion of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expression is outside the range of the Short data type, an overflow error is
generated.

When the fractional part of expression is exactly .5, CShort always rounds it to the
nearest even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim iMyNumber as Short

If IsNumeric(sMyNumber) then

 iMyNumber = CShort(sMyNumber)

End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric, you should use the data
type conversion functions — such as CShort — instead of Val, because the data type
conversion functions take into account the system's regional settings. In particular, CShort
recognizes the thousands separator if it's present in expression, whereas Val does not.
For example, if expression is 1,234, CShort successfully converts it to the integer value
1234, while Val converts it to 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use IsNumeric to test whether expression evaluates to a number before performing the
conversion.

CShort differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. Also, Fix and Int always return the same type value as was
passed in.

Like most of the conversion functions, CShort is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB.NET/VB 6 Differences

The CShort function is new to VB.NET. However, it corresponds directly to the VB 6 CInt function,
since both return 16-bit integers.

See Also

CInt Function, CLng Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSng Function

Named Arguments

No

Syntax

CSng(expression)

expression (required; Numeric or String)

The range of expression is -3.402823E38 to -1.401298E-45 for negative values, and
1.401298E-45 to 3.402823E38 for positive values.

Return Value

expression cast as a Single data type

Description

Returns a single-precision number

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expression is outside the range of the Double data type, an overflow error
is generated.

Example

Dim sngMyNumber As Single

If IsNumeric(sMyNumber) Then

 sngMyNumber = CSng(sMyNumber)

End If

Programming Tips and Gotchas

You can use IsNumeric to test an expression before passing it to CSng.

When converting a string representation of a number to a numeric, you should use the data
type conversion functions — such as CSng — instead of Val, because the data type
conversion functions take into account the computer's regional settings. The thousands
separator is the most important of these regional settings. For example, if the value of
expression is the string 1,234.987, CSng converts it to 1234.987, while Val incorrectly
converts it to 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like most of the conversion functions, CSng is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

CDbl Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CStr Function

Named Arguments

No

Syntax

CStr(expression)

expression (required; any)

Any numeric, date, string, or Boolean expression

Return Value

expression converted to a string

Description

Returns a string representation of expression

Rules at a Glance

If expression is Boolean, the function returns one of the strings "True" or "False". For an
expression that can be interpreted as a date, the return value is a string representation of that
date, in the short date format of the host computer. For a numeric expression, the return is a
string representing the number.

Example

Dim sMyString as String

sMyString = CStr(100)

Programming Tips and Gotchas

The string representation of Boolean values is either "True" or "False", as opposed to
their underlying values of 0 and -1.

Uninitialized numeric data types passed to CStr return "0."

An uninitialized date variable passed to CStr returns "12:00:00AM."

Like most of the conversion functions, CStr is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Str Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CType Function

Named Arguments

No

Syntax

CType(expression, typename)

expression (required; any)

The data item to be converted

typename (required; Keyword)

The data type, object type, structure, or interface to which expression is to be converted

Return Value

expression cast as a typename interface, object, structure, or data type

Description

Converts an expression to the specified data type if possible; otherwise, returns an error.

Rules at a Glance

expression can be any data, object, structure, or interface type.

typename can be any data type (such as Boolean, Byte, Decimal, Long, Short,
String, etc.), structure type, object type, or interface that can be used with the As clause
in a Dim statement.

If the function fails, or if the converted value of expression is outside the range allowed
by typename, an InvalidCastException exception occurs.

When Option Strict is set to On, then implicit data type conversions can only be
widening; that is, implicit data type conversion only occurs from smaller data types to
"wider" data types, such as from Integer to Long. In this case, to perform a narrowing type
conversion, we can use CType. For instance, if Option Strict is On, the following code
produces an error:

Dim iInteger As Integer = 1

Dim lLong As Long = 2

iInteger = lLong

On the other hand, the following code is fine:

Dim iInteger As Integer = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim iInteger As Integer = 1

Dim lLong As Long = 2

iInteger = Ctype(lLong, Integer)

Example

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Interface IEmployee

 Property Name() As String

 Property Salary() As Decimal

End Interface

Public Class CSalaried

Implements IEmployee

Dim sName As String

Dim decSalary AS DEcimal

Public Property Name() As String Implements IEmployee.Name

 Get

 Name = sName

 End Get

 Set

 sName = Value

 End Set

End Property

Public Property Salary() As Decimal Implements IEmployee.Salary

 Get

 Salary = decSalary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Salary = decSalary

 End Get

 Set

 decSalary = Value

 End Set

End Property

End Class

Module modMain

Public Sub Main()

Dim oSal As New CSalaried

Dim oSal2 As CSalaried

Dim oEmp As IEmployee

oSal.Name = "John Doe"

oSal.Salary = 30000

console.writeline(oSal.Name)

oEmp = CType(oSal, IEmployee)

console.writeline(oEmp.Name)

oSal2 = CType(oEmp, CSalaried)

console.writeline(oSal2.name)

End Sub

End Module

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CType can perform the same conversions as the individual conversion functions and raises
a runtime error if it is asked to perform a conversion that an individual conversion function
cannot perform. For example, in the function call:

bVal = CType(Var1, Boolean)

Var1 can be any numeric value, any numeric string, or a string whose value is either
"True" or "False".

Like most of the conversion functions, CType is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

In part, CType is a "convenience function" that provides the functionality of the entire set of
conversion functions in a single function. Its real significance, however, comes when you
want to convert a derived object to the type of its base class, or when you want to convert
an object to the type of its virtual base class (that is, its interface).

Upcasting a derived object to its parent object type can be done implicitly. However,
downcasting back from the base class type to the derived object type cannot be done
implicitly if Option Strict is On. Instead, CType can be used to perform this conversion.
This is illustrated in the example.

VB.NET/VB 6 Differences

The CType function is new to VB.NET.

See Also

CBool Function, CByte Function, CChar Function, CDate Function, CDbl Function, CDec
Function, CInt Function, CLng Function, CObj Function, CShort Function, CSng Function, CStr
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CurDir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

CurDir[(drive)]

drive (optional; String or Char)

The name of the drive

Return Value

A String containing the current path

Description

Returns the current directory of a particular drive or the default drive

Rules at a Glance

If no drive is specified or if drive is a zero-length string (""), CurDir returns the path for the
current drive.

drive can be the single-letter drive name with or without a colon (i.e., both "C" and "C:"
are valid values for drive).

If drive is invalid, the function will generate runtime error 68, "Device unavailable."

Because CurDir can only accept a single-character string, you cannot use network drive
names, share names, or UNC drive names.

Example

Sub TestCurDir()

 MsgBox CurDir("C")

End Sub

See Also

ChDir Procedure, ChDrive Procedure, MkDir Procedure, RmDir Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateAdd Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateAdd(interval, number, datevalue)

interval (required; String or DateInterval enum)

A String expression (see the first item in Section) or a member of the DateInterval
enumeration (see the second item in Section) that specifies the interval of time to add

number (required; Double)

An expression denoting the number of time intervals you want to add (it can be positive or
negative)

datevalue (required; Date, or an expression capable of conversion to a date)

Date representing the starting date to which the interval is to be added

Return Value

A past or future Date that reflects the result of the addition

Description

Returns a Date representing the result of adding (or subtracting, if number is negative) a given
number of time periods to or from a given date. For instance, you can calculate the date 178
months before today's date, or the date and time 12,789 minutes from now.

Rules at a Glance

interval can be one of the following literal strings:

String Description
yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

n Minute

s Second

interval can also be a member of the DateInterval enum:

Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

If number is positive, the result will be in the future; if number is negative, the result will be
in the past. (The meaning of "future" and "past" here is relative to datevalue.)

The DateAdd function has a built-in calendar algorithm to prevent it from returning an
invalid date. For example, you can add 10 minutes to 31 December 1999 23:55, and
DateAdd automatically recalculates all elements of the date to return a valid date, in this
case 1 January 2000 00:05. This includes leap years; the calendar algorithm takes the
presence of 29 February into account for leap years.

Example

DateAdd(DateInterval.Day, 120, #3/3/2001#) ' Returns 7/1/2001

Programming Tips and Gotchas

You can check that a date is valid using the IsDate function prior to passing it as a
parameter to the function.

To add a number of days to datevalue, use either the day of the year ("y" or
DateInterval.DayOfYear), the day ("d" or DateInterval.Day), or the weekday ("w"
or DateInterval.Weekday).

DateAdd generates an error if the result does not lie in the range of dates of the Date data
type.

If number contains a fractional value, it is rounded to the nearest whole number before
being used in the calculation.

You can also use the members of the DateTime structure of the BCL to manipulate dates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use the members of the DateTime structure of the BCL to manipulate dates
and times.

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the
interval argument.

See Also

DateDiff Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateDiff Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateDiff(interval, date1, date2[, dayofweek[, weekofyear]])

interval (required; String or DateInterval enum)

A String expression (see the first item in Section) or a member of the DateInterval
enumeration (see the second item in Section) that specifies the units of time used to
express the difference between date1 and date2

date1, date2 (required; Date or a literal date)

The starting and ending dates, whose difference is computed as date2- date1

dayofweek (optional; FirstDayOfWeek enum)

A member of the FirstDayOfWeek enum

weekofyear (optional; FirstWeekOfYear enum)

A member of the FirstWeekOfYear enum

Return Value

A Long specifying the number of time intervals between the two dates

Description

Calculates the number of time intervals between two dates. For example, you can use the
function to determine how many days there are between 1 January 1980 and 31 May 1998.

Rules at a Glance

interval can be one of the following literal strings:

String Description
yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:

Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

To calculate the number of days between date1 and date2, you can use either of the
DateInterval constants, DayOfYear or Day, or the string literals "y" or "d".

When interval is Weekday or "w", DateDiff returns the number of weeks between the
two dates. If date1 falls on a Monday, DateDiff counts the number of Mondays until
date2. It counts date2, but not date1. If interval is Week or "ww", however, DateDiff
returns the number of calendar weeks between the two dates. It counts the number of
Sundays between date1 and date2. DateDiff counts date2 if it falls on a Sunday, but it
doesn't count date1, even if it does fall on a Sunday.

The DayOfWeek argument affects calculations that use the Week or "w" and Weekday or
"ww" interval settings only.

Example

DateDiff(DateInterval.Day, #1/1/1945#, #3/3/2001#, _

 FirstDayOfWeek.System, FirstWeekOfYear.System)

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior
to passing it as a function parameter.

If date1 or date2 is enclosed in double quotation marks (" ") and you omit the year, the
current year is inserted in your code each time the date1 or date2 expression is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

current year is inserted in your code each time the date1 or date2 expression is
evaluated. This makes it possible to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff
with interval set equal to Year, or "yyyy", returns 1 even though only a day has
elapsed.

DateDiff considers the four quarters of the year to be January 1-March 31, April 1-June 30,
July 1-September 30, and October 1-December 31. Consequently, when determining the
number of quarters between March 31 and April 1 of the same year, for example, DateDiff
returns 1, even though the latter date is only one day after the former.

If interval is Month or "m", DateDiff simply counts the difference in the months in which
the respective dates fall. For example, when determining the number of months between
January 31 and February 1 of the same year, DateDiff returns 1, even though the latter
date is only one day after the former.

In calculating the number of hours, minutes, or seconds between two dates, if an explicit
time is not specified, DateDiff provides a default value of midnight (00:00:00).

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the
interval argument.

See Also

DateAdd Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DatePart Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DatePart(interval, datevalue[,firstdayofweekvalue[, _

 firstweekofyearvalue]])

interval (required; String or a member of the DateInterval enum)

A String literal (see the second item in Section) or a constant of the DateInterval enum
(see the third item in Section) that defines the part of the date/time to extract from
datevalue

datevalue (required; Date, literal date, or an expression capable of conversion to a date)

The Date value to evaluate

firstdayofweekvalue (optional; FirstDayOfWeek enum)

A member of the FirstDayOfWeek enum

firstweekofyearvalue (optional; FirstWeekOfYear enum)

A member of the FirstWeekOfYear enum

Return Value

An Integer containing the specified part

Description

Extracts an individual component of the date or time (like the month or the second) from a
date/time value

Rules at a Glance

The DatePart function returns an Integer containing the specified portion of the given date.
DatePart is a single function encapsulating the individual Year, Month, Day, Hour, Minute,
and Second functions.

interval can be one of the following literal strings:

String Description
yyyy Year

q Quarter

m Month

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:

Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

The firstdayofweekvalue argument can be any of the following members of the
FirstDayOfWeek enumeration:

Enum FirstDayOfWeek

 System 'uses first day of week setting on local system

 Sunday

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

End Enum

The firstdayofweekvalue argument affects only calculations that use either the Week

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The firstdayofweekvalue argument affects only calculations that use either the Week
(or "w") or Weekday (or "ww") interval values.

The firstweekofyearvalue argument can be any of the following members of the
FirstWeekOfYear enumeration:

FirstWeekOfYear
constant Value Description

System 0 Uses the local system setting

Jan1 1 Starts with the week in which January 1 occurs (the default
value)

FirstFourDays 2 Starts with the first week that has at least four days in the
new year

FirstFullWeek 3 Starts with the first full week of the year

Example

MsgBox("Current hour: " & DatePart(DateInterval.Hour, Now))

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior
to passing it as a function parameter.

If you attempt to extract the hours, minutes, or seconds, but datevalue does not contain
the necessary time element, the function assumes a time of midnight (0:00:00).

If you specify datevalue within quotation marks (" ") and omit the year, the year is
assumed to be the current year taken from the computer's date. For example:

Console.WriteLine(DatePart(DateInterval.Year, cDate("01/03")))

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the
interval argument.

VB 6 supports a number of constants beginning with vb... as values for the
firstdayofweekvalue and firstweekofyearvalue arguments. While these are
still supported in VB.NET, VB.NET has also added the FirstDayOfWeek and
FirstWeekOfYear enumerations.

See Also

DateSerial Function, DateString Property, DateValue Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateSerial(year, month, day)

year (required; Integer)

Number between 100 and 9999, inclusive, or a numeric expression

month (required; Integer)

Any numeric expression to express the month between 1 and 12

day (required; Integer)

Any numeric expression to express the day between 1 and 31

Return Value

A Date representing the date specified by the arguments

Description

Returns a Date whose value is specified by the three date components (year, month, and day).

For the function to succeed, all three components must be present, and all must be numeric
values. The value returned by the function takes the short date format defined by the Regional
Settings applet in the Control Panel of the client machine.

Rules at a Glance

If the value of a particular element exceeds its normal limits, DateSerial adjusts the date
accordingly. For example, if you tried DateSerial(96,2,31) — February 31, 1996 —
DateSerial returns March 2, 1996.

You can specify expressions or formulas that evaluate to individual date components as
parameters to DateSerial. For example, DateSerial(98,10+9,23) returns 23 March
1999. This makes it easier to use DateSerial to form dates whose individual elements are
unknown at design time or that are created on the fly as a result of user input.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim iYear As Integer = 1987

Dim iMonth As Integer = 3 + 11

Dim iday As Integer = 16

MsgBox(DateSerial(iYear, iMonth, iday))

Programming Tips and Gotchas

If any of the parameters exceed the range of the Integer data type (-32,768 to 32,767), an
error (runtime error 6, "Overflow") is generated.

DateSerial handles two-digit years in the same way as other Visual Basic date functions. A
year argument between 0 and 29 is taken to be in the 21st century (2000 to 2029); year
arguments between 30 and 99 are taken to be in the 20th century (1930 to 1999). Of
course, the safest way to specify a year is to use the full four digits.

See Also

DatePart Function, DateString Property, DateValue Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateString()

Return Value

A String representing the current system date

Description

Returns or sets a string representing the current system date in the format "mm-dd- yyyy"

Rules at a Glance

The allowed formats for setting the date are "m-d-yyyy," "m-d-y," "m/d/yyyy," and "m/d/y."

Programming Tips and Gotchas

To get or set the current system time as a String, use the TimeString property.

To access the current system date as a Date, use the Today property.

VB.NET/VB 6 Differences

The DateString property is new to VB.NET. It is a replacement for the VB 6 Date statement,
which sets the system date, and the Date and Date$ functions, which retrieve the system date.

See Also

Now Property, TimeString Property, Today Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DateValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateValue(stringdate)

stringdate (required; String)

A string containing any of the date formats recognized by IsDate

Return Value

A Date that represents the date specified by the stringdate argument

Description

Returns a Date containing the date represented by stringdate.

The date value is formatted according to the short date setting defined by the Regional Settings
applet in the Control Panel. DateValue can successfully recognize a stringdate in any of the
date formats recognized by IsDate. DateValue does not return time values in a date/time string;
they are simply dropped. However, if stringdate includes a valid date value but an invalid time
value, a runtime error results.

Rules at a Glance

The order of the day, month, and year within stringdate must be the same as the
sequence defined by the computer's regional settings.

Only those date separators recognized by IsDate can be used.

If you don't specify a year in your date expression, DateValue uses the current year from
the computer's system date.

Example

Dim sDateExpression As String

sDateExpression = 10 & "/" & "March" & "/" & 1998

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sDateExpression = 10 & "/" & "March" & "/" & 1998

If IsDate(sDateExpression) Then

 Console.WriteLine(DateValue(sDateExpression))

Else

 Console.WriteLine("invalid date")

End If

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior
to passing it as a function argument.

If stringdate includes time information as well as date information, the time information
is ignored; however, if only time information is passed to DateValue, an error is generated.

DateValue handles two-digit years in the following manner: Year arguments between 0
and 29 are taken to be in the 21st century (2000 to 2029), while year arguments between
30 and 99 are taken to be in the 20th century (1930 to 1999). Of course, the safest way to
specify a year is to use the full four digits.

On Windows NT/2000 systems, the date formats are held as string values in the following
registry keys:

Date Separator

HKEY_CURRENT_USER\Control Panel\International, sDate value entry

Long Date

HKEY_CURRENT_USER\Control Panel\International, sLongDate value entry

Short Date

HKEY_CURRENT_USER\Control Panel\International, sShortDate value entry

The more common approach to date conversion is to use the CDate function. Microsoft
also recommends using the C... conversion functions due to their enhanced capabilities
and their locale awareness.

See Also

DatePart Function, DateSerial Function, DateString Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Day Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Day(datevalue)

datevalue (required; Date or literal date)

Return Value

An Integer from 1 to 31, representing the day of the month

Description

Returns an Integer ranging from 1 to 31, representing the day of the month of datevalue

Rules at a Glance

The range of datevalue is 1/1/1 to 12/31/9999.

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior
to passing it as a function parameter.

With Option Strict On, you must first convert datevalue to a Date data type before
passing it to the Day function. You can use the CDate function for this purpose.

If the day portion of datevalue is outside of its valid range, the function regenerates
runtime error 13, "Type mismatch." This is also true if the day and month portion of
datevalue is 2/29 for a non-leap year.

To return the day of the week, use the WeekDay function.

See Also

DatePart Function, WeekdayName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DDB Function

Class

Microsoft.VisualBasic.Financial

Syntax

DDB(cost, salvage, life, period[, factor])

cost (required; Double)

The initial cost of the asset.

salvage (required; Double)

The value of the asset at the end of life.

life (required; Double)

Length of life of the asset.

period (required; Double)

Period for which the depreciation is to be calculated.

factor (optional; Double)

The rate at which the asset balance declines. If omitted, 2 (double-declining method) is
assumed. However, the documentation doesn't mention what other values are supported or
what they mean.

Return Value

Double representing the depreciation of an asset

Description

Returns a Double representing the depreciation of an asset for a specific time period. This is done
using the double-declining balance method or another method that you specify using the factor
argument.

The double-declining balance calculates depreciation at a differential rate, which varies inversely
with the age of the asset. Depreciation is highest at the beginning of an asset's life and declines
over time.

Rules at a Glance

life and period must be specified in the same time units. In other words, both must be
expressed in units of months, or both must be years.

All arguments must be positive numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

Dim dblInitialCost As Double = 2000

Dim dblSalvageValue As Double = 50

Dim dblUsefulLife As Double = 12

Dim dblTotDepreciation As Double = 0

Dim dblPeriod, dblThisPeriodDepr As Double

For dblPeriod = 1 To 12

 dblThisPeriodDepr = DDB(dblInitialCost, _

 dblSalvageValue, dblUsefulLife, dblPeriod)

 dblTotDepreciation = dblTotDepreciation + _

 dblThisPeriodDepr

 Console.WriteLine("Month " & dblPeriod & ": " & _

 dblThisPeriodDepr)

Next dblPeriod

Console.WriteLine("TOTAL: " & dblTotDepreciation)

Programming Tips and Gotchas

The double-declining balance depreciation method calculates depreciation at a higher rate
in the initial period and a decreasing rate in subsequent periods.

The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / period = ((cost - salvage) * factor) / life

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug Class

Namespace

System.Diagnostics

Createable

No

Description

The Debug object is used to send messages to the Output window (formerly called the Immediate
window). The Debug object can also send output to other targets, such as text files, referred to as
listeners. See the Debug.Listeners Property entry. The Debug class also allows you to check
program logic with assertions.

Because the Debug class' members are shared, you do not need to instantiate the Debug object
before accessing its members. The following code fragment, for instance, illustrates a call to the
Debug object's WriteLine method:

Debug.WriteLine(intCount & " iteration through the loop")

Debug class members marked with an plus sign (+) are discussed in detail in their own entries.

Public Shared Properties

AutoFlush +
IndentLevel +
IndentSize +
Listeners +

Public Shared Methods

Assert +
Close +
Fail
Flush +
Indent +
Unindent +
Write +
WriteIf +
WriteLine +
WriteLineIf +

VB.NET/VB 6 Differences

The VB 6 Debug object has only two methods, Assert and Print. The VB.NET Assert method is
similar to the VB 6 method, except that the latter displays a message if an expression is False,
while the former suspends program execution. In VB.NET, the VB 6 Print method is gone,
replaced by the Write, WriteIf, WriteLine, and WriteLineIf methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Assert Method

Class

System.Diagnostics.Debug

Syntax

Debug.Assert(booleanexpression[[, string1], string2])

booleanexpression (required; Boolean)

Expression that evaluates to a Boolean value.

string1 (required; String)

String to output if booleanexpression is False.

string2 (required; String)

Detailed string to output. If booleanexpression is False, string2 is output to Output
window.

Return Value

None

Description

Outputs messages to the Output window if the condition is False

Rules at a Glance

booleanexpression must evaluate to a Boolean value.

Programming Tips and Gotchas

Assert is typically used when debugging to test an expression that should evaluate to
True.

Debug.Assert executes only when an application is run in the design-time environment; the
statement has no effect in a compiled application. This means that Debug.Assert will never
produce a runtime error if the call to it is inappropriate, nor will it suspend program
execution outside of the VB IDE. Because of this, you do not have to remove Debug.Assert
statements from finished code or separate them with conditional #If...Then statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.AutoFlush Property

Class

System.Diagnostics.Debug

Syntax

Debug.AutoFlush

Return Value

Boolean

Description

Sets or returns a Boolean value indicating whether each Write should be automatically followed
by a Flush operation. By default, its value is False.

See Also

Debug.Flush Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Close Method

Class

System.Diagnostics.Debug

Syntax

Debug.Close()

Return Value

None

Description

Flushes the output buffer and closes the listeners (except for the default Output window)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Flush Method

Class

System.Diagnostics.Debug

Syntax

Debug.Flush()

Return Value

None

Description

Flushes the output buffer, which causes all pending data to be written to the listeners

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Indent Method

Class

System.Diagnostics.Debug

Syntax

Debug.Indent()

Description

Increases the current IndentLevel by 1. The property is useful for improving the readability of
output sent to the Output window.

See Also

Debug.IndentLevel Property, Debug.IndentSize Property, Debug.Unindent Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.IndentLevel Property

Class

System.Diagnostics.Debug

Syntax

Debug.IndentLevel()

Return Value

An Integer specifying the indent level. The default is 0.

Description

Sets or retrieves the current indent level for the Debug object. The property is useful for improving
the readability of output sent to the Output window.

See Also

Debug.IndentSize Property, Debug.Unindent Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.IndentSize Property

Class

System.Diagnostics.Debug

Syntax

Debug.IndentSize

Return Value

An Integer specifying the number of spaces per indent level. The default is 4.

Description

Sets or retrieves the current indent-size setting, which is the number of spaces per indent level.
The property is useful for improving the readability of output sent to the Output window.

See Also

Debug.IndentLevel Property, Debug.Unindent Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Listeners Property

Class

System.Diagnostics.Debug

Syntax

Debug.Listeners

Description

Retrieves the TraceListenerCollection collection of all TraceListener objects that monitor the
debug output.

Example

The following code adds a text file to the listeners collection. As a result, all Debug.Write...
methods will not only send the output to the Output window (the default listener) but also to the
text file:

' Define a new TextWriterTraceListener

Dim trace As New TextWriterTraceListener()

' Define a new FileStream object

Dim fs As FileStream = New FileStream("c:\log.txt", FileMode.Append, _

 FileAccess.Write)

' Set the Writer property to a new StreamWriter for this FileStream

trace.Writer = New StreamWriter(fs)

' Add listener

Debug.Listeners.Add(trace)

' Output

Debug.WriteLine("xxxxx")

Debug.WriteLine("yyyyy")

' Close up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Close up

Debug.Close()

fs.Close()

' Remove listener

Debug.Listeners.Remove(trace)

' This goes only to Output window

Debug.WriteLine("zzzzz")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Unindent Method

Class

System.Diagnostics.Debug

Syntax

Debug.Unindent()

Description

Decreases the current IndentLevel by 1. The property is useful for improving the readability of
output sent to the Output window.

See Also

Debug.Indent Method, Debug.IndentLevel Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Write Method

Class

System.Diagnostics.Debug

Syntax

Debug.Write(Output[, Category])

Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category (optional; String)

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment

Rules at a Glance

If Output is a string, the string is printed to the Output window.

If Output is a nonstring object, the ToString property of the Object object is invoked. This
just outputs a string version of the name of the object.

Supplying a Category argument is useful when you want to organize the output from
several Debug.Write statements by category. Output from the method then takes the
form:

Category: Output

if Output is a string, and:

Category: Output.ToString

if Output is a nonstring object.

Programming Tips and Gotchas

In Visual Basic applications, Debug.Write executes only when an application is run in the design-
time environment; the statement has no effect in a compiled application.

See Also

Debug.WriteIf Method, Debug.WriteLine Method, Debug.WriteLineIf Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.WriteIf Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteIf(condition, message[, Category])

or:

Debug.WriteIf(condition, value[, Category])

condition (required; Boolean)

Condition required for output to proceed

message (required; String)

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

value (required; any)

An object whose name is to be sent to the Output window

Category (optional; String)

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment, provided that condition is
True

Rules at a Glance

This method behaves identically to Debug.Write, with the exception that nothing is output unless
condition is True.

See Also

Debug.Write Method, Debug.WriteLine Method, Debug.WriteLineIf Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.WriteLine Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteLine(Output[, Category])

Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category (optional; String)

A category name used to group output messages

Description

Prints text, followed by a newline command, in the Output window in the design- time environment

Rules at a Glance

This method is identical to Debug.Write except that a newline command is sent to the Output
window after any text is written.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLineIf Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.WriteLineIf Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteLineIf(booleanexpression, Output[, Category])

booleanexpression (required; Boolean)

Condition required for output to be produced

Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Category (optional; String)

A category name used to group output messages

Description

Prints text followed by a newline character in the Output window in the design- time environment,
provided that booleanexpression is True

Rules at a Glance

This method behaves identically to Debug.WriteLine, except that nothing is output unless
booleanexpression is True.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLine Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declare Statement

Syntax

Syntax for subroutines:

[accessmodifier] Declare [Ansi|Unicode|Auto] Sub name Lib "libname" _

 [Alias "aliasname"] [([arglist])]

Syntax for functions:

[accessmodifier] Declare [Ansi|Unicode|Auto] Function name _

 Lib "libname" [Alias "aliasname"] [([arglist])] [As type]

accessmodifier (optional; Keyword)

accessmodifier can be any one of the following: Public, Private, Protected,
Friend, or Protected Friend. The following table describes the effects of the various
access modifiers. Note that Direct Access refers to accessing the member without any
qualification, as in:

classvariable = 100

and Class/Object Access refers to accessing the member through qualification, either with
the class name or the name of an object of that class.

 Direct Access scope Class/Object Access scope
Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

For more information, see Section 4.7 in Chapter 4.

Ansi (optional; Keyword)

Converts all strings to ANSI values.

Unicode (optional; Keyword)

Converts all strings to Unicode values.

Auto (optional; Keyword)

Converts the strings according to .NET rules based on the name of the method (or the alias
name, if specified). If no modifier is specified, Auto is the default.

name (required; String literal)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name (required; String literal)

Any valid procedure name. Note that DLL entry points are case sensitive. If the
aliasname argument is used, name represents the name by which the function or
procedure is referenced in your code, while aliasname represents the name of the routine
as found in the DLL.

Lib (required; Keyword)

Indicates that a DLL or code resource contains the procedure being declared.

libname (required; String literal)

Name of the DLL or code resource that contains the declared procedure.

Alias (optional; Keyword)

Indicates that the procedure being called has another name in the DLL. This is useful when
the external procedure name is the same as a keyword. You can also use Alias when a
DLL procedure has the same name as a public variable, constant, or any other procedure
in the same scope. Alias is also useful if any characters in the DLL procedure name
aren't allowed by VB.NET naming conventions.

aliasname (optional; String literal)

Name of the procedure in the DLL or code resource. If the first character is not a number
sign (#), aliasname is the name of the procedure's entry point in the DLL. If # is the first
character, all characters that follow must indicate the ordinal number of the procedure's
entry point.

arglist (optional)

List of variables representing arguments that are passed to the procedure when it is called.

type (optional; Keyword)

Data type of the value returned by a Function procedure; may be Byte, Boolean, Char,
Short, Integer, Long, Single, Double, Decimal, Date, String, Object, or any
user-defined type. Arrays of any type cannot be returned, but an Object containing an array
can.

Description

Used at module level to declare references to external procedures in a dynamic- link library (DLL)

Rules at a Glance

arglist is optional and has the following syntax:

[ByVal | ByRef] varname[()] [As type]

ByVal (optional; Keyword)

The argument is passed by value; that is, a local copy of the variable is assigned the
value of the argument. ByVal is the default method of passing arguments.

ByRef (optional; Keyword)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference
to the argument being passed. All changes made to the local variable are reflected in
the calling argument.

varname (required; String literal)

The name of the local variable containing either the reference or value of the
argument.

type (optional; Keyword)

The data type of the argument. Can be Byte, Boolean, Char, Short, Integer, Long,
Single, Double, Decimal, Date, String, Object, or any user- defined type, object type,
or data type defined in the BCL.

The number and type of arguments included in arglist are checked each time the
procedure is called.

The data type you use in the As clause following arglist must match that returned by the
function.

Example

The following example retrieves the handle of a window from its title bar caption. This is done
using the FindWindow API function.

Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_

 ByVal lpClassName As String, _

 ByVal lpWindowName As String _

) As Integer

Private Sub GetWindowHandle()

 MsgBox(FindWindow(vbNullString, "Document - WordPad"))

End Sub

Programming Tips and Gotchas

Using an Alias is useful when the name of an external procedure conflicts with a Visual
Basic keyword or with the name of a procedure within your project, or when the name of the
procedure in the code library is not allowed by Visual Basic naming conventions. In
addition, aliasname is frequently used with functions in the Win32 API that have string
parameters, where the "official" documented name of the function is used in code to call
either of two "real" functions — one an ANSI and the other a Unicode version. For
example:

Declare Function ExpandEnvironmentStrings _

 Lib "kernel32" Alias "ExpandEnvironmentStringsA" _

 (ByVal lpSrc As String, ByVal lpDst As String, _

 ByVal nSize As Long) As Long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal nSize As Long) As Long

defines the documented Win32 function ExpandEnvironmentStrings to a VB application.
However, although calls to the function take the form:

lngBytes = ExpandEnvironmentStrings(strOriginal, _

 strCopy, len(strCopy))

the actual name of the function as it exists in Kernel32.dll is ExpandEnvironmentStringsA.
(Windows. API functions ending in "A" are the ANSI string versions, and those ending in
"W" (for Wide) are the Unicode string versions.)

You can use the # symbol at the beginning of aliasname to denote that aliasname is in
fact the ordinal number of a procedure within the DLL or code library. In this case, all
characters following the # sign and composing the aliasname argument must be numeric.
For example:

Declare Function GetForegroundWindow Lib "user32" _

 Alias "#237" () As Long

Remember that DLL entry points are case sensitive. In other words, either name or
aliasname (if it is present and does not represent a routine's ordinal position) must
correspond in case exactly to the routine as it is defined in the external DLL. Otherwise, VB
displays runtime error 453, "Specified DLL function not found." If you aren't sure how the
routine name appears in the DLL, use the DumpBin.exe utility to view its export table. For
instance, the following command displays the export table of advapi32.dll, one of the
Windows system files:

dumpbin /exports c:\windows\system32\advapi32.dll

libname can include an optional path that identifies precisely where the external library is
located. If the path is not included along with the library name, VB by default searches the
current directory, the Windows directory, the Windows system directory, and the directories
in the path, in that order.

If the external library is one of the major Windows system DLLs (such as Kernel32. dll or
Advapi32.dll), libname can consist of only the root filename, rather than the complete
filename and extension.

One of the most common uses of the Declare statement is to make routines in the Win32
API accessible to your programs. For more on this topic, see Win32 API Programming with
Visual Basic by Steven Roman (O'Reilly 1999).

In addition to the standard VB data types, you can also include BCL data types that are not
wrapped by VB in arglist. Most useful are the unsigned integers, UShort, UInt16, and
UInt32.

In many cases, you can use routines available in the .NET Base Class Library or
Framework Class Library instead of calling the Win32 API.

VB.NET/VB 6 Differences

In VB 6, it is possible to declare the data type of an argument as Any, which suspends
typechecking by the VB runtime engine. In VB.NET, this usage is not supported.

In VB 6, if ByVal or ByRef is not specified, an argument is passed to the calling procedure
by reference. In VB.NET, arguments are passed by value by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB 6, it is possible to override the method in which an argument is passed to an external
function within the call itself by specifying either ByVal or ByRef before the argument. In
VB.NET, this usage is not permitted.

The size of the integer data types in VB 6 and VB.NET are different, making it necessary to
rewrite any arglist that has a data type of Integer or Long in VB 6. The VB 6 Integer data
type is equivalent to the VB.NET Short data type. The VB 6 Long data type is equivalent to
the VB.NET Integer data type.

VB 6 lacks a signed 8-bit integer data type and unsigned data types to correspond to the
Integer and Long types. In the .NET platform, unsigned data types are available for 16-bit
integers (UInt16), 32-bit integers (UInt32), and 64-bit integers (UInt64). A signed byte data
type (SByte) is also available. All are BCL classes not wrapped by VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefaultMember Attribute

Class

System.Reflection.DefaultMemberAttribute

Applies to

Class, Struct, or Interface

Description

Defines the default member of a structure, class, or interface. The default member is the member executed by the
Type object's InvokeMember method when a null string is supplied as the method's name argument.

The Visual Basic .NET Default keyword is ultimately translated by the Visual Basic .NET compiler into the
<DefaultMember> attribute. Visual Basic, however, requires that default members be parameterized. The use of
the default member then allows you to specify a particular array element without having to explicitly reference the
member. For instance, if the Items property is the default member of NewObject1, the statement

NewObject1.Items(10) = "Sleeping bag"

is functionally identical to

NewObject(10) = "Sleeping bag"

This works in VB.NET because the latter code statement is translated by the compiler into a call to the
InvokeMember method that looks something like the following:

Dim t As Type = GetType(NewClass1)

Dim iFlags As BindingFlags = BindingFlags.Public Or _

 BindingFlags.Instance Or _

 BindingFlags.SetProperty

Dim arr() As Object = { 10, "Sleeping bag" }

t.InvokeMember("", iFlags, Nothing, NewObject, arr)

Because the <DefaultMember> attribute, unlike the Default keyword, does not have to refer to a parameterized
property, you can use the <DefaultMember> attribute to define default members that are not parameterized.
However, this does not allow you to omit a reference to that member in code. For instance, if the default member of
the oCounter object is a member named Value, you cannot reference it implicitly as follows:

oCounter = 10

You can, however, invoke that member using the InvokeMember method of the Type class without explicitly
naming it.

The <DefaultMember> attribute and Default keyword are incompatible in one other important respect. If you
use <DefaultMember> rather than Default to define a parameterized property as the default member of a
class, at runtime Visual Basic will be unable to resolve implicit references to the member. Hence, the sole
capability that the <DefaultMember> attribute affords you is the ability to explicitly invoke a default member using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

capability that the <DefaultMember> attribute affords you is the ability to explicitly invoke a default member using
the InvokeMember method of the Type class.

Note that if you use both the Default keyword and the <DefaultMember> attribute in the same class definition,
even if both reference the same member, an ExecutionEngineException exception results.

If memberName is not a member of the class, structure, or interface, the
<DefaultMember> attribute is ignored, and no error is raised.

Constructor

New(memberName)

memberName (String)

The name of the default member

Properties

MemberName (String)

Read-only. The name of the default member. Its value is set by the constructor's memberName

Example

Option Strict

Imports System

Imports System.Reflection

<DefaultMember("GetName")> Public Class CContact

Private sName As String

Private sCity As String

Private sComments() As String

Public Sub New()

 Me.New("John Doe", "Anywhere, U.S.A.")

End Sub

Public Sub New(strName As String, strCity As String)

 MyBase.New()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sName = strName

 sCity = strCity

End Sub

Public Property Name As String

 Get

 Return sName

 End Get

 Set

 sName = Value

 End Set

End Property

Public Property Comments(index As Integer) As String

 Get

 Return sComments(index)

 End Get

 Set

 sComments(index) = Value

 End Set

End Property

Public Function GetName() As String

 Return sName

End Function

Public Function GetCity() As String

 Return sCity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return sCity

End Function

End Class

Module modMain

 Public Sub Main

 Dim oContact As New CContact

 Dim t As Type = GetType(CContact)

 Dim iFlags As BindingFlags = BindingFlags.Instance Or _

 BindingFlags.Public Or _

 BindingFlags.InvokeMethod

 Console.WriteLine(t.InvokeMember("", iFlags, Nothing, oContact, _

 Nothing))

 Console.WriteLIne(t.InvokeMember("GetName", iFlags, Nothing, _

 oContact, Nothing))

 Console.WriteLine(t.InvokeMember("GetCity", iFlags, Nothing, _

 oContact, Nothing))

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delegate Statement

Syntax

[AccessModifier] Delegate Sub name [([arglist])])

[AccessModifier] Delegate Function name [([arglist])]) As type

AccessModifier (optional; Keyword)

Specifies scope/accessibility the same as when declaring a subroutine or function. Can be
one of Public, Private, Protected, Friend, Protected Friend, or Shadows.

name (required; String literal)

The name of the delegate class.

arglist (optional)

The argument list; it has the same syntax as when defining a subroutine or function.

Description

Declares the parameters and return type of a delegate class. Note that the syntax is the same as
that used when declaring a subroutine or function, with the addition of the keyword Delegate.

Rules at a Glance

Any procedure whose argument list and return type matches that of a declared delegate
class can be used to create an instance of this delegate class, as the upcoming example
illustrates.

For more information on delegates, see Section 7.1 in Chapter 7.

Example

Consider the following method:

Public Class Class1

 Public Sub AMethod(ByVal s As String)

 Msgbox(s)

 End Sub

End Class

Consider the following delegate declaration:

Delegate Sub ADelegate(ByVal s As String)

The following code uses the delegate to call the AMethod of Class1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 ' Object of type Class1

 Dim obj As New Class1()

 ' Declare a new delegate

 Dim delg As ADelegate

 ' Define the delegate, passing the address of the object's method

 delg = New ADelegate(AddressOf obj.AMethod)

 ' Call the method using the Invoke method of the delegate

 delg.Invoke("test")

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DeleteSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

DeleteSetting(appname[, section[, key]])

appname (required; String)

The name of the application. This must be a subkey of the HKEY_CURRENT_
USER\Software\VB and VBA Program Settings registry key.

section (optional; String)

The name of the application key's subkey that is to be deleted. section can be a single
key or a registry path separated with backslashes.

key (optional; String)

The name of the value entry to delete.

Description

Deletes a complete application key, one of its subkeys, or a single value entry from the Windows
registry

Rules at a Glance

section can contain a relative path (similar to that used to describe the folders on a hard
drive) to navigate from the application key to the subkey to be deleted. For example, to
delete the value entry named TestKey in the registry key
HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\RegTester\BranchOne\BranchTwo, you would use:

DeleteSetting "RegTester", "BranchOne\BranchTwo", _

 "TestKey"

You cannot use DeleteSetting to delete entries from registry keys that are not subkeys
of HKEY_CURRENT_USER\Software\VB and VBA Program Settings.

If key is supplied, only the value entry named key and its associated value are deleted.

If key is omitted, the subkey named section is deleted.

If section is omitted, the entire application key named appname is deleted.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub TestTheReg()

 SaveSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "Testkey", "10")

 MsgBox("Now look in RegEdit")

End Sub

Sub TestDelete()

 If GetSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "TestKey") <> "" Then

 DeleteSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "TestKey")

 MsgBox("Look again!")

 End If

End Sub

Programming Tips and Gotchas

DeleteSetting was designed to operate on initialization files in 16-bit platforms and on
the registry in 32-bit platforms. But the terminology used to describe the statement in the
official documentation is based on initialization files, rather than on the registry. In
particular, what is described as a key is a named key in an initialization file and a value
entry in the registry.

The behavior of the DeleteSetting statement differs under Windows 95 and Windows
NT when it is used to remove a key from the registry. Under Windows 95, if the statement
is used to delete either appname or section, all subkeys belonging to the key to be
deleted will also be deleted. Under Windows NT, on the other hand, the keys appname and
section are only deleted if they don't contain subkeys.

DeleteSetting cannot be used to delete the default value (i.e., the unnamed value
entry) belonging to any key. If you're using only the VB registry functions, though, this isn't
a serious limitation, since SaveSetting does not allow you to create a default value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a serious limitation, since SaveSetting does not allow you to create a default value.

Unless you are quite sure about what you're doing, you should only delete registry settings
that have been placed in the registry by your own code. Inadvertently deleting the wrong
entries can have disastrous consequences. However, because this statement only gives
you access to the subkeys of HKEY_CURRENT_USER\Software\VB and VBA Program
Settings, the potential damage is minimized.

Never assume that the key you want to delete is necessarily present in the registry.
DeleteSetting deletes a user key (that is, a subkey of HKEY_ CURRENT_USER); except
on Windows 95 systems that are not configured to support multiple users, the user key is
formed from a file that reflects only the present user's settings. This means that when one
user runs an application, user settings are stored in his registry key. But when a second
user runs the application for the first time, settings for that user are not likely to be present.
Attempting to delete a nonexistent key produces runtime error 5, "Invalid procedure call or
argument." To prevent the error, you should first test for the presence of the registry key, as
shown in the earlier example.

Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

GetAllSettings Function, GetSetting Function, SaveSetting Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim Statement

Syntax

[accessmodifier] [Shared] [Shadows] [readonly] Dim [WithEvents] _ varname[([

 [As [New] type] [= initexpr]

accessmodifier (optional; Keyword)

Can be one of Public, Protected, Friend, Protected Friend, Private, or Static. If one of
included, the Dim keyword can be omitted.

Shared (optional; Keyword)

Indicates the the variable is not associated with any particular class instance but is accessible directly using the class
name and is therefore "shared" by all class instances.

Shadows (optional; Keyword)

Indicates that the variable shadows any programming elements (variables, procedures, enums, constants, etc.) of
the same name in a base class.

WithEvents (optional; Keyword)

In an object variable definition, indicates that the object will receive event notification

varname (required)

The name of the variable

subscripts (optional)

Dimensions of an array variable

New (optional; Keyword)

Keyword that creates an instance of an object

type (optional unless Option Strict is On)

The data type of varname

initexpr (optional)

Any expression that provides the initial value to assign to the variable; cannot be used if an As

Description

Declares and allocates storage space in memory for variables. The Dim statement is used either at the start of a
or the start of a module to declare a variable of a particular data type.

Rules at a Glance

Public, Friend, Shared, Shadows, and ReadOnly can only be used at the module, namespace, or file level, not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public, Friend, Shared, Shadows, and ReadOnly can only be used at the module, namespace, or file level, not
at the procedure level.

Protected and Protected Friend can appear only at the class level.

Private can appear only at the module level.

Static can be used only at the procedure level.

Static and Shared cannot appear in the same Dim statement.

Static cannot appear with either Shared or Shadows.

If you use WithEvents, the variable type cannot be of type Object.

Object is the default data type created when no data type is explicitly declared.

The declaration of a nonobject variable actually creates the variable. For an object variable, the variable is not
created unless the optional New statement is used. If not, then the object variable is set to Nothing
assigned a reference to an existing object at some later point in the code.

When multiple variables are declared on the same line, if a variable is not declared with an explicit type declaration,
then its type is that of the next variable with an explicit type declaration. Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j have type Variant.)

VB.NET permits the initialization of variables in the same line as their declaration (at long last!). Thus, we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than one variable on a
single line:

Dim x As Integer = 6, y As Integer = 9

Variables that are not explicitly initialized by the Dim statement have the following default values:

Data type Initial value
All numeric types 0

Boolean False
Date 01/01/0001 12:00:00 AM

Decimal 0

Object Nothing
String Nothing

Local variables can have procedure-level scope or block-level scope. A variable that is declared using the
keyword within a Visual Basic procedure but not within a code block has procedure-level scope; that
consists of the procedure in which it is declared. On the other hand, if a variable is declared inside a
a set of statements that is terminated by an End..., a Loop, or a Next statement), then the variable has block-level
scope; that is, it is visible only within that block.

A variable cannot be declared using the Dim statement with WithEvents within a method, function, or procedure,
since this creates a local variable with procedure-level scope only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, all arrays have a lower bound of 0. This is a change from earlier versions of VB, where we could choose
the lower bound of an array.

To declare a one-dimensional array variable, use one of the following example syntaxes:

'Implicit constructor: No initial size & no initialization

Dim Arrayname() As Integer

'Explicit constructor: No initial size & no initialization

Dim Arrayname() As Integer = New Integer() {}

'Implicit constructor: Initial size but no initialization

Dim Arrayname(6) As Integer

'Explicit constructor: Initial size but no initialization

Dim Arrayname() As Integer = New Integer(6) {}

'Implicit constructor: Initial size implied by initialization

Dim Arrayname() As Integer = {1, 2, 3, 4, 5, 6, 7}

'Explicit constructor, Initial size and initialization

Dim Arrayname() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

To declare a multidimensional array, use one of the following example syntaxes:

' Two-dimensional array of unknown size

Dim arrayname(,) As Integer

' Two-dimensional array of unknown size

Dim arrayname(,) As Integer = New Integer(,) {}

' Two-dimensional array of size 3 by 2

Dim arrayname(3, 2) As Integer

' Two-dimensional array of size 3 by 2

Dim arrayname(,) As Integer = New Integer(3, 2) {}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim arrayname(,) As Integer = New Integer(3, 2) {}

' Two-dimensional array of size 3 by 2, initialized

Dim arrayname(,) As Integer = {{1, 4}, {2, 5}, {3, 6}}

' Two-dimensional array of size 3 by 2, initialized

Dim arrayname(,) As Integer = New Integer(3, 2) {{1, 4}, _

 {2, 5}, {3, 6}}

The WithEvents keyword cannot be used when declaring an array.

You can set or change the number of elements of an array using the ReDim statement.

The maximum allowed dimensions for an array are 60.

Programming Tips and Gotchas

When you declare an object reference as WithEvents, that object's events can be handled within your application.
Object variables must be declared WithEvents at the module level to allow you to provide an error handler.

When you declare an object variable as WithEvents in the declarations section of the module, the name of the
object variable appears in the Object drop-down list at the top left of your code window. Select this and note that the
events exposed by the object are available in the Procedure drop-down list at the top right of the code window. You
can then add code to these event procedures in the normal way, as shown here:

Private WithEvents oEmp As Employee

Private Sub oEmp_CanDataChange(EmployeeCode As String, _

 Cancel As Boolean)

 'event handling code goes here

End Sub

Private Sub oEmp_DataChanged(EmployeeCode As String)

 'event handling code goes here

End Sub

For a fuller description and discussion of the uses of WithEvents, Event, and RaiseEvent
RaiseEvent, and WithEvents entries.

One word of warning when using the WithEvents keyword: if you are building a client-server system using a
WithEvents object reference, you must ensure that the client machine gives permission for the server machine to
create processes on it. Otherwise, even though the client can create instances of the object on the server, the server
will not be able to call back to the client with event notifications. In fact, your application will not even launch before a
"Permission Denied" or similar error is generated. You can alter the permissions on the client using
Config utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The way in which you declare an Object variable with the Dim statement dictates whether your application
binding or late binding. Early binding allows object references to be resolved at compile time. Late binding resolves
an object reference at runtime, which has a negative impact on runtime efficiency. To optimize the performance, you
should use early binding whenever possible. For more information on this, see the discussion
3.

When you declare an array without dimensioning it, you risk an ArgumentNullException exception if you attempt to
iterate the array, as in the following code fragment:

Dim aInts(), iCtr As Integer

For iCtr = 0 To UBound(aInts)

 Console.WriteLine(aInts(iCtr)) ' Raises exception

Next

One workaround is to declare an empty array as having -1 element, as

the following code fragment illustrates:

Dim aInts(-1) As Integer

For iCtr = 0 to UBound(aInts) ' For loop never executed

 Console.WriteLine(aInts(iCtr))

Next

VB.NET/VB 6 Differences

In VB 6, all variables declared using Dim without specifying a specific data type are created as Variants. In VB.NET,
all variables whose data type is not specified are Objects.

When multiple variables are declared on a single line of code in VB 6, variables not explicitly assigned a data type
are cast as variants. For example, in the statement:

Dim Var1, Var2, Var3 As String

both Var1 and Var2 are variants rather than strings. In VB.NET, the type declaration applies to all undeclared
variables since the last explicit type declaration. So the previous statement in VB.NET would cast
Var3 as strings.

In VB 6, variables cannot be initialized at the same time they are declared. In VB . NET, variables can be assigned
an initial value when they are declared.

In VB 6, all variables defined within a procedure using the Dim keyword have procedure-level scope. In VB.NET,
variables defined using Dim in code blocks (such as loops) have block-level scope and are not accessible
throughout the procedure. Hence, code such as the following works under VB6 but may fail to compile under
VB.NET:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim iCtr As Integer

'Nested loop

For iCtr = 0 To 10000

 Dim iCtr2 As Integer

 For iCtr2 = 0 To 10000

 Next

Next

' Reinitialize iCtr2

iCtr2 = 0

End Sub

VB 6 supports fixed-length strings, but they are not supported in VB.NET.

In VB 6, if an object is instantiated using the New keyword as part of a Dim statement, testing for the validity of the
object reference with a statement such as:

If obj Is Nothing Then

always fails, since the statement itself reinstantiates the object if it is Nothing. In VB.NET, this undesirable
has been changed, and setting the object to Nothing destroyes the object.

In VB 6, you could instantiate an object instantiated using the New keyword as part of a Dim statement, release the
object reference by setting it to nothing, then reinstantiate the object by referencing it or its members. In
setting the object reference to Nothing destroys the object; subsequent attempts to reference the object
NullReferenceException exception.

In VB 6, arrays could be either fixed length or dynamic; in VB.NET, all arrays are dynamic.

VB 6 allows you to define the lower bound of an array when it is initialized. In VB.NET, all arrays have a lower bound
of 0. For example, the VB 6 syntax:

Dim array(1 To 20) As String

is not supported in VB.NET.

In VB.NET, an array cannot be declared using the New keyword. Practically, this means that you
array of creatable objects, and must instead use a collection. VB 6, in contrast, allows arrays

See Also

Private Statement, Public Statement, ReDim Statement, Static Statement, WithEvents Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Dir[(pathname[, attributes])]

pathname (optional; String)

A string expression that defines a path, which may contain a drive name, a folder name,
and a filename

attributes (optional; Numeric or Constant of the FileAttribute enumeration)

A FileAttribute enumeration constant or numeric expression specifying the file
attributes to be matched

Return Value

String

Description

Returns the name of a single file or folder matching the pattern and attribute passed to the
function

Rules at a Glance

A zero-length string ("") is returned if a matching file is not found.

Possible values for attributes are:

FileAttribute enumeration Value Description
Normal 0 Normal (not hidden and not a system file)

ReadOnly 1 Read-only file

Hidden 2 Hidden

System 4 System file

Volume 8 Volume label; if specified, all other attributes are ignored

Directory 16 Directory or folder

Archive 32 Archive

Alias 64 Alias or link

The attributes constants can be Ored together to create combinations of attributes to
match; e.g., FileAttribute.Hidden Or FileAttribute. Directory will match

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

match; e.g., FileAttribute.Hidden Or FileAttribute. Directory will match
hidden directories.

If attributes is not specified, files matching pathname are returned regardless of
attributes.

You can use the wildcard characters * and ? within pathname to return multiple files.

Although pathname is optional, the first call you make to Dir must include it. pathname
must also be specified if you are specifying attributes. In addition, once Dir returns a
zero-length string, subsequent calls to Dir must specify pathname, or runtime error 5,
"Invalid procedure call or argument," results.

A call to Dir with no arguments continues the search for a file matching the last used
pathname argument (and attribute argument, if it was supplied).

Example

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sFileName As String

 Dim sPath As String = "c:\windows*.txt"

 sFileName = Dir(sPath)

 Do While sFileName > ""

 ListBox1.Items.Add(sFileName)

 sFileName = Dir()

 Loop

 End Sub

Programming Tips and Gotchas

Dir can only return one filename at a time. To create a list of more than one file that
matches pathname, you must first call the function using the required parameters, then
make subsequent calls using no parameters. When there are no more files matching the
initial specification, a zero-length string is returned. Once Dir has returned a zero-length
string, you must specify a pathname in the next call, or an error is generated.

In previous versions of Visual Basic, the Dir function was commonly employed to determine
whether a particular file existed. Although it can still be used for this purpose, the use of the
BCL System.IO namespace's File.Exists method is more straightforward. Since Exists is a
shared public member of the File class, it can be called as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If File.Exists("c:\windows\network.txt")

The Dir function returns filenames in the order in which they appear in the file-allocation
table. If you need the files in a particular order, you should first store the names in an array
before sorting. Note that an array can be easily sorted using the Array object's Sort method;
the Array class is part of the BCL's System namespace.

The Dir function saves its state between invocations. This means that the function cannot
be called recursively. For example, if the function returns the name of the directory, you
cannot then call the Dir function to iterate the files in that directory and then return to the
original directory.

If you are calling the Dir function to return the names of one or more files, you must provide
an explicit file specification. In other words, if you want to retrieve the names of all files in
the Windows directory, for instance, the function call:

strFile = Dir("C:\Windows", FileAttribute.Normal)

necessarily fails. Instead, the Dir function must be called with pathname defined as
follows:

strFile = Dir("C:\Windows*.*", FileAttribute.Normal)

A major limitation of Dir is that it returns only the filename; it does not provide other
information, such as the size, date, and timestamp, or attributes of a file.

Many difficulties with the Dir function result from not fully understanding how various
attributes constants affect the file or files returned by the function. By default, Dir
returns a "normal" file (i.e., a file whose hidden or system attributes are not set). Hidden
returns a normal file or a hidden file, but not a system file and not a system file that is
hidden. System returns a normal file or a system file, but not a hidden file, including a
system file that is hidden. FileAttribute.System Or FileAttribute.Hidden
returns any file, regardless of whether it is normal, hidden, system, or system and hidden.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DirectCast Function

Named Arguments

No

Syntax

DirectCast(expression, typename)

expression (required; any)

The data item to be converted

typename (required; Keyword)

The data type, object type, structure, or interface to which expression is to be converted

Return Value

expression cast as a typename interface or object

Description

Converts an expression to its runtime data type, if possible; otherwise, returns an error.

Rules at a Glance

expression must be a reference type, typically a variable of type Object..

typename can be any data type (such as Boolean, Byte, Decimal, Long, Short, String,
etc.), structure type, object type, or interface.

If the function fails, an InvalidCastException exception occurs.

Programming Tips and Gotchas

In contrast to the CType function, DirectCast converts a reference type (i.e., an object) to
its runtime type. For instance,

Option Strict On

Imports System

Public Module modMain

 Public Sub Main

 Dim oVal As Object = "a"c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim oVal As Object = "a"c

 Dim chVal As Char = DirectCast(oVal, Char)

 Console.WriteLine(chVal)

 End Sub

End Module

DirectCast can also be used to convert an object of a derived type to its base type. For
example:

Option Strict On

Imports System

Public Class Person

 ' Implementation of Person

End Class

Public Class Worker

 Inherits Person

 ' Implementation of Worker

End Class

Public Module modMain

 Public Sub Main

 ' Conversion of a derived to a base type

 Dim oWorker As New Worker()

 Dim oPerson As Person = oWorker

 Dim oPerson As Person = DirectCast(oWorker, Person)

 End Sub

End Module

Like most of the conversion functions, DirectCast is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DirectCast function is new to VB .NET.

See Also

CType Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory Class

Namespace

System.IO

Createable

No

Description

The Directory class represents a directory or folder. (It appears that Microsoft is retreating from
the term folder, in favor of the legacy term directory.) The Directory class has a number of
methods that allow you to retrieve information about the directory's system properties, to move
and delete a directory, and to create a new directory. (Unfortunately, however, the Directory class
lacks a Copy method.)

All of the members of the Directory class are shared methods, so they can be called without
instantiating any objects. For example, you can call the CreateDirectory method as follows:

Directory.CreateDirectory("C:\projects\project1")

This syntax may seem a bit awkward, especially to those familiar with earlier version of VB.
Rather than the Directory object itself representing a directory, as it does in the case of a Folder
object in the VB 6 FileSystemObject object model, the Directory class is simply a means to
access a set of directory-related functions.

Directory class members marked with a plus sign (+) are discussed in further detail in their own
entries.

Public Shared Methods

CreateDirectory +
Delete +
Exists +
GetCreationTime +
GetCurrentDirectory
GetDirectories +
GetDirectoryRoot +
GetFiles +
GetFileSystemEntries +
GetLastAccessTime
GetLastWriteTime
GetLogicalDrives +
GetParent +
Move +
SetCreationTime
SetCurrentDirectory
SetLastAccessTime
SetLastWriteTime

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Directory object loosely corresponds to the Folder object in the FileSystemObject object
model. (The FileSystemObject object and its child objects are implemented in the Microsoft
Scripting Runtime Library in the file scrrun.dll.) There is, however, a significant difference in the
members of each class, and in some cases, methods with similar functionality have different
names.

See Also

File Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.CreateDirectory Method

Class

System.IO.Directory

Syntax

Directory.CreateDirectory(path)

path (required; String)

The path of the new directory

Return Value

None

Description

Creates a new directory

Rules at a Glance

path must represent a legal path.

path can be an absolute or a relative path. For example:

Directory.CreateDirectory("C:\Temp")

specifies an absolute path (it begins with a drive's root directory), while:

Directory.CreateDirectory("..\Chapter2")

is a relative path that begins from the current directory. Relative paths can make use of the
"." and ".." characters, which represent the current directory and the parent of the current
directory, respectively.

The CreateDirectory method creates all directories required to create a specified path. For
example, the code:

Directory.CreateDirectory("c:\NewDirectory\NewSubDirectory")

will create the NewDirectory folder if it does not exist and then the newSubDirectory folder if
it does not exist.

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

Programming Tips and Gotchas

The CreateDirectory method does not raise an error if the directory to be created already exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.Delete Method

Class

System.IO.Directory

Syntax

Directory.Delete(path [,recursive])

path (required; String)

The path of the folder to delete.

recursive (optional; Boolean)

Indicates whether the folder and its contents are to be deleted if the folder is not empty. Its
default value is False.

Return Value

None

Description

Removes or deletes an existing directory

Rules at a Glance

If path does not exist, the method generates a runtime error.

If recursive is set to False (its default value), the directory must be empty to be
successfully deleted; otherwise, a runtime error will be generated.

If recursive is set to True, the method will delete not only the final directory in path, but
also of its files and all of its subdirectories, as well as all nested subdirectories and nested
files.

path can be either an absolute path (a complete path from the root directory to the
directory whose existence is to be confirmed) or a relative path (starting from the current
directory to the path whose existence is to be confirmed).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

Programming Tips and Gotchas

The Delete method permanently deletes directories and their contents. It doesn't move
them to the Recycle Bin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Care must be taken when setting recursive to True due to the danger of accidentally
removing files, especially since the method does not prompt whether it should delete any
folders or files.

If the user has adequate rights, the source or destination can be a network path or share
name. For example:

Directory.Delete("\\NTSERV1\d$\RootTwo")

Directory.Delete("\\RootTest")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.Exists Method

Class

System.IO.Directory

Syntax

Directory.Exists(path)

path (required; String)

The path of the directory whose existence is to be determined

Return Value

True if the specified path exists; False otherwise

Description

Determines whether a given directory exists

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose existence is to be confirmed) or a relative path (starting from the current
directory to the path whose existence is to be confirmed).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetCreationTime Method

Class

System.IO.Directory

Syntax

Directory.GetCreationTime(path)

path (required; String)

A valid path

Return Value

A Date value indicating the creation date and time of the directory

Description

Indicates when a given directory was created

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose creation time is to be retrieved) or a relative path (starting from the current
directory to the directory whose creation time and existence is to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetDirectories Method

Class

System.IO.Directory

Syntax

Directory.GetDirectories(path [, searchpattern])

path (required; String)

A valid path to a directory

searchpattern (optional; String)

A directory specification, including wildcard characters

Return Value

An array of strings, each element of which is the name of a subdirectory

Description

Returns the names of the subdirectories in a particular directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose subdirectories are to be retrieved) or a relative path (starting from the
current directory to the directory whose subdirectories are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those directories whose names
match the string, which can contain wildcard characters. Otherwise, searchpattern
returns the names of all the subdirectories in the target directory specified by path.

If the directory specified by path has no subdirectories, or if no directories match
searchpattern, an empty array is returned.

Example

The following code displays all subdirectories of c:\ whose names start with the letter P:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim sDirs() As String

Dim i As Integer

sDirs = Directory.GetDirectories("c:\", "P*")

For i = 0 To UBound(sDirs)

 Console.WriteLine(sDirs(i))

Next

Programming Tips and Gotchas

Since GetDirectories can return an empty array, you can prevent an array access error in either of
two ways: you can iterate the returned array using the For Each...Next construct, or you can
retrieve the value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetFiles Method, Directory.GetFileSystemEntries Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetDirectoryRoot Method

Class

System.IO.Directory

Syntax

Directory.GetDirectoryRoot(path)

path (required; String)

A valid path to a directory

Return Value

A String containing the name of the root directory of path

Description

Returns the name of the root directory of the drive on which path resides (assuming that path is
valid). For example, the code:

Directory.GetDirectoryRoot("c:\program files\accessories")

returns the string C:\ as the root directory.

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the target
directory) or a relative path (starting from the current directory to the target directory).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path. For example, the code:

Directory.GetDirectoryRoot("\\Pentium\C\AFolder")

returns \\Pentium\C, and if the folder \\Pentium\C\AFolder maps to the network drive Z,
then:

Directory.GetDirectoryRoot("Z:\temp")

returns Z:\.

path cannot contain wildcard characters.

See Also

Directory.GetParent Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetFiles Method

Class

System.IO.Directory

Syntax

Directory.GetFiles(path [, searchpattern])

path (required; String)

A valid path to a directory

searchpattern (optional; String)

A file specification, including the wildcard characters * and ?

Return Value

An array of strings, each element of which contains the name of a file

Description

Returns the names of the files in a specified directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose filenames are to be retrieved) or a relative path (starting from the current
directory to the directory whose filenames are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those files whose names match
the string, which can contain wildcard characters. Otherwise, the function returns the
names of all the files in the path directory.

If the directory specified by path has no files, or if no files match searchpattern, an
empty array is returned.

Example

The following code displays all files in c:\ that have the extension .txt:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim sFiles() As String

Dim i As Integer

sFiles = Directory.GetFiles("c:\", "*.txt")

For i = 0 To UBound(sFiles)

 Console.WriteLine(sFiles(i))

Next

Programming Tips and Gotchas

Since GetFiles can return an empty array, you can prevent an array-access error in either of two
ways: you can iterate the returned array using the For Each... Next construct, or you can
retrieve the value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFileSystemEntries Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetFileSystemEntries Method

Class

System.IO.Directory

Syntax

Directory.GetFileSystemEntries(path [, searchpattern])

path (required; String)

A valid path to a directory

searchpattern (optional; String)

A file specification, including wildcard characters

Return Value

An array of strings, each element of which contains the name of a filesystem entry (that is, a file or
directory) in the path directory

Description

Returns the names of the filesystem entries (that is, of files and directories) in a specified
directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose entries are to be retrieved) or a relative path (starting from the current
directory to the directory whose entries are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those filesystem entries whose
names match the string, which can contain wildcard characters. Otherwise, the function
returns the names of all the filesystem entries in the target directory specified by path.

If the directory specified by path has no filesystem entries, or if no filesystem entries match
searchpattern, an empty array is returned.

Example

The following code displays all filesystem entries in c:\:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim sEntries() As String

Dim i As Integer

sEntries = Directory.GetFileSystemEntries("c:\")

For i = 0 To UBound(sEntries)

 Console.WriteLine(sEntries (i))

Next

Programming Tips and Gotchas

The GetFileSystemEntries method combines the functionality of the GetDirectories and
GetFiles methods.

Since GetFileSystemEntries can return an empty array, you can prevent an array-access
error in either of two ways: you can iterate the returned array using the For Each...Next
construct, or you can retrieve the value of the UBound function, which is -1 in the case of
an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFiles Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetLogicalDrives Method

Class

System.IO.Directory

Syntax

Directory.GetLogicalDrives()

Return Value

An array of strings, each element of which contains the name of the root directory on each logical
drive on a system

Description

Retrieves the names of all logical drives and root directories on a system

Rules at a Glance

In the case of a mapped network drive, GetLogicalDrives returns the letter to which the drive is
mapped. For instance, if the folder \\Pentium\C\AFolder is mapped to the Z drive, then
GetLogicalDrives will return Z:\ for this logical drive.

Example

Dim sDrives() As String

Dim i As Integer

sDrives = Directory.GetLogicalDrives()

For i = 0 To UBound(sDrives)

 Console.WriteLine(sDrives(i))

Next

On my system, this code displays the following:

A:\

C:\

D:\

E:\

F:\

G:\

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.GetParent Method

Class

System.IO.Directory

Syntax

GetParent(path)

path (required; String)

A valid path to a directory

Return Value

A DirectoryInfo object representing the parent directory of path (assuming that path is valid).

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the
directory whose filenames are to be retrieved) or a relative path (starting from the current
directory to the directory whose filenames are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a
UNC path.

path cannot contain wildcard characters.

Programming Tips and Gotchas

The DirectoryInfo object has properties Name and ToString (among others). The Name property
returns only the name of the directory, while the ToString property returns its absolute path. Thus,
the following code displays the string program files:

MsgBox(Directory.GetParent("c:\program files\accessories").Name)

whereas the following code displays the string c:\program files:

MsgBox(Directory.GetParent("c:\program files\accessories").ToString)

See Also

Directory.GetDirectoryRoot Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory.Move Method

Class

System.IO.Directory

Syntax

Directory.Move(sourcedirname, destdirname)

sourcedirname (required; String)

The name of the directory to be moved

destdirname (required; String)

The location to which the source drive and its contents are to be moved

Return Value

None

Description

Moves a directory and all its contents, including nested subdirectories and their files, to a new
location

Rules at a Glance

sourcedirname can be either an absolute path (a fully qualified path from the root
directory to the directory to be moved) or a relative path (starting from the current directory
to the directory to be moved).

sourcedirname and destdirname can be either a path on the local system, the path of
a mapped network drive, or a UNC path.

Neither sourcedirname nor destdirname can contain wildcard characters.

destdirname must be either a fully qualified path or a relative path.

destdirname can also be an absolute path or a relative path, except that it must include
the name to be assigned to the moved directory. This allows you to rename the directory at
the same time as you move it.

If the directory indicated by destdirname already exists, an error occurs.

Example

Suppose that the C drive contains the following folders:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c:\docs\letters

c:\Documents and Settings

Moving the letters folder to make it a subdirectory of c:\Documents and Settings is done by the
following code:

Directory.Move("c:\docs\letters", _

 "c:\Documents and Settings\letters")

Thus, the first argument is the fully qualified name of the folder to move. The second argument is
the path that results after the move is made, whereas one might have expected this argument to
be the target folder for letters, which is c:\ Documents and Settings.

See Also

Directory.Delete Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do...Loop Statement

Syntax

Do [{While | Until} condition]

 [statements]

[Exit Do]

 [statements]

Loop

or:

Do

 [statements]

[Exit Do]

 [statements]

Loop [{While | Until} condition]

condition (optional; Boolean expression)

An expression that evaluates to True or False

statements (optional)

Program statements that are repeatedly executed while, or until, condition is True

Description

Repeatedly executes a block of code while or until a condition becomes True

Rules at a Glance

On its own, Do...Loop infinitely executes the code that is contained within its boundaries.
You therefore need to specify within the code under what conditions the loop is to stop
repeating. In addition, if the loop executes more than once, the variable controlling loop
execution must be modified inside of the loop. For example:

Do

 intCtr = intCtr + 1 ' Modify loop control variable

 MsgBox("Iteration " & intCtr & " of the Do loop...")

 ' Compare to upper limit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Compare to upper limit

 If intCtr = 10 Then Exit Sub

Loop

Failure to do this results in the creation of an endless loop.

Adding the Until keyword after Do instructs your program to Do something Until the
condition is True. Its syntax is:

Do Until condition

 'code to execute

Loop

If condition is True before your code gets to the Do statement, the code within the
Do...Loop is ignored.

Adding the While keyword after Do repeats the code while a particular condition is True.
When the condition becomes False, the loop is automatically exited. The syntax of the Do
While statement is:

Do While condition

 'code to execute

Loop

Again, the code within the Do...Loop construct is ignored if condition is False when
the program arrives at the loop.

In some cases, you may need to execute the loop at least once. You might, for example,
evaluate the values held within an array and terminate the loop if a particular value is
found. In that case, you would need to execute the loop at least once. To accomplish this,
you can place the Until or the While keyword along with the condition after the Loop
statement. Do...Loop Until always executes the code in the loop at least once, and
continues to loop until the condition is True. Likewise, Do...Loop While always executes
the code at least once, and continues to loop while the condition is True. The syntax of
these two statements is as follows:

Do

 'code to execute

Loop Until condition

Do

 'code to execute

Loop While condition

A Null condition is treated as False.

Your code can exit the loop at any point by executing the Exit Do statement.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll also encounter situations in which you intend to execute the loop continually while or until a
condition is True, except in a particular case. This type of exception is handled using the Exit
Do statement. You can place as many Exit Do statements within a Do...Loop structure as you
require. As with any exit from a Do...Loop, whether it is exceptional or normal, the program
continues execution on the line directly following the Loop statement. The following code
fragment illustrates the use of Exit Do:

Do Until condition1

 'code to execute

 If condition2 Then

 Exit Do

 End if

 'more code to execute - only if condition2 is false

Loop

See Also

While...End While Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E Field

Class

System.Math

Syntax

Math.E

Description

This field returns the approximate value of the irrational number e, which is the base of the natural
logarithm and the base of the natural exponential function. In particular:

Math.E = 2.71828182845905

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The E Field is new to VB.NET.

See Also

Pi Field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End... Statement

Syntax

End

End Class

End Enum

End Function

End Get

End If

End Interface

End Module

End Namespace

End Property

End Select

End Set

End Structure

End Sub

End SyncLock

End Try

End With

End While

Description

Ends a procedure or a block of code

Rules at a Glance

The End statement is used as follows:

Statement Description
End Terminates program execution

End Class Marks the end of a class definition

End Enum Marks the end of a series of enumerated constants

End Function Marks the end of a Function procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marks the end of a Function procedure

End Get Marks the end of a Property Get definition

End If Marks the end of an If...Then...Else statement

End Interface Marks the end of an interface definition

End Module Marks the end of a code module

End Namespace Markes the end of a namespace definition

End Property Marks the end of a Property Let, PropertyGet, or Property Set
procedure

End Select Marks the end of a Select Case statement

End Set Marks the end of a Property Set definition

End Structure Ends the definition of a structure or user-defined type

End Sub Marks the end of a Sub procedure

End SyncLock Terminates synchronization code

End Try Marks the end of a Try...Catch statement

End With Marks the end of a With statement

End While Marks the end of a While statement

Programming Tips and Gotchas

When used alone, the End statement wraps calls to the private FileSystem.CloseAllFiles function,
as well as to the System.Environment object's Exit method, making it relatively safe to call to
terminate an application. However, it does not release resources not automatically handled by the
garbage collector, and does not automatically call the Finalize destructor.

VB.NET/VB 6 Differences

In VB 6, the End statement used by itself was to be avoided, since it terminated program
execution abruptly without performing normal cleanup operations. In VB.NET, End is much
safer, and is not to be avoided.

A number of the End... statements are new to VB.NET. These include End Class (classes
are defined in separate CLS files in VB 6), End Get (Property Get statements are
terminated with an End Property statement in VB 6), End Interface (interfaces are
implemented as virtual base classes in VB 6), End Module (code modules are defined in
separate BAS files in VB 6), End Namespace (namespaces do not exist in VB 6), End Set
(Property Set and Property Let statements are terminated with an End Property
statement in VB 6), End Try (VB 6 does not support structured exception handling), and
End While (VB 6 supports the Wend statement to terminate a While loop).

See Also

Exit Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enum Statement

Syntax

accessmodifier Enum name [As type]

 membername [= constantexpression]

 membername [= constantexpression]

 ...

End Enum

accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, Friend, Protected,
or Protected Friend. For more information, see Section 4.7 in Chapter 4.

name (required; String literal)

The name of the enumerated data type.

membername (required; String literal)

The name of a member of the enumerated data type.

constantexpression (optional; Long)

The value to be assigned to membername.

type (optional; Keyword)

The data type of the enumeration. All enumerated members must be integers; possible
values are Byte, Short, Integer, and Long.

Description

Defines an enumerated data type. All of the values of the data type are defined by the instances
of membername.

Rules at a Glance

The Enum statement can only appear at module level, in the declarations section of a form,
code module, or class module.

Access rules for Enums are the same as for variables and constants. In particular, the
optional accessmodifier can be any one of the following: Public, Private,
Protected, Friend, or Protected Friend. The following table describes the effects of
the various access modifiers:

 Direct access scope Class/object access scope
Private Declaring class Declaring class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

constantexpression can be either a negative or a positive number. It can also be
another member of an enumerated data type or an expression that includes integers and
enumerated data types.

If you assign a floating point value to constantexpression, it is automatically rounded
and converted to an integer only if Option Strict is off; otherwise, it generates a compiler
error.

If you do not specify type, it defaults to Integer.

If constantexpression is omitted, the value assigned to membername is 0 if it is the first
expression in the enumeration. Otherwise, its value is 1 greater than the value of the
preceding membername.

The values assigned to membername cannot be modified at runtime.

Programming Tips and Gotchas

Once you define an enumerated type, you can use name as the return value of a function.
For example, given the enumeration:

Public Enum enQuarter

 enQ1 = 1

 enQ2 = 2

 enQ3 = 3

 enQ4 = 4

End Enum

you can use it as the return value of a function, as illustrated by the following function
declaration:

Public Function QuarterFromDate(datVar as Date) _

 As enQuarter

You can also use it in a procedure's parameter list when defining a parameter's data type,
as in the following code fragment:

Public Function GetQuarterlySales(intQ As enQuarter) _

 As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 As Double

Although you can declare an enumerated type as the argument to a procedure or the return
value of a function, VB.NET does not provide type safety in these cases. That is, if the
value of the argument or the return value of the function is outside of the range of the
enumerated type, VB.NET does not generate an error. In cases such as these, you should
rely on validation routines to make sure that an input value is in fact within the range of an
enumerated type.

Individual values of an enumerated type can be used in your program just like normal
constants, except that they must be prefaced with the name of the enumeration.

Enumerated types provide the advantage of allowing you to replace numeric values with
more mnemonic labels and of allowing you to select values using the Auto List Members
feature in the Visual Studio IDE.

If you want to retrieve or display the name of an enumerated member rather than its value,
you can use the member's ToString method. For example:

Public Module modMain

Public Enum WorkDayTypes

 Weekday = 0

 Weekend = 1

 Holiday = 2

 Floating = 3

 Personal = 4

 Vacation = 5

End Enum

Public Sub Main

 Dim enDay As WorkDayTypes = WorkDayTypes.Vacation

 Console.WriteLine(enDay.ToString()) ' Displays

 '"Vacation"

End Sub

End Module

VB.NET/VB 6 Differences

In VB 6, members of an enumeration can be accessed without having to qualify them with
the name of the enumeration to which they belong. In VB.NET, this behavior is not
permitted; all members of an enumeration can only be accessed by referring to the name of
their enumeration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB 6, all enumerated members are Longs. In contrast, VB.NET allows you to define the
integer data type of the enumeration's members.

In VB 6, members of a public enumeration can be hidden from the Object Browser by
adding a leading underscore to the member name. For example, in the enumeration:

Public Enum Primes

 [_x0] = 0

 x1 = 1

 x2 = 3

End Enum

the constant _x0 is hidden in Intellisense and the Object Browser unless the Object
Browser's Show Hidden Members option is selected. In Visual Studio .NET, a leading
underscore does not hide a member.

See Also

Const Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Environ Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Environ(expression)

expression (required; String, or a numeric expression)

If expression is a string, it must be the name of the required environment variable; if
expression is numeric, it must be the 1-based ordinal number of the environment
variable within the environment table.

Return Value

A String containing the text assigned to expression

Description

Returns the value assigned to an operating-system environment variable

Rules at a Glance

A zero-length string ("") is returned if expression does not exist in the operating system's
environment-string table or if there is no environment string in the position specified by
expression.

expression can be either a string or a numeric expression; that is, you can specify one or
the other, but not both.

Example

Public Module modMain

Public Structure env

 Dim strVarName As String

 Dim strValue As String

End Structure

Public Sub Main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Main()

Dim intCtr, intPos As Integer

Dim strRetVal As String

Dim udtEnv As env

intCtr = 1

Do

 strRetVal = Environ(intCtr)

 If strRetVal <> "" Then

 intPos = InStr(1, strRetVal, "=")

 udtEnv.strVarName = Left(strRetVal, intPos - 1)

 udtEnv.strValue = Mid(strRetVal, intPos + 1)

 Console.Writeline(udtEnv.strVarName & ": " & udtEnv.strValue)

 Else

 Exit Do

 End If

 intCtr = intCtr + 1

Loop

End Sub

End Module

Programming Tips and Gotchas

If expression is numeric, both the name and the value of the variable are returned. An
equal sign (=) is used to separate them. For example, the function call Environ(1) might
return the string TEMP=C:\WINDOWS\TEMP.

If you retrieve environment variables and their values by ordinal position, the first variable is
in position 1, not position 0.

Due to the flexibility offered, it is now accepted and recommended practice to use the
registry for variables needed by your application, rather than the environment-string table.

Environment variables can be defined in a variety of ways, including by the
AUTOEXEC.BAT and MSDOS.SYS files, as well as by the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Control\SessionManager\
Environment and HKEY_CURRENT_USER\Environment keys in the registry.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB 6, the Environ function retrieved environmental variables and their values only from
the environment-string table. In VB.NET, the function retrieves values both from the
environment-string table and the system registry.

In VB 6, the function could be called using either the envstring named argument (if the
argument was the name of an environment variable) or the number named argument (if
the number represented the ordinal position of the variable in the environment table).
VB.NET replaces these with a single named argument, expression.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

EOF(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

A Boolean indicating when the end of the file has been reached

Description

Returns a Boolean indicating when the end of the file has been reached. Applies to files opened
for binary, random, or sequential input.

Rules at a Glance

filenumber must be an Integer that specifies a valid file number.

If a file is opened for binary access, you cannot use EOF with the Input procedure.
Instead, use LOF and Loc. If you want to use EOF, you must use FileGet rather than
Input. In this case, EOF returns False until the previous FileGet procedure is unable to
read an entire record.

Example

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read, _

 OpenShare.Default, -1)

Do While Not EOF(fr)

 sLine = LineInput(fr)

 Console.WriteLine(sLine)

Loop

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EOF allows you to test whether the end of a file has been reached without generating an
error.

Because you always write data to sequential files at the end of the file, the file marker is
always at the end of the file, and EOF will therefore always return True when testing files
opened with their modes set equal to either Input or Append.

See Also

LOF Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Erase Statement

Syntax

Erase arraylist

arraylist (required; String literal)

A list of array variables to clear

Description

Releases an array object. This is equivalent to setting the array variable to Nothing.

Rules at a Glance

Specify more than one array to be erased by using commas to delimit arraylist.

The Erase statement causes all memory allocated to arrays to be released.

Programming Tips and Gotchas

Once you use Erase to clear an array, it must be redimensioned with ReDim before being used
again. This is because Erase releases the memory storage used by the array.

See Also

Dim Statement, ReDim Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Erl Property

Class

Microsoft.VisualBasic.Information

Syntax

Erl

Return Value

An Integer containing the line number

Description

Indicates the line number on which an error occurred

Rules at a Glance

Erl returns the line number only if one has been provided in the source code.

If the error occurs on a line that does not have a line number, Erl returns 0.

Programming Tips and Gotchas

Erl is not affected by compiler settings. Compiling with the /debug- switch does not prevent
Erl from accurately reporting the line number.

Line numbers are rarely used in modern VB code. In VB.NET, line numbers are labels that
must be followed by a colon.

Although programmers have been requesting an error-handling function that reports the
line number on which an error occurred, Erl has one major limitation: namely, it requires
that the developer assign a line number to source code lines in advance.

Erl is not new to VB.NET. It was an undocumented and little known function in previous
versions of Visual Basic (and of QBasic as well).

VB.NET/VB 6 Differences

In VB 6, line numbers are distinct from labels, and do not require that any symbol (other than
white space) separate them from their lines' source code. In VB.NET, line numbers are labels that
must be followed by a colon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err Object

Class

Microsoft.VisualBasic.ErrObject

Createable

No

Description

The Err object contains properties and methods that allow you to obtain information about a single
runtime error in a Visual Basic program. The Err object also lets you generate errors and reset the
error object. Because the Err object is an intrinsic object with global scope (which means that it is
part of every VB project you create), you do not need to create an instance of it within your code.

When an error is generated in your application — whether it is handled or not — the properties of
the Err object are assigned values that you can then access to gain information about the error
that occurred. You can even generate your own errors explicitly using the Err.Raise method. You
can also define your own errors to unify the error-handling process.

When your program reaches an Exit Function, Exit Sub, Exit Property, Resume, or On
Error statement, the Err object is cleared and its properties reinitialized. This can also be done
explicitly using the Err.Clear method.

Public Instance Properties

Property
name Description

Description The string associated with the given error number

HelpContext A context ID within a Visual Basic Help file

HelpFile The path to a Visual Basic Help file

LastDLLError The last error code generated by a DLL; available only on 32-bit Windows
systems

Number A long integer used to describe an error (i.e., an error code)

Source Either the name of the current project or the class name of the application that
generated the error

Public Instance Methods

Method name Description
Clear Resets all the properties of the Err object

Raise Forces an error of a given number to be generated

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual Basic Err object is not a collection; it contains information about the last error
only, if one occurred. You could, however, implement your own error collection class to
store a number of errors by copying error information from the Err object into an
application-defined error collection object.

An Err object cannot be passed back from a class module to a standard code module.

VB also supports structured error-handling through the Try...Catch... Finally
statement.

For a full description of error handling, see Chapter 9.

See Also

Err.Description Property, Err.HelpContext Property, Err.HelpFile Property, Err.Number Property,
Err.Source Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.Clear Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Clear()

Description

Explicitly resets all the properties of the Err object after an error has been handled

Rules at a Glance

You need to clear the Err object only if you need to reference its properties for another error within
the same subroutine, or before another On Error statement within the same subroutine.

Example

On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then

 MsgBox ("The Error : " & Err.Description & vbCrLf _

 & " was generated in " & Err.Source)

 Err.Clear

End If

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then

 MsgBox ("The Error : " & Err.Description & vbCrLf _

 & " was generated in " & Err.Source)

 Err.Clear

End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

Programming Tips and Gotchas

Resetting the Err object explicitly using the Clear method is necessary in situations where
you are using On Error Resume Next and are testing the value of Err.Number repeatedly.
Unless you reset the Err object, you run the very real risk of catching the previously
handled error, the details of which are still lurking in the Err object's properties.

The Err object is automatically reset when either a Resume, Exit Sub, Exit Function,
Exit Property, or On Error statement is executed.

You can achieve the same results by setting the Err.Number property to 0; however, your
code will be more readable if you use the Clear method.

VB also supports structured error-handling through the Try...Catch... Finally
statement.

Internally, in VB.NET the Err object is an instance of the Microsoft.VisualBasic.ErrObject
class. It is returned by the Err property of the Microsoft.VisualBasic.Information class.

See Also

Err.Raise Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.Description Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

To set the property:

Err.Description = string

To return the property value:

string = Err.Description

string (required; String)

Any string expression

Description

A read/write property containing a short string describing a runtime error

Rules at a Glance

When a runtime error occurs, the Description property is automatically assigned the
standard description of the error.

For application-defined errors, you must assign a string expression to the Description
property, or the error will not have an accompanying textual message.

You can override the standard description by assigning your own description to the Err
object for both VB errors and application-defined errors.

Programming Tips and Gotchas

If an error occurs within a class module, an ActiveX DLL, or an EXE — regardless of
whether it is running in or out of your application's process space — no error information
from the component will be available to your application unless you explicitly pass back an
error code as part of the error-handling routine within the component. This is done using
the Err.Raise method, which allows you to raise an error on the client, passing custom
arguments for Number, Source, and Description.

If you raise an error with the Err.Raise method and do not set the Description property, the
Description property will be automatically set to "Application- efined or Object-Defined
Error."

You can also pass the Err.Description to a logging device, such as a log file in Windows 95
or the application log in Windows NT, by using the App.LogEvent method, as the following
code fragment demonstrates:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EmployeesAdd_Err:

App.LogEvent "EmployeesAdd" & "; " & _

 Err.Description, vbLogEventTypeError

The best way to set the Description property for your own application-defined errors is to
use the named-description argument with the Raise method, as the following code shows:

Sub TestErr()

On Error GoTo TestErr_Err

 Err.Raise 65444, _

 Description="Meaningful Error Description"

TestErr_Exit:

 Exit Sub

TestErr_Err:

 MsgBox (Err.Description)

 Resume TestErr_Exit

End Sub

VB also supports structured error-handling through the Try...Catch... Finally
statement.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property, Err.Source Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.GetException Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.GetException()

Return Value

A System.Exception object or an object inherited from it containing the current exception

Description

Returns the Exception object associated with the current exception

Rules at a Glance

The GetException method can be called at any time in a program.

If there is no exception, the method returns an uninitialized exception object (i.e., an object
whose value is Nothing).

Example

The following code renames a file:

Private Sub RenameFile()

Dim sOldName, sNewName As String

Try

 sOldName = InputBox("Enter the file name to rename")

 sNewName = InputBox("Enter the new file name")

 Rename("c:\" & sOldName, "c:\" & sNewName)

Catch ex As Exception

 MsgBox(Err.GetException().ToString)

 Exit Sub

End Try

End Sub

If the user inputs an invalid filename in the first input box, the result is the following message that
displays information about the error:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.IO.FileNotFoundException: File not found at

Microsoft.VisualBasic.FileSystem.Rename(String OldPath, String NewPath)

at WindowsApplication2.Form1.RenameFile() in

C:\Documents and Settings\sr\My Documents\Visual Studio Projects\

ClipboardSave2\WindowsApplication2\Form1.vb:line 59

Programming Tips and Gotchas

The Err.GetException method can be used with the unstructured On Error Resume Next
statement as well as with the Try...Catch...End Try structure.

Since GetException is a member of the Err object, its major application is to provide access
to error information stored to an instance of the Exception class from code that relies on
unstructured exception handling.

VB.NET/VB6 Differences

The GetException method is new to VB.NET.

See Also

Exception Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.HelpContext Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.HelpContext

Description

A read/write property that either sets or returns an Integer value containing the context ID of the
appropriate topic within a Help file.

Rules at a Glance

The Err object sets the HelpContext property automatically when an error is raised if
Err.Number is a standard VB.NET error.

If the error is user-defined and you don't explicitly set the HelpContext property yourself, the
Err object will set the value to 1000095, which corresponds to the "Application-defined or
object-defined error" help topic in the VB Help file. (The HelpContext property is set by the
fifth parameter to the Err.Raise method.)

HelpContext IDs are decided upon when writing and creating a Windows Help file. Once
the Help file has been compiled, the IDs cannot be changed. Each ID points to a separate
Help topic.

Example

Sub TestErr()

On Error GoTo TestErr_Err

 Dim i

 i = 8

 MsgBox(i / 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TestErr_Exit:

 Exit Sub

TestErr_Err:

 MsgBox(Err.Description, vbMsgBoxHelpButton, "ErrorVille", _

 Err.HelpFile, Err.HelpContext)

 Resume TestErr_Exit

End Sub

Programming Tips and Gotchas

You can display a topic from the Visual Basic Help file by using the MsgBox function with
the vbMsgBoxHelpButton constant and passing Err.HelpContext as the
HelpContext argument (as shown in the previous example). While this is a simple and
very effective way to add much more functionality to your applications, bear in mind that
some of your users could find the explanations within the VB Help file somewhat confusing.
If time and budget allow, the best method is to create your own help file (for which you will
need the Help compiler and other Help file resources from the full version of VB) and to
pass both the HelpContext and HelpFileName to MsgBox.

Some objects that you may use within your application have their own help files, which you
can access using HelpContext to display highly focused help to your users.

See Also

Err.HelpFile Property, Err.Number Property, Err.Source Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.HelpFile Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.HelpFile

Description

A read/write String property that contains the fully qualified path of a Windows Help file.

Rules at a Glance

The HelpFile property is automatically set by the Err object when an error is raised.

Example

See Err.HelpContext Property.

Programming Tips and Gotchas

You can display a topic from the Visual Basic Help file by using the MsgBox function with
the vbMsgBoxHelpButton constant and passing Err.HelpFile as the HelpFile
argument (as shown in the example for the Err.HelpContext Property). While this is a
simple and very effective way to add more functionality to your applications, bear in mind
that some of your users could find the explanations within the VB Help file somewhat
confusing. If time and budget allow, the best method is to create your own help file (for
which you will need the Help compiler and other Help file resources from the full version of
VB) and to pass both the HelpContext and HelpFileName to MsgBox.

Some objects that you may use within your application have their own help files, which you
can access using HelpFile to display highly focused help to your users.

Remember that once the program encounters an Exit... statement or an On Error
statement, all the properties of the Err object are reset; this includes the Help file. You
must therefore set the Err.HelpFile property each time that your application needs to
access the help file.

See Also

Err.HelpContext Property, Err.Number Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.LastDLLError Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.LastDLLError

Description

A read-only property containing a system error code representing a system error produced within
a DLL called from a VB program.

Rules at a Glance

Only direct calls to a Windows system DLL from VB code will assign a value to
LastDLLError.

The value of the LastDLLError property depends upon the particular DLL being called. Your
code must be able to handle the various codes that can be returned by the DLL you are
calling.

Don't forget that a failed DLL call does not itself raise an error within your VB program. As a
result, the Err object's Number, Description, and Source properties are not filled.

Programming Tips and Gotchas

The LastDLLError property can be changed by VB at any time, so it is important to save the
value in an independent variable as soon as possible.

The LastDLLError property is only used by system DLLs, such as kernel32.dll. Therefore,
errors that occur within DLLs you may have created will not cause an error code to be
assigned to the property.

Obtaining accurate documentation about the return values of system DLLs can be a
challenging experience! Most useful information can be found by studying the API
documentation for Visual C++. However, you can use the Win32 API FormatMessage
function to return the actual Windows error message string from within Kernel32.DLL,
which incidentally will also be in the correct language. The following is a brief example that
you can use in your applications to display the actual Windows error description:

Module modMain

Declare Function FormatMessage Lib "kernel32" _

 Alias "FormatMessageA" (_

 ByVal dwFlags as Integer, ByRef lpSource As Integer, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal dwFlags as Integer, ByRef lpSource As Integer, _

 ByVal dwMessageId As Integer, _

 ByVal dwLanguageId As Integer, _

 ByVal lpBuffer As String, ByVal nSize As Integer, _

 By Ref Arguments As Integer) As Integer

Public Const FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000

Public Const FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200

Function apiErrDesc (iErrCode As Integer) As String

 Dim sErrDesc As String = Space(256)

 Dim iReturnLen, lpNotUsed As Integer

 iReturnLen = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM _

 Or FORMAT_MESSAGE_IGNORE_INSERTS, _

 lpNotUsed, iErrCode, 0&, sErrDesc, _

 Len(sErrDesc), lpNotUsed)

 if iReturnLen > 0 Then

 apiErrDesc = Left(sErrDesc, iReturnLen)

 End If

End Function

End Module

Here's a snippet demonstrating how you can use this utility function:

lReturn = SomeAPICall(someparams)

If lReturn <> 0 then

 Err.Raise(Err.LastDLLError & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(Err.LastDLLError))

End If

Note that some API calls return 0 to denote a successful function call, and others return 0
to denote an unsuccessful call. You should also note that some API functions do not
appear to set the LastDLLError property. In most cases, these are functions that return an
error code. You could therefore modify the previous snippet to handle these cases:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lReturn = SomeAPICall(someparams)

If lReturn <> 0 then

 If Err.LastDLLError <> 0 Then

 Err.Raise(Err.LastDLLError & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(Err.LastDLLError))

 Else

 Err.Raise(lReturn & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(lReturn))

 End If

End If

See Also

Err Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.Number Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Number

Description

A read/write property containing a numeric value that represents the error code for the last error
generated

Rules at a Glance

When a runtime error is generated within the program, the error code is automatically
assigned to Err.Number.

The Number property is updated with an application-defined error whose code is passed as
an argument to the Err.Raise method.

When using the Err.Raise method in normal code, your user-defined error codes cannot be
greater than 65536 nor less that 0. (For an explanation, see the final note in Section of the
Err.Raise Method entry.)

VB reserves error numbers in the range of 1-1000 for its own trappable errors. In addition,
error numbers from 31001 to 31037 are also used for VB trappable errors. In implementing
a series of application-defined errors, your error handlers should either translate application
errors into VB trappable errors or, preferably, assign a unique range to application-defined
errors.

When using the Err.Raise method in ActiveX objects, add the vbObjectError constant (-
2147221504) to your user-defined error code to distinguish OLE errors from local-
application errors.

When control returns to the local application after an error has been raised by the OLE
server, the application can determine that the error originated in the OLE server and extract
the error number with a line of code like the following:

Dim lError as Long

If (Err.Number And vbObjectError) > 0 Then

 lError = Err.Number - ObjectError

End If

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An error code is a useful method of alerting your program that a function within an ActiveX
or class object has failed. By returning a number based on the vbObjectError constant,
you can easily determine that an error has occurred. (vbObjectError is a constant that is
defined in the Microsoft. VisualBasic.Constants class.) By then subtracting
vbObjectError from the value returned by the object's function, you can determine the
actual error code:

If Err.Number < 0 then

 Err.Number = Err.Number - ObjectError

End If

You can create a sophisticated multiresult error-handling routine by using the Err.Number
property as the Case statement within a Select Case block, taking a different course of
action for different errors, as this snippet demonstrates:

Select Case Err.Number

 Case < 0

 'OLE Object Error

 Set oObject = Nothing

 Resume DisplayErrorAndExit

 Case 5

 'increment the retry counter and try again

 iTries = iTries + 1

 If iTries < 5 Then

 Resume RetryFunctionCall

 Else

 Resume DisplayErrorAndExit

 End If

 Case 20

 'we almost expected this one!

 Resume Next

 Case Else

 Resume DisplayErrorAndExit

End Select

Directly assigning a Visual Basic-defined error code to the Number property does not
automatically update the Description or other properties of the Err object.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.HelpContext Property, Err.HelpFile Property, Err.Source Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.Raise Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Raise(number, source, description, _

 helpfile, helpcontext)

number (required; Long integer)

A numeric identifier of the particular error

source (optional; String)

The name of the object or application responsible for generating the error

description (optional; String)

A useful description of the error

helpfile (optional; String)

The fully qualified path of a Microsoft Windows Help file containing help or reference
material about the error

helpcontext (optional; Long)

The context ID within helpfile

Description

Generates a runtime error

Rules at a Glance

To use the Err.Raise method, you must specify an error number.

If you supply any of the number, source, description, helpfile, and helpcontext
arguments when you call the Err.Raise method, they are supplied as values to the Number,
Source, Description, HelpFile, and HelpContext properties, respectively. Refer to the
entries for the individual properties for full descriptions of and rules for each property.

The number argument is a Long integer that identifies the nature of the error. Visual Basic
errors (both Visual Basic-defined and user-defined errors) are in the range 0-65535. The
range 0-512 is reserved for system errors; the range 513-65535 is available for user-
defined errors. When setting the Number property to your own error code in a class
module, you add your error-code number to the vbObjectError constant.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Err.Raise method replaces the older Error statement, which should not be used in
new code.

The Raise method does not reinitialize the Err object prior to assigning the values you pass
in as arguments. This can mean that if you Raise an error against an Err object that has not
been cleared since the last error, any properties for which you don't specify values will still
contain the values from the last error.

As well as using Raise in a runtime scenario, you can put it to good use in the development
stages of your program to test the viability of your error-handling routines under various
circumstances.

The fact that Err.Number only accepts numbers in the range 0-65536 may appear to be
strange at first because the data type of the Error Number parameter in the Raise event is
a Long. However, deep in the recesses of the Err object, the error code must be declared
as an unsigned integer — a data type not supported by VB.

See Also

Err.Clear Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Err.Source Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Source

Description

A read/write string property containing the name of the application or the object that has
generated the error.

Rules at a Glance

When a runtime error occurs in your code, the Source property is automatically assigned
the project name (that is, the string that is assigned to the project's Name property). Note
that this is not necessarily the filename of the project file.

For clarity of your error messages, when you raise an error in a class module, the format of
the source parameter should be project.class.

Programming Tips and Gotchas

Knowing what type of error has occurred within a program without knowing where the error was
generated is often of little use to the programmer. However, if you enhance the standard Source
by adding the name of the procedure, you can cut your debugging time dramatically.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error Statement

Syntax

Error [errornumber]

errornumber (optional; Long)

Any valid error code

Description

Raises an error

Rules at a glance

The Error statement is included only for backward compatibility; instead, if you're using standard
Visual Basic error handling, you should use the Err.Raise method and the Err object. Otherwise,
you should use structured exception handling with the Try...Catch construct.

Programming Tips and Gotchas

The Error statement has been a "compatibility" statement for several versions of Visual Basic.
Interestingly, it managed to survive the general purge of outdated language elements. Despite its
persistence, we still recommend that its use be strictly avoided.

See Also

Err.Raise Method, Try...Catch...Finally Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorToString Function

Class

Microsoft.VisualBasic.Conversion

Syntax

ErrorToString([errornumber])

errornumber (optional; Long)

A numeric error code

Return Value

A String containing an error message

Description

Returns the error message or error description corresponding to a particular error code

Rules at a Glance

If errornumber is present, the function returns the text of the error message
corresponding to that error code.

If no arguments are passed to the function, it returns the text of the error message
corresponding to the Description property of the Err Object.

See Also

Err.Description Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event Statement

Syntax

[accessmodifier] [Shadows] Event eventName [(arglist)]

[Implements interfacename.interfaceeventname]

accessmodifier (optional; Keyword)

Can be one of Public, Private, Protected, Friend, and Protected Friend

Shadows (optional; Keyword)

Indicates that the event shadows any programming elements of the same name in a base
class

eventName (required; String literal)

The name of the event

arglist is optional and has the following syntax:

[ByVal | ByRef] varname[()] [As type]

ByVal (optional; Keyword)

The argument is passed by value; that is, a local copy of the variable is assigned the value
of the argument.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable are reflected in the calling
argument. ByRef is the default method of passing variables.

varname (required; String literal)

The name of the local variable containing either the reference or value of the argument.

type (optional; Keyword)

The data type of the argument. It can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, String, Object, or any user- defined type, object type, or data type
defined in the BCL.

Implements interfacename.interfaceeventname (optional)

Indicates that the event implements a particular event named interfaceeventname in
the interface named interfacename.

Description

Defines a custom event that the object can raise at any time using the RaiseEvent statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

The event declaration must be Public so that it is visible outside the object module; it
cannot be declared as Friend or Private. However, the Public keyword can be
omitted from the declaration, since it is Public by default.

An Event statement can only appear in the Declarations section of an object module, that
is, in a form or class module.

Example

The following code snippet demonstrates how you can use an event to communicate a status
message back to the client application. To take advantage of this functionality, the client must
declare a reference to this class using the WithEvents keyword.

Public Event Status(Message As String)

Private Function UpdateRecords() as Boolean

...

 RaiseEvent Status("Opening the database...")

...

 RaiseEvent Status("Executing the query...")

...

 RaiseEvent Status("Records were updated...")

...

End Function

Programming Tips and Gotchas

To allow the client application to handle the event being fired, the object variable must be
declared using the WithEvents keyword.

VB custom events do not return a value; however, you can use a ByRef argument in
arglist to simulate a return value. For more details, see the RaiseEvent statement.

Unlike parameter lists used with other procedures, Event parameters lists cannot include
Optional or ParamArray arguments or default values.

If you use the Event statement in a standard interface class (i.e., a class in which only
properties and methods are defined, but no code is included in the procedures) for use with
the Implements statement, the Implements statement does not recognize the "outgoing
interfaces" used by events, and therefore the event will be ignored.

For more information about implementing your own custom events, see Section 7.2 in
Chapter 7.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RaiseEvent Statement, Throw Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exception Class

Namespace

System

Createable

Yes

Description

The Exception class and its inherited (child) classes represent runtime exceptions.

Selected Exception Class Members

The following provides a brief description of the more important members of the Exception class:

HelpFile property

Sets or retrieves a link to the help file associated with the exception. Its value is a Uniform
Resource Name (URN) or Uniform Resource Locator (URL).

InnerException property

Returns a reference to the inner Exception object in the case of nested exceptions.

Message property

Returns the text of the error message.

Source property

Returns or sets a string containing the name of the application or the object that causes the
error.

StackTrace property

Returns a string (the stack trace) consisting of a list of all methods that are currently in the
stack. The following shows a stack trace when the procedure DoArithmetic calls the
procedure Arithmetic, which generates an exception that is thrown up to DoArithmetic (the
string has been formatted to fit the margins of the page):

at WindowsApplication6.Form1.Arithmetic(String Action, Double x,

Double y) in C:\Projects\WindowsApplication6\Form1.vb:line 68

at WindowsApplication6.Form1.DoArithmetic() in

C:\Projects\WindowsApplication6\Form1.vb:line 87

TargetSite property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a MethodBase object representing the method that throws the exception. For
example, if e is the exception whose stack trace is shown in the discussion of the
StackTrace property, then the code.

e.TargetSite.Name

will return the string Arithmetic.

GetBaseException Method

This method returns the exception object for the innermost exception. For instance, in the
previous example (see the discussion of the StackTrace property) the code:

e.GetBaseException.ToString

returns the string:

System.ArithmeticException: There was an overflow or

underflow in the arithmetic operation.

 at WindowsApplication6.Form1.Arithmetic(String Action,

Double x, Double y) in

C:\Projects\WindowsApplication6\Form1.vb:line 68

 at WindowsApplication6.Form1.DoArithmetic() in

C:\Projects\WindowsApplication6\Form1.vb:line 87///

ToString Method

Returns the fully qualified name of the exception and possibly the error message, the name
of the inner exception, and the stack trace.

Children of the Exception Class

The System namespace contains the Exception class, which is the base class for a substantial
collection of derived exception classes, listed as follows. Note that the indentation indicates class
inheritance. For example, EntryPointNotFoundException (the fifth from the last entry in the list)
inherits from TypeLoadException.

Exception

 ApplicationException

 SystemException

 AccessException

 FieldAccessException

 MethodAccessException

 MissingMemberException

 MissingFieldException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MissingFieldException

 MissingMethodException

 AppDomainUnloadedException

 AppDomainUnloadInProgressException

 ArgumentException

 ArgumentNullException

 ArgumentOutOfRangeException

 DuplicateWaitObjectException

 ArithmeticException

 DivideByZeroException

 NotFiniteNumberException

 OverflowException

 ArrayTypeMismatchException

 BadImageFormatException

 CannotUnloadAppDomainException

 ContextMarshalException

 CoreException

 ExecutionEngineException

 IndexOutOfRangeException

 StackOverflowException

 ExecutionEngineException

 FormatException

 InvalidCastException

 InvalidOperationException

 MulticastNotSupportedException

 NotImplementedException

 NotSupportedException

 PlatformNotSupportedException

 NullReferenceException

 OutOfMemoryException

 RankException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RankException

 ServicedComponentException

 TypeInitializationException

 TypeLoadException

 EntryPointNotFoundException

 TypeUnloadedException

 UnauthorizedAccessException

 WeakReferenceException

URIFormatException

Programming Tips and Gotchas

As Microsoft states: "Most of the exception classes that inherit from Exception do not
implement additional members or provide additional functionality." Thus, it is simply the
class name that distinguishes one type of exception from another. The properties and
methods applied to an exception object are inherited from the Exception base class.

You can trap the generic Exception object, or you can trap a specific exception object.
There are two circumstances in particular when you may want to trap a specific exception,
rather than the more general Exception object:

You want to handle errors differently based on their class. For instance, you may
want to issue different custom error messages for different exception types.

You want to take advantage of members of a particular exception class that are not
implemented in the Exception base class. For instance, the ArgumentException
class has a ParamName property that returns the name of the parameter that
causes the exception. If you trap the Exception class rather than the
ArgumentException class, this member is unavailable.

VB.NET/VB 6 Differences

The Exception class, along with Structured Exception Handling (SEH), is new to the .NET
platform.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exit Statement

Syntax

Exit Do

Exit For

Exit Function

Exit Property

Exit Select

Exit Sub

Exit Try

Exit While

Description

Prematurely exits a block of code

Rules at a Glance

Exit Do

Exits a Do...Loop statement. If the current Do...Loop is within a nested Do...Loop,
execution continues with the next Loop statement wrapped around the current one. If,
however, the Do...Loop is standalone, program execution continues with the first line of
code after the Loop statement.

Exit For

Exits a For...Next loop or a For Each...Next statement. If the current For...Next
is within a nested For...Next loop, execution continues with the next Next statement
wrapped around the current one. If, however, the For...Next loop is standalone,
program execution continues with the first line of code after the Next statement.

Exit Function

Exits the current function. Program execution is passed to the line following the call to the
function.

Exit Property

Exits the current property procedure. Program execution is passed to the line following the
call to the property.

Exit Select

Immediately exits a Select Case construct. Execution continues with the statement
immediately following the End Select statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

immediately following the End Select statement.

Exit Sub

Exits the current sub procedure. Program execution is passed to the line following the call
to the procedure.

Exit Try

Immediately exits a Try...Catch block. Program execution proceeds with the Finally
block, if it is present, or with the statement following the End Try statement.

Exit While

Immediately exits a While loop. Program execution proceeds with the code following the
End While statement. If Exit While is within a nested While loop, it terminates the loop
at the level of nesting in which Exit While occurs.

Programming Tips and Gotchas

Using Exit Sub can save having to wrap lengthy code within an If...Then statement. Here is
an example with Exit Sub:

Sub MyTestSub(iNumber As Integer)

 If iNumber = 10 Then

 Exit Sub

 End If

 . . .'code

End Sub

and without Exit Sub:

Sub MyTestSub(iNumber As Integer)

 If iNumber <> 10 Then

 . . . 'code

 End If

End Sub

See Also

End... Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exp Function

Class

System.Math

Syntax

Math.Exp(d)

d (required; Numeric)

Any valid numeric expression

Return Value

Double

Description

A Double representing the natural number e raised to the power d. Note that the irrational number
e is approximately 2.7182818.

Rules at a Glance

The maximum value for d is 709.782712893.

Exp is the inverse of the Log function.

Because this function can accept numeric values only, you may want to check the value
you pass using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

In VB 6, Exp was an intrinsic VB function. In VB.NET, it is a member of the Math class in
the System namespace. Hence, in VB.NET, calls to Exp must be prefaced with the Math
class name.

See Also

Log Function, Log10 Function, E Field, Pow Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File Class

Namespace

System.IO

Createable

No

Description

A File object represents a file. The members of the File class are listed in Section .

The Microsoft.VisualBasic.FileSystem class has members that duplicate much of the functionality
of the File class. One significant omission from the FileSystem class is that there is no Exists
method. Consequently, the File.Exists method is documented in its own entry.

All of the methods of the File class are shared. Consequently, you don't need to instantiate a
File object to access File class methods; you can simply reference the File class itself.

Public Static Methods

AppendText
Copy
Create
CreateText
Delete
Exists
GetAttributes
GetCreationTime
GetLastAccessTime
GetLastWriteTime
Move
Open
OpenRead
OpenText
OpenWrite
SetAttributes
SetCreationTime
SetLastAccessTime
SetLastWriteTime

See Also

Directory Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File.Exists Method

Class

System.IO.File

Syntax

File.Exists(path)

path (required; String)

The file path

Return Value

A Boolean indicating whether the file exists

Description

Indicates whether a file exists

Rules at a Glance

path is a fully qualified filename or a relative path (which is interpreted as starting in the
current directory).

The Exists method returns True only if the specified file exists; otherwise, it returns False.
Note that Exists returns False if path describes a directory instead of a folder.

Programming Tips and Gotchas

Since the File class is shared, you don't have to instantiate any objects before calling the
File.Exists method.

See Also

Directory.Exists Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileAttr Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileAttr(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

An OpenMode constant, as shown in the following table:

Mode Value
Input 1

Output 2

Random 4

Append 8

Binary 32

Description

Returns the file-access mode for a file opened using the FileOpen procedure

VB.NET/VB 6 Differences

In VB 6, FileAttr includes a superfluous returntype parameter that must be set to 1 or an error
results. In VB.NET, the parameter has been eliminated.

See Also

FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileClose Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileClose([filenumber][, filenumber][,...])

filenumber (optional; Integer)

The file number (or numbers) of an open file (or files), opened using the FileOpen
procedure

Description

Closes one or more files opened with the FileOpen procedure

Rules at a Glance

If filenumber is omitted, all open files are closed.

If the file you are closing was opened for Output or Append, the remaining data in the I/O
buffer is written to the file. The memory buffer is then reclaimed.

When the FileClose procedure is executed, the file number used is freed for further use.

filenumber can either be a literal number, a numeric constant, or a numeric variable.

Programming Tips and Gotchas

With the FileClose procedure, you can close more than one file at once by specifying the
file numbers as a comma-delimited list, as shown here:

FileClose(1, 3, 4)

The FileClose procedure does not check first to see if there is a file associated with the
given file number. Therefore, no error occurs if you use the FileClose procedure with a
nonexistent file number. The drawback to this is that you may inadvertently think you have
closed a file, when in fact you haven't.

VB.NET/VB 6 Differences

FileClose is new to VB.NET. It replaces the Close statement in VB 6.

See Also

FileOpen Procedure, Reset Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileCopy Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileCopy(source, destination)

source (required; String)

The name of the source file to be copied

destination (required; String)

The name and location of the file when copied

Return Value

None

Description

Copies a file

Rules at a Glance

The source and destination arguments may contain a drive name and a folder name,
but they must always contain the filename.

You cannot copy a file that is currently open.

Programming Tips and Gotchas

If you don't specify a drive or folder in either the source or destination, the file is
assumed to be in the current drive or folder.

Unlike copying a file from one folder to another from outside VB, when using the FileCopy
procedure, it is not sufficient to simply enter a path for destination. You must supply a
filename, even if it's the same as the source; otherwise, runtime error 75, "Path/File
access error," results.

FileCopy is a procedure and not a function; there is no return value. You therefore have to
assume that, if there are no errors generated from calling the FileCopy procedure, the file
has been successfully copied. So be sure to wrap FileCopy in robust error handling.

Be aware that if the destination file already exists, it will be overwritten without warning.

A number of functions allow you to use the copy operation to rename a file. (Typically, this
is done by specifying the same path in the destination as in the source, along with a
different filename.) The FileCopy procedure, however, does not work in this way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the copy operation to succeed, source must not be open by another application; if it is,
runtime error 70, "Permission denied," is generated. If source has already been opened
by the application, the copy operation will still succeed if the file is not locked (i.e., has been
opened with the Shared keyword) or has been opened with a write lock only. If source
has already been opened with either a read lock or a read-write lock, the FileCopy
operation will generate runtime error 70, "Permission denied."

destination must not be open if the copy operation is to succeed. If it has been opened
by another application, runtime error 70, "Permission denied," is generated. If it has already
been opened by the application itself, runtime error 55, "File already open," is generated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileDateTime Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileDateTime(pathname)

pathname (required; String)

The filename, along with an optional drive and path

Return Value

A Date containing the date and time at which the specified file was created or last modified
(whichever is later)

Description

Obtains the date and time at which a particular file was created or last modified (whichever is
later)

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive
or folder.

Programming Tips and Gotchas

Use the File.Exists method (in the System.IO namespace) to determine that the file exists
before calling FileDateTime. If pathname does not exist, your application generates
runtime error 53, "File not found."

If a file has not been modified, its creation date and last modified date will be identical.
However, if the file has been modified since its creation, the FileDateTime function returns
only the last modified date. To obtain the file's creation date, you have to resort to using the
Window's API. The GetFileTime API call returns not only the date last modified, but the
file's creation date and last access date as well.

You can also use FileDateTime on hidden files.

See Also

File.Exists Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileGet, FileGetObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileGet(FileNumber, Value, RecordNumber)

FileGetObject(FileNumber, Value, RecordNumber)

FileNumber (required; Integer)

Any valid file number

Value (required; any (see the first two items in Section)

Variable in which to place file contents

RecordNumber (optional; Integer)

The location at which reading begins

Description

Copies data from a file on disk into a variable

Rules at a Glance

For the FileGet procedure, the variable can have one of the following data types:

Array
Boolean
Byte
Char
Date
Decimal
Double
Integer
Long
Short
Single
String

For the FileGetObject procedure, the variable must be of type Object.

For files opened in Random mode, RecordNumber refers to the record number in the file.

For files opened in Binary mode, RecordNumber refers to the byte number within the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The number of bytes read by the FileGet procedure is governed by the data type of Value.
The following is the number of bytes read by each data type:

Data type Bytes read
Boolean 2

Byte 1

Char 1

Date 8

Decimal 8

Double 16

Integer 4

Long 8

Short 2

Single 8

String Len(string)

Note that the number of bytes read by a String variable depends on the length of the string.
Hence, a string must be initialized to the desired size before calling the FileGet procedure.

The position of the first record or byte within a file is always 1.

When a record or a number of bytes is read from a file using FileGet, the file pointer
automatically moves to the record or byte following the one just read. You can therefore
read all data sequentially from a Random or Binary file by omitting RecordNumber, as this
snippet shows:

Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

FileGet(fr, sChar, 1)

do while loc(fr) <> LOF(fr)

 FileGet(fr, sChar)

 ' do something with sChar. . .

Loop

FileClose(fr)

FileGet is most commonly used to read data from files written with the FilePut function.

Example

This example illustrates the use of the Char data type to read and output each byte of a file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Main

Dim fr As Integer = FreeFile()

Dim sFile As String = Space(FileLen("C:\data.txt"))

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

FileGet(fr, sFile)

Console.WriteLine(sFile) ' Displays entire file

FileClose(fr)

End Sub

Programming Tips and Gotchas

With the increase in the power, flexibility, and ease of use of modern DBMSs, the use of external
standalone data files has fallen dramatically, which means that statements such as FileGet and
FileOpen are becoming much less important.

VB.NET/VB 6 Differences

The FileGet and FileGetObject procedures are new to VB.NET. They are replacements for the
Get statement in VB 6, whose syntax is similar to that of FileGet.

See Also

FileOpen Procedure, FilePut, FilePutObject Procedures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileLen Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileLen(pathname)

pathname (required; String)

The filename, along with its path and drive name (optionally)

Return Value

A Long containing the length of the specified file in bytes

Description

Specifies the length of a file on disk

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive
or folder.

Programming Tips and Gotchas

Use the File.Exists method in the System.IO namespace to determine that the file exists
before calling FileLen. If the file does not exist, FileLen generates runtime error 53, "File
not found."

Because FileLen returns the length of a file based on the file allocation table, the value
returned by FileLen will reflect the size of the file before it was opened. In the case of open
files, you should instead use the LOF function to determine the open file's current length.

See Also

LOF Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileOpen Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileOpen(filenumber, filename, mode, access, share, recordlength)

filenumber (required; Integer)

An available file number.

filename (required; String)

The name of the file to open, along with an optional path.

mode (optional; OpenMode enum)

The file-access mode. Options are: OpenMode.Append, OpenMode. Binary,
OpenMode.Input, OpenMode.Output, or OpenMode.Random (the default value).

access (optional; OpenAccess enum)

Specifies the allowable operations by the current process. Options are:
OpenAccess.Default, OpenAccess.Read, OpenAccess.ReadWrite (the default
value), or OpenAccess.Write.

share (optional; OpenShare enum)

Specifies the allowable operations by other processes. Options are: OpenShare.Shared
(the default value), OpenShare.LockRead, OpenShare. LockWrite, or
OpenShare.LockreadWrite.

recordlength (optional; Integer (at most, 32767)

The length of the record (for random access) or of the I/O buffer (for sequential access).

Description

Opens a disk file for reading and/or writing

Rules at a Glance

There are three modes of file access: sequential, binary, and random. The Input, Output,
and Append access modes are sequential access modes. Sequential access is designed
for text files consisting of individual Unicode characters (and control codes). Most of the
file-manipulation functions (LineInput, Print, PrintLine, and so on) apply to files opened for
sequential access. Random access is designed to be used with files that have a structure
— more specifically, files that consist of records, each of which is made up of the same set
of fields. For instance, a record might contain name, address, and social security number
fields. The binary access mode is for binary access, where each byte in the file is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fields. The binary access mode is for binary access, where each byte in the file is
accessible independently.

filename may include the directory or folder and drive; if these are omitted, the file is
assumed to reside in the current working directory. If filename does include drive and
path information, this may take the form of a path relative to the local system or a UNC
path.

The default mode for opening a disk file (when mode is not specified) is
OpenMode.Random.

If the specified file does not exist when opening in Input mode, an error occurs.

A new file is created if the specified file does not exist when opening in Append, Binary,
Output, or Random mode.

access allows you to restrict the actions that can be taken against the file in the current
process, by specifying Read, Write, or ReadWrite. The default is
OpenAccess.ReadWrite.

The share argument allows you to restrict the operations performed on the open file by
other processes, and accepts one of the following members of the OpenShare
enumeration:

Lock type Description
Shared Other processes can open the file for both read and write operations.

LockRead Other processes can only write to the file.

LockWrite Other processes can only read from the file.

LockReadWrite Other processes cannot open the file.

The recordlength argument is treated differently, depending upon the open mode, as
the following table shows:

Open mode Meaning of Len=
Random Length in bytes of each record

Binary Ignored

Append/Input/Output The number of characters to buffer

Example

The following example opens a random access data file, adds two records, and then retrieves the
second record:

Module modMain

Structure Person

 <vbFixedString(10)> Public Name As String

 Public Age As Short

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Age As Short

End Structure

Public Sub Main

Dim APerson As New Person()

Dim fr As Integer = FreeFile()

FileOpen(fr, "c:\data.txt", OpenMode.Random, _

 OpenAccess.ReadWrite, OpenShare.Default, len(APerson))

APerson.Name = "Donna"

APerson.Age = 20

FilePut(fr, APerson, 1)

APerson.Name = "Steve"

APerson.Age = 30

FilePut(fr, APerson, 2)

FileGet(fr, APerson, 2)

MsgBox(APerson.Age)

FileClose(fr)

End Sub

End Module

Since random access files require a fixed record length, note the use of the
<vbFixedString(length)> attribute to ensure that the Name field is a constant size.

Programming Tips and Gotchas

To avoid using the file number of an already open file and generating an error, use the
FreeFile function to allocate the next available file number.

You can open an already opened file using a different file number in Binary, Input, and
Random modes. However, you must close a file opened using Append or Output before
you can open it with a different file number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB.NET/VB 6 Differences

The FileOpen procedure is new to VB.NET. It is a more or less direct replacement for the VB 6
Open statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FilePut, FilePutObject Procedures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FilePut, FilePutObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

FilePut(filenumber, value, [recordnumber])

FilePutObject(filenumber, value, [recordnumber])

filenumber (required; Integer)

Any valid file number

value (required; any (see the first item in Section)

The name of the variable containing the data to be written to the file

recordnumber (optional; Integer)

Record number (for random access) or byte number (for binary access) at which to begin
the write operation

Description

Writes data from a program variable to a disk file

Rules at a Glance

The value argument of the FilePut procedure can be any data type except Object. The
value argument of the FilePutObject procedure must be of type Object.

If filenumber is opened in random access mode, recordnumber refers to the record
number; if the file is opened in binary access mode, recordnumber refers to a byte
number.

Both bytes and records in a file are numbered starting with 1.

If recordnumber is omitted, the next byte or record to be written will be placed at the
position immediately after the position pointed to by the last FileGet or FilePut procedure,
or by the last Seek function.

If you have opened the file in Random mode, it is important to ensure that the record length
specified in the recordNumber argument of the FileOpen procedure matches the actual
length of the data being written. If the length of the data being written is less than that
specified by the recordNumber argument, the space up to the end of the record will be
padded with the current contents of the file buffer — whatever that may be. If, on the other
hand, the actual data length is more than that specified, an error occurs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FilePut procedure cannot be used to write objects to disk. The FilePutObject procedure
is used for this purpose.

If you open the file in Binary mode, the RecordNumber argument has no effect. When you
use FilePut to write data to the disk, the data is written contiguously, and no padding is
placed between records.

Example

The following code writes the letters A-Z to a file:

Dim fr As Integer = FreeFile()

Dim sChar As Char

Dim i As Integer

FileOpen(fr, "c:\data2.txt", OpenMode.Binary)

For i = Asc("A") To Asc("Z")

 sChar = Chr(i)

 FilePut(fr, sChar)

 Next

FileClose(fr)

Programming Tips and Gotchas

Because of the structured format of data written with the FilePut procedure, it is customary
to read the data back from the file using the FileGet procedure.

The FilePutObject procedure can be used to write data of type Object whose subtype is
one of the standard datatypes (Boolean, Byte, Char, etc.). It cannot be used to write object
data defined by the Class...End Class construct (including classes residing in .NET
libraries), nor can it be used to write data from COM objects to disk. The following is a
rewritten version of the example code that uses FilePutObject:

Dim fr As Integer = FreeFile()

Dim oChar As Object

Dim i As Integer

FileOpen(fr, "c:\data2.txt", OpenMode.Binary)

For i = Asc("A") To Asc("D")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oChar = Chr(i)

 FilePutObject(fr, oChar)

Next

FileClose(fr)

If you use the FilePut procedure to write data, you can use the FileGet procedure to read it.
Similarly, if you use the FilePutObject procedure, you should should the FileGetObject
procedure.

VB.NET/VB 6 Differences

The FilePut and FilePutObject procedures are new to VB.NET. They are almost direct
replacements for the VB 6 Put statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileWidth Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileWidth(filenumber, recordwidth)

filenumber (required; Integer)

Any valid file number

recordwidth (required; Numeric)

A number between 0 and 255

Description

Specifies a virtual file width when working with files opened with the FileOpen function

Rules at a Glance

recordwidth defines the number of characters that can be placed on a single output line.

The default recordwidth of 0 denotes that there is no limit to the number of characters
that can be placed on a single output line.

VB.NET/VB 6 Differences

The FileWidth procedure is new to VB.NET.

See Also

FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Filter Function

Class

Microsoft.VisualBasic.Strings

Syntax

Filter(Source, Match[, Include[, Compare]])

Source (required; String or Object)

An array containing values to be filtered.

Match (required; String)

The substring of characters to find in the elements of the source array.

Include (optional; Boolean)

A Boolean (True or False) value. If True (the default value), Filter includes all matching
values in the returned array; if False, Filter excludes all matching values (or, to put it
another way, includes all nonmatching values).

Compare (optional; CompareMethod enumeration)

A constant whose value can be CompareMethod.Text or CompareMethod.Binary (the
default).

Return Value

A 0-based String array of the elements filtered from Source

Description

The Filter function produces an array of matching values from an array of source values that
either match or do not match a given filter string.

Put another way, individual elements are copied from a source array to a target array if they either
match (Include is True) or do not match (Include is False) a filter string.A match occurs for
an array element if Match is a substring of the array element.

Rules at a Glance

The default Include value is True.

The default Compare value is CompareMethod.Binary.

CompareMethod.Binary is case sensitive; that is, Filter matches both character and
case. In contrast, CompareMethod.Text is case insensitive, matching only character
regardless of case.

If no matches are found, Filter returns an empty array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Although the Filter function is primarily a string function, you can also filter numeric values.
To do this, specify a Source of type Object and populate this array with numeric values.
Then assign the string representation of the numeric value you wish to filter on to the
Match parameter. Note, though, that the returned string contains string representations of
the filtered numbers. For example:

Dim oArray() As Object = _

 {123,222,444,139,1,12,98,908,845,22,3,9,11}

Dim sResult() As String = Filter(oArray, "1")

In this case, the resulting array contains five elements: 123, 139, 1, 12, and 11.

Example

Dim sKeys() As String = {"Microsoft Corp.", "AnyMicro Inc.", _

 "Landbor Data", "Micron Co."}

Dim sMatch As String = "micro"

Dim blnInclude As Boolean = True

Dim sFiltered() As String = Filter(sKeys, sMatch, blnInclude, _

 CompareMethod.Text)

Dim sElement As String

For Each sElement In sFiltered

 Console.WriteLine(sElement)

Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fix Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Fix(number)

number (required; Double or any numeric expression)

A number whose integer portion is to be returned

Return Value

A number of the same data type as number whose value is the integer portion of number

Description

For nonnegative numbers, Fix returns the floor of the number (the largest integer less than or
equal to number).

For negative numbers, Fix returns the ceiling of the number (the smallest integer greater than or
equal to number).

Rules at a Glance

If number is Nothing, Fix returns Nothing.

The operation of Int and Fix are identical when dealing with positive numbers: numbers are
rounded down to the next lowest whole number. For example, both Int(3.14) and
Fix(3.14) return 3.

If number is negative, Fix removes its fractional part, thereby returning the next greater
whole number. For example, Fix(-3.667) returns -3. This contrasts with Int, which
returns the negative integer less than or equal to number (or -4, in the case of our
example).

The function returns the same data type as was passed to it.

Example

Sub TestFix()

 Dim dblTest As Double

 Dim objTest As Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dblTest = -100.9353

 objTest = Fix(dblTest)

 ' returns -100

 Console.WriteLine(objTest & " " & TypeName(objTest))

 dblTest = 100.9353

 objTest = Fix(dblTest)

 'returns 100

 Console.WriteLine(objTest & " " & TypeName(objTest))

End Sub

Programming Tips and Gotchas

Fix does not round number to the nearest whole number; it simply removes the fractional part of
number. Therefore, the integer returned by Fix will be the nearest whole number less than (or
greater than, if the number is negative) the number passed to the function.

See Also

Int Function, Round Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Flags Attribute

Class

System.Flags

Applies to

Enum

Description

Indicates that an enumerated type should be treated as a set of flags that can be added together,
rather than as a set of mutually exclusive values.

Constructor

New()

Properties

None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Floor Function

Class

System.Math

Syntax

Math.Floor(d)

d (required; Double)

Return Value

Returns a Double containing the largest integer less than or equal to the argument d

Description

Returns the largest integer less than or equal to the argument d

Example

Math.Floor(12.9) ' Returns 12

Math.Floor(-12.1) ' Returns -13

Rules at a Glance

Because this function can accept numeric values only, you may want to check the value
you pass using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Floor function is new to the .NET Framework.

See Also

Ceiling Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FontDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a font.

The FontDialog object has properties for setting the initial appearance and functionality of the
dialog box, a property for returning the font selected by the user, as well as a method for showing
the dialog box.

Selected FontDialog Members

The following provides a brief description of the more important members of the FontDialog class:

Color property

Sets or retrieves the color of the font. The return value is an instance of the Color
structure. The Color structure has a number of members, among which are:

Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip,
MistyRose, and MediumSeagreen. These properties return a Color structure.

A Name property, which returns the name of the color or its ARGB value for custom
colors. (The A component is the alpha component of the color, which determines the
color's opacity.)

The R property, G property, and B property, which return a byte specifying the red,
green, or blue color component of the RGB color value, respectively.

The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give
information about the color. Please see the documentation for more information on
these properties.

Font property

Sets or retrieves the font chosen by the user. The return value is an instance of the Font
class in the System.Drawing namespace. The Font class has a number of members,
among which are:

Bold, Italic, Strikout, Underline properties

Boolean properties used to set or retrieve the corresponding attribute of the font.

FontFamily property

Returns a FontFamily object associated with the font. Use the Name property to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a FontFamily object associated with the font. Use the Name property to
get the name of the font family.

Name property

Returns the face name of the font as a String.

SizeInPoints

Returns the size of the font, in points, as a Single.

Style

Returns a FontStyle constant that contains information about the style of the font.
The FontStyle constants are Bold, Italic, Regular, Strikeout, and Underline, and
they can be combined using bitwise operations.

MaxSize, MinSize properties

These are properties of type Integer that specify the maximum and minimum sizes that can
be entered into the Font dialog box.

Show... properties

The FontDialog has properties that specify the features of the dialog box. These include:

ShowApply

Indicates whether the dialog box has an Apply button. (The default is False.)

ShowColor

Indicates whether the dialog box shows the font color choice controls. (The default is
False.)

ShowEffects

Indicates whether the dialog box shows the strikethrough and underline options.
(The default is True.)

Example

The following code displays the Font dialog box and then displays the user's choice of font family:

Imports Microsoft.VisualBasic

Imports System

Imports System.Windows.Forms

Imports System.Drawing

Module modMain

Public Sub Main

Dim fn As New FontDialog()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim fn As New FontDialog()

fn.ShowEffects = True

fn.ShowDialog()

MsgBox(fn.Font.FontFamily.Name)

End Sub

End Module

VB.NET/VB 6 Differences

While the FontDialog class is implemented in the .NET Base Class Library, VB 6 offers the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces
are almost completely different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For...Next Statement

Syntax

For counter = initial_value To maximum_value _

 [Step stepcounter]

 'code to execute on each iteration

 [Exit For]

Next [counter]

counter (required (optional with Next statement); any valid numeric variable)

A variable that serves as the loop counter

initial_value (required; any valid numeric expression)

The starting value of counter for the first iteration of the loop

maximum_value (required; any valid numeric expression)

The value of counter during the last iteration of the loop

stepcounter (optional (required if Step is used); any valid numeric expression)

The amount by which counter is to be incremented or decremented on each iteration of
the loop

Description

Defines a loop that executes a given number of times, as determined by a loop counter.

To use the For...Next loop, you must assign a numeric value to a counter variable. This
counter is either incremented or decremented automatically with each iteration of the loop. In the
For statement, you specify the value that is to be assigned to the counter initially and the
maximum value the counter will reach for the block of code to be executed. The Next statement
marks the end of the block of code that is to execute repeatedly, and it also serves as a kind of
flag that indicates that the counter variable is to be modified.

Rules at a Glance

If maximum_value is greater than initial_value and no Step keyword is used or the
step counter is positive, the For...Next loop is ignored and execution commences with
the first line of code immediately following the Next statement.

If initial_value and maximum_value are equal and stepcounter is 1, the loop will
execute once.

counter cannot be a Boolean variable or an array element.

counter is incremented by one with each iteration unless the Step keyword is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The For...Next loop can contain any number of Exit For statements. When the Exit
For statement is executed, program execution commences with the first line of code
immediately following the Next statement.

If the Step keyword is used, stepcounter specifies the amount counter is incremented
(if stepcounter is positive) or decremented (if it is negative).

Example

The following example demonstrates the use of a For...Next statement to iterate through the
items in a combo box until an item in the combo box list matches a particular value entered in a
text box:

Dim sSought As String = txtSeek.Text

Dim i As Integer

Dim iCount As Integer = cboCombo.Items.Count

For i = 0 To iCount - 1

 If cboCombo.Items(i) = sSought Then

 cboCombo.SelectedIndex = i

 Exit For

 End If

Next i

The following example demonstrates how to iterate from the end to the start of an array of values:

For i = UBound(sArray) to LBound(sArray) Step - 1

 Console.WriteLine(sArray(i))

Next i

The following example demonstrates how to select only every other value from an array of values:

For i = LBound(sArray) to UBound(sArray) Step 2

 Console.WriteLine(sArray(i))

Next i

Programming Tips and Gotchas

You can also nest For...Next loops, as shown here:

For iDay = 1 to 365

 For iHour = 1 to 23

 For iMinute = 1 to 59

 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

 Next iMinute

 Next iHour

Next iDay

Although the counter following the Next keyword is optional, you will find your code is
much easier to read if you use it, especially when nesting For... Next loops.

You can increment the loop by a non-integral value by supplying a Single, Double, or
Decimal value in the Step clause. This also requires that counter be a Single, Double, or
Decimal data type. If counter is a Single or Double, what should be the final iteration of
the loop may be skipped because of rounding error. To prevent this half the value of
stepcounter can be added to maximum_value. For example:

Dim sngCtr As Single

For sngCtr = 1 to 2.05 Step .1

You should avoid changing the value of counter in the code within the loop. Not only can
this lead to unexpected results; it makes for code that's incredibly difficult to read and to
understand.

Once the loop has finished executing, the value of counter is officially undefined. That is,
you should not make any assumptions about its value outside of the For...Next loop,
and you should not use it unless you first reinitialize it.

See Also

For Each...Next Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Each...Next Statement

Syntax

For Each element In group

[statements]

[Exit For]

[statements]

Next [element]

element (required; Object or any user-defined object type)

An object variable to which the current element from the group is assigned

group (required)

An object collection or array

statements (optional)

A line or lines of program code to execute within the loop

Description

Loops through the items of a collection or the elements of an array

Rules at a Glance

The For Each...Next code block is executed only if group contains at least one
element. If group is an empty collection or an array that has not yet been dimensioned, an
error (runtime errors 92, "For loop not initialized," and 424, "Object required," respectively,
or a NullReferenceException exception) results.

All statements are executed for each element in group in turn until either there are no
more elements in group or the loop is exited prematurely using the Exit For statement.
Program execution then continues with the line of code following Next.

For Each...Next loops can be nested, but each element must be unique. For example:

For Each myObj In AnObject

 For Each subObject In myObj

 SName = subObject.NameProperty

 Next

Next

uses a nested For Each...Next loop, but two different variables, myObj and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uses a nested For Each...Next loop, but two different variables, myObj and
subObject, represent element.

Any number of Exit For statements can be placed within the For Each... Next loop to
allow for premature, conditional exit of the loop. Once the loop is exited, execution of the
program continues with the line immediately following the Next statement. For example,
the following loop terminates once the program finds a name in the myObj collection that
has fewer than ten characters:

For Each subObject In myObj

 SName = subObject.NameProperty

 If Len(Sname) < 10 then

 Exit For

 End if

Next

Programming Tips and Gotchas

Because the elements of an array are assigned to element by value, element is a "local"
copy of the array element and not a reference to the array element itself. This means that
you cannot make changes to the array elements, as the following example demonstrates:

Dim sArray(2) As String

Dim ele As String

sArray (0) = "aa"

sArray (1) = "bb"

For Each ele In sArray

 ele = "xx"

 Console.WriteLine(ele)

Next

For Each ele In sArray

 Console.WriteLine(ele)

Next

The output is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xx

xx

aa

bb

which shows that the original array has not been changed.

VB.NET/VB 6 Differences

In VB 6, element had to be a variable of type Variant. VB.NET removes this restriction; element
can be a strongly typed data type, as well as a variable of type Object, VB.NET's "universal" data
type.

See Also

For...Next Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format Function

Class

Microsoft.VisualBasic.Strings

Syntax

Format(expression[, style[, dayofweek[, _

 weekofyear]]])

expression (required; String/Numeric)

Any valid string or numeric expression

style (optional; String)

A valid named or user-defined format expression

dayofweek (optional; FirstDayOfWeek enumeration)

A constant that specifies the first day of the week

weekofyear (optional; FirstWeekOfYear enumeration)

A constant that specifies the first week of the year

First Day of Week Constants

Constant Value Description
System 0 NLS API setting

Sunday 1 Sunday (default)

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 4 Wednesday

Thursday 5 Thursday

Friday 6 Friday

Saturday 7 Saturday

First Week of Year Constants

Constant Value Description
UseSystemDayOfWeek 0 Use the NLS API setting.

FirstJan1 1 Start with the week in which January 1 occurs (default).

FirstFourDays 2 Start with the first week that has at least four days in the new
year.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

year.

FirstFullWeek 3 Start with first full week of the year.

Return Value

A string containing the formatted expression

Description

Allows you to use either predefined or user-defined formats to output string, numeric, and
date/time data

Rules at a Glance

style can be either a predefined or user-defined format.

User-defined formats for numeric values are created with up to four sections, delimited by
semicolons. Each section is used for a different type of numeric value. The four possible
sections are shown in the following table:

Section Applies to
1 All values if used alone; positive values if used with more than one section

2 Negative values

3 Zero values

4 Nothing value

It is not necessary to include all four sections in the style clause. However, the number of
sections present determines what types of numeric values each section defines, as the
following table shows:

Number of sections Applies to
1 All numeric values

2 Positive and zero values; negative values

3 Positive values; negative values; zero values

4 As shown in previous table

If you leave a section blank, it will use the same format as that defined for positive values.
For example, the format string:

"#.00;;#,##"

means that negative values will appear in the same format as positive values.

Only one section is allowed where one of the named formats is used.

User-defined formats for string values can have two sections. The first is for all values; the
second applies only to Null values or zero-length strings.

The predefined date and time formats are:

Format Example Returns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

General Date Format("01/06/98","General Date") 1/6/98

Long Date Format("01/06/98","Long Date") Tuesday, January 06, 1998

Medium Date Format("01/06/98","Medium Date") 06-Jan-98

Short Date Format("01/06/98","Short Date") 1/6/98

Long Time Format("17:08:06","Long Time") 5:08:06 PM

Medium Time Format("17:08:06","Medium Time") 05:08 PM

Short Time Format("17:08:06","Short Time") 17:08

The predefined numeric formats are:

Format Examples Returns
General Number Format(562486.2356, "General Number") 562486.2356

Currency Format(562486.2356, "Currency") $562,486.24

Fixed Format(0.2, "Fixed") 0.20

Standard Format(562486.2356, "Standard") 562,486.24

Percent Format(.7521, "Percent") 75.21%

Scientific Format(562486.2356, "Scientific") 5.62E+05

Yes/No
Format(0,"Yes/No")

Format(23,"Yes/No")

No

Yes

True/False
Format(0,"True/False")

Format(23,"True/False")

False

True

On/Off
Format(0,"On/Off")

Format(23,"On/Off")

Off

On

Characters used to create user-defined date and time formats are:

Char Element
Used In Display As Example Returns

c Date

A date and/or time based on the
short-date and short-time
international settings of the
current Windows system

Format("01/06/98
17:08:06", "c")

1/6/98
5:08:06
PM

dddddd Date
A complete date based on the
long-date international setting of
the current Windows system

Format("01/06/98",
"dddddd")

Tuesday,
January
06, 1998

(/) Dateseparator A date delimited with the
specified character

Format("01/06/98",
"mm-dd-yyyy")

01-06-
1998

d Day A number (1-31) without a
leading zero

Format("01/06/98",
"d") 6

dd Day A number (01-31) with a leading
zero

Format("01/06/98",
"dd") 06

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ddd Day An abbreviation (Sun-Sat) Format("01/06/98",
"ddd") Tue

dddd Day A full name (Sunday-Saturday) Format("01/06/98",
"dddd") Tuesday

ddddd Date
A date based on the short date
section in the computer's
Windows international settings

Format("01/06/98",
"ddddd") 1/6/98

h Hour A number (0-23) without leading
zeros

Format("05:08:06",
"h") 5

hh Hour A number (00-23) with leading
zeros

Format("05:08:06",
"hh") 05

n Minute A number (0-59) without leading
zeros

Format("05:08:06",
"n") 8

nn Minute A number (00-59) with leading
zeros

Format("05:08:06",
"nn") 08

m Month A number (1-12) without a
leading zero

Format("01/06/98",
"m") 1

mm Month A number (01-12) with a leading
zero

Format("01/06/98",
"mm") 01

mmm Month An abbreviation (Jan-Dec) Format("01/06/98",
"mmm") Jan

mmmm Month A full month name (January-
December)

Format("01/06/98",
"mmmm") January

q Quarter A number (1-4) Format("01/06/98",
"q") 1

s Second A number (0-59) without leading
zeros

Format("05:08:06",
"s") 6

ss Second A number (00-59) with leading
zeros

Format("05:08:06",
"ss") 06

ttttt Time

A time based on the 12-hour
clock, using the time separator
and leading zeros specified in
Windows locale settings

Format("05:08:06",
"ttttt")

5:08:06
AM

AM/PM Time A 12-hour clock format using
uppercase AM and PM

Format("17:08:06",
"hh:mm:ss AM/PM")

05:08:06
PM

am/pm Time A 12-hour clock format using
lowercase am and pm

Format("17:08:06",
"hh:mm:ss am/pm")

05:08:06
pm

A/P Time
A 12-hour clock format using an
uppercase "A" for AM and "P" for
PM

Format("17:08:06",
"hh:mm:ss A/P")

05:08:06
P

a/p Time
A 12-hour clock format using a
lowercase "a" for AM and "p" for
PM

Format("17:08:06",
"hh:mm:ss a/p")

05:08:06
p

(:) Time
separator

A time format using a
nonstandard character

Format("17:08:06",
"hh::mm::ss") 17::08::06

ww Week A number (1 - 54) Format("01/06/98",
"ww") 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w Weekday A number (1 for Sunday through
7 for Saturday)

Format("01/06/98",
"w") 3

y Day of Year A number (1 - 366) Format("01/06/98",
"y") 6

yy Year A 2-digit number (00 - 99) Format("01/06/98",
"yy") 98

yyyy Year A 4-digit number (100 - 9999) Format("01/06/98",
"yyyy") 1998

Characters used to create user-defined number formats are as follows:

Char Description Examples

(0)

Digit placeholder. If expression contains a digit in the
appropriate position, the digit is displayed; otherwise, a 0 will be
displayed. The format definition dictates the number of digits
after the decimal point, forcing the number held within an
expression to be rounded to the given number of decimal places.
It does not, however, affect the number of digits shown to the left
of the decimal point.

Format(23.675,
"00.0000")returns
23.6750

Format(23.675,
"00.00")returns
23.68

Format(2658,
"00000")returns
02658

Format(2658,
"00.00")returns
2658.00

(#)
Digit placeholder. If expression contains a digit in the
appropriate position, the digit is displayed; otherwise, nothing will
be displayed.

Format(23.675,
"##.##")returns
23.68

Format(23.675,
"##.####")returns
23.675

Format(12345.25,
"#,###.##")returns
12,345.25

(.)
Decimal placeholder. The actual character displayed as a
decimal placeholder depends on the international settings of the
local Windows system.

(%) Percentage placeholder. Displays expression as a percentage
by first multiplying the value of expression by 100.

Format(0.25,
"##.00%")returns
25.00%

(,)

Thousands separator. The actual character displayed as a
thousands separator depends on the international settings of the
local Windows system. You only need to show one thousands
separator in your definition.

Format(1000000,
"#,###")returns
1,000,000

(E-
E+

Scientific format. If the format expression contains at least one
digit placeholder (0 or #) to the right of E-, E+, e-, or e+, the
number is displayed in scientific format, and the letter E or e that
was used in the format expression is inserted between the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E+
e-
e+)

was used in the format expression is inserted between the
number and its exponent. The number of digit placeholders to
the right determines the number of digits displayed in the
exponent. Use E- or e- to place a minus sign next to negative
exponents. Use E+ or e+ to place a minus sign next to negative
exponents and a plus sign next to positive exponents.

- +
$ (
)

Displays a literal character.
Format(2345.25,
"$#,###.##")returns
$2,345.25

(\)
The character following the backslash will be displayed as a
literal character. Use the backslash to display a special
formatting character as a literal.

Format(0.25,
"##.00\%") returns
.25%

Note the difference
between the result of
this example and the
result of the %
formatting character.

Programming Tips and Gotchas

A little known and very important use of the Format function is to prevent an "Invalid Use of
Null" error from occurring when assigning values from a recordset to a variable within your
program. For example, if a field within either a DAO or RDO recordset created from either
an Access or SQL Server database contains a Null value, you could trap this and change
its value to "" as follows:

If IsNull(rsMyRecordSet!myValue) Then

 sMyString = ""

Else

 sMyString = rsMyRecordSet!myValue

End If

However, assigning the value returned by the Format function that has been passed the
recordset field can do away with this long and tedious coding, as the following line of code
illustrates:

sMyString = Format(rsMyRecordSet!myValue)

If you are passing a date to SQL Server, what date format should you use? By default, SQL
Server expects an American date format, mmddyy, but it is possible for the database to
have been altered to accept other date formats, or you could be passing data to a stored
procedure that begins with a date-time conversion statement (SET DATEFORMAT
dateformat). The only sure way of passing a date into SQL Server is by using the ANSI
standard date format 'yyyymmdd' (including the single quotation marks).

When passing a date to a Jet (Access) database, you should surround the date with hash
characters (#); for example, #12/31/1999#.

Formatting numbers using Format without a format definition is also preferable to simply
using the Str function. Unlike Str, the Format function removes the leading space normally
reserved for the sign from positive numbers.

You can also use the Format function to scale numbers by 1000. This is achieved by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use the Format function to scale numbers by 1000. This is achieved by
placing a thousands separator to the immediate left of the decimal point for each 1000 you
wish the number to be scaled by. Thus:

'one separator divides the expression by 1000 = 1000

Format(1000000, "##0,.")

'two separators divides the expression by 1,000,000 = 1

Format(1000000, "##0,,.")

VB.NET/VB 6 Differences

The VB 6 version of the Format function defined five special symbols (@, &, <, >, and !) for
creating user-defined string formats. In VB.NET, these symbols are treated as literal characters.

See Also

FormatCurrency, FormatNumber, FormatPercent Functions, FormatDateTime Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FormatCurrency, FormatNumber, FormatPercent Functions

Class

Microsoft. VisualBasic. Strings

Syntax

FormatCurrency(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])

FormatNumber(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])

FormatPercent(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])

expression (required; Object)

The number or numeric expression to be formatted.

NumDigitsAfterDecimal (optional; Long)

The number of digits the formatted string should contain after the decimal point.

IncludeLeadingDigit (optional; TriState constant)

Indicates whether the formatted string is to have a 0 before floating point numbers between
1 and -1.

UseParensForNegativeNumbers (optional; TriState constant)

Specifies whether parentheses should be placed around negative numbers.

GroupDigits (optional; TriState constant)

Determines whether digits in the returned string should be grouped using the delimiter
specified in the computer's regional settings. For example, on English language systems,
the value 1000000 is returned as 1,000,000 if GroupDigits is True.

Return Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String

Description

Functions used to format currency, numbers, and percentages.

The three functions are almost identical. They all take identical arguments. The only difference is
that FormatCurrency returns a formatted number beginning with the currency symbol specified in
the computer's regional settings, FormatNumber returns just the formatted number, and
FormatPercent returns the formatted number followed by a percentage sign (%).

Rules at a Glance

If NumDigitsAfterDecimal is not specified, its default value is -1, which means that the
value in the computer's regional settings is used.

The TriState constant values are True, False, and UseDefault.

When optional arguments are omitted, their values are defined by the computer's regional
settings.

In the FormatCurrency function, the position of the currency symbol in relation to the
currency value is defined by the computer's regional settings.

Programming Tips and Gotchas

These three functions first appeared in VBScript Version 2 as "light" alternatives to the Format
function, which had originally been left out of VBScript due to its size. They are quick and easy to
use and make your code more self-documenting; you can instantly see what format is being
applied to a number without having to decipher the format string.

See Also

Format Function, FormatDateTime Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FormatDateTime Function

Class

Microsoft.VisualBasic.Strings

Syntax

FormatDateTime(expression[,dateformat])

expression (required; date)

Date variable or literal date

dateformat (optional; DateFormat enum)

Defines the format of the date to return

Return Value

String representing the formatted date or time

Description

Formats a date or time expression based on the computer's regional settings

Rules at a Glance

The Dateformat enum is:

DateFormat.GeneralDate Value: 0

Displays a date and/or time. If there is a date part, displays it as a short date. If there
is a time part, displays it as a long time. If present, both parts are displayed.

DateFormat.LongDate Value: 1

Uses the long-date format specified in the client computer's regional settings.

DateFormat.ShortDate Value: 2

Uses the short-date format specified in the client computer's regional settings.

DateFormat.LongTime Value: 3

Uses the time format specified in the computer's regional settings.

DateFormat.ShortTime Value: 4

Uses a 24-hour format (hh:mm).

The default date format is GeneralDate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Remember that date and time formats obtained from the client computer are based upon
the client computer's regional settings. It is not uncommon for a single application to be
used internationally, so date formats can vary widely. Not only that, but you can never be
sure that a user has not modified the regional settings on her computer. In short, never
take a date coming in from a client machine for granted; ideally, you should always verify
that it is in the format you need prior to using it.

There is no appreciable difference in either coding or performance between these two
statements:

sDate = FormatDateTime(dDate, LongDate)

sDate = Format(dDate, "Long Date")

See Also

Format Function, FormatCurrency, FormatNumber, FormatPercent Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FreeFile Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FreeFile()

Return Value

An integer representing the next available file number

Description

Returns the next available file number for use in a FileOpen function

Programming Tips and Gotchas

It is good programming practice to always use FreeFile to obtain a file number to use in the
FileOpen procedure.

You should call FreeFile and store the returned file number to a variable rather than
passing the FreeFile function directly as the filenumber argument of the FileOpen
procedure. In this way, you save the file handle for a subsequent call to the FileClose
procedure.

After using the FreeFile function to retrieve a file handle, you should immediately call the
FileOpen procedure, particularly if your file access code resides in a multithreaded
application or component. Failure to do so may cause the same handle to be assigned to
two different variables, so that one of the calls to FileOpen fails.

The names of function parameters become the function's named arguments. Because of
this, it is best to use meaningful names for parameters, and to avoid the use of Hungarian
notation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Friend Keyword

Description

The Friend keyword is used to declare classes, module-level variables (but not local variables),
constants, enumerations, properties, methods, functions, and subroutines.

When the Friend keyword is used, the item being declared has direct access scope inside of the
class module in which the item is declared, as well as in all derived classes in the same project.
However, if the item is declared using Protected Friend, then the scope is all derived classes,
including those that are in other projects.

For more information on access modifiers, including Friend, see the following topics, as well as
Chapter 4:

Class Statement
Const Statement
Enum Statement
Function Statement
Property Statement
Sub Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function Statement

Syntax

[ClassBehavior][AccessModifier] Function name _

 [(arglist)] [As type][()]

 [statements]

 [name = expression]

 [statements]

End Function

ClassBehavior (optional; Keyword)

One of the following keywords:

Overloads

Indicates that more than one declaration of this function exists (with different
argument signatures). For more detail, see Chapter 4.

Overrides

For derived classes, indicates that the function overrides the function by the same
name (and argument signature) in the base class. For more detail, see Chapter 4.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see
Chapter 4.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail,
see Chapter 4.

MustOverride

Indicates that the function must be overridden in a derived class. For more detail,
see Chapter 4.

Shadows

In a derived class definition, indicates that this element shadows any elements of the
same name in the base class.

Shared

A shared function is callable without creating an object of the class. It is, in this
strange sense, shared by all objects of the class. These are also called static
functions.

AccessModifier (optional; Keyword)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AccessModifier (optional; Keyword)

One of the following keywords: Public, Private, Protected, Friend, Protected
Friend. The following table describes the effects of the various access modifiers. Note
that direct access refers to accessing the member without any qualification, as in:

classvariable = 100

and class/object access refers to accessing the member through qualification, either with
the class name or the name of an object of that class:

 Direct access scope Class/object access scope
Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

For more information, see Section 4.7 in Chapter 4.

name (required; String literal)

The name of the function.

arglist (optional)

A comma-delimited list of variables to be passed to the function as arguments from the
calling procedure.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] _

 [= defaultvalue]

Optional (optional; Keyword)

An optional argument is one that need not be supplied when calling the function.
However, all arguments following an optional one must also be optional. A
ParamArray argument cannot be optional.

ByVal (optional; Keyword)

The argument is passed by value; that is, the local copy of the variable is assigned
the value of the argument.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference
to the argument being passed. All changes made to the local variable will be also
reflected in the calling argument. ByVal is the default method of passing variables.

ParamArray (optional; Keyword)

Indicates that the argument is an optional array of Objects (or a strongly typed array,
if Option Strict is on) containing an arbitrary number of elements. It can only be
used as the last element of the argument list and cannot be used with the ByRef or
Optional keywords.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Optional keywords.

varname (required; String literal)

The name of the local variable containing either the reference or value of the
argument.

type (optional; Keyword)

The data type of the argument.

defaultvalue (optional; String literal)

For optional arguments, you must specify a default value.

type (optional; Keyword)

The return data type of the function.

statements (optional)

Program code to be executed within the function.

expression (optional)

The value to return from the function to the calling procedure.

Description

Defines a function procedure

Rules at a Glance

Overloads and Shadows cannot be used in the same declaration.

Functions cannot be nested; that is, you cannot define one function inside another function.
(This applies to all procedures.)

If you do not include one of the access keywords, a function will be Public by default.

Any number of Exit Function statements can be placed within the function. Execution
will continue with the line of code immediately following the call to the function. If a value
has not been assigned to the function when the Exit Function statement executes, the
function will return the default initialization value of the data type specified for the return
value of the function. If the data type of the function was an object reference, the exited
function will return Nothing.

The return value of a function is passed back to the calling procedure by either assigning a
value to the function name or by using the Return statement. However, the Return
statement also exits the function, whereas assigning the return value to the function name
does not exit the function.

To return arrays of any type from a procedure, you must use parentheses after the data
type in the return value of the function declaration, as in:

Public Function Test() As Integer()

If you specify an optional parameter in your function declaration, you must also provide a
default value for that parameter. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function ShowMessage(Optional sMsg _

 As String = "Not given")

Programming Tips and Gotchas

There is often confusion between using the ByRef and ByVal methods to assign
arguments to a function. ByRef assigns a reference of the variable in the calling procedure
to the variable in the function; any changes made to the variable from within the function
are in reality made to the variable in the calling procedure. On the other hand, ByVal
assigns the value of the variable in the calling procedure to the variable in the function.
Changes made to the variable in the function have no effect on the variable in the calling
procedure. In general, ByRef arguments within class modules take longer to perform,
since marshaling back and forth between function and calling module must take place; so
unless you explicitly need to modify a variable's value within a function, it's best to pass
parameters by value.

Since a variable passed to a function by reference is actually modified by the function, you
can use such variables to "return" multiple values from the function.

VB.NET/VB 6 Differences

If a parameter array is used in VB 6, it is a comma-delimited list of values in the calling
procedure that is treated as an array of variants in the called function. In VB.NET, the
arguments can be any data type, and they can be either a comma-delimited list of scalar
values or an array.

In VB 6, the elements in parameter arrays are passed by reference; in VB.NET, they are
passed by value.

If you do not specify whether an individual element in arglist is passed ByVal or ByRef,
it is passed by reference in VB 6. In VB.NET, it is passed by value.

In VB 6, you can call a function that has arguments in a number of ways:

x = SomeFunction(arg1, arg2)

Call SomeFunction(arg1, arg2)

SomeFunction arg1, arg2

In VB.NET, parentheses are required in the function call:

x = SomeFunc(arg1, arg2)

Call SomeFunc(arg1, arg2)

SomeFunc(arg1, arg2)

In VB 6, optional arguments do not require that you specify a default value. Instead, the
IsMissing function is used to determine whether the optional argument is supplied
(although in some cases it is unreliable). In VB.NET, you must assign a default value to an
optional argument.

See Also

Sub Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FV Function

Class

Microsoft.VisualBasic.Financial

Syntax

FV(rate, nper, pmt[, pv [, due]])

rate (required; Double)

The interest rate per period

nper (required; Integer)

The number of payment periods in the annuity

pmt (required; Double)

The payment made in each period

pv (optional; Variant)

The present value of the loan or annuity

due (optional; Constant of the DueDate enumeration)

Specifies whether payments are due at the start or the end of the period. The value can be
DueDate.BegOfPeriod or DueDate.EndOfPeriod (the default).

Return Value

A Double specifying the future value of an annuity

Description

Calculates the future value of an annuity (either an investment or loan) based on a regular
number of payments of a fixed value and a static interest rate over the period of the annuity.

Rules at a Glance

The time units used for the number of payment periods, the rate of interest, and the
payment amount must be the same. In other words, if you state the payment period in
months, you must also express the interest rate as a monthly rate and the amount paid per
month.

The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you
are calculating using monthly periods, you must also divide the rate per period by 12.
Therefore, 10% per annum, for example, equates to a rate per period of .00833.

The pv argument is most commonly used as the initial value of a loan. The default is 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Payments made against a loan or added to the value of savings are expressed as negative
numbers.

The default value for the due argument is DueDate.EndOfPeriod.

See Also

IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Get Statement

Syntax

Get()

 [statements]

End Get

statements (optional)

Program code to be executed when the Property Get procedure is called

Description

Defines a Property Get procedure that returns a property value to the caller

Rules at a Glance

The Get statement can only be used within a Property...End Property construct.

The property value can be returned either by using the Return statement or by assigning
the value to a variable whose name is the same as the property. For example:

Public Property MyProp As String

 Private sSomeVar as String

 Property Get()

 Return sSomeVar

 End Get

...

End Property

or:

Public Property MyProp As String

 Private sSomeVar as String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private sSomeVar as String

 Property Get()

 MyProp = sSomeVar

 End Get

...

End Property

The value returned by a property is usually the value of a Private variable. This adheres to
accepted object-oriented techniques by protecting the property value from accidental
modification.

VB.NET/VB 6 Differences

The Property Get statement in VB 6 corresponds to the Get statement in VB.NET. Though the
purpose and basic operation of the two constructs is identical, the syntax of the VB.NET construct
is vastly simplified and more intuitive.

See Also

Property Statement, Set Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetAllSettings Function

Class

Microsoft.VisualBasic.Interaction

Syntax

GetAllSettings(appname, section)

appname (required; String)

Name of the application

section (required; String)

Relative path from appname to the key containing the settings to retrieve

Return Value

An object containing a two-dimensional array of strings

Description

Returns the registry value entries and their corresponding values for the application

Rules at a Glance

GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_USER\
Software\VB and VBA Program Settings.

The elements in the first dimension of the array returned by GetAllSettings contain the
value entry names.

The elements in the second dimension of the array returned by GetAllSettings contain the
values for the respective value entries.

The two-dimensional array returned by GetAllSettings is based at 0 (as are all arrays) so
the first value entry name is referenced using (0,0).

A call to GetAllSettings will return only the value entry names and data belonging to the
final registry key specified by the section argument. If that key itself has one or more
subkeys, their data will not be retrieved by the function.

If either appname or section do not exist, GetAllSettings will return an uninitialized
Object.

Programming Tips and Gotchas

GetAllSettings is a function that was developed to retrieve data from initialization files in 16-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetAllSettings is a function that was developed to retrieve data from initialization files in 16-
bit environments and to retrieve data from the registry under Windows 9x and Windows NT.
The language of the documentation, however, reflects the language of initialization files.
The arguments labeled appname and section are in fact registry keys; the argument
labeled key is in fact a registry value entry.

The built-in registry-manipulation functions allow you to create professional 32-bit
applications that use the registry for holding application-specific data, in the same way that
.INI files were used in the 16-bit environment. You can, for example, store information
about the user's desktop settings (i.e., the size and position for forms) the last time the
program was run.

Because the built-in registry functions in VB only create string-type registry keys,
GetSetting and GetAllSettings return string values. Therefore, before you use numeric
values returned from the registry, you should explicitly convert the value to a numeric data
type.

GetAllSettings, SaveSettings, and GetSetting allow you direct access to only a limited
section of the windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings). You cannot
access or change other registry settings without using the Win32 API.

Use the code Application.ExecutablePath to pass your application's name to the
GetAllSetting function.

Only those settings that were created using either the Win32 API or the SaveSetting
function will be returned. In other words, a VB application does not have a registry entry
unless you have created one explicitly.

If the key read by GetAllSettings has a default value, that value will not be retrieved by the
function. If you want to store and retrieve default values, you must call the Win32 API
directly.

Because GetAllSettings returns an uninitialized Object when either appname or section
do not exist, if you subsequently try to perform a UBound or LBound function on the object,
a "Type Mismatch" error will be generated. You can test the validity of the returned value,
as follows:

Dim MySettings(,) As String

Dim intSettings As Integer

' Place some settings in the registry.

SaveSetting("WindowsApplication6", "Startup", "Top", "75")

SaveSetting("WindowsApplication6", "Startup", "Left", "50")

' Retrieve the settings.

MySettings = GetAllSettings(appname:="WindowsApplication6", _

 section:="Startup")

If Not (MySettings Is Nothing) Then

 For intSettings = 0 To UBound(MySettings, 1)

 Console.WriteLine(MySettings(intSettings, 0))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console.WriteLine(MySettings(intSettings, 1))

 Next intSettings

 DeleteSetting("WindowsApplication6", "Startup")

else

 MsgBox("No settings")

End If

Because GetAllSetting retrieves data from the user branch of the registry, and the physical
file that forms the user branch of the registry may change (depending, of course, on who
the user is and, in the case of Windows 9x systems, whether the system is configured to
support multiple users), never assume that an application has already written data to the
registry. In other words, even if you're sure that your application's installation routine or the
application itself has successfully stored values in the registry, never assume that a
particular value entry exists, and always be prepared to substitute a default value if it does
not.

Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetSetting Function, SaveSetting Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetAttr Function

Class

Microsoft. VisualBasic.FileSystem

Yes

Syntax

GetAttr(pathname)

pathname (required; String)

Filename and an optional pathname

Return Value

An integer representing the sum of the following constants or members of the FileAttribute
enumeration, which reflect the attributes set for the file:

FileAttribute Enum Constant Value Description
Normal VbNormal 0 Normal

ReadOnly VbReadOnly 1 Read-only

Hidden VbHidden 2 Hidden

System VbSystem 4 System

Directory VbDirectory 16 Directory or folder

Archive VbArchive 32 File has changed since last backup

Description

Determines which attributes have been set for a file or directory

Rules at a Glance

pathname may optionally include a directory name and a drive letter, including a network
drive. pathname can also follow the UNC format of //machine_ name/drive.

You can check if a particular attribute has been set by performing a bitwise comparison of
the GetAttr return value and the value of the attribute constant using the And operator. A
nonzero result means that the particular attribute has been set; conversely, a zero value
indicates that the attribute has not been set. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If (GetAttr(myfile.txt) And VbReadOnly) = 0 then

 Msgbox "The file is Read-Write"

Else

 MsgBox "The file is Read-Only"

End If

Programming Tips and Gotchas

If pathname is invalid, a FileNotFoundException exception is generated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetChar Function

Class

Microsoft.VisualBasic.Strings

Syntax

GetChar(str, index)

str (required; String)

The string from which to extract a character

index (required; Integer)

Position of character (1-based)

Return Value

A Char containing the character at position index

Description

Returns the character that is at position index within a given string

Rules at a Glance

The first character in str is at index 1.

If index exceeds the number of character positions in str, an error is generated.

VB.NET/VB 6 Differences

The GetChar function is new to VB.NET.

See Also

InStr Function, Left Function, Mid Function, Right Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetObject Function

Class

Microsoft. VisualBasic.Interaction

Syntax

GetObject([pathname] [, class])

pathname (optional; String)

The full path and name of the file containing the COM (or ActiveX) object.

class (optional; String)

The class of the object. The class argument has these parts:

Appname (required; String)

The name of the application.

Objecttype (required; String)

The class of object to create, delimited from Appname by using a point (.). For example,
Appname.Objecttype.

Return Value

Returns a reference to an ActiveX object

Description

Accesses an ActiveX server held within a specified file

Rules at a Glance

Although both pathname and class are optional, at least one parameter must be
supplied.

In situations where you cannot create a project-level reference to an ActiveX object, you
can use the GetObject function to assign an object reference from an external ActiveX
object to an object variable.

GetObject is used when there is a current instance of the ActiveX object; to create the
instance, use the CreateObject function.

If you specify pathname as a zero-length string, GetObject will return a new instance of the
object — unless the object is registered as single instance, in which case the current
instance will be returned.

If you omit the pathname, the current instance of the object will be returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An error is generated if pathname is not specified and no current instance of the object
can be found.

The object variable you will use within your program to hold a reference to the ActiveX
object is dimensioned as type Object. This causes the object to be late bound; that is, your
program knows nothing of the type of object nor its interface until the object has been
instantiated within your program:

Dim myObject As Object

myObject = GetObject("C:\OtherApp\Library.lib")

The details of how you create different objects and classes are determined by how the
server has been written, and you'll need to read the documentation available for the server
to determine what you need to do to reference a particular part of the object. There are
basically three ways in which you can access an ActiveX object:

1. The overall object library. This is the highest level and will give you access to all
public sections of the library and all its public classes:

GetObject("C:\OtherApp\Library.lib")

2. A section of the object library. To access a particular section of the library, use an
exclamation mark (!) after the filename, followed by the name of the section:

GetObject("C:\OtherApp\Library.lib!Section")

3. A class within the object library. To access a class within the library, use the optional
Class parameter:

GetObject("C:\OtherApp\Library.lib", "App.Class")

Programming Tips and Gotchas

Pay special attention to objects registered as single instance. As their type suggests, there
can only ever be one instance of the object created at any one time. Calling CreateObject
against a single-instance object more than once has no effect; you will still be returning a
reference to the same object. The same is true of using GetObject with a pathname of "";
rather than returning a reference to a new instance, you will be obtaining a reference to the
original instance of the object. In addition, you must use a pathname argument with single-
instance objects (even if this is ""); otherwise an error will be generated.

You can't use GetObject to obtain a reference to a class created with Visual Basic.

When possible, you should use early binding in your code. For more details on early and
late binding, see Chapter 3. You can use GetObject in early binding with COM objects, as
in:

Dim objExcel As Excel.Application

objExcel = GetObject(, "Excel.Application")

The following table shows when to use GetObject and when to use CreateObject:

Task Use
Create a new instance of an OLE server CreateObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a subsequent instance of an already instantiated server (if the server is
not registered as single instance) CreateObject

Obtain another reference to an already instantiated server without launching a
subsequent instance GetObject

Launch an OLE server application and load an instance of a subobject GetObject

Instantiate a class created with VB CreateObject

Instantiate a class registered on a remote machine CreateObject

See Also

CreateObject Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Current Book

 Code Fragments only

 Advanced Search

VB.NET Language in
a Nutshell, 2nd
Edition

Copyright

Preface

The Basics

Reference

 The Language Reference

 #Const Directive

 #If . . . Then . . . #Else
Directive

 #Region...#End Region
Directive

 Abs Function

 Acos Function

 AddHandler Statement

 AddressOf Operator

 AppActivate Procedure

 Application Class

 Application.CompanyName
Property

 Application.DoEvents
Method

 Application.ExecutablePath
Property

 Application.ProductName
Property

 Application.ProductVersion
Property

 Array Class

 Array.BinarySearch
Method

 Array.Copy Method

 Array.IndexOf Method

 Array.LastIndexOf Method

 Array.Reverse Method

 Array.Sort Method

 Asc, AscW Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AssemblyVersion Attribute

 Asin Function

 Atan Function

 Atan2 Function

 AttributeUsage Attribute

 Beep Procedure

 Call Statement

 CallByName Function

 CBool Function

 CByte Function

 CChar Function

 CDate Function

 CDbl Function

 CDec Function

 Ceiling Function

 ChDir Procedure

 ChDrive Procedure

 Choose Function

 Chr, ChrW Functions

 CInt Function

 Class Statement

 Clipboard Class

 Clipboard.GetDataObject
Method

 Clipboard.SetDataObject
Method

 CLng Function

 CLSCompliant Attribute

 CObj Function

 Collection Class

 Collection.Add Method

 Collection.Count Property

 Collection.Item Method

 Collection.Remove Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetTimer Function

Class

Microsoft.VisualBasic.VBMath

Syntax

GetTimer()

Return Value

A Double indicating the number of seconds

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

You can use the GetTimer function as an easy method of passing a seed number to the
Randomize procedure, as follows:

Randomize GetTimer()

The GetTimer function is ideal for measuring the time taken to execute a procedure or
block of code, as the following snippet shows:

Dim dblStartTime As Double

Dim i As Integer

dblStartTime = Timer()

For I = 1 to 100

 Console.WriteLine("Hello")

Next

Console.WriteLine("Time Taken = " & GetTimer() - _

 dblStartTime & " Seconds")

VB.NET/VB 6 Differences

The GetTimer function is new to VB.NET. However, it is functionally identical to the VB 6
Timer function (and VB.NET Timer property), which continues to be supported.

In contrast to the VB 6 Timer function, which returned a Single, the VB.NET GetTimer
function and Timer property return a Double.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Timer Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetType Operator

Syntax

GetType(typename)

typename (required; n/a)

The name of a type

Return Value

A Type object containing information about typename

Description

Returns type information about a particular type, such as a class, interface, enumeration,
delegate, or structure.

Rules at a Glance

typename must be the name of a valid type.

Passing an instance variable to typename generates a compiler error.

Programming Tips and Gotchas

If you don't know the name of the type about which you'd like to get information, but you do have
an object instance of that type, you can instead retrieve a Type object using the Type.GetType
method.

VB.NET/VB 6 Differences

The GetType operator is new to VB.NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GoTo Statement

Syntax

GoTo label

label (required)

Type: String literal

A subroutine name

Description

Passes execution to a specified line within a procedure

Rules at a Glance

label must be a line label

Programming Tips and Gotchas

GoTo can branch only to lines within the procedure where it appears.

It is not permitted to branch from outside a Try...Catch...Finally block to a point
inside the Catch or Finally block.

It is also not permitted to branch from within the Catch or Finally block to a label outside
the block.

The GoTo statement is most commonly used with the On Error statement to direct control
to an error-handling routine.

GoTo is frequently used to control program flow within a procedure, a technique that often
produces highly unreadable "spaghetti code." Accordingly, great care should be taken
when using the GoTo statement.

VB.NET/VB 6 Differences

In VB 6, label could be either a line number or a label. In VB.NET, label can be only a label.

See Also

On Error Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Guid Attribute

Class

System.Runtime.InteropServices.GuidAttribute

Applies to

Assembly, Class, Delegate, Enum, Interface, Struct

Description

Assigns an explicit Globally Unique Identifier (GUID) to a program element when an automatically
generated GUID is undesirable. The <Guid> attribute is used for COM interop. A GUID can be
generated by a utility named guidgen.exe.

The major reason for explicitly assigning a GUID to a program element, rather than allowing
Visual Studio to do it automatically, is to ensure that it remains constant over successive
recompilations of the source code. Because COM uses GUIDs to identify program elements,
inadvertently changing a GUID typically causes COM to fail to recognize a component. For
example, Visual Studio automatically adds the <Guid> attribute to each AssemblyInfo.vb file to
ensure that, should a type library be generated for a particular project, its library identifier (or
LibID) will remain unchanged when the project is recompiled.

Constructor

New(guid)

guid (String)

The GUID to be assigned to the program element.

Properties

Value (String)

Read-only. Returns the GUID of the program element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Handles Keyword

Syntax

Handles name.event

name (required; String literal)

The name of the class or object whose event the subroutine is handling

event (required; String literal)

The name of the event that the subroutine is handling

Description

Defines a procedure as the event handler for a particular event

Rules at a Glance

The Handler keyword is used to define event handlers for events trapped by an object
defined with the WithEvents keyword.

The Handles keyword can only be used with a procedure declaration, since an event
handler must be a procedure rather than a function.

The Handles keyword must be placed on the same line as, and at the end of, a procedure
declaration.

Example

In a Windows application, the following definition appears in the declarations section of the Form1
class module:

Public WithEvents Button1 As Button

The Button1 object is then instantiated with a line of code like the following in the New subroutine
or another initialization routine:

Me.Button1 = New Button

The Button1 object's Click event can then be handled with a event handler like the following:

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 MsgBox("Hello, World!")

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The WithEvents and Handles are designed to define event handlers at compile time. If
you want to define event handlers dynamically at runtime, use the AddHandler and
RemoveHandler statements.

By convention, event handlers take the form objectname_eventname. For example, the
Click event of an object named Button1 could be trapped by an event handler named
Button1_Click. Although this convention is highly recommended, it is not obligatory.

VB.NET/VB 6 Differences

The Handles keyword is new to VB.NET. In VB 6, the link between an object and its event
handler was handled automatically and transparently by Visual Basic.

See Also

WithEvents Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable Class

Namespace

System.Collections

Createable

Yes

Description

A Hashtable object represents a collection of values (of type Object) that are indexed by objects
called keys (also of type Object). We can also think of a hash table as containing key/value pairs.

Identification of the location of elements in a hash table is done using a hashing function. Simply
put, a hashing function is a function that assigns a location in the hash table to each element,
based on the element's value. This is not the place to go into any detail about hashing. It is worth
mentioning that hash tables can be very efficient structures for storing and retrieving elements.
However, there is no "best approach" to defining hashing functions, and so only experimentation
can determine whether this particular implementation of a hash table is efficient in any given case.

Note that the Hashtable class is more flexible than the Collection class of the
Microsoft.VisualBasic namespace.

Hashtable class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsFixedSize
IsReadOnly
IsSynchronized
Item +
Keys +
SyncRoot
Values +

Public Instance Methods

Add +
Clear +
Clone
Contains
ContainsKey +
ContainsValue +
CopyTo +
Equals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetEnumerator
GetHashCode
GetObjectData
GetType
OnDeserialization
Remove +
ToString

Example

The following example illustrates most of the members that we will discuss:

Private Sub DoHashtable()

 Dim i As Integer

 Dim s() As DictionaryEntry

 Dim obj() As Object

 Dim icKeys As ICollection

 ' Define a new hash table

 Dim h As New Hashtable()

 ' Add some elements to the hash table

 h.Add("Be", "Beethoven")

 h.Add("Ch", "Chopin")

 h.Add("Mo", "Mozart")

 h.Add("Sc", "Schubert")

 ' Copy elements to an array of DictionaryEntry objects and display

 ReDim s(h.Count)

 h.CopyTo(s, 0)

 For i = 0 To h.Count - 1

 Console.WriteLine(s(i).Value)

 Next

 ' Show the keys

 icKeys = h.Keys

 ReDim obj(h.Count)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ReDim obj(h.Count)

 icKeys.CopyTo(obj, 0)

 For i = 0 To h.Count - 1

 Console.WriteLine(CStr(obj(i)))

 Next

 ' Does the hash table contain the value "Beethoven"

 MsgBox("Beethoven: " & CStr(h.ContainsValue("Beethoven")))

 ' Clear the hash table

 h.Clear()

End Sub

VB.NET/VB 6 Differences

The Hashtable object is new to the .NET platform.

See Also

Collection Class, Queue Class, Stack Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Add Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Add(Key, Value)

Key (required; Object)

The hash table entry's key

Value (required; Object)

The hash table entry's value

Return Value

None

Description

Adds a key/value pair to the hash table

Rules at a Glance

Key must be unique or a runtime error occurs.

Keys are immutable. Once added, a particular key value cannot be changed during the
lifetime of the hash table except by removing it through the Remove or Clear method and
then adding it once again.

Value need not be unique.

Programming Tips and Gotchas

According to the documentation, it is better to build a key from a String object than the
Base Class Library's StringBuilder object.

The Item property can also be used to add new members to the hash table.

To ensure that key is unique when calling the Add method, you can call the ContainsKey
method beforehand.

See Also

Hashtable.ContainsKey Method, Hashtable.Item Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Clear Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Clear()

Return Value

None

Description

Removes all entries from the hash table

Rules at a Glance

The Clear method removes all items from the collection, leaving the Hashtable object
uninitialized. It does not set the object to Nothing.

The Clear method sets the Hashtable object's Count property to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.ContainsKey Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.ContainsKey(Key)

Key (required; Object)

The key to search for among the hash table entries

Return Value

A Boolean indicating whether the key exists (True) or not (False)

Description

Indicates whether a given key is contained in the hash table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.ContainsValue Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.ContainsValue(Value)

Value (required; Object)

The value to search for among the hash table entries

Return Value

A Boolean indicating whether the value exists (True) or not (False)

Description

Indicates whether a given value is contained in the hash table

Programming Tips and Gotchas

ContainsValue is intended to determine whether a value exists in the hash table; it is not designed
to indicate the key belonging to a particular value or to determine whether multiple occurrences of
a particular value exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.CopyTo Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.CopyTo(array, arrayindex)

array (required; Array of DictionaryEntry structures)

The destination of the items copied from the hash table

arrayindex (required; Integer)

The first index that is to receive an element of the hash table

Return Value

None

Description

Copies the hash table values into an array of DictionaryEntry structures. A
DictionaryEntry structure is a key/value pair. Note that the array must be sized to
accommodate the elements of the hash table prior to calling the CopyTo method.

Rules at a Glance

array must be a one-dimensional array.

Elements are copied from the hash table to array in the same order in which the hash
table is iterated.

The CopyTo method copies each key/value pair in the hash table to a DictionaryEntry
structure.

array, the array of DictionaryEntry structures, must be sized before calling the
CopyTo method. This is illustrated in the example.

Example

Dim hshStates As New Hashtable

Dim aDE() As DictionaryEntry

Dim oDE As DictionaryEntry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim oDE As DictionaryEntry

hshStates.Add("NY", "New York")

hshStates.Add("MI", "Michigan")

hshStates.Add("CA", "California")

hshStates.Add("WI", "Wisconsin")

hshStates.Add("VT", "Vermont")

hshStates.Item("WA") = "Washington"

Redim aDE(hshStates.Count - 1)

hshStates.CopyTo(aDE, 0)

For each oDE in aDE

 Console.WriteLine(oDE.Key & ": " & oDE.Value)

Next

See Also

Hashtable.Keys Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Count Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Count()

hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

Return Value

An Integer indicating the number of elements in the hash table

Description

This read-only property returns an Integer specifying the number of elements in the hash table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Item Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Item(key)

hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

key (required; Object)

The key whose value is to be retrieved

Return Value

An Object representing the value associated with key

Description

Returns an Object that is the value associated with a particular key/value pair.

Rules at a Glance

Item is the default property of the Hashtable object, and since it is parameterized, we can
write:

hashtablevariable(key)

Item is a read/write property. In other words, you can use the Item property to retrieve the
value belonging to a particular key, as well as to modify the value belonging to a particular
key.

If key does not exist in the hash table when you attempt to retrieve a value, the Item
property returns Nothing.

If key does not exist in the hash table when you attempt to modify a value, the key and its
associated value are added to the hash table, as a sort of implicit add. For example, if the
key "AK" does not exist in a hash table, the code fragment:

hshStates.Item("AK") = "Alaska"

adds the key "AK" and its associated value, "Alaska".

Programming Tips and Gotchas

To guard against inadvertently adding a member to the hash table when you intend to
modify an existing value, call the ContainsKey method beforehand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also retrieve individual members of the Hashtable object by iterating it using the
For Each...Next statement. Each iteration of the loop returns a DictionaryEntry
object containing a single key/value pair. For information on the DictionaryEntry
object, see the entry for the Hashtable.CopyTo method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Keys Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Keys()

hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

Return Value

An ICollection interface containing the keys in the hash table

Description

Returns an ICollection interface that contains the keys in the hash table. There is not much
we can do with an ICollection object except copy it to an array of Objects using its CopyTo
method, as the following example illustrates.

Example

Dim hshStates As New Hashtable

Dim iColl As ICollection

Dim aKeys(), sKey As String

hshStates.Add("NY", "New York")

hshStates.Add("MI", "Michigan")

hshStates.Add("CA", "California")

hshStates.Add("WI", "Wisconsin")

hshStates.Add("VT", "Vermont")

hshStates.Item("WA") = "Washington"

hshStates.Item("AK") = "Alaska"

Redim aKeys(hshStates.Count - 1)

iColl = hshStates.Keys

iColl.CopyTo(aKeys, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

iColl.CopyTo(aKeys, 0)

for each sKey in aKeys

 Console.WriteLine(hshStates.Item(sKey))

Next

Programming Tips and Gotchas

You can work around the inconvenience of calling the ICollection object's CopyTo method to
convert the interface to another object by defining a class that inherits from or implements
ICollection.

See Also

Hashtable.Values Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Remove Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Remove(key)

hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

key (required; Object)

The key whose key/value pair is to be removed

Return Value

None

Description

Removes an element from a hash table

Rules at a Glance

If key is found in the hash table, the member is removed, and the Count property is
decreased by one.

If key is not found in the hash table, the hash table remains unchanged, and no exception
is thrown.

Programming Tips and Gotchas

For cases in which you need to know whether the call to the Remove method has actually
removed a key, you can call the ContainsKey method beforehand to make sure that the key you
want to remove actually exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable.Values Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Values()

hashtablevariable (required; Object)

A reference to a Hashtable object

Return Value

An ICollection object containing the values in the hash table

Description

Returns an ICollection object that contains the values in the hash table. There is not much we
can do with an ICollection object except copy it to an array of objects.

See Also

Hashtable.Keys Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hex Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Hex(number)

number (required; Numeric or String)

A valid numeric or string expression

Return Value

String representing the hexadecimal value of number

Description

Returns a string that represents the hexadecimal value of number

Rules at a Glance

If number contains a fractional part, it will be automatically rounded to the nearest whole
number before the Hex function is evaluated.

number must evaluate to a numeric expression that ranges from -2,147,483,648 to
2,147,483,647. If the argument is outside of this range, runtime error 6, "Overflow," results.

The return value of Hex is dependent upon the value and type of number:

number Return value
Nothing Zero (0)

Any other number Up to eight hexadecimal characters

Programming Tips and Gotchas

If the value of number is known beforehand and is not the result of an expression, you can
represent the number as a hexadecimal by simply affixing &H to number. Each of the following
two statements assigns a hexadecimal value to a variable, for instance:

lngHexValue1 = &HFF ' Assigns 255

lngHexValue2 = "&H" & Len(dblNumber) ' Assigns 8

See Also

Oct Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hour Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Hour(timevalue)

timevalue (required; date)

Date variable or literal date

Return Value

An Integer from 0 to 23, specifying the hour of the day

Description

Extracts the hour element from a time expression

Example

The line:

MsgBox(Hour(#1:33:00 PM#))

displays the number 13.

Rules at a Glance

Regardless of the time format passed to Hour, the return value will be a whole number
between 0 and 23, representing the hour of a 24-hour clock.

If time contains Nothing, 0 is returned, so be careful here to check for Nothing.

You can also use the DatePart function.

See Also

Minute Function, Second Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDataObject Interface

Namespace

System.Windows.Forms

Createable

No

Description

The IDataObject interface is used by the Clipboard for data-transfer operations. It is also used
for drag-and-drop operations. An instance of the IDataObject interface is returned by the
Clipboard object's GetData method.

Public Instance Methods

Those methods marked with a plus sign (+) are covered in more detail in their own entries:

GetData +
GetDataPresent +
GetFormats +
SetData

VB.NET/VB 6 Differences

The IDataObject interface is new to VB.NET.

See Also

Clipboard Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDataObject.GetData Method

Class

System.Windows.Forms.IDataObject

Syntax

GetData(format [,autoconvert])

format (required; String or Type object)

Field member of the DataFormats class (see later for more information on this) or a Type
object representing the format of the data

autoconvert (optional; Boolean)

True to convert the data to the specified format

Return value

An Object that contains Clipboard data in the specified format

Description

Retrieves the data of the given format, optionally converting the data format

Rules at a Glance

The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms
object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataFormats.WaveAudio

If format is a string, the autoconvert argument can be supplied in the method call.

If the GetData method cannot find data in format, it attempts to convert the data to
format. If the data cannot be converted to the format, or if the data was stored with
autoconvert set to False, the method returns Nothing.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject

Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

' Call GetData method of IDataObject object to get clipboard data

obj = di.GetData(DataFormats.Text, False)

' Show the text, if any

If obj Is Nothing Then

 MsgBox("No text on clipboard.")

Else

 MsgBox(CStr(obj))

End If

See Also

IDataObject.GetDataPresent Method, IDataObject.GetFormats Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDataObject.GetDataPresent Method

Class

System.Windows.Forms.IDataObject

Syntax

GetDataPresent(format [,autoconvert])

format (required; String or Type object)

Field member of the DataFormats class (see later for more information on this) or a Type
object representing the format of the data for which to search

autoconvert (optional; Boolean)

True to convert the data to the specified format

Return value

Boolean value indicating whether the Clipboard holds data of the specified format or of a format
that can be converted to format

Description

Returns a Boolean value indicating whether the Clipboard holds data of the specified format or of
a format that the present data can be converted to

Rules at a Glance

The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms
object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

If format is a string, the autoconvert argument can be supplied in the method call. A
value of False indicates that the function should determine whether the data stored by the
IDataObject instance is in the format defined by format; a value of True indicates that
the function should determine whether the data stored by the IDataObject instance is in
or is capable of being converted to the format defined by format.

Example

The following code will inform us whether the Clipboard contains a bitmap:

Dim di As IDataObject

di = clipboard.GetDataObject

MsgBox(di.GetDataPresent(Dataformats.Bitmap))

See Also

IDataObject.GetData Method, IDataObject.GetFormats Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDataObject.GetFormats Method

Class

System.Windows.Forms.IDataObject

Syntax

GetDataFormats([autoconvert])

autoconvert (optional; Boolean)

True to retrieve all formats that the Clipboard data is associated with or can be converted
to; False to retrieve only native data formats

Return Value

A String array containing a list of all supported formats

Description

Retrieves a list of all the formats that the Clipboard data is associated with or can be converted to

Rules at a Glance

The elements in the array returned by the method can take any of the following values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

See Also

IDataObject.GetData Method, IDataObject.GetDataPresent Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IEEERemainder Function

Class

System.Math

Syntax

Math.IEEERemainder(x, y)

x and y (required; Double)

Return Value

Returns the remainder after dividing x by y

Description

Returns a Double whose value is the remainder after dividing x by y

Example

Math.IEEEremainder(4, 3) ' Returns 1

Rules at a Glance

VB has a built-in Mod operator that also returns the remainder upon division.

The IEEERemainder function complies with the remainder operation as defined in Section
5.1 of ANSI/IEEE Std 754-1985; IEEE Standard for Binary Floating-Point Arithmetic;
Institute of Electrical and Electronics Engineers, Inc; 1985.

Programming Tips and Gotchas

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The IEEERemainder function is new to the .NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If...Then...Else Statement

Syntax

If condition Then

 [statements]

[ElseIf condition-n Then

 [elseifstatements] ...

[Else

 [elsestatements]]

End If

Or, you can use the single line syntax:

If condition Then [statements] [Else elsestatements]

condition (required; Boolean)

An expression returning either True or False or an object type

statements (optional)

Program code to be executed if condition is true

condition-n (optional)

Same as condition

elseifstatements (optional)

Program code to be executed if the corresponding condition-n is True

elsestatements (optional)

Program code to be executed if the corresponding condition or condition-n is False

Description

Executes a statement or block of statements based on the Boolean (True or False) value of an
expression

Rules at a Glance

If condition is True, the statements following the If are executed.

If condition is False and no Else or ElseIf statement is present, execution continues
with the corresponding End If statement. If condition is False and ElseIf statements
are present, the condition of the next ElseIf is tested. If condition is False and an
Else is present, the statements following the Else are executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Else is present, the statements following the Else are executed.

In the block form, each If statement must have a corresponding End If statement.
ElseIf statements do not have their own End If. For example:

If condition Then

 statements

ElseIf condition Then

 statements

End If

ElseIf and Else are optional, and any number of ElseIf and Else statements can
appear in the block form. However, no ElseIf statements can appear after an Else.

condition can be any statement that evaluates to True or False.

If condition returns Null, it will be treated as False.

You can also use the If statement to determine object types by using the TypeOf and Is
keywords, as follows:

If TypeOf objectname Is objecttype Then

statements are only optional in the block form of If. However, statements are
required when using the single-line form of If in which there is no Else clause.

Programming Tips and Gotchas

You can use the single-line form of the If statement to execute multiple statements, which
you can specify by delimiting the statements using colons. However, single-line If
statements are hard to read and maintain and should be avoided for all but the simplest of
situations.

In situations where you have many possible values to test, you will find the Select Case
statement much more flexible, manageable, and readable than a bunch of nested If
statements.

You will come across situations in which very large blocks of code have to be executed
based one or more conditions. In these — and in all situations — you should try to make
your code as readable as possible, not only for other programmers, but for yourself, since
you will probably need to revisit the code several months down the line. For example,
consider a scenario in which, at the beginning of a procedure, a check is made to see if the
procedure should be executed under a given set of circumstances. You have the choice of
surrounding the whole code with an If...Then...End If construct, like this:

If iSuccess Then

 ...

 ...

 ...

End If

Or you can instead check for a False condition and, if found, exit the subroutine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Or you can instead check for a False condition and, if found, exit the subroutine:

If Not iSuccess Then

 Exit Sub

End If

...

...

...

The latter alternative can be much easier to read.

Indentation is important for the readability of If, and especially nested If, statements. The
set of statements within each new If...Else...EndIf block should be indented. When
using the Visual Studio IDE, you can simply select a block of code and press the tab key to
indent the complete selected block. The following example shows correctly indented code:

If x = y Then

 DoSomethingHere

 If y < z Then

 DoSomethingElseToo

 Else

 DoAnotherThing

 If z - 1 = 100 Then

 DoAThing

 End If

 End If

Else

 DoAlternative

End If

You may often run into code such as:

If iSuccess Then ...

where iSuccess is an Integer variable. The statement works because Visual Basic
interprets all non-zero values as equal to Boolean True and all zero values as equal to
Boolean False. However, if Option Strict is on, statements such as these will generate
a compiler error, since VB.NET will not automatically convert the iSuccess integer to the
Boolean required by the If statement.

Logical comparison operators can be included in the condition expression, allowing you
to make decisions based on the outcome of more than one individual element. The most
common of these is And and Or. You can create conditions like:

If (x = 0) Or (1/x = 2) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If (x = 0) Or (1/x = 2) Then

Note the use of parentheses to improve readability.

VB.NET has introduced the AndAlso and OrElse operators, which work exactly like the
And and Or operators, respectively, except that they evaluate the statement parts from left
to right only until enough information is obtained to determine the truth value of the whole
statement. For example, consider the statement

If (X AndAlso Y) Then

If X is False, then Y is not evaluated because the entire statement is False regardless of
the truth value of Y. This is referred to as short-circuiting. It provides a significant
advantage in case evaluation of Y would produce an error. For example, we want to
employ short-circuiting in the following case

If (x <> 0) AndAlso (1/x > 10) Then . . .

because in this case if x = 0, then the statement 1/x>10 will produce an error if it is
evaluated.

The If statement is also used with objects to determine if an object variable is Nothing.
This is done using the Is operator:

If Not (objectvar Is Nothing) Then

See Also

IIf Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIf Function

Class

Microsoft.VisualBasic.Interaction

Syntax

IIf(expression, truepart, falsepart)

expression (required; Boolean)

Expression to be evaluated

truepart (required; any value or expression)

Expression or value to return if expression is True

falsepart (required; any value or expression)

Expression or value to return if expression is False

Return Value

The value or result of the expression indicated by truepart or falsepart

Description

Returns one of two results, depending on whether expression evaluates to True or False

Rules at a Glance

IIf will evaluate only one of truepart or falsepart, depending on the value of
expression.

The IIf function is the equivalent of:

If testexpression Then

 Return truepart

Else

 Return falsepart

End If

truepart and falsepart can be a variable, constant, literal, expression, or the return
value of a function call.

Programming Tips and Gotchas

The IIf function is ideal for very simple tests resulting in single expressions. If you really feel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IIf function is ideal for very simple tests resulting in single expressions. If you really feel
the need, IIf function calls can be nested; however, your code can very quickly become
difficult to read. The following code fragment illustrates the use of a nested IIf function:

Dim x As Integer

x = CInt(Text1.Text)

MsgBox(IIf(x < 10, "Less than ten", IIf(x < 20, _

 "Less than 20", "Greater than 20")))

In previous versions of VB, developers tended to avoid the IIf function in favor of the If
statement for all but the most simple uses because of its poor performance. In VB.NET, the
performance of IIf has been improved significantly, although it remains significantly slower
than an If statement. The average number of seconds required to call the IIf function a
million times and to execute an If...ElseIf...Else...End If statement a million
times under the two VB versions showed the following differences:

 IIf function If statement
VB 6 11.09 0.52

VB.NET 6.12 0.02

In other words, the performance of IIf from VB 6 to VB.NET has improved by 100%. At the
same time, the function is over 300 times slower than an If statement under VB.NET!

See Also

If...Then...Else Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implements Keyword

Syntax

Implements interfacename.interfacemember [, ...]

interfacename (required; String literal)

The name of the interface being implemented by a class

interfacemember (required; String literal)

The name of the interface property, function, procedure, or event that is being implemented
by a class

Description

Indicates that a class member provides the implementation of a member defined in an interface

Rules at a Glance

The Implements keyword can only be used in a class module in which the Implements
statement has been used to define an abstract base class that the class is to implement.

The Implements keyword follows the property, function, procedure, or event definition,
and must be on the same line.

The class member implementing the interface member must be of the same type (property,
function, procedure, or event) as the interface member, and its argument list and, in the
case of functions and properties, return type must also be identical to that of the interface
member.

Class members must implement all of the members declared in the interface.

Example

See the example in the Implements Statement entry.

VB.NET/VB 6 Differences

The Implements keyword is new to VB.NET. Its addition means that the implementation
of a property, function, procedure, or event does not have to use the name defined by the
interface. This modifies the VB 6 practice, which requires that class members that
implement an interface definition have the form interfacename_membername.

VB 6 does not allow derived classes to implement events defined in interfaces. VB.NET
removes this restriction.

See Also

Implements Statement, Interface Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implements Statement

Syntax

Implements InterfaceName [,InterfaceName][,...]

InterfaceName (required; String literal)

The name of the interface that a class implements

Description

The Implements statement specifies that you will implement an interface within the class in
which the Implements statement appears.

Rules at a Glance

Implementing an interface or class means that the implementing class will provide code to
implement every Public member of the implemented interface or class. If you fail to
implement even a single Public member, an error will result.

The Implements statement cannot be used in a standard module; it is used only in class
modules.

By convention, interface names begin with a capital I, as in IMyInterface.

For more information on this topic, see Chapter 4.

Example

Friend Interface IAnimal

 ReadOnly Property Name() As String

 Function Eat() As String

 Function SoundNoise() As String

End Interface

Public Class CWolf

 Implements IAnimal

 Public ReadOnly Property Name() As String _

 Implements IAnimal.Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Implements IAnimal.Name

 Get

 Return "Wolf"

 End Get

 End Property

 Public Function Eat() As String Implements IAnimal.Eat

 Eat = "caribou, salmon, other fish"

 End Function

 Public Function Sound() As String Implements IAnimal.SoundNoise

 Sound = "howl"

 End Function

End Class

Module modMain

Public Sub Main

 Dim oWolf As New CWolf

 Console.WriteLine(oWolf.Sound)

 oWolf = Nothing

End Sub

End Module

Programming Tips and Gotchas

If you do not wish to support a procedure from the implemented class, you must still create
a procedure declaration for the implemented procedure. However, you can simply raise an
error using the special error constant Const E_ NOTIMPL = &H80004001 so a user will
know that the member is not implemented in any meaningful way. Alternately, you can also
raise a NotImplementedException exception.

Interfaces, or abstract base classes, allow for greater coherence when developing in
teams. For example, all developers could use a set of interfaces to produce controls and
objects of a particular type without being constrained by implementation. That is, each
developer would be free to implement a particular property or method in the way that he
saw fit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Maintaining compatibility across multiple versions dictates that interfaces should not
change once they have been written and distributed. Any additional functionality required
should be provided by defining additional interfaces.

VB.NET provides only single inheritance using the Inherits statement. However, by
using interface-based inheritance with the Implements statement, you can in effect
implement multiple inheritance.

VB.NET/VB 6 Differences

In VB 6, the Implements statement does not support events; any events publicly declared
in an interface are ignored. VB.NET, on the other hand, allows derived classes to trap the
events defined in interfaces.

See Also

Implements Statement, Interface Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports Statement

Syntax

Imports [aliasname =] namespace [.element]

aliasname (optional; String literal)

The name by which the namespace will be referenced in the module

namespace (required; String literal)

The name of the namespace being imported

element (optional)

The name of an element in the namespace

Description

Imports namespaces or parts of namespaces, making their members available to the current
module

Rules at a Glance

A single Imports statement can import one namespace.

A module can have have as many Imports statements as needed.

Imports statements are used to import names from other projects and assemblies, as well
as from namespaces in the current project.

Imports statements must be placed in a module before references to any identifiers (e.g.,
variables, classes, procedures, functions, etc.).

namespace must be a fully qualified namespace name, even if you use the
/rootnamespace compiler option or supply a value for the "Root namespace" text box in the
General tab of a project's Properties dialog in Visual Studio.

If aliasname is absent from an Imports statement, types in that namespace can be
referenced without qualification.

If aliasname is present in an Imports statement, types in that namespace must be
qualified with aliasname in order to be accessible.

The name aliasname must not be assigned to any other member within the module.

If element is specified, it can be the name of an enumeration, structure, class, or module
within the namespace. If specified, this restricts importation to members of that element
only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

In ASP.NET, a number of namespaces are imported automatically. These include
System.Web and its child namespaces.

You do not use the Imports statement to import namespaces into an ASP.NET
application. Instead, you can import a namespace into an ASP.NET application in a number
of ways:

By creating an <add namespace> directive in a web.config configuration file. For
example:

<compilation>

 <namespaces>

 <add namespace="System.IO" />

 ...

 </namespaces>

imports the System.IO namespace within the scope defined in the web. config file.

By adding an @ Import directive to global.asax. For example:

<%@ Import namespace="System.IO" %>

imports the System.IO namespace for the ASP.NET application.

By adding an @ Import page directive. This has the same form as the global.asax
directive, and must appear at the beginning of the page.

See Also

Namespace Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inherits Statement

Syntax

Inherits classname

classname (required; String literal)

The name of the inherited (base) class

Description

Specifies the name of the class that is being inherited, that is, the base class. The statement can
appear immediately after the Class statement or the Interface statement.

Rules at a Glance

The Inherits statement must be the first line of code in the class module. It can be
preceeded only by blank lines or comments. For example:

Public Class CDerivedClass

 Inherits CBaseClass

 ...

VB.NET supports single code-based inheritance only. That is, there can be only a single
Inherits statement in any class module.

If the Inherits statement is used to define the interfaces inherited by an interface,
multiple interfaces can be listed, with a comma used to delimit them. For example:

 Interface IPerson

 Property Name As String

 End Interface

 Interface IEmployee

 Property SSN As String

 End Interface

 Interface ISalaried

 Inherits IPerson, IEmployee

 Property Salaried As Boolean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Property Salaried As Boolean

 Property Salary As Decimal

 End Interface

Programming Tips and Gotchas

The Inherits statement implements code inheritance. You can also use the Implements
statement to implement interface inheritance. In that case, a class can be derived from more than
one virtual base class. (In other words, you can effectively implement multiple inheritance through
interface inheritance using the Implements statement.)

See Also

Class Statement, Interface Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Input(filenumber,value)

filenumber (required; Integer)

Any valid file number

value (required; any)

Data to read from file

Description

Reads delimited data from a file into variables. This statement is used to read files that were
created using the Write procedure, in which case the items are comma delimited with quotation
marks around strings.

Rules at a Glance

Data read by Input has usually been written using the Write procedure.

Use this statement with files that have been opened in Input or Binary mode only.

If value is numeric and the Input procedure encounters non-numeric data, an
InvalidCastException exception occurs.

The Input procedure strips off the quotation marks that it finds around strings.

After the Input procedure reads value, it advances the file pointer to the next unread
variable or, if the file contains no additional delimited data, to the end of the file.

If the end of the file is reached during the operation of the Input procedure, an error is
generated.

The Input procedure assigns string or numeric data to value without modification.
However, other types of data can be modified as shown in the following table:

Data Value assigned to variable
Delimiting comma or blank line "" (empty string)

#TRUE# or #FALSE# True or False
#yyyy-mm-dd hh:mm:ss# Date and/or time

Note that #TRUE# and #FALSE# are case sensitive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that #TRUE# and #FALSE# are case sensitive.

Example

If the file c:\data.txt contains the following data:

"one", "two", "three"

then the following code will print each string on a separate line in the Output window:

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input)

Do While Not EOF(fr)

 Input(fr, sLine)

 Console.WriteLine(sLine)

Loop

FileClose(fr)

Programming Tips and Gotchas

Use the EOF function to determine whether the end of the file has been reached.

Use the Write procedure to write data to a file, since Write delimits data fields correctly.
This ensures that the data can be read correctly with the Input procedure.

VB.NET/VB 6 Differences

The VB.NET Input procedure corresponds to the VB 6 Input procedure, with a number of
significant differences:

The # symbol, which optionally preceded filenumber in VB 6, is not supported in
VB.NET.

In VB 6, the value argument could be a comma-delimited list of variables. In VB.NET, it
must be a single variable of any type.

In VB 6, if value is numeric and the data read from the file is not numeric, value is
initialized to the default value for that type. In VB.NET, this generates an exception.

In addition to the standard data types, VB 6 also recognizes Empty, Null, and Error types.
In VB.NET, these are not supported.

See Also

Write Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InputBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

InputBox(prompt[, title] [, defaultresponse] [, xpos] _

 [, ypos])

prompt (required; String)

The message in the dialog box

title (optional; String)

The title bar of the dialog box

defaultresponse (optional; String)

String to be displayed in the text box on loading

xpos (optional; Numeric)

The distance in twips from the left-hand side of the screen to the left-hand side of the dialog
box

ypos (optional; Numeric)

The distance in twips from the top of the screen to the top of the dialog box

Return Value

A String containing the contents of the text box from the InputBox dialog box

Description

Displays a dialog box containing a prompt for the user, a text box for entering data, and an OK, a
Cancel, and (optionally) a Help button. When the user clicks OK, the function returns the contents
of the text box.

Rules at a Glance

If the user clicks Cancel, a zero-length string ("") is returned. Thus, once again, Microsoft
has apparently made it impossible for us to distinguish when the user enters the empty
string and when the user hits the Cancel button.

prompt can contain approximately 1,000 characters, including nonprinting characters like
the intrinsic vbCrLf constant.

If the title argument is omitted, the name of the current application or project is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the title argument is omitted, the name of the current application or project is
displayed in the title bar.

If you don't use the default parameter to specify a default entry for the text box, the text
box is shown as empty, and a zero-length string is returned when the user does not enter
anything in the text box prior to clicking OK.

xpos and ypos are specified in twips.

If the xpos parameter is omitted, the dialog box is centered horizontally.

If the ypos parameter is omitted, the top of the dialog box is positioned approximately one-
third of the way down the screen.

Programming Tips and Gotchas

If you are omitting one or more of the optional arguments and are using subsequent
arguments, you must use a comma to signify the missing parameter. For example, the
following code fragment will display a prompt, a default string in the text box, and the Help
button, but default values will be used for the title and positioning.

Dim sString As String = InputBox("Enter it now", , _

 "Something")

Note that InputBox returns a string. Your code is responsible for converting it to the
required data type before using it.

See Also

MsgBox Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InputString Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

InputString(filenumber, charcount)

filenumber (required; Integer)

Any valid file number

charcount (required; Integer)

Number of characters to read from file

Return Value

A String containing charcount characters

Description

Reads data from a file into a string variable

Rules at a Glance

InputString should only be used with files opened in input (OpenMode.Input) or binary
mode (OpenMode.Binary).

InputString begins reading from the current position of the file pointer.

InputString returns all the characters it reads, regardless of their type. This include spaces,
carriage returns, linefeeds, commas, end-of-file markers, unprintable characters, etc.

Once the function finishes reading charcount characters, it also advances the file pointer
charcount characters.

Example

If the file c:\data.txt contains the data:

abcdefghijklmnopq

the following code reads the characters, three at a time:

Dim fr As Integer = FreeFile()

Dim sLine As String

Dim i As Long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim i As Long

FileOpen(fr, "c:\data2.txt", OpenMode.Input)

For i = 1 To LOF(fr) \ 3

 sLine = InputString(fr, 3)

 Console.WriteLine(sLine)

Next

FileClose(fr)

Programming Tips and Gotchas

InputString reads data written to a file using the Print, PrintLine, or FilePut functions.

InputString always attempts to precisely read charcount characters from the file. If there
are no charcount characters from the position of the file pointer to the end of the file,
InputString attempts to read beyond the end of the file, thereby generating an exception. To
prevent this, you should use the LOF function after opening the file to ensure that you don't
attempt to read past the end-of-file marker.

VB.NET/VB 6 Differences

Though a new function in VB.NET, InputString directly corresponds to the Input, Input$,
InputB, and InputB$ functions in VB 6.

The order of parameters is reversed in VB.NET and VB 6. In VB 6, the first parameter is
charcount, and the second is filenumber.

The # symbol, which optionally preceded filenumber in VB 6, is not supported in
VB.NET.

See Also

FilePut, FilePutObject Procedures, Print, PrintLine Procedures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InStr Function

Class

Microsoft.VisualBasic.Strings

Syntax

InStr(start, string1, string2[, compare])

or:

InStr(string1, string2[, compare])

start (required in first syntax; Numeric)

The starting position for the search

string1 (required; String)

The string being searched

string2 (required; String)

The string being sought

compare (optional; CompareMethod enumeration)

The type of string comparison

Return Value

An Integer indicating the position of the first occurrence of string2 in string1

Description

Finds the starting position of one string within another

Rules at a Glance

The return value of InStr is influenced by the values of string1 and string2, as the
following table details:

Condition InStr return value
string1 is zero-length or Nothing 0

string2 is zero-length or Nothing start

string2 not found 0

string2 found within string1 Position at which the start of string2 is found

start > len(string2) 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the second syntax, InStr commences the search with the first character of string1.

If the start argument is 0 or Nothing, an error occurs.

The compare argument can be one of CompareMethod.Binary (a case- sensitive
comparison) or CompareMethod.Text (a case-insensitive comparison). If comparemode
is omitted, the type of comparison is determined by the Option Compare setting.

See Also

InStrRev Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InStrRev Function

Class

Microsoft.VisualBasic.Strings

Syntax

InstrRev(stringcheck, stringmatch[, start[, compare]])

stringcheck (required; String)

The string to be searched.

stringmatch (required; String)

The substring to be found within stringcheck.

start (optional; Numeric)

The starting position of the search. If no value is specified, start defaults to 1.

compare (optional; CompareMethod enumeration)

A constant indicating how stringcheck and stringmatch should be compared.

Return Value

Long

Description

Determines the starting position of a substring within a string by searching from the end of the
string to its beginning

Rules at a Glance

While InStr searches a string from left to right, InStrRev searches a string from right to left.

The compare argument can be one of CompareMethod.Binary (for a case- sensitive
search) or CompareMethod.Text (for a case-insensitive search). If compare is omitted,
the type of comparison is binary. Note that Option Compare is not used, unlike with the
InStr function.

start designates the starting point of the search as counted from the start of
stringcheck. To start the search at the end of stringcheck, either omit the start
argument or set it to -1.

If stringmatch is not found, InStrRev returns 0.

If stringmatch is found within stringcheck, the value returned by InStrRev is the
position of stringcheck from the start of the string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

position of stringcheck from the start of the string.

Example

This example uses both InStr and InStrRev to highlight the different results produced by each.
Using a stringcheck of "I like the functionality that InStrRev gives", InStr finds the first
occurrence of "th" at character 8, while InStrRev finds the first occurrence of "th" at character 26.

Dim myString, sSearch As String

myString = "I like the functionality that InsStrRev gives"

sSearch = "th"

Console.WriteLine(InStr(myString, sSearch))

Console.WriteLine(InStrRev(myString, sSearch))

See Also

InStr Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Int Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Int(number)

number (required; any valid numeric data type)

The number to be processed

Return Value

Returns a value of the data type passed to it

Description

Returns the integer portion of a number

Rules at a Glance

The fractional part of number is removed, and the resulting integer value is returned. Int
does not round number to the nearest whole number. For example, Int(100.9) returns
100.

If number is negative, Int returns the first negative integer less than or equal to number.
For example, Int(-10.1) returns -11.

Programming Tips and Gotchas

Int and Fix work identically with positive numbers. However, for negative numbers, Fix
returns the first negative integer greater than number, while Int returns the first negative
integer less than number. For example, Fix(-10. 1) returns -10, while Int(-10.1)
returns -11.

Don't confuse the Int function with CInt. CInt casts the number passed to it as an Integer
data type, whereas Int returns the same data type that was passed to it.

See Also

CInt Function, Fix Function, Round Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interface Statement

Syntax

[accessmodifier] [Shadows] Interface name

...statements

End Interface

accessmodifier (optional; Keyword)

One of the following keywords, which determines the visibility of the interface:

Public (optional; Keyword)

Indicates that the interface is publicly accessible anywhere both inside and outside of
the project.

Private (optional; Keyword)

Indicates that the interface is accessible to any nested types, as well as to the type (if
any) in which it is defined.

Protected (optional; Keyword)

Indicates that the interface is accessible only to derived classes; a protected
interface can only be declared inside of a class.

Friend (optional; Keyword)

Indicates that the interface is accessible only within the project that contains the
interface definition.

Protected Friend (optional; Keyword)

Indicates that the interface is declard inside of a class and that it is accessible
throughout the project that contains the interface definition, as well as to derived
classes.

Shadows (optional; Keyword)

Indicates that the interface shadows an identically named element in a base class.

name (required; String literal)

The name of the interface

statements (required)

Code that defines the interface members that derived classes must implement

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines a virtual base class along with its public members. The interface can then be
implemented by derived classes using the Implements statement.

Rules at a Glance

The standard naming conventions for name apply. However, by convention, interface
names generally begin with the letter I.

If accessmodifier is omitted, the interface is Public by default.

The interface definition (statements) may contain the following elements:

Inherits statement

Indicates that name inherits its properties and methods from another interface. Its
syntax is:

Inherits interfacename[, interfacename...]

where interfacename is the name(s) of the interface(s) from which name inherits.

Property definitions

Property definitions take the form:

[Default] Property procname([arglist]) As type

where procname is the name of the property, Default indicates that procname is
a property array (whose argument list is defined by arglist) that is the interface's
default property, and type indicates the data type of the property. The ReadOnly
and WriteOnly keywords can also be used.

Function definitions

Functions are defined as follows:

Function membername([arglist]) As type

where membername is the name of the function, arglist defines the number and
type of arguments that can be passed to the procedure, and type indicates the
function's return value.

Procedure definitions

Procedures are defined as follows:

Sub membername[(arglist)]

where membername is the name of the procedure, and arglist specifies the
number and type of arguments that can be passed to the procedure.

Event definitions

Events are defined as follows:

Event membername[(arglist)]

where membername is the name of the event, and arglist defines the number and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where membername is the name of the event, and arglist defines the number and
type of arguments that are passed back to an event handler whenever the event is
fired.

In each case, the syntax of the statement is different from the "standard" VB.NET syntax.
Access modifiers, for instance, are not permitted as a part of interface member definitions,
nor are End... statements, such as End Function, End Sub, or End Property.

The name interface cannot inherit from an interface whose access type is more restrictive
than its own. For example, if name is a Public interface, it cannot inherit from a Friend
interface.

Classes that implement the interface must implement each of its methods, which must
have the same argument list and, in the case of functions and properties, return a value of
the same data type as specified by the interface definition.

Rules at a Glance

An interface can only inherit from another interface that has equal or wider accessability.
Thus, for instance, a Public interface cannot inherit from a Private interface, but the reverse
is allowed.

Programming Tips and Gotchas

An interface can have only one default property. This includes properties defined in base
interfaces, as well as in the interface itself.

VB.NET/VB 6 Differences

The Interface...End Interface construct is new to VB.NET. In VB 6, an interface is defined
by creating a class module whose members have no implementation.

See Also

Implements Keyword, Implements Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

IPmt(rate, per, nper, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

per (required; Double)

The period for which a payment is to be computed.

nper (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due. DueDate.EndOfPeriod (or 0) indicates that
payments are due at the end of the payment period; DueDate. BegOfPeriod (or 1)
indicates that payments are due at the beginning of the period. If omitted, the default value
is DueDate.EndOfPeriod.

Return Value

A Double representing the interest payment

Description

Computes the interest payment for a given period of an annuity based on periodic, fixed
payments and a fixed interest rate. An annuity is a series of fixed cash payments made over a
period of time. It can be either a loan payment or an investment.

Rules at a Glance

The value of per can range from 1 to nper.

If pv and fv represent liabilities, their value is negative; if they represent assets, their value
is positive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

The ComputeSchedule function accepts a loan amount, an annual percentage rate, and a
number of payment periods. It uses the Pmt function to calculate the payment per period, then
returns a two-dimensional array in which each subarray contains the number of the period, the
interest paid for that period, and the principal paid for that period.

Private Function ComputeSchedule(dblAmount As Double, _

 dblRate As Double, dblNPer As Double) _

 As Object(,)

 Dim dblIPmt, dblPmt, dblPrincipal As Double

 Dim intPer As Integer

 Dim strFmt As String

 Dim objArray(,) As Object

 ReDim objArray(CInt(dblNPer), 2)

 strFmt = "###,###,##0.00"

 dblPmt = Pmt(dblRate / 12, dblNPer, -dblAmount, 0, 0)

 For intPer = 1 To CInt(dblNPer)

 dblIPmt = IPmt(dblRate / 12, intPer, dblNPer, -dblAmount)

 dblPrincipal = PPmt(dblRate / 12, intPer, dblNPer, _

 -dblAmount)

 dblAmount = dblAmount - dblPrincipal

 objArray(intPer, 0) = intPer & "."

 objArray(intPer, 1) = Format(dblIPmt, strFmt)

 objArray(intPer, 2) = Format(dblPrincipal, strFmt)

 Next

 ComputeSchedule = objArray

 End Function

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rate and nper must be expressed in the same time unit. That is, if nper reflects the
number of monthly payments, rate must be the monthly interest rate.

The interest rate is a percentage expressed as a decimal. For example, if nper is the total
number of monthly payments, an annual percentage rate (APR) of 12% is equivalent to a
monthly percentage rate of 1%. The value of rate is therefore .01.

See Also

FV Function, NPer Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

IRR(valuearray()[, guess])

valuearray() (required; array of Double)

An array of cash flow values

guess (optional; Double)

Estimated value to be returned by the function

Return Value

A Double representing the internal rate of return

Description

Calculates the internal rate of return for a series of periodic cash flows (payments and receipts).

The internal rate of return is the interest rate generated by an investment consisting of payments
and receipts that occur at regular intervals. It is generally compared to a "hurdle rate," or a
minimum return, to determine whether a particular investment should be made.

Rules at a Glance

valuearray must be a one-dimensional array that contains at least one negative value (a
payment) and one positive value (a receipt).

Individual members of valuearray are interpreted sequentially. That is, valuearray(0)
is the first cash flow, valuearray(1) is the second, etc.

If guess is omitted, the default value of 0.1 is used.

IRR begins with guess and uses iteration to derive an internal rate of return that is
accurate to within 0.00001 percent. If IRR cannot do this within 20 iterations, the function
fails.

Programming Tips and Gotchas

Each element of valuearray represents a payment or a receipt that occurs at a regular
time interval. If this is not the case, IRR will return erroneous results.

If the function fails because it could not calculate an accurate result in 20 iterations, try a
different value for guess.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

MIRR Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Is Operator

Syntax

object1 Is object2

object1 (required; Object or any reference type)

object2 (required; Object or any reference type)

Return Value

Boolean

Description

Compares two object variables or reference variables to determine whether they reference the
same object

Rules at a Glance

Both object1 and object2 must be reference-type variables. This includes string
variables, object variables, and array variables, for instance.

The operation returns a result of True if the references are identical and False if they are
not.

It is also possible to determine whether an object contains a valid reference by replacing
object2 with the special Nothing keyword. For example:

If oDrive Is Nothing Then

returns True if oDrive does not refer to an object and False if it does. This is the only
method that should be used to test for an uninitialized object reference.

Programming Tips and Gotchas

You can call the IsReference function to ensure that both object1 and object2 are
reference types.

You may wonder why there is a special Is operator for reference types. When you perform
a comparison of scalar variables, you want to know if their values are the same. But in the
case of objects, you want to know if two references point to a single object. (Since many
objects have identical property values, a test for equal values is meaningless.) Hence, the
Is operator is used for this purpose.

Typically, the Is operator is used in an If...Then...Else construct to take some action
if two reference-type variables are the same or if a reference type variable does not point to
a valid object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Is operator also can be used with the TypeOf operator and the If...Then...
construct to determine the type of an object variable. For example:

If TypeOf(sName) Is String Then

If the variable passed to the TypeOf operator is a reference type, it must hold a valid
object reference in order for the type comparison to be True.

The Is operator reports that uninitialized reference types are equal. For instance, the Is
operator reports that all of the following are equal:

Dim obj1 As Object

Dim obj2 As Object

If obj1 Is obj2 Then ' Evaluates to True

Dim arrSt1() As String

Dim arrSt2() As String

If arrSt1 Is arrSt2 Then ' Evaluates to True

Dim str1 As String

Dim str2 As String

If str1 Is str2 Then ' Evaluates to True

VB.NET/VB 6 Differences

In VB.NET, strings and arrays are reference types. In VB 6, strings and arrays are not reference
types and, therefore, cannot be used with the Is operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsArray Function

Class

Microsoft.VisualBasic.Information

Syntax

IsArray(varname)

varname (required; any variable)

A variable that may be an array

Return Value

Boolean (True or False)

Description

Tests whether an object variable points to an array

Rules at a Glance

If the variable passed to IsArray is an array or contains an array, True is returned; otherwise,
IsArray returns False.

Example

The following code displays True:

Dim s() As Integer = {1, 2}

Dim t As Object

t = s

MsgBox(IsArray(t))

Programming Tips and Gotchas

Due to the nature of Objects, it is not always obvious if an Object variable contains an
array, especially if you have passed the variable to a function and the function may or may
not have attached an array to the variable. Calling the array function UBound or trying to
access an element in an array that does not exist will generate an error. In these situations,
you should first use the IsArray function to determine if you can safely process the array.

An uninitialized array returns False. For example:

Dim strArr() As String

Console.WriteLine(IsArray(strArr)) ' Returns False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Console.WriteLine(IsArray(strArr)) ' Returns False

Array-like data structures, such as the Collection object, return False when passed to
the IsArray function.

VB.NET/VB 6 Differences

In VB 6, the IsArray function returns True when passed an uninitialized array. In VB.NET, it
returns False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsDate Function

Class

Microsoft.VisualBasic.Information

Syntax

IsDate(expression)

expression (required; any)

Expression containing a date or time

Return Value

Boolean indicating whether the expression can be converted to a Date

Description

Determines if an expression is of type Date or can be converted to type Date

Rules at a Glance

Returns True if and only if expression is of type Date or can be converted to type Date.

Uninitialized date variables also return True.

Programming Tips and Gotchas

IsDate uses the locale settings of the current Windows system to determine if the value
held within the variable is recognizable as a date. Therefore, what is a legal date format on
one machine may fail on another.

IsDate is particularly useful for validating data input. However, don't use IsDate in the VB
text box control's Change event. The Change event is fired with every keystroke, which
means that when the user starts to enter the date, chances are that the date will be invalid
until the point at which the user has completed the data entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsDBNull Function

Class

Microsoft.VisualBasic.Information

Syntax

IsDBNull(expression)

expression (required; any expression)

Return Value

Boolean

Description

Determines whether expression evaluates to DbNull (that is, is equal to
System.DbNull.Value).

Rules at a Glance

DbNull is not the same as Nothing or an empty string. DbNull is used to denote the fact
that a variable contains a missing or nonexistent value, and it is used primarily in the
context of database field values.

Since any expression that contains DbNull evaluates to DbNull, an expression such as:

If var = DbNull Then

will always fail. The only way to test for a DbNull value is to use IsDbNull.

VB.NET/VB 6 Differences

The IsDBNull function is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsError Function

Class

Microsoft.VisualBasic.Information

Syntax

IsError(expression)

expression (required; Object)

An object variable that may be an Exception object

Return Value

Boolean (True if expression is an Exception object, False otherwise)

Description

Indicates whether an object is an instance of the Exception class or one of its derived classes

Example

Module modMain

Public Sub Main

Dim oUnk As Object = "This is an object of subtype String."

'Dim oUnk As Object = 10

Dim oResult As Object = Increment(oUnk)

If Not IsError(oResult) Then

 Console.WriteLine(oResult)

Else

 Console.WriteLine(oResult.Message)

End If

End Sub

Public Function Increment(o As Object) As Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function Increment(o As Object) As Object

 If IsNumeric(o) Then

 o += 1

 Return o

 Else

 Dim e As New System.InvalidOperationException

 Return e

 End If

End Function

End Module

VB.NET/VB 6 Differences

In VB 6, the IsError function takes a variant argument and determines if its subtype is vbError.
Most commonly, it is used with the CVErr function to determine if the value returned from a
function is an error. In VB.NET, the IsError function is used to test whether an object is an
instance of the Exception class or its derived classes.

See Also

Exception Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsNothing Function

Class

Microsoft.VisualBasic.Information

Syntax

IsNothing(expression)

expression (required; any)

Return Value

Boolean

Description

Determines whether expression evaluates to Nothing. The line:

If IsNothing(obj) Then

is equivalent to:

If obj Is Nothing Then

VB.NET/VB 6 Differences

The IsNothing function is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsNumeric Function

Class

Microsoft.VisualBasic.Information

Syntax

IsNumeric(expression)

expression (required; any expression)

Return Value

Boolean

Description

Determines whether expression can be evaluated as a number

Rules at a Glance

If the expression passed to IsNumeric evaluates to a number, True is returned; otherwise,
IsNumeric returns False.

Programming Tips and Gotchas

If expression is a date or time, IsNumeric evaluates to False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsReference Function

Class

Microsoft.VisualBasic.Information

Syntax

IsReference(expression)

expression (required; any)

Return Value

Boolean

Description

Returns True if expression contains reference type data, as opposed to value type data

Rules at a Glance

IsReference returns False if expression is one of the value data types (Byte, Short,
Integer, Long, Single, Double, Boolean, Date, or Char).

IsReference returns True if expression is a reference data type (String or Object),
including an object of a specific type, such as a Collection object.

IsReference returns True if expression is an array, since an array is a reference type.

IsReference returns False if expression is a structure, since a structure is a value type.

Example

Private Class CEmployee

...

End Class

' The following message will display

Dim obj As Object

If IsReference(obj) Then

 MsgBox("obj is reference type, but is Nothing")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("obj is reference type, but is Nothing")

End If

' The following message will display

' (CEmployee is a class module)

Dim c As New CEmployee()

If IsReference(c) Then

 MsgBox("c is reference type")

End If

' The following message does NOT display

Dim i As Integer = 4

If IsReference(i) Then

 MsgBox("Integer is reference type")

End If

Programming Tips and Gotchas

Just because a variable has been declared to be of type Object does not mean that the
IsReference function will return True when that variable is passed to it as an argument. Consider
the following code:

Dim oObj As Object

Console.WriteLine(IsReference(oObj)) 'Returns True

oObj = New CEmployee

Console.WriteLine(IsReference(oObj)) 'Returns True

oObj = 3

Console.WriteLine(IsReference(oObj)) 'Returns False

oObj = "This is a string"

Console.WriteLine(IsReference(oObj)) 'Returns True

In other words, the IsReference function returns True only if a variable of type Object is Nothing
or if its data subtype is one of the reference types (that is, an instance of a class or a string). If its
data subtype is a value type, the function returns False.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IsReference function is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Join Function

Class

Microsoft.VisualBasic.Strings

Syntax

result = Join(sourcearray, [delimiter])

sourcearray (required; String or Object array)

Array whose elements are to be concatenated

delimiter (optional; String)

Character used to delimit the individual values in the string

Return Value

String

Description

Concatenates an array of values into a delimited string using a specified delimiter

Rules at a Glance

If no delimiter is specified, the space character is used as a delimiter.

If you want to concatenate numeric or other nonstring values in sourcearray, use an
Object array. If, for example, you specify a numeric data type for sourcearray, the
function will generate a compiler error.

Programming Tips and Gotchas

The Join function is ideal for quickly and efficiently writing out a comma-delimited text file from an
array of values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Kill Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Kill(pathname)

pathname (required; String)

The file or files to be deleted

Description

Deletes a file from disk

Rules at a Glance

If pathname does not include a drive letter, the folder and file are assumed to be on the
current drive.

If pathname does not include a folder name, the file is assumed to be in the current folder.

You can use the multiple-character (*) and single-character (?) wildcards to specify multiple
files to delete.

If the file is open or is set to read only, an error will be generated.

Programming Tips and Gotchas

Note that the deleted file is not placed in the Recycle Bin. However, the following code
demonstrates how to use the FileOperation API found in Shell32.DLL to move a file to the
Windows Recycle Bin:

Option Explicit

'declare the file operation structure

Type SHFILEOPSTRUCT

 hWnd As Long

 wFunction As Long

 pFrom As String

 pTo As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fFlags As Integer

 fAborted As Boolean

 hNameMaps As Long

 sProgress As String

End Type

'declare two constants needed for the delete operation

Private Const FO_DELETE = &H3

Private Const FO_FLAG_ALLOWUNDO = &H40

'declare the API call function

Declare Function SHFileOperation Lib "shell32.dll" _

 Alias "SHFileOperationA" _

 (lpFileOp As SHFILEOPSTRUCT) As Long

Public Function WinDelete(sFileName As String) As Long

 'create a copy of the file operation structure

 Dim SHFileOp As SHFILEOPSTRUCT

 'need a Null terminated string

 sFileName = sFileName & vbNullChar

 'assign relevant values to structure

 With SHFileOp

 .wFunction = FO_DELETE

 .pFrom = sFileName

 .fFlags = FO_FLAG_ALLOWUNDO

 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'pass the structure to the API function

 WinDelete = SHFileOperation(SHFileOp)

End Function

Use the RmDir procedure to delete folders.

See Also

RmDir Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LBound Function

Class

Microsoft.VisualBasic.Information

Syntax

LBound(array[, rank])

array (required; any array)

An array whose lower bound is to be determined

rank (optional; Integer)

The dimension whose lower bound is desired

Return Value

An Integer whose value is 0

Description

Determines the lower boundary of a specified dimension of an array. The lower boundary is the
smallest subscript you can access within the specified array.

Rules at a Glance

Unless it is passed an invalid argument, the LBound function always returns 0.

If array is uninitialized, it generates an ArgumentNullException error when passed to the
LBound function. You can prevent this by comparing array to Nothing, as in the
following code fragment:

If Not oArray Is Nothing Then

To determine the lower limit of the first dimension of an array, set rank to 1, set it to 2 for
the second, and so on.

If rank isn't specified, 1 is assumed.

Programming Tips and Gotchas

Since VB.NET does not allow you to change the lower bound of an array, the LBound function
would appear to be superfluous except for reasons of backward compatibility. Its continued use
may be a good idea, though, in the event that a future version of VB.NET allows you to set the
lower boundary of an array.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since VB 6 offers a number of ways to set the lower bound of all arrays or a specific array, the
LBound function is particularly useful when iterating the elements of an array. In VB.NET, its use
is a matter of choice.

See Also

UBound Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

LCase(value)

value (required; String or Char)

A valid string expression or a character

Return Value

String or Char

Description

Converts a string to lowercase

Rules at a Glance

LCase only affects uppercase letters; all other characters in value are unaffected.

LCase returns Nothing if value contains a Nothing.

LCase returns the same data type as value.

See Also

UCase Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Left Function

Class

Microsoft.VisualBasic.Strings

Syntax

Left(str, length)

str (required; String)

The string to be processed

length (required; Long)

The number of characters to return from the left of the string

Return Value

String

Description

Returns a string containing the leftmost length characters of str

Rules at a Glance

If length is 0, a zero-length string ("") is returned.

If length is greater than the length of str, str is returned.

If str is Nothing, Left returns Nothing.

Programming Tips and Gotchas

Use the Len function to determine the overall length of str.

The Left function corresponds to the BCL System.String class' Substring method. For
example, the following two assignments to the sCity variable are functionally identical:

Dim sCity As String

Dim sLocation As String = "New York, New York"

sCity = Left(sLocation, 8)

sCity = sLocation.Substring(0, 8)

Note that the Substring method uses a zero-based index to determine the starting position
of the substring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Mid Function, Right Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Len Function

Class

Microsoft.VisualBasic.Strings

Syntax

Len(expression)

expression (required; any)

Any valid variable name or expression

Return Value

Integer

Description

Counts the number of characters within a string or the size of a given variable

Rules at a Glance

If expression contains Nothing, Len returns 0.

For a string or String variable, Len returns the number of characters in the string.

For a nonobject and nonstructure variable, Len returns the number of bytes required to
store the variable in memory.

For a variable of type Object, Len returns the length of its data subtype. If the object is
uninitialized, its length is 0. However, if the object contains a strongly typed class instance,
an InvalidCastException exception is thrown.

For a structure, Len returns the number of bytes required to store the structure as a file.
(But see the comment in Section .)

For a strongly typed object variable, such as one defined by the Class... End Class
construct, Len generates an InvalidCastException exception.

If varname is an array, you must also specify a valid subscript. In other words, Len cannot
be used to determine the total number of elements in or the total size of an array.

Programming Tips and Gotchas

Len cannot accurately report the number of bytes required to store structures that contain
variable-length strings. If you need to know how many bytes of storage space will be
required by a structure that includes string members, you can fix the length of the strings by
using the <vbFixedString(length)> attribute in the Structure statement. For
details, see the Structure...End Structure Statement entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Len is functionally similar to the BCL's System.String.Length public instance method. One
significant difference is that Len retuns a in the case of an uninitialized String variable,
whereas the Length method raises a NullReferenceException exception. In addition, of
course, the Length method can be used only on strings, whereas Len can be used on all
data types other than strongly typed objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like Operator

Syntax

result = string Like pattern

string (required; String)

The string to be tested against pattern

pattern (required; String)

A series of characters used by the Like operator to determine if string and pattern
match

Return Type

Boolean

Description

If string matches pattern, result is True; otherwise, result is False.

Rules at a Glance

If either string or pattern is Nothing, then result will be Nothing.

The default comparison method for the Like operator is Binary. This can be overridden
using the Option Compare statement.

Binary comparison is based on comparing the internal binary number representing each
character; this produces a case-sensitive comparison.

Text comparison, the alternative to binary comparison, is case insensitive; therefore, A = a.

The sort order is based on the code page currently being used, as determined by the
Windows regional settings.

The following table describes the special characters to use when creating a pattern; all
other characters match themselves.

Character Meaning
? Any single character

* Zero or more characters

Any single digit (0-9)

[list] Any single character in list

[!list] Any single character not in list

[] A zero-length string ("")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list is used to match a group of characters in pattern to a single character in string
and can contain almost all available characters, including digits.

Use a hyphen (-) in list to create a range of characters to match a character in string.
For example, [A-D] will match A, B, C, or D in that character position in string.

Multiple ranges of characters can be included in list without the use of a delimiter. For
example, [A-D J-L].

Ranges of characters should appear in sort order. For example, [c-k].

Use the hyphen at the start or end of list to match to itself. For example, [- A-G]
matches a hyphen or any character from A to G.

The exclamation point in pattern matching is like the negation operator in C. Use an
exclamation point before a character or range of characters in list to match all but that
character. For example, [!A-G] matches all characters apart from the characters from A to
G.

The exclamation point outside of the bracket matches itself.

To use any special character as a matching character, you should enclose the special
character in brackets. For example, to match to a question mark, use [?].

Example

The following example will display OK if the text entered into Text1 starts with either V or A,
followed by any characters, and ends with "in a Nutshell." Therefore, "Paul in a Nutshell" returns
Wrong, whereas either "ASP in a Nutshell" or "VB.NET Language in a Nutshell" returns OK.

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sTitle As String = "in a Nutshell"

 Dim sPattern As String = "[V A]* " & sTitle

 If TextBox1.Text Like sPattern Then

 MsgBox("OK")

 Else

 MsgBox("Wrong")

 End If

End Sub

Programming Tips and Gotchas

Different languages place different priority on particular characters with relation to sort
order. Therefore, the same program using the same data may yield different results when
run on machines in different parts of the world, depending upon the locale settings of the
systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Regular expressions provide an even more powerful method for searching and comparing
strings. You can use regular expressions through the .NET Framework's
System.Text.RegularExpressions.RegEx class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LineInput Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

LineInput(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

A String containing the line read from the file

Description

Assigns a single line from a sequential file opened in Input mode to a string variable

Rules at a Glance

Data is read into a buffer one character at a time until a line feed or carriage-return
sequence (either Chr(13) or Chr(13)+Chr(10)) is encountered. When this happens, all
the characters in the buffer are returned as a string, without the carriage-return sequence,
and the buffer is cleared.

After reading a line, the file pointer advances to the first character after the end of the line
or to the end-of-file marker.

Example

The following code reads all of the lines in a text file and sends them to the Output window:

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read)

Do While Not EOF(fr)

 Console.WriteLine(LineInput(fr))

Loop

FileClose(fr)

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You use the LineInput function to read data from text files. To write data back to this type of file,
use the PrintLine function.

VB.NET/VB 6 Differences

The VB.NET LineInput function corresponds directly to the VB 6 LineInput statement, with the
following differences:

The VB 6 LineInput statement has a second argument, varname, which is the variable
to receive the line read by the function. It is not supported by the VB.NET LineInput
function, since the line read is the return value of the function.

The first argument of the VB 6 LineInput statement, filenumber, could be preceded by
the # symbol. In VB.NET, this format is not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Loc(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

A Long indicating the current position of the read/write pointer in a file

Description

Determines the current position of the file read/write pointer

Rules at a Glance

If you have opened the file in Random mode, Loc returns the record number of the last
record read or written.

If you have opened the file in Input or Output modes (sequential), Loc returns the current
byte position in the file divided by 128.

If you have opened the file in Binary mode, Loc returns the position of the last byte read or
written.

Example

Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

Do While Loc(fr) < LOF(fr)

 FileGet(fr, sChar)

 Debug.Write(Loc(fr) & ": ")

 Console.WriteLine(sChar)

Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

For sequential files, the return value of Loc is not required and should not be used.

Note that you cannot set the position of the file pointer using Loc.

See Also

FileOpen Procedure, LOF Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Lock(filenumber[, record])

or:

Lock(filenumber[, fromrecord,torecord]

filenumber (required; Integer)

Any valid file number

record (optional; Long)

The record or byte number at which to commence the lock

fromrecord (optional; Long)

The first record or byte number to lock

torecord (optional; Long)

The last record or byte number to lock

Description

The Lock procedure prevents another process from accessing a record, section, or whole file until
it is unlocked by the Unlock function.

Use the Lock procedure in situations where multiple programs or more than one instance of your
program may need read and write access to the same data file.

Rules at a Glance

Use the Lock procedure with only the filenumber argument to lock the whole file.

record is interpreted as a record number in the case of random files and a byte number in
the case of binary files. Records and bytes in a file are always numbered sequentially from
1 onward.

To lock a particular record, specify its record number as record, and only that record will
be locked.

The Lock procedure locks an entire file opened in Input or Output (sequential) mode,
regardless of the record argument.

If you omit the start argument, Lock will lock all records from the start of the file to record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you omit the start argument, Lock will lock all records from the start of the file to record
or byte number end.

Attempting to access a locked file or portion of a file returns runtime error 70, "Permission
denied."

Programming Tips and Gotchas

You must take care to remove all file locks with the Unlock procedure before either closing
a file or ending the application; otherwise, you can leave the file in an unstable state. This
of course means that, where appropriate, your error-handling routines must be made aware
of any locks you currently have in place so that they may be removed if necessary.

You use the Lock and Unlock procedures in pairs, and the argument lists of both
statements must match exactly.

The Lock procedure does not guarantee under all circumstances that the locked file will be
protected from access by other processes. There are two major circumstances under which
an apparent access violation can occur:

The file has already been opened but has not been locked by a process when the
current process locks it. However, the first process will not be able to perform
operations on the file once the second file successfully locks it.

The block of code responsible for opening the file and then locking it is interrupted by
the scheduling policy of the operating system before the file can be locked. If a
second process then opens and locks the file, it — and not the first process — will
have sole use of the file.

Because of this, the Lock procedure should immediately follow the FileOpen procedure in
code. This reduces, but does not eliminate, the problems that result from the fact that
opening and locking a file is not an automatic operation.

VB.NET/VB 6 Differences

In the VB 6 Lock statement, you can separate the fromrecord and torecord arguments with
the To keyword. In the VB.NET Lock procedure, this syntax is not supported.

See Also

Unlock Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

LOF(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

Long Integer

Description

Returns the size of an open file in bytes

Rules at a Glance

filenumber must be the number of a file opened using the FileOpen function.

Example

The following example shows how to use the LOF function to prevent reading past the end of a
file in binary mode:

Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

Do While Loc(fr) < LOF(fr)

 FileGet(fr, sChar)

 Debug.Write(Loc(fr) & ": ")

 Console.WriteLine(sChar)

Loop

Programming Tips and Gotchas

LOF works only on an open file; if you need to know the size of a file that isn't open, use the
FileLen function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

FileLen Function, FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Log Function

Class

System.Math

Syntax

Math.Log(d)

or:

Math.Log(a, newbase)

d or a (required; Double)

A numeric expression greater than zero

newbase (required; Double)

The base of the logarithm

Return Value

Double

Description

Returns the natural (base e) logarithm of a given number (the first syntax) or the logarithm of a
given number in a specified base (the second syntax)

Rules at a Glance

The natural logarithm is the logarithm base e, a constant whose value is approximately
2.718282. The natural logarithm satisfies the equation:

e^Log(x) = x

In other words, the natural logarithm function is the inverse function of the exponential
function.

d or a, the value whose natural logarithm the function is to return, must be a positive real
number. If number is negative or zero, the function generates runtime error 5, "Invalid
procedure call or argument."

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can calculate base-n logarithms for any number, x, by dividing the natural logarithm of
x by the natural logarithm of n, as the following expression illustrates:

Logn(x) = Log(x) / Log(n)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Logn(x) = Log(x) / Log(n)

For example, the Log10 function shows the source code for a custom function that
calculates base-10 logarithms:

Static Function Log10(X)

 Log10 = Log(X) / Log(10#)

End Function

The inverse trigonometric functions, which are not intrinsic to VB, can be computed using
the value returned by the Log function. The functions and their formulas are:

Inverse hyperbolic sine

HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse hyperbolic cosine

HArccos(X) = Log(X + Sqr(X * X - 1))

Inverse hyperbolic tangent

HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse hyperbolic secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse hyperbolic cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse hyperbolic cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

See Also

Exp Function, Log10 Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Log10 Function

Class

System.Math

Syntax

Math.Log10(d)

d (required; Double)

A numeric expression greater than zero

Return Value

Double

Description

Returns the common (base-10) logarithm of a given number

Rules at a Glance

The common logarithm is the logarithm base-10. The common logarithm satisfies the
equation:

10^Log10(x) = x

d, the value whose common logarithm the function is to return, must be a positive real
number. If number is negative or zero, the function generates runtime error 5, "Invalid
procedure call or argument."

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Log10 function is new to the .NET platform.

See Also

Exp Function, Log Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

LSet(Source, Length)

Source (required; String)

The string to be left aligned

Length (required; Integer)

The length of the returned string

Return Value

String

Description

Left aligns a string

Rules at a Glance

If the length of Source is greater than or equal to Length, the function returns only the
leftmost Length characters.

If the length of Source is less than Length, spaces are added to the right of the returned
string so that its length becomes Length.

VB.NET/VB 6 Differences

In VB 6, LSet was implemented as a kind of assignment statement. Because it is
implemented as a function in VB.NET, its syntax is completely different.

In VB 6, LSet could be used only with fixed-length strings. In VB.NET, LSet works with all
CTS String data.

See Also

RSet Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

LTrim(str)

str (required; String)

A valid string expression

Return Value

String

Description

Removes any leading spaces from str

Rules at a Glance

If str has no leading spaces, the function returns str unmodified.

If str is Nothing, LTrim returns Nothing.

Programming Tips and Gotchas

It is unwise to create data relationships that rely on leading spaces, especially since most string-
based data types in relational database-management systems (like SQL Server and Access)
automatically remove leading spaces.

See Also

RTrim Function, Trim Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MarshalAs Attribute

Class

System.Runtime.InteropServices.MarshalAsAttribute

Applies to

Field, Parameter, ReturnValue

Description

Defines the correct type conversion between managed and unmanaged code. Unmanaged types
are defined by the UnmanagedType enumeration, which is shown in the following table:

UnmanagedType Value Description

AnsiBStr 35 An ANSI BSTR (a character string whose first byte indicates the
string length).

AsAny 40 Dynamic type determination at runtime.

Bool 2 4-byte Boolean (True <> 0, False = 0).

BStr 19 A Unicode BSTR (a character string whose first 2 bytes indicates
the string length).

ByValArray 30

An array passed by value. An array that is a field in a structure
must have this attribute. The SixeConst field must be set to the
number of array elements, and the ArraySubType field can
optionally be set to the unmanaged data type of the array.

ByValTStr 23
An inline fixed-length character array within a structure. The
character type is determined by the CharSet argument of the
containing structure's <StructLayout> attribute.

Currency 15 A COM Currency data type. Used on the VB.NET and .NET
Decimal data type.

CustomMarshaler 44
A custom marshaler class. The class is defined by the
MarshalType or MarshelTypeRef field. Additional information can
be passed to the custom marshaler by the MarshalCookie field.

Error 45 An HRESULT. The native .NET type should be a 4-byte signed or
unsigned integer.

FunctionPtr 38 A function pointer.

I1 3 A 1-byte signed integer.

I2 5 A 2-byte signed integer.

I4 7 A 4-byte signed integer.

I8 9 An 8-byte signed integer.

IDispatch 26 A COM IDispatch pointer.

Interface 28 A COM interface pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IUnknown 25 A COM IUnknown pointer.

LPArray 42
A C-style array. Its length is indicated by the SizeConst and
SizeParamIndex fields. Optionally, the ArraySubType field can
indicate the unmanaged type of string elements within the array.

LPStr 20 An ANSI (single-byte) character string.

LPStruct 43 A pointer to a structure.

LPTStr 32
A platform-dependent character string (ANSI on WIndows 9x,
Unicode on WIndows NT/2000/XP). LPTStr is supported only for
platform invoke, and not for COM interop.

LPWStr 21 A Unicode (double-byte) character string.

R4 11 A 4-byte floating point number.

R8 12 An 8-byte floating point number.

SafeArray 29 A SafeArray (a self-describing array that includes information on its
type, dimension, and bounds).

Struct 27 A C-style structure used to marshal .NET formatted classes and
value types.

SysInt 31 A platform-dependent integer (4 bytes on 32-bit Windows, 8 bytes
on 64-bit Windows).

SysUInt 32 The hardware's natural sized unsigned integer.

TBStr 36 A length-prefixed, platform-dependent character string (ANSI in
Windows 9x, Unicode on Windows NT/2000/XP).

U1 4 A 1-byte unsigned integer.

U2 6 A 2-byte unsigned integer.

U4 8 A 4-byte unsigned integer.

U8 10 An 8-byte unsigned integer.

VariantBool 37 A 2-byte OLE-defined Boolean value (True = -1, False = 0).

VBByRefStr 34 Allows Visual Basic to change a string in unmanaged code and
reflect the changed skin in managed code.

Constructor

New(unmanagedType)

unmanagedType (Short or UnmanagedType enumeration)

Indicates the COM (unmanaged) data type to which the data is to be converted.
unmanagedType can either be a constant of the UnmanagedType enumeration or its
corresponding Short value, as shown in the previous table.

Properties

Value (UnmanagedType enumeration)

The COM (unmanaged) data type that the .NET (managed) data is to be marshaled as.

Fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ArraySubType (UnmanagedType enumeration)

The subtype of an array of type ByValArray or LPArray. It is used when an array
contains strings so that the runtime knows how to marshal a string array to COM.

MarshalCookie (String)

An undefined field that can be used to pass user-defined data to a custom marshaler. The
value of the MarshalCookie field as passed to the custom marshaler's GetInstance method.

MarshalType (String)

The fully qualified name of a custom marshaler. It is required if the Value property is
CustomMarshaler.

MarshalTypeRef (Type)

Implements the MarshalType value as a Type, rather than a string.

SafeArraySubType (VarEnum enumeration)

The data type of a SafeArray. Possible values are the members of the VarEnum
enumeration, which is shown in the following table:

Constant Description
VT_ARRAY A SAFEARRAY pointer

VT_BLOB A length-prefixed collection of bytes

VT_BLOB_OBJECT A VT_BLOB containing an object

VT_BOOL A Boolean value

VT_BSTR A string of type BSTR

VT_BYREF A value passed by reference

VT_CARRAY A C-style array

VT_CF Clipboard format

VT_CLSID A class identifier (CLSID)

VT_CY A currency value

VT_DATE A date value

VT_DECIMAL A decimal value

VT_DISPATCH An IDispatch pointer

VT_EMPTY A value was not specified

VT_ERROR An SCODE
VT_FILETIME A FILETIME value

VT_HRESULT An HRESULT
VT_I1 A char value

VT_I2 A short (two-byte) integer

VT_I4 A long (4-byte) integer

VT_I8 A 64-bit integer

VT_INT An integer value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VT_LPSTR A null-terminated string

VT_LPWSTR A null-terminated Unicode string

VT_NULL A null reference (Nothing)

VT_PTR A pointer

VT_R4 A floating-point value

VT_R8 A double value

VT_RECORD A user-defined type

VT_SAFEARRAY A SAFEARRAY
VT_STORAGE A named storage

VT_STORED_OBJECT Storage containing an object

VT_STREAM A named stream

VT_STREAMED_OBJECT A Stream containing an object

VT_UI1 An unsigned byte

VT_UI2 An unsigned (2-byte) short

VT_UI4 An unsigned (4-byte) long

VT_UI8 A 64-bit unsigned integer

VT_UINT An unsigned integer

VT_UNKNOWN An IUnknown pointer

VT_USERDEFINED A user-defined type

VT_VARIANT A VARIANT far pointer

VT_VECTOR A simple counted array

VT_VOID A C-style void

SafeArrayUserDefinedSubType (Type object)

The user-defined type of the SAFEARRAY. This field is used only if the value of the
SafeArraySubType field is VT_UNKNOWN, VT_DISPATCH, or VT_RECORD.

SizeConst (Integer)

The number of elements in a fixed-length array

SizeParamIndex (Short)

Indicates which zero-based parameter contains a count of array elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Max Function

Class

System.Math

Syntax

Math.Max(val1, val2)

val1, val2 (required; any)

A numeric data type or expression

Return Value

Returns the maximum of val1 and val2, in the widest datatype of the two numbers

Description

Returns the maximum of val1 and val2

Rules at a Glance

If the two arguments do not have the same data type, then the narrower data type is cast to
the wider type. For instance, the line:

Dim x As Integer = 5

Dim y As Double = 454.8

MsgBox(Math.Max(x, y))

displays 454.8.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Max function is new to the .NET Framework.

See Also

Min Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Me Operator

Syntax

Me

Description

Represents a reference to the current class from within the class

Rules at a Glance

Me is an explicit reference to the current object as defined by the Class...End Class
construct.

Me corresponds to the C++ this operator.

Example

In this example, a class passes an instance of itself to a function outside the class by using the Me
operator.

Private Class CCounter

Private lCtr As Long = 1

Public ReadOnly Property Value

 Get

 Value = lCtr

 End Get

End Property

Public Sub Increment()

 lCtr += 1

End Sub

Public Function ShowCount() As Long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function ShowCount() As Long

 ShowCount = ShowObjectValue(Me)

End Function

End Class

Module modMain

Public Sub Main

 Dim oCtr = New CCounter

 oCtr.Increment

 oCtr.Increment

 MsgBox("Count: " & oCtr.ShowCount)

End Sub

Public Function ShowObjectValue(oObj As Object) AS Object

 ShowObjectValue = oObj.Value

End Function

End Module

Programming Tips and Gotchas

The Me operator can't be used on the left side of an expression.

Me is particularly useful when passing an instance of the current class as a parameter to a
routine outside the class.

See Also

MyClass Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mid Function

Class

Microsoft.VisualBasic.Strings

Syntax

Mid(str, start[, length])

str (required; String)

The expression from which to return a substring

start (required; Long)

The starting position of the substring

length (optional; Long)

The length of the substring

Return Value

String

Description

Returns a substring of a specified length from a given string

Rules at a Glance

If str contains Nothing, Mid returns Nothing.

If start is greater than the length of str, a zero-length string is returned.

If start is less than zero, runtime error 5, "Invalid procedure call or argument," is
generated.

If length is omitted or length is greater than the length of str, all characters from
start to the end of str are returned.

Example

The following example parses the contents of a text box control (named txtString) and writes
each word to a list box (named lstWord). Note the use of the InStr function to determine the
position of either a space or a carriage return/line feed character combination — the two
characters that can terminate a word in this case:

Private Sub btnParse_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) _

 Handles btnParse.Click

 Dim strString, strWord As String

 Dim intStart, intEnd, intStrLen, intCrLf As Integer

 Dim blnLines As Boolean

 lstWords.Items.Clear()

 intStart = 1

 strString = Trim(txtString.Text)

 intStrLen = Len(strString)

 intCrLf = InStr(1, strString, vbCrLf)

 If intCrLf Then blnLines = True

 lstWords.BeginUpdate()

 Do While intStart > 0

 intEnd = InStr(intStart, strString, " ") - 1

 If intEnd <= 0 Then intEnd = intStrLen

 If blnLines And (intCrLf < intEnd) Then

 intEnd = intCrLf - 1

 intCrLf = InStr(intEnd + 2, strString, vbCrLf)

 If intCrLf = 0 Then blnLines = False

 lstWords.Items.Add(Mid(strString, intStart, _

 intEnd - intStart + 1))

 intStart = intEnd + 3

 Else

 lstWords.Items.Add(Mid(strString, intStart, _

 intEnd - intStart + 1))

 intStart = intEnd + 2

 End If

 If intStart > intStrLen Then intStart = 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If intStart > intStrLen Then intStart = 0

 Loop

 lstWords.EndUpdate()

End Sub

Programming Tips and Gotchas

Use the Len function to determine the total length of str.

Use InStr to determine the starting point of a given substring within another string.

See Also

Left Function, Mid Function, Right Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mid Statement

Syntax

Mid(target, start[, length]) = string

target (required; String)

The name of the string variable to be modified

start (required; Long)

The position within stringvar at which the replacement commences

length (optional; Long)

The number of characters in stringvar to replace

string (required; String)

The string used to replace characters within stringvar

Description

Replaces a section of a string with characters from another string

Rules at a Glance

If you omit length, as many characters of string as can fit into stringvar are used.

If start + length is greater then the length of stringvar, string is truncated to fit in
the same space as stringvar. This means that the length of stringvar is not altered
by the Mid statement.

If start is less than 0, runtime error 5, "Invalid procedure call or argument," occurs.

Programming Tips and Gotchas

If string is Nothing, a runtime error occurs.

VB includes the Replace function, which enhances the functionality of the Mid statement by
allowing you to specify the number of times the replacement is carried out in the same
string.

Because it is a statement, this version of Mid does not accept named arguments.

As a statement, Mid is implemented by the compiler, rather than by the
Microsoft.VisualBasic.Strings class.

See Also

Mid Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Min Function

Class

System.Math

Syntax

Math.Min(val1, val2)

val1, val2 (required; any numeric)

A numeric data type or expression

Return Value

Returns the minimum of val1 and val2 in the widest data type of the two numbers

Description

Returns the minimum of val1 and val2, in the same data type as the numbers. See Section for
more detail.

Rules at a Glance

If the two arguments do not have the same data type, then the narrower data type is cast to
the wider type. For instance, the code fragment:

Dim x As Integer = 5

Dim y As Double = 454.8

MsgBox(Math.Min(x, y))

displays 454.8 without error. The datatype returned by the function in this instance is a
Double.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Min function is new to the .NET Framework.

See Also

Max Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Minute Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Minute(TimeValue)

TimeValue (required; date)

Date variable or literal date

Return Value

An Integer between 0 and 59, representing the minute of the hour

Description

Extracts the minute component from a given date/time expression

Rules at a Glance

If TimeValue is not a valid date/time expression, the function generates runtime error 13,
"Type mismatch." To prevent this, use the IsDate function to check the argument before
calling the Minute function.

If TimeValue contains Nothing, 0 is returned, so be careful here to check for Nothing.

You can also use the DatePart function.

See Also

Hour Function, Second Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

MIRR(valuearray(), financerate, reinvestrate)

valuearray() (required; Array of Double)

An array of cash flow values

financerate (required; Double)

The interest rate paid as the cost of financing

reinvestrate (required; Double)

The interest rate received on gains from cash investment

Return Value

A Double representing the modified internal rate of return

Description

Calculates the modified internal rate of return, which is the internal rate of return when payments
and receipts are financed at different rates

Rules at a Glance

valuearray must be a one-dimensional array that contains at least one negative value (a
payment) and one positive value (a receipt). The order of elements within the array should
reflect the order in which payments and receipts occur.

financerate and reinvestrate are percentages expressed as decimal values. For
example, 10% is expressed as 0.10.

Programming Tips and Gotchas

Each element of valuearray represents a payment or a receipt that occurs at a regular time
interval. If this is not the case, MIRR will return erroneous results.

See Also

IRR Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MkDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

MkDir(path)

path (required; String)

The name of the folder to be created

Description

Creates a new folder

Rules at a Glance

If you omit the drive from path, a new folder will be created on the current drive.

You can specify the drive by using either its local drive letter or its UNC name.

path can either be a fully qualified path (i.e., a path from the drive's root directory to the
directory to be created) or a relative path (i.e., a path from the current directory).

If the directory to be created by the MkDir procedure already exists, an IOException
exception is raised.

Programming Tips and Gotchas

If your program is running on Windows NT, ensure that the logged-in user has the right to
create a folder on the specified drive prior to calling the MkDir procedure.

VB does not automatically make the new folder the current folder after a call to MkDir. You
will need to call the ChDir procedure to do this.

To remove a folder, use the RmDir procedure.

Use CurDir to determine the current drive.

See Also

RmDir Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mod Operator

Syntax

result = number1 Mod number2

number1, number2 (required; any)

A numeric expression

Return Value

Returns the modulus

Description

Returns the modulus, that is, the remainder when number1 is divided by number2. This return
value is a non-negative integral data type.

Rules at a Glance

Floating point numbers are rounded to integers before the division.

If number1 or number2 is Nothing, then an error occurs.

The Mod operator returns the data type of number1 and number2 if they are the same
type, or the widest data type of number1 and number2 if they are different.

Example

MsgBox(10 Mod 3) ' returns 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Module...End Module Statement

Syntax

accessmodifier Module modulename

 ' statements

End Module

accessmodifier (optional)

Type: Keyword

One of the following keywords determine the visibility of the module:

Public

Makes the module visible to all applications

Friend

Makes the module visible throughout the project

modulename (required)

Type: String literal

The name of the code module

Description

Defines a code block as a code module

Rules at a Glance

If accessmodifier is omitted, the module is Public by default.

modulename follows standard Visual Basic naming conventions and must be unique within
its assembly.

statements can consist of the following:

Constant and variable definitions

Function and procedure definitions

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code modules are similar to classes in which the public variables are treated as static
fields and the public functions and procedures are treated as static (shared) methods. This
means that, particularly in the event of a naming conflict (where two routines in different
code modules have the same name), you can qualify the function or procedure with the
name of the module in which it resides. For example, if the SayHello procedure is found in
a module named modLibrary, it can be called as follows:

modLibrary.SayHello()

Although modules are similar to classes, there are some important differences. The
members of a module have scope equal to the module's containing namespace, rather
than just to the module itself. Also, modules cannot be instantiated, do not support
inheritance, and cannot implement interfaces.

If a code module is to contain a routine that serves as a program entry point, that routine
must be named Sub Main. It must also have Public scope.

VB.NET/VB 6 Differences

The statement is new to VB.NET. VB 6 placed each code module in a separate BAS file, which
rendered beginning and ending statements unnecessary. A single VB.NET file, on the other hand,
can contain multiple code modules and classes, thus necessitating the use of beginning and
ending statements.

See Also

Class Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Month Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Month(datevalue)

datevalue (required; date)

Date variable or literal date

Return Value

An Integer between 1 and 12

Description

Returns an integer representing the month of the year of a given date expression

Rules at a Glance

If datevalue contains Nothing, Month returns Nothing.

Programming Tips and Gotchas

The validity of the date expression, as well as the position of the month element within the
date expression, is initially determined by the locale settings of the current Windows
system. However, some intelligence has been built into the Month function that surpasses
the usual comparison of a date expression to the current locale settings. For example, on a
Windows machine set to US date format (mm/dd/yyyy), the date "13/12/1998" would
technically be illegal. However, the Month function returns 12 when passed this date. The
basic rule for the Month function is that if the system-defined month element is outside legal
bounds (i.e., greater than 12), the system-defined day element is assumed to be the month
and is returned by the function.

Since the IsDate function adheres to the same rules and assumptions as Month, it can be
used to determine whether a date is valid before passing it to the Month function.

Visual Basic also has a new MonthName function for returning the name of the month.

You can also use the DatePart function.

See Also

Day Function, Year Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MonthName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

MonthName(month [, abbreviate])

month (required; Integer)

The ordinal number of the month, from 1 to 12

abbreviate (optional; Boolean)

A flag to indicate if an abbreviated month name should be returned

Return Value

String containing the name of the specified month

Description

Returns the month name of a given month. For example, a month of 1 returns January or (if
abbreviate is True) Jan.

Rules at a Glance

The default value for abbreviate is False.

Example

Public Function GetMonthName(dat As Date) As String

Dim iMonth As Integer = Month(dat)

GetMonthName = MonthName(iMonth)

End Function

Programming Tips and Gotchas

month must be an integer; it cannot be a date. Use DatePart("m", dateval) to obtain
a month number from a date.

If month has a fractional portion, it is rounded before calling the MonthName function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MonthName with abbreviate set to False is the equivalent of Format(dateval,
"mmmm").

MonthName with abbreviate set to True is the equivalent of Format(dateval,
"mmm").

See Also

WeekdayName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

MsgBox(prompt[, buttons][, title])

prompt (required; String)

The text of the message to display in the message box dialog box

buttons (optional; MsgBoxStyle enumeration)

The sum of the Button, Icon, Default Button, and Modality constant values

title (optional; String)

The title displayed in the title bar of the message box dialog box

Return Value

A MsgBoxResult enumeration constant indicating the button clicked by the user to close the
message box

Description

Displays a dialog box containing a message, buttons, and optional icon to the user. The action
taken by the user is returned by the function in the form of an enumerated constant.

Rules at a Glance

prompt can contain approximately 1,000 characters, including carriage return characters
such as the built-in vbCrLf constant.

If the title parameter is omitted, the name of the current application or project is
displayed in the title bar.

If you omit the buttons argument, the default value is 0; that is, VB opens an application
modal dialog box containing only an OK button.

The constants of the MsgBoxStyle enumeration can be added together to form a
complete buttons argument. The constants can be divided into the following groups:

Button Display Constants
Icon Display Constants
Default Button Constants
Modality Constants

Only one constant from each group can be used to make up the overall buttons value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Only one constant from each group can be used to make up the overall buttons value.

Button Display Constants

Constant Value Buttons to display
MsgBoxStyle.OKOnly 0 OK only

MsgBoxStyle.OKCancel 1 OK and Cancel

MsgBoxStyle.AbortRetryIgnore 2 Abort, Retry, and Ignore

MsgBoxStyle.YesNoCancel 3 Yes, No, and Cancel

MsgBoxStyle.YesNo 4 Yes and No

MsgBoxStyle.RetryCancel 5 Retry and Cancel

Icon Display Constants

Constant Value Icon to display
MsgBoxStyle.Critical 16 Critical Message

MsgBoxStyle.Question 32 Warning Query

MsgBoxStyle.Exclamation 48 Warning Message

MsgBoxStyle.Information 64 Information Message

Default Button Constants

Constant Value Default button
MsgBoxStyle.DefaultButton1 0 First button

MsgBoxStyle.DefaultButton2 256 Second button

MsgBoxStyle.DefaultButton3 512 Third button

MsgBoxStyle.DefaultButton4 768 Fourth button

Modality Constants

Constant Value Modality
MsgBoxStyle.ApplicationModal 0 Application

MsgBoxStyle.SystemModal 4096 System

Return Values

The following intrinsic constants can be used to determine the action taken by the user and
represent the value returned by the MsgBox function:

Constant Value Button clicked
MsgBoxResult.OK 1 OK

MsgBoxResult.Cancel 2 Cancel (or Esc key pressed)

MsgBoxResult.Abort 3 Abort

MsgBoxResult.Retry 4 Retry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBoxResult.Ignore 5 Ignore

MsgBoxResult.Yes 6 Yes

MsgBoxResult.No 7 No

If the MsgBox contains a Cancel button, the user can press the Esc key and the function's return
value will be that of the Cancel button.

Programming Tips and Gotchas

Application modality means that the user cannot access other parts of the application until
a response to the message box has been given. In other words, the appearance of the
message box prevents the application from performing other tasks or from interacting with
the user other than through the message box.

System modality used to mean that all applications were suspended until the message box
was closed. However, with multitasking operating systems, such as Windows 95 and
Windows NT, this is not the case. Basically, the message box is defined to be a "Topmost"
window that is set to "Stay on Top," which means that the user can switch to another
application and use it without responding to the message box. But because the message
box is the topmost window, it will be positioned on top of all other running applications.

Unlike its InputBox counterpart, MsgBox cannot be positioned on the screen. It is always
displayed in the center of the screen.

If your application is to run out-of-process on a remote machine, you should remove all
MsgBox functions since they will not be displayed to the user, but instead will appear on the
monitor of the remote server!

MsgBox should never be used in ASP.NET applications.

VB.NET/VB 6 Differences

In VB 6, the MsgBox function has five parameters. The last two, helpfile (which specified the
path to a help file containing information about the error message) and context (which specified
the help context ID within helpfile), are optional. In VB.NET, these two parameters are not
supported.

See Also

InputBox Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTAThread Attribute

Class

System.MTAThreadAttribute

Applies to

Method

Description

Specifies that the class or application to which the program element belongs is to use the
multithreaded apartment model for COM interop. If COM components are not called from the
class or application, the attribute has no effect. The <MTAThread> attribute should be used only
on the class or application's Main method or subroutine.

The <MTAThread> attribute is similar to setting a Thread object's ApartmentState property to
ApartmentState.MTA. The difference is that the <MTAThread> attribute creates a
multithreaded apartment from startup, whereas setting the property does it only from the point that
the property is set.

Constructor

New()

Properties

None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyBase Keyword

Syntax

MyBase

Description

Provides a reference to the base class from within a derived class. If you want to call a member of
the base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived
class also has a member of the same name.

Rules at a Glance

MyBase will call through the chain of inherited classes until it finds a callable
implementation. For example, in the code:

Public Class CTestClass

...

End Class

Public Class CTestClass2

 Inherits CTestClass

 Public Function ShowType() As Type

 Return Mybase.GetType

 End Function

End Class

the call to ShowType is eventually resolved as a call to Object.GetType, since all classes
are ultimately derived from the Object class.

MyBase cannot be used to call Private class members.

MyBase cannot be used to call base class members marked as MustOverride.

Programming Tips and Gotchas

MyBase is commonly used to call back into the overridden member from the member that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyBase is commonly used to call back into the overridden member from the member that
overrides it in the derived class.

The MyBase keyword can be used to call the constructor of the base class to instantiate a
member of that class, as in:

MyBase.New(...)

VB.NET/VB 6 Differences

The MyBase keyword is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyClass Keyword

Syntax

MyClass

Description

MyClass is a reference to the class in which the keyword is used.

Rules at a Glance

When using MyClass (as opposed to Me) to qualify a method invocation, as in:

MyClass.IncSalary()

the method is treated as if it was declared using the NotOverridable keyword. Thus,
regardless of the type of the object at runtime, the method called is the one declared in the
class containing this statement (and not in any derived classes). The upcoming example
illustrates this difference between MyClass and Me.

MyClass cannot be used with shared members.

Example

The following code defines a class, Class1, and a derived class, Class1Derived, each of which has
an IncSalary method.

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.1)

 End Function

 Public Sub ShowIncSalary(ByVal sSalary As Single)

 MsgBox(Me.IncSalary(sSalary))

 MsgBox(MyClass.IncSalary(sSalary))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

End Class

Public Class Class1Derived

 Inherits Class1

 Public Overrides Function IncSalary(ByVal sSalary As Single) As Single

 IncSalary = sSalary * CSng(1.2)

 End Function

End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()

Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1

c1var.ShowIncSalary(10000) ' Shows 11000, 11000

c1var = c2

c1var.ShowIncSalary(10000) ' Shows 12000, 11000

The first call to ShowIncSalary is made using a variable of type Class1 that refers to an object of
type Class1. In this case, both calls:

Me.ShowIncSalary

MyClass.ShowIncSalary

return the same value, because they both call IncSalary in the base class Class1.

However, in the second case, the variable of type Class1 holds a reference to an object of the
derived class Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas
MyClass still refers to the base class Class1 wherein the keyword MyClass appears. Thus:

Me.ShowIncSalary

returns 12000, whereas:

MyClass.ShowIncSalary

returns 10000.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MyBase keyword is new to VB.NET.

See Also

Me Operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Namespace Statement

Syntax

Namespace name

 component types

End Namespace

name (required; String literal)

The name of the namespace

component types (required)

The elements that are being declared as part of the namespace, including Enums,
Structures, Interfaces, Classes, Delegates, Modules, and other namespaces

Description

Declares a namespace and specifies the items in the namespace

Rules at a Glance

Namespaces are used in the .NET Framework as an organized method of exposing
program components to other programs and applications.

Namespaces are always Public. However, the elements within a namespace can be
Public, Friend, or Private. Private members are available only within the namespace
declaration.

name, the namespace name, must be unique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Now()

Return Value

A Date containing the current system date and time

Description

Returns the current date and time based on the system setting

Rules at a Glance

The date returned by Now takes the Windows General Date format based on the locale
settings of the local computer. The U.S. setting for General Date is mm/dd/yy hh:mm:ss.

The Now property is read-only.

Example

The following example returns the date 10 days from today:

MsgBox(DateAdd(DateInterval.Day, 10, Now()))

Programming Tips and Gotchas

It is often overlooked that workstations in a modern Windows environment are at the mercy
of the user! If your application relies on an accurate date and time setting, you should
consider including a line in the workstation's logon script to synchronize the time with one of
the servers. Many so-called bugs have been traced to a workstation that has had its date or
time incorrectly altered by the user. The following line of code, when added to the logon
script of an Windows NT 4.0 machine, will synchronize the machine's clock with that of a
server called NTSERV1:

net time \\NTSERV1 /set

The Now property is often used to generate timestamps. However, for short-term timing
and intra-day timestamps, the Timer property, which returns the number of milliseconds
elapsed since midnight, affords greater accuracy.

The Now property wraps the BCL's System.DateTime.Now shared property. As a result,
calls to the System.DateTime.Now property offer a slight performance improvement (about
20%) over calls to the VB.NET Now property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Today Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NPer Function

Class

Microsoft.VisualBasic.Financial

Syntax

NPer(rate, pmt, pv [, fv [, due]])

rate (required; Double)

The interest rate per period.

pmt (required; Double)

The payment to be made each period.

pv (required; Double)

The present value of the series of future payments or receipts.

fv (optional; Double)

The future value of the series of payments or receipts. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due. DueDate.EndOfPeriod (0) indicates that
payments are due at the end of the payment period, and DueDate. BegOfPeriod (1)
indicates that payments are due at the beginning of the period. If omitted, the default value
is 0.

Return Value

A Double indicating the number of payments

Description

Determines the number of payment periods for an annuity based on fixed periodic payments and
a fixed interest rate

Rules at a Glance

rate is a percentage expressed as a decimal. For example, a monthly interest rate of 1%
is expressed as 0.01.

For pv and fv, cash paid out is represented by negative numbers; cash received is
represented by positive numbers.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Typically, the amount of time required to repay credit-card debt is never explicitly stated. The
following program uses the NPer function to determine how much time is required to repay credit-
card debt:

Private Sub HowLongToPay()

Try

 Dim dblRate, dblPV, dblPmt As Double

 Dim lngNPer As Long

 dblPV = InputBox("Enter the Credit Card balance: ")

 dblPmt = InputBox("Enter the monthly payment: ")

 dblRate = InputBox("Enter the monthly interest rate (.xxxx): ")

 lngNPer = NPer(dblRate, -dblPmt, dblPV, 0, 1)

 MsgBox("Your credit card balance will be paid in " & _

 lngNPer & " months." & vbCrLf & "That's " & _

 Int(lngNPer / 12) & " years and " & _

 Math.Round(lngNPer Mod 12, 2) & " months.")

Catch e As System.Exception

 MsgBox("Unable to compute period because of error " & e.Message)

End Try

End Sub

Programming Tips and Gotchas

Both rate and pmt must be expressed in the same time unit. That is, if pmt reflects the
monthly payment amount, rate must be the monthly interest rate.

NPer is useful in calculating the number of payment periods required to repay a loan when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NPer is useful in calculating the number of payment periods required to repay a loan when
the monthly loan payment is fixed or when an approximate amount of a monthly payment is
known. In this case, pv reflects the amount of the loan, and fv is usually 0, reflecting the
fact that the loan is to be entirely repaid.

NPer is useful in determining the length of time required to meet some future financial goal.
In this case, pv represents the current level of savings, and fv represents the desired level
of savings.

See Also

FV Function, IPmt Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NPV Function

Class

Microsoft.VisualBasic.Financial

Syntax

NPV(rate, valuearray())

rate (required; Double)

The discount rate over the period, expressed as a decimal

valuearray() (required; Double)

An array of cash flow values

Return Value

A Double specifying the net present value

Description

Calculates the net present value of an investment based on a series of periodic variable cash
flows (payments and receipts) and a discount rate

The net present value is the value today of a series of future cash flows discounted at some rate
back to the first day of the investment period.

Rules at a Glance

rate must be a percentage expressed as a decimal. For example, 10% is expressed as
0.10.

values is a one-dimensional array that must contain at least one negative value (a
payment) and one positive value (a receipt).

The NPV investment begins one period before the date of the first cash flow value and
ends with the last cash flow value in the array.

NPV requires future cash flows. If the first cash flow occurs at the beginning of the first
period, the first value must be added to the value returned by NPV and must not be
included in values.

Programming Tips and Gotchas

rate and the individual elements of values must reflect the same time period. For
example, if values reflects annual cash flows, rate must be the annual discount rate.

Individual members of values are interpreted sequentially. That is, values(0) is the first
cash flow, values(1) is the second, etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cash flow, values(1) is the second, etc.

NPV is like the PV function, except that PV allows cash flows to begin either at the
beginning or the end of a period and requires that cash flows be fixed throughout the
investment.

See Also

FV Function, IPmt Function, NPer Function, Pmt Function, PPmt Function, PV Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Obsolete Attribute

Class

System.ObsoleteAttribute

Applies to

Class, Struct, Enum, Constructor, Method, Property, Field, Event, Interface, and Delegate (i.e., all
program elements except parameters and return values)

Description

Indicates that the program element is obsolete and either is deprecated or no longer supported

Constructors

New([[message], error])

message (String)

Provides a message that can contain workarounds or alternate program elements

error (Boolean)

Indicates whether the compiler generates an error if the program element is used

Properties

IsError (Boolean)

Read-only. Indicates whether the compiler generates an error if the program element is
used. Default value is False.

Message (String)

Read-only. A message to be displayed to the programmer that indicates workarounds or
alternate program elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oct Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Oct(number)

number (required; Numeric or string capable of conversion to a number)

A valid numeric or string expression

Return Value

String

Description

Returns the octal value of a given number

Rules at a Glance

If number is not already a whole number, it is rounded to the nearest whole number before
being evaluated.

If number is Nothing, an error occurs.

Oct returns up to 11 octal characters.

Programming Tips and Gotchas

You can also use literals in your code to represent octal numbers by appending &O to the relevant
octal value. For example, 100 decimal has the octal representation &O144. The following two
statements assign an octal value to a variable:

lngOctValue1 = &H200 ' Assigns 128

lngOctValue2 = "&O" & Len(dblNumber) ' Assigns 8

See Also

Hex Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On Error Statement

Syntax 1

On Error GoTo label|0|-1

label (Either label, 0 , or -1 is required)

A valid label within the subroutine

Syntax 2

On Error Resume Next

Description

Enables or disables error handling within a procedure.

If you don't use an On Error statement or a Try...Catch block in your procedure, or if you
have explicitly switched off error handling, the Visual Basic runtime engine will automatically
handle the error. First, it will display a dialog box containing the standard text of the error
message, something that many users are likely to find incomprehensible. Second, it will terminate
the application. So any error that occurs in the procedure will produce a fatal runtime error.

Rules at a Glance

Syntax 1

The 0 argument disables error handling within the procedure until the next On Error
statement is executed.

The -1 argument disables an enabled exception in the current procedure. (It resets the
exception to Nothing.)

The label argument specifies the label that defines an error-handling routine within the
current procedure. Should an error occur, the procedure will be branched to this error-
handling routine.

A label must be suffixed with a colon. In addition, you cannot use a VB reserved word for a
subroutine label name. For example:

someroutine:

label must be in the same procedure as the On Error statement.

Syntax 2

When a runtime error occurs, program execution continues with the program line following the line
that generated the error.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have no error handling in your procedure or if error handling is disabled, the VB
runtime engine will trace back through the call stack until a procedure is reached where
error handling is enabled. In that case, the error will be handled by that procedure.
However, if no error handler can be found in the call stack, a runtime error occurs, and
program execution is halted.

On Error Resume Next is useful in situations either where you are certain that errors will
occur or where the errors that could occur are minor. The following example shows how
you can quickly cycle through the controls on a form and set the Text property to an empty
string without checking what type of control you're dealing with. Of course, you are aware
that many of the controls don't have a text property, so that the attempt to access their Text
property will generate an error. By using the On Error Resume Next statement, you force
your program to ignore this error and carry on with the next control.

On Error Resume Next

For Each Control In Me.Controls

 Control.Text = ""

Next

Use of the On Error Resume Next statement should be kept to a minimum, since errors
are basically ignored and their occurrence is silent to the user. This means that, should an
unexpected error (that is, an error that you were not intending to handle when you chose to
ignore errors) occur or should your application behave unexpectedly, the job of finding and
correcting the cause of the error becomes almost impossible.

The following is a template for error handling within your procedures using the On Error
statement:

Sub/Function/Property Name ()

 On Error Goto Name_Err

 ... 'procedure code

Name_Exit:

 ... 'tidying up code - such as Set Object = Nothing

 Exit Sub/Function/Property

Name_Err:

 ... 'error handling code e.g. a MsgBox to inform the user

 Resume Name_Exit

End Sub/Function/Property

If cleanup code isn't required within the procedure, you can simplify the template by
removing the Name_Exit label and removing the Resume Name_ Exit statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removing the Name_Exit label and removing the Resume Name_ Exit statement.

If you are writing an error-handling routine for use within a class module or a DLL, you
should use the following template, which raises an error back to the client, thereby notifying
the client of the error and allowing the client to handle it:

Sub/Function/Property Name ()

 On Error Goto Name_Err

 ... 'procedure code

 ... 'tidying up code - such as Set Object = Nothing

 Exit Sub/Function/Property

Name_Err:

 ... 'error handling and tidying up code

 Err.Raise etc...

End Sub/Function/Property

Errors that occur within an error handler are passed up the call chain. To illustrate this,
consider the following code:

Public Function Test() As Integer

 On Error Goto Err_Test

 Dim iTest() As Integer = {1, 2}

 Test = iTest(3) ' error

 Exit Function

Err_Test:

 MsgBox(iTest(4)) ' error

End Function

Sub Test2()

 On Error Goto Err_Test2

 Test()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Test()

 Exit Sub

Err_Test2:

 MsgBox("Error handled")

End Sub

When Test2 is run, the message "Error handled" is displayed. This indicates that the error
that occurs in the error handler of Test is passed to Test2.

For more on both unstructured and structured error handling, see Chapter 9.

VB.NET/VB 6 Differences

In VB 6, the label in On Error GoTo label can be either a label or a line number. In VB.NET,
the use of line numbers is not supported.

See Also

Err Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or opening a file.

The OpenFileDialog class has properties for setting the initial appearance and functionality of the
file dialog box, a property for returning the filename or names selected by the user, as well as a
method for showing the dialog box. An instance of the OpenFileDialog class does not itself open
the file, but instead provides the information that allows your code to do this programmatically.

Under VB, the most common use for this dialog box is to get the name of a file from the user,
after which we can use VB's functions to open that file.

An OpenFileDialog object can be instantiated as follows:

Dim oOpenDlg As New OpenFileDialog

Selected OpenFileDialog Members

The following is a brief description of some of the more important members of the OpenFileDialog
class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is
automatically added to the Filename property if the user fails to enter an extension. Its
default value is True.

CheckFileExists property

Sets or retrieves a Boolean value indicating whether a warning message should be
displayed if the user enters the name of a file that does not exist. The default value is
True.

DefaultExt property

Gets or sets a String that defines the default file extension. The string should consist of the
file extension only without a period.

FileName property

Returns a string that contains the fully qualified name (that is, complete path and filename)
of the file selected by the user. If no file is selected, the property returns an empty string.

FileNames property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a String array that contains the fully qualified names (that is, complete paths and
filenames) of the files selected by the user. If no file is selected, the property returns an
empty array. Note that this property returns a single- element array if the Multiselect
property is False and the user selects a file.

Filter property

Gets or sets a String containing the current filter, which determines the items that appear in
the "Files of type" drop-down listbox. A single item consists of a file description, a vertical
bar, and the file extension (usually "*." plus the file extension). If there are multiple
extensions in a single item, they are separated by semicolons. If there are multiple items,
they are separated by vertical bars. For example, the following code fragment assigns a
filter string to a String variable:

sFilter = oFS.Filter="Text files (*.txt; *.vb)|*.txt;*.vb|" & _

 "Visual Basic files (*.vb)|*.vb|" & _

 "All files (*.*)|*.*"

FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter
property are selected. The index is one-based, rather than zero- based. When the dialog is
first displayed and no FilterIndex value is specified, it defaults to 1. When the method
returns, its value indicates which filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the OpenFileDialog
dialog

Multiselect property

Sets or retrieves a Boolean value indicating whether the user is allowed to select more than
one file.

OpenFile method

Opens the file selected by the user, returning a Stream object. The file is opened in read-
only mode. As Microsoft puts it: "The OpenFile method is used to provide a facility to
quickly open a file from the dialog box. The file is opened in read-only mode for security
purposes. To open a file in a read/ write mode, you must use another call . . . "

ReadOnlyChecked property

Sets or retrieves a Boolean value indicating whether the read-only checkbox is selected on
the dialog box.

RestoreDirectory property

Gets or sets a Boolean value indicating whether the current directory is restored before the
dialog closes. Its default value is False.

ShowDialog method

The OpenFileDialog class inherits from the FileDialog class, which in turn inherits from the
CommonDialog class. This class has a ShowDialog method that shows the dialog box.
Once the user has dismissed the dialog box, the FileDialog's FileName and FileNames
properties can be used to get the user's choice(s).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowReadOnly property

Sets or retrieves a Boolean value indicating whether the dialog box contains a read-only
checkbox.

Title property

Gets or sets a String value containing the title of the Open dialog box.

Example

The following code asks the user for one or more files and displays the filenames in the Output
window:

Dim fd As New OpenFileDialog()

Dim i As Integer

fd.Multiselect = True

If fd.ShowDialog() = DialogResult.OK Then

 For i = 0 To UBound(fd.FileNames)

 Console.WriteLine(fd.FileNames(i))

 Next

End If

VB.NET/VB 6 Differences

Whereas the OpenFileDialog class is implemented in the .NET Base Class Library, VB 6 offered
the CommonDialog custom control. Although the two offer similar functionality, their public
interfaces are almost completely different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Compare Statement

Syntax

Option Compare {Binary | Text}

Description

Used to set the default method for comparing string data

Rules at a Glance

When Option Compare is not used in a module, the default comparison method is Binary.

When Option Compare is used, it must appear at the start of the module's declarations
section, before any procedures.

 Binary comparison — the default text comparison method in Visual Basic — uses the
internal binary code of each character to determine the sort order of the characters. For
example, "A" < "a".

Text comparison uses the locale settings of the current system to determine the sort order
of the characters. Text comparison is case insensitive. For example, "A" = "a".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Explicit Statement

Syntax

Option Explicit [On | Off]

Description

Use Option Explicit to generate a compile-time error whenever a variable that has not been
declared is encountered.

Rules at a Glance

The Option Explicit statement must appear in the declarations section of a module
before any procedures.

In modules where the Option Explicit statement is not used, any undeclared variables
are automatically cast as Objects.

The default is Option Explicit On. In other words, the statement:

Option Explicit

is equivalent to:

Option Explicit On

Programming Tips and Gotchas

It is considered good programming practice to always use the Option Explicit
statement. The following example shows why:

1: Dim iVariable As Integer

2: iVariable = 100

3: iVariable = iVarable + 50

4: MsgBox iVariable

In this code snippet, an integer variable, iVariable, has been declared. However,
because the name of the variable has been mistyped in line 3, the message box shows its
value as only 50 instead of 150. This is because iVarable is assumed to be an
undeclared variable whose value is 0. If the Option Explicit statement had been used,
the code would not have compiled, and iVarable would have been highlighted as the
cause.

For an ASP.NET page, you use the @ PAGE directive rather than Option Explicit to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For an ASP.NET page, you use the @ PAGE directive rather than Option Explicit to
require variable declaration. Its syntax is:

<%@ Page Language="VB" Explicit=true|false %>

By default, Explicit is true in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to require variable
declaration for an entire virtual directory or ASP.NET application by adding an explicit
attribute to the compliation section. Its syntax is:

<compliation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to
Option Explicit Off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Strict Statement

Syntax

Option Strict [On | Off]

Description

Option Strict prevents VB from making any implicit data type conversions that are narrowing
since narrowing conversions may involve data loss. For example:

Dim lNum As Long = 2455622

Dim iNum As Integer = lNum

converts a Long (whose value can range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807) to an Integer (whose value can range from 2,147,483,648 to
2,147,483,647). In this case, even though no data loss would result from the narrowing, Option
Strict On would still not allow the conversion and would instead generate a compiler error. The
reasoning here is that, although particular narrowing operations may not lose data, there is
always the potential for data loss when working with variables — that is, with symbolic
representations of numbers whose values are allowed to vary.

Rules at a Glance

If the Option Strict statement is not present in a module, Option Strict is Off.

The default is Option Strict On. In other words, the statement:

Option Strict On

is equivalent to the statement:

Option Strict

The Option Strict statement must appear in the declarations section of a module before
any code.

Option Strict On disallows all implicit narrowing conversions.

Option Strict On also causes errors to be generated for late binding, as well as for any
undeclared variables, since Option Strict On implies Option Explicit On.

Conversions can be narrowing or widening. The widening conversions are conversions
from a type to itself or any of the following:

Byte Short, Integer, Long, Decimal, Single, Double

Short Integer, Long, Decimal, Single, Double

Integer Long, Decimal, Single, Double

Long Decimal, Single, Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Long Decimal, Single, Double

Decimal Single, Double

Single Double

Any enumerated type Integer type or wider

Char String

Any type Object

Any derived type Any type from which it is derived

Any type Any interface it implements

Nothing Any type

Narrowing conversions are:

The reverse conversions of the widening conversions listed above

Conversions between Boolean and any numeric type

Any numeric type any enumerated type

Conversions between a Char array and a String

Conversions between String and any numeric, Boolean, or Date type

Programming Tips and Gotchas

Although the setting of Option Strict has no effect on BCL data types, BCL data types
disallow implicit narrowing conversions.

Explicit narrowing conversions are not affected by Option Strict. However, if data loss
does occur as a result of an explicit conversion, an OverflowException exception is
generated.

One of the most commonly overlooked narrowing conversions is the use of "wider"
arguments in function, procedure, and method calls. Passing a Long to an Integer
parameter, for example, is an implicit narrowing conversion that Option Strict does not
allow.

In many cases, Option Strict On disallows seemingly "safe" conversions because it
interprets literal values in unexpected ways. For example, the statement:

Dim decNum As Decimal = 10.32

generates a compiler error because 10.32 is interpreted as a Double, and implicit
conversions from Double to Decimal are not allowed. You can correct this compiler error
with a statement like:

Dim decNum As Decimal = 10.32D

Setting Option Strict On is highly recommended.

For an ASP.NET page, you use the @ Page directive rather than Option Strict to
control strict type checking. Its syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ Page Language="VB" Strict=true|false %>

By default, Strict is false in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to control strict type
checking for an entire virtual directory or ASP.NET application by adding a strict attribute to
the compilation section. Its syntax is:

<compilation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to
Option Explicit Off.

VB.NET/VB 6 Differences

The Option Strict setting is new to VB.NET.

See Also

Option Explicit Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Out Attribute

Class

System.Runtime.InteropServices.OutAttribute

Applies to

Parameter

Description

Defines the parameter to which it applies as an out parameter. An out parameter is a variation on
a parameter passed by reference using the ByRef keyword. In the case of a parameter passed
by reference, the caller of the method is responsible for allocating memory and passing its
address to the caller, which can then modify the parameter value. In the case of an out
parameter, memory for the parameter is allocated by the called method and only its value is
returned to the caller. This makes out parameters rather than reference parameters far more
efficient in remoting (i.e., calls across machines) and in web method calls.

Although you can define an out parameter using the <Out> attribute, the
VB.NET compiler does not enforce it. That is, if you fail to assign a value
to the out parameter, or if you indicate that the parameter is to be passed
by value rather than by reference, the compiler does not generate an
error. Because of this, be especially careful to make sure that all
parameters marked with the <Out> attribute are passed using the ByRef
keyword, and that you've explicitly assigned a value to the out parameter
in the method.

Constructor

New()

Properties

None

Example

Imports System

Imports System.Runtime.InteropServices

Public Class CPerson

 Private iAge, iHeight, iWeight As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private iAge, iHeight, iWeight As Integer

 Private sName As String

 Public Sub New(strName As String)

 'Here we'd ordinarily perform a database lookup

 ' and assign values to the instance fields

 sName = strName

 iAge = 26

 iHeight = 73

 iWeight = 185

 End Sub

 Public Sub GetStats(<Out> ByRef intAge As Integer, _

 <Out> ByRef intHt As Integer, _

 <Out> ByRef intWt As Integer)

 intAge = iAge

 intHt = iHeight

 intWt = iWeight

 End Sub

End Class

Module modMain

 Public Sub Main()

 Dim oPerson As New CPerson("John Doe")

 Dim iAge As Integer, iHeight As Integer, iWeight As Integer

 oPerson.GetStats(iAge, iHeight, iWeight)

 Console.WriteLine("John Doe is " & iHeight & " inches tall.")

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ParamArray Attribute

Class

System.ParamArrayAttribute

Applies to

Parameter

Description

Indicates that the parameter represents a parameter array — i.e., a variable number of
arguments.

The same effect is achieved by using the ParamArray keyword in a function or subroutine
declaration. In fact, the ParamArray keyword is compiled into the ParamArray attribute.

If you do use the attribute, it must appear as <ParamArrayAttribute> rather than
<ParamArray>, since ParamArray is a Visual Basic keyword.

Constructor

New()

Properties

None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Partition Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Partition(number, start, stop, interval)

number (required; Long)

Number to evaluate against the intervals.

start (required; Long)

Start of the range. Must be non-negative.

stop (required; Long)

End of the range. Must be greater than start.

interval (required; Long)

Size of each interval into which the range is partitioned.

Return Value

A String containing the range within which number falls

Description

Returns a string that describes which interval contains the number

Rules at a Glance

start must be greater than or equal to 0.

stop cannot be less than or equal to start.

Partition returns a range formatted with enough leading spaces so that there are the same
number of characters to the left and right of the colon as there are characters in stop, plus
one. This ensures that the interval text will be handled properly during any sort operations.

If number is outside of the range of start, the range reported is:

: (start - 1)

If number is outside the range of end, the range reported is:

(last_end_range + 1):

If interval is 1, the range is number:number, regardless of the start and stop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If interval is 1, the range is number:number, regardless of the start and stop
arguments. For example, if interval is 1, number is 100, and stop is 1000, Partition
returns 100: 100.

If any of its arguments are Null, Partition returns a Null.

Example

The code:

Dim i As Integer

For i = -1 To 110 \ 5

 Console.WriteLine(CStr(i * 5) & " is in interval " & _

 Partition(i * 5, 0, 100, 10))

Next

produces the following output:

-5 is in interval : -1

0 is in interval 0: 9

5 is in interval 0: 9

10 is in interval 10: 19

15 is in interval 10: 19

20 is in interval 20: 29

25 is in interval 20: 29

30 is in interval 30: 39

35 is in interval 30: 39

40 is in interval 40: 49

45 is in interval 40: 49

50 is in interval 50: 59

55 is in interval 50: 59

60 is in interval 60: 69

65 is in interval 60: 69

70 is in interval 70: 79

75 is in interval 70: 79

80 is in interval 80: 89

85 is in interval 80: 89

90 is in interval 90: 99

95 is in interval 90: 99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

95 is in interval 90: 99

100 is in interval 100:100

105 is in interval 101:

110 is in interval 101:

Programming Tips and Gotchas

The Partition function is useful in creating histograms, which give the number of integers
from a collection that fall into various ranges.

VB.NET/VB 6 Differences

The Partition function is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pi Field

Class

System.Math

Syntax

Math.PI

Return Value

A Double containing the approximate value of the irrational number pi

Description

This field returns the approximate value of the irrational number pi. In particular:

Math.PI = 3.14159265358979

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Pi field is new to VB.NET.

See Also

E Field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

Pmt(rate, nper, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

nper (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of the series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment.

due (optional; DueDate enumeration)

A value indicating when payments are due. EndOfPeriod (0) indicates that payments are
due at the end of the payment period; BegOfPeriod (1) indicates that payments are due
at the beginning of the period. If omitted, the default value is 0.

Return Value

A Double representing the monthly payment

Description

Calculates the payment for an annuity based on periodic, fixed payments and a fixed interest rate.
An annuity can be either a loan or an investment.

Rules at a Glance

rate is a percentage expressed as a decimal. For example, an interest rate of 1% per
month is expressed as 0.01.

If fv is omitted, the default value of 0 (reflecting the complete repayment of a loan) is used.

For pv and fv, cash paid out is represented by negative numbers; cash received is
represented by positive numbers.

If due is omitted, the default value of 0 (reflecting payments at the beginning of each
period) is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

See the example for the IPmt Function entry.

Programming Tips and Gotchas

rate and nper must be calculated using payment periods expressed in the same units.
For example, if nper reflects the total number of monthly payments, rate must be the
monthly interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pow Function

Class

System.Math

Syntax

result = Math.Pow(x, y)

x, y (required; Double)

Return Value

A Double that is x (the base) raised to the power y (the exponent)

Description

This is a generalized exponential function; it returns the result of a number raised to a specified
power.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Pow function is new to the .NET Framework.

See Also

Exp Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

PPmt(rate, per, nper, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

per (required; Double)

The period for which a payment is to be computed.

nper (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Object)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due. It can be either DueDate. EndOfPeriod (or
0), for payments due at the end of the period, or DueDate.BegOfPeriod (or 1), for
payments due at the beginning of the period. The default value is
DueDate.EndOfPeriod.

Return Value

A Double representing the principal paid in a given payment

Description

Computes the payment of principal for a given period of an annuity, based on periodic, fixed
payments and a fixed interest rate. An annuity is a series of fixed cash payments made over a
period of time. It can be either a loan payment or an investment.

Rules at a Glance

The value of per can range from 1 to nper.

If pv and fv represent liabilities, their value is negative; if they represent assets, their value
is positive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If fv is omitted, its default value of 0 is used.

If due is omitted, the default value of 0 (reflecting payments at the beginning of each
period) is used.

Example

See the example for the IPmt Function entry.

Programming Tips and Gotchas

rate and nper must be expressed in the same time unit. That is, if nper reflects the
number of monthly payments, rate must be the monthly interest rate.

The interest rate is a percentage expressed as a decimal. For example, if nper is the total
number of monthly payments, an annual percentage rate (APR) of 12% is equivalent to a
monthly percentage rate of 1%. The value of rate is therefore .01.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Print, PrintLine Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

Print(filenumber, [outputlist()])

PrintLine(filenumber, [outputlist()])

filenumber (required; Integer)

Any valid file number.

outputlist (optional; Parameter array)

A comma-separated list of expressions to output to a file.

outputlist can be either a scalar variable, a list of comma-delimited expressions, or a
parameter array. Its comma-delimited expressions or parameter array can include the
following:

Spc (n) (optional)

Insert n space characters before expression.

Tab (n) (optional)

Position the insertion point either at the next print zone (by omitting n) or at column number
(n).

expression (optional; any)

The data expression to output.

Description

Outputs formatted data to a disk file opened for Append or Output

Rules at a Glance

Print and PrintLine are identical, except that PrintLine advances to the next line after
printing.

The Tab(n) argument does not actually insert any tab characters (Chr(9)); instead, it fills
the space from the end of the last expression to column n (or to the start of the next print
zone) with space characters.

The Print procedure uses the locale settings of the current system to format dates, times,
and numbers, using the correct separators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outputlist can be either a comma-separated list of expressions or a parameter array.

Example

The following code shows how to use the Print procedure to write to a file using both a comma-
separated list of arguments and a parameter array:

Dim sInput As String

Dim iFile As Integer = FreeFile()

Dim iNum As Integer

Dim oOutput(1) As Object

FileOpen(iFile, "C:\dataprex.txt", openmode.append)

Do

 sInput = InputBox("Enter name: ")

 if sInput = "" Then Exit Do

 Print(iFile, sInput)

 iNum = Len(sInput)

 sInput = InputBox("Enter street address: ")

 oOutput(0) = spc(25 - iNum)

 oOutput(1) = sInput

 Print(iFile, oOutput)

 iNum += Len(sInput)

 sInput = InputBox("Enter city: ")

 PrintLine(iFile, spc(40 - iNum), sInput)

Loop While Not sInput = ""

FileClose(iFile)

Programming Tips and Gotchas

You may find that sequential data files written using the Print procedure are misinterpreted by the
Input function. For heavily structured sequential data, you may get better results with the Write
procedure, which ensures that all fields are correctly delimited.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB 6, the Print statement requires a # symbol in front of filenumber. In VB.NET, this
usage is not supported.

In VB 6, the final argument in outputlist, charpos, allows you to specify the starting
character position of the next output. In VB.NET, however, this argument is not supported.

See Also

FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Statement

Syntax

Private [WithEvents] varname[([subscripts])] [As [New] _

 type] [, [WithEvents] varname[([subscripts])] _

 [As [New] type]] . . .

WithEvents (optional; Keyword)

A keyword that denotes the object variable, varname, can respond to events triggered
from within the object to which it refers

varname (required; any)

The name of the variable, following Visual Basic naming conventions

subscripts (optional; Integer or Long)

Denotes varname as an array and specifies the number and extent of array dimensions

New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable,
varname

type (optional; Keyword)

Data type of the variable varname

Description

Used at module level to declare a private variable and allocate the relevant storage space in
memory. Private can also be used with procedures and class modules.

Rules at a Glance

A Private variable's scope is limited to the module in which it is created.

WithEvents is only valid when used to declare an object variable. The WithEvents
keyword informs VB that the object being referenced exposes events. When you declare an
object variable using WithEvents, an entry for the object variable is placed in the code
window's Object List, and a list of the events available to the object variable is placed in its
Procedures List. You can then write code in the object variable's event handlers in the
same way you write other more common event handlers.

There is no limit to the number of object variables that can refer to the same object using
the WithEvents keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The New keyword cannot be used in the same object-variable declaration as WithEvents.
This is because WithEvents is designed to trap event notifications that would ordinarily
be inaccessible to a Visual Basic program. Consequently, WithEvents can only be used
when defining an instance of an existing object.

The subscripts argument has the following syntax:

upperbound [, upperbound]

For example:

Private strNames(10, 15)

defines a two-dimensional array with 11 elements in the first coordinate and 16 elements in
the second coordinate. Thus, the first element is strNames(0,0), and the last element is
strNames(10,15).

Using the subscripts argument, you can declare up to 60 multiple dimensions for the
array.

To declare an array with no specified size, use commas with no integers between them, as
in:

Private sNames()

Private sThings(,)

You can set or change the number of elements of an array using the ReDim statement.

The New keyword is used only when declaring an object variable. For example:

Private oEmployee As Employee

oEmployee = New Employee

or:

Private oEmployee As New Employee

The New keyword can only be used with early-bound objects.

datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object, Short,
Single, String, a user-defined type, or an object type.

Programming Tips and Gotchas

All variables created at procedure level are Private by default. That is, they do not have
scope outside of the procedure in which they are created.

A new type of scope was introduced in Visual Basic 5.0. The Friend scope is halfway
between Public and Private. It is useful in situations where Private is too restricting
and Public is too open. For more information, refer to the Friend Keyword entry.

You should note that when you use the New keyword to declare an object variable, its class
constructor is fired when the object variable is declared.

The WithEvents keyword cannot be used with local variables whose scope is limited to a
function or procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB.NET/VB 6 Differences

In VB 6, the subscripts argument takes the form:

[lowerbound To] upperbound [, [lowerbound To] upperbound]

VB.NET, however, does not allow you to set the lower bound of an array.

In VB 6, an array whose number of elements are declared in advance is a fixed array; it
cannot be redimensioned. In VB.NET, all arrays are dynamic and can be redimensioned.

In VB.NET, variables declared with the New keyword on the same line as the Private
statement are no longer created when their first reference is encountered. Hence, whereas
in VB 6, declaring an object variable using a statement such as:

Private oObj As New MyApp.SomeObject

could interfere with object destruction, in VB.NET this is not the case.

In VB 6, the type argument can be Currency. The Currency data type, however, is not
supported by VB.NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Statement

Syntax

[Default]

[accessmodifier] [ReadOnly| WriteOnly] _

 [ClassBehavior] Property name _

 [(arglist)] [As type] [Implements interfacemember]

 Get

 [statements]

 End Get

 Set

 [statements]

 End Set

End Property

Default (optional; Keyword)

Specifies that the property is the default property. Must have both a Get and a Set block.

accessmodifier (optional; Keyword)

One of the keywords Public, Private, Protected, Friend, or Protected Friend.
For more information, see Section 4.7 in Chapter 4.

ReadOnly (optional; Keyword)

Indicates that the property is read-only. Must have only a Get block. (If you try to write a Set
block, VB will generate a syntax error.)

WriteOnly (optional; Keyword)

Indicates that the property is write-only. Must have only a Set block. (If you try to write a
Get block, VB will generate a syntax error.)

ClassBehavior (optional; Keyword)

One of the following keywords:

Overloads

Indicates that more than one declaration of this function exists (with different
argument signatures). For more detail, see Chapter 4.

Overrides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overrides

For derived classes, indicates that the function overrides the function by the same
name (and argument signature) in the base class. For more detail, see Chapter 4.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see
Chapter 4.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail,
see Chapter 4.

MustOverride

Indicates that the function must be overridden in a derived class. For more detail,
see Chapter 4.

Shadows (optional; Keyword)

Indicates that the property shadows any element of this same name in a base class.

Shared

A shared function is callable without creating an object of the class. It is, in this
strange sense, shared by all objects of the class. These are also called static
functions.

name (required; String literal)

The name of the property.

arglist (optional; any)

A comma-delimited list of variables to be passed to the property as arguments from the
calling procedure.

type (optional)

The return data type of the property. The default is Object.

Implements interfacename (optional)

Indicates that the property implements a property by the same name in the interface named
interfacename.

Description

Declares a class property

Rules at a Glance

Overloads and Shadows cannot be used in the same property declaration.

Property procedures are Public by default.

The Friend keyword is only valid within class modules. Friend procedures are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Friend keyword is only valid within class modules. Friend procedures are
accessible to all procedures in all modules and classes within a project, but are not listed in
the class library for that project. Therefore, they cannot be accessed from projects or
applications outside the defining application.

Properties and procedures defined using the Friend keyword cannot be late bound.

The Default keyword can be used only in the case of parameterized properties. Typically,
these are properties that either return collection objects or are implemented as property
arrays.

By default, arguments are passed to the property procedures by value (ByVal).

type defines not only the data type returned by the property, but also the data type of the
value to be assigned to the property.

A Property Get procedure is very similar to a function: the value returned by the property
is indicated by assigning that value to a variable whose name is the same as the property.

In a Property Set procedure, the value being assigned to the property is represented by
the keyword Value. Its data type is represented by the As type clause.

If an Exit Property statement is executed, the Property procedure exits and program
execution immediately continues with the statement following the call to the property. Any
number of Exit Property statements can appear in a Property procedure.

Programming Tips and Gotchas

You should protect the values of properties by defining a Private variable to hold the
internal property value and to control the updating of the property by outside applications
through the Property statement, as the following template describes:

 ' Salary property is read/write

 Private mdecSalary As Decimal

 Property Salary() As Decimal

 Get

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

 End Property

Otherwise, if the variable used to store a property value is public, its value can be modified
arbitrarily by any application that accesses the class module containing the property.

Typically, arglist need be specified only in the case of property arrays. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class CEmployee

Private sPhone(2) As String

Property Phone(idx As Integer) As String

 Get

 Phone = sPhone(idx)

 End Get

 Set

 sPhone(idx) = Value

 End Set

End Property

End Class

The class constructor is typically used to initialize property values to their default settings.

VB.NET/VB 6 Differences

The syntax for declaring properties in VB.NET is significantly different from the syntax in VB 6.
Some of the differences include:

VB 6 includes individual Property Get (to retrieve a property value), Property Let (to
assign a property value), and Property Set (to assign a reference to a property value)
statements. VB.NET replaces this with a single Property...End Property construct.

In VB 6, all values — including the property values themselves — passed to property
statements are expressed as parameters. In VB.NET, the value to be assigned to a
property is represented by the Value keyword, rather than by a formal parameter.

In VB 6, because Property Set, Property Let, and Property Get procedures are
separate, standalone constructs, it is possible to expose property procedures with mixed
visibility (a private Property Let procedure, for example, and a public Property Get
procedure). In VB.NET, because the Property statement defines the visibility of the
property as a whole, mixed visibility is not supported.

See Also

Get Statement, Set Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protected Keyword

Description

Used to declare classes and their members.

When the Protected keyword is used to modify a member declaration, the member being
declared has direct access scope to the class module in which the member is declared, as well as
to all derived classes in all projects. However, as far as object access is concerned, the member
is considered Private; that is, it can only be accessed within the declaring class. (See the
upcoming example.)

Declaring a class module as Protected limits all of the class' members to Protected access (or
stronger if the member has further specific access restrictions).

Example

Suppose we declare the following variable in a class module named Class1:

Protected sProtectedVar As String

Then within Class1 or any of its derived classes in any project, we can use the variable directly,
as in:

Public Class Class2

 Inherits Class1

 Public Sub Test()

 MsgBox sProtectedVar

 End Sub

End Class

On the other hand, the following code, located in a form module, is illegal:

Dim c as New Class1

c.sProtectedVar = "Donna"

VB.NET/VB 6 Differences

The Protected keyword is new to VB.NET.

See Also

Friend Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Statement

Syntax

[Overrides] [Shadows] Public [WithEvents] varname[([subscripts])] _

 [As [New] type] [, [WithEvents] _

 varname[([subscripts])] [As [New] type]] ...

Overrides (optional; Keyword)

In a derived class definition, indicates that a variable overrides a similar variable in a base
class

Shadows (optional; Keyword)

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation

WithEvents (optional; Keyword)

A keyword that denotes the object variable, varname, can respond to events triggered
from within the object to which it refers

varname (required; String literal)

The name of the variable, which must follow Visual Basic naming conventions

subscripts (optional; Numeric constant or literal)

Denotes varname as an array and specifies the dimensions and number of elements of the
array

New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable,
varname

type (optional)

Data type of the variable varname

Description

Used at module level to declare a public variable and allocate the relevant storage space in
memory.

A Public variable has both project-level scope — that is, it can be used by all procedures in all
modules in the project — and, when used in a Class module, it can have scope outside the
project.

The Public keyword also applies to procedures and class modules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

The behavior of a Public variable depends on where it is declared, as the following table
shows:

Variable declared
in... Scope

A procedure Illegal — this generates a compile-time error.

Code module
declarations section Variable is available to all modules within the project.

Class module
declarations section

Variable is available as a property of the class to all modules within the
project and to all other projects referencing the class.

Form module
declarations section

Variable is available as a property of the form to all modules within the
project.

WithEvents is only valid when used to declare an object variable.

There is no limit to the number of variables that can refer to the same object using the
WithEvents keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

The New keyword cannot be used in the same object-variable declaration as WithEvents.

The subscripts argument has the following syntax:

upperbound [, upperbound]

Using the subscripts argument, you can declare up to 60 dimensions for the array.

To declare an array with no specified size, use commas with no integers between them, as
in:

Public sNames()

Public sThings(,)

You can set or change a number of elements of an array using the ReDim statement.

The New keyword denotes that a new instance of the object will be created when the first
reference to the object is made. Use of the New keyword therefore negates the need to use
the Set statement.

You cannot use the New keyword to declare any of the following: variables of any intrinsic
data type (the New keyword is for use with object variables only); instances of dependent
objects (a dependant object is one that can only be created from a method or property in
another object; a dependent object is not publicly createable); or a variable that uses the
WithEvents argument.

Programming Tips and Gotchas

Instead of declaring a variable as Public within either a form or class module, proper
object-oriented programming techniques dictate that you should create a Property
procedure that assigns and retrieves the value of a Private variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Always use Option Explicit at the beginning of a module to prevent misnamed
variables from causing hard to find errors.

VB.NET/VB 6 Differences

In VB 6, the subscripts argument takes the form:

[lowerbound To] upperbound [, [lowerbound To] upperbound]

VB.NET, however, does not allow you to set the lower bound of an array.

In VB 6, an array whose number of elements are declared in advance is a fixed array; it
cannot be redimensioned. In VB.NET, all arrays are dynamic and can be redimensioned.

In VB.NET, variables declared with the New keyword on the same line as the Public
statement are no longer created when their first reference is encountered. Hence, whereas
in VB 6, declaring an object variable using a statement such as:

Public oObj As New MyApp.SomeObject

could interfere with object destruction, in VB.NET this is not the case.

In VB 6, the type argument can be Currency. The Currency data type, however, is not
supported by VB.NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PV Function

Class

Microsoft.VisualBasic.Financial

Syntax

PV(rate, nper, pmt[, fv [, due]])

rate (required; Double)

The interest rate per period

nper (required; Integer)

The number of payment periods in the annuity

pmt (required; Double)

The payment made in each period

fv (optional; Double)

The future value of the loan or annuity

due (optional; Duedate)

Either DueDate.BegOfPeriod or DueDate.EndOfPeriod

Return Value

A Double specifying the present value of an annuity

Description

Calculates the present value of an annuity (either an investment or loan) based on a regular
number of future payments of a fixed value and a fixed interest rate.

The present value is the current value of a future stream of equal cash flows discounted at some
fixed interest rate.

Rules at a Glance

The time units used for the number of payment periods, the rate of interest, and the
payment amount must be the same. In other words, if you state the payment period in
months, you must also express the interest rate as a monthly rate and the amount paid per
month.

The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you
are calculating using monthly periods, you must also divide the rate per period by 12. For
example, 10% per annum equates to a rate per period of .00833.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fv argument indicates the future value or cash balance after the last payment. The
default is 0, since that reflects the value of a loan after the final payment.

Payments made against a loan or added to the value of savings are expressed as negative
numbers.

The due argument states whether the payment is made at the start of a period or at the
end (the default value).

Programming Tips and Gotchas

Make sure that nper, rate, and pmt all reflect values for an identical time period. For example, if
pmt represents a monthly payment, rate should represent the monthly interest rate, rather than
an annual interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PPmt Function, Rate
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QBColor Function

Class

Microsoft.VisualBasic.Information

Syntax

QBColor(color)

color (required; Integer)

A whole number between 0-15

Return Value

Long

Description

Returns a Long integer representing the RGB system color code

Rules at a Glance

color can have any of the following values:

Number Color
0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The RGB function allows much more flexibility than the older QBColor function, which is a
remnant of QBasic.

Visual Basic now contains a wide range of intrinsic color constants that can be used to
assign colors directly to color properties of objects.

See Also

RGB Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue Class

Namespace

System.Collections

Createable

Yes

Syntax

Dim queuevariable As [New] Queue

queuevariable (required; Queue object)

The name of the Queue object

Description

A Queue object is a model of a queue. Succinctly put, a queue is a first-in, first-out data structure.
(This is often abbreviated FIFO.) Put another way, a queue is a data structure that models a line
of items. There is a method for inserting items at the end of the line (enqueueing), as well as a
method for removing the item that is currently at the front of the line (dequeueing). Under this
scenario, the next item to be dequeued is the item that was placed in line first — hence the term
first-in, first-out.

Note that the elements in a Queue object are of type Object.

Queue class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsReadOnly
IsSynchronized
SyncRoot

Public Instance Methods

Clone
Contains +
CopyTo +
Dequeue +
Enqueue +
Equals
GetEnumerator
GetHashCode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetType
Peek +
ToArray +
ToString

Example

Here is a bit of code to illustrate the members of the Queue class:

' Define a new queue

Dim q As New Queue()

' Queue up some items

q.Enqueue("Chopin")

q.Enqueue("Mozart")

q.Enqueue("Beethoven")

' Is an item in the queue?

MsgBox("Beethoven in queue: " & CStr(q.Contains("Beethoven")))

' Peek at the first item

MsgBox("First item in queue is: " & q.Peek.ToString)

' Send queue to an array and display all items

Dim s() As Object = q.ToArray()

Dim i As Integer

For i = 0 To UBound(s)

 Console.WriteLine(CStr(s(i)))

Next

' Clear queue

q.Clear()

VB.NET/VB 6 Differences

The Queue object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Stack Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Clear Method

Class

System.Collections.Queue

Syntax

queuevariable.Clear()

Return Value

None

Description

Removes all entries from the queue

See Also

Queue.Dequeue Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Contains Method

Class

System.Collections.Queue

Syntax

queuevariable.Contains(obj)

obj (required; any)

The value to search for on the queue

Return Value

Boolean (True or False) indicating whether obj is found in the queue

Description

Returns a Boolean indicating whether a given element whose value is obj is somewhere in the
queue

Rules at a Glance

obj must correspond exactly to an item in the queue for the method to return True.

The method searches the queue sequentially. In other words, its performance is inversely
proportional to the number of items in the queue.

Programming Tips and Gotchas

In comparing objects in the queue with obj, the Contains method in turn calls the BCL's
Object.Equals method to perform the comparison. The Equals method returns True if two object
instances are the same instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.CopyTo Method

Class

System.Collections.Queue

Syntax

queuevariable.CopyTo(array, index)

array (required; Array of Objects)

Array to which to copy the queue's objects

index (required; Integer)

The index of the first array element to receive an element of the queue

Return Value

None

Description

Copies the queue elements into an array, starting at a specified array index

Rules at a Glance

The array can be of any data type that is compatible with the queue elements. Thus, for
instance, we cannot use an Integer array to hold queue elements that are strings (that is,
Objects whose subtype is String).

The array must be sized to accommodate the elements of the queue prior to calling the
CopyTo method.

Example

' Define a new queue

Dim q As New Queue()

Dim aQueue(), oItem As Object

' Queue up some items

q.Enqueue("Chopin")

q.Enqueue("Mozart")

q.Enqueue("Beethoven")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Size the array and copy to it

Redim aQueue(q.Count - 1)

q.CopyTo(aQueue,0)

For Each oItem in aQueue

 Console.WriteLine(oItem)

Next

See Also

Queue.ToArray Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Count Property

Class

System.Collections.Queue

Syntax

queuevariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the queue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Dequeue Method

Class

System.Collections.Queue

Syntax

queuevariable.Dequeue()

Return Value

Object

Description

Removes the first item from the queue and returns it as an Object

Rules at a Glance

Dequeue removes the item at the beginning of the queue and decrements the Count
property by one.

The Dequeue method generates an error if applied to an empty queue. Thus, it may be
advisable to check for an empty queue using the Count property before attempting to
dequeue.

Programming Tips and Gotchas

Dequeue is similar to the Peek method. The Peek method returns a reference to the object at the
beginning of the queue, but unlike the Dequeue method, does not remove it from the queue.

See Also

Queue.Peek Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Enqueue Method

Class

System.Collections.Queue

Syntax

queuevariable.Enqueue(obj)

obj (required; Object)

The item to place in the queue

Return Value

None

Description

Places an object at the end of the queue

Rules at a Glance

Enqueue adds an item to the end of the queue and increases the Count property by 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.Peek Method

Class

System.Collections.Queue

Syntax

queuevariable.Peek()

Return Value

Object

Description

Returns the first item in the queue as an Object, but does not remove it from the queue

Programming Tips and Gotchas

The Peek method is similar to the Queue object's Dequeue method, except that it leaves the
queue intact.

See Also

Queue.Dequeue Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queue.ToArray Method

Class

System.Collections.Queue

Syntax

queuevariable.ToArray()

Return Value

An Array of type Object

Description

This method creates an array of type Object, copies the elements of the queue — in order — to
that array, and then returns the array.

Programming Tips and Gotchas

Unlike the CopyTo method, we do not need to define an array in advance. However, we cannot
specify the starting array index for the copy procedure using ToArray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RaiseEvent Statement

Syntax

RaiseEvent eventName([arglist])

eventName (required; String literal)

The name of the event

arglist (optional; any (defined by the Event statement)

A comma-delimited list of arguments

Description

Generates a predefined, custom event within any procedure of an object module

Rules at a Glance

eventName must already be defined in the Declarations section of the module using the
Event statement.

arglist must match the number and data type of parameters defined in the Event
statement and must be surrounded by parentheses.

The RaiseEvent and Event statements can only be used in class modules and not in
standard modules.

Example

The following code snippet demonstrates how you can use an event to communicate a status
message back to the client application and, at the same time, use a ByRef argument to trap a
user response in the client application. This gets around the fact that events can't return values.
To take advantage of this functionality, the client must declare a reference to this class using the
WithEvents keyword:

Public Class CTransact

Public Event Status(Message As String, _

 ByRef Cancel As Boolean)

Public Function UpdateRecords(iVal As Integer) as Boolean

 Dim blnCancel As Boolean = False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim blnCancel As Boolean = False

 If iVal > 1000 Then

 RaiseEvent Status("Is value too high?", blnCancel)

 If blnCancel Then

 Console.WriteLine("Abandoning operation...")

 Exit Function

 Else

 iVal = 1000

 End If

 End If

 console.writeline(iVal)

 End Function

End Class

Module modMain

 Public WithEvents oTran As New CTransact

 Public Sub Main

 otran.updaterecords(1100)

 End Sub

 Private Sub UpdateProb(sMsg As String, _

 byref blnCancel as Boolean) _

 Handles oTran.Status

 If MsgBoxResult.Yes = MsgBox(sMsg, MsgBoxStyle.YesNo _

 Or MsgBoxStyle.Question) Then

 blnCancel = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 blnCancel = True

 End If

 End Sub

End Module

Programming Tips and Gotchas

To allow the client application to handle the event being fired, the client object variable
must be declared using the WithEvents keyword.

VB custom events do not return a value; however, you can use a ByRef argument in
arglist to simulate a return value, as shown in the previous example.

RaiseEvent is not asynchronous. In other words, when you call the RaiseEvent
statement in your class code, your class code will not continue executing until the event
has been either handled by the client or ignored (if the client is not handling the events
raised by the class). This can have undesirable side effects, and you should bear it mind
when planning your application. For example, you may have a recordset open or a
transaction pending and have to wait for the user to respond to a message dialog box at
the client. This could easily turn into a bottleneck, adversely affecting the scalability of your
application.

For more information about implementing your own custom events, see Chapter 7.

See Also

Event Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Randomize Procedure

Class

Microsoft.VisualBasic.VBMath

Syntax

Randomize([number])

number (optional; Object or any valid numeric expression)

A number used to initialize the random-number generator

Description

Initializes the random-number generator

Rules at a Glance

Randomize uses number as a new seed value to initialize the random-number generator
used by the Rnd function. The seed value is an initial value that is used to generate a
sequence of pseudorandom numbers.

If you do not pass number to the Randomize procedure, the value of the system timer will
be used as the new seed value.

Repeatedly passing the same number to Randomize does not cause Rnd to repeat the
same sequence of random numbers.

Programming Tips and Gotchas

If you need to repeat a sequence of random numbers, you should call the Rnd function with a
negative number as an argument immediately prior to using Randomize with any numeric
argument.

See Also

Rnd Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rate Function

Class

Microsoft.VisualBasic.Financial

Syntax

Rate(nper, pmt, pv[, fv[, due[, guess]]])

nper (required; Double)

The total number of periods in the annuity.

pmt (required; Double)

The payment amount per period.

pv (required; Double)

The present value of the payments or future receipts.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, its value defaults to 0.

due (optional; DueDate enumeration)

A flag indicating whether payments are due at the beginning of the payment period (a value
of DueDate.BegOfPeriod) or at the end of the payment period (a value of
DueDate.EndOfPeriod, the default).

guess (optional; Double)

An estimate of the value to be returned by the function. If omitted, its value defaults to .1
(10%).

Return Value

A Double representing the interest rate per period

Description

Calculates the interest rate for an annuity (a loan or an investment) that consists of fixed
payments over a known duration

Rules at a Glance

For pv and fv, cash paid out is expressed as a negative number; cash received is
expressed as a positive number.

The function works using iteration. Starting with guess, Rate cycles through the calculation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The function works using iteration. Starting with guess, Rate cycles through the calculation
until the result is accurate to within 0.00001 percent. If a result can't be found after 20 tries,
the function fails.

Programming Tips and Gotchas

In the case of a loan, pv is the loan amount. In the case of an investment, pv is the
beginning balance.

In the case of a loan, fv is typically 0, reflecting that the entire loan has been paid. In the
case of an investment, fv is the value of the investment with interest at the end of the
investment period.

If the function fails because it could not calculate an accurate interest rate in 20 iterations,
try a different value for guess.

The value returned by the function rate is the interest rate for the same time period as
payments were made. Typically, this is one month, in which case you must multiply by 12 to
derive the annual percentage rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, NPV
Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReDim Statement

Syntax

ReDim [Preserve] varname(subscripts) _

 [, varname(subscripts) ...

Preserve (optional; Keyword)

Preserves the data within an array when changing the only or last dimension

varname (required; String literal)

Name of the variable

subscripts (required; Numeric)

Number of elements and dimensions of the array, using the syntax:

upper [, upper] ...

The number of upper bounds specified is the number of dimensions. Each upper bound
specifies the size of the corresponding coordinate.

Description

Used within a procedure to resize and reallocate storage space for an array

Rules at a Glance

Arrays can be sized or resized using the ReDim statement. There is no limit to the number
of times you can redimension a dynamic array.

The dimension cannot be changed, nor can the data type of the array be changed.

If you do not use the Preserve keyword in redimensioning the array, you can resize any of
the coordinates of the array.

Use of the Preserve keyword allows you to retain the current values within the array, but it
also allows you to resize only the last coordinate of an array.

You can redimension an array in a called procedure if you pass the array to the procedure
by reference. For example:

Public Sub Main

Dim lArr() AS Object = {1,2,3,4,5,6,7,8,9,10}

Dim lNum As Long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim lNum As Long

ResizeArray(lArr)

for each lNum in lARr

 Console.WriteLine(lNum)

Next

End Sub

Public Sub ResizeArray(ByRef arr() As Object)

ReDim Preserve arr(15)

arr(10) = 20

arr(11) = 50

arr(12) = 80

arr(13) = 90

arr(14) = 100

arr(15) = 200

End Sub

Note that this is contrary to the documentation, which indicates that arrays passed to called
procedures by reference will return unmodified.

Programming Tips and Gotchas

If the ReDim Preserve statement is used to reduce the number of array elements, the
data in the discarded elements is lost. And although this can be interpreted as a
"narrowing" operation, it is unaffected by the state of the Option Strict setting.

Redimensioning an array, and particularly a large string array, can be expensive in terms of
an application's performance. Consequently, frequent redimensioning, such as in the code
fragment:

ReDim Preserve aNames(aNames(UBound)+1)

is not a good idea. Instead, it's best to allocate a "pool" of array elements by creating an
array larger than needed, then using a counter to keep track of how many elements remain
to be filled. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If intCtr = UBound(aNames)) Then

 ReDim Preserve aNames(aNames(Ubound)+50)

 ...

VB.NET/VB 6 Differences

In VB 6, it is possible (though not recommended) to declare a dynamic array using the
ReDim statement, then use the ReDim statement again to redimension it. In VB.NET with
Option Explicit Off, using the ReDim statement to declare an array is not permitted
and generates a compiler error.

In VB 6, only arrays declared without an explicit number of elements, such as:

Dim arr() As Variant

were dynamic arrays and could be redimensioned using ReDim. In VB.NET, all arrays are
dynamic.

VB 6 allows you to redimension both the upper and lower bounds of an array. Since
VB.NET does not allow you to configure an array's lower bound, you can modify the array's
upper bound only.

In VB 6, it is possible to change the number of dimensions of an array as long as the
Preserve keyword isn't used. VB.NET, on the other hand, does not allow you to change
the number of dimensions of an array.

Although neither VB 6 nor VB.NET permit you to change the data type of an array, the
ReDim statement in VB 6 nevertheless supports an As type clause that allows you to
declare the redimensioned array's data type. As long as type is the same as the originally
declared type, ReDim won't generate a compiler error. In VB.NET, the use of the As type
clause is not supported.

See Also

Dim Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rem Statement

Syntax

Rem comment

' comment

comment (optional)

A textual comment to place within the code

Description

Use the Rem statement or an apostrophe (') to place remarks within the code.

Rules at a Glance

Text or code commented out using either the Rem statement or an apostrophe is not
compiled into the final program and, therefore, does not add to the size of the executable.

If you use the Rem statement on the same line as program code, a colon is required after
the program code and before the Rem statement. For example:

Set objDoc = MyApp.MyObj : Rem Define the object

 Rem reference

This is not necessary when using the much more common apostrophe:

Set objDoc = MyApp.MyObj ' Define the object reference

Apostrophes held within quotation marks are not treated as comment markers, as this code
snippet shows:

myVar = "'Something'"

Programming Tips and Gotchas

The Visual Studio development environment contains block-comment and block-
uncomment buttons on the Text Editor toolbar, which allow you to comment out or
uncomment a selection of many rows of code at once.

You cannot use the line-continuation character ("_") with comments.

VB.NET/VB 6 Differences

In VB 6, if a line containing a comment ends in an underscore (the line continuation character),
the following line is interpreted as a comment as well. In VB.NET, line continuation characters are
ignored at the end of a comment line; each comment line must be prefaced with the Rem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ignored at the end of a comment line; each comment line must be prefaced with the Rem
statement or the ' symbol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemoveHandler Statement

Syntax

RemoveHandler NameOfEventSender, AddressOf NameOfEventHandler

NameOfEventSender (required; String literal)

The name of a class or object instance and its event, such as Button1.Click

NameOfEventHandler (required; String literal)

The name of a subroutine to remove as event handler for NameOfEventSender

Description

Removes a previous binding of an event handler to a built-in or custom event

Example

For an illustration, see Section 7.2.3 in Chapter 7.

Programming Tips and Gotchas

The Handles keyword can be used to receive event notification for the lifetime of an object. In
contrast, AddHandler and RemoveHandler can be used to dynamically add and remove event
notification at runtime.

See Also

AddHandler Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rename Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Rename(oldpath, newpath)

oldpath (required; String)

The current filename and optional path

newpath (required; String)

The new filename and optional path

Description

Renames a disk file or folder

Rules at a Glance

newpath must not already exist, or an error will be generated.

oldpath must exist; the Rename procedure isn't able to create a new file or directory.

When renaming a file or folder, both newpath and oldpath should include a path to the
same folder, or the function will move the file or directory. For instance, the statement:

Rename("c:\Temp\Graphics", "Images")

renames the Graphics folder to Images and moves it so that it becomes a subdirectory of
the current directory.

Path information included in newpath and oldpath can take the form of the local
system's path or the UNC path. The local system path can be either a fully qualified path or
a relative path from the current directory.

newpath and oldpath can be on different drives, but if they are, Rename cannot both
move the files and rename them.

newpath and oldpath cannot include the wildcard characters ? and *.

You cannot use the Rename procedure with a file that is already open.

Programming Tips and Gotchas

The Rename procedure can be used to move a file from one folder to another and, optionally, to
change the file's name at the same time. If the folder specified in newname exists and is different
from that stated in oldname, the file will be moved to the folder specified in newname. If the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from that stated in oldname, the file will be moved to the folder specified in newname. If the
filename in newname is also different, the file will be renamed at the same time.

VB.NET/VB 6 Differences

The Rename procedure is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Replace Function

Class

Microsoft.VisualBasic.Strings

Syntax

Replace(expression, find, replace [, _

 start[, count[, compare]]])

expression (required; String)

The complete string containing the substring to be replaced

find (required; String)

The substring to be found by the function

replace (required; String)

The new substring to replace find in expression

start (optional; Long)

The character position in expression at which the search for find begins

count (optional; Long)

The number of instances of find to replace

compare (optional; CompareMethod constant)

The method used to compare find with expression; its value can be
CompareMethod.Binary (for case-sensitive comparison) or CompareMethod.Text (for
case-insensitive comparison)

Return Value

The return value from Replace depends on the parameters you specify in the argument list, as the
following table shows:

If Return value
expression = "" Zero-length string ("")

find = "" Copy of expression

replace = "" Copy of expression with all instances of find removed

start > Len(expression) Zero-length string ("")

count = 0 Copy of expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

Replaces a given number of instances of a specified substring in another string

Rules at a Glance

If start is omitted, the search begins at the start of the string.

If count is omitted, all instances of the substring after start are replaced.

CompareMethod.BinaryCompare is case sensitive; that is, Replace matches both
character and case, whereas CompareMethod.Text is case insensitive, matching only
character regardless of case.

The default value for compare is CompareMethod.Binary.

start not only specifies where the search for stringToReplace begins, but also where
the new string returned by the Replace function will commence.

Programming Tips and Gotchas

If count is not used, be careful when replacing short strings that may form parts of
unrelated words. For example, consider the following:

Dim sString

sString = "You have to be careful when you do this " _

 & "or you could ruin your string"

Console.WriteLine(Replace(sString, "you", "we"))

Because we don't specify a value for count, the call to Replace replaces every occurrence
of "you" in the original string with "we". But the fourth occurrence of "you" is part of the
word "your", which is modified to become "wer".

You must also be aware that if start is greater than 1, the returned string starts at that
character and not at the first character of the original string, as you might expect. For
example, given the statements:

sOld = "This string checks the Replace function"

sNew = Replace(sOld, "check", "test", 5, _

 CompareMethod.Text)

sNew will contain the value:

"string tests the Replace function"

You can use the Mid function on the left side of an argument to replace part of string, but to
replace more than one instance of a substring requires a complicated Do While loop that
constantly checks for the position of any remaining instances of the substring to be
replaced.

The BCL's System.String class also has a public instance Replace method, which replaces
all occurrences of a character or string with another. Its syntax is:

sString.Replace(oldValue,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sString.Replace(oldValue,

newValue)

where oldValue is a String or Char value containing the text to be replaced and
newValue is a String or Char value containing the replacement text.

See Also

InStr Function, InStrRev Function, Mid Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Reset()

Description

Closes all files that have been opened using the FileOpen procedure

Rules at a Glance

The contents of any current file buffers are written to disk by the Reset procedure immediately
prior to Reset closing the respective files.

Programming Tips and Gotchas

The Reset procedure is generally used as a last resort, cleaning up if your program is terminating
abnormally. Normally, you should write code to close each open file using the FileClose
procedure.

See Also

FileClose Procedure, FileOpen Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resume Statement

Syntax

Resume [0]

Resume Next

Resume label

Description

Used to continue program execution when an error-handling routine is complete

Rules at a Glance

Resume can take any of the forms shown in the following table:

Statement Description

Resume

If the error-handling routine is in the same procedure as the statement that caused
the error, program execution continues with the statement that caused the error.

If the error occurred in an external procedure called by the procedure containing the
error handler, program execution continues with the statement in the procedure
containing the error handler that last called the external procedure.

Resume
Next

If the error-handling routine is in the same procedure as the statement that caused
the error, program execution continues with the statement following the statement
that caused the error.

If the error occurred in an external procedure called by the procedure containing the
error handler, program execution continues with the statement containing the error
handler immediately following the statement that last called the external procedure.

Resume
label

label must be in the same procedure as the error handler.

Program execution continues at the specified label.

Programming Tips and Gotchas

You can only use the Resume statement in an error-handling routine; otherwise, a runtime
error will be generated.

An error-handling routine does not necessarily have to contain a Resume statement. If the
error-handling routine is at the end of the procedure and the result of the error handling
would be to exit the procedure, you can simply allow the program to execute the End Sub
or End Function statement. This has the effect of both resetting the Err object and
exiting the procedure. This is shown in the following simple code snippet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub DoSomething()

 On Error GoTo DoSomething_Err

 ...

DoSomething_Err:

 MsgBox(Err.Description)

End Sub

See Also

On Error Statement, Err Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return Statement

Syntax

In a subroutine:

Return

In a function:

Return ReturnValue

ReturnValue (required; any)

The return value of the function

Description

Returns to the calling program from a subroutine or function

Rules at a Glance

If the Return statement appears in a function, it must specify a return value for the
function.

Return causes program flow to leave the function or subroutine and return to the calling
program; any statements in the function or subroutine that follow Return are not executed.

Example

Public Sub Main

Dim d As Double = GetNumbers()

Console.WriteLine("The sum of values is " & d)

End Sub

Public Function GetNumbers As Double

Dim iCtr As Integer = 1

Dim sInput As String

Dim dblNums(9), dblSum, dblTemp As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim dblNums(9), dblSum, dblTemp As Double

Do

 sInput = InputBox("Enter number " & iCtr & ": ", "Sum")

 If sInput = "" Then

 if iCtr = 1 Then Return 0

 Exit Do

 End If

 If IsNumeric(sInput) Then

 dblNums(iCtr - 1) = CDbl(sInput)

 iCtr = iCtr + 1

 End If

Loop While iCtr <= 9

' Sum array elements

for each dblTemp in dblNums

 dblSum += dblTemp

next

return dblSum

End Function

Programming Tips and Gotchas

Return is identical in operation to the Exit Sub statement: it prematurely transfers control from
a procedure to the calling routine. It is also similar to the Exit Function statement; while it
prematurely transfers control out of the function, it also allows a particular value to be returned by
the function.

VB.NET/VB 6 Differences

In VB 6, Return is a legacy statement that returns control after GoSub has invoked a subroutine
within a procedure. In VB.NET, however, Return returns control from a called function or
procedure and optionally allows the function's return value to be defined.

See Also

Exit Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RGB Function

Class

Microsoft.VisualBasic.Information

Syntax

RGB(red, green, blue)

red (required; Integer)

A number between 0 and 255, inclusive

green (required; Integer)

A number between 0 and 255, inclusive

blue (required)

Data type: Integer

A number between 0 and 255, inclusive

Return Value

An Integer representing the RGB color value

Description

Returns a system color code that can be assigned to object color properties

Rules at a Glance

The RGB color value represents the relative intensity of the red, green, and blue
components of a pixel that produces a specific color on the display.

The RGB function assumes any argument greater than 255 to be 255.

The following table demonstrates how the individual color values combine to create certain
colors:

Color Red Green Blue
Black 0 0 0

Blue 0 0 255

Green 0 255 0

Red 255 0 0

White 255 255 255

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The RGB value is actually derived using the following formula:

RGB = red + (green * 256) + (blue * 65536)

In other words, the individual color components are stored in the opposite order than you
would expect. VB stores the red color component in the low- order byte of the integer's low-
order word, the green color in the high-order byte of the low-order word, and the blue color
in the low-order byte of the high-order word.

Visual Basic now contains a wide range of intrinsic color constants that can be used to
assign color values directly to color properties of objects.

See Also

QBColor Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right Function

Class

Microsoft.VisualBasic.Strings

Syntax

Right(string, length)

string (required; String)

The string to be processed

length (required; Integer)

The number of characters to return from the right of the string

Return Value

String

Description

Returns a string containing the rightmost length characters of string

Rules at a Glance

If length is 0, a zero-length string ("") is returned.

If length is greater than the length of string, string is returned.

If length is less than zero or is Nothing, an error is generated.

If string contains a Nothing, Right returns Nothing.

Example

The following function assumes that it is passed either a filename or a complete path and
filename, and it returns the filename from the end of the string:

Private Function ParseFileName(strFullPath As String) As String

 Dim intPos, intStart As Integer

 Dim strFilename As String

 intStart = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 intStart = 1

 Do

 intPos = InStr(intStart, strFullPath, "\")

 If intPos = 0 Then

 strFilename = Right(strFullPath, _

 Len(strFullPath) - inStart + 1)

 Else

 intStart = intPos + 1

 End If

 Loop While intPos > 0

 ParseFileName = strFilename

End Function

Programming Tips and Gotchas

Use the Len function to determine the total length of string.

See Also

Left Function, Mid Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RmDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

RmDir(path)

path (required; String)

The path of the folder to be removed

Description

Removes a folder

Rules at a Glance

You may include a drive letter in path; if you don't specify a drive letter, the folder is
assumed to be on the current drive.

path can be a fully qualified, relative, or UNC pathname.

If the folder contains files or other folders, RmDir will generate runtime error 75, "Path/File
access error."

Example

The following subroutine deletes all the files in a folder and removes its subfolders. If those
contain files or folders, it deletes those too by recursively calling itself until all child folders and
their files are removed.

Private Sub RemoveFolder(ByVal strFolder As String)

 Static blnLowerLevel As Boolean ' A recursive call - no

 ' need to prompt user

 Dim blnRepeated As Boolean ' Use Dir state info on

 ' repeated calls

 Dim strFile As String ' File/Directory contained in

 ' strFolder

 ' Delete all files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Delete all files

 Do

 strFile = Dir(strFolder & "*.*", _

 VbNormal Or VbHidden Or VbSystem)

 If strFile <> "" Then

 If Not blnLowerLevel Then

 If MsgBox("Delete files in directory " & _

 strFolder & "?", vbQuestion Or vbOKCancel, _

 "Confirm File Deletion") _

 = vbCancel Then Exit Sub

 End If

 strFile = strFolder & "\" & strFile

 Kill(strFile)

 End If

 Loop While strFile <> ""

 ' Delete all directories

 Do

 If Not blnRepeated Then

 strFile = Dir(strFolder & "*.*", VbDirectory)

 blnRepeated = True

 Else

 strFile = Dir()

 End If

 If strFile <> "" And _

 strFile <> "." And strFile <> ".." Then

 If Not blnLowerLevel Then

 blnLowerLevel = True

 If MsgBox("Delete subdirectories of " & _

 strFolder & "?", _

 vbQuestion BitOr vbOKCancel, _

 "Confirm Directory Deletion") _

 = vbCancel Then Exit Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 = vbCancel Then Exit Sub

 End If

 RemoveFolder(strFolder & "\" & strFile)

 blnRepeated = False

 End If

 Loop While strFile <> ""

 RmDir(strFolder)

End Sub

Programming Tips and Gotchas

Use the Kill procedure to delete any remaining files from the folder prior to removing the
folder.

The effects of using Kill and RmDir are irreversible, since these statements do not move
deleted files to the Recycle Bin.

See Also

MkDir Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rnd Function

Class

Microsoft.VisualBasic.VBMath

Syntax

Rnd[(number)]

number (optional; Single)

Any valid numeric expression that serves as a seed value

Return Value

A Single data type random number

Description

Returns a random number

Rules at a Glance

The behavior of the Rnd function is determined by number, as described in the following
table:

Number Rnd generates
< 0 The same number each time, using seed as the seed number

> 0 The next random number in the current sequence

0 The most recently generated number

Not supplied The next random number in the current sequence

The Rnd function always returns a value between and 1.

If number is not supplied, the Rnd function will use the last number generated as the seed
for the next generated number. This means that given an initial seed (seed), the same
sequence will be generated if number is not supplied on subsequent calls.

Example

The following example uses the Randomize procedure along with the Rnd function to fill 100 cells
of an Excel worksheet with random numbers. It requires that a reference to the Microsoft Excel
Object Library be added to the project. It also leaves the instance of Excel running once the code
has finished execution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub GenerateRandomNumbers()

 Dim oApp As New Excel.Application()

 Dim objSheet As Excel.Worksheet

 Dim intRow, intCol As Integer

 oApp.Visible = True

 objSheet = oApp.Workbooks.Add.Worksheets(1)

 Randomize()

 ' Set the color of the input text to blue

 objSheet.Cells.Font.ColorIndex = 5

 ' Loop through first 10 rows & columns,

 ' filling them with random numbers

 For intRow = 1 To 10

 For intCol = 1 To 10

 objSheet.Cells(intRow, intCol).Value = Rnd()

 Next

 Next

 ' Resize columns to accommodate random numbers

 objSheet.Columns("A:C").AutoFit()

 objSheet = Nothing

 End Sub

Programming Tips and Gotchas

Before calling the Rnd function, you should use the Randomize procedure to initialize the
random-number generator.

The standard formula for producing numbers in a given range is as follows:

Int((highest - lowest + 1) * Rnd + lowest)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Int((highest - lowest + 1) * Rnd + lowest)

where lowest is the lowest required number in the range and highest is the highest.

See Also

Randomize Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Round Function

Class

System.Math

Syntax

Math.Round(value[,digits])

value (required; Numeric expression)

Any numeric expression

digits (optional; Integer)

The number of places to include after the decimal point

Return Value

The same data type as value

Description

Rounds a given number to a specified number of decimal places

Rules at a Glance

digits can be any whole number between 0 and 16.

Round follows standard rules for rounding. If the digit in the position to the right of digits
is 5 or greater, the digit in the digits position is incremented by one; otherwise, the digits
to the right of digits are dropped.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

Round with digits set to 2 is the equivalent of Format (expression, "#. ##").

If value is a string representation of a numeric value, Round will convert it to a numeric
value before rounding. However, if expression is not a string representation of a number,
Round generates runtime error 13, "Type mismatch." The IsNumeric function can be used
to ensure that expression is a proper numeric representation before calling Round.

If value contains fewer decimal places than digits, Round does not pad the return value
with trailing zeroes.

VB.NET/VB 6 Differences

The named parameters of the Round function differ in VB 6 and in the .NET Framework. In VB 6,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The named parameters of the Round function differ in VB 6 and in the .NET Framework. In VB 6,
the named arguments are number and numdigitsafterdecimal. In VB.NET, they're value
and digits.

See Also

Fix Function, Int Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

RSet(Source, Length)

Source (required; String)

The string to be right aligned

Length (required; Integer)

The length of the returned string

Return Value

String

Description

Right aligns a string

Rules at a Glance

If the length of Source is greater than or equal to Length, the function returns only the
leftmost Length characters.

If the length of Source is less than Length, spaces are added to the left of the returned
string so that its length becomes Length.

VB.NET/VB 6 Differences

In VB 6, RSet was implemented as a kind of assignment statement. Because it is
implemented as a function in VB.NET, its syntax is completely different.

In VB 6, RSet could be used only with fixed-length strings. In VB.NET, RSet works with all
CTS String data.

See Also

LSet Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

RTrim(string)

string (required; String)

A valid string expression

Return Value

String

Description

Removes any trailing spaces from string

Rules at a Glance

If string contains a Nothing, RTrim returns Nothing.

See Also

LTrim Function, Trim Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SaveFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a file. The most common use of this
dialog box is to ask the user for the name of a file, after which we can use VB's functions to save
an existing file under that name, since the dialog box itself does not handle the process of saving
a file.

The SaveFileDialog object has properties for setting the initial appearance and functionality of
the dialog box, a property for returning the filename selected by the user, as well as a method for
showing the dialog box. The object does not itself save the file, but instead provides the
information that allows your code to do this programmatically.

A SaveFileDialog object can be instantiated as follows:

Dim oSaveDlg As New SaveFileDialog

Selected SaveFileDialog Members

The following is a brief list of some of the more important members of the SaveFileDialog class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is
automatically added to the FileName property if the user fails to enter an extension. Its
default value is True.

DefaultExt property

Gets or sets a String that defines the default file extension. The string should consist of the
file extension only, without a period.

FileName property

Gets or sets a String containing the name that the user selected or entered in the dialog
box.

Filter property

Gets or sets a String containing the current filter, which determines the items that appear in
the "Save as type" drop-down listbox. A single item consists of a file description, a vertical
bar, and the file extension (usually "*." plus the file extension). If there are multiple
extensions in a single item, they are separated by semicolons. If there are multiple items,
they are separated by vertical bars. For example, the following code fragment assigns a
filter string to a String variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sFilter = "Text files (*.txt; *.vb)|*.txt;*.vb|" & _

 "Visual Basic files (*.vb)|*.vb|" & _

 "All files (*.*)|*.*"

FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter
property is selected. The index is one-based, rather than zero-based. When the dialog box
is first displayed and no FilterIndex value is specified, it defaults to 1. When the method
returns, its value indicates which filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the SaveFileDialog
dialog box.

OverwritePrompt property

Gets or sets a Boolean value that determines whether a confirmation message is displayed
when the user enters or selects an existing file.

RestoreDirectory

Gets or sets a Boolean value indicating whether the current directory is restored before the
dialog box closes. Its default value is False.

ShowDialog method

Opens the SaveFileDialog dialog box. Its syntax is:

oSaveDlg.ShowDialog()

It returns DialogResult.OK if the user clicks the OK button and
DialogResult.Cancel if the user clicks the Cancel button to close the dialog box.

Example

Dim fd As New SaveFileDialog()

fd.OverwritePrompt = True

If fd.ShowDialog() = DialogResult().OK Then

 Console.WriteLine(fd.FileName)

End If

VB.NET/VB 6 Differences

Whereas the SaveFileDialog class is implemented in the .NET Base Class Library, VB 6 offered
the CommonDialog custom control. Although the two offer similar functionality, their public
interfaces are almost completely different.

See Also

OpenFileDialog Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SaveSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

SaveSetting(appname, section, key, setting)

appname (required; String)

The name of the application

section (required; String)

The name of the registry key

key (required; String)

The name of the value entry whose value is to be saved

setting (required; String or numeric)

The value to save

Description

Creates or saves an entry for a VB application in the Windows registry

Rules at a Glance

If either the appname or section subkeys are not found in the registry, they are
automatically created.

The function writes a value to a subkey of the KEY_CURRENT_USER\Software\ VB and
VBA Program Settings key of the registry.

section need not be an immediate subkey of appname; instead, section can be a fully
qualified path to a nested subkey, with each subkey separated from its parent by a
backslash. For example, a value of Settings\Coordinates for the section argument
indicates that the value is to be retrieved from HKEY_CURRENT_USER\Software\VB and
VBA Program Settings\appname\Settings\Coordinates.

Visual Basic writes setting to the registry as a string (REG_SZ) value. If setting is not a
string, VB attempts to coerce it into a string in order to write it.

If the setting cannot be saved, a runtime error will be generated.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The built-in registry-manipulation functions allow you to create professional 32-bit
applications that use the registry for holding application-specific data, in the same way that
.INI files were used in the 16-bit environment. You can, for example, store information
about the user's desktop settings (i.e., the size and position of forms) the last time the
program was run.

Since it writes to the current user's registry key, SaveSetting should be used exclusively for
storing user settings; it should not be used to store nonuser information (i.e., hardware
information, system-level information, or application information that is independent of the
user).

GetSetting, GetAllSettings, and SaveSetting allow you direct access to only a limited
section of the Windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings\yourappname).

SaveSetting does not allow you to write to the default value of a registry key. Attempting to
do so produces runtime error 5, "Invalid procedure call or argument." This is not as great a
limitation as it may appear, since GetSetting also cannot retrieve a default value from a
registry key.

This may seem obvious, but it has been often overlooked: if a user hasn't run the
application before and your application's initialization doesn't set up the registry structure
for the application, the key values won't be there.

The previous point is particularly applicable when running your application on Windows in a
multiuser environment since Microsoft chose to use the HKEY_CURRENT_USER branch of
the registry to store entries for VB applications. This means that your application can be
running swimmingly for one user, but when another user logs onto the machine, the registry
settings are not available.

Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetAllSettings Function, GetSetting Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptEngine Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngine

Return Value

A String containing the value "VB"

Description

Indicates the programming language currently in use

Rules at a Glance

ScriptEngine is a read-only property.

Programming Tips and Gotchas

A number of scripting engines support a ScriptEngine property or function, which allows
you to determine the programming language used for a particular block of code. These
languages, and the strings they return, are shown in the following table:

Language String
Microsoft Jscript JScript

VB.NET VB

VBScript VBScript

The ScriptEngine property can be most useful when calling legacy code. On the .NET
platform, the need to know the current scripting engine is substantially lessened by the
existence of a unified type system.

VB.NET/VB 6 Differences

The property is new to VB.NET and is not supported in VB 6.

See Also

ScriptEngineMinorVersion Property, ScriptEngineMajorVersion Property,
ScriptEngineBuildVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptEngineBuildVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineBuildVersion()

Return Value

An Integer containing the build number

Description

Returns the build number of the VB.NET language engine

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

VB.NET/VB 6 Differences

This property is new to VB.NET.

See Also

ScriptEngineMinorVersion Property, ScriptEngineMajorVersion Property, ScriptEngine Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptEngineMajorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineMajorVersion

Return Value

An Integer containing the major version number

Description

Indicates the major version (1, 2, etc.) of the programming language currently in use

Rules at a Glance

The initial version of VB.NET returns "7" as its major version number.

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

If your script requires some functionality available in a baseline version, ordinarily you want
to make sure that the script is running on that version or a later version. You do not want to
test for equality, since that may leave your code unable to run on later versions of the
language engine.

VB.NET/VB 6 Differences

This property is new to VB.NET.

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMinorVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptEngineMinorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineMinorVersion

Return Value

An Integer containing the minor version number

Description

Indicates the minor version (the number to the right of the decimal point) of the programming
language currently in use

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

If your script requires some functionality available in a baseline minor version, ordinarily
you would want to make sure that the script is running on that version or a later version.
Test for a minor version with a code fragment like:

Dim iMajor As Integer = ScriptEngineMajorVersion()

Dim iMinor As Integer = ScriptEngineMinorVersion()

If (lMajor = x And lMinor >= y) Or (lMajor > x) Then

 ...

VB.NET/VB 6 Differences

This property is new to VB.NET.

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMajorVersion Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Second Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Second(timevalue)

timevalue (required; date)

Date variable or literal date

Return Value

An Integer in the range 0 to 59, specifying the second in timevalue

Description

Extracts the seconds from a given time expression

Rules at a Glance

If the time expression time is Nothing, the Second function returns 0.

See Also

Minute Function, Hour Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Seek Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Seek(filenumber)

filenumber (required; Integer)

Any valid file number

Return Value

A Long indicating the current read/write position

Description

Returns the current position of the read/write marker in the open file filenumber

Rules at a Glance

The Seek function returns a whole number in the range 1 to 2,147,483,647.

If filenumber was opened in Random mode, the number returned by the Seek function
refers to the next record to be written or read.

In all other file open modes (Append, Binary, Input, and Output), the number returned by
the Seek function is the byte position at which the next read or write operation will occur.

See Also

Seek Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Seek Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Seek(filenumber, position)

filenumber (required; Integer)

Any valid file number

position (required; Long)

Any whole number between 1 and 2,147,483,647

Description

Places the read/write marker at a given position where the next read/write operation should occur

Rules at a Glance

If the file has been opened in Random mode, position refers to the next record number
that should be read or written.

In all other file open modes (Append, Binary, Input, and Output), position is the byte
where the next read or write operation will start.

The use of a record number in any subsequent FileGet or FilePut procedure overrides the
position set by the Seek procedure.

The size of a file can be increased as the result of a write operation that is performed after
a call to the Seek procedure in which position is beyond the end of the file.

If position is 0 or negative, a runtime error will be generated.

Programming Tips and Gotchas

Unused records in a random-access data file are not necessarily blank. For example, if you open
a brand new data file, then perform a seek operation to record number 10 and write a new record,
the preceding 9 records will be filled with binary data that was present on the section of the disk
used by the new file prior to its creation.

See Also

Seek Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select Case Statement

Syntax

Select Case testexpression

 [Case expressionlist-n

 [statements-n]] ...

 [Case Else

 [elsestatements]]

End Select

testexpression (required; any)

Any numeric or string expression whose value determines which block of code is executed

expressionlist-n (required; any)

Comma-delimited list of expressions to compare values with testexpression

statements-n (optional)

Program statements to execute if a match is found between any section of
expressionlist and testexpression

elsestatements (optional)

Program statements to execute if a match between testexpression and any
expressionlist cannot be found

expressionlist can use any (or a combination of any) of the following:

expressionlist syntax Examples

expression
iVar - iAnotherVar

iVar

expression To expression

5 To 10

8 To 11, 13 to 15

"A" To "D"
Is comparisonoperator expression Is = 10

Description

Allows for conditional execution of a block of code, typically out of three or more code blocks,
based on some condition. Use the Select Case statement as an alternative to complex nested
If...Then...Else statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If...Then...Else statements.

Rules at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testexpression and any part of expressionlist is found, the
program statements following the matched expressionlist will be executed. When
program execution encounters the next Case clause or the End Select clause, execution
will continue with the statement immediately following the End Select clause.

If multiple Case statements are True, only the statements belonging to the first true Case
statement are executed.

If used, the Case Else clause must be the last Case clause. Program execution will only
encounter the Case Else clause — and thereby execute the elsestatements — if all
other expressionlist comparisons have failed.

Use the To keyword to specify a range of values. The lower value must precede the To
clause, and the higher value follow it. Failure to do this does not generate a syntax error.
Instead, it causes the comparison of the expression with testexpression to always fail,
so that program execution falls through to the Case Else code block, if one is present.

The Is keyword is used to precede any comparison operators. For example:

Case Is >= 100

Select Case statements can also be nested.

Example

The following example uses Select Case to act based on the response to a MsgBox function:

Select Case MsgBox("Backup file before changing.", vbYesNoCancel)

 Case vbYes

 ' do something

 Case vbNo

 ' do something

 Case vbCancel

 ' do something

End Select

Programming Tips and Gotchas

The Select Case statement is the VB equivalent of the Switch construct found in C and
C++.

The Case Else clause is optional. However, as with If...Then...Else statements, it is
often good practice to provide a Case Else to catch the exceptional instance when —
perhaps unexpectedly — a match cannot be found in any of the expressionlists you
have provided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The To clause can be used to specify ranges of character strings. However, it is often
difficult to predict the thousands of possible combinations of valid characters between two
words that will be successfully matched by Select Case.

The Is keyword used in the Select Case statement is not the same as the Is
comparison operator.

Multiple conditions in a single Case statement are evaluated separately, not together; that
is, they are connected with a logical OR, not a logical AND. For example, the statement:

Case Is > 20, Is < 40

will evaluate to True whenever the value of testexpression is greater than 20. In this
case, the second comparison is never evaluated; it is evaluated only when
testexpression is under 20. This suggests that if you use anything other than the most
straightforward conditions, you should test them thoroughly.

See Also

If...Then...Else Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Send, SendWait Methods

Class

System.Windows.Forms.SendKeys

Syntax

SendKeys.Send(keys)

SendKeys.SendWait(keys)

keys (required; String)

String describing keys to send to the active window

Description

Sends keystrokes to the active window of the foreground application. For SendKeys.Send, further
execution continues without waiting for the keys to be processed. For SendKeys.SendWait,
further execution is suspended until the keystrokes have been processed.

Rules at a Glance

To send normal alphabetical or numeric characters, simply use the character or characters
enclosed in quotation marks. For example, "SOME Text 123".

The following characters represent special keys or have special meaning within the Keys
string:

Character Special key representation
+ SHIFT

^ CTRL

% ALT

~ or {ENTER} ENTER

To use these characters literally, you must surround the character with braces. For
example, to specify the percentage key, use {%}.

Preceding a string with the special characters described in the previous table allows you to
send a keystroke combination beginning with Shift, Ctrl, or Alt. For example, to specify Ctrl
followed by "M," use ^M.

If you need to specify that the Shift, Ctrl, or Alt key is held down while another key is
pressed, you should enclose the key or keys in parentheses and precede the parentheses
with the special character code. For example, to specify the M key being pressed while
holding down the Alt key, use %(M).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

holding down the Alt key, use %(M).

The following table describes how to specify nondisplaying (action) characters in the Keys
string:

Key Code
Backspace {BACKSPACE}, {BS}, or {BKSP}
Break {BREAK}
Caps Lock {CAPSLOCK}
Del or Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER}or ~
Esc {ESC}
Help {HELP}
Home {HOME}
Ins or Insert {INSERT} or {INS}
Left Arrow {LEFT}
Num Lock {NUMLOCK}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F16 {F16}

Special formatting syntax allows you to specify a key being repeatedly pressed. The syntax
is:

{key numberoftimes}

For example, {M 3} represents pressing the M key three times.

Example

The following program launches Notepad, loads a text file whose name is passed as a parameter,
gives the focus to Notepad, then uses its File Exit menu option to close the application:

Private Sub LaunchNotepad(strFN As String)

Dim intTaskID As Integer

Dim strCmdLine As String

strCmdLine = "C:\windows\notepad.exe " & strFN

intTaskID = Shell(strCmdLine, vbNormalNoFocus)

' timing delay

DelayLoop(200000)

' Activate notepad by task ID

AppActivate(intTaskID)

' timing delay

DelayLoop(200000)

SendKeys.SendWait("%Fx")

End Sub

Private Sub DelayLoop(n As Integer)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub DelayLoop(n As Integer)

Dim iCtr As Integer

For iCtr = 1 to iCtr

 if iCtr/10 = iCtr \ 10 Then

 Application.DoEvents

 End If

Next

End Sub

Programming Tips and Gotchas

Send and SendWait will only work directly with applications designed to run in Microsoft
Windows.

You may find that some keys or key combinations cannot be sent successfully. For
example, you cannot use Send and SendWait to send the Print Screen key to any
application. You also cannot send the Alt and Tab keys ("%{Tab}").

Typically, Send or SendWait is used as a "convenience" feature to send an occasional
keystroke to its application or to another application. It can also be used to add a keystroke-
macro capability to an application. In some cases, it is even used for remotely controlling
an application. In this latter case, Send or SendWait is often combined with the Shell
function (to start an instance of another application) or the AppActivate procedure (to give it
the focus before Send or SendWait is used). The example program illustrates this.

It's worthwhile mentioning the difficulties of using Send or SendWait as a method for
controlling a program remotely. Windows is an event-driven operating system.
Consequently, the order of events is controlled primarily by the user, and the precise order
of events is difficult or even impossible to anticipate. Remote control of an application using
Send or SendWait, however, typically makes a number of assumptions about that
application, the most basic of which is that it has the focus when Send or SendWait is
called. Given that Send and SendWait do not offer close control over a remote application
in the same way as OLE automation does, the event-driven character of Windows can
easily intervene to invalidate those assumptions. This makes Send and SendWait less than
optimal choices as tools for remote control of an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set Statement

Syntax

Set

 [statements]

 [variable = Value]

End Set

statements (optional)

Program code to be executed when the Property Set procedure is called

variable (optional; any (the data type of the property)

Typically, a Private variable to hold the property value

Value (optional; Keyword)

A keyword representing the value to be assigned to the property

Description

Defines a Set property procedure that sets a property value

Rules at a Glance

The Set statement can only be used within a Property...End Property construct.

The value assigned to the property is usually stored to a variable that's Private to the class.
This protects the property value from modification other than by calling the Property Set
procedure.

The Value keyword represents the value to be assigned to the property. This value must
be of the same data type as the property.

Example

The example code illustrates a class that has a simple property and a property array. The syntax
documented above, rather than the "official" syntax (see the note in Section), is used, since in
our opinion it is much clearer and intuitive.

Public Enum WageConstants

 Rate = 0

 Overtime = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Overtime = 1

 Differential = 2

End Enum

Public Class CEmployee

Dim strName As String

Dim decWage(2) As Decimal

Public Property Name() As String

 Set(sName As String)

 strName = sName

 End Set

 Get

 Return strName

 End Get

End Property

Public Property Wage(iType As WageConstants) As Decimal

 Get

 Wage = decWage(iType)

 End Get

 Set

 decWage(iType) = Value

 End Set

End Property

End Class

Module modMain

Public Sub Main

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim oEmp As New CEmployee

oEmp.Name = "Bill"

oEmp.Wage(WageConstants.Rate) = CDec(15.00)

oEmp.Wage(WageConstants.Overtime) = CDec(15.00 * 1.5)

oEmp.Wage(WageConstants.Differential) = CDec(15.00 * .1)

Console.WriteLIne(oEmp.Name)

Console.Writeline(oEmp.Wage(WageConstants.Rate))

oEmp = Nothing

End Sub

End Module

Programming Tips and Gotchas

An alternative syntax for the Set statement (though it happens to be the officially documented
one, as well as the one used by Visual Studio) is:

Set([ByVal] var As Type)

 [statements]

 [variable = var]

End Set

Here var is a variable representing the value to be assigned to the property, and Type is the
data type of var. Type must be the same as the data type of the Property statement.

VB.NET/VB 6 Differences

The Property Let and Property Set statements in VB 6 correspond to the Set statement in
VB.NET. Though the purpose and basic operation of these constructs are identical, the syntax of
the VB.NET construct is vastly simplified and more intuitive.

See Also

Get Statement, Property Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SetAttr Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

SetAttr(pathname, attributes)

pathname (required; String)

The name of the file or directory whose attributes are to be set

attributes (required; FileAttribute enumeration)

Numeric expression, FileAttribute enumerated constant, or global VB constant
specifying the attributes

Description

Changes the attribute properties of a file

Rules at a Glance

You can use any sum of the following constants to set the attributes of a file:

Constant Value Description
VbNormal 0 Normal

VbReadOnly 1 Read-only

VbHidden 2 Hidden

VbSystem 4 System

VbArchive 32 File has changed since last backup

Each global constant has a corresponding constant in the FileAttribute enumeration.
For example, vbNormal is identical to FileAttribute.Normal. The file-attribute
constants vbDirectory, vbAlias, and vbVolume cannot be used when assigning
attributes.

File-attributes constants can be Ored to set more than one attribute at the same time. For
example:

SetAttr "SysFile.Dat", FileAttribute.System Or FileAttribute.Hidden

pathname can include a drive letter. If a drive letter is not included in pathname, the
current drive is assumed. The file path can be either a fully qualified path or a relative path
from the current directory.

pathname can include a folder name. If the folder name is not included in pathname, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pathname can include a folder name. If the folder name is not included in pathname, the
current folder is assumed.

Attempting to set the attributes of an open file will generate a runtime error.

Example

Private Sub AddAttributes(strFN As String, _

 intNewAttrib As Integer)

Dim intAttrib As Integer

intAttrib = GetAttr(strFN)

intAttrib = intAttrib Or intNewAttrib

SetAttr(strFN, intAttrib)

End Sub

Programming Tips and Gotchas

Setting file attributes simultaneously clears any attributes that are not set with the SetAttr
procedure. For example, if SysFile.Dat is a read-only, hidden, system file, the statement:

SetAttr "sysfile.dat", VbArchive

sets the archive attribute but clears the read-only, hidden, and system attributes. Clearly,
this can have disastrous implications. To retain a file's attributes while setting new ones,
first retrieve its attributes using the GetAttr function, as the example program illustrates.

Setting a file's attributes to VbNormal clears all file attributes.

Not all attribute values can be assigned to a file; many are assigned only by the operating
system. For example, FileAttribute.Directory cannot be assigned to an existing
directory or a file. Thus, when setting the attribute value of a file or directory, you must
mask out these (or any other) illegal values. For example, the following code fragment
shows how to do this in the case of a directory:

Private Sub AddAttributes(strFN As String, _

 intNewAttrib As Integer)

Dim intAttrib As Integer

intAttrib = GetAttr(strFN)

' If directory, mask out directory flag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' If directory, mask out directory flag

If intAttrib And FileAttribute.Directory Then

 intAttrib = intAttrib And &HFFFFFFEF

End If

intAttrib = intAttrib Or intNewAttrib

SetAttr(strFN, intAttrib Or intNewAttrib)

End Sub

See Also

GetAttr Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shadows Keyword

Syntax

Shadows

Description

When a member of a derived class has the same name as a member of the same type in the
base class, and the keywords Overridable and Overrides are used appropriately, then the
derived class member overrides the base class member. That is, any reference to the member
using a derived class object refers to the implementation in the derived class.

Shadowing works in a similar way but allows any member type to "override" any other member
type. Thus, for example, a method can "override" a property. For a complete discussion of
shadowing (with an example), see Section 4.4.5 in Chapter 4.

VB.NET/VB 6 Differences

The Shadows keyword is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shell Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Shell(pathname[,style][, Wait][, Timeout])

pathname (required; String)

Name of the program to execute

style (optional; AppWinStyle enumeration)

The style of window and whether it receives the focus; see Section

Wait (optional; Boolean)

Boolean indicating whether to wait for the pathname application to finish execution before
continuing execution of subsequent code

Timeout (optional; Integer)

If Wait is True, number of milliseconds to wait for the pathname application to terminate
before the Shell function times out

Return Value

An Integer representing the Process ID, or 0

Description

Launches another application and, if successful, returns that application's task ID

Rules at a Glance

pathname can include a drive letter. If a drive letter is not included in pathname, the
current drive is assumed.

pathname can include a folder name. You can use either a fully qualified path (i.e., starting
from the root directory) or a relative path (i.e., starting from the current directory). If the
folder name is not included in pathname, the current folder is assumed.

pathname can include any command-line arguments and switches required by the
application. For example:

Shell("notepad.exe c:\data.txt", AppWinStyle.NormalFocus)

launches Notepad, which loads the file data.txt.

Visual Basic includes the following intrinsic constants for setting the style argument:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWinStyle.Hide Value: 0

New application window is hidden

Focus: New application

AppWinStyle.NormalFocus Value: 1

New application window is shown in its original position and size

Focus: New application

AppWinStyle.MinimizedFocus Value: 2

New application window is displayed as an icon

Focus: New application

AppWinStyle.MaximizedFocus Value: 3

New application window is maximized

Focus: New application

AppWinStyle.NormalNoFocus Value: 4

New application window is shown in its original position and size

Focus: Current application

AppWinStyle.MinimizedNoFocus Value: 6

New application window is displayed as an icon

Focus: Current application

The default when no style is specified is AppWinStyle.MinimizedFocus (2).

If the application named in pathname executes successfully, Shell returns the windows
task ID of the program. (The task ID is better known as the process ID or PID, a unique 32-
bit value used to identify each running process.) It can be used as a parameter to the
AppActivate procedure to give the application the focus — and possibly to control it
remotely using the Send and SendWait methods. The process ID is also required by a
number of Win32 API calls.

If the application named in pathname fails to execute, a runtime error is generated.

The file launched by Shell must be executable. That is, it must be a file whose extension is
.EXE or .COM (an executable file), .BAT (a batch file), or .PIF (a DOS shortcut file).

Wait determines whether the Shell function operates synchronously (True) or
asynchronously (False). The default is False; control returns to the application, and code
continues executing as soon as the process ID is known. If True, the Shell function returns
only when the pathname application is closed or, if Timeout is not -1, when the timeout
period has expired.

If Wait is False, the Shell function returns the application's process ID. If Wait is True, it
returns either the process ID (if control returns to the application because Timeout has
elapsed) or 0 (if control returns to the application because the pathname application has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elapsed) or 0 (if control returns to the application because the pathname application has
been closed). In this latter case, Shell returns a 0 because, since the pathname application
has been closed, its process ID is no longer valid.

Timeout applies only when Wait is True. It defines the number of milliseconds that the
application will wait for the pathname application to end before the wait is abandoned and
application code resumes execution. Its default value is -1, which means that there is no
timeout value and control returns to the application only when the pathname application
has terminated.

Programming Tips and Gotchas

Wait is a long-needed addition to the Shell function that allows your application to know
when the launched application has terminated.

The Shell function does not use file associations. You cannot, for example, supply
MyReport.Doc as the pathname in the hope that VB will load Microsoft Word, which in turn
will load MyReport.Doc.

Setting Wait to True and leaving Timeout at its default value of -1 creates the possibility
that control will never return from the pathname application to the VB.NET application.

VB.NET/VB 6 Differences

The Wait and Timeout arguments are new to VB.NET. They are not supported by VB 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sign Function

Class

System.Math

Syntax

Sign(value)

value (required; any numeric type, including Decimal)

A numeric expression

Return Value

Integer

Description

Determines the sign of a number

Rules at a Glance

The return value of the Sign function is determined by the sign of value, as follows:

If number is Sign returns
Positive 1

Zero 0

Negative -1

Programming Tips and Gotchas

Sign is useful in cases in which the sign of a quantity defines the sign of an expression. For
example:

lngResult = lngQty * Sgn(lngValue)

This is a Shared member, so it can be used without creating any objects.

If you are using the Sign function to evaluate a result to False (0) or True (any nonzero
value), you could use the CBool function instead.

A major use for Sign is to determine the sign of an expression.

VB.NET/VB 6 Differences

The name of this function has changed. In VB 6, it is named Sgn. In VB.NET, it is named Sign
and is a member of the Math class of the System namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

If...Then...Else Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sin Function

Class

System.Math

Syntax

Sin(a)

a (required; Numeric)

An angle expressed in radians

Return Value

A Double containing the sine of an angle

Description

Returns the ratio of two sides of a right triangle in the range -1 to 1

Rules at a Glance

The ratio is determined by dividing the length of the side opposite the angle by the length of
the hypotenuse.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can convert degrees to radians using the formula:

radians = degrees * (pi/180)

You can convert radians to degrees using the formula:

degrees = radians * (180/pi)

See Also

Cos Function, Tan Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sinh Function

Class

System.Math

Syntax

Math.Sinh(value)

value (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic sine of the angle

Description

Returns the hyperbolic sine of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Sinh function is new to the .NET Framework.

See Also

Cosh Function, Tanh Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SLN Function

Class

Microsoft.VisualBasic.Financial

Syntax

SLN(cost, salvage, life)

cost (required; Double)

The initial cost of the asset

salvage (required; Double)

The value of the asset at the end of its useful life

life (required; Double)

The length of the useful life of the asset

Return Value

A Double representing depreciation per period

Description

Computes the straight-line depreciation of an asset for a single period

Rules at a Glance

The function uses a very simple formula to calculate depreciation:

(cost - salvage) / life

The depreciation period is determined by the time period of life.

All arguments must be positive numeric values.

See Also

DDB Function, SYD Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Space Function

Class

Microsoft.VisualBasic.Strings

Syntax

Space(number)

number (required; Integer)

An expression evaluating to the number of spaces required

Return Value

A String containing number spaces

Description

Creates a string containing number spaces

Rules at a Glance

While number can be zero (in which case the function returns the empty string), runtime error 5,
"Invalid procedure call or argument," is generated if number is negative.

Programming Tips and Gotchas

The Space function is most useful for creating a string buffer, an area where an external function
can write data to be returned to the calling program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Spc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Spc(n)

n (required; Integer)

The number of spaces required

Return Value

A String containing n spaces

Description

Inserts spaces between expressions in a Print or PrintLine procedure

Rules at a Glance

Spc can only be used with the Print or PrintLine procedure.

If the width of the device being printed to is greater than n, the print position is set to
immediately after the number of spaces printed by the Spc function.

If the width of the device being printed to is less than n, the print position is set to the
current position plus the result of the formula n Mod devicewidth.

If n is greater than the difference between the current print position and the width of the
device, Spc inserts a line break and then inserts spaces in accordance with the following
formula:

n - (devicewidth - currentposition)

When using a proportional font, the Spc function uses the average width of all characters
for that particular font to determine the width of the space character to print.

Programming Tips and Gotchas

When the number of fixed-width columns is important, you should use either the Space or
the Tab function, since there is not necessarily a relationship between the spaces provided
by the Spc function and fixed-width columns.

See Also

Print, PrintLine Procedures, Tab Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Split Function

Class

Microsoft.VisualBasic.Strings

Syntax

Split(expression, [delimiter[, limit[, compare]]])

expression (required; String)

A string to be broken up into multiple strings.

delimiter (optional; String)

The character used to delimit the substrings in expression.

limit (optional; Integer)

The maximum number of strings to return.

compare (optional; CompareMethod constant)

The method of comparison. Possible values are CompareMethod.Binary (the default) or
CompareMethod.Text.

Return Value

A String array containing the substrings of expression delimited by delimiter

Description

Parses a single string containing delimited values into an array

Rules at a Glance

If expression is a zero-length string, Split returns an empty array.

If delimiter is not found in expression, Split returns the entire string in element 0 of
the returned array.

If delimiter is omitted, a space character (" ") is used as the delimiter.

If limit is omitted or its value is -1, all strings are returned.

The default comparison method is CompareMethod.Binary.

Once one less than limit has been reached, the remainder of the string is placed,
unprocessed, into the next element of the returned array. This is important, because it can
lead to unexpected results. For instance, the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim s() As String

s = Split("x y z", " ", 1, CompareMethod.Text)

Console.WriteLine(s(0))

prints:

x y z

because the Split function stuffs the remaining portion of the original string into the last
array element. This leaves no array elements for the actual split operation. To split off the
first substring, we need to set count to at least 2:

Dim s() As String

s = Split("x y z", " ", 2, CompareMethod.Text)

Console.WriteLine(s(0))

Programming Tips and Gotchas

Strings are written to the returned array in the order in which they appear in expression.

The setting of compare is important only if delimiter is an alphabetic character, in which
case CompareMethod.Binary will perform a case-sensitive comparison, and
Compare.Method.Text will perform a case-insensitive one.

See Also

Join Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sqrt Function

Class

System.Math

Syntax

Sqr(d)

d (required; Double)

Any numeric expression greater than or equal to 0

Return Value

A Double containing the square root of d

Description

Calculates the square root of a given number

Rules at a Glance

d must be equal to or greater than zero, or runtime error 5, "Invalid procedure call or
argument," occurs.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The square root function in VB 6 is named Sqr, and it is an intrinsic VB function. In the .NET
Framework, it is named Sqrt, and it is a member of the Math class in the System namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack Class

Namespace

System.Collections

Createable

Yes

Syntax

Dim stackvariable As [New] Stack

stackvariable (required; Stack object)

The name of the Stack object

Description

A Stack object is a model of a stack.

Succinctly put, a stack is a last-in, first-out data structure. (This is often abbreviated LIFO.) Put
another way, a stack is a data structure that models a stack of items (like a stack of dinner
plates). There is a method for inserting items at the top of the stack (pushing) as well as a method
for removing the item that is currently at the top of the stack (popping). Under this scenario, the
next item to be popped is the item that was placed in line last — hence the phrase, last-in, first-
out.

Note that the elements in a Stack object are of type Object.

Stack class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsReadOnly
IsSynchronized
SyncRoot

Public Instance Methods

Clear +
Clone
Contains +
CopyTo +
Equals
GetEnumerator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetHashCode
GetType
Peek +
Pop +
Push +
ToArray +
ToString

Example

' Define a new stack

Dim s As New Stack()

' Push some items onto the stack

s.Push("Chopin")

s.Push ("Mozart")

s.Push ("Beethoven")

' Is an item in the stack?

MsgBox("Beethoven in stack: " & CStr(s.Contains("Beethoven")))

' Peek at the first (top) item on the stack

MsgBox("First item in stack is: " & s.Peek.ToString)

' Send stack to an array and display all items

Dim s() As Object = s.ToArray()

Dim i As Integer

For i = 0 To UBound(s)

 Console.WriteLine(CStr(s(i)))

Next

' Clear stack

s.Clear()

VB.NET/VB 6 Differences

The Stack object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Queue Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Clear Method

Class

System.Collections.Stack

Syntax

stackvariable.Clear()

Return Value

None

Description

Removes all entries from the stack

See Also

Stack.Pop Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Contains Method

Class

System.Collections.Stack

Syntax

stackvariable.Contains(obj)

obj (required; any)

The value to search for in the stack

Return Value

Boolean (True or False) indicating whether obj is found in the stack

Description

Returns a Boolean indicating whether a given element (Object) is somewhere in the stack

Rules at a Glance

obj must correspond exactly to an item in the stack for the method to return True.

String comparison is case sensitive and is not affected by the setting of Option Compare.

The Contains method searches the stack sequentially. In other words, its performance is
inversely proportional to the number of items in the stack.

Programming Tips and Gotchas

In comparing objects in the stack with obj, the Contains method in turn calls the BCL's
Object.Equals method to perform the comparison. The Equals method returns True if two
object instances are the same instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.CopyTo Method

Class

System.Collections.Stack

Syntax

stackvariable.CopyTo(array, index)

array (required; Array of Objects)

Array to which to copy the stack's objects

index (required; Integer)

The index of the first array element to receive an element of the stack

Return Value

None

Description

Copies the stack elements into an array, starting at a specified array index

Rules at a Glance

The array can be of any data type that is compatible with the stack elements. Thus, for
instance, we cannot use an Integer array to hold stack elements that are strings (that is,
Objects whose subtype is String).

The array must be sized to accommodate the elements of the stack prior to calling the
CopyTo method.

Example

Public Sub Main

' Define a new stack

Dim s As New Stack()

Dim aStack(), oItem As Object

' Push some items onto stack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Push some items onto stack

s.Push("Chopin")

s.Push("Mozart")

s.Push("Beethoven")

' Size the array and copy to it

Redim aStack(s.Count - 1)

s.CopyTo(aStack, 0)

For Each oItem in aStack

 Console.WriteLine(oItem)

Next

End Sub

See Also

Stack.ToArray Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Count Property

Class

System.Collections.Stack

Syntax

stackvariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the stack.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Peek Method

Class

System.Collections.Stack

Syntax

stackvariable.Peek()

Return Value

Object

Description

Returns the first item in the stack as an Object, but does not remove it from the stack

Programming Tips and Gotchas

The Peek method is similar to the Stack object's Pop method, except that it leaves the stack
intact.

See Also

Stack.Pop Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Pop Method

Class

System.Collections.Stack

Syntax

stackvariable.Pop()

Return Value

Object

Description

Removes the top item from the stack and returns it as an Object

Rules at a Glance

Pop removes the top item from the stack and decrements the Count property by one.

Pop generates an error if applied to an empty stack. Thus, it's advisable to determine when
a stack is empty by using the Count property before popping the stack.

Programming Tips and Gotchas

The Peek method returns a reference to the object at the top of the stack, but unlike the Pop
method, does not remove it from the stack.

See Also

Stack.Clear Method, Stack.Peek Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Push Method

Class

System.Collections.Stack

Syntax

stackvariable.Push(obj)

obj (required; Object)

The item to place in the stack

Return Value

None

Description

Places an Object on the top of the stack

Rules at a Glance

The Push method adds an item to the top of the stack and increases the Count property by 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.ToArray Method

Class

System.Collections.Stack

Syntax

stackvariable.ToArray()

Return Value

An array of type Object

Description

Creates an array of type Object, copies the elements of the stack in order, and then returns the
array

Programming Tips and Gotchas

Unlike the CopyTo method, the ToArray method does not require that we define an array in
advance. However, we cannot specify the starting array index for the copy procedure.

See Also

Stack.CopyTo Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STAThread Attribute

Class

System.STAThreadAttribute

Applies to

Method

Description

Specifies that the class or application to which the program element belongs is to use the single-
threaded apartment model for COM interop. If COM components are not called from the class or
application, the attribute is ignored. The <STAThread> attribute should be used only on the class
or application's Main method or subroutine.

The <STAThread> attribute is similar to setting a Thread object's ApartmentState property to
ApartmentState.STA. The difference is that the <STAThread> attribute creates a single-
threaded apartment from startup, whereas setting the property does it only from the point that the
property is set.

Constructor

New()

Properties

None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Static Statement

Syntax

Static varname[([subscripts])] [As [New] type] _

 [,varname[([subscripts])] [As [New] type]] . . .

varname (required; any)

The name of the variable, following Visual Basic naming conventions

subscripts (optional; Integer)

Denotes varname as an array and specifies the dimension and upper bounds of the array

New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable,
varname

type (optional; Keyword)

Data type of the variable varname

Description

Used at procedure level to declare a Static variable and to allocate the relevant storage space in
memory. Static variables retain their value between calls to the procedure in which they are
declared.

Rules at a Glance

A Static variable's scope is limited to the procedure in which it is created.

The subscripts argument has the following syntax:

upperbound [, upperbound]

Using the subscripts argument, you can declare up to 60 multiple dimensions for the
array.

The New keyword specifies that a new instance of the object will be created. Use of the New
keyword in the Static statement therefore eliminates the subsequent need to instantiate
the object.

You cannot use the New keyword to declare variables of any intrinsic data type or to
declare instances of dependent objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you don't use the New keyword with an object variable, you must use an assignment
statement to assign an existing object to the variable before you can use the variable.

datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object, Short,
Single, String, a user-defined type, or an object type.

If you don't specify datatype, the variable will be cast as an Object.

When multiple variables are declared on the same line, if a variable is not declared with a
explicit type declaration, then its type is that of the next variable with an explicit type
declaration. Thus, in the line:

Static x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type
Variant.)

When a static variable is initialized on the same line as its declaration, the initialization
process is performed only the first time the declaration line is encountered. (Otherwise, the
variable would not be static.)

VB.NET permits the initialization of variables in the same line as their declaration (at long
last!). Thus, we may write:

Static x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize
more than one variable on a single line:

Static x As Integer = 6, y As Integer = 9

Variables that are not explicitly initialized by the Static statement have the following
default values:

Data type Initial value
All numeric types 0
Boolean False
Date 01/01/0001 12:00:00 AM

Decimal 0
Object Nothing
String Zero-length string ("")

Static variables can have procedure-level scope or block-level scope. Static variables with
procedure-level scope last the lifetime of the application, but they are accessible only within
the procedure in which they are defined. Static variables with block-level scope last the
lifetime of the application, but they are accessible only within the code block (such as a
looping construct or an If statement) in which they are defined.

Programming Tips and Gotchas

It is a recognized programming practice when using the Static statement in a procedure
to put the Static statement at the beginning of that procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to put the Static statement at the beginning of that procedure.

Although their value persists between calls to a procedure, Static variables do not have
scope outside of the procedure in which they are created.

For more on static variables, see Chapter 3.

VB.NET/VB 6 Differences

When multiple variables are declared on a single line of code in VB 6, variables not
explicitly assigned a data type are cast as variants. For example, in the statement:

Static Var1, Var2, Var3 As String

both Var1 and Var2 are variants rather than strings. In VB.NET, the type declaration
applies to all undeclared variables since the last explicit type declaration. So the previous
statement in VB.NET would cast Var1, Var2, and Var3 as strings.

In VB 6, declaring and initializing variables are separate steps; aside from allowing VB to
assign variables their default values, variables cannot be initialized at the same time they
are declared. In VB.NET, variables can be assigned an initial value when they are
declared.

VB 6 allowes you to declare fixed-length strings; they are not supported, however, in
VB.NET.

VB 6 allows you to define the lower bound of an array when it is initialized. In VB.NET, all
arrays have a lower bound of 0. Hence, the VB 6 syntax:

Static array(1 To 20) As String

is not supported in VB.NET.

In VB 6, arrays are either fixed length or dynamic; in VB.NET, all arrays are dynamic.

In VB 6, it is possible to define a procedure or a function as Static, meaning that all local
variables defined in that routine are static. In VB.NET, the use of the Static keyword with
the Function or Sub statements is not supported.

See Also

Dim Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stop Statement

Syntax

Stop

Description

Suspends program execution

Rules at a Glance

There is no limit to the number and position of Stop statements within procedures.

The Stop statement acts like a breakpoint — placing the program in break mode and
highlighting the current line in the development environment — allowing you to step
through the code line by line.

Programming Tips and Gotchas

Stop is intended primarily for use in the design-time environment, where it suspends
program execution without terminating it. In the runtime environment, however, Stop will
cause the debugger to be invoked.

Unlike the End statement, Stop does not explicitly close any open files or clear any
variables, except in a compiled executable.

See Also

End... Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Str Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Str(number)

number (required; Numeric)

Any valid numeric expression or expression capable of conversion to a number

Return Value

A String representation of number

Description

Converts number from a numeric to a string

Rules at a Glance

If number cannot be converted to a string, an InvalidCastException error occurs. To
prevent this, you can check the value of number by passing it to the IsNumeric function
before calling Str.

If number is not a numeric value or is not capable of conversion to a number (so that it can
in turn be converted to a string), an InvalidCastException exception occurs.

If the return value is positive, the Str function always includes a leading space in the
returned string for the sign of number.

Programming Tips and Gotchas

Use the LTrim function to remove the leading space that the Str function adds to the start of
the returned string.

Both the CStr and Format functions have now superceded the Str function. The CStr
function does not add a leading space for the sign of a positive number. Both the CStr and
the Format functions are internationally aware, able to recognize decimal delimiters other
than the period (.).

See Also

CStr Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrComp Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrComp(string1, string2[, compare])

string1 (required; String)

Any string expression

string2 (required; String)

Any string expression

compare (optional; CompareMethod constant)

Either CompareMethod.Binary or CompareMethod.Text

Return Value

Integer

Description

Determines whether two strings are equal and, if not, which of two strings has the greater value

Rules at a Glance

The compare argument is one of CompareMethod.Binary or CompareMethod.Text. If
no comparison is specified, VB uses the value of Option Compare.

The following table describes the possible return values from the StrComp function:

Scenario Return value
string1 < string2 -1
string1 = string2 0
string1 > string2 1
string1 or string2 is Null Null

Programming Tips and Gotchas

Using the comparison operators <, <=, >, and >= to compare strings performs a character-
by-character binary comparison.

The StrComp function can provide a significant performance improvement (in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The StrComp function can provide a significant performance improvement (in the
neighborhood of 30% to 70%) over the comparison operators.

See Also

StrConv Function, StrDup Function, StrReverse Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrConv Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrConv(str, conversion[, localeID])

str (required; String)

The string expression to convert

conversion (required; Constant of the VbStrConv enumeration)

One of the constants listed in Section

localeID (optional; Integer)

The locale identifier to use for the conversion

Return Value

A String converted according to conversion

Description

Performs special conversions on a string

Rules at a Glance

The following intrinsic conversion constants specify the type of conversion to perform:

Constant Converts...
VbStrConv.UpperCase The entire string to uppercase.

VbStrConv.LowerCase The entire string to lowercase.

VbStrConv.ProperCase The first letter of every word in str to an uppercase
character.

VbStrConv.Wide Narrow (single-byte) characters in str to wide (double-
byte) characters.

VbStrConv.Narrow Wide (double-byte) characters in str to narrow (single-
byte) characters.

VbStrConv.Katakana Hiragana characters in str to Katakana characters.

VbStrConv.Hiragana Katakana characters in str to Hiragana characters.

VbStrConv.LinguisticCasing Uses linguistic rules for casing. Can be used only with
UpperCase and LowerCase.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VbStrConv.None Performs no conversion on str.

VbStrConv.SimplifiedChinese Traditional Chinese characters in str to Simplified
Chinese.

VbStrConv.TraditionalChinese Simplified Chinese characters in str to Traditional
Chinese.

You can combine some of these constants by adding them together or using a logical OR.
For example:

VbStrConv.UpperCase + VbStrConv.Wide

The only restriction is that the constants must be mutually exclusive. For example,
specifying the value:

VbStrConv.UpperCase Or VbStrConv.ProperCase ' Error

produces an error.

VbStrConv.Katakana and VbStrConv.Hiragana only apply to locales in Japanese.
Use of these constants on systems using other locales generates runtime error 5, "Invalid
procedure call or argument."

VbStrConv.Wide and VbStrConv.Narrow only apply to locales in the Far East. Use of
these constants on systems using other locales will generate a runtime error.

When determining the start of a new word to convert to proper case, StrConv recognizes
the following characters as word separators:

Null — Chr$(0)

Horizontal Tab — Chr$(9)

Line-feed — Chr$(10)

Vertical Tab — Chr$(11)

Form Feed — Chr$(12)

Carriage Return — Chr$(13)

Space — Chr$(32)

Programming Tips and Gotchas

If you convert to proper case, StrConv converts the first letter of each word to uppercase
regardless of whether that word is significant. Hence, "this is the time" becomes "This Is The
Time," even though "the" ordinarily would not be capitalized.

VB.NET/VB 6 Differences

Two conversion values supported by VB 6, VbUnicode and VbFromUnicode, have no
equivalent in the VbStrConv enumeration. As a result, the function can no longer be used to
convert ASCII to Unicode or Unicode to ASCII.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrComp Function, StrDup Function, StrReverse Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrDup Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrDup(number,character)

number (required; Integer)

The number of times to duplicate the first character in string

character (required; String, Char, or Object containing a String or Char)

The String or Char whose first character is to be duplicated

Return Value

A String containing the character duplicated the specified number of times

Description

Returns a string that consists of the first character of character duplicated number times

Example

The line:

MsgBox(StrDup(Number:=5, Character:="ABC"))

displays "AAAAA".

VB.NET/VB 6 Differences

The StrDup function is new to VB.NET. It appears in part to be a replacement for the VB 6 String
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrReverse Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrReverse(expression)

expression (required; String)

The string whose characters are to be reversed

Return Value

String

Description

Returns a string that is the reverse of the string passed to it. For example, if the string and is
passed to it as an argument, StrReverse returns the string dna.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structure...End Structure Statement

Syntax

accessmodifier Structure StructureName

 [Implements interfacenames]

 variable declarations

 procedure declarations

End Structure

accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, Friend, Protected,
Protected Friend. For more information, see Section 4.7 in Chapter 4.

Implements interfacenames (optional)

Indicates that the structure implements the members of one or more interfaces

Description

Used to declare user-defined types. Structures are similar to classes, but they are value types
rather than reference types.

Rules at a Glance

The members of a structure can be variables, properties, methods, or events. Note,
however, that each member must be declared with an access modifier: Public (or Dim),
Private, or Friend.

You cannot assign a structure member an initial value at the same time as you declare it.
As a result, the following Structure construct is illegal:

Structure Point

 Public x As Integer = 0 ' Illegal

 Public y As Integer = 0 ' Illegal

End Structure

Structure members can be other structures or objects.

If a structure member is an array, it cannot be explicitly dimensioned.

Structures can be passed as arguments to functions or as the return type of a function.

Although structures are similar to classes, the following class features are not supported in
structures:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors.

Member declarations cannot include initializers, nor can they use the As New syntax
or specify an initial array size.

Example

The simplest and most common use of structures is to encapsulate related variables. For
instance, we might define a structure as follows:

Structure strPerson

 Public Name As String

 Public Address As String

 Public City As String

 Public State As String

 Public Zip As String

 Public Age As Short

End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Programming Tips and Gotchas

Related items of information are often stored in multiple arrays (or in a multidimensional
array). However, it is often preferable to store related data in a single array of structures.

The Structure statement is often used to define a data structure capable of retrieving,
storing, and saving fixed-length records. However, this is complicated by the absence of
support for explicitly declared fixed-length strings in VB.NET. One solution is to use the
<vbFixedString(length)> attribute, where length is the fixed length of the string,
when defining a member of type String. This instructs the VB.NET compiler to enforce a
particular string length for the structure. For example:

Structure Person

 <vbFixedString(10)> Public FName As String

 <vbFixedString(2)> Public MName As String

 <vbFixedString(10)> Public LName As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <vbFixedString(10)> Public LName As String

 Public Age As Short

End Structure

VB.NET/VB 6 Differences

The Structure...End Structure construct is new to VB.NET. It replaces the
Type...End Type construct in VB 6.

VB 6 user-defined types are different than VB.NET structures. A VB 6 user-defined type is
simply a composite data type that combines multiple data types; it allows the user-defined
type to be treated as a contiguous, word- or double-word aligned block of memory. A
VB.NET structure is in some sense a hybrid object that combines data types and methods;
ordinarily, no assumptions should be made about its layout in memory.

In VB 6, the declaration of user-defined type members did not permit an access modifier. In
VB.NET, it is required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub Statement

Syntax

[ClassBehavior] [AccessModifier] Sub name [(arglist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub

ClassBehavior (optional; Keyword)

One of the keywords shown in the following table:

Keyword Description

Overloads Indicates that more than one declaration of this subroutine exists (with
different argument signatures).

Overrides For derived classes, indicates that the subroutine overrides the subroutine
by the same name (and argument signature) in the base class.

Overridable Indicates that the subroutine can be overridden in a derived class.

NotOverridable Indicates that the subroutine cannot be overridden in a derived class.

MustOverride Indicates that the subroutine must be overridden in a derived class.

Shadows In a derived class definition, indicates that calls to derived class members
that are made through a base class ignore the shadowed implementation.

Shared Callable without creating an object of the class. It is, in this strange sense,
shared by all objects of the class. These are also called static subroutines.

AccessModifier (optional)

The possible values of AccessModifier are Public, Private, Friend, Protected,
or Protected Friend. The following table describes the effects of the various access
modifiers. Note that "direct access" refers to accessing the member without any
qualification, as in:

classvariable = 100

and "class/object access" refers to accessing the member through qualification, either with
the class name or the name of an object of that class. For more information, see Section
4.7 in Chapter 4.

 Direct access scope Class/object access scope
Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protected Friend All derived classes Declaring project

Public All derived classes All projects

name (required; String literal)

The name of the Sub procedure.

arglist (optional; any)

A comma-delimited list of variables to be passed to the sub procedure as arguments from
the calling procedure.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] _

 [As type] [= defaultvalue]

Optional (optional; Keyword)

An optional argument is one that need not be supplied when calling the function.
However, all arguments following an optional one must also be optional. A
ParamArray argument cannot be optional.

ByVal (optional; Keyword)

The argument is passed by value; that is, the local copy of the variable is assigned
the value of the argument. ByVal is the default method of passing variables.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference
to the argument being passed. All changes made to the local variable will be also
reflected in the calling argument.

ParamArray (optional; Keyword)

Indicates that the argument is an optional array containing an arbitrary number of
elements. It can only be used as the last element of the argument list, and cannot be
modified by either the ByRef or Optional keywords. If Option Strict is on, the
array type must also be specified.

varname (required; String literal)

The name of the local variable containing either the reference or value of the
argument.

type (optional; Keyword)

The data type of the argument. It can be Boolean, Byte, Char, Date, Decimal,
Double, Integer, Long, Object, Short, Single, String, a user- defined type, or an
object type.

defaultvalue (optional; any)

For optional arguments, you must specify a default value.

statements (optional)

Program code to be executed within the procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

Defines a subroutine

Rules at a Glance

Subroutines cannot be nested; that is, you cannot define one subroutine inside another
subroutine. (This applies to all procedures.)

If you do not include one of the accessmodifier keywords, a subroutine will be Public
by default.

Any number of Exit Sub statements can be placed within the subroutine. Execution will
continue with the line of code immediately following the call to the subroutine.

If you specify an optional parameter in your subroutine declaration, you must also provide a
default value for that parameter. For example:

Private Sub ShowMessage(Optional sMsg _

 As String = "Not given")

A subroutine is called by using its name and enclosing any arguments in parentheses. For
example, a routine named SomeRoutine might be called as follows:

x = 12

y = 12

SomeRoutine(x, y)

Note that because it does not return a value, a subroutine cannot be assigned to a variable.
For example, the following is illegal:

z = SomeRoutine(x, y)

Programming Tips and Gotchas

There is often confusion between using the ByRef and ByVal methods of assigning
arguments to the Sub procedure. ByRef assigns the reference of the variable in the calling
procedure to the variable in the Sub procedure; that is, it passes a pointer containing the
address in memory of the variable in the calling procedure. As a result, any changes made
to the variable from within the Sub procedure are in reality made to the variable in the
calling procedure. On the other hand, ByVal assigns the value of the variable in the calling
procedure to the variable in the Sub procedure; that is, it makes a separate copy of the
variable in a separate memory location. Changes made to the variable in the Sub
procedure have no effect on the variable in the calling procedure. In general, ByRef
arguments within class modules take longer to handle, since marshaling back and forth
between Sub procedure and calling module must take place. So unless you explicitly need
to modify a variable's value within a Sub procedure, it's best to pass parameters by value.

The names of procedure parameters become the procedure's named arguments. Because
of this, it is best to use meaningful names for parameters, and to avoid the use of
Hungarian notation.

VB.NET/VB 6 Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you do not specify whether an individual element in arglist is passed ByVal or ByRef,
it is passed by reference in VB 6. In VB.NET, it is passed by value.

If a parameter array is used in VB 6, it is an array of variants. In VB.NET, since the Variant
is no longer supported, it must be an array of objects or a strongly typed array.

In VB 6, a Sub procedure was called either by using the Call statement and including
procedure arguments in parentheses or by using the name of the procedure and including
arguments without parentheses. VB.NET features a standard calling syntax in which
arguments are always enclosed in parentheses.

See Also

Function Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Switch Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Switch(expr-1, value-1[, expr-2, value-2 ... [, _

 expr-n,value-n]])

expr (required; Object)

A number of expressions to be evaluated

value (required; Object)

An expression or value to return if the associated expression evaluates to True

Return Value

An Object value or expression

Description

Evaluates a list of expressions and, on finding the first expression to evaluate to True, returns an
associated value or expression

Rules at a Glance

A minimum of two expression/value pairs is required; additional pairs are optional.

Expressions are evaluated from left to right.

If none of the expressions is True, the Switch function returns Nothing.

If multiple expressions are True, Switch returns the value that corresponds to the first
True expression.

value can be a constant, variable, or expression.

Example

The GetTextColor function uses the Switch function to return an RGB color value that depends on
the sign of the integer passed to it as a parameter. To access the Color structure, it imports the
System.Drawing namespace of the Base Class Library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function GetTextColor(lValue As Integer) As Integer

Dim fColor As New Color

Dim iColor As Integer

fColor = Switch(lValue > 0, Color.Blue, _

 lValue = 0, Color.Black, _

 lValue < 0, Color.Red)

' Convert color name to RGB color and strip out

' high order byte of high-order word

iColor = fColor.ToArgb and &H00FFFFFF

GetTextColor = iColor

End Function

Programming Tips and Gotchas

The Switch function can prove to be an efficient alternative to If...Then... Else statements,
but it can't be used in situations where multiple lines of code are required to be executed on
finding the first True expression.

Programming Tips and Gotchas

Switch does not use short-circuiting. That is, even though it returns only the first True expression,
it evaluates all expressions. As a result, Switch will generate a runtime error if any of these
expressions are invalid.

See Also

Choose Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYD Function

Class

Microsoft.VisualBasic.Financial

Syntax

SYD(cost, salvage, life, period)

cost (required; Double)

The initial cost of the asset

salvage (required; Double)

The value of the asset at the end of its useful life

life (required; Double)

The length of the useful life of the asset

period (required; Double)

The period whose depreciation is to be calculated

Return Value

A Double giving the sum-of-years depreciation of an asset for a given period

Description

Computes the sum-of-years' digits depreciation of an asset for a specified period. The sum-of-
years' digits method allocates a larger amount of the depreciation in the earlier years of the asset.

Rules at a Glance

life and period must be expressed in the same time unit. For example, if life
represents the life of the asset in years, period must be a particular year for which the
depreciation amount is to be computed.

All arguments must be positive numeric values.

To calculate the depreciation for a given period, SYD uses the formula:

(Cost-Salvage)*((Life-Period + 1)/(Life*(Life + 1)/2))

See Also

DDB Function, SLN Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SyncLock Statement

Syntax

SyncLock expression

...[code]

End SyncLock

expression (required; any reference type (class, module, interface, array, or delegate))

An expression yielding a single result that can be used to determine the accessibility of
code

code (optional)

The code statements to which access is synchronized and that will be executed
sequentially

Description

Prevents multiple threads of execution in the same process from accessing shared data or
resources at the same time

Rules at a Glance

SyncLock blocks a thread's access only if that thread belongs to the same object instance.

Programming Tips and Gotchas

The SyncLock statement wraps a call to the BCL's System.Threading.Monitor. Enter
method.

The BCL includes a number of other synchronization mechanisms, all of which are located
in the System.Threading namespace.

VB.NET/VB 6 Differences

The SyncLock statement is new to VB.NET. VB 6 provided the developer with no direct means of
controlling threads of execution in applications or components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SystemTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax

SystemTypeName(vbname)

vbname (required; String)

The name of a VB.NET data type

Return Value

A String indicating the name of a CTS data type

Description

Returns the fully qualified type name of the Common Type System (CTS) data type that
corresponds to a particular Visual Basic data type

Rules at a Glance

vbname must be the name of a valid VB.NET data type, such as Boolean, Byte, Char,
Date. Decimal, Double, Integer, Long, Object, Short, Single, or String.

If vbname is not a valid VB.NET data type, the function returns Nothing.

If vbname does not directly correspond to a CTS data type, the function returns Nothing.
For example, user-defined types created with the Structure construct and classes
created with the Class construct both return Nothing if their data type names are passed
to the function.

Example

Public Structure Point

 Dim x As Integer

 Dim y As Integer

End Structure

Public Class CEmployee

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Module modMain

Public Sub Main

' Returns System.Int32

Dim i As Integer = 100

Console.WriteLine("Type of i: " & SystemTypeName(TypeName(i)))

' Returns Nothing

Dim o As Object

Console.WriteLine("Type of o: " & SystemTypeName(TypeName(o)))

' Returns Nothing

Dim oEmp As New CEmployee

Console.WriteLIne("Type of oEmp: " & SystemTypeName(TypeName(oEmp)))

' Returns Nothing

Dim uPt As Point

Console.Writeline("Type of uPt: " & SystemTypeName(TypeName(uPt)))

' Returns System.String

Dim sName As String = "This is a string."

Console.WriteLine("Type of sName: " & SystemTypeName(TypeName(sName)))

End Sub

End Module

Programming Tips and Gotchas

To determine the CTS data type of a particular variable, pass the variable as an argument
to the TypeName function, and pass its return value as an argument to the
SystemTypeName function. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strType = SystemTypeName(TypeName(myVar))

The existence of the SystemTypeName function clearly indicates that VB.NET data types
are wrappers for CTS data types.

VB.NET/VB 6 Differences

The SystemTypeName function is new to VB.NET.

See Also

TypeName Function, VbTypeName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tab Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Tab[(column)]

column (optional; Short)

A column number to which the insertion point will move before displaying or printing the
next expression

Return Value

A TabInfo structure

Description

Moves the text-insertion point to a given column or to the start of the next print zone

Rules at a Glance

If the column argument is omitted, the text-insertion point will be moved to the beginning of
the next print zone.

The value of column determines the behavior of the insertion point:

Value of
column Position of insertion point

Current
column >
column

Moves one line down to the column column.

column >
Output
Width

Uses the formula column Mod width. If the result is less than the current insertion
point, the insertion point will move down one line; otherwise, the insertion point will
remain on the same line.

< 1 Column 1

The left hand column is always 1.

When expressions are output to files using the Print or PrintLine statement, the width
of the output is determined by the Width statement.

When output surface is divided into columns, the width of each column is the average width
of all characters in the current point size of the current font. This means that the number of
columns for tabulation purposes does not necessarily relate to the number of characters
that can be printed across the width of the output surface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The Tab function without a column argument is useful when outputting data to a file using the
Print or PrintLine statement — especially in locales where the comma would be recognized
as a decimal separator.

See Also

Spc Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tan Function

Class

System.Math

Syntax

Tan(a)

a (required; Double)

An angle in radians

Return Value

A Double containing the tangent of an angle

Description

Returns the ratio of two sides of a right angle triangle

Rules at a Glance

The returned ratio is derived by dividing the length of the side opposite the angle by the
length of the side adjacent to the angle.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can convert degrees to radians using the following formula:

radians = degrees * (pi/180)

You can convert radians to degrees using the following formula:

degrees = radians * (180/pi)

See Also

Cos Function, Sin Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tanh Function

Class

System.Math

Syntax

Math.Tanh(number)

number (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic tangent of the angle

Description

Returns the hyperbolic tangent of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

Tanh is new to the .NET Framework.

See Also

Cosh Function, Sinh Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ThreadStatic Attribute

Class

System.ThreadStaticAttribute

Valid On

Field

Description

Specifies that the value of a static field is not shared across threads (that is, each thread in the
application has its own value). In the absence of the <ThreadStatic> attribute, a static field is
shared across threads.

Constructor

New()

Properties

None

Example

The example illustrates the use of the <ThreadStatic> attribute by creating a second thread
and having both threads increment a static field. With the <ThreadStatic> attribute, the
variable's value is maintained on a per thread basis. If you remove the <ThreadStatic>
attribute and recompile the source, you would find that it is maintained on a per application basis.

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Threading

Public Class CMain

 <ThreadStatic> Private Shared lCount As Integer

 Public Shared Sub Main

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Shared Sub Main

 Dim oThread As New Thread(AddressOf Thread2Proc)

 oThread.Start

 Console.WriteLine("First call to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("Second call to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("Third call to CallCount")

 CallCount()

 End Sub

 Private Shared Sub CallCount()

 lCount += 1

 Console.WriteLine(lCount)

 End Sub

 Private Shared Sub DelayLoop(millisecs As Integer)

 Dim oThread As Thread

 oThread = Thread.CurrentThread

 oThread.Sleep(millisecs)

 End Sub

 Private Shared Sub Thread2Proc

 Console.WriteLine("2nd thread call 1 to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("2nd thread call 2 to CallCount")

 CallCount()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("2nd thread call 3 to CallCount")

 CallCount()

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Throw Statement

Syntax

Throw exception

exception (required; an Exception object or an object derived from Exception)

An Exception object representing the exception being thrown

Description

Throws an exception that can be handled using either structured exception handling (a Try . . .
Catch block) or unstructured exception handling (the On Error statement)

Example

Try

 ' Ask for a positive number

 Dim DataCt As Integer = CInt(InputBox("Enter number of items."))

 ' Check for error

 If DataCt <= 0 Then

 ' Throw an exception

 Throw New Exception("Must enter a positive number.")
 End If

Catch ex As Exception

 MsgBox(ex.Message)

End Try

VB.NET/VB 6 Differences

The Throw statement is new to VB.NET.

See Also

Exception Class, Try...Catch...Finally Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TimeOfDay Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeOfDay

Return Value

Date value giving the current system time

Description

Sets or returns the current system time

Example

The code:

TimeOfDay() = #9:05:13 AM#

sets the system time, and the code:

MsgBox(TimeOfDay())

displays the current system time.

Rules at a Glance

The TimeOfDay property returns the time in the time format defined by the system's regional
settings.

Programming Tips and Gotchas

The TimeOfDay property includes an incorrect date, 01/01/0001, along with the time. It can
be eliminated with the Format or FormatDateTime function as follows:

Format(TimeOfDay(), "Long Time")

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

When setting the TimeOfDay property, any date component is ignored.

See Also

Now Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Timer Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Timer

Return Value

Double representing the number of seconds that have elapsed since midnight

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

Timer is classified as a function in VB 6 and as a read-only property in VB.NET.

You can use the Timer property as an easy method of passing a seed number to the
Randomize procedure, as follows:

Randomize Timer()

The Timer property is ideal for measuring the time taken to execute a procedure or
program statement, as the following snippet shows:

Dim sStartTime As Single

Dim i As Integer

sStartTime = Timer()

 For i = 1 To 100

 Console.WriteLine("Hello")

 Next i

MsgBox("Time Taken = " & Timer() - sStartTime & " Seconds")

VB.NET/VB 6 Differences

While the Timer property returns a Double in VB.NET, the VB 6 Timer function returns a Single.

See Also

GetTimer Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TimeSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeSerial(hour, minute, second)

hour (required; Integer)

A number in the range 0 to 23

minute (required; Integer)

Any valid integer

second (required; Integer)

Any valid integer

Return Value

A Date representing the time specified by the arguments to the function

Description

Constructs a valid time given a number of hours, minutes, and seconds

Rules at a Glance

Any of the arguments can be specified as relative values or expressions.

The hour argument requires a 24-hour clock format; however, the returned time is
determined by the system's regional settings.

If any value is greater than the normal range for the time unit to which it relates, the next
higher time unit is increased accordingly. For example, a second argument of 125 will be
evaluated as 2 minutes, 5 seconds.

If any value is less than zero, the next higher time unit is decreased accordingly. For
example, TimeSerial(2,-1,30) returns 01:59:30.

Programming Tips and Gotchas

Because TimeSerial handles time units outside of their normal limits, it can be used for time
calculations. However, because the DateAdd function is more flexible and is internationally aware,
it should be used instead for this purpose.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TimeOfDay Property, TimeString Property, TimeValue Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TimeString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeString()

Return Value

String representing the current system time

Description

Returns or sets the current system time

Rules at a Glance

The TimeString property returns the time in the format determined by the system's regional
settings.

You can use any time format recognized by IsDate when setting the time using the
TimeString property.

Programming Tips and Gotchas

The string returned by the TimeString property also includes an invalid date, 01/01/0001. It
can be eliminated with the Format or FormatDateTime function as follows:

Format(TimeOfDay(), "Long Time")

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

To get or set the current system date as a String, use the DateString property.

To access the current system time as a Date, use the TimeOfDay property.

VB.NET/VB 6 Differences

The TimeString property is new to VB.NET.

See Also

TimeOfDay Property, TimeSerial Function, TimeValue Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TimeValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeValue(stringtime)

stringtime (required; String)

Any valid string representation of a time

Return Value

A Date containing the time specified by the string argument, with the date set to January 1 of the
year 1

Description

Converts a string representation of a time to a Date data type

Rules at a Glance

If stringtime is invalid, a runtime error is generated.

If stringtime is Nothing, TimeValue generates an error.

stringtime can be in any time format recognized by the IsDate function. Both 12- and
24-hour clock formats are valid.

The Date value returned by time is formatted based on the system's regional settings.

Programming Tips and Gotchas

A time literal can also be assigned to a Date variable by surrounding the date with hash
characters (#), as the following snippet demonstrates:

Dim dMyTime As Date

dMyTime = #12:30:00 AM#

The CDate function can also cast a time expression contained within a string as a Date
variable, with the additional advantage of being internationally aware.

The string returned by the TimeString property also includes an invalid date, 01/01/0001. It
can be eliminated with the Format or FormatDateTime function as follows:

Format(TimeOfDay(), "Long Time")

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

VB/NET/VB 6 Differences

In VB 6, TimeValue returns the time only. In VB.NET, the function also returns an invalid date,
01/01/0001, along with the time.

See Also

TimeOfDay Property, TimeSerial Function, TimeString Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Today Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Today()

Description

Sets or retrieves the current system date

Rules at a Glance

If you are setting the system date with numbers, as opposed to spelling the month, the
sequence of Day, Month, and Year must be in the same sequence as the computer's
regional settings.

If you are running Microsoft Windows 95, 98, or 2000, the earliest system date you can set
is January 1, 1980; the latest system date you can set is December 31, 2099.

The date is returned in the short date format defined by the system's regional settings.

Example

Today() = "January 1, 1998"

Programming Tips and Gotchas

It is good programming practice to synchronize the dates across the machines in a
multiuser environment, most commonly from the date on a server. This can be done at the
operating-system level within the logon script or at application level using the Today
property and TimeOfDay function.

It is risky to take a date format for granted. Wherever possible, use the Format function to
explicitly set the date format that you require, prior to using a date value.

Modern Windows systems are more reliant on system date than ever before. A single
machine can have literally hundreds of different applications installed, many of which will
use dates in one way or another. You should respect the machine on which your
application is running, and only in exceptional circumstances should you change the
system date programmatically.

See Also

Now Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trim Function

Class

Microsoft.VisualBasic.Strings

Syntax

Trim(str)

str (required; String)

Any string expression

Return Value

String

Description

Removes both leading and trailing spaces from a given string

Rules at a Glance

If string is Nothing, the Trim function returns Nothing.

Programming Tips and Gotchas

Trim is equivalent to calling both the RTrim and LTrim functions.

VB.NET/VB 6 Differences

In VB 6, the function's single named argument is string. In VB.NET, its single named argument
is str.

See Also

LTrim Function, RTrim Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try...Catch...Finally Statement

Syntax

Try

 tryStatements

[Catch1 [exception [As type]] [When expression]

 catchStatements1

[Exit Try]

Catch2 [exception [As type]] [When expression]

 catchStatements2

[Exit Try]

. . .

Catchn [exception [As type]] [When expression]

 catchStatementsn]

[Exit Try]

[Finally

 finallyStatements]

End Try

exception (optional; System.Exception or a derived type)

The exception to catch. If exception is omitted or if it is System.Exception, all exceptions
will be caught. However, if exception is omitted, no information about the exception will
be accessible within the Catch block.

type (optional)

The data type of the exception to be handled by the Catch block. Its value can be
System.Exception or any derived type. If omitted, its value defaults to System.Exception,
and all exceptions will be handled.

expression (optional; Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression (optional; Boolean)

A logical expression that defines a condition under which the error is to be handled by the
Catch block.

Description

Used to handle runtime errors

Rules at a Glance

The tryStatements, which are required, constitute the Try block and are the statements
that VB monitors for errors.

The Catchblocks, of which there can be more than one, contain code that is executed in
response to VB "catching" a particular type of error within the Try block. Thus, the Catch
blocks consist of the error-handlers for the Try block.

The phrases exception [As type] and [When expression] are referred to as filters in
the VB.NET documentation. In the former case, exception is either a variable of type
Exception, which is the base class that "catches" all exceptions, or a variable of one of
Exception's derived classes. The When filter is typically used with user-defined errors. (See
the upcoming example.)

The Exit Try statement is used to break out of any portion of a
Try...Catch...Finally block.

The optional finallyStatements code block is executed regardless of whether an error
occurs (or is caught), unless an Exit Try statement is executed.

Multiple Catch statements can be used. However, only the first Catch statement to be
true is executed. This means that multiple Catch statements should be ordered from most
specific to most general, with a Catch block handling errors of type System.Exception
occurring last.

Example

The code in the following Try block will raise an error if the user does not enter a number. The
Catch block will catch this error.

Try

 Dim sInput As String

 sInput = Inputbox("Enter a number.")

 If Not IsNumeric(sInput) Then

 Err().Raise(1)

 End If

Catch When Err.Number = 1

 Msgbox("Error1")

End Try

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with unstructured error handling, VB may pass an error up the call stack when using structured
error handling. This happens in the following situations:

If an error occurs within a Try block that is not handled by an existing Catch block.

If an error occurs outside any Try block (provided, of course, that no On Error-style error
handlers are active).

VB.NET/VB 6 Differences

Structured exception handling using the Try...Catch...Finally construct is new to VB.NET.
It replaces unstructured error handling using the On Error statement, which continues to be
supported in VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TypeName Function

Class

Microsoft.VisualBasic.Information

Syntax

TypeName(varname)

varname (required; String literal)

Name of a variable

Return Value

String

Description

Returns a string giving data type information about varname. The possible return values are:

String returned Variable contents
Boolean 8-bit True or False value type

Byte 8-bit binary value type

Char 16-bit character value type

Date 64-bit date and time value type

DBNull Reference type indicating missing or nonexistent data

Decimal 96-bit fixed point numeric value type

Double 64-bit floating point numeric value type

Error Error object

Integer 32-bit integer value type

Long 64-bit integer value type

Nothing Object variable with no object currently assigned to it, uninitialized string, or
undimensioned array

Object Reference type pointing to an unspecialized object

Short 16-bit integer value type

Single 32-bit floating point numeric value type

String Reference type pointing to a string of 16-bit characters

<objectclass> Reference type pointing to a specialized object created from class
<objectclass>

<structure> A variable created from a structure or user-defined type named structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<typename>() Dimensioned array

Rules at a Glance

If varname is declared as type Object, it returns the data subtype that has been assigned
to it.

varname returns the data type name of all value types. It returns Nothing for uninitialized
reference types and the data type name for all initialized reference types.

If varname is an array that has been initialized or dimensioned, the returned string will be
the entry in the previous table corresponding to the underlying data type of the array, but
with empty parentheses appended to the end of the name. For example, if varname points
to an array of integers, TypeName returns Integer().

When TypeName returns the name of a reference type, such as a class, it only returns the
simple name, not the qualified name. For example, if varname points to an object of class
System.Drawing.Printing.PaperSource, TypeName returns PaperSource.

If varname is of type Object, TypeName returns the data subtype stored to that object.

Example

Dim obj As Object

obj = New CEmployee()

MsgBox(TypeName(obj)) ' Displays: CEmployee

obj = 100

MsgBox(TypeName(obj)) ' Displays: Integer

obj = Nothing

MsgBox(TypeName(obj)) ' Displays: Nothing

Programming Tips and Gotchas

The TypeName function also works directly with members of the Foundation Class Library that
aren't wrapped by Visual Basic. It reports the following data types:

String returned Variable contents
UINT16 Unsigned 16-bit integer

UINT32 Unsigned 32-bit integer

UINT64 Unsigned 64-bit integer

SBYTE Signed byte

VB.NET/VB 6 Differences

In VB 6, the call to the TypeName function in the code fragment:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim strVar As String

Console.WriteLine(TypeName(strVar))

returns a String. In VB.NET, the TypeName function in an equivalent code fragment returns
Nothing. This is because in VB.NET, strings are reference types and reference types are
implemented as objects.

In VB 6, passing a user-defined type to the TypeName function generates a compile error.
In VB.NET, it returns the name of the user-defined type or structure.

In VB 6, passing an uninitialized array to the TypeName function returns the type name
plus parentheses. In VB.NET, it returns Nothing.

In VB 6, a variable whose type is not declared is reported as a Variant; in VB . NET, it is an
object.

See Also

VarType Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UBound Function

Class

Microsoft.VisualBasic.Information

Syntax

UBound(array[, rank])

array (required; any)

The name of the array

rank (optional; Integer)

A number specifying the dimension of the array

Return Value

Integer

Description

Indicates the upper limit of a specified coordinate of an array. The upper boundary is the largest
subscript you can use with that coordinate.

Rules at a Glance

To determine the upper limit of the first coordinate of an array, set rank to 1, set it to 2 for
the second coordinate, and so on.

If rank is not specified, 1 is assumed.

The function returns -1 if the array is uninitialized.

Programming Tips and Gotchas

Note that UBound returns the actual subscript of the upper bound of a particular array
dimension.

The number of valid indices for the ith coordinate is equal to UBound(array, i) + 1.

If array is an uninitialized array, passing it to the UBound function generates an
ArgumentNullException exception. To prevent this, you can declare the array as follows:

Dim arrValues(-1) As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

UCase(value)

value (required; String)

A valid string expression

Return Value

String

Description

Converts a string to uppercase

Rules at a Glance

UCase only affects lowercase alphabetical letters; all other characters within value remain
unaffected.

UCase returns Nothing if value is Nothing.

See Also

LCase Function, StrConv Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Unlock(filenumber[, record)

Unlock(filenumber[, fromrecord[, torecord]])

filenumber (required; Integer)

Any valid file number

record (required; Long)

The record or byte number at which to commence the lock

fromrecord (required; Long)

The first record or byte number to lock

torecord (required; Long)

The last record or byte number to lock

Description

Use the Unlock procedure in situations where more than one part of your program may need read
and write access to the same data file. The Unlock procedure removes a lock that the Lock
procedure placed on a section of the file or the whole file.

Rules at a Glance

Use the Unlock procedure only with the filenumber parameter to unlock the whole file.

The Unlock procedure unlocks an entire file opened in Input or Output (sequential) mode,
regardless of the record, fromrecord, or torecord arguments.

Records and bytes in a file are always numbered sequentially from 1 up.

To unlock a particular record, specify its record number as record, and only that record
will be unlocked.

To unlock a range of bytes (in a binary file) or of records (in a random file), indicate the
starting position as fromrecord and the ending position as torecord.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You must take care to remove all file locks using the Unlock procedure before either
closing a file or ending the application; otherwise, you can leave the file in an unstable
state. This means that, where appropriate, your error-handling routines must be made
aware of any locks you currently have in place so that they may be removed if necessary.

You use the Lock and Unlock procedures in pairs, and the argument lists of both
statements must match exactly.

VB.NET/VB 6 Differences

In VB 6, it is possible to omit the fromrecord argument and provide only the torecord
argument, in which case all records (in random mode) or bytes (in binary mode) from the
beginning of the file to torecord would be unlocked. In VB.NET, this syntax is not
allowed.

VB 6 allows you to precede the filenumber argument with the # symbol. In VB.NET, this
syntax is not permitted.

When specifying starting and ending records in VB 6, you use the To keyword to separate
them. In VB.NET, this syntax is not permitted; instead, you must use a comma to separate
the two arguments.

See Also

Lock Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Val Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Val(expression)

expression (required; String or Char)

Any string representation of a number

Return Value

A Double able to hold the number contained in expression

Description

Converts a string representation of a number into a Double

Rules at a Glance

The Val function starts reading the string with the leftmost character and stops at the first
character that it does not recognize as being part of a valid number. For example, the
statement:

iNumber = Val("1A1")

returns 1.

&O and &H (the octal and hexadecimal prefixes) are recognized by the Val function.

Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized
as numbers by the Val function.

The Val function only recognizes the period (.) as a decimal delimiter.

Prior to processing expression, Val removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

If you are developing an international application, you should use the more modern,
internationally aware CDbl function to convert strings to numbers, since CDbl can recognize all
decimal separators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ValDec Function

Class

Microsoft.VisualBasic.Conversion

Syntax

ValDec(expression)

expression (required; String or Char)

Any string representation of a number

Return Value

A Decimal able to hold the number contained in expression

Description

Converts a string representation of a number into a Decimal

Rules at a Glance

The ValDec function starts reading the string with the leftmost character and stops at the
first character that it does not recognize as being part of a valid number. For example, the
statement:

iNumber = ValDec("1A1")

returns 1.

&O and &H (the octal and hexadecimal prefixes) are recognized by the ValDec function.

Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized
as numbers by the ValDec function.

The ValDec function only recognizes the period (.) as a decimal delimiter.

Prior to processing expression, ValDec removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

If you are developing an international application, you should use the CDec function to convert
strings to numbers, since CDec can recognize all decimal separators.

VB.NET/VB 6 Differences

The ValDec function is new to VB.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VarType Function

Class

Microsoft.VisualBasic.Information

Syntax

VarType(varname)

varname (required; any)

The name of a variable

Return Value

A member of the VariantType enumeration indicating the variable type

Description

Determines the data type of a variable

Rules at a Glance

The possible values returned by the function include the following members of the
VariantType enumeration:

Constant Value Description
Array 8192 Array

Boolean 11 Boolean data type

Byte 17 Byte data type

Char 18 Char data type

Date 7 Date data type

Decimal 14 Decimal data type

Double 5 Double data type

Integer 3 Integer data type

Long 20 Long data type

Object 9 Object, uninitialized string, uninitialized array, object of a specific
type

Short 2 Short data type

Single 4 Single data type

String 8 String

UserDefinedType 36 A structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If varname is a dimensioned array, the VarType function returns VariantType.Array
(8192), plus the value of the array's data type. For example, an array of strings returns
8192 + 8 = 8200. You can test for an array with a code fragment such as the following:

If VarType(myVar) And VariantType.Array Then

You can extract the data type of the array with the following code fragment:

vartype(myVar) and &HFFFFDFFF

All object variables, whether late-bound or early-bound, return VariantType.Object.

Data types that are members of the base class library but are not wrapped by VB data
types (i.e., UINT16, UINT32 etc.) return VariantType.UserDefinedType.

VB.NET/VB 6 Differences

In VB 6, passing a user-defined type as an argument to the VarType function generated an
error. VB.NET allows you to pass a structure as an argument to the function.

In VB 6, the Vartype function indicates that the data type of an object is the data type of its
default property. In VB.NET, all objects, including objects (like Collection objects) that have
default properties, return VariantType. Object.

See Also

TypeName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBFixedArray Attribute

Class

Microsoft.VisualBasic.VBFixedArrayAttribute

Applies to

Field

Description

Defines a fixed array. It can be used in defining fixed arrays within structures, particularly
structures that are to be passed to Win32 API functions, and for defining fixed-length structures
used by VB file input and output functions.

Constructor

New(size1[, size2])

size1 (required; Integer)

The upper limit of the array's first dimension

size2 (optional; Integer)

The upper limit of the array's second dimension

Properties

Bounds (Array of Integer)

The upper bounds of a particular dimension of the array. The first dimension is represented
by VBFixedArrayAttribute.Bounds(0). The upper boundary of the array can be
retrieved by calling the UBound function.

Length (Integer)

The total number of elements in all dimensions of the array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBFixedString Attribute

Class

Microsoft.VisualBasic.VBFixedStringAttribute

Applies to

Field

Description

Defines a fixed-length string. It is the rough equivalent of the VB 6 declaration:

Dim s As String * length

It can be used to define fixed-length strings within structures, particularly structures that are to be
passed to Win32 API functions, as well as to define fixed length strings to be written to and read
from random access files.

Constructor

New(length)

length (Integer)

The length of the string

Properties

Length (Integer)

Read-only. The length of the string. Its value is set by the length parameter in the class
constructor.

Example

The example creates a random access file, which must contain fixed-length records, and uses the
<VBFixedString> attribute to create a fixed-length string of 10 characters. This ensures that all
records will be a uniform length. Without the <VBFixedString> attribute, the example an
IOException exception because of bad record length.

Option Strict Off

Imports Microsoft.VisualBasic

Imports System

Module modMain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structure Person

 <vbFixedString(10)> Public Name As String

 Public Age As Short

End Structure

Public Sub Main

Dim APerson As New Person()

Dim fr As Integer = FreeFile()

FileOpen(fr, ".\person.txt", OpenMode.Random, OpenAccess.ReadWrite, _

 OpenShare.Default, len(aperson))

APerson.Name = "John"

APerson.Age = 31

FilePut(fr, APerson, 1)

APerson.Name = "Jane"

APerson.Age = 27

FilePut(fr, APerson, 2)

FileGet(fr, APerson, 2)

Console.WriteLine(Trim(APerson.Name) & " is " & APerson.Age)

FileClose(fr)

End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VbTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax

VbTypeName(urtname)

urtname (required; String)

The name of a CTS datatype

Return Value

A String containing the name of a VB.NET datatype

Description

Returns the name of the VB.NET datatype that corresponds to a particular Common Type System
(CTS) datatype

Rules at a Glance

urtname must be the name of a valid CTS datatype, such as Int32, UInt32, String, or
DateTime.

If urtname is not a valid CTS datatype, the function returns Nothing.

If urtname is a valid CTS datatype that does not directly correspond to a VB.NET
datatype, the function returns Nothing.

Example

Public Sub Main

' Displays Short

Dim intNum As Int16 = 1234

Console.WriteLine(VbTypeName(intNum.GetType().ToString))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Console.WriteLine(VbTypeName(intNum.GetType().ToString))

' Displays ""

Dim uintNum As UInt16 = Convert.ToUInt16(1234)

Console.WriteLine(VbTypeName(uintNum.GetType().ToString))

' Displays Char

Dim chLetter As System.Char = Convert.ToChar("a")

Console.WriteLine(VbTypeName(chLetter.GetType().ToString))

' Displays ""

Dim sbytNum As SByte = Convert.ToSByte(-3)

Console.WriteLine(VbTypeName(sbytNum.GetType().ToString))

End Sub

Programming Tips and Gotchas

To determine the VB.NET datatype of a particular variable, call the variable's GetType
method to retrieve a Type object, then call the Type object's ToString method to retrieve its
datatype name. This string can then be passed to the VbTypeName function. For example:

strType = VbTypeName(myVar.GetType().ToString)

If passed the name of a structure defined with the Structure construct or an instance of a
class defined with the Class construct, the VbTypeName function returns Nothing.

The existence of the VbTypeName function clearly indicates that VB.NET datatypes are
wrappers for some CTS datatypes.

VB.NET/VB 6 Differences

The VbTypeName function is new to VB.NET.

See Also

SystemTypeName Function, TypeName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WebMethod Attribute

Class

System.Web.Services.WebMethodAttribute

Applies to

Method

Description

Marks a method within a web service as a web method callable from a web client. The method and the
class to which it belongs must be public and must be part of an ASP.NET application.

Constructors

New([[[[enableSession], transactionOption], cacheDuration], bufferResponse

enableSession (Boolean)

Indicates whether session state is enabled for the web method call.

transactionOption (System.EnterpriseServices.TransactionOption enumeration)

Indicates whether the web method supports transactions. Possible values are Disabled,
NotSupported, Supported, Required, and RequiresNew.

cacheDuration (Integer)

Indicates the number of seconds the response to the web method request should be stored in
the cache.

bufferResponse (Boolean)

Indicates whether the response to the web method request is buffered.

Properties

BufferResponse (Boolean)

Indicates whether the response to the web method request is buffered. Its default value is True

CacheDuration (Integer)

Defines the number of seconds the server caches the response to the web method request. Its
default value is 0; responses to web methods are not cached.

Description (String)

Provides a description for the web service that is displayed in the service description and web
service help page. Its default value is an empty string.

EnableSession (Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Read-only. Indicates whether session state is enabled for the web method call. Its default value
is False.

MessageName (String)

Identifies the public name by which the web method is invoked by clients. Since web methods do
not support overloading, the property provides a method for identifying overloaded methods that
share the same name. Its default value is the name of the web method

TransactionOption (System.EnterpriseServices.TransactionOption enumeration)

Read-only. Indicates whether the web method supports transactions. Possible values are
Disabled, NotSupported, Supported, Required, and RequiresNew. A web method must
participate as the root object of a transaction. Because of this, Supported and NotSupported
are both equivalent to NotSupported, and Required and RequiresNew are both equivalent
to RequiresNew. Its default value is Disabled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WebService Attribute

Class

System.Web.Services.WebServiceAttribute

Applies To

Class

Description

An optional element of a web service definition (the ASP.NET @ Webservice directive is required), the
<WebService> attribute can be used to assign the web service a namespace and description.

Constructor

New()

Properties

Description (String)

A textual description of the web service. The description is displayed in the Service Description page and
the Service help page.

Name (String)

The name to be assigned to the web service. Ordinarily, the web service name corresponds to the name
of the class However, the Name property of the <WebService> attribute is used instead of the class
name as the name of the web service.

Namespace (String)

The web service's namespace. During development, the namespace http://tempuri.org/ is used by
default. However, a unique namespace should be assigned to any production web service. Although the
namespace for a web service resembles a URL, it need not point to any valid Internet resource.

Example

The example uses an .asmx file with the following contents:

<%@ WebService Language="VB" Class="HelloWebService" Codebehind="Hello.asmx.vb" %>

It has the following codebehind file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Strict

Imports System.Web.Services

<WebService(Name:="Hello", _

 Description:="Displays a friendly greeting to the user.", _

 Namespace:="http://www.oreilly.com/VbNet")> _

Public Class HelloWebService

<WebMethod()> Public Function SayHello(Name As String) As String

 Return "Hello, " & Name

End Function

End Class

See Also

WebMethod Attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Weekday Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Weekday(datevalue, [dayofweek])

date (required; Date or valid date expression)

Any valid date expression

dayofweek (optional; Constant of FirstDayOfWeek enumeration)

A constant indicating the first day of the week

Return Value

Integer

Description

Determines the day of the week of a given date

Rules at a Glance

The default for dayofweek is FirstDayOfWeek.Sunday.

To determine the day of the week, think of the day specified by dayofweek as day 1, and
the value returned by the function as indicating the day relative to day 1. Then, for example,
if the return value of WeekDay is 2, this specifies the day following dayofweek. A return
value of 1 specifies dayofweek. A return value of 7 specifies the day before dayofweek.

The members of the FirstDayOfWeek enumeration are:

Constant Value Description
Sunday 1 Sunday

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 3 Wednesday

Thursday 4 Thursday

Friday 5 Friday

Saturday 6 Saturday

Sunday 7 Sunday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passing a value of 0 as the dayofweek argument uses the system's locale settings to
determine the first day of the week.

Example

Since the code:

Weekday(#3/26/2001#, FirstDayOfWeek.Sunday)

returns 2, the date 3/26/2001 is a Monday.

Programming Tips and Gotchas

If passing a date literal as datevalue, the Weekday function requires that all four digits of the
year be present.

VB.NET/VB 6 Differences

The names of the named parameters of the function have changed from date and
firstdayofweek in VB 6 to datevalue and dayofweek in VB.NET.

See Also

DatePart Function, Day Function, WeekdayName Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WeekdayName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

WeekdayName(Weekday, [abbreviate [, FirstDayOfWeekValue]])

Weekday (required; Long)

The ordinal number of the required weekday, from 1 to 7

abbreviate (optional; Boolean)

Specifies whether to return the full day name or an abbreviation

FirstDayOfWeekValue (optional; FirstDayOfWeek constant)

Member of the FirstDayOfWeek enum indicating the first day of the week

Return Value

A String

Description

Returns the name of the day

Rules at a Glance

Weekday must be a number between 1 and 7, or the function generates an
ArgumentException error.

The default value of abbreviate is False.

For a list of the members of the FirstDayOfWeek enumeration, see the Weekday Function
entry.

The default value of FirstDayOfWeekValue is FirstDayOfWeek.Monday.

Programming Tips and Gotchas

Since Weekday is an integer, to determine the name of the day of a particular date,
combine WeekDayName with a call to the WeekDay function, as the following code
fragment shows:

sDay = WeekDayName(Weekday(dDate, iFirstDay), _

 bFullName, iFirstDay)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bFullName, iFirstDay)

Note that the value of the FirstDayOfWeek argument must be the same in the calls to
both functions for WeekdayName to return an accurate result.

Unlike the Weekday function, the WeekdayName function behaves predictably. For
example, if you ask for the name of the first day of the week when the week starts on
Monday, the function returns Mon or Monday. If you ask for the fifth day of the week for a
week that starts on Sunday, the function returns Thu or Thursday.

See Also

Weekday Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While...End While Statement

Syntax

While condition

 [statements]

[Exit While]

 [statements]

End While

condition (required; Numeric or String)

An expression evaluating to True or False

statements (optional)

Program statements to execute while condition remains True

Exit While (optional; Keyword)

Exits the While loop

Description

Repeatedly executes program code while a given condition remains True

Rules at a Glance

A Null condition is evaluated as False.

If condition evaluates to True, the program code between the While and End While
statements is executed. After the End While statement is executed, control is passed back
up to the While statement where condition is evaluated again. When condition
evaluates to False, program execution skips to the first statement following the End
While statement.

You can nest While...End While loops within each other.

Programming Tips and Gotchas

The While...End While statement remains in Visual Basic for backward compatibility only. In
our opinion, it has been superceded by the much more flexible Do...Loop statement.

VB.NET/VB 6 Differences

In VB 6, the ending statement that accompanies the While construct is Wend; in VB.NET, it is
End While.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do...Loop Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With Statement

Syntax

With object

 [statements]

End With

object (required; Object)

A previously declared object variable or user-defined type

statements (optional)

Program code to execute against object

Description

This statement is used to execute a series of statements on an object without having to qualify
each statement with the object name.

Rules at a Glance

The single object referred to in the With statement remains the same throughout the code
contained within the With...End With block. Therefore, only properties and methods of
object can be used within the code block without explicitly referencing the object. All other
object references within the With...End With statement must start with a fully qualified
object reference.

With statements can be nested, as long as the inner With statement refers to a subobject
or a dependent object of the outer With statement.

A member of object is referenced within a With block by omitting the object name and
simply including a period and the member name.

Example

Public Structure Point

Dim x As Integer

 Dim y As Integer

End Structure

Public Sub Main

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Main

Dim udtPt As POINT

With udtPt

.x = 10

 .y = 100

End With

Console.Writeline(udtpt.x)

End Sub

Programming Tips and Gotchas

It is important that you do not include code within the With statement block that forces execution
to branch out of the block. Similarly, do not write code that forces program flow to jump into a
With block. Both the With and its associated End With statement must be executed, or you will
generate unpredictable results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WithEvents Keyword

Syntax

Dim|Private|Public WithEvents objVarName As objectType

objVarName (required; String)

The name of any object variable that refers to an object that exposes events

objectType (required; any object type other than the generic Object)

The ProgID of a referenced object

Description

The WithEvents keyword informs VB that the object being referenced exposes events for which
you intend to provide event handlers.

When you declare an object variable using WithEvents, an entry for the object variable is
placed in the code window's drop-down Object List, and a list of the events available to the object
variable is placed in the code window's drop-down Procedures List. You can then write code
event handlers for the object variable.

Rules at a Glance

An object-variable declaration using the WithEvents keyword can only be used in an
object or class module.

An object-variable declaration using the WithEvents keyword should only be placed in the
Declarations section of the object module.

Any ActiveX object or class module that exposes events can be used with the
WithEvents keyword. WithEvents is only valid when used to declare an object variable.

You cannot use WithEvents when declaring a generic Object type.

Unlike other variable declarations, the As keyword is mandatory.

There is no limit to the number of object variables that can refer to the same object using
the WithEvents keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

You cannot use the WithEvents keyword in a local variable declaration.

If objectType does not expose any events, the WithEvents statement generates a
compiler error.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example demonstrates how to trap and respond to the events within an ADO
recordset. An object variable is declared using the WithEvents keyword in the declarations
section of a form module. This allows you to write event-handling code for the ADO's built-in
events, in this case the FetchProgress event. (The FetchProgress event allows you to implement
a Progress Bar control that shows progress in populating the recordset.)

Private WithEvents oADo As ADODB.Recordset

Private Sub oADo_FetchProgress(ByVal Progress As Long, _

 ByVal MaxProgress As Long, _

 adStatus As ADODB.EventStatusEnum, _

 ByVal pRecordset As ADODB.Recordset) _

 Handles oADO.FetchProgress

 ProgressBar1.Max = MaxProgress

 ProgressBar1.Value = Progress

End Sub

Programming Tips and Gotchas

Placing the object-variable declaration that uses the WithEvents keyword in a procedure
does not add the object variable name to the module's Object List. In other words, the
events fired from the object would only have scope in the procedure and therefore cannot
be handled.

Even if you declare the object variable using the Public keyword, the events fired by the
object only have scope in the module in which the object variable has been declared.

Because you cannot use WithEvents to declare a generic Object type, WithEvents can
only be used with early-bound object references. In other words, objects must have been
added to the project using the References dialog box. Without this prior knowledge of the
object's interface, VB has no chance of knowing how to handle events from the object.

If the object you are referencing doesn't expose any public events, you will generate a
compile-time error, "This object does not raise Events."

VB.NET/VB 6 Differences

In VB 6, object variables in a code module couldn't be declared with WithEvents. In VB.NET,
this restriction has been lifted.

See Also

Dim Statement, Public Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax

Write(filenumber, output)

filenumber (required; Integer)

Any valid file number

output (required; Object (Any))

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file

Rules at a Glance

output can contain multiple expressions delimited with either a comma, a semicolon, or a
space.

output can also be an Object array containing values to be written to the file indicated by
filenumber.

The following table describes how the Write procedure handles certain types of data,
regardless of the locale, to allow files to be read universally:

Data type Data written to file
Numeric Decimal separator is always a period (.)

Boolean #TRUE# or #FALSE#
Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#
Error #ERROR errorcode#

The Write procedure automatically does the following:

Delimits data fields with a comma

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Places quotation marks around string data

Programming Tips and Gotchas

The structured data written to a file using the Write procedure is most suited to being read back
from the file using the Input procedure.

VB.NET/VB 6 Differences

The VB 6 Write statement requires that output be a comma-delimited list of literal values
or variables. The VB.NET WriteLine procedure also allows outputlist to be a
parameter array.

Calling the VB 6 Write statement with a single comma in place of outputlist forces a
blank line to be written to the file. VB.NET requires that you call the WriteLine procedure.

The VB 6 Write statement allowed a # symbol to precede the filenumber argument. In
the VB.NET Write procedure, this usage is not permitted.

See Also

WriteLine Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WriteLine Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax

WriteLine(filenumber, [output])

filenumber (required; Integer)

Any valid file number

output (optional; Object (Any))

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file and then adds a line-feed character combination

Rules at a Glance

output can contain multiple expressions delimited with either a comma, a semicolon, or a
space.

output can also be an Object array containing values to be written to the file indicated by
filenumber.

The following table describes how the WriteLine procedure handles certain types of data,
regardless of the locale, to allow files to be read universally.

Data type Data written to file
Numeric Decimal separator is always a period (.)

Boolean #TRUE# or #FALSE#
Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#
Error #ERROR errorcode#

The WriteLine procedure automatically does the following:

Delimits data fields with a comma

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Places quotation marks around string data

Inserts a new-line character (Chr(13) + Chr(10)) after the last item in output is
written to the file

If the output argument is omitted, WriteLine writes a blank line to the file designated by
filenumber.

Programming Tips and Gotchas

The structured data written to a file using the WriteLine procedure is most suited to being read
back from the file using the Input procedure.

VB.NET/VB 6 Differences

The WriteLine procedure is new to VB.NET as a partial replacement for the VB 6 Write
procedure.

See Also

Write Procedure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Year Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Year(datevalue)

datevalue (required; Date or valid date expression)

Any valid date expression

Return Value

Integer

Description

Returns an integer representing the year in a given date expression

Rules at a Glance

If datevalue contains Nothing, Year returns 1. (This assumes that Option Strict is
off.) For example:

Dim oDat As Object

Console.Writeline(Year(sDat)) ' Displays 1

If datevalue is a date literal (a date delimited with the # symbol), the year must contain
four digits.

Programming Tips and Gotchas

The validity of the date expression — and the position of the year element within the given
date expression — is initially determined by the locale settings of the Windows system.
However, some extra intelligence relating to two-digit year values (see the next item in this
list) has been built into the Year function, which surpasses the usual comparison of a date
expression to the current locale settings.

What happens when you pass a date over to the Year function containing a two-digit year?
Quite simply, when the Year function sees a two-digit year, it assumes that all values equal
to or greater than 30 are in the 20th century (i.e., 30 = 1930, 98 = 1998) and that all values
less than 30 are in the 21st century (i.e., 29 = 2029, 5 = 2005). Of course, it is much better
programming practice to use — and require your clients to use — four-digit years.

See Also

DatePart Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Appendixes
Part III contains six appendixes that supplement the core reference material
provided in Part II. These include:

Appendix A which surveys the extensive changes the language has
undergone with the release of the .NET platform.

Appendix B which lists each language element from Part II in several different
categories. You can use it to identify a particular language element so that you
can then look up its detailed entry in Part II.

Appendix C which lists VB.NET operators, including a somewhat more
detailed treatment of logical and bitwise operators.

Appendix D which lists VB.NET intrinsic constants, as well as VB.NET
enumerations and their members.

Appendix E which documents the operation of the Visual Basic command-line
compiler.

Appendix F which lists the elements that have dropped out of the Visual Basic
language as a result of its transition to the .NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. What's New and Different in VB.NET
This appendix is for readers who are familiar with earlier versions of Visual Basic, specifically
Version 6. In this appendix, we describe the basic changes to the VB language, both in syntax
and in functionality. (Readers familiar only with Version 5 of Visual Basic will also benefit from this
chapter, although we discuss only the changes since Version 6.)

We also touch upon other changes to VB, such as error handling and additional object-oriented
programming support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1 Language Changes for VB.NET

In this section, we outline the changes made to the Visual Basic language from Version 6 to
Visual Basic .NET. These language changes were made to bring VB under the umbrella of the
.NET Framework and allow a Common Language Runtime for all languages in Visual Studio
.NET. In some sense, the changes made to the VB language were to bring the language
component of VB (as opposed to the IDE component) more in line with the C# language (which is
a derivative of C and C++).

Since we assume in this chapter that you are familiar with VB 6, we will not necessarily discuss
how VB 6 handles a given language feature, unless the contrast is specifically helpful. You can
assume that if a VB.NET language feature is described in this chapter, there has been a change
in its behavior since VB 6.

A.1.1 Data Types

There have been fundamental changes to data types in VB.NET, which we outline in this section.
The most important change is that all of the languages under the .NET umbrella (VB, C#, and
Managed C++) now implement a subset of a common set of data types, defined in the .NET
Framework's Base Class Library (BCL). We say subset because VB.NET does not implement all
of these data types. In any case, each data type in the BCL is implemented either as a class or as
a structure (which is similar to a class) and, as such, has members. The VB.NET data types are
wrappers for the corresponding BCL data type. While this need not concern the VB programmer,
it can be used in some cases to expose a bit more functionality from a data type. For more on
data types, see Chapter 3.

Now let us consider the specifics.

A.1.1.1 Strings

As you may know, in VB 6, strings were implemented as a data type known as the BSTR. A BSTR
is a pointer to a character array that is preceded by a 4-byte Long specifying the length of the
array. In VB.NET, strings are implemented as objects of the String class, which is part of the .NET
Framework's System namespace.

One consequence of this reimplementation of strings is that VB.NET does not have fixed-length
strings, as does VB 6. Thus, the following code is illegal:

Dim Name As String * 30

Note, though, that strings in VB.NET are immutable. That is, although you do not have to declare
a string's length in advance, once a value is assigned to a string, its length cannot change. If you
change that string, the .NET Common Language Runtime actually gives you a reference to a new
String object. (For more on this, see Chapter 3.)

A.1.1.2 Integer/Long data type changes

VB.NET defines the following signed-integer data types:

Short

The 16-bit integer data type. It is the same as the Int16 data type in the Base Class Library.

Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The 32-bit integer data type. It is the same as the Int32 data type in the Base Class Library.

Long

The 64-bit integer data type. It is the same as the Int64 data type in the Base Class Library.

Thus, with respect to the changes from VB 6 to VB.NET, we can say:

The VB 6 Integer data type has become the VB.NET Short data type.

The VB 6 Long data type has become the VB.NET Integer data type.

A.1.1.3 Variant data type

VB.NET does not support the Variant data type. The Object data type is VB.NET's universal data
type, meaning that it can hold data of any other data type. According to the documentation, all of
the functionality of the Variant data type is supplied by the Object data type.

We cannot resist the temptation to add that there are several penalties associated with using a
universal data type, including poor performance and poor program readability. Thus, while
VB.NET still provides this opportunity through the Object data type, its use is not recommended
whenever it can be avoided.

The VarType function, which was used in VB 6 to determine the type of data stored in a variant
variable (that is, the variant's data subtype), now reports the data subtype of the Object type
instead. In addition, the TypeName function, which can be used to return a string that indicates
the data type of a variable of type Object, is still supported.

A.1.1.4 Other data type changes

Here are some additional changes in data types:

The Deftype statements (DefBool, DefByte, etc.), which were used to define the
default data type for variables whose names began with particular letters of the alphabet,
are not supported in VB.NET.

The Currency data type is not supported in VB.NET. However, in VB.NET, the Decimal
data type can handle more digits on both sides of the decimal point, and so it's a superior
replacement. In VB.NET, Decimal is a strong data type; in VB 6, it was a Variant subtype,
and a variable could be cast as a Decimal only by calling the CDec conversion function.

In VB 6, a date is stored in a Double format using four bytes. In VB.NET, the Date data type
is an 8-byte integer data type whose range of values is from January 1, 1 to December 31,
9999.

A.1.2 Variables and Their Declaration

The changes in variable declarations and related issues are described here.

A.1.2.1 Variable declaration

The syntax used to declare variables has changed for VB.NET, making it more flexible. Indeed,
these are long awaited changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, when multiple variables are declared on the same line, if a variable is not declared
with a type explicitly, then its type is that of the next variable with an explicit type declaration.
Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type
Variant, and only the variable k would have type Integer.)

When declaring external procedures using the Declare statement, VB.NET does not support the
As Any type declaration. All parameters must have a specific type declaration.

A.1.2.2 Variable initialization

VB.NET permits the initialization of variables in the same line as their declaration (at long last).
Thus, we may write:

Dim x As Integer = 5

to declare an Integer variable and initialize its value to 5. Similarly, we can declare and initialize
more than one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

A.1.2.3 Variable scope changes

In VB 6, a variable that is declared anywhere in a procedure has procedure scope ; that is, the
variable is visible to all code in the procedure.

In VB.NET, if a variable is defined inside a code block (a set of statements that is terminated by
an End..., Loop, or Next statement), then the variable has block- level scope ; that is, it is
visible only within that block.

For example, consider the following VB.NET code:

Sub Test()

 If x <> 0 Then

 Dim rec As Integer

 rec = 1/x

 End If

 MsgBox CStr(rec)

End Sub

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement will produce an error.

It is important to note that the lifetime of a local variable is always that of the entire procedure,
even if the variable's scope is block-level. This implies that if a block is entered more than once, a
block-level variable will retain its value from the previous time the code block was executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1.2.4 Arrays and array declarations

VB 6 permitted you to define the lower bound of a specific array, as well as the default lower
bound of arrays whose lower bound was not explicitly specified. In VB.NET, the lower bound of
every array dimension is 0 and cannot be changed. The following examples show how to declare
a one-dimensional array, with or without an explicit size and with or without initialization:

' Implicit constructor: No initial size and no initialization

Dim Days() As Integer

' Explicit constructor: No initial size and no initialization

Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization

Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization

Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization

Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

' Explicit constructor, Initial size and initialization

Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array has size X+1.

Multidimensional arrays are declared similarly. For instance, the following example declares and
initializes a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))

Debug.Write(X(0, 1))

Debug.Writeline(X(0, 2))

Debug.Write(X(1, 0))

Debug.Write(X(1, 1))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Write(X(1, 1))

Debug.Write(X(1, 2))

123

456

In VB.NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the
ReDim statement. Note, however, that the number of dimensions of an array cannot be changed.

Moreover, unlike VB 6, the ReDim statement cannot be used for array declaration, but only for
array resizing. All arrays must be declared initially using a Dim (or equivalent) statement.

A.1.2.5 Structure/user-defined type declarations

In VB 6, a structure or user-defined type is declared using the Type...End Type structure.

In VB.NET, the Type statement isn't supported. Structures are declared using the
Structure...End Structure construct. Also, each member of the structure must be assigned
an access modifier, which can be Public, Protected, Friend, Protected Friend, or
Private. (The Dim keyword is equivalent to Public in this context.)

For instance, the VB 6 user-defined type:

Type RECT

 Left As Long

 Top As Long

 Right As Long

 Bottom As Long

End Type

is defined in VB.NET as:

Structure RECT

 Public Left As Long

 Public Top As Long

 Public Right As Long

 Public Bottom As Long

End Structure

Actually, the VB.NET Structure type is far more reaching than its VB 6 user- defined type
predecessor. Indeed, structures have many properties in common with classes; for instance,
structures can have members (properties and methods). We discuss structures in detail in
Chapter 3.

A.1.3 Boolean and Bitwise Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Eqv and Imp, two infrequently used Boolean and bitwise operators that are present in VB 6, have
been removed from VB.NET.

In VB 6, Eqv is the logical equivalence operator. As a Boolean operator, it returns True if both
expressions are either True or False, but it returns False if one is True while the other is
False. As a bitwise operator, it returns 1 if both bits are the same (that is, if both are 1 or both
are 0), but it returns 0 if they are different. In VB.NET, Eqv can be replaced with the equals
comparison operator for logical operations. However, for bitwise operations, you'll have to resort
to a bit-by-bit comparison, as the following code fragment shows:

Public Function BitwiseEqv(x1 As Byte, X2 As Byte) _

 As Long

Dim b1, b2, bRet As Byte

Dim iCtr as Integer

For iCtr = 0 to len(x1) * 8 - 1

 b1 = x1 and 2^iCtr

 b2 = x2 and 2^iCtr

 if b1 = b2 then bRet += 2^iCtr

next

BitwiseEqv = bRet

End Function

In VB 6, Imp is the logical implication operator. As a Boolean operator, it returns True unless its
first expression is True while the second is False. As a bitwise operator, it returns 1 unless the
bit in the first expression is 1 while the bit in the second expression is 0. In VB.NET, Imp can be
replaced with a combination of the Not and Or operators for logical operations. For example, the
code fragment:

bResult = (Not bFlag1) Or bFlag2

is equivalent to the VB 6 statement:

bResult = bFlag1 Imp bFlag2

For bitwise operations, a bit-by-bit comparison is again necessary, as the following code fragment
shows:

Public Function BitwiseImp(x1 As Byte, X2 As Byte) As Long

Dim b1, b2, bRet As Byte

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim b1, b2, bRet As Byte

Dim iCtr as Integer

For iCtr = 0 to len(x1)*8 - 1

 b1 = Not(x1) and 2^iCtr

 b2 = x2 and 2^iCtr

 if b1 Or b2 then

 bRet += 2^iCtr

 end If

next

BitwiseImp = bRet

End Function

Unlike previous versions of Visual Basic, most programming languages use short-circuiting when
evaluating If statements. That is, if an If statement contains multiple subexpressions joined by
Boolean operators, expressions are evaluated from left to right, and once the truth or falsity of the
expression is known, the remaining subexpressions are not evaluated. This applies in particular to
subexpressions joined by a logical And (the expression is necessarily False if the first
subexpression is False) and by a logical Or (the expression is necessarily True if the first
subexpression is True).

VB.NET now supports short circuiting through the use of the AndAlso and OrElse logical
operators. If these operators are used, once the value of an expression is known, any further
subexpressions will not be evaluated. For example, consider the statement:

If (X AndAlso Y) Then

If X is False, then Y is not evaluated because the entire statement is False regardless of the
truth value of Y.

VB.NET has introduced new operators to support short circuiting, rather than simply modify the
behavior of And and Or, largely for reasons of compatibility. In most cases, short circuiting has no
effect on a program's execution other than an improvement in performance and an increase in
robustness (expressions that are not evaluated cannot raise errors). This isn't the case, however,
if an expression calls a function that modifies the value of a variable. For example:

If Increment(x) AndAlso Increment(y) Then

 ' Do something

End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

...

Private Function Increment(ByRef n As Integer) As Boolean

 If n <> 10 Then

 n += 1

 Return True

 Else

 Return False

 End If

End Function

Here, we can never be certain whether the second call to the Increment function will occur and
whether the value of y will be incremented. In this case, it's preferable to avoid short-circuiting
with AndAlso in favor of the And operator.

A.1.4 Changes Related to Procedures

VB.NET features a number of changes to the way in which procedures are defined and called,
most of which tend to make the language more streamlined and consistent.

A.1.4.1 Calling a procedure

In VB 6, parentheses are required around arguments when making function calls. When calling a
subroutine, parentheses are required when using the Call statement and proscribed when not
using the Call statement.

In VB.NET, parentheses are always required around a nonempty argument list in any procedure
call — function or subroutine. (In subroutine calls, the Call statement is optional.) When calling a
parameterless procedure, empty parentheses are optional.

A.1.4.2 Default method of passing arguments

In VB 6, if the parameters to a function or subroutine were not explicitly prefaced with the ByVal or
ByRef keywords, arguments were passed to that routine by reference, and modifications made to
the argument in the function or subroutine were reflected in the variable's value once control
returned to the calling routine. In VB.NET, on the other hand, if the ByRef or ByVal keyword is not
used in a parameter, the argument is passed to the routine by value, and modifications made to
the argument in the function or subroutine are discarded once control returns to the calling
program.

A.1.4.3 Optional arguments

In VB 6, a procedure parameter can be declared as Optional without specifying a default value.
For optional Variant parameters, the IsMissing function can be used to determine whether the
parameter is present.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, an optional parameter must declare a default value, which is passed to the procedure
if the calling program does not supply an argument for that parameter. The IsMissing function is
not supported. The following example shows an optional parameter declaration:

Sub Calculate(Optional ByVal Switch As Boolean = False)

A.1.4.4 Return statement

In VB.NET, the Return statement is used to return control to the calling program from a function
or subroutine. The GoSub statement is not supported. Note that the Return statement is used to
return a value from a function.

The following function illustrates the Return statement:

Public Function Test() As Integer

 If MsgBox("Return", MsgBoxStyle.YesNo) = MsgBoxResult.Yes Then

 Return 0

 Else

 MsgBox("Continue")

 Return 1

 End If

End Function

A.1.4.5 Passing property parameters in procedures

Consider passing a property to a procedure by reference, as in:

Sub ShrinkByHalf(ByRef lSize As Long)

 lSize = CLng(lSize/2)

End Sub

Call ShrinkByHalf(Text1.Height)

In VB 6, when passing the value of a property by reference, the property is not updated. In other
words, passing a property by reference is equivalent to passing it by value. Hence, in the previous
example, the property Text1.Height will not be changed.

In VB.NET, passing a property by reference does update the property, so in this case, the
Text1.Height property will be changed. Note, however, that the value of the property is not
changed immediately, but rather when the called procedure returns.

A.1.4.6 ParamArray parameters

In VB 6, if the ParamArray keyword is used on the last parameter of a procedure declaration, the
parameter can accept an array of Variant parameters. In addition, ParamAarray parameters are
always passed by reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In VB.NET, ParamArray parameters are always passed by value, and the parameters in the
array may be of any data type.

A.1.5 Miscellaneous Language Changes

VB.NET includes several miscellaneous changes that include the format of line numbers, the lack
of support for the GoTo and GoSub statements, and the replacement of the Wend keyword by End
While.

A.1.5.1 Line numbers

Visual Basic .NET requires that every line number be followed immediately by a colon (:). A
statement can optionally follow the colon. In VB 6, line labels, which were used in particular for
error handling by the On Error GoTo statement, had to be followed immediately by a colon, but
line numbers did not.

A.1.5.2 On GoTo

The On...GoSub and On...GoTo constructs are not supported. However, VB.NET still supports the
On Error GoTo statement.

A.1.5.3 While

The While...Wend construction loops through code while a specified condition is True. VB.NET
retains that construction, but replaces the Wend keyword with the End While statement. The
Wend keyword is not supported.

A.1.5.4 GoSub and Return statements

In VB.NET, the GoSub statement is not supported.

As remarked earlier, in VB.NET, the Return statement is used to return control to the calling
program from a function or subroutine. The VB 6 Exit Sub and Exit Function statements
continue to be supported in VB.NET; however, the advantage of the Return statement is that it
allows you to specify the function's return value as an argument to the Return statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2 Changes to Programming Elements

VB.NET has removed support for several programming elements because the underlying .NET
Framework Class Library and the Common Language Runtime (CLR) contain equivalent
functionality. Here are the victims and their replacements. (We discuss the class library and CLR
in Chapter 4 and Chapter 5.)

A.2.1 Constants

The Microsoft.VisualBasic.Constants class in the Base Class Library defines a number of
constants, such as the familiar vbCrLf constant, so these can be used as always. However,
some constants, such as the color constants vbRed and vbBlue, are no longer directly
supported. Indeed, the color constants are part of the System.Drawing namespace's Color
structure, so they are accessed as follows:

Me.BackColor = System.Drawing.Color.BlanchedAlmond

In most cases, to access a particular constant that is not a field in the Microsoft.
VisualBasic.Constants class, you must designate the enumeration (or structure) to which it
belongs, along with the constant name. For example, the vbYes constant in VB 6 continues to
exist as an intrinsic constant in VB.NET. However, it has a counterpart in the MsgBoxResult
enumeration, which can be accessed as follows:

If MsgBoxResult.Yes = MsgBox("OK to proceed?", ...

For a list of all built-in constants and enums, see Appendix D.

A.2.2 String Functions

The String function has been removed from the language. In its place, we simply declare a string
and initialize it, using syntax such as:

Dim str As New String("A"c, 5)

which will define a string containing five As. Note the use of the modifier c in "A"c to define a
character (data type Char), as opposed to a String of length 1. This is discussed in more detail in
Chapter 2.

A.2.3 Emptiness

In VB 6, the Empty keyword indicates an uninitialized variable, and the Null keyword is used to
indicate that a variable contains no valid data. VB.NET does not support either keyword, but uses
the Nothing keyword in both of these cases.

According to the documentation: "Null is still a reserved word in Visual Basic .NET 7.0, even
though it has no syntactical use. This helps avoid confusion with its former meanings." Whatever.

In addition, the IsEmpty function is not supported in VB.NET.

A.2.4 Graphical Functionality

The System.Drawing namespace contains classes that implement graphical methods. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The System.Drawing namespace contains classes that implement graphical methods. For
instance, the Graphics class contains methods such as DrawEllipse and DrawLine. As a result,
the VB 6 Circle and Line methods have been dropped.

Note that the VB 6 PSet and Scale methods are no longer supported and that there are no direct
equivalents in the System.Drawing namespace.

A.2.5 Mathematical Functionality

Mathematical functions are implemented as members of the Math class of the System
namespace. Thus, the VB 6 math functions, such as the trigonometric functions, have been
dropped. Instead, we can use statements such as:

Math.Cos(1)

Note also that the Round function has been replaced by the Round method of the System.Math
class.

A.2.6 Diagnostics

The System.Diagonstics namespace provides classes related to programming diagnostics. Most
notably, the VB 6 Debug object is gone, but its functionality is implemented in the
System.Diagnostics.Debug class, which has methods such as Write, WriteLine (replacing Print),
WriteIf, and WriteLineIf.

A.2.7 Miscellaneous

Here are a few additional changes to consider:

The VB 6 DoEvents function has been replaced by the DoEvents method of the Application
class of the System.Windows.Forms namespace.

The VB 6 IsNull and IsObject functions have been replaced by the IsDBNull and
IsReference methods of the Information class of the Microsoft.VisualBasic namespace.
Since this namespace is implicitly loaded by VB as part of the project template when a
project is created in Visual Studio, no Imports statement is required, and the members of
its classes can be accessed without qualification.

Several VB 6 functions have two versions: a String version and a Variant version. An
example is provided by the Trim$ and Trim functions. In VB.NET, these functions are
replaced by a single overloaded function. Thus, for instance, we can call Trim using either a
String or Object argument.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3 Obsolete Programming Elements

The following list shows some of the programming elements that have been removed from Visual
Basic .NET:

As Any

All parameters are required to have a declared data type.

Atn function

Replaced by System.Math.Atan.

Calendar property

Handled by classes in the System.Globalization namespace.

Circle statement

Use methods in the System.Drawing namespace.

Currency data type

Replaced by the Decimal data type.

Date function

Replaced by the Today property of the DateTime structure in the System namespace.

Date statement

Replaced by the Today statement.

Debug.Assert method

Replaced by the Assert method of the Debug class of the System.Diagonistics namespace.

Debug.Print method

Replaced by the Write and WriteLine methods of the Debug class of the
System.Diagonistics namespace.

Deftype statements

Not supported.

DoEvents function

Replaced by the DoEvents method of the Application class in System. Windows.Forms
namespace.

Empty keyword

Replaced by the Nothing keyword.

Eqv operator

Use the equal sign.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GoSub statement

Not supported.

Imp operator

A Imp B is logically equivalent to (Not A) Or B.

Initialize event

Replaced by the constructor method.

Instancing property

Use the constructor to specify instancing.

IsEmpty function

Not supported because the Empty keyword is not supported.

IsMissing function

Not supported because every optional parameter must declare a default value.

IsNull function

Not supported. The Null keyword is replaced by Nothing.

IsObject function

Replaced by the IsReference function.

Let statement

Not supported.

Line statement

Use the DrawLine method of the Graphics class in the System.Drawing namespace.

Null keyword

Use Nothing.

On...GoSub construction

Not supported. No direct replacement.

On...GoTo construction

Not supported. No direct replacement. On Error... is still supported, however.

Option Base statement

Not supported. All arrays have lower bound equal to 0.

Option Private Module statement

Use access modifiers in each individual Module statement.

PropertyGet, PropertyLet, and PropertySet statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Replaced by a new unified syntax for defining properties.

PSet method

Not supported. No direct replacement. See the System.Drawing namespace.

Round function

Use the Round method of the Math class of the System namespace.

Scale method

Not supported. No direct replacement. See the System.Drawing namespace.

Set statement

Not supported.

Sgn function

Use Math.Sign.

Sqr function

Use Math.Sqrt.

String function

Use the String class constructor with parameters.

Terminate event

Use the Destroy method.

Time function and statement

Instead of the Time function, use the TimeOfDay method of the DateTime structure of the
System namespace. Instead of the Time statement, use the TimeOfDay statement.

Type statement

Use the Structure statement.

Variant data type

Use the Object data type.

VarType function

Use the TypeName function or the GetType method of the Object class.

Wend keyword

Replaced by End While.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.4 Structured Exception Handling

VB.NET has added a significant new technique for error handling. Along with the traditional
unstructured error handling through On Error Goto statements, VB.NET adds structured
exception handling, using the Try...Catch...Finallysyntax supported by other languages, such
as C++. We discuss this in detail in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.5 Changes in Object-Orientation

As you may know, Visual Basic has implemented some features of object-oriented programming
since Version 4. However, in terms of object-orientation, the step from Version 6 to VB.NET is
very significant. Indeed, some people did not consider VB 6 (or earlier versions) to be a truly
object-oriented programming language. Whatever your thoughts may have been on this matter, it
seems clear that VB.NET is an object-oriented programming language by any reasonable
definition of that term.

Here are the main changes in the direction of object-orientation. We discuss these issues in detail
in Chapter 4.

A.5.1 Inheritance

VB.NET supports object-oriented inheritance (but not multiple inheritance). This means that a
class can derive from another (base) class, thereby inheriting all of the properties, methods, and
events of the base class. Since forms are also classes, inheritance applies to forms as well. This
allows new forms to be created based on existing forms. We discuss inheritance in detail in
Chapter 4.

A.5.2 Overloading

VB.NET supports a language feature known as function overloading. The idea is simple and yet
quite useful. We can use the same name for different functions (or subroutines), as long as the
functions can be distinguished by their argument signature. The argument signature of a function
(or subroutine) is the sequence of data types of the arguments of the function. Thus, in order for
two functions to have the same argument signature, they must have the same number of
arguments, and the corresponding arguments must have the same data type. For example, the
following declarations are legal in the same code module because they have different argument
signatures:

Overloads Sub OpenFile()

 ' Ask user for file to open and open it

End Sub

Overloads Sub OpenFile(ByVal sFile As String)

 ' Open file sFile

End Sub

A.5.3 Object Creation

VB 6 supports a form of object creation called implicit object creation. If an object variable is
declared using the New keyword:

Dim obj As New SomeClass

then the object is created the first time it is used in code. More specifically, the object variable is
initially given the value Nothing, and then every time the variable is encountered during code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initially given the value Nothing, and then every time the variable is encountered during code
execution, VB checks to see if the variable is Nothing. If so, the object is created at that time.

VB.NET does not support implicit object creation. If an object variable contains Nothing when it
is encountered, it is left unchanged, and no object is created.

In VB.NET, we can create an object in the same statement as the object-variable declaration, as
the following code shows:

Dim obj As SomeClass = New SomeClass

As a shorthand, we can also write:

Dim obj As New SomeClass

If the object's class constructor takes parameters, then they can be included, as in the following
example:

Dim obj As SomeClass = New SomeClass(argument1, argument2,...)

As a shorthand, we can also write:

Dim obj As New SomeClass(argument1, argument2,...)

For details on class constructors, see Chapter 3.

A.5.4 Properties

There have been a few changes in how VB handles properties, particularly with respect to default
properties and property declarations.

A.5.4.1 Default properties

As you know, you can use default properties in VB 6. For instance, if txt is a textbox control, then:

txt = "To be or not to be"

assigns the string "To be or not to be" to the default Text property of the textbox txt.

However, there is a price to pay for default properties: ambiguity. For example, if txt1 and txt2 are
object variables referencing two TextBox controls, what does:

txt1 = txt2

mean? Are we equating the default properties or the object variables? In VB 6, this is interpreted
as equating the default properties:

txt1.Text = txt2.Text

and we require the Set statement for object assignment:

Set txt1 = txt2

In VB.NET, default properties are not supported unless the property takes one or more
parameters, in which case there is no ambiguity.

As Microsoft points out, default properties occur most commonly with collection classes. For
example, in ActiveX Data Objects (ADO), the Fields collection of the Recordset object has a
default Item property that returns a particular Field object. Thus, we can write:

rs.Fields.Item(1).Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rs.Fields.Item(1).Value

or, since the default Item property is parameterized:

rs.Fields(1).Value

Although we may not be used to thinking of this line as using default properties, it does.

Thus, in VB.NET, the line:

txt1 = txt2

is an object assignment. To equate the Text properties, we must write:

txt2.Text = txt1.Text

Since it is no longer needed, the Set keyword is not supported under VB.NET, nor is the
companion Let keyword.

This settles the issue of equating object variables. For object variable comparison, however, we
must use the Is operator, rather than the equal sign, as in:

If txt1 Is txt2 Then

or:

If Not (txt1 Is txt2) Then

A.5.4.2 Property declarations

In VB 6, properties are defined using Property Let, Property Set, and Property Get
procedures. However, VB.NET uses a single property-declaration syntax of the form shown in the
following example. Note also that there is no longer a need to distinguish between Property
Let and Property Set because of the changes in default property support.

Property Salary() As Decimal

 Get

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

End Property

Note the use of the implicitly defined Value variable that holds the value being passed into the
property procedure when it is being set.

Note also that VB.NET does not support ByRef property parameters. All property parameters are
passed by value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Language Elements by Category
This appendix lists by category all the directives, statements, functions, procedures, and classes
available within the VB.NET language. We have also included those Foundation Class Library
members that are documented in this book. The categories are:

Array Handling
Clipboard
Collection Objects
Common Dialogs
Conditional Compilation
Conversion: Data Type Conversion and Other Conversion
Date and Time
Error Handling
Filesystem
Financial
IDataObject Interface
Information
Input/Output
Interaction
Mathematics
Programming: Object Programming and Miscellaneous Programming
Program Structure and Flow
Registry
String Manipulation
Variable and Constant Declaration

Where necessary, individual keywords may appear in more than one category.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1 Array Handling

Element Description
Array class Represents an array

Array.BinarySearch
method Searches for a value in a sorted one-dimensional array

Array.Copy method Copies all or part of an array

Array.IndexOf method Searches for the first occurrence of a value in an unsorted one-
dimensional array

Array.LastIndexOf
method

Searches for the last occurrence of a value in an unsorted one-
dimensional array

Erase statement Resets an array to its uninitialized state

IsArray function Indicates whether a variable is an array

Join function Concatenates an array of values into a delimited string

LBound function Returns the lower boundary of an array

ReDim statement Redimensions an arrayxs

UBound function Returns the upper boundary of an array

VBFixedArray attribute Defines a fixed-length arrayXS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2 Clipboard

Element Description
Clipboard.GetDataObject
method Places data on the Clipboard

Clipboard.SetDataObject
method

Retrieves an IDataObject object representing data on the
Clipboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3 Collection Objects

Element Description
Collection.Add method Adds a member to a Collection object

Collection.Count method Indicates the number of items stored to a Collection object

Collection.Item method Retrieves a member from a Collection object based on its key value
or its ordinal position

Collection.Remove
method

Removes the member associated with a given key or ordinal position
from a Collection object

Hashtable.Add method Adds a key-value pair to a HashTable object

Hashtable.Clear method Removes all entries from the hash table

Hashtable.ContainsKey
method Indicates whether a given key exists among the hash table's items

Hashtable.ContainsValue
method Indicates whether a given value exists among the hash table's items

Hashtable.CopyTo
method Copies hash table values into an array of DictionaryEntry structures

Hashtable.Count
property Indicates the total number of elements in the hash table

Hashtable.Item property Retrieves the value of a hash table item given its key

Hashtable.Keys property Returns an ICollection object that contains the keys in the hash
table

Hashtable.Remove
method Removes a key/value pair from the hash table

Hashtable.Values
property

Returns an ICollection object that contains the values in the hash
table

Queue.Clear method Clears all items in the queue

Queue.Contains method Indicates whether the queue contains a particular object

Queue.CopyTo method Copies the queue elements to an array

Queue.Count method Indicates the total number of items in the queue

Queue.Dequeue method Removes an item from the queue

Queue.Enqueue method Places an item at the end of the queue

Queue.Peek method Returns the first item in the queue

Queue.ToArray method Copies the queue elements to an array

Stack.Clear method Clears all items in the stack

Stack.Contains method Indicates whether the stack contains a particular object

Stack.CopyTo method Copies the items in the stack to an array

Stack.Count method Indicates the total number of items in the stack

Stack.Peek method Returns the item at the top of the stack

Stack.Pop method Removes the topmost item from the stack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stack.Push method Places an item at the top of the stack

Stack.ToArray method Copies the items on the stack to an array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4 Common Dialogs

Element Description
ColorDialog class Allows programmatic control of the Windows Common Color dialog box

FontDialog class Allows programmatic control of the Windows Common Font dialog box

OpenFileDialog class Allows programmatic control of the Windows File Open dialog box

SaveFileDialog class Allows programmatic control of the Windows SaveAs dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5 Conditional Compilation

Element Description
#Const
directive Declares a conditional compiler constant

#If...Then...End
If directive

Defines a block of code that will only be compiled into the program if the
expression with the conditional constant evaluates to True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.6 Conversion

B.6.1 Data Type Conversion

Element Description
CBool function Converts an expression to a Boolean data type

CByte function Converts an expression to a Byte data type

CChar function Converts a string expression to a Char data type

CDate function Converts an expression to a Date data type

CDbl function Converts an expression to a Double data type

CDec function Converts an expression to a Decimal data type

CInt function Converts an expression to an Integer data type

CLng function Converts an expression to a Long data type

CObj function Converts an expression to an Object data type

CSng function Converts an expression to a Single data type

CStr function Converts an expression to a String data type

CType function Converts an expression to any valid data type, structure, object type, or
interface

DateValue function Converts the string representation of a date to a date

DirectCast function Converts a variable to its runtime type

Option Strict
statement Determines whether narrowing operations are allowed

Str function Converts a numeric value to a string

TimeValue function Converts a string representation of time to a Date data type

Val function Converts a numeric string to a number

ValDec function Converts a numeric string to a Decimal data type

B.6.2 Other Conversion

Element Description
ErrorToString
method

Returns the descriptive error message corresponding to a particular error
code

Fix function Returns the integer portion of a number

Hex function Converts a number to a string representing its hexadecimal equivalent

Int function Returns the integer portion of a number

Oct function Converts a number to a string representing its octal equivalent

QBColor function Converts a QBasic color code to an RGB color value

RGB function Returns a system color code that can be assigned to object color
properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.7 Date and Time

Element Description
DateAdd function Returns the result of adding or subtracting a date or time

DateDiff function Returns the difference between two dates

DatePart function Returns the part (month, day, year) of the date requested

DateSerial function Returns a date from an expression containing month, day, and year
components

DateString property Retrieves or sets the current system date

DateValue function Converts the string representation of a date to a date

Day function Returns a number representing the day of the month

GetTimer function Returns the number of seconds since midnight

Hour function Extracts the hour element from a time

Minute function Extracts the minutes element from a time

Month function Extracts the month element from a date

MonthName function Returns the name of the month for a given date

Now property Returns the current system date and time

Second function Extracts the seconds element from a time

TimeOfDay property Sets or retrieves the current system time

Timer property Returns the number of seconds that have elapsed since midnight

TimeSerial function Returns a time from its hour, minute, and second components

TimeString property Sets or returns the current system time

TimeValue function Converts a string representation of time to a Date data type

Today property Sets or retrieves the current system date

Weekday function Determines the day of the week of a given date

WeekdayName
function Returns the weekday name for a given weekday number

Year function Returns the year element from a date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.8 Debugging

Element Description
Debug.Assert
method Outputs a message if an expression is False

Debug.AutoFlush
property

Determines whether each write operation should be followed by a call to
the Flush method

Debug.Close
method

Flushes the output buffer and closes any listeners except the Output
window

Debug.Flush
method Flushes the output buffer

Debug.Indent
method Increases the value of the IndentLevel property by 1

Debug.IndentLevel
property Determines the indent level for Debug object output

Debug.IndentSize
property Defines the current indent size, in number of spaces

Debug.Listeners
property

Returns a collection of all TraceListener objects that are monitoring
the Debug object's output

Debug.Unindent
method Decreases the value of the IndentLevel property by 1

Debug.Write method Sends output to the Output window and other listeners

Debug.WriteIf
method

Sends output to the Output window and other listeners if an expression is
True

Debug.WriteLine
method Writes output along with a newline character to the Output window

Debug.WriteLineIf
method

Writes output along with a newline character to the Output window if an
expression is True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.9 Declaration

Element Description
Const statement Declares a constant

Class...End Class
statement Defines a class

Declare statement Defines a prototype for a call to an external DLL library function

Dim statement Declares a variable

Enum statement Defines a series of constants as an enumerated type

Function statement Defines a function

Friend keyword Makes a procedure in a class callable from outside the class but within
the project in which the class is defined

Option Explicit
statement Requires declaration of all variables

Private statement Declares a local variable

Property statement Defines a property

Protected statement Declares a protected class member

Public statement Declares a public or global variable

Static statement Declares a static variable

Structure...End
Structure statement Declares a structure or user-defined type

Sub statement Declares a subroutine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Current Book

 Code Fragments only

 Advanced Search

<

VB.NET Language in
a Nutshell, 2nd
Edition

Copyright

Preface

The Basics

Reference

Appendixes

 What's New and Different
in VB.NET

 Language Elements by
Category

 Array Handling

 Clipboard

 Collection Objects

 Common Dialogs

 Conditional
Compilation

 Conversion

 Date and Time

 Debugging

 Declaration

 Error Handling

 Filesystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.11 Filesystem

Element Description
ChDir procedure Changes the current directory

ChDrive procedure Changes the current drive

CurDir function Returns the current directory of a drive

Dir function Returns the name of a file or directory matching a file
specification and having particular file attributes

Directory.CreateDirectory
method Creates a new directory

Directory.Delete method Deletes a directory

Directory.Exists method Indicates whether a particular directory exists

Directory.GetCreationTime
method Retrieves the date and time the directory was created

Directory.GetDirectories
method Retrieves the names of the subdirectories of a given directory

Directory.GetDirectoryRoot
method Retrieves the name of the root directory of a given directory

Directory.GetFiles Retrieves the names of the files in a given directory

Directory.GetFileSystemEntries
method

Retrieves the names of filesystem objects (files and directories)
in a given directory

Directory.GetParent method Retrieves a DirectoryInfo object representing the parent of
a specified directory

Directory.Move method Moves a directory and its contents, including nested
subdirectories, to a new location

File.Exists method Indicates whether a specified file exists

FileCopy function Copies a file

FileDateTime function Returns the date and time of file creation or last access

GetAttr function Returns the attributes of a given file or directory

Kill function Deletes one or more files

MkDir function Creates a new directory

Rename function Renames a file or directory

RmDir function Removes a directory

SetAttr procedure Sets a file or directory's attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.12 Financial

Element Description
DDB
function Returns double-declining balance depreciation of an asset for a specific period

FV
function Calculates the future value of an annuity

IPmt
function Computes the interest payment for a given period of an annuity

IRR
function Calculates the internal rate of return for a series of periodic cash flows

MIRR
function Calculates the modified internal rate of return

NPer
function

Determines the number of payment periods for an annuity, based on fixed periodic
payments and a fixed interest rate

NPV
function Calculates the net present value of an investment

Pmt
function Calculates the payment for an annuity

PPmt
function Computes the payment of principal for a given period of an annuity

PV
function Calculates the present value of an annuity

Rate
function Returns the interest rate per period for an annuity

SLN
method Computes the straight-line depreciation of an asset

SYD
function Computes the sum-of-years' digits depreciation of an asset for a specified period

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.13 IDataObject Interface

Element Description
GetData method Retrieves data from the Clipboard in a given format

GetDataPresent
method Indicates whether the Clipboard holds data of a particular format

GetFormats
method

Retrieves a list of all the formats with which the Clipboard data is associated
or to which it can be converted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.14 Information

Element Description
Application. CompanyName
property Returns the name of the company that created the application

Application.ExecutablePath
property Returns the executable path to the application

Application.ProductName
property Returns the application's product name

Application.ProductVersion
property Returns the application's version number

Erl function Indicates the line number at which an error occurred

IsArray function Indicates whether a variable is an array

IsDate function Indicates whether an argument is — or can be converted to — a
date

IsDBNull function Determines whether an expression evaluates to DbNull
IsError function Determines whether an object is an exception type

IsNothing function Determines if an object reference evaluates to Nothing

IsNumeric function Determines if an expression is a number or can be converted to
a number

IsReference function Determines if an expression is a reference type rather than a
value type

RGB function Returns a system color code that can be assigned to object
color properties

Rem statement Indicates a remark or comment placed within the code

ScriptEngine function Returns the name of the programming language

ScriptEngineBuildVersion
function Returns the build number

ScriptEngineMajorVersion
function Returns the major version

ScriptEngineMinorVersion
function Returns the minor version

SystemTypeName function Returns the name of the CTS datatype corresponding to a
VB.NET datatype

TypeName function Returns the data type name of a variable

VarType function Returns a constant indicating the data type of a variable

VbTypeName function Returns the name of a VB.NET datatype that corresponds to a
CTS datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.15 Input/Output

Element Description
EOF function Returns a flag denoting the end of a file

FileAttr function Returns the file-access mode for a file opened using the FileOpen
statement

FileClose function Closes one or more open files

FileGet, FileGetObject
functions Read from a file to a variable

FileLen function Returns the size of an open file

FileOpen function Opens a file

FilePut, FilePutObject
functions Writes from a variable to a file

FileWidth function Sets the line width of a file opened using the FileOpen function

FreeFile function Returns the number of the next available file

Input function Reads delimited data from a sequential file

InputString function Reads a designated number of characters from a file

LineInput function Returns a string containing a line read from a file

Loc function Returns the current position of the read/write pointer in a file

Lock function Locks a file, section of a file, or record in a file to prevent access by
another process

LOF function Returns the size of an open file in bytes

Print function Writes formatted data to a sequential file

PrintLine function Writes formatted data followed by a linefeed to a sequential file

Reset function Closes all open files

Seek function Returns the position of the file pointer

Seek procedure Sets the position of the file pointer

Spc function Inserts spaces between expressions in output

Tab function Moves the text-insertion point to a given column or the start of the
next print zone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.16 Integrated Development Environment

Element Description
#Region...#End Region Defines collapsible sections of code in VB source code files

Debug object Provides debugging services for the Output window and other listeners

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.17 Interaction

Element Description
AppActivate
statement Gives the focus to a window based on its title or task ID

AppActivateHelper
statement Gives the focus to a window based on its window handle

Beep statement Sounds a note using the computer speaker

Choose function Returns a value from a list based on its index

Command function Returns the argument portion of the command line

Environ function Retrieves the value of an environment variable

IIf function Returns one of two values based on the evaluation of a Boolean
expression

InputBox function Returns user input from a simple dialog box

MsgBox function Displays a message box with buttons, icon, and a message, and returns
the button selected by the user

Shell function Launches an external application

Switch function Returns the first value or expression in a list that is True
Send, SendWait
methods Send keystrokes to the active window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.18 Mathematics

Element Description
Abs function Returns the absolute value of a number

Acos function Returns the arccosine in radians

Asin function Returns the angle in radians of a sine

Atan function Returns the arctangent in radians of a tangent

Atan2 function Returns the angle in the Cartesian plane formed by the x-axis and a vector
starting from the origin (0, 0) and terminating at a point (x, y)

Ceiling function Returns the smallest integer that's greater than or equal to a number

Cos function Returns the cosine of an angle

Cosh function Returns the hyperbolic cosine of an angle

E Field Returns the approximate value of the irrational number e

Exp function Returns the base of a natural logarithm raised to a power

Fix function Returns the integer portion of a number

Floor function Returns the largest integer less than or equal to a number

IEEERemainder
function Returns the remainder resulting from division

Int function Returns the integer portion of a number

Log function Returns the natural (base e) logarithm of a given number

Log10 function Returns the common (base 10) logarithm of a given number

Max function Returns the larger of two numbers

Min function Returns the smaller of two numbers

Mod operator Returns the modulus (the remainder after division)

Partition
function A string indicating the range into which a number falls

Pi Field Returns the approximate value of pi
Pow function Returns the result of a number raised to a specified power

Randomize
function Initializes the random-number generator

Rnd function Returns a random number

Round function Rounds a number to a specified number of decimal places

Sign function Determines the sign of a number

Sin function Returns the sine of an angle

Sinh function Returns the hyperbolic sine of an angle

Sqrt function Calculates the square root of a number

Tan function Returns the ratio of two sides of a right triangle

Tanh function Returns the hyperbolic tangent of an angle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.19 Program Structure and Flow

Element Description

Call statement Calls an intrinsic or user-defined procedure or function, a method, or a
routine in a dynamic link library

CallByName
statement Dynamically executes a class method, property let, or property set

Do...Loop
statement Repeatedly executes a block of code while or until a condition is true

Exit statement Prematurely exits a code block

End statement Marks the end of a block of code

For...Next
statement Iterates through a section of code a given number of times

For Each...Next
statement

Iterates through a collection or array of objects or values, returning a
reference to each of the members

GoTo statement Passes program flow to a portion of code marked by a label

If...Then...Else
statement Defines a conditional block or blocks of code

Return statement Transfers control from a function or procedure and returns a value from a
function

Select Case
statement

Executes one out of a series of code blocks based on the value of an
expression

Stop statement Suspends program execution

While...End While
statement Executes a block of code until a condition becomes False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.20 Programming

B.20.1 Object Programming

Element Description
AddHandler
statement Dynamically binds an event handler to an event

AddressOf operator Creates a procedure delegate instance that references a particular
procedure

Class...End Class
statement Defines a class and its members

COMClass attribute Allows a .NET component to be exposed as a COM object

CreateObject
function Creates a new instance of a COM (ActiveX) object

Event statement Declares a custom event

Get statement Defines a Property Get procedure that returns a property value to the
caller

GetObject function Returns a reference to a COM (ActiveX) object

Handles keyword Indicates that the procedure serves as the handler for an event

Implements keyword Indicates that a class member implements a property, function,
procedure, or event of an abstract base class

Implements
statement Specifies one or more interfaces that are implemented by a class

Imports statement Imports a namespace from a project or an assembly, making its types and
their members accessible to the current project

Inherits statement Indicates that a class is derived from a base class

Interface...End
Interface statement Defines an interface and its members

Is operator Compares two object references for equality

Me operator Represents the current class instance

MyBase keyword Represents the base class from which an inherited class is derived

MyClass keyword Represents the current class instance

Namespace
statement Declares the name of a namespace

Property statement Defines a property

RaiseEvent
statement Raises a custom event

RemoveHandler
statement

Disassociates an event from an event handler defined using the
AddHandler statement

Shadows keyword Indicates that a derived class member is hidden when calls to the derived
class member are made through the base class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WithEvents
statement Receives notification of events raised by an object

B.20.2 Miscellaneous Programming

Element Description

AddressOf operator Creates a procedure-delegate instance that references a particular
procedure

Application.DoEvents
method

Allows the operating system to process events and messages waiting in
the message queue

Declare statement Defines a prototype for a call to an external DLL library function

Environ statement Retrieves the value of an environment variable

Len function Returns the size in bytes of a given variable

SyncLock statement Prevents multiple threads of execution in the same process from
accessing shared data or resources at the same time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.21 Registry

Element Description
DeleteSetting
statement

Removes a complete application key, one of its subkeys, or a single value
entry from the system registry

GetAllSettings
function Returns all values from an application key in the system registry

GetSetting
function Returns a specific value from an application key in the system registry

SaveSetting
procedure Creates or saves a value in the system registry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.22 String Manipulation

Element Description
Asc, AscW
functions Return the character code of the first character of a string

Chr, ChrW
functions Return a string containing a character based on its numeric code

Filter function Returns an array of strings matching (or not matching) a specified value

Format function Returns a string formatted to a given specification

FormatCurrency
function

Returns a string formatted using the currency settings for the current
locale

FormatDateTime
function Returns a string formatted using the date/time setting for the current locale

FormatNumber
function Returns a numeric value in a specified format

FormatPercent
function Returns a numeric value formatted using the "%" symbol

GetChar function Returns a Char containing the character at a particular position in a string

InStr function Finds the starting position of a substring within a string

InStrRev function Returns the first occurrence of a string within another string by searching
from the end of the string

Join function Concatenates an array of values into a delimited string

LCase function Converts a character or string to lowercase

Left function Returns a string containing the leftmost n characters of a string

Len function Counts the number of characters in a string

Like operator Compares two strings

Mid function Extracts a substring from a larger string

Mid statement Replaces a substring in a larger string

Option Compare
statement Sets the default method for comparing string data

Replace function Replaces one or more occurrences of a substring within a larger string

Right function Returns a string containing the rightmost characters of another string

RTrim function Removes any trailing spaces from a string

Str function Converts a numeric value to a string

Spc function Inserts spaces between expressions in output

Space function Fills a string with a given number of spaces

Split function Returns an array of strings from a single delimited string

StrComp function Returns the result of comparing two strings

StrConv function Returns the result of converting a string in a number of possible ways

Returns a string consisting of the first character of another string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrDup function Returns a string consisting of the first character of another string
duplicated a given number of times

StrReverse function Reverses the characters of the strings passed to it

Trim function Removes leading and trailing spaces from a string

UCase function Converts a string to uppercase

Val function Converts a numeric string to a number

VBFixedString
attribute Defines a fixed-length string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. Operators
There are four groups of operators in VB.NET: arithmetic, concatenation, comparison, and logical.
We will look at each group of operators in turn before discussing the order of precedence VB.NET
uses when it encounters more than one type of operator within an expression.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.1 Arithmetic Operators

The arithmetic operators are:

+

The addition operator. Used to add numeric expressions, as well as to concatenate (join
together) two string variables. However, it is preferable to use the concatenation operator
with strings to eliminate ambiguity. For example:

result = expression1 + expression2

-

The subtraction operator. Used to find the difference between two numeric values or
expressions, as well as to denote a negative value. Unlike the addition operator, it cannot
be used with string variables. For example:

result = expression1 - expression2

/

The division operator. Returns a floating point number. For example:

result = expression1 / expression2

*

The multiplication operator. Used to multiply two numerical values. For example:

result = expression1 * expression2

\

The integer division operator. Performs division on two numeric expressions and returns an
integer result (no remainder or decimal places). For example:

result = expression1 \ expression2

Note that regardless of what specific numeric data types expression1 and
expression2 are, integer division returns only an integral data type (Byte, Short, Integer,
or Long). After the division is performed, the result is truncated to an integer data type.

Mod

The modulo operator. Performs division on two numeric expressions and returns the
modulus, that is, the remainder when one number is divided by another. If either of the two
numbers are floating point numbers, they are rounded to integer values prior to the modulo
operation. The return value is a non-negative integral data type. For instance, the
expression:

10 Mod 3

evaluates to 1, because the remainder when dividing 10 by 3 is 1. For example:

result = expression1 Mod expression2

^

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exponentiation operator. Raises a number to the power of the exponent. For example:

result = number ^ exponent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2 Assignment Operators

Along with the equal operator, there is one assignment operator that corresponds to each
arithmetic and concatenation operator. Its symbol is obtained by appending an equal sign to the
arithmetic or concatenation symbol.

The arithmetic and concatenation operators work as follows. They all take the form:

expression1 <operator>= expression2

where <operator> is one of the arithmetic or concatenation operators. This is equivalent to:

expression1 = expression1 <operator> expression2

To illustrate, consider the addition assignment operator. The expression:

x += 1

is equivalent to:

x = x + 1

which simply adds 1 to x. Similarly, the expression:

s &= "end"

is equivalent to:

s = s & "end"

which concatenates the string "end" to the end of the string s.

All of the "shortcut" assignment operators — such as the addition
assignment operator or the concatenation assignment operator — are
new to VB.NET.

The assignment operators are:

=

The equal operator, which is both an assignment operator and a comparison operator. For
example:

oVar1 = oVar2

Note that in VB.NET, the equal operator alone is used to assign all data types; in previous
versions of VB, the Set statement had to be used along with the equal operator to assign
an object reference.

+=

Addition assignment operator. For example:

lNumber += 1

adds 1 to the value of lNumber and assigns the result to lNumber.

-=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subtraction assignment operator. For example:

lNumber -= 1

subtracts 1 from the value of lNumber and assigns the result to lNumber.

^=

Exponential assignment operator. For example:

lNumber ^= 2

squares lNumber and assigns the result to lNumber.

*=

Multiplication assignment operator. For example:

lNumber *= 3

triples lNumber and assigns the result to lNumber.

/=

Division assignment operator. For example:

lNumber /= 2

halves lNumber and assigns the result to lNumber.

\=

Integer division assignment operator. For example:

dblNumber \= 2

divides dblNumber by 2, discards any fractional part, and assigns the result to dblNumber.

&=

Concatenation assignment operator. For example:

strVal &= "."

appends a period to the end of strVal.

Unlike the comparison operators, in which the order of symbols is
reversible (that is, >= is the same as =>), the order of the "shortcut"
operator symbols is not reversible. For example, while:

x += 1

increments x by 1, the expression:

x =+ 1

simply assigns 1 to the variable x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3 Concatenation Operators

VB.NET has two string concatenation operators:

&

The ampersand symbol is the recommended concatenation operator. It is used to bind a
number of string variables together, creating one string from two or more individual strings.
Any nonstring variable or expression is converted to a string prior to concatenation (even if
Option Strict is on). Its syntax is:

result = expression1 & expression2...

+

Although in principle the + sign is identical to the & concatenation operator, it also doubles
as the addition operator. Hence, as Microsoft states:

When you use the + operator, you may not be able to determine whether
addition or string concatenation will occur. Use the & operator for
concatenation to eliminate ambiguity and provide self-documenting code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.4 Comparison Operators

There are three main comparison operators: < (less than), > (greater than), and = (equal to). They
can be used individually, or any two operators can be combined with each other. Their general
syntax is:

result = expression1 <operator> expression2

The resulting expression is True (-1), False (0), or Null. A Null results if and only if either
expression1 or expression2 itself is Null.

What follows is a list of all the comparison operators supported by VB.NET, as well as an
explanation of the condition required for the comparison to result in True:

>

expression1 is greater than and not equal to expression2.

<

expression1 is less than and not equal to expression2.

<>

expression1 is not equal to expression2 (less than or greater than).

>=

expression1 is greater than or equal to expression2.

<=

expression1 is less than or equal to expression2.

=

expression1 is equal to expression2.

Comparison operators can be used with both numeric and string variables. However, if one
expression is numeric and the other is a string, the numeric expression will always be "less than"
the string expression. If both expression1 and expression2 are strings, the "greatest" string
is the one that is the longest. If the strings are of equal length, the comparison is based on the
value of the Option Compare setting. If its value is Binary, the comparison is case sensitive.
(Lowercase letters are "greater" than their uppercase counterparts.) If its value is Text, the
comparison is not case sensitive.

C.4.1 The Is Operator

While not strictly a comparison operator, the Is operator determines whether two object reference
variables refer to the same object. Thus, in some sense, it tests for the "equality" of two object
references. Its syntax is:

result = object1 Is object2

If both object1 and object2 refer to the same object, the result is True; otherwise, the result is
False. You can also use the Is operator to determine if an object variable refers to a valid
object. This is done by comparing the object variable to the special Nothing data type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object. This is done by comparing the object variable to the special Nothing data type:

If oVar Is Nothing Then

The result is True if the object variable does not hold a reference to an object.

C.4.2 The Like Operator

The Like operator is used to match strings. It compares a string variable or string literal with a
pattern expression and determines whether they match (the result is True) or not (the result is
False). For more on this operator, see Like Operator in Chapter 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.5 Logical and Bitwise Operators

Logical operators allow you to evaluate one or more expressions and return a Boolean value
(True or False). VB.NET supports four logical operators: And, AndAlso, Or, OrElse, Not, and
Xor. These operators also double as bitwise operators. A bitwise comparison examines the bit
positions in both expressions and sets or clears the corresponding bit in the result, depending
upon the operator used. The result of a bitwise operation is a numeric value.

In performing logical operations, VB.NET, unlike VB 6, uses conditional short- circuiting. This
means that, in compound logical expressions, the individual expressions are evaluated only until
the expression's overall value is known, unless one of the individual expressions involves a call to
another function or subroutine. Short-circuiting can occur in logical And operations when the first
operand evaluates to False, as well as in logical Or operations when the first operand evaluates
to True.

The six logical and bitwise operators are:

And

Performs logical conjunction; that is, it returns True if and only if both expression1 and
expression2 evaluate to True. If either expression is False, then the result is False. If
either expression is Null, then the result is Null. Its syntax is:

result = expression1 And expression2

For example:

If (x = 5) And (y < 7) Then

In this case, the code after the If statement will be executed only if the value of x is five
and the value of y is less than seven.

As a bitwise operator, And returns 1 if the compared bits in both expressions are 1, and
returns 0 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0

0 1 0

1 0 0

1 1 1

For example, the result of 15 And 179 is 3, as the following binary representation shows:

00000011 = 00001111 And 10110011

AndAlso

As a comparison operator, works exactly like the And operator, except that it performs
short-circuiting; an If statement will be evaluated from left to right only until the truth or
falsity of the statement can be determined (that is, until the first False condition is
encountered). Unlike And, AndAlso does not double as a bitwise operator.

Or

Performs logical disjunction; that is, it returns True if and only if at least one (that is, one or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Performs logical disjunction; that is, it returns True if and only if at least one (that is, one or
both) of expression1 or expression2 evaluates to True. If either expression is Null,
then the result is also Null. The syntax for the Or operator is:

result = expression1 Or expression2

For example:

If x = 5 Or y < 7 Then

In this case, the code after the If statement will be executed if the value of x is five or if the
value of y is less than seven.

As a bitwise operator, Or is the converse of And. Or returns 0 if the compared bits in both
expressions are 0, and returns 1 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0

0 1 1

1 0 1

1 1 1

For example, the result of 15 Or 179 is 191, as the following binary representation shows:

10111111 = 00001111 Or 10110011

And/Or: Conditional Short-Circuiting
The documentation implies that And and Or do no short-circuiting; that is, that every
subexpression is evaluated, even if the result of the expression is known. In fact, both
And and Or perform short-circuiting if the result of the expression is known and
unevaluated subexpressions do not include calls to functions.

OrElse

As a comparison operator, works exactly like the Or operator, except that it performs short-
circuiting; an If statement will be evaluated from left to right only until the truth or falsity of
the statement can be determined (that is, until the first True condition is encountered).
Unlike Or, OrElse does not double as a bitwise operator.

Not

Performs logical negation on a single expression; that is, it returns True if and only if the
expression is False. If the expression is Null, though, the result of using the Not
operator is still a Null. Its syntax is:

result = Not expression1

For example:

If Not IsNumeric(x) Then

In this example, the code following the If statement will be executed if IsNumeric returns
False, indicating that x is not a value capable of being represented by a number.

As a bitwise operator, Not simply reverses the value of the bit, as shown in the following
table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression1 Result
0 1

1 0

For example, the result of Not 16 is 239, as the following binary representation shows:

Not 00010000 = 11101111

Xor

Performs logical exclusion; that is, Xor (an abbreviation for eXclusive OR) returns True if
and only if the two expressions have different truth values. If either expression is Null, the
result is also Null. Its syntax is:

result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 if the bits being compared are different and returns 0 if
they are the same, as shown in the following table:

Bit in expression1 Bit in expression2 Result
0 0 0

0 1 1

1 0 1

1 1 0

Eqv and Imp
Eqv and Imp, two logical and bitwise operators, present in VB 6, have been removed
from VB.NET. Eqv can simply be replaced with the = comparison operator. Hence, the
expression:

exp1 Eqv exp2

is the same as:

exp1 = exp2

Imp can be replaced with an expression using the Not and Or operators. For example:

exp1 Imp exp2

can also be expressed as:

(Not exp1) Or exp2

For example, the result of 15Xor179is 188, as the following binary representation
shows:

10111100 = 00001111 Imp 10110011

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.6 Operator Precedence

If you include more than one operator in a single line of code, you need to know the order in
which VB.NET will evaluate them. Otherwise, the results may be completely different from what
you intended. The rules that define the order in which a language handles operators is known as
the order of precedence. If the order of precedence results in operations being evaluated in an
order other than the intended one, you can explicitly override the order of precedence through the
use of parentheses. Indeed, we strongly recommend the use of sufficient parentheses to avoid
any possible misinterpretation. Put another way, we recommend using enough parentheses so
that operator precedence is no longer relevant!

When a single line of code includes operators from more than one category, they are evaluated in
the following order:

Arithmetic operators
Concatenation operators
Comparison operators
Logical operators

Within each category of operators, except for the single concatenation operator, there is also an
order of precedence. If multiple comparison operators appear in a single line of code, they are
simply evaluated from left to right. The order of precedence of arithmetic operators is as follows:

Exponentiation (^)
Division and multiplication (/,*) (no order of precedence between the two)
Integer division (\)
Modulo arithmetic (Mod)
Addition and subtraction (+,-) (no order of precedence between the two)

If the same arithmetic operator is used multiple times in a single line of code, the operators are
evaluated from left to right.

The order of precedence of logical operators is:

Not
And
Or
Xor

If the same arithmetic or logical operator is used multiple times in a single line of code, the
operators are evaluated from left to right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. Constants and Enumerations
This appendix consists of a reference for Visual Basic's built-in constants and enumerations.

VB.NET defines several enumerations in the Microsoft.VisualBasic namespace. For instance, the
CompareMethod enumeration is defined as:

Enum CompareMethod

 Binary = 0

 Text = 1

End Enum

Thus, we can use the following expressions in our VB code:

CompareMethod.Binary

CompareMethod.Text

On the other hand, VB also defines two equivalent built-in constants in the Constants class of the
Microsoft.VisualBasic namespace that serve the same purpose:

VbBinaryCompare

VbTextCompare

Note, however, that VB does not define built-in constants corresponding to every member of
every enum. For instance, there are no built-in constants that correspond to the OpenMode enum
members. This enum is used in the FileOpen procedure/statement:

Enum OpenMode

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

In this appendix, we list all of the VB constants and enumerations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.1 Visual Basic Intrinsic Constants

Table D-1 contains an alphabetical list of VB's built-in symbolic constants. They are actually
implemented as fields of the Constants class in the Microsoft.VisualBasic namespace.

Table D-1. Visual Basic constants
Constant Value

VbAbort 3

VbAbortRetryIgnore &H00000002

VbApplicationModal &H00000000

VbArchive 32

VbArray 8192

VbBack Chr(8)

VbBinaryCompare 0

VbBoolean 11

VbByte 17

VbCancel 2

VbCr Chr(13)

VbCritical &H00000010

VbCrLf Chr(13) & Chr(10)

VbCurrency 6

VbDate 7

VbDecimal 14

VbDefaultButton1 &H00000000

VbDefaultButton2 &H00000100

VbDefaultButton3 &H00000200

VbDirectory 16

VbDouble 5

VbEmpty 0

VbExclamation &H00000030

VbFalse 0

VbFirstFourDays 2

VbFirstFullWeek 3

VbFirstJan1 1

VbFormFeed Chr(12)

VbFriday 6

VbGeneralDate 0

VbGet 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VbHidden 2

VbHide 0

VbHiragana 32

VbIgnore 5

VbInformation &H00000040

VbInteger 3

VbKatakana 16

VbLet 4

VbLf Chr(10)

VbLinguisticCasing 1024

VbLong 20

VbLongDate 1

VbLongTime 3

VbLowerCase 2

VbMaximizedFocus 3

VbMethod 1

VbMinimizedFocus 2

VbMinimizedNoFocus 6

VbMonday 2

VbMsgBoxHelp &H00004000

VbMsgBoxRight &H00080000

VbMsgBoxRtlReading &H00100000

VbMsgBoxSetForeground &H00010000

VbNarrow 8

VbNewLine Chr(13) & Chr(10)

VbNo 7

VbNormal 0

VbNormalFocus 1

VbNormalNoFocus 4

VbNull 1

VbNullChar Chr(0)

VbNullString

VbObject 9

VbObjectError &H80040000

VbOK 1

VbOKCancel &H00000001

VbOKOnly &H00000000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VbProperCase 3

VbQuestion &H00000020

VbReadOnly 1

VbRetry 4

VbRetryCancel &H00000005

VbSaturday 7

VbSet 8

VbShortDate 2

VbShortTime 4

VbSimplifiedChinese 256

VbSingle 4

VbString 8

VbSunday 1

VbSystem 4

VbSystemModal &H00001000

VbTab Chr(9)

VbTextCompare 1

VbThursday 5

VbTraditionalChinese 512

VbTrue 1

VbTuesday 3

VbUpperCase 1

VbUseDefault &HFFFFFFFE

VbUserDefinedType 36

VbUseSystem 0

VbUseSystemDayOfWeek 0

VbVariant 12

VbVerticalTab Chr(11)

VbVolume 8

VbWednesday 4

VbWide 4

VbYes 6

VbYesNo &H00000004

VbYesNoCancel &H00000003

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.2 ControlChars Class

The Microsoft.VisualBasic namespace includes a ControlChars class whose shared fields can be
used for device control and outputting special characters. Most of the shared fields also have
equivalent Visual Basic intrinsic constants, as the following table shows:

Field Value Intrinsic constant
Back Chr(8) VbBack
Cr Chr(13) VbCr
CrLf \r\n VbCrLf
FormFeed Chr(12) VbFormFeed
Lf Chr(10) VbLf
NewLine \r\n VbNewLine
NullChar Chr(0) VbNullChar
Quote Chr(34) none
Tab Chr(9) VbTab
VerticalTab Chr(11) VbVerticalTab

Note that these constants must be qualified with the class name, as in:

If str = ControlChars.CrLf Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.3 Visual Basic Enumerations

The following is a list of VB enumerations, along with the VB constants that can be used in place
of individual enumeration members. In a few cases, there seem to be missing VB intrinsic
constants. These are marked with a question mark (?).

Note that all enumeration members must be qualified with the name of the enumeration to which
they belong.

D.3.1 AppWinStyle Enumeration

Enum AppWinStyle

 Hide = 0 ' VbHide

 NormalFocus = 1 ' VbNormalFocus

 MinimizedFocus = 2 ' VbMinimizedFocus

 MaximizedFocus = 3 ' VbMaximizedFocus

 NormalNoFocus = 4 ' VbNormalNoFocus

 MinimizedNoFocus = 6 ' VbMinimizedNoFocus

End Enum

D.3.2 CallType Enumeration

Enum CallType

 Method = 1 ' VbMethod

 Get = 2 ' VbGet

 Let = 4

 Set = 8 ' VbSet

End Enum

D.3.3 CompareMethod Enumeration

Enum CompareMethod

 Binary = 0 ' VbBinaryCompare

 Text = 1 ' VbTextCompare

End Enum

D.3.4 DateFormat Enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enum DateFormat

 GeneralDate = 0 ' VbGeneralDate

 LongDate = 1 ' VbLongDate

 ShortDate = 2 ' VbShortDate

 LongTime = 3 ' VbLongTime

 ShortTime = 4 ' VbShortTime

End Enum

D.3.5 DateInterval Enumeration

Enum DateInterval

 Year = 0

 Quarter = 1

 Month = 2

 DayOfYear = 3

 Day = 4

 WeekOfYear = 5

 Weekday = 6

 Hour = 7

 Minute = 8

 Second = 9

End Enum

D.3.6 DueDate Enumeration

Enum DueDate

 EndOfPeriod = 0

 BegOfPeriod = 1

End Enum

D.3.7 FileAttribute Enumeration

Enum FileAttribute

 Normal = 0 ' VbNormal

 ReadOnly = 1 ' VbReadOnly

 Hidden = 2 ' VbHidden

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Hidden = 2 ' VbHidden

 System = 4 ' VbSystem

 Volume = 8 ' VbVolume

 Directory = 16 ' VbDirectory

 Archive = 32 ' VbArchive

End Enum

D.3.8 FirstDayOfWeek Enumeration

Enum FirstDayOfWeek

 System = 0 ' VbUseSystemDayOfWeek

 Sunday = 1 ' VbSunday

 Monday = 2 ' VbMonday

 Tuesday = 3 ' VbTuesday

 Wednesday = 4 ' VbWednesday

 Thursday = 5 ' VbThursday

 Friday = 6 ' VbFriday

 Saturday = 7 ' VbSaturday

End Enum

D.3.9 FirstWeekOfYear Enumeration

Enum FirstWeekOfYear

 System = 0 ' VbUseSystem

 Jan1 = 1 ' VbFirstJan1

 FirstFourDays = 2 ' VbFirstFourDays

 FirstFullWeek = 3 ' VbFirstFullWeek

End Enum

D.3.10 MsgBoxResult Enumeration

Enum MsgBoxResult

 OK = 1 ' vbOK

 Cancel = 2 ' vbCancel

 Abort = 3 ' vbAbort

 Retry = 4 ' vbRetry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Retry = 4 ' vbRetry

 Ignore = 5 ' vbIgnore

 Yes = 6 ' vbYes

 No = 7 ' vbNo

End Enum

D.3.11 MsgBoxStyle Enumeration

Enum MsgBoxStyle

 DefaultButton1 = &H00000000 ' vbDefaultButton1

 ApplicationModal = &H00000000 ' vbApplicationModal

 OKOnly = &H00000000 ' vbOKOnly

 OKCancel = &H00000001 ' vbOKCancel

 AbortRetryIgnore = &H00000002 ' vbAbortRetryIgnore

 YesNoCancel = &H00000003 ' vbYesNoCancel

 YesNo = &H00000004 ' vbYesNo

 RetryCancel = &H00000005 ' vbRetryCancel

 Critical = &H00000010 ' vbCritical

 Question = &H00000020 ' vbQuestion

 Exclamation = &H00000030 ' vbExclamation

 Information = &H00000040 ' vbInformation

 DefaultButton2 = &H00000100 ' vbDefaultButton2

 DefaultButton3 = &H00000200 ' vbDefaultButton3

 SystemModal = &H00001000 ' vbSystemModal

 MsgBoxHelp = &H00004000 ' vbMsgBoxHelp

 MsgBoxSetForeground = &H00010000 ' vbMsgBoxSetForeground

 MsgBoxRight = &H00080000 ' vbMsgBoxRight

 MsgBoxRtlReading = &H00100000 ' vbMsgBoxRtlReading

End Enum

D.3.12 OpenAccess Enumeration

Enum OpenAccess

 Default = &HFFFFFFFF

 Read = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Read = 1

 Write = 2

 ReadWrite = 3

End Enum

D.3.13 OpenMode Enumeration

Enum OpenMode

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

D.3.14 OpenModeTypes Enumeration

Enum OpenModeTypes

 Any = &HFFFFFFFF

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

D.3.15 OpenShare Enumeration

Enum OpenShare

 Default = &HFFFFFFFF

 LockReadWrite = 0

 LockWrite = 1

 LockRead = 2

 Shared = 3

End Enum

D.3.16 TriState Enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enum TriState

 UseDefault = &HFFFFFFFE ' VbUseDefault

 False = 0 ' VbFalse

 True = 1 ' VbTrue

End Enum

D.3.17 VariantType Enumeration

Enum VariantType

 Empty = 0

 Null = 1

 Short = 2

 Integer = 3 ' VbInteger

 Single = 4 ' VbSingle

 Double = 5 ' VbDouble

 Currency = 6 ' VbCurrency

 Date = 7 ' VbDate

 String = 8 ' VbString

 Object = 9 ' VbObject

 Error = 10 ' VbError

 Boolean = 11 ' VbBoolean

 Variant = 12 ' VbVariant

 DataObject = 13 ' VbDataObject

 Decimal = 14 ' VbDecimal

 Byte = 17 ' VbByte

 Char = 18

 Long = 20 ' VbLong

 UserDefinedType = 36 ' VbUserDefinedType

 Array = 8192 ' VbArray

End Enum

D.3.18 VbStrConv Enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enum VbStrConv

 None = 0

 UpperCase = 1 ' VbUpperCase

 LowerCase = 2 ' VbLowerCase

 ProperCase = 3 ' VbProperCase

 Wide = 4 ' VbWide

 Narrow = 8 ' VbNarrow

 Katakana = 16 ' VbKatakana

 Hiragana = 32 ' VbHiragana

 SimplifiedChinese = 256 ' VbSimplifiedChinese

 TraditionalChinese = 512 ' VbTraditionalChinese

 LinguisticCasing = 1024 ' VbLinguisticCasing

End Enum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. The VB.NET Command-Line Compiler
With the release of the .NET Framework Software Development Kit (SDK), Visual Basic for the
first time features a command-line compiler that allows you to create and compile Visual Basic
components and applications apart from Visual Studio. Ironically, this means that one of
VB.NET's significant advances is the ability to use your favorite text editor, such as NotePad or
WinEdit, to create VB.NET code. This appendix details the operation of the compiler, vbc.exe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.1 Compiler Basics

Syntactically, the compiler is fairly typical in that it uses command-line switches to control its
operation. A command-line switch is designated by a slash or hyphen followed by a keyword. If
the keyword takes an argument, it is separated from the keyword by a colon (:). For example:

vbc sample1.vb /target:library

supplies the library keyword as an argument to create a library file (that is, a DLL). If multiple
arguments are required, they are separated from one another by commas. For example:

vbc sample1.vb /r:system.design.dll,system.messaging.dll

references the metadata in the system.design.dll and system.messaging.dll assemblies.

The minimal syntax required to compile a file named sample1.vb is:

vbc sample1.vb

This generates a console-mode application. You can specify the type of component or application
you wish to generate by using the /target switch. To generate a Windows executable, you'd
enter something like the following at the command line:

vbc sample1.vb /t:winexe /r:system.windows.forms.dll

Note the /r switch, which adds a reference to the assembly that contains the
system.windows.forms namespace. You must explicitly add references to any assemblies your
application requires, other than mscorlib.dll and microsoft.visualbasic.dll.

To compile multiple files, just list them on the command line using a space to separate them. For
example:

vbc sample1.vb sample2.vb /t:winexe /r:system.windows.forms.dll

Since sample1.vb is the first file we listed and we haven't explicitly designated an output filename,
the compiler will generate a Windows executable named sample1.exe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2 Command-Line Switches

The VB.NET compiler supports the following command-line switches.

E.2.1 Output Filename and File Type

Switch Description

/out:<file>
Defines the output filename. If not present, the output file will have the
same root filename as the input file. <file> can be the root filename
without a file extension.

/target:<type>

or:

/t:<type>

Defines the type of file to be generated by the compiler. <type> can be any
of the following keywords: exe (to create a console application), winexe (to
create a Windows application), library (to create a library assembly in a
DLL), and module (to create a .NETMODULE file that can be added to an
assembly). If the switch is not present, type defaults to exe, and the
compiler attempts to create a console application.

E.2.2 Input Files

Switch Description
/addmodule:<file> Includes the .NETMODULE file named <file> in the output file.

/libpath:<path_list>

The directory or directories to search for metadata references
(which are specified by the /reference switch) that are not
found in either the current directory or the CLR's system
directory. <path_list> is a list of directories, with multiple
directories separated by commas or semicolons. Note that
/libpath is additive; using multiple switches adds
<path_list> to existing paths rather than replacing the
existing ones.

/recurse:<wildcard>

Includes all files in the current directory and its subdirectories
according to the wildcard specifications. For example:

vbc /recurse:*.vb /t:library

 /out:mylibrary.lib

If you use the /recurse switch, you do not have to name a
specific file to compile; however, if you do, it should not match
the specification provided as an argument to the /recurse
switch.

/reference:<file_list>

or:

/r:<file_list>

References metadata from the assemblies contained in
<file_list>. Each filename in <file_list> must include a
file extension.

E.2.3 Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the
output file. <resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the
logical name used to load the resource, and the public and
private keywords determine whether the resource is public or
private in the assembly manifest. By default, resources are
public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named
<resinfo> in the output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the
logical name used to load the resource, and the public and
private keywords determine whether the resource is public or
private in the assembly manifest. By default, resources are
public. The /resource switch cannot be used along with the
/target:module switch.

/win32icon:<file> Indicates the application icon is found in a Win32 icon (ICO)
file.

/win32resource:<file> Indicates resources are to be found in a Win32 resource (RES)
file.

E.2.4 Code Generation

Switch Description

/optimize[+|-]

Determines whether compiler output is optimized to produce
smaller binary files that offer improved efficiency and
performance. Optimized code, however, is more difficult to debug.
Its default value is on (+). /optimize is equivalent to
/optimize+.

/removeintchecks[+|-]
Removesinteger overflow checks. Its default value is off (-).
Turning it on places the responsibility on the developer for
ensuring that integers don't overflow their bounds.
/'removeintchecks is equivalent to /removeintchecks+.

E.2.5 Debugging

Switch Description

/debug[+-]
Determines whether debugging information is generated and included in
the output file or files. The default value is /debug-, which suppresses the
generation of debug information. /debug+ or /debug causes the compiler
to generate debugging information.

/debug:full

or:

Defines the form of debugging information output by the compiler. full
generates full debugging information and allows a debugger to be attached
to the running program; it is the default value if debugging is enabled.
pdbonly generates a debug symbol (PDB) file only. It supports source-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/debug:pdbonly
pdbonly generates a debug symbol (PDB) file only. It supports source-
code debugging when the program is started in the debugger, but displays
assembler only when the running program is attached to the debugger.

E.2.6 Errors and Warnings

Switch Description
/nowarn Disables warnings.

/warnaserror[+|-]
Treats warnings as errors, so that warnings prevent the code from
compiling. Its default value is off (-). /warnaserror is equivalent to
/warnaserror+.

E.2.7 Language

Switch Description
/define:<symbol_list>

or:

/d:<symbol_list>

Declares global conditional compiler constants. <symbol_
list> has the form name=value, with multiple values
separated by commas.

/imports:<import_list>
Globally imports namespaces, eliminating the need to define
them with individual Imports statements. <import_list> is
a comma-delimited list of namespaces.

/optioncompare:binary
Specifies binary (case-sensitive) string comparison; this is the
default value. The switch does not override any explicit Option
Compare settings found in individual source- code files.

/optioncompare:text
Specifies case-insensitive string comparisons. The switch does
not override any explicit Option Compare settings found in
individual source-code files.

/optionexplicit[+|-]

Determines whether variables must be explicitly defined before
they are used; the default setting is on. The switch does not
override any explicit Option Explicit settings found in
individual source-code files. /optionexplicit is the same
as /optionexplicit+.

/optionstrict[+|-]

Determines whether implicit narrowing conversions and late
binding are allowed; the default setting is off. The switch does
not override any explicit Option Strict settings found in
individual source-code files. /optionstrict is the same as
/optionstrict+.

/rootnamespace:<string>

Defines a root namespace for all type declarations. This means
that an Imports statement need not be used to import the root
namespace, and that the relative path of a type (starting from
the root namespace) can be used in place of its fully qualified
name. Any Imports statements, however, must contain the
fully qualified namespace name.

E.2.8 Miscellaneous

Switch Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/help

or:

/?

Displays help information.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet Turns on quiet output mode; the compiler displays less information about errors
than it does ordinarily.

/verbose Turns on verbose output mode; the compiler displays more information about the
file being compiled and about errors than usual.

E.2.9 Advanced

Switch Description

/baseaddress:<number>

Specifies the base address at which a library or module should
be loaded. If a single application or component uses multiple
libraries, or if modules are loaded by a single application or
component, the runtime attempts to load them at the same
address and then maps them to new addresses. In this case,
performance can be improved by specifying the base address of
a project's additional libraries or modules. <number> should be
a hexadecimal address.

/bugreport:<file> Generates a file named <file> that contains information
needed to report a bug.

/delaysign[+|-]
If on (+), signs the assembly using only the public portion of the
strong name key; if off (-), the default value, generates a fully
signed assembly. The /delaysign option must be used with
either /keycontainer or /keyfile.

/keycontainer:<string>
Specifies a strong-name key container with the assembly's key
pair. The name of the container is indicated by <string>; if
<string> has embedded spaces, it should be enclosed in
quotation marks.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to
give an assembly a strong name. If the filename has embedded
spaces, <file> should be enclosed in quotation marks.

/libpath:<path_list>
Specifies the list of directories to search for metadata
references. By default, the global assembly cache is
automatically searched for references.

/main:<class>

or:

/m:<class>

Specifies the class or module (or a class that inherits from
System.Windows.Forms.Form) that contains Sub Main, which, if
present, is a program entry point for applications and
components. It is particularly useful if more than one
class/module in a project has a subroutine named Main.

/utf8output[+|-]
Emits compiler output in UTF8 character encoding, which is
useful when local settings prevent compiler output from being
displayed to the console correctly. Its default value is off (-).
/utf8output is the same as utf8output+.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.3 Using a Response File

The Visual Basic compiler also allows you to specify command-line options and settings from a
text file or response file when you compile your program. The syntax is:

vbc @<file>

where <file> is the name of the response file, including its path if it is not located in the current
directory. The response file simply contains source filenames and compiler options; it is
interpreted as if the filenames and compiler switches were entered at the command line.

The syntax of a response file is quite simple. Multiple filenames or switches can be included on a
single line. However, a single switch, option, or filename cannot span multiple lines. In addition, #
serves as a comment symbol.

For example, a response file named mylib.rsp might appear as follows:

Build the library

/target:library

/out:mylibrary

/debug+

/debug:full

libfunc1.vb

libproc1.vb

libstrings.vb

The compiler can then be invoked by entering the following at the command line:

vbc @mylib.rsp

A response file can be combined with switches and filenames entered at the command line, and
multiple response files can be used. The compiler processes these items in the order in which
they are encountered. This means that settings in a response file can be overridden by later
specifying command-line options or that command-line settings can be overridden by later
specifying a response filename. For example, the command line:

vbc libnumeric.vb @mylib.rsp /debug-

compiles a file named libnumeric.vb, in addition to the three files already named in mylib.rsp. It
also reverses some settings in mylib.rsp by preventing debugging information from being included
in the output file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix F. VB 6 Language Elements Not Supported by
VB.NET
This appendix provides an alphabetical list of language elements that are present in VB 6 but are
not supported by VB.NET.

Element Description

Array function Returns a variant array whose elements contain the values passed
as arguments to the function

AscB function Returns an integer representing the character code of the first byte of
a string

Atn function Returns the arctangent of a number; replaced by the Atan method in
the System.Math class

Calendar property Determines whether a project should use the Gregorian or Hijri
calendar

CCur function Converts an expression into a Currency data type

ChrB function Returns the character corresponding to an 8-bit character code

Close statement Closes a file opened with the Open statement

CVar function Converts an expression into a Variant data type

CVDate function Returns a Date variant

CVErr function Returns an error from a procedure

Date, Date$ functions Return the current system date

Date statement Sets the current system date

Debug.Print Sends output to the Immediate window

DefBool statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Boolean

DefByte statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Byte

DefCur statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Currency

DefDate statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Date

DefDbl statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Double

DefDec statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

DefInt statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

DefObj statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefSng statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

DefStr statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

Eqv operator Represents a logical equivalence operator

Error function Returns a standard description of a particular error code

Get statement Retrieves data from a disk file into a program variable

GoSub...Return
statement

Passes execution to and returns from a subroutine within a
procedure

IMEStatus function Returns the state of the Input Method Editor

Imp operator Represents a logical implication operator

Initialize event Fires when an object is first used

Input, Input$, InputB,
InputB$ functions

Reads a designated number of characters from a file opened in input
or binary mode

Instancing property Defines how instances of a class are created

InStrB function Returns the position of a particular byte in a binary string

IsEmpty function Determines if a variable has been initialized

IsMissing function Determines whether an argument has been passed to a procedure

IsNull function Indicates whether an expression contains Null data

IsObject function Indicates whether a variable contains a reference to an object

LeftB, LeftB$ functions Returns the leftmost n bytes of binary data

LenB function Returns the actual size of a user-defined type in memory

Let statement Assigns the value of an expression to a variable

Load statement Loads a form or control

LoadResData function Extracts a string containing a resource included in a resource project

LoadResPicture function Assigns a graphic from a resource file to the Picture property of an
object

LoadResString function Retrieves a string from a resource file

MidB, MidB$ functions Returns a specified number of bytes from a larger binary string

MidB statement Replaces a specified number of bytes in a binary string

MTSTransactionMode
property

Indicates whether a component is an MTS object and, if so,
determines its level of transaction support

Name statement Renames a disk file or directory

ObjPtr function Returns a pointer to an object

On...GoSub statement Causes program execution to jump to a subroutine based on the
value of a control variable

On...Goto statement Causes program execution to jump to a label based on the value of a
control variable

Open statement Opens a file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Base statement Defines the default lower bound for arrays dimensioned within a
module

Option Private Module
statement Restricts the scope and visibility of a module to the module's project

Persistable property Determines whether a class in an ActiveX DLL project can be saved
to disk

Property Set statement Declares a procedure that assigns an object reference to a property

Put statement Writes data from a program variable to a disk file

Right, Right$ functions Returns the rightmost bytes from a binary string

Set statement Assigns an object reference to a variable

Sgn function Determines the sign of a number

Sqr function Calculates the square root of a number

String function Creates a string composed of a single character repeated a given
number of times

StrPtr function Returns a pointer to a BSTR (Visual Basic string)

Terminate event Fired when an object is destroyed

Time function Returns the current system time

Time statement Sets the current system time

Type statement Defines a user-defined type

Unload statement Removes a form or a dynamically created member of a control array
from memory

Width# statement Specifies a virtual file width when working with files opened with the
Open statement

VarPtr function Returns a pointer to a variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of VB.NET Language in a Nutshell, Second Edition, is a catfish. Catfish
can be found all over the world, most often in freshwater environments. Catfish are identified by
their whiskers, called "barbels," as well by as their scaleless skin; fleshy, rayless posterior fins;
and sharp, defensive spines in the dorsal and shoulder fins. Catfish have complex bones and
sensitive hearing. They are omnivorous feeders and skilled scavengers. A marine catfish can
taste with any part of its body.

Though most madtom species of catfish are no more than 5 inches in length, some Danube
catfish (called wels or sheatfish) reach lengths of up to 13 feet and weights of 400 pounds. Wels
catfish (found mostly in the U.K.) are dark, flat, and black in color with white bellies. They breed in
the springtime in shallow areas near rivers and lakes. The females hatch eggs in their mouths
and leave them on plants for the males to guard. Two to three weeks later, the eggs hatch into
tadpole-like fish, which grow quickly in size. The largest recorded wels catfish was 16 feet long
and weighed 675 pounds.

Catherine Morris was the production editor and proofreader for VB.NET Language in a Nutshell,
Second Edition. Ann Schirmer assisted with the copyedit. Sarah Sherman and Claire Cloutier
provided quality control. Judy Hoer wrote the index.

Pam Spremulli designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout, based on a series design by Nancy Priest. Neil Walls
converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra.
The text and heading fonts are ITC Garamond Light and Garamond Book. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

! (exclamation point) type identifier
$ (dollar sign) type identifier
& (ampersand) string concatenation operator
&= concatenation assignment operator
< less-than comparison operator
<= less-than-or-equal-to comparison operator
<\\> inequality operator
* (asterisk)
 multiplication operator
 in regular expressions
*= multiplication assignment operator
+ (plus)
 addition operator
 in regular expressions
 string concatenation operator
+= addition assignment operator
- (minus) subtraction operator
-= subtraction assignment operator
. (period) in regular expressions
.NET [See VB.NET]
/ division operator
/= division assignment operator
= (equals sign)
 assignment operator 2nd
 comparison operator
? (question mark) in regular expressions
@ (at sign) type identifier
[] (brackets) in regular expressions
\ integer division operator
\: (colon) and line numbers
\\> greater-than comparison operator
\\>= greater-than-or-equal-to comparison operator
\\\\= integer division assignment operator
^ (caret) exponentiation operator
^= exponential assignment operator
_ (underscore) VB.NET line continuation character
{} (curly brackets) in regular expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abs function (Math class) 2nd 3rd
abstract classes
abstract members
abstraction in object-oriented programming
access modifiers
 class modules and 2nd
 declaring variables and constants
 using in Property statement
 using in Sub statements
accessibility
 in class modules
 of members
 rules of
accessor methods 2nd
accessors, property
Acos function (Math class) 2nd 3rd
ActiveX objects
 accessing
 creating
Add method
 Collection class 2nd 3rd
 Hashtable class 2nd
AddExtension property
 OpenFileDialog class
 SaveFileDialog class
AddHandler statement 2nd 3rd
addition assignment operator (+=)
addition operator (+)
/addmodule\: command-line switch
address, variable
AddressOf operator 2nd 3rd 4th
ADO.NET and data access
AllowFullOpen property (ColorDialog class)
And logical operator 2nd 3rd
AndAlso logical operator 2nd 3rd
AnsiBStr (UnmanagedType enumeration)
AnyColor property (ColorDialog class)
ApartmentState property (Thread class)
 MTAThread attribute
 STAThread attribute
AppActivate procedure 2nd
AppActivateHelper procedure
Application class
application-level events (ASP.NET)
Application.CompanyName property 2nd
Application.DoEvents method 2nd
Application.ExecutablePath property 2nd
Application.ProductName property 2nd
Application.ProductVersion property 2nd
applications, creating
AppWinStyle enumeration
arccosine, returning
arcsine, returning
arctangent, returning
argument signatures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overloading functions and
arguments
 optional
 for attributes
 passing 2nd
 required
 for attributes
 for custom attributes
 vs. parameters
arithmetic operators
Array class 2nd 3rd
Array.BinarySearch method 2nd 3rd
Array.Copy method 2nd
Array.IndexOf method 2nd 3rd
Array.LastIndexOf method 2nd 3rd
Array.Reverse method 2nd
Array.Sort method 2nd
arrays
 clearing
 Filter function and
 fixed arrays, defining
 IsArray function and 2nd 3rd
 LBound function and
 redimensioning 2nd
 UBound function and
 VB 6 vs. VB.NET
 vs. Collection objects
AsAny (UnmanagedType enumeration)
Asc/AscW functions (String class) 2nd
Asin function (Math class) 2nd 3rd
ASP.NET events
assemblies
 attributes stored as metadata in 2nd
 command-line switches for
 importing
AssemblyInfo.vb file
AssemblyVersion attribute
Assert method (Debug class) 2nd
assignment operators
asterisk (*)
 multiplication operator
 in regular expressions
Atan function (Math class) 2nd 3rd
Atan2 function (Math class) 2nd 3rd
attributes
 arguments, required/optional 2nd
 AssemblyVersion attribute
 AttributeUsage attribute
 class constructors for
 CLSCompliant attribute
 COMClass attribute
 custom
 declaring properties for
 defining
 using
 DefaultEvent attribute
 DefaultMember attribute
 file
 getting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting
 Flags attribute
 Guid attribute
 MarshallAs attribute
 MTAThread attribute
 Obsolete attribute 2nd
 Out attribute
 ParamArray attribute
 parameter declarations and
 STAThread attribute
 syntax of
 ThreadStatic attribute
 VBFixedArray attribute
 VBFixedString attribute 2nd
 WebMethod attribute 2nd
 WebService attribute
AttributeTargets enumeration
AttributeUsage attribute 2nd
AutoFlush property (Debug class) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Base Class Library (BCL), implementing data types defined in
base classes
 abstract members in
 defining
 inheritance and
 MyBase keyword and
/baseaddress\: command-line switch
BCL (Base Class Library), implementing data types defined in
Beep procedure 2nd
binary comparison 2nd
 Like operator and
binary strings
BinarySearch method (Array class) 2nd 3rd
binding
 dynamic
 late vs. early 2nd
bitwise operators
 removed from VB.NET
block-level scope of variables 2nd
 Dim statement and
Bool (UnmanagedType enumeration)
Boolean data type 2nd
 converting values to
Boolean operators removed from VB.NET
Bounds property (VBFixedArray attribute)
brackets ([]) in regular expressions
BStr (UnmanagedType enumeration)
BSTR data type
BufferResponse property (WebMethod attribute)
/bugreport\: command-line switch
built-in constants
built-in events
button display constants
ByRef keyword
 Out attribute and
 using in Sub statement
 VB 6 vs. VB.NET
Byte data type 2nd
 converting values to
ByVal keyword
 using in Sub statement
 VB 6 vs. VB.NET
ByValArray (UnmanagedType enumeration)
ByValTStr (UnmanagedType enumeration)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

CacheDuration property (WebMethod attribute)
Call statement 2nd
 controlling execution flow
callback functions and function pointers 2nd
CallByName function 2nd
CallType enumeration
CancelEventArgs class
cast operators
Catch blocks and Try...Catch...Finally statement
CBool function 2nd 3rd
CByte function 2nd 3rd
CChar function 2nd 3rd
CDate function 2nd 3rd
CDbl function 2nd 3rd
CDec function 2nd 3rd
Ceiling function (Math class) 2nd 3rd
centralized error handling
Char data type 2nd
 converting values to
Chars property (String class)
ChDir procedure 2nd
ChDrive procedure 2nd
CheckFileExists property (OpenFileDialog class)
Choose function 2nd
Chr/ChrW functions (String class) 2nd
CInt function 2nd 3rd
Circle method (not supported in VB.NET)
class constructors
 for attributes
 for custom attributes
 Windows Forms applications and
class members [See members]
class modules
 access modifiers and
 accessibility in
 constructors in
 implementing interfaces with
 types of members in
Class statement 2nd 3rd
ClassBehavior keyword and Property statement
classes
 abstract members and
 attributes and
 command-line switches for
 declaring
 properties for
 with Protected keyword
 Framework Class Library
 inheritance
 instantiating
 Me operator and
 members [See members]
 public interfaces of 2nd
ClassID property (COMClass attribute)
Clear method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Err object 2nd 3rd
 Hashtable class 2nd
 Queue class 2nd
 Stack class 2nd
Clipboard class
Clipboard.GetDataObject method 2nd
Clipboard.SetDataObject method 2nd
CLng function 2nd 3rd
Clone method (String class)
Close method (Debug class) 2nd
CLR (Common Language Runtime) 2nd
 console applications and
 language changes for VB.NET
CLSCompliant attribute
CObj function 2nd 3rd
code
 commenting out
 converting between managed and unmanaged
 generating
 managed
 Visual Basic, categories of
code blocks
 conditional
 Do...Loop statement
 #If...Then...#Else directive
 defining as code modules
 expanding/collapsing
 variables declared inside of 2nd 3rd
Collection class 2nd
collection types, implementing
Collection.Add method 2nd 3rd
Collection.Count property 2nd 3rd
Collection.Item method 2nd 3rd
Collection.Remove method 2nd 3rd
color codes, returning 2nd
Color property
 ColorDialog class
 FontDialog class
ColorDialog class 2nd
COMClass attribute 2nd
Command function 2nd
command-line compiler
CommandArgument property (CommandEventArgs class)
CommandName property (CommandEventArgs class)
commenting out code
Common Language Runtime (CLR) 2nd
 console applications and
 language changes for VB.NET
Common Type System (CTS) 2nd
 SystemTypeName function and
 VbTypeName function and
CompanyName property (Application class) 2nd
Compare method (String class)
CompareMethod enumeration
CompareOrdinal method (String class)
CompareTo method (String class)
comparing string data
 command-line switches and
comparison operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compiler, command-line
Concat method (String class)
concatenation assignment operator (&=)
concatenation operators, string
conditional compiler constants, defining
conditional execution of code
console applications 2nd
#Const directive 2nd
Const statement 2nd
constants
 assigning error numbers
 built-in
 converting strings
 declaring
 MsgBoxStyle enumeration
 scope of 2nd
 setting attributes of a file
 VB 6 vs. VB.NET
constructors [See class constructors]
Contains method
 Queue class 2nd
 Stack class 2nd
ContainsKey method (Hashtable class) 2nd
ContainsValue method (Hashtable class) 2nd
control-related events
ControlChars class
conversion functions
Convert class
converting data types
 functions for
 Option Strict statement and
 System namespace and
Copy method
 Array class 2nd
 String class
copyright banner, suppressing display of
CopyTo method
 Hashtable class 2nd
 Queue class 2nd
 Stack class 2nd
 String class
Cos function (Math class) 2nd 3rd
Cosh function (Math class) 2nd 3rd
Count property
 Collection class 2nd 3rd
 Hashtable class 2nd
 Queue class 2nd
 Stack class 2nd
CreateDirectory method (Directory class) 2nd
CreateObject function 2nd
CShort function 2nd
CSng function 2nd 3rd
CStr function 2nd 3rd
CTS (Common Type System) 2nd
 SystemTypeName function and
 VbTypeName function and
CType function 2nd 3rd
CurDir function 2nd
curly brackets ({}) in regular expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Currency (UnmanagedType enumeration)
Currency data type (not supported in VB.NET) 2nd
currency, formatting
custom attributes
 AttributeUsage attribute and
 class constructors for
 defining
 GetCustomAttributes method
 using
custom procedures
 writing
CustomColors property (ColorDialog class)
CustomMarshaler (UnmanagedType enumeration)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

\\\\d and \\\\D in regular expressions
data access with ADO.NET
data members in class modules
data types 2nd
 changes for VB.NET
 converting
 functions for 2nd 3rd 4th 5th
 Option Strict statement and
 System namespace and
 simple
 summary of
 SystemTypeName function and
 TypeName function and
 for VB.NET
 VbTypeName function and
data, managed
Date data type 2nd
 converting values to
 VB 6 vs. VB.NET
DateAdd function 2nd
DateDiff function 2nd
DateFormat enumeration
DateInterval enumeration
DatePart function 2nd
dates and times
 Day function
 formatting
 GetTimer function
 Hour function
 IsDate function 2nd
 Minute function
 Month function
 MonthName function
 Now property
 predefined formats for
 Second function
 TimeOfDay property
 Timer property
 TimeSerial function
 TimeString property
 TimeValue function
 Today property
 user-defined formats for
 Weekday function
 WeekdayName function
 Year function
DateSerial function 2nd
DateString property 2nd
DateValue function 2nd 3rd
Day function 2nd
DBNull, evaluating to 2nd
DDB function 2nd
Debug class 2nd
/debug command-line switch
Debug.Assert method 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.AutoFlush property 2nd
Debug.Close method 2nd
Debug.Flush method 2nd
Debug.Indent method 2nd
Debug.IndentLevel property 2nd
Debug.IndentSize property 2nd
Debug.Listeners property 2nd
Debug.Unindent method 2nd
Debug.Write method 2nd
Debug.WriteIf method 2nd
Debug.WriteLine method 2nd
Debug.WriteLineIf method 2nd
Decimal data type 2nd
 CDec function and
 converting values to
 ValDec function and
declarations, function
Declare statement 2nd 3rd
declaring
 object variables using WithEvents
 statements used for
 variables and constants
 changes for VB.NET
 Option Explicit statement and
default button constants
default events
Default keyword
 Property statement and
 vs. DefaultMember attribute
default properties
DefaultEvent attribute
DefaultExt property
 OpenFileDialog class
 SaveFileDialog class
DefaultMember attribute
/define\: command-line switch
Deftype statements (not supported in VB.NET) 2nd
/delaysign command-line switch
Delegate class
Delegate statement
delegates
 calling methods using
 as function pointers
Delete method (Directory class) 2nd
DeleteSetting procedure 2nd
Dequeue method (Queue class) 2nd
derived classes
 abstract members in
 inheritance and
 MyBase/MyClass keywords and
 overriding base class implementations
 Shadows keyword and
Description property (Err object) 2nd 3rd
destructor methods
detecting vs. handling errors
diagnostics, programming
dialog boxes
 classes for controlling
 ColorDialog class and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FontDialog class and
 InputBox function and
 MsgBox function and
 OpenFileDialog class and
 SaveFileDialog class and
Dim keyword
Dim statement 2nd
dimension of an array
Dir function 2nd
DirectCast function
directories
 changing default
 returning current
 searching for metadata references
Directory class
Directory.CreateDirectory method 2nd
Directory.Delete method 2nd
Directory.Exists method 2nd
Directory.GetCreationTime method 2nd
Directory.GetDirectories method 2nd
Directory.GetDirectoryRoot method 2nd
Directory.GetFiles method 2nd
Directory.GetFileSystemEntries method 2nd
Directory.GetLogicalDrives method
Directory.GetParent method 2nd
Directory.Move method 2nd
Dispose method
division assignment operator (/=)
division operator (/)
Do...Loop statement 2nd
DoEvents method (Application class)
Double data type 2nd
 CDbl function and
 converting values to
 Val function and
double pointers
double-declining balance, calculating
drives, changing
DueDate enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

E field (Math class) 2nd 3rd
early binding 2nd
Empty field (String class)
Empty keyword (not supported in VB.NET) 2nd
EnableSession property (WebMethod attribute)
encapsulation in object-oriented programming
 violating principles of
End... statements 2nd
EndsWith method (String class)
Enqueue method (Queue class) 2nd
entry points of programs 2nd
Enum statement 2nd
EnumerateTypeMembers method
EnumerateTypes method
enumerations (Visual Basic)
Environ function 2nd 3rd
EOF function 2nd
equal operator (=) 2nd
Equals method (String class)
Eqv operator (not supported in VB.NET) 2nd 3rd
Erase statement 2nd
Erl property 2nd 3rd
Err object
 properties and methods of
Err.Clear method 2nd 3rd
Err.Description property 2nd
Err.GetException method 2nd
Err.HelpContext property 2nd
Err.HelpFile property 2nd
Err.LastDLLError property 2nd
Err.Number property 2nd
Err.Raise method 2nd 3rd
 error constants and
Err.Source property 2nd
Error (UnmanagedType enumeration)
error handling
 assigning error numbers
 centralized
 command-line switches and
 in-line
 IsError function and 2nd 3rd
 On Error... statements and
 regenerating errors
 Resume statement and
 structured 2nd
 Try...Catch...Finally statement and
 unstructured
 vs. error detection
Error statement
ErrorToString function 2nd 3rd
event arguments
event handlers
 arguments for
 calling routines from
 entry points for event-driven programs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event members in class modules
Event statement 2nd
event-driven programs
EventArgs class
EventID property (COMClass attribute)
events 2nd
 AddHandler statement 2nd
 control-related
 DoEvents method
 Handles keyword and
 RaiseEvent statement and
 RemoveHandler statement 2nd
 WithEvents keyword 2nd
Exception classes 2nd 3rd
exception handling [See error handling]
executable programs (VB.NET)
 console applications 2nd
 Windows Forms applications
ExecutablePath property (Application class) 2nd
execution flow, controlling
execution, managed
ExecutionEngineException exception
Exists method
 Directory class 2nd
 File class 2nd
Exit Try statement
Exit... statements 2nd
Exp function (Math class) 2nd 3rd
explicit type conversions 2nd
 command-line switches and
exponential assignment operator (^=)
exponential functions
exponentiation operator (^)
expressions, evaluating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

False keyword
FCL (Framework Class Library) 2nd
 namespaces
FIFO (first-in, first-out) data structures
file attributes
 getting
 setting
File class
File.Exists method 2nd
FileAttr function 2nd
FileAttribute enumeration
FileClose procedure 2nd
FileCopy procedure 2nd
FileDateTime function 2nd
FileGet/FileGetObject procedures 2nd
FileLen function 2nd
FileName property
 OpenFileDialog class
 SaveFileDialog class
FileOpen procedure 2nd
FilePut/FilePutObject procedures 2nd
files
 command-line switches for
 deleting from disk
 getting attributes for
 locking
 setting attributes for
 unlocking
FileWidth procedure 2nd
Filter function (String class) 2nd
Filter property
 OpenFileDialog class
 SaveFileDialog class
FilterIndex property
 OpenFileDialog class
 SaveFileDialog class
Finalize method
FirstDayOfWeek enumeration 2nd
 Format function and
FirstWeekOfYear enumeration
 Format function and
Fix function 2nd 3rd
fixed arrays, defining
fixed-length strings, defining
Flags attribute
floating-point numbers
 Double data type
 Single data type
Floor function (Math class) 2nd 3rd
Flush method (Debug class) 2nd
folders
 creating
 removing
Font property (FontDialog class)
FontDialog class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Each...Next statement 2nd
For...Next statement 2nd
Format function (String class) 2nd
Format method (String class)
FormatCurrency function (String class) 2nd
FormatDateTime function (String class) 2nd
FormatNumber function (String class) 2nd
FormatPercent function (String class) 2nd
Framework Class Library (FCL) 2nd
 namespaces
FreeFile function 2nd
Friend keyword 2nd 3rd
 accessibility rules for
 class modules and
 declaring variables and constants
FullOpen property (ColorDialog class)
function members in class modules
function pointers
 using delegates as
function procedures
 calling
Function statement 2nd
FunctionPtr (UnmanagedType enumeration)
functions
 conversion
 declarations vs. implementations
 interfaces and
 overloading 2nd
 signatures of
future value of annuities, calculating
FV function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

garbage collection
Get statement 2nd
get_Name method
GetAllSettings function 2nd
GetAttr function 2nd
GetBaseException method (Exception class)
GetChar function (String class) 2nd
GetCommandLineArgs method
GetCreationTime method (Directory class) 2nd
GetCustomAttributes method (Attribute class)
GetData method (IDataObject interface) 2nd
GetDataObject method (Clipboard class) 2nd
GetDataPresent method (IDataObject interface) 2nd
GetDirectories method (Directory class) 2nd
GetDirectoryRoot method (Directory class) 2nd
GetException method (Err object) 2nd
GetFiles method (Directory class) 2nd
GetFileSystemEntries method (Directory class) 2nd
GetFormats method (IDataObject interface) 2nd
GetLogicalDrives method (Directory class)
GetMembers method (Type class)
GetModules method (Assembly class)
GetObject function 2nd
GetParent method (Directory class) 2nd
GetSetting function 2nd
GetTimer function 2nd
GetType operator
GetTypeCode method
GetTypes method (Assembly class)
globally unique identifiers (GUIDs) 2nd
GoSub statement (not supported in VB.NET) 2nd
GoTo statement 2nd
graphical functionality in VB.NET
Guid attribute
guidgen.exe utility 2nd
GUIDs (globally unique identifiers) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Handles keyword 2nd 3rd 4th
Hashtable class
Hashtable.Add method 2nd
Hashtable.Clear method 2nd
Hashtable.ContainsKey method 2nd
Hashtable.ContainsValue method 2nd
Hashtable.CopyTo method 2nd
Hashtable.Count property 2nd
Hashtable.Item property 2nd
Hashtable.Keys property 2nd
Hashtable.Remove method 2nd
Hashtable.Values property 2nd
/help command-line switch
HelpContext property (Err object) 2nd 3rd
HelpFile property
 Err object 2nd 3rd
 Exception class
Hex function 2nd
Hour function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

I/O functionality, providing
I1 (UnmanagedType enumeration)
I2 (UnmanagedType enumeration)
I4 (UnmanagedType enumeration)
I8 (UnmanagedType enumeration)
icon display constants
IDataObject interface
IDataObject.GetData method 2nd
IDataObject.GetDataPresent method 2nd
IDataObject.GetFormats method 2nd
identifiers, globally unique 2nd
IDispatch (UnmanagedType enumeration)
IEEERemainder function (Math class) 2nd 3rd
#If...Then...#Else directive
If...Then...Else statement 2nd
#If...Then...End If directive
IIf function 2nd
ILDASM
 console applications and
 property procedures and
 Windows Forms applications and
Imp operator (not supported in VB.NET) 2nd 3rd
implementations, function
Implements keyword 2nd 3rd
Implements statement 2nd
implicit type conversions 2nd
 command-line switches and
/imports\: command-line switch
Imports statement 2nd
 /r command-line switch and
 /rootnamespace\: command-line switch and
in-line error handling
Indent method (Debug class) 2nd
IndentLevel property (Debug class) 2nd
IndentSize property (Debug class) 2nd
IndexOf method
 Array class 2nd 3rd
 String class
IndexOfAny method (String class)
inheritance 2nd 3rd
 of members
 multiple
 permission to inherit
 rules of 2nd
Inherits statement 2nd
InitialDirectory property
 OpenFileDialog class
 SaveFileDialog class
InnerException property (Exception class)
Input procedure 2nd
InputBox function 2nd
InputLanguageChangingEventArgs class
InputString function 2nd
Insert method (String class)
instance constructors [See class constructors]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance members
instantiating classes
InStr function (String class) 2nd
InstrRev function (String class) 2nd
Int function 2nd 3rd
Integer data type 2nd
 changes in VB.NET
 converting values to
 encapsulation and
integer division assignment operator (\\\\=)
integer division operator (\)
Intellisense
interest payments, computing
interest rates for annuities, calculating
Interface (UnmanagedType enumeration)
Interface keyword
Interface statement 2nd
InterfaceID property (COMClass attribute)
interfaces 2nd
 abstract members and
 defining
InterfaceShadow property (COMClass attribute)
internal rate of return, calculating 2nd
intrinsic constants
 MsgBox function and
InvokeMember method
IPmt function 2nd
IRR function 2nd
Is operator 2nd 3rd
IsArray function 2nd 3rd
IsCompliant property (CLSCompliant attribute)
IsDate function 2nd
IsDBNull function 2nd
IsEmpty function (not supported in VB.NET) 2nd
IsError function 2nd 3rd
IsError property (Obsolete attribute)
IsMissing function (not supported in VB.NET) 2nd 3rd
IsNothing function 2nd
IsNumeric function 2nd
IsReference function 2nd
Item method (Collection class) 2nd 3rd
Item property (Hashtable class) 2nd
IUnknown (UnmanagedType enumeration)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Join function (String class) 2nd 3rd
Join method (String class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/keycontainer\: command-line switch
/keyfile\: command-line switch
Keys property (Hashtable class) 2nd
keystrokes, sending to active window
Kill procedure 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

l-value of variables
language elements not supported by VB.NET
language reference
LastDLLError property (Err object) 2nd 3rd
LastIndexOf method
 Array class 2nd 3rd
 String class
LastIndexOfAny method (String class)
late binding 2nd
 command-line switches and
LBound function 2nd
LCase function (String class) 2nd
Left function (String class) 2nd
Len function (String class) 2nd 3rd
Length property
 String class
 VBFixedArray attribute
/libpath\: command-line switch 2nd
lifetime of variables
LIFO (last-in, first-out) data structures
Like operator (String class) 2nd 3rd
Line method (not supported in VB.NET) 2nd
line numbers
 colons must follow
 Erl property and
LineInput function 2nd
/linkresource\: command-line switch
Listeners property (Debug class) 2nd
Loc function 2nd
local variables 2nd
 Dim statement and
Lock procedure 2nd
 Unlock procedure and
LOF function 2nd
Log function (Math class) 2nd 3rd
Log10 function (Math class) 2nd 3rd
logical errors
 detecting
 handling
 at point of detection
 by passing to calling procedures
 by raising runtime errors
 vs. runtime errors
logical operators
Long data type 2nd
 changes in VB.NET
 converting values to
lowercase, converting strings to
LPArray (UnmanagedType enumeration)
LPStr (UnmanagedType enumeration)
LPStruct (UnmanagedType enumeration)
LPTStr (UnmanagedType enumeration)
LPWStr (UnmanagedType enumeration)
LSet function (String class)
LTrim function (String class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LTrim function (String class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/main\: command-line switch
Main method
 in console applications 2nd
 procedure-driven programs and
 in Windows Forms applications
managed code
 converting between unmanaged code and
managed execution
manifests of assemblies
MarshallAs attribute
Math class 2nd
Math.Abs function 2nd 3rd
Math.Acos function 2nd 3rd
Math.Asin function 2nd 3rd
Math.Atan function 2nd 3rd
Math.Atan2 function 2nd 3rd
Math.Ceiling function 2nd 3rd
Math.Cos function 2nd 3rd
Math.Cosh function 2nd 3rd
Math.E field 2nd 3rd
Math.Exp function 2nd 3rd
Math.Floor function 2nd 3rd
Math.IEEERemainder function 2nd 3rd
Math.Log function 2nd 3rd
Math.Log10 function 2nd 3rd
Math.Max function 2nd 3rd
Math.Min function 2nd 3rd
Math.PI field 2nd 3rd
Math.Pow function 2nd 3rd
Math.Round function 2nd 3rd
Math.Sign function 2nd 3rd
Math.Sin function 2nd 3rd
Math.Sinh function 2nd 3rd
Math.Sqrt function 2nd 3rd
Math.Tan function 2nd 3rd
Math.Tanh function 2nd 3rd
Max function (Math class) 2nd 3rd
MaxSize property (FontDialog class)
Me operator 2nd 3rd
MemberInfo objects
members
 abstract
 access modifiers and
 accessibility of
 CallByName function and
 declaring with Protected keyword
 implementing properties
 inheritance of
 instance
 MyBase keyword and
 overriding
 shadowing
 shared (static)
 types of in class modules
Message property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Exception class 2nd
 Obsolete attribute
MessageName property (WebMethod attribute)
metadata
 attributes stored as, in assemblies 2nd
methods
 using delegates to call
Microsoft.VisualBasic namespace
Mid function (String class) 2nd
Mid statement (String class) 2nd
Min function (Math class) 2nd 3rd
MinSize property (FontDialog class)
Minute function 2nd
MIRR function 2nd
MkDir procedure 2nd
Mod operator 2nd 3rd 4th
modality constants
modified internal rate of return, calculating 2nd
Module objects and custom attributes
module-level scope of variables
Module...End Module statement
Month function 2nd
MonthName function 2nd
most significant bit
Move method (Directory class) 2nd
MsgBox function 2nd
MsgBoxResult enumeration
MsgBoxStyle enumeration
MTAThread attribute
MulticastDelegate class
multiple inheritance
multiplication assignment operator (*=)
multiplication operator (*)
Multiselect property (OpenFileDialog class)
multithreaded apartments, creating
MustInherit keyword
 abstract members and
MustOverride keyword
 abstract members and
 Property statement and
 Sub statement and
mutators, property
MyBase keyword 2nd 3rd
MyClass keyword 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

named and positional arguments for attributes
Namespace statement 2nd
namespaces
 assemblies and
 assigning to web services
 Framework Class Library
 importing
 second-level
narrowing casts 2nd
net present value, calculating 2nd
New keyword, instantiating objects with
New subroutine
 custom attributes, defining
 Windows Forms applications and
/nologo command-line switch
Not logical operator 2nd
Nothing keyword
Nothing, evaluating to 2nd
NotInheritable keyword
NotOverridable keyword
 Property statement and
 Sub statement and
Now property 2nd
/nowarn command-line switch
NPer function 2nd
NPV function 2nd
number formats
 predefined
 specifying
 user-defined
Number property (Err object) 2nd 3rd
numbers, evaluating to 2nd
numeric data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Object data type 2nd
 converting values to
object variables
 binding and
 comparing
 Private statement and
 Static statement and
object-oriented programming
 changes in VB.NET
 functions and operators for
 introduction to
 Visual Basic and
objects
 accessing
 creating 2nd
 declaring using WithEvents
 instantiating
 passing
Obsolete attribute 2nd
Oct function 2nd
OLE Automation objects
 accessing
 creating
On Error... statements 2nd 3rd
On...GoSub/On...GoTo statements (not supported in VB.NET) 2nd
one-dimensional arrays
OpenAccess enumeration
OpenFile method (OpenFileDialog class)
OpenFileDialog class 2nd
OpenMode enumeration
OpenModeTypes enumeration
OpenShare enumeration
operators
 arithmetic
 assignment
 bitwise
 comparison
 concatenation
 logical
 precedence of
/optimize command-line switch
Option Compare statement 2nd
 command-line switches and
Option Explicit statement 2nd
 command-line switches and
Option Strict statement 2nd
 command-line switches and
Optional keyword
/optioncompare\: command-line switch
/optionexplicit command-line switch
/optionstrict command-line switch
Or logical operator 2nd 3rd
order of precedence for operators
OrElse logical operator 2nd 3rd
Out attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/out\: command-line switch
output mode, quiet/verbose
overloading
 attribute constructors
 functions 2nd
Overloads keyword
 Property statement and
 Sub statement and
Overridable keyword 2nd
 Property statement and
 Sub statement and
Overrides keyword 2nd 3rd
 Property statement and
 Public statement and
 Sub statement and
overriding
 members
 vs. shadowing
OverwritePrompt property (SaveFileDialog class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

PadLeft method (String class)
PadRight method (String class)
page-level events (ASP.NET)
ParamArray attribute
ParamArray keyword 2nd
 VB 6 vs. VB.NET
parameter declarations and attributes
parameterless constructors, invoking
parameters vs. arguments
Partition function 2nd
passing
 arguments
 objects
Peek method
 Queue class 2nd
 Stack class 2nd
percentages, formatting
period (.) in regular expressions
Pi field (Math class) 2nd 3rd
PID (process ID), returning
Pmt function 2nd
pointer variables
pointer-type variables
polymorphism
 overriding as form of
Pop method (Stack class) 2nd
positional and named arguments for attributes
Pow function (Math class) 2nd 3rd
PPmt function 2nd
precedence of operators
Print/PrintLine procedures 2nd
PrintEventArgs class
Private statement 2nd 3rd
 accessibility rules for
 class modules and
 declaring variables and constants
procedure-driven programs
procedure-level scope of variables 2nd
 Dim statement and
procedures
 custom procedures
 writing
 passing properties to
 property
 VB.NET changes to
process ID (PID), returning
ProductName property (Application class) 2nd
ProductVersion property (Application class) 2nd
programming elements
 changes to
 obsolete
programming languages and scripting engine properties
programs, procedure driven vs. event driven
project-level scope of variables
properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 attributes and
 declaring for classes 2nd
 implementing
 passing to procedures
 setting/retrieving values
 VB 6 vs. VB.NET
Property Get procedure
 defining
property members in class modules
property procedures 2nd
Property Set procedure
 defining
Property statement 2nd 3rd
Property...End Property statement
Protected Friend keyword
 class modules and
 declaring variables and constants
Protected keyword 2nd
 accessibility rules for
 class modules and
 declaring variables and constants
public interfaces of VB.NET classes
 encapsulation and
Public statement 2nd 3rd
 accessibility rules for
 class modules and
 declaring variables and constants
Push method (Stack class) 2nd
PV function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QBColor function 2nd
question mark (?) in regular expressions
Queue class
Queue.Clear method 2nd
Queue.Contains method 2nd
Queue.CopyTo method 2nd
Queue.Count property 2nd
Queue.Dequeue method 2nd
Queue.Enqueue method 2nd
Queue.Peek method 2nd
Queue.ToArray method 2nd
/quiet command-line switch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

r-value of variables
R4 (UnmanagedType enumeration)
R8 (UnmanagedType enumeration)
Raise method (Err object) 2nd 3rd
 error constants and
RaiseEvent statement 2nd
random numbers, returning
Randomize procedure (Math class) 2nd 3rd
Rate function 2nd
ReadOnly keyword and Property statement
ReadOnlyChecked property (OpenFileDialog class)
/recurse\: command-line switch
ReDim statement 2nd 3rd 4th
/reference\: command-line switch 2nd
reference-tracing garbage collection
reference-type variables
 comparing
 IsReference function and 2nd
 vs. value-type variables
reflection and attributes 2nd
regenerating errors
Regex class
#Region...#End Region directive 2nd
registry [See Windows registry]
regular expressions, providing access to
Rem statement 2nd
Remove method
 Collection class 2nd 3rd
 Hashtable class 2nd
 String class
RemoveHandler statement 2nd 3rd
/removeintchecks command-line switch
Rename procedure 2nd
Replace function (String class) 2nd
Replace method (String class)
reporting bugs
Reset method (ColorDialog class)
Reset procedure 2nd
/resource\: command-line switch
resources, releasing
response files
RestoreDirectory property
 OpenFileDialog class
 SaveFileDialog class
Resume statement 2nd
Return statement 2nd 3rd
Reverse method (Array class) 2nd
RGB function 2nd 3rd
 QBColor function and
Right function (String class) 2nd
RmDir procedure 2nd
Rnd function (Math class) 2nd 3rd
/rootnamespace\: command-line switch
Round function (Math class) 2nd 3rd
RSet function (String class)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RTrim function (String class) 2nd
runtime errors
 detecting
 vs. logical errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

SafeArray (UnmanagedType enumeration)
SaveFileDialog class 2nd
SaveSetting procedure 2nd
Scale method (not supported in VB.NET)
scope
 in class modules
 shadowing by
 of variables/constants 2nd
ScriptEngine function
ScriptEngine property
ScriptEngineBuildVersion function
ScriptEngineBuildVersion property
ScriptEngineMajorVersion function
ScriptEngineMajorVersion property
ScriptEngineMinorVersion function
ScriptEngineMinorVersion property
Second function 2nd
Seek function 2nd
Seek procedure 2nd
Select Case statement 2nd
Send/SendWait methods 2nd
session-level events (ASP.NET)
Set statement
set_Name method
SetAttr procedure 2nd
SetDataObject method (Clipboard class) 2nd
Sgn function [See Sign function]
shadowing by scope
shadowing element types
Shadows keyword 2nd 3rd
 Class statement and
 Property statement and
 Public statement and
 Sub statement and
Shared keyword
 Main method and
 Property statement and
 Sub statement and
shared members
Shell function 2nd
Short data type 2nd
 changes in VB.NET
 converting values to
short-circuiting
 evaluating If statements 2nd 3rd
 logical expressions and
Show... properties (FontDialog class)
ShowDialog method
 OpenFileDialog class
 SaveFileDialog class
Sign function (Math class) 2nd 3rd
signatures, function
signed integers and encapsulation
Sin function (Math class) 2nd 3rd
Single data type 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 converting values to
single-threaded apartments, creating
Sinh function (Math class) 2nd 3rd
SLN function 2nd
SolidColorOnly property (ColorDialog class)
Sort method (Array class) 2nd
sort order and Like operator
Source property
 Err object 2nd 3rd
 Exception class 2nd
Space function (String class) 2nd
Spc function 2nd 3rd
Split function (String class) 2nd 3rd
Split method (String class)
SqlClient namespace
Sqrt function (Math class) 2nd 3rd
Stack class
Stack.Clear method 2nd
Stack.Contains method 2nd
Stack.CopyTo method 2nd
Stack.Count property 2nd
Stack.Peek method 2nd
Stack.Pop method 2nd
Stack.Push method 2nd
Stack.ToArray method 2nd
StackTrace property (Exception class) 2nd
StartsWith method (String class)
STAThread attribute
static fields, not sharing values across threads
static members
Static statement 2nd
static subroutines
static variables
 declaring and initializing
 initializing
Stop statement 2nd
Str function 2nd 3rd
straight-line depreciation of assets, computing 2nd
StrComp function (String class) 2nd
StrConv function (String class) 2nd
StrDup function (String class) 2nd
String class
String data type 2nd 3rd
 converting values to
strings
 concatenation operators
 Filter function and
 fixed-length, defining
 functions for manipulating
 left aligning
 members of String class
 right aligning
 VB 6 vs. VB.NET
strong-name key containers, specifying
StrReverse function (String class) 2nd
Struct (UnmanagedType enumeration)
Structure data type 2nd
Structure...End Structure statement 2nd
 VB 6 vs. VB.NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

structured error handling 2nd
Sub procedures
 calling
Sub statement 2nd
Substring method (String class)
subtraction assignment operator (-=)
subtraction operator (-)
sum-of-years' digits depreciation of assets, computing 2nd 3rd
Switch function 2nd
switches, command-line
SYD function 2nd 3rd
symbolic constants (VB) 2nd 3rd
SyncLock statement 2nd
SysInt (UnmanagedType enumeration)
System namespace 2nd
 assemblies and
 Exception class
System.Attribute namespace
System.CodeDOM namespace
System.Collections namespace 2nd
System.ComponentModel namespace
System.Configuration namespace
System.Data namespace 2nd 3rd
System.Diagnostics namespace
System.DirectoryServices namespace
System.Drawing namespace
System.IO namespace
System.Net namespace
System.Reflection namespace 2nd
System.Resources namespace
System.Security namespace
System.ServiceProcess namespace
System.Text namespace
System.Text.RegularExpressions namespace 2nd
System.Threading namespace
System.Timers namespace
System.Web namespace
System.Web.UI namespace
System.Windows.Forms namespace 2nd 3rd
System.Xml namespace
SystemTypeName function 2nd
SysUInt (UnmanagedType enumeration)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Tab function 2nd
Tan function (Math class) 2nd 3rd
Tanh function (Math class) 2nd 3rd
/target\: command-line switch
TargetSite property (Exception class) 2nd
task ID, returning
TBStr (UnmanagedType enumeration)
Terminate event (not supported in VB.NET) 2nd
text comparison 2nd
 Like operator and
threads of execution, controlling
ThreadStatic attribute
Throw statement
TimeOfDay property 2nd
Timer property 2nd
TimeSerial function 2nd
timestamps, generating
TimeString property 2nd
TimeValue function 2nd 3rd
ToArray method
 Queue class 2nd
 Stack class 2nd
ToBoolean method
ToByte method
ToChar method
ToCharArray method (String class)
ToDateTime method
Today property 2nd
ToDecimal method
ToDouble method
ToInt16 method
ToInt32 method
ToInt64 method
ToLower method (String class)
ToSByte method
ToSingle method
ToString method
 Convert class
 Exception class 2nd
 Type class
ToUInt16 method
ToUInt32 method
ToUInt64 method
ToUpper method (String class)
TransactionOption property (WebMethod attribute)
TreeViewCancelEventArgs class
Trim function (String class) 2nd
Trim method (String class)
TrimEnd method (String class)
TrimStart method (String class)
TriState enumeration
True keyword
Try...Catch...Finally statement 2nd 3rd
two's-complement representation
two-dimensional arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type class
 iterating objects in
 reflection classes and
type members in class modules
type system, common [See Common Type System]
type-safe code
Type...End Type construct [See Structure...End Structure statement]
Type.GetType method
TypeName function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

U1 (UnmanagedType enumeration)
U2 (UnmanagedType enumeration)
U4 (UnmanagedType enumeration)
U8 (UnmanagedType enumeration)
UBound function 2nd 3rd
UCase function (String class) 2nd
underscore (_) VB.NET line continuation character
Unindent method (Debug class) 2nd
universal data types
Unlock procedure
 Lock procedure and
unsigned integer data types
 Convert class methods and
 TypeName function and
unstructured error handling
uppercase, converting strings to
user-defined types 2nd
 declaring 2nd
/utf8output command-line switch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Val function 2nd 3rd
ValDec function 2nd
value-type vs. reference-type variables
Values property (Hashtable class) 2nd
VarEnum enumeration, members of
variables
 declaring
 command-line switches and
 Option Explicit statement and
 VB.NET changes to
 FileGet/FileGetObject procedures
 FilePut/FilePutObject procedures
 lifetime of
 object [See object variables]
 private
 properties of
 public
 scope of 2nd
 changes for VB.NET
 shadowing by scope
 static 2nd
 value-type vs. reference-type
Variant data type (not supported in VB.NET) 2nd
VariantBool (UnmanagedType enumeration)
VariantType enumeration 2nd
VarType function 2nd 3rd 4th
VB IDE and control-related events
VB.NET
 arrays in
 assemblies
 command-line compiler
 common type system [See Common Type System]
 data types [See data types]
 error handling in
 introduction to
 language changes for
 language reference
 .NET Framework
 object-oriented programming
 changes to
 procedures, changes to
 program structure
 programming elements
 changes to
 obsolete
 variables in
 VB 6 language elements not supported by
VBByRefStr (UnmanagedType enumeration)
vbc.exe
VBFixedArray attribute 2nd
VBFixedString attribute 2nd 3rd
vbObjectError constant
VbStrConv enumeration 2nd
VbTypeName function 2nd
/verbose command-line switch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

versioning properties of assemblies
Visual Basic
 built-in constants
 enumerations
 vs. VB.NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

\\\\w and \\\\W in regular expressions
/warnaserror command-line switch
WebMethod attribute 2nd
WebService attribute
Weekday function 2nd
WeekdayName function 2nd
Wend keyword (not supported in VB.NET) 2nd
When filter, used with user-defined errors
While...End While statement 2nd 3rd
widening casts 2nd
/win32icon\: command-line switch
/win32resource\: command-line switch
Windows applications, creating
Windows Forms
 applications
 events
Windows registry
 creating entries for VB applications in
 functions for manipulating
 GetAllSettings function and
 GetSetting function and
windows, activating
With statement
WithEvents keyword 2nd
 Private statement and
 Public statement and
WithEvents statement
Write method (Debug class) 2nd
Write procedure
WriteIf method (Debug class) 2nd
WriteLine method (Debug class) 2nd
WriteLine procedure
WriteLineIf method (Debug class) 2nd
WriteOnly keyword and Property statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Xor logical operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Year function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

