
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
VBScript in a Nutshell, 2nd Edition

By Matt Childs, Paul Lomax, Ron Petrusha

Publisher: O'Reilly

Pub Date: March 2003

ISBN: 0-596-00488-5

Pages: 512

Lightweight yet powerful, VBScript from Microsoft® is used in four main areas: server-side web applications using
Active Server Pages (ASP), client-side web scripts using Internet Explorer, code behind Outlook forms, and automating
repetitive tasks using Windows Script Host (WSH). VBScript in a Nutshell, Second Edition delivers current and complete
documentation for programmers and system administrators who want to develop effective scripts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
VBScript in a Nutshell, 2nd Edition

By Matt Childs, Paul Lomax, Ron Petrusha

Publisher: O'Reilly

Pub Date: March 2003

ISBN: 0-596-00488-5

Pages: 512

 Copyright

 Foreword

 Preface

 Why This Book?

 Who Should Read This Book?

 How This Book Should Be Used

 How This Book Is Structured

 Conventions in This Book

 How To Contact Us

 Part I: The Basics

 Chapter 1. Introduction

 Section 1.1. VBScript's History and Uses

 Section 1.2. What VBScript Is Used For: Gluing Together Objects

 Section 1.3. Differences Between VBScript and VBA

 Chapter 2. Program Structure

 Section 2.1. Functions and Procedures

 Section 2.2. Classes

 Section 2.3. Global Code

 Section 2.4. Reusable Code Libraries

 Chapter 3. Data Types and Variables

 Section 3.1. VBScript Data Types: The Many Faces of the Variant

 Section 3.2. Variables and Constants

 Chapter 4. Error Handling and Debugging

 Section 4.1. Debugging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.2. Error Handling

 Section 4.3. Common Problem Areas and How to Avoid Them

 Chapter 5. VBScript with Active Server Pages

 Section 5.1. How ASP Works

 Section 5.2. Active Server Pages Object Model

 Chapter 6. Programming Outlook Forms

 Section 6.1. Why Program Outlook Forms?

 Section 6.2. The Form-Based Development Environment

 Section 6.3. Running Your Code

 Section 6.4. Program Flow

 Section 6.5. The Outlook Object Model

 Section 6.6. Accessing Other Object Models

 Chapter 7. Windows Script Host 5.6

 Section 7.1. Why Use WSH?

 Section 7.2. Running WSH Scripts

 Section 7.3. Program Flow

 Section 7.4. The WSH Object Model

 Section 7.5. WSH Language Elements

 Section 7.6. Accessing Other Object Models

 Chapter 8. VBScript with Internet Explorer

 Section 8.1. The <SCRIPT> Tag

 Section 8.2. What Can You Do with Client-Side Scripting?

 Section 8.3. Understanding the IE Object Model

 Chapter 9. Windows Script Components

 Section 9.1. The Script Component Wizard

 Section 9.2. Writing Component Code

 Section 9.3. Using the Component

 Section 9.4. WSC Programming Topics

 Part II: Reference

 Chapter 10. The Language Reference

 Abs Function

 Array Function

 Asc, AscB, AscW Functions

 Atn Function

 Call Statement

 CBool Function

 CByte Function

 CCur Function

 CDate Function

 CDbl Function

 Chr, ChrB, ChrW Functions

 CInt Function

 Class Statement

 CLng Function

 Const Statement

 Cos Function

 CreateObject Function

 CSng Function

 CStr Function

 Date Function

 DateAdd Function

 DateDiff Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DatePart Function

 DateSerial Function

 DateValue Function

 Day Function

 Dictionary Object

 Dictionary.Add Method

 Dictionary.CompareMode Property

 Dictionary.Count Property

 Dictionary.Exists Method

 Dictionary.Item Property

 Dictionary.Items Method

 Dictionary.Key Property

 Dictionary.Keys Method

 Dictionary.Remove Method

 Dictionary.RemoveAll Method

 Dim Statement

 Do . . . Loop Statement

 Drive Object

 Drives Collection Object

 End . . . Statement

 Erase Statement

 Err Object

 Err.Clear Method

 Err.Description Property

 Err.HelpContext Property

 Err.HelpFile Property

 Err.Number Property

 Err.Raise Method

 Err.Source Property

 Escape Function

 Eval Function

 Execute Statement

 ExecuteGlobal Statement

 Exit Statement

 Exp Function

 File Object

 File.Copy Method

 File.Delete Method

 File.Move Method

 File.OpenAsTextStream Method

 File System Object Model

 Files Collection Object

 FileSystemObject Object

 FileSystemObject.BuildPath Method

 FileSystemObject.CopyFile Method

 FileSystemObject.CopyFolder Method

 FileSystemObject.CreateFolder Method

 FileSystemObject.CreateTextFile Method

 FileSystemObject.DeleteFile Method

 FileSystemObject.DeleteFolder Method

 FileSystemObject.DriveExists Method

 FileSystemObject.Drives Property

 FileSystemObject.FileExists Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FileSystemObject.FileExists Method

 FileSystemObject.FolderExists Method

 FileSystemObject.GetAbsolutePathName Method

 FileSystemObject.GetBaseName Method

 FileSystemObject.GetDrive Method

 FileSystemObject.GetDriveName Method

 FileSystemObject.GetExtensionName Method

 FileSystemObject.GetFile Method

 FileSystemObject.GetFileName Method

 FileSystemObject.GetFileVersion Method

 FileSystemObject.GetFolder Method

 FileSystemObject.GetParentFolderName Method

 FileSystemObject.GetSpecialFolder Method

 FileSystemObject.GetStandardStream Method

 FileSystemObject.GetTempName Method

 FileSystemObject.MoveFile Method

 FileSystemObject.MoveFolder Method

 FileSystemObject.OpenTextFile Method

 Filter Function

 Fix Function

 Folder Object

 Folder.Copy Method

 Folder.CreateTextFile Method

 Folder.Delete Method

 Folder.Move Method

 Folders Collection Object

 Folders.Add Method

 For . . . Next Statement

 For Each . . . Next Statement

 FormatCurrency, FormatNumber, FormatPercent Functions

 FormatDateTime Function

 Function Statement

 GetLocale Function

 GetObject Function

 GetRef Function

 Hex Function

 Hour Function

 If . . . Then . . . Else Statement

 Initialize Event

 InputBox Function

 InStr, InStrB Functions

 InstrRev Function

 Int Function

 Is Operator

 IsArray Function

 IsDate Function

 IsEmpty Function

 IsNull Function

 IsNumeric Function

 IsObject Function

 Join Function

 LBound Function

 LCase Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Left, LeftB Functions

 Len, LenB Functions

 LoadPicture Function

 Log Function

 LTrim Function

 Match Object

 Matches Collection Object

 Me Keyword

 Mid, MidB Functions

 Minute Function

 Month Function

 MonthName Function

 MsgBox Function

 Now Function

 Oct Function

 On Error Statement

 Option Explicit Statement

 Private Statement

 Property Get Statement

 Property Let Statement

 Property Set Statement

 Public Statement

 Randomize Sub

 ReDim Statement

 RegExp Object

 RegExp.Execute Method

 RegExp.Global Property

 RegExp.IgnoreCase Property

 RegExp.Pattern Property

 RegExp.Replace Method

 RegExp.Test Method

 Rem Statement

 Replace Function

 RGB Function

 Right, RightB Functions

 Rnd Function

 Round Function

 RTrim Function

 ScriptEngine Function

 ScriptEngineBuildVersion Function

 ScriptEngineMajorVersion Function

 ScriptEngineMinorVersion Function

 Second Function

 Select Case Statement

 SetLocale Function

 Set Statement

 Sgn Function

 Sin Function

 Space Function

 Split Function

 Sqr Function

 StrComp Function

 String Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String Function

 StrReverse Function

 Sub Statement

 Tan Function

 Terminate Event

 TextStream Object

 TextStream.Close Method

 TextStream.Read Method

 TextStream.ReadAll Method

 TextStream.ReadLine Method

 TextStream.Skip Method

 TextStream.SkipLine Method

 TextStream.Write Method

 TextStream.WriteBlankLines Method

 TextStream.WriteLine Method

 Time Function

 Timer Function

 TimeSerial Function

 TimeValue Function

 Trim Function

 TypeName Function

 UBound Function

 UCase Function

 Unescape function

 VarType Function

 Weekday Function

 WeekdayName Function

 While . . . Wend Statement

 With Statement

 Year Function

 Part III: Appendixes

 Appendix A. Language Elements by Category

 Section A.1. Array Handling

 Section A.2. Assignment

 Section A.3. Comment

 Section A.4. Constants

 Section A.5. Data Type Conversion

 Section A.6. Date and Time

 Section A.7. Dictionary Object

 Section A.8. Error Handling

 Section A.9. File System Objects

 Section A.10. Information Functions

 Section A.11. Mathematical and Numeric

 Section A.12. Miscellaneous

 Section A.13. Object Programming

 Section A.14. Program Structure and Flow

 Section A.15. String Manipulation

 Section A.16. User Interaction

 Section A.17. Variable Declaration

 Appendix B. VBScript Constants

 Section B.1. Color Constants

 Section B.2. Comparison Constants

 Section B.3. Date and Time Constants

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section B.3. Date and Time Constants

 Section B.4. Date Format Constants

 Section B.5. Error Constant

 Section B.6. Logical and TriState Constants

 Section B.7. Message Box Constants

 Section B.8. String Constants

 Section B.9. Variable Type Constants

 Appendix C. Operators

 Section C.1. Arithmetic Operators

 Section C.2. String Operator

 Section C.3. Comparison Operators

 Section C.4. Logical and Bitwise Operators

 Section C.5. Operator Precedence

 Appendix D. Locale IDs

 Appendix E. The Script Encoder

 Section E.1. How Encoding and Decoding Works

 Section E.2. Script Encoder Syntax

 Section E.3. Encoding Examples

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright © 2003, 2000 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. JavaScript is a registered trademark of Sun
Microsystems. Active X, JScript, Microsoft, MS-DOS, Outlook, Visual Basic, Visual C++, Visual Studio, Win32, Windows,
and Windows NT are registered trademarks of the Microsoft Corporation. The association between the image of a
miniature pinscher and VBScript is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Foreword
The evolution of VBScript has been an interesting and somewhat unpredictable ride for everyone involved, from the
product team here at Microsoft to, more importantly, the VBScript scripting community. We started VBScript back in
1994 as a lightweight scripting language that could be integrated into a set of technologies then known as Sweeper,
which eventually saw the light of day as Internet Explorer 3. The intent was to provide a small, fast, and safe subset of
Visual Basic that would allow for scripting of HTML and ActiveX Controls (actually they were still OLE Controls back
then) in HTML pages. Since this seemed like a pretty simple task, a couple of developers set out on a Friday evening to
implement it over a weekend, and sure enough, on Monday there was a working version of the language, albeit a very
small subset of the language. We spent the next six months polishing the rough edges, resulting in the release of
VBScript 1.0 with Internet Explorer 3.0. VBScript then was a pretty good language, including many of the features of
VB—many more than were first imagined in that first weekend.

The plan for VBScript was always to let the language grow to make it usable to develop not just client-side web browser
code, but also to script server-side pages. VBScript 2.0 was shipped with the first release of Active Server Pages just
eight months after the release of Version 1.0—ah, the halcyon days of Internet time. Active Server Pages proved to be
wildly successful, and VBScript usage and interest skyrocketed. The next big step for VBScript was the introduction of
Windows Script Host, which added administrative capabilities to the VBScripter's toolkit. This proved to be very
successful, since it finally provided a modern alternative to batch files that could take advantage of the rich COM
components available in Windows.

The success of VBScript led to requests to expand the language to meet the expanded expectations of VBScript
programmers. Some of the key design tenets for VBScript were to keep it small, simple to understand, flexible to grow
with the programmer, and, most of all, fun to use. The last releases of VBScript Versions 5, 5.5 and 5.6 saw major
additions to the language, including the long sought after with block, classes, function references for better Internet
Explorer integration, and regular expressions. VBScript is now a much more capable and powerful language than we
ever imagined it would be, and having a reference guide to all the language features becomes even more important.
VBScript in a Nutshell is a great reference to the language, and I hope it makes your scripting even more enjoyable and
productive.

Script Happens.

—Andrew Clinick

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
Visual Basic Scripting Edition, or VBScript, as it's commonly called, began its life amid a certain amount of fanfare as a
client-side scripting language for web browsers. Its appeal was that it was a subset of Visual Basic for Applications
(VBA), the most widely used programming language in the world, and hence promised to make Internet programming
easy not only for the huge installed base of VB/VBA programmers, but also for new programmers.

But for the most part, VBScript failed to deliver on its promise as a client-side scripting language. The problem wasn't
the language or its capabilities; rather, VBScript suffered because it was the second language to arrive in the arena of
client-side scripting and was never able to supplant its rival, JavaScript. In fact, Netscape Navigator, the browser with
the largest market share at the time, completely failed to support VBScript, leaving it a language that could be used
exclusively for client-side scripting on corporate intranets (or for content providers on the public Internet who didn't
care that their content was incompatible with most browsers).

But while VBScript's success as a client-side scripting language has been marginal, it has become one of the three
major scripting languages (along with JavaScript and Perl) in use today. With the release of Internet Information Server
(IIS) 2.0 in 1997, VBScript rapidly became the primary scripting language used in developing Active Server Pages
(ASP), Microsoft's server-side scripting technology for IIS. Also in 1997, Microsoft released the first version of Outlook,
which was programmable and customizable only by using VBScript. Finally, in 1998, Microsoft released the first version
of Windows Script Host (WSH), the long awaited "batch language" for Windows. Here again, VBScript rapidly emerged
as the predominant choice for writing WSH scripts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Why This Book?
The major source of documentation for VBScript is the Visual Basic Scripting HTML Help file, the official documentation
that is included with VBScript itself. While VBScript's online help is an indispensable resource that most VBScript
programmers turn to first, it has a number of limitations:

It offers a rather bare-bones approach to the language. There isn't a level of detail that allows one to move
beyond the basics or to make the documentation useful in troubleshooting and diagnosing sources of error.

The examples rarely, if ever, move beyond the self-evident and obvious.

In a very small number of cases, it incorrectly documents a feature that turns out not to work in VBScript, but
that is implemented in VBA. This leads one to suspect that the documentation was originally written for VBA and
then was quickly adapted to VBScript.

Since one of the strengths of VBScript is that it allows VBA programmers to leverage their existing skills in
learning a new technology, it is peculiar that the documentation totally disregards differences between VBA and
VBScript.

In other words, the documentation included with VBScript just doesn't have the depth of information that you need
when you need it. Most of us can get by day-to-day without even opening VBScript Help. But when you need to open
the Help file, it's probably because you've either hit an unexpected problem or need to know what the consequences of
coding a particular procedure in a particular way will be. However, Help tends only to show you how a function should
be included in your code. This is understandable; after all, the help information for any language must be created
before that language goes into general use, but it is only general everyday use in real-life situations that highlight how
the language can best be used and its problems and pitfalls. Therefore, online help confines itself to the main facts:
what the syntax is and, in a general way, how you should implement the particular function or statement.

This book takes up where the Help file leaves off. Contained within these pages are the experiences of professional VB
and VBScript developers who have used these languages all day, every day, over many years, to create complex
applications. It is these experiences from which you can benefit. Whether you have come to VBScript recently or have
been using it since its introduction, there are always new tricks to learn. And it's always important to find out about the
gotchas that'll getcha!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who Should Read This Book?
This book is aimed at experienced VBScript developers or experienced developers coming to VBScript for the first time
from another programming or scripting language (including, of course, VB/VBA programmers).

This book is a reference work and not a tutorial—for example, we won't explain the concept of a For...Next loop; as an
experienced developer, you already know this, so you don't want someone like us insulting your intelligence. But we will
explain in detail how a For...Next loop works in VBScript, how it works in practice, what the alternatives to it are, how it
can be used to your best advantage, and what pitfalls it has and how to get around them.

Although this book is not intended as a tutorial, we have provided in Part I, a concise introduction to the language that
focuses not only on the general structure of the VBScript language, but on also its application in the four major
environments in which it is used. If you're learning VBScript as a second language, the introduction combined with the
reference is probably all that you'll need to get started.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Should Be Used
VBScript in a Nutshell focuses on the needs of three different audiences: programmers and script developers who are
new to VBScript, VB/VBA programmers who are new to VBScript, and VBScript programmers.

If You're New to VBScript

This book is based upon the assumption that if you're new to VBScript, you know one or more other programming
languages. The first half of the book leads you through the important areas of VBScript programming, which, while very
different from most other languages, are straightforward and easily mastered. We suggest therefore that you read
these chapters in order while referring to the Language Reference when necessary.

If You're a VBScript Programmer

As an experienced VBScript programmer, you will be able to dip into the book to get the lowdown on the language
element that interests you. Appendix A lists all the functions, statements, and object models by category to help you
find the relevant section in the Language Reference more easily.

If You're a VB or VBA Developer New to VBScript

If you know VBA, you know VBScript, since the latter is a subset of the former. On the whole, you'll find that VBScript is
a much "cleaner" language than VBA— many of the archaic elements of VBA (elements that survived as Basic and
QBasic evolved into VBA and as statement-based programming evolved into function-based programming and then
object-based programming) have been removed from the language. But you'll also find some incompatibilities, as
particular language features that you're accustomed to in VBA work differently in VBScript. We've tried to document
those differences in this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Is Structured
This book is divided into three parts. The first part of the book, The Basics, is an introduction to the main features and
concepts of VBScript programming, as well as an examination of how VBScript is used in its four major scripted
environments: Active Server Pages, Windows Script Host, Outlook forms programming, and client-side scripting for
Microsoft Internet Explorer (IE).

Even seasoned VB professionals should find items of interest here. If you're new to VB, this part of the book is essential
reading. It is divided into the following chapters:

Chapter 1

In this chapter, you'll find information on the VBScript language and how it fits in to the family of VB products.
We'll also discuss the notion that a scripting language is a kind of "glue" meant to hold together and control
various objects. Finally, there's also a short discussion of the history of VBA.

Chapter 2

This chapter details how to create the basic program structures in VBScript; how to implement classes,
procedures, functions, and properties and how a program follows proceeds in a VBScript program.

Chapter 3

VBScript actually only has a single data type, the variant. This chapter looks at the variant and all its data types
and shows how to use them.

Chapter 4

On the assumption that we all strive to create robust applications, this chapter covers error handling in your
VBScript application and discusses the process of debugging in order to identify and remove program bugs.

Chapter 5

This chapter shows how to incorporate VBScript code into an Active Server Page and discusses the IIS object
model that you access when creating an ASP application.

Chapter 6

Outlook 97 and 98 used VBScript as their only programming language and Outlook forms as their only
programmable feature. Outlook 2000 includes two programming languages: VBA for application-level
development, and VBScript for forms-based development. In this chapter, we focus on the latter topic by
examining the VBScript development environment, discussing how to structure and run Outlook code, and
listing some of the basic objects in the Outlook object model.

Chapter 7

Programmers, administrators, and power users have long clamored for a "batch language" that would offer the
power of the old DOS batch language in a graphical environment. Microsoft's answer is Windows Script Host
(WSH) and a scripting language of your choice. In this chapter, we look at VBScript as the "Windows batch
language" by examining program flow and how to launch a WSH script, discussing the WSH object model, and
focusing on the XML language elements that you can use to better structure your scripts.

Chapter 8

VBScript was first introduced as a scripting language for Internet Explorer, which remains an important,
although secondary, area of application for VBScript. In this chapter, we provide a quick overview of how to add
script to HTML pages and focus on some of the functionality available through the Internet Explorer object
model.

Chapter 9

Windows Script Components (WSC) is a technology that allows you to create what appear to be reusable binary
COM components with script. Chapter 9 documents WSC and shows how you can use it to create your own
binary COM components.

The second part of the book, The Reference, consists of one large chapter. Chapter 10 thoroughly details all the
functions, statements, and object models that make up the VBScript language. The emphasis here is on the language
elements found in VBScript 5 and 5.5 (which is currently in public beta). See the following section for a detailed
explanation of how to use the Language Reference.

The third and final section consists of the following appendixes:

Appendix A

This lists all VBScript functions, statements, and major keywords by category.

Appendix B

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B

This lists the constants built into the VBScript language that are available at all times.

Appendix C

This lists the operators supported by VBScript, along with a slightly more detailed treatment of Boolean and
bitwise operators.

Appendix D

This lists the locale IDs by the GetLocale and SetLocale functions.

Appendix E

This documents Script Encoder (a command-line utility that hides source code) and shows how to use it for
encoding all VBScript scripts except for those in Outlook forms.

The Format of the Language Reference

The following template has been used for all functions and statements that appear in Chapter 10:

Syntax

This section uses standard conventions (detailed in the following section) to give a synopsis of the syntax used
for the language item.

Description (of parameters and replaceable items)

Where applicable, this section details whether the item is optional, the data type of the item, and a brief
description of the item.

Return Value

Where applicable, this section provides a very brief description of the value or data type returned by the
function or property.

Description

This section provides a short description of what the language element does and when, and why it should be
used.

Rules at a Glance

This section describes the main points of how to use the function, presented in the form of a bulleted list to
enable you to quickly scan through the list of rules. In the vast majority of cases, this section goes well beyond
the basic details found in the VB documentation.

Example

It's not uncommon for documentation to excel at providing bad examples. How often do we encounter code
fragments like the following:

' Illustrate conversion from Integer to Long!
Dim iVar1 As Integer
Dim lVar2 as Long
iVar1 = 3
lVar2 = CLng(iVar1)
Response.Write "The value of lVar2 is: " & lVar2

So you won't find the gratuitous use of examples in this book. We see little point in including a one- or two-line
code snippet that basically reiterates the syntax section. Therefore, we've tried to include examples only where
they enhance the understanding of the use of a language element or demonstrate a poorly documented feature
of a language element.

VBA/VBScript Differences

If you're programming in the Professional or Enterprise Editions of Visual Basic, or in one of the hosted
environments (like Microsoft Word or AutoCAD) using Visual Basic for Applications, this section shows you how
a particular VBScript language element differs from its VB/VBA counterpart. If no differences are noted, the
element functions identically in both environments. This helps you get up to speed with unfamiliar language
elements quickly, as well as to get VBA code running under VBScript or VBScript code running under VBA.

Programming Tips and Gotchas

This is the most valuable section of the Language Reference, gained from years of experience using the VBA
language in many different circumstances. The information included in here will save you countless hours of
head-scratching and experimentation. This is the stuff Microsoft doesn't tell you!

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

A simple cross-reference list of related or complimentary functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions in This Book
Throughout this book, we've used the following typographic conventions:

Constant width

Constant width in body text indicates a language construct such as a VBA statement (like For or Set), an intrinsic
or user-defined constant, a user-defined type, or an expression (like dElapTime = Timer() - dStartTime). Code
fragments and code examples appear exclusively in constant-width text. In syntax statements and prototypes,
text in constant width indicates such language elements as the function's or procedure's name, and any
invariable elements required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter and variable names. In syntax statements or prototypes,
it indicates replaceable parameters.

Constant width bold

Constant width bold in code listings and examples is used to emphasize particular lines of code.

Italic

Italicized words in the text indicate intrinsic or user-defined functions and procedure names. Many system
elements like paths and filenames are also italicized, as are new terms where they are defined.

This symbol indicates a note.

This symbol indicates a warning.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How To Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/vbscriptian2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com and http://vb.oreilly.com

Acknowledgments

We'd like to thank Eric Lippert of Microsoft for his careful and thorough review of the manuscript. Eric went far beyond
the call of duty in working to make this a better book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: The Basics
This section serves as a general introduction to VBScript, the scripting language that is commonly used
in Active Server Pages, Outlook Forms, Windows Script Host scripts, and client-side scripts for Internet
Explorer. Taken together, these chapters form an extremely fast-paced introduction to the most critical
VBScript programming topics. If you're an experienced programmer learning VBScript as a second (or
additional) programming or scripting language, this material should help to familiarize you with VBScript
in as short a time as possible.

In addition to its role as a tutorial, Chapter 3 is an essential reference to the data subtypes supported
by VBScript.

Part I consists of the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Introduction
Microsoft Visual Basic Scripting Edition, commonly known as VBScript, is a relative of the Visual Basic family, which
includes the Microsoft Visual Basic Development System (the retail version of Visual Basic in its Enterprise, Professional,
and Learning Editions) and Visual Basic for Applications (the language component of Visual Basic, which is included in
the individual applications within Microsoft Office and Microsoft Project, as well as in a host of third-party applications).

VBScript is, for the most part, a subset of the Visual Basic for Applications programming language. It was developed so
that the millions of Visual Basic developers could leverage their knowledge of VB/VBA in Internet scripting. One of the
strengths of VBScript is that it uses the same familiar and easy syntax that has made VBA so popular as a programming
language, making it very easy to learn for those who have some Visual Basic background. In addition, VBScript is fairly
easy to learn for those without any programming experience.

Ironically, VBScript started as a client-side scripting language to create interactive web pages, but it had a major
liability: it was and is not supported by Netscape Navigator. Instead, the two major web browsers on the market,
Navigator and Microsoft Internet Explorer, both supported a common scripting language, ECMAScript, that became the
de facto standard and is now the de jure standard for client-side scripting. (Netscape's implementation of ECMAScript is
named JavaScript, while Microsoft's implementation is named JScript.) Despite its failure in this area, however, VBScript
rapidly became the major scripting language in three other areas:

Active Server Pages (ASP) applications

Outlook forms

Windows Script Host (WSH) scripts

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 VBScript's History and Uses
Version 1.0 of VBScript was initially introduced in Microsoft Internet Explorer (IE) 3.0, which was released in 1996. Its
intended use at that point was to allow web page developers to enhance their pages through client-side scripting. In
contrast to plain HTML, which supported the creation of static web pages only, the combination of HTML and client-side
script allows the creation of web pages that are both interactive and responsive to the user. For instance, a script could
allow the web page to display extended information about hyperlinks as the user's mouse passes over them, or it could
be used to validate data entered by the user without submitting it to the server. A script could even be used to
generate a web page on the fly, without using any "hardcoded" HTML. The only limitation to VBScript as a language for
client-side scripting was that VBScript could be used inside of Internet Explorer only (the only browser to support it)
and thus was suitable only for use on corporate intranets that had standardized on Internet Explorer. Using VBScript for
client-side scripting on Internet Explorer is discussed in Chapter 8.

Version 2.0 of VBScript was introduced in Internet Information Server (IIS) 3.0 in 1997. The most notable additions to
the language were "web-friendly" language elements (such as lightweight Format... functions and the Filter, InStrRev,
Reverse, and Join functions) that in most cases were incorporated into the VBA language only with the release of VBA
6.0. In addition, VBScript 2.0 added support for a number of intrinsic constants to make code more readable and also
implemented the Const statement to allow user-defined constants. Finally, the CreateObject and GetObject functions
were added to instantiate external COM objects; these functions, which are inoperative in a client-side scripting
environment, are essential for supporting components that are capable of extending a scripted server-side application.

This new version of VBScript was released with IIS to support server-side scripting using ASP. ASP is itself the object
model exposed by IIS that allows your script to access information about the client's request and to write to the
server's output stream. An ASP application consists of conventional web pages (that is, HTML and possibly client-side
script written in any language) along with script that executes on the server. The output of an ASP script most
commonly is HTML, which is simply inserted into the output stream returned by the server in response to a client
request. This makes ASP important for several reasons. First, it can be used to produce output that is customized for
the browser on which it's displayed. Secondly, it provides a very strong web application environment, particularly one
that takes advantage of backend processing. Along with ASP, Microsoft introduced ActiveX Data Objects (ADO) as its
primary data access technology. Developing ASP applications with VBScript is discussed in Chapter 5.

Although IIS itself is language-independent and supports a number of available scripting languages, it is precisely in this
realm—scripting for ASP—that VBScript quickly found its major application.

Version 3.0 of VBScript, released in 1998, had no new language features. Nevertheless, it was significant for marking
the spread of VBScript beyond a scripted web environment. Besides IIS Version 4.0 and Internet Explorer Version 4.0,
VBScript was now incorporated into Outlook 98 (an interim release of Outlook that was developed out of sync from the
other applications in Microsoft Office) andWindows Script Host 1.0.

Windows Script Host (WSH), which first appeared in the Windows NT 4 Option Pack, exposes some core system
resources (like the registry, the network, printers, and the filesystem) and allows system administrators to write scripts
that access or control them using VBScript, JavaScript, or any of a number of other scripting languages. Using WSH,
administrators can write sophisticated scripts that run either locally or remotely to handle typical administrative tasks.
WSH is considerably more powerful than typical Windows Shell scripting, and is also available in Windows 98. Microsoft
has built the WSH to help companies address the growing concern of the total cost of administration. In addition, WSH
appeals to power users who prefer writing a simple script rather than performing a repetitive task multiple times.
Scripting for WSH is discussed in Chapter 7.

Microsoft Outlook was originally released in Office 97 as Microsoft's entry into the personal information
manager/workgroup messaging market. Outlook featured a number of forms to handle standard MAPI message types
(such as messages, contacts, tasks, notes, and appointments) out of the box. However, VBScript made it possible to
design new forms and customize their behavior. Although Outlook's latest release,Outlook 2002, includes support for
VBA, VBScript remains the programming language for Outlook 2002 forms. Developing Outlook forms with VBScript is
covered in Chapter 6.

Version 4.0 of VBScript was also released as part of Visual Studio 6.0 in 1998. As in Version 3.0, no new language
features were present. The difference was in the Microsoft Scripting Runtime Library (scrrun.dll), which now included a
File System object model as well as the Dictionary object introduced with VBScript 2.0. The addition of the object model
made the library an essential component in any scripted environment.

Version 5.0, which shipped with Internet Explorer 5.0 and IIS 5.0 (which shipped with Windows 2000), added a number
of new language enhancements, including support for scripted classes using the Class...End Class construct, support for
regular expression searches through the RegExp object, and the ability to dynamically build expressions to be evaluated
using the Eval function or executed using the Execute method.

As you can see, even though VBScript's advent as a client-side scripting language was largely unsuccessful, Microsoft
remained committed to VBScript as a "lightweight" form of VBA and continued to move the language forward. As a
result, it came to be used in a number of environments other than client-side scripts, and in fact, has become one of
the major scripting languages in use today.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 What VBScript Is Used For: Gluing Together Objects
We've outlined the four major areas in which VBScript is used, but if we were to look at how scripts are written in each
of these environments, we'd quickly note far more differences than similarities. (Because of this, we've devoted a
separate chapter to each area in which VBScript is commonly used.) Yet this is misleading. If we take a more high-level
view, we can see that the role of VBScript and the role of the environment in which its scripts are run are broadly
similar, regardless of the environment's unique features.

Typically, scripting languages are described as "glue" languages. That is, they are used to glue things together. That
means that the glue itself does relatively little—it simply binds the rest of the script together. The "things" that the
scripting language binds together are components or objects—that is, the objects exposed by the environment for
which the script is being written (like ASP, Internet Explorer, Outlook, or WSH), as well as objects that are exposed by
external applications, environments, or components (such as ActiveX Data Objects, Collaboration Data Objects,
Microsoft Word, Microsoft Excel, or custom components created in Visual Basic). A map of a single high-level object
(such as the Microsoft Word application, for instance, which is represented by the Application object) along with its child
objects is known as an object model.

One type of object model that's particularly suitable for scripting is shown in Figure 1-1. In this particular case, the
figure shows the ASP object model. Two features that are particularly noteworthy are its flatness and its lack of
interdependence. (Contrast it, for example, with the Microsoft Word object model, a portion of which is shown in Figure
1-2.) In particular, a flatter object model and/or one whose objects have a fair degree of independence has a number of
advantages:

Ease of navigation

Since the object model is flat, you don't have to be concerned with navigating upward and downward through
the object hierarchy. This makes coding easier, reduces the time spent debugging, and improves performance.

Ease of instantiating objects

Since objects are independent of one another, you can easily create them or retrieve a reference to them,
instead of having to figure out which portion of the object model you must navigate to in order to instantiate
that object, or which property or method you must call that returns that object.

Figure 1-1. The Active Server Pages object model

Figure 1-2. A portion of the Microsoft Word object model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Individual objects within an object model expose properties, methods, and events. We'll discuss each of these in turn.

1.2.1 Properties

Properties are attributes or values of an object that can be read and set. (In other words, properties are variables that
belong to an object.) As long as the value returned by the property is not an object, setting and retrieving property
values requires a simple assignment statement. For example, the following line of code stores the value of the ASP
Session object's TimeOut property to a variable named lTimeOut:

lTimeOut = Session.TimeOut ' Retrieve property value

Storing a new value to the property is just as easy. For instance, the following line of code changes the value of the
Session object's TimeOut property to 10 minutes:

Session.TimeOut = 10 ' Set property value

Some properties are read-only; that is, while you can retrieve a property's value, attempting to set it is not permitted
and generates an error. For example, the code:

lSVars = Request.ServerVariables.Count ' Read-only property

assigns the count of the number of variables in the Request object's ServerVariables collection to a variable named
lSVars. Attempting to set the value of the Count property, however, generates an error, since the property (as well as
the ServerVariables collection itself) is read-only. Rarely, you may also encounter properties that are write-only, or that
are write-only under certain conditions; you can set the property's value, but you can't retrieve it. Typically, this is done
for security reasons.

Many properties return either individual objects or collections. (A collection is an object that serves as a container for
other data items or objects.) These also require assignment statements that use the Set statement. For example, you
can retrieve a reference to the root folder of the C: drive on a local system with a code fragment like the following:

Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFS.Drives.Item("C").RootFolder

Note that in the second line of code, we navigate the File System object model from its top-level object, the
FileSystemObject object, to the Drives collection object. We use the collection's Item property to retrieve a reference to
the Drive object representing Drive C:, and then retrieve the value of its RootFolder property to get a reference to an
object representing the drive's root folder.

1.2.2 Methods

Methods are simply public functions or subroutines exposed by an object. You call them in the same way that you call
any function or subroutine, except that you must preface the method name with a reference to the object whose
method you are calling. If you are calling a subroutine or a function whose return value does not interest you, you can
use syntax like:

Response.Write "<HTML><HEAD>"

which calls the ASP Response object's Write method to write the beginning of a web page to the server's output buffer
in response to a client request. To call a method that returns an object, use an assignment statement along with the Set
statement and enclose the argument list in parentheses. For example:

Set oShell = WScript.CreateObject("WScript.Shell")
Set oShortcut = oShell.CreateShortcut("My First Script.lnk")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set oShortcut = oShell.CreateShortcut("My First Script.lnk")

is a fragment from a WSH script that creates a shortcut and returns the WshShortcut object representing that shortcut.
If the method returns an ordinary value, the Set statement must not be used. For instance, the second line of the code:

Set oFS = CreateObject("Scripting.FileSystemObject")
strTempFile = oFS.GetTempName()

calls the FileSystemObject object's GetTempName method to retrieve a temporary filename, which is stored to the
variable strTempFile. The opening and closing parentheses after the method name are optional, since the method in this
case takes no arguments.

1.2.3 Events

Methods are routines belonging to an object that we call in code. Event handlers, on the other hand, are functions or
subroutines that we write that are called by the VBScript engine in response to some event that occurs to the object.
For instance, when an ASP application is accessed for the first time, its OnStart event is fired. If we have included code
like the following in our global.asa file:

Sub Application_OnStart
' application startup code goes here
End Sub

then that code is executed automatically.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Differences Between VBScript and VBA
VBScript is a subset of the Visual Basic for Applications language. There are several features that VB and VBA
programmers have become accustomed to that are not present in VBScript. This does not lessen the usability of
VBScript: it only serves to reinforce that VBScript is meant for scripting and not full-blown client/server application
development or COM component development. Let's take a look at a few of the larger differences between VBScript and
VBA:

VBScript is a weakly typed language.

Unlike Visual Basic and Visual Basic for Applications, in which the developer can define the data type of a
variable in advance, all variables in VBScript are variants. There are types to handle different types of data; you
can use these as you would the traditional data types in Visual Basic. For more information, see Chapter 3.

VBScript does not support early binding.

Because variables are untyped and code is not compiled, all external objects instantiated in VBScript code are
necessarily late-bound. This has a number of implications. First, late binding typically entails a substantial
performance penalty in comparison to early binding. Second, while the properties and methods of early-bound
objects can be examined in Visual Basic or hosted VBA environments using the Object Browser, this is not the
case with late-bound objects. Finally, the help facilities available for early-bound objects in VB and VBA (like
Auto List Members and Auto Quick Info) are not available, making syntax errors more likely and ready access to
good documentation all the more necessary.

VBScript does not support named arguments.

VBA supports both positional and named arguments for most functions and procedures. For example, the VBA
MsgBox function can be called using positional arguments as follows:

lResult = MsgBox("Delete this file?", _
 vbYesNo Or vbQuestion Or vbDefaultButton2, _
 "Confirm File Deletion")

A method call using named arguments takes the following form:

lResult = MsgBox(Prompt:="Delete this file?", _
 Title:="Confirm File Deletion", _
 Buttons:=vbYesNo Or vbQuestion Or vbDefaultButton2)

Note that while positional arguments must occur in a predefined sequence, named arguments need not. At least
in our experience, more advanced programmers tend to prefer positional syntax, while more novice
programmers tend to prefer named arguments.

Given all of this, it is unfortunate that VBScript supports only positional arguments.

VBScript does not have an IDE.

There is no integrated development environment for VBScript that parallels the IDE for Visual Basic and Visual
Basic for Applications. Development tools are available for all of the environments in which VBScript is used, but
all fall short of the power, simplicity, elegance, and ease of use of the VB/VBA IDE.Typically, web developers
have had their own environments for writing their code. VBScript for the Web, whether it is client-side or
server-side, is embedded inside of a <SCRIPT> tag. This allows web developers to continue to use their tool of
choice even when using VBScript; a wide array of tools for web script development are available. Scripts for
WSH can be created with the use of a simple text editor like Windows Notepad. Outlook comes with its
rudimentary IDE (a glorified version of Notepad) for attaching code to Outlook forms.

We should also mention one difference between VBScript and VB/VBA that developers and commentators often
emphasize—namely, that VBScript is slower than VB/VBA. This contention, though, raises more questions than it
answers. First, if VBScript is used as "glue code," as it typically is, then the limiting factor in a VBScript program's
performance will be the components it consumes, rather than theperformance of the script itself. Second, performance
cannot be measured in a vacuum. Rather than asking whether VBScript is faster or slower in the abstract, we have to
consider the particular tasks for which it is being used.

But practically speaking, "Which is faster?" is usually the wrong question. The right question to ask is, "Which is fast
enough?", which is a very different question. "Which is faster?" is a bad metric to use when choosing or comparing
programming languages. Many factors influence performance, and not all are obvious. Code reliability, maintainability,
robustness, and cost of development are all important factors to be considered along with performance.

Performance ("faster" and "slower") is also inherently hard to measure, since the terms themselves are more subjective
than objective. Do they refer to "UI snappiness," "time to first byte," "throughput," or "page faults per second," or to
something else?

As a programming language, VBScript offers acceptable performance along with an elegance and simplicity that make it
a valuable tool for the range of scripted applications for which it was developed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Program Structure
In order to write VBScript programs, you have to know how to structure your code so that your scripts and programs
execute properly. Each of the different runtime environments for which you write VBScript code has different rules
regarding program structure. We'll look at each of these in turn. We'll also examine the ways in which your host
environment allows you to import VBScript code libraries, thus allowing you to create reusable code. Finally, we'll end
the chapter with a discussion of VBScript usage to write class modules. First, though, it's important to cover the basic
structures of VBScript that are relevant to all of the different script types: that global code calls code in individual
functions or procedures.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Functions and Procedures
Functions and procedures (or subroutines) are central to modern programming. Dividing our script into subroutines
helps us to maintain and write programs by segregating related code into smaller, manageable sections. It also helps to
reduce the number of lines of code we have to write by allowing us to reuse the same subroutine or function many
times in different situations and from different parts of the program. In this section, we'll examine the different types of
subroutines, how and why they are used, and how using subroutines helps to optimize code.

2.1.1 Defining Subroutines: The Sub . . . End Sub Construct

The Sub...End Sub construct is used to define a subroutine; that is, a procedure that performs some operation but does
not return a value to its calling program. Blocks of code defined as subroutines with the Sub...End Sub construct can be
called in three ways:

Automatically

Some subroutines provide the means by which an object interfaces with the script. For instance, when a class
defined with the Class...End Class construct is initialized, its Initialize event, if one has been defined, is executed
automatically. For subroutines of this type, the routine's name can be constructed in only one way, as follows:

Sub objectname_event

For example, Sub Class_Initialize is a valid name of a subroutine. This type of subroutine is known as an event
handler or an event procedure.

Defining it as an event handler

A subroutine can be executed automatically if it is defined as an event handler—as a routine that is executed
whenever some event occurs. For the most part, the functionality to wire events and their event handlers is
defined by the application environment rather than by the VBScript language itself. An exception, however, is
the GetRef function, which allows you to define event handlers for Dynamic HTML pages in Internet Explorer.

Referring to it by name

A subroutine can be executed at any time by referring to it by name in another part of the script. (For additional
details, including the syntax required to call subroutines, see Section 2.1.2" later in this chapter.) While it is
possible to execute event procedures in this way, this method is most commonly used to execute custom
subroutines. Custom subroutines are constructed to perform particular tasks within a program and can be
assigned virtually any name that you like. They allow you to place code that's commonly used or that is shared
by more than one part of a program in a single place, so that you don't have to duplicate the same code
throughout your application.

Subroutine Names
Subroutine names follow the same rules as all identifiers, like classes, variables, and properties. This
means that there are several very straightforward rules to remember when giving names to your
subroutines:

The name can contain any alphabetical or numeric characters and the underscore character.

The name must start with a letter, not a numeric character or underscore, and it cannot contain
embedded spaces.

The name cannot contain any spaces. Use the underscore character to separate words to make
them easier to read.

The name cannot be a VBScript reserved word, such as a VBScript statement.

For example, in the following:

Sub 123MySub() ' Illegal
Sub My Sub Routine() ' Illegal

both names contain illegal subroutine names. However:

Sub MySub123() ' Legal
Sub MySubRoutine() ' Legal

are legal subroutine names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are legal subroutine names.

Most of these rules can be broken by enclosing the subroutine name in brackets. The following VBScript
code for WSH, for instance, defines valid subroutines whose names begin with an underscore and a
numeric string character, include an embedded space, and conflict with a VBScript reserved word:

[_Main]
Public Sub [_Main]
 MsgBox "In_Main"
 [1Routine]
 [2 Routine]
 [Dim]
End Sub

Public Sub [1Routine]
 MsgBox "In 1Routine"
EndSub
Public Sub [2 Routine]
 MsgBox "In 2 Routine"
 End Sub
 Public Sub [Dim]
 MsgBox "In Dim"
End Sub

Example 2-1 illustrates the use of a custom subroutine in a client-side script to contain code that is common to more
than one part of an application. It provides a simple example of some common code that is placed in a custom
subroutine. The web page in Example 2-1 contains three intrinsic HTML command buttons. But rather than handling the
user's click of a particular button separately, each button's OnClick event procedure simply calls the ShowAlertBox
routine. Had we not included the ShowAlertBox subroutine, which contains code common to all three event handlers in
our web page, we would have had to create a script several times longer than the one shown in Example 2-1.

Along with showing how to use a custom subroutine to share code, Example 2-1 also demonstrates how to pass
variables from one procedure to another, a topic discussed in greater depth in Section 2.1.4 later in this chapter. In
particular, theShowAlertBox routine is passed the caption of the button on which the user has clicked so that it can
display it in an alert box.

Example 2-1. Using a custom subroutine to share code

 Sub cmdButton1_OnClick
 Call ShowAlertBox(cmdButton1.Value)
 End Sub

 Sub cmdButton2_OnClick
 ShowAlertBox cmdButton2.Value
 End Sub

 Sub cmdButton3_OnClick
 ShowAlertBox cmdButton3.Value
 End Sub

 Sub ShowAlertBox(strButtonValue)
 dim strMessage
 strMessage = "This is to let you know" & vbCrLf
 strMessage = strMessage & "you just pressed the button" & vbCrLf
 strMessage = strMessage & "marked " & strButtonValue
 Alert strMessage
 End Sub

2.1.2 Calling a Subroutine

In Example 2-1, you may have noticed that the cmdButton1_OnClick event procedure uses a different syntax to invoke
the ShowAlertBox routine than the cmdButton2_OnClick and cmdButton3_OnClick procedures. The second form of the
call to the ShowAlertBox function:

showAlertBox cmdButton2.Value

is currently the preferred method. Note that it is unclear that this is actually a call to a subroutine named ShowAlertBox.
Presumably, ShowAlertBox could be a variable. In fact, in order to identify ShowAlertBox as a subroutine, we have to
rely on a visual clue: it is followed by another variable on the same line of code. This assumes, of course, that the code
is correct, and that we haven't inadvertently omitted an equal sign between two variables.

In contrast, invoking a procedure by using a Call statement like the following:

Call showAlertBox(Top.cmdButton1.Value)

makes the code much more readable. You may prefer using it for this reason.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

makes the code much more readable. You may prefer using it for this reason.

The rules for calling procedures are quite simple. If you use the Call statement, you must enclose the argument list in
parentheses. If you do not use Call, you cannot use parentheses unless you're passing a single variable. In this case,
though, parentheses also cause the variable to be passed by value rather than by reference to the subroutine (for the
meanings of "by value" and "by reference," see Section 2.1.4 later in this chapter), a behavior that may have
undesirable consequences.

2.1.3 Defining Functions: The Function . . . End Function Construct

As we've seen, subroutines created by the Sub...End Sub construct are used to manipulate data that is passed to them
(assuming that the subroutine accepts parameters) or to perform some useful operation. However, subroutines have
one major shortcoming: they don't return data, such as the results of their manipulations or information on whether
they were able to execute successfully.

It is possible for asubroutine to "return" a value by passing it an argument by reference (a topic discussed in Section
2.1.4). However, that has one major disadvantage: it requires that you declare a variable to pass to the subroutine,
even if you're not concerned with that variable's value or with the value "returned" by the subroutine.

There's also an additional way that a subroutine can return a value: you can pass the subroutine the value of a global
variable that is visible throughout your routine. For instance, we could use the following code fragment to create a
subroutine that cubes any value that is passed to it as a parameter:

<SCRIPT LANGUAGE="vbscript" RUNAT="Server">
 dim cube ' global variable

 Sub CubeIt(x)
 cube = x^3
 end sub
</SCRIPT>

Another routine can then access the result with a code fragment like the following:

<%
Dim intVar
intVar = 3
CubeIt intVar
Response.Write cube
%>

This approach, though, suffers from two limitations. First, it means that the global variable must remain in memory for
the entire life of our script, even though the variable itself may be used only briefly, if at all. In most cases, this is a
very minor concern, unless that variable is a large string or it's used on a particularly busy web server. Second, and
much more important, it creates a variable that can be accessed and modified from anywhere within our script. This
makes it very easy for a routine to accidentally modify the value of a variable that is used elsewhere in the script. The
availability or unavailability of a variable within a particular procedure is called its scope. And in general, the variables in
a well-designed application should have the most restrictive scope possible.

Through its support for functions, VBScript supports a much safer way of retrieving some value from a routine.
Functions share many of the same characteristics as subroutines defined with the Sub...End Sub construct:

Through their optional argument list, they can be used to manipulate data that is passed to them.

Since they can be called from anywhere in a script, they can be used to contain code that is shared by more
than one part of the application.

However, unlike subroutines, functions return some value to the calling procedure. This makes functions ideal for such
uses as storing the code for frequently used calculations and conversions.

Functions are defined by using the Function...End Function construct, and by placing the function's code between these
two statements. The full form of the Function...End Function statements is:

Function functionname(argumentlist)
End Function

Defining a Function's Return Value
If you've used VB or VBA to create functions, you probably have used the As keyword to define the data
type of the value returned by a function, as in the following statement:

Function CubeIt(ByVal x As Long) As Long

Since VBScript supports only the variant data type, though, the As keyword is not supported, and you
don't have to worry about the data type returned by your custom function. All functions defined by the
Function statement return data of type variant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A function's argument list is defined in exactly the same way as a subroutine's: the list of arguments is separated by
commas and is enclosed in parentheses.

So how do we have our function return a value to the calling procedure? Within the body of our function, we assign the
value that we want our function to return to a variable whose name is the same as the name of the function, as
illustrated by the following code fragment:

Function functionname(argumentlist)
 . . . some calculation or manipulation
 functionname = result of calculation or manipulation
End Function

This variable is automatically initialized through the use of the Function statement. This means that if you're accustomed
to defining your variables before using them, and especially if you've included the Option Explicit statement in your script,
you should not use the Dim statement to explicitly initialize the variable for the function's return value.

To implement our earlier CubeIt procedure as a function rather than a subroutine, we dispense with the need to define
a global variable to hold the cube of the argument passed to the function and enormously simplify our code, as the
following code fragment shows:

<SCRIPT LANGUAGE="vbscript" RUNAT="Server">
 Function CubeIt(x)
 CubeIt = x^3
 End Function
</SCRIPT>

<%
Dim intVar
intVar = 3
Response.Write CubeIt(intVar)
%>

Once a custom function is correctly defined using the Function...End Function statement, it can be called just as if it were
an intrinsic function that is built into the VBScript language. The function call itself can take either of two forms. The
most common form involves using the function name and its argument list on the right side of an expression, and
assigning its return value to a variable on the left side of the expression. For example, the most common way to call the
CubeIt function is:

y = CubeIt(x)

This assigns the value returned by the CubeIt function to the variable y. Unlike a call to a subroutine, though, this
means that the argument list, if one is present, must always be surrounded by parentheses. (If the function accepts no
parameters, though, the opening and closing parentheses are typically still used, although they're not required.)

In some cases, you may not actually be concerned with a function's return value. This doesn't happen very often—
usually, you call afunction precisely in order to have it return some value, so ignoring its return value renders the
function useless. Nevertheless, if you do want to discard a function's return value, you can call a function just like you
would call a subroutine. For example:

Call CubeIt(x)

or:

CubeIt x

Example 2-2 provides a real-world example—a client-side script that converts inches to either millimeters or meters—
that shows how functions are defined and called. Along with two event procedures, it contains a function, sngMetric, that
has a single argument, strInches, which is a string containing the number of inches that the user has input into the
form's text box. The function converts this value to a single precision number, multiplies by 25.4, and, by storing it to
the variable sngMetric, returns the result. The cmdButton1_OnClick and cmdButton2_OnClick event handlers call the
function as necessary and pass the appropriate values to it. As you can see, the result returned by the sngMetric
function is immediately displayed in a message box.

Example 2-2. Calling a function and returning a result

<HTML>
 <HEAD>
 <SCRIPT LANGUAGE="vbscript">
 <!--
 Sub cmdButton1_OnClick
 Dim strImperial
 strImperial = txtText1.Value
 Alert CStr(sngMetric(strImperial)) & " mm"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Alert CStr(sngMetric(strImperial)) & " mm"
 End Sub

 Sub cmdButton2_OnClick
 Dim strImperial
 strImperial = txtText1.Value
 Alert CStr(sngMetric(strImperial)/1000) & " m"
 End Sub

 Function sngMetric(strInches)
 Dim sngInches
 sngInches = CSng(StrInches)
 sngMetric = sngInches * 25.4
 End Function
 -->
 </SCRIPT>
 </HEAD>

 <BODY BGCOLOR="white">
 Input Inches: <INPUT TYPE="text" NAME="txtText1">
 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Show Millimeters">
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Meters">
 </BODY>
</HTML>

2.1.4 Passing Variables into a Subroutine

The ability to pass variables from one procedure to another is an important part of using custom procedures. It allows
us to write custom "black box" routines that can behave differently depending on where the routine has been called
from and also on the particular data values that the routine receives from the calling program.

The data is passed from a calling routine to a subroutine by an argument list. The argument list is delimited with
commas and can contain any data types, including objects and arrays. For instance, the following mySubRoutine
procedure expects three arguments: intDataIn1, strDataIn2, and lngDataIn3:

Sub AnotherSubRoutine()
 some code. . . .
 mySubRoutine intvar1, strvar2, lngvar3
 more code that executes after mySubRoutine
End Sub

Sub mySubRoutine(intDataIn1, strDataIn2, lngDataIn3)
 code which uses incoming data
End Sub

When mySubRoutine is called from AnotherSubRoutine, it is passed three variables as arguments: intvar1, strvar2, and
lngvar3. So as you can see, the names of variables passed in the calling routine's argument list do not need to match the
names in the custom procedure's argument list. However, the number of variables in the two argument lists does need
to match or a runtime error results.

Passing Parameters by Reference
If you're accustomed to programming in VB or VBA, you'll recognize the way that you pass arguments in
VBScript. However, in Versions 1 and 2 of VBScript, this wasn't the case. Parameters could be passed only
by value, and there was no support for passingparameters by reference.

In addition, because VBScript is so flexible in its use of data types, you must take care when building subroutines that
use data passed into them. The variables designated in the custom subroutine's argument list are automatically
assigned the data types of the calling program's argument list. If a custom subroutine attempts to perform some
inappropriate operation on the data passed to it, an error results, as the following code fragment illustrates:

Sub AnotherSubRoutine()
 some code. . .
 intVar1 = "Hello World"
 Call mySubRoutine (intvar1, strvar2, lngvar3)
 more code that executes after mySubRoutine
End Sub

Sub mySubRoutine(intDataIn1, strDataIn2, lngDataIn3)
 code that uses incoming data
 intResult = intDataIn1 * 10 'this will generate an error
End Sub

The custom subroutine mySubRoutine assumed that intDataIn1 would be an integer, but instead the calling program
passed it a string variable, intVar1. Therefore, VBScript automatically casts intDataIn1 as a string. The subroutine then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

passed it a string variable, intVar1. Therefore, VBScript automatically casts intDataIn1 as a string. The subroutine then
produces a runtime error when it attempts to perform multiplication on a non-numeric variable. As you can see, while
weakly typed languages like VBScript have many advantages, one of their major drawbacks is the fact that you must be
on your guard for rogue data at all times.

You can pass an argument to a procedure either by reference or by value. By default, arguments are passed by
reference, which means that the calling routine passes the called function or subroutine the actual variable (that is, its
actual address in memory). As a result, any modifications made to the variable are reflected once control returns to the
calling routine. The ASP code in Example 2-3 illustrates passing a variable by reference. The variable x is initially
assigned a value of 10 in the DoSubroutine procedure. This value is then changed to 100 in the CallAnotherSub
procedure. When control returns to the DoSubroutine procedure, the value of x remains 100 because the variable was
passed by reference to CallAnotherSub.

Example 2-3. Passing a variable by reference

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub DoSubroutine()
 Dim x
 x = 10
 Response.Write "In DoSubroutine, x is " & x & "<P>"
 CallAnotherSub x
 Response.Write "Back in DoSubroutine, x is " & x & "<P>"
End Sub

Sub CallAnotherSub(ByRef var1)
 var1 = var1^2
 Response.Write "In CallAnotherSub, var1 is " & var1 & "<P>"
End Sub
</SCRIPT>

About to call DoSubroutine <P>
<%
 DoSubroutine
%>

The Sub statement for CallAnotherSub explicitly indicates that its single parameter, var1, is to be passedby reference
because of the ByRef keyword. Since this is the default method of passing parameters, however, the keyword could
have been omitted. The statement:

Sub CallAnotherSub(ByRef var1)

is identical to:

Sub CallAnotherSub(var1)

On the other hand, by value means that the calling routine passes the called function or subroutine a copy of the
variable. This means that any changes to the variable's value are lost when control returns to the calling program. The
ASP code in Example 2-4 illustrates passing a variable by value. As was also true in Example 2-3, the variable x is
initially assigned a value of 10 in the DoSubroutine procedure. This value is then changed to 100 in the CallAnotherSub
procedure. When control returns to the DoSubroutine procedure, the value of x remains 10 because the variable x was
passed by value to CallAnotherSub.

Example 2-4. Passing a variable by value

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub DoSubroutine()
 Dim x
 x = 10
 Response.Write "In DoSubroutine, x is " & x & "<P>"
 CallAnotherSub x
 Response.Write "Back in DoSubroutine, x is " & x & "<P>"
End Sub

Sub CallAnotherSub(ByVal var1)
 var1 = var1^2
 Response.Write "In CallAnotherSub, var1 is " & var1 & "<P>"
End Sub
</SCRIPT>

About to call DoSubroutine <P>
<%
 DoSubroutine
%>

Note that the Sub statement for CallAnotherSub explicitly indicates that its single parameter, var1, is to be passed by
value because of the ByVal keyword. This is necessary, since otherwise the variable would have been passed by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value because of the ByVal keyword. This is necessary, since otherwise the variable would have been passed by
reference.

To call a subroutine and pass it one or more arguments, you would use syntax like the following:

DoSomeSub x, y, z

where each argument in the argument list is separated from the other arguments by a comma, and the argument list is
separated from the subroutine by a space. You cannot use parentheses to surround the argument list of a subroutine
unless it has only a single argument.

To call a function, you can use the same syntax as you would use for a subroutine if you intend to discard the function's
return value. For example:

DoSomeFunc x, y, z

passes three arguments to a function and ignores its return value. If the function has only a single argument, you can
also call it and ignore its return value as follows:

DoSomeFunc(x)

More commonly, however, you are interested in the return value of a function. In that case, the argument list should be
enclosed in parentheses, and each argument should be separated from other arguments by a comma. For example:

retval = DoSomeFunc(x, y, z)

Although the called routine defines whether an argument is to be passed to it by value or by reference, there is actually
no way to force the caller to call a routine and pass it an argument by reference. This is because there is one additional
way to pass an argument to a procedure that overrides the explicit or default ByRef keyword: you can enclose the
argument in parentheses. This is a subtle difference that you should be aware of when passing parameters to
procedures, since it can have unintended consequences. Imagine, for example, that we have the following subroutine,
which accepts two arguments by reference:

Sub DoSomething(xl, x2)

The caller can pass the first argument to the subroutine by value by using the following syntax:

DoSomething (x1), x2

Similarly, the caller can pass the second argument to the subroutine by value by using the following syntax:

DoSomething x1, (x2)

If a subroutine has only a single parameter, then calling it with a syntax like the following:

DoSomething(x)

also passes the argument x to it by value.

The converse does not work: parentheses do not cause an argument to be passed by
reference to a routine that is expecting to receive an argument passed by value.

Overriding a by reference parameter when calling a function works similarly; arguments enclosed in parentheses are
always passed by value rather than by reference. If the caller wishes to discard the function's return value, then a
function is called exactly as if it were a subroutine, and by reference parameters are overridden in the same way as in
calls to subroutines. If the caller retrieves the function's return value, then the function name must be followed by
parentheses, as must the argument to be passed by value rather than by reference. For example, given a function with
the signature:

Function CallFunction(var1, var2)

the code:

retVal = CallFunction(xl, (x2))

passes the x2 argument to the function by value rather than by reference. If a function has a single parameter, an
argument can be passed to it by value rather than by reference using the following syntax:

retVal = CallFunction((x1))

Note the double parentheses around the single argument.

2.1.5 Exiting a Routine with the Exit Statement

Ordinarily, when you call a function or a subroutine, all code between the initial Function or Sub statement and the
concluding End Function or End Sub statement is executed. In some cases, though, you may not want all of a routine's
code to be executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code to be executed.

For example, imagine a situation in which you only want to execute a subroutine if a particular condition is met. One
way of implementing this in your code is to test for the condition before calling the subroutine, as follows:

. . . some code
If condition Then
 Call MySubRoutine()
End if
. . . more code

However, if you call the routine from multiple locations in your code, and you want to apply this test to each call, you'll
have to include this control structure at every place in the script in which you call the subroutine. To avoid this
redundant code, it's better to call the subroutine regardless of the condition, and to place the test within the subroutine.
One way of doing this is as follows:

Sub MySubRoutine()
 If condition then
 . . . all our subroutine code
 End if
End Sub

This is all well and good, and quite legal. However, in a large and complex subroutine, the End If statement becomes
visually lost, especially if there are several conditions to be met. The preferred alternative is the Exit Sub and the Exit
Function statements, which are used with the Sub . . . End Sub and Function . . . End Function constructs, respectively. Our
conditional test at the beginning of a subroutine then appears as follows if we use the Exit Sub statement:

Sub MySubRoutine()
 If Not condition Then Exit Sub
 . . . all our subroutine code
End Sub

Exit Sub and Exit Function immediately pass execution of the program back to the calling procedure; the code after the
Exit statement is never executed. As you can see from the previous code fragment, the code is clean and clearly
understandable. If the particular condition is not met, the remainder of the subroutine is not executed. Like the Exit Do
and Exit For statements, any number of Exit Sub or Exit Function statements can be placed anywhere within a procedure,
as the following code fragment demonstrates:

Function functionname(argumentlist)

 . . . some calculation or manipulation

 If condition1 Then
 functionname = result of calculation or manipulation
 Exit Function
 End If

 . . . perhaps some more code

 If condition2 Then
 functionname = result of calculation or manipulation
 Exit Function
 End If

End Function
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Classes
Since VBScript 5.0, developers have been able to create classes to use in their scripts—a definite step along the road of
object-oriented programming in VBScript. Writing classes with VBScript is very similar to writing COM objects with VB.
Before we look at writing an actual class, let's go over some of the terminology so we are clear on what we are doing
and what we are referring to.

A class is simply the template for an object. When you instantiate an object (that is, create an instance of a class) in
code, VBScript makes a copy of the class for your use. All objects come from a class. Writing the class is simply a
matter of creating a design for the objects that you want to use.

So naturally, it follows that an object is simply a copy of the class that you are making available to your program. You
can make as many copies as you like for your use. The copies are temporary structures for holding information or
creating interactions. When you are done with the objects, you can release them. If you need another one, you can
instantiate another copy.

In VBScript, classes must be created in the scripts where you want to use them or they must be included in the scripts
that use them. Since VBScript isn't compiled, unless you use Windows Script Components, you don't have the
advantage of being able to write a set of VBScript COM classes that are reusable outside of the scripts in which they're
defined or that can be easily accessed by programs and scripts written in other languages.

2.2.1 The Class Construct

You declare a class using the Class...End Class construct. The syntax of the Class statement is:

Class classname

where classname is the name you want to assign to the class. It must follow standard VBScript variable naming
conventions.

Classes can contain variables, properties, methods, and events. How many of these and of what types is completely up
to you. It is possible to have an object that has no properties or methods and supports only the two default events, but
it won't be a very useful class.

To instantiate an object—that is, to create an instance of your class that you can use in your code—use the following
syntax:

Set oObj = New classname

where oObj is the name you want to assign to your object variable (it again must follow standard VBScript variable
naming conventions), and classname is the name of the class. The statement creates an object reference—that is, the
variable oObj contains the address of your object in memory, rather than the object itself.

2.2.2 Class Variables

In addition to properties, methods (which are either functions or subroutines), and events (which are subroutines), the
code inside a Class structure can include variable definitions (but not variable assignments). The variable definition can
take any of the following forms:

Dim varName1 [, varName2...]
Private varName1 [, varName2...]
Public varName1 [, varName2...]

The variable name must once again follow standard VBScript variable naming conventions.

The Dim, Private, and Public keywords indicate whether the variable is accessible outside of the class. By default,
variables are public—that is, they are visible outside of the Class...End Class structure. This means that the Dim and Public
keywords both declare public variables, while the Private keyword declares a variable that's not visible outside of the
class.

In general, it is poor programming practice to make a class variable visible outside of the class. There are numerous
reasons for this, the most important of which is that you have no control over the value assigned to the variable (which
is especially a problem when dealing with a weakly typed language like VBScript) and no ability to detect when the
value of the variable has been changed. As a rule, then, all variables declared within your classes should be private.

2.2.3 Class Properties

Typically, class properties are used to "wrap" the private variables of a class. That is, to change the value of a private
variable, the user of your class changes the value of a property; the property assignment procedure (called a Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable, the user of your class changes the value of a property; the property assignment procedure (called a Property
Let procedure) handles the process of data validation and assigning the new value to the private variable. If the private
variable is an object, use an object property assignment procedure (called a Property Set procedure) to assign the new
property value to the private object variable. Similarly, to retrieve the value of a private variable, the user of your class
retrieves the value of a property; theproperty retrieval procedure (called a Property Get procedure) handles the process
of returning the value of the private variable.

Read-only properties (which wrap read-only private variables) have only a Property Get procedure, while write-only
properties (which are rare) have only a Property Let or a Property Set procedure. Otherwise, properties have a Property
Get procedure and either a Property Let or a Property Set procedure and are read-write.

The use of public properties that are available outside of the class to wrap private variables is illustrated in Example 2-
5, which shows a simple class that defines a private variable, modStrType, and two read-write properties, ComputerType
and OperatingSystem, the latter of which is an object property. Normally, you would validate the incoming data in the
Property Let and Property Set procedures before assigning it to private variables, although that hasn't been done here
to keep the example as simple as possible.

Example 2-5. Using properties to wrap private variables

Class Computer

 Private modStrType
 Private oOS

 Public Property Let ComputerType(strType)
 modStrType = strType
 End Property

 Public Property Get ComputerType()
 ComputerType = modStrType
 End Property

 Public Property Set OperatingSystem(oObj)
 Set oOS = oObj
 End Property

 Public Property Get OperatingSystem()
 Set OperatingSystem = oOS
 End Property

End Class

2.2.4 Class Methods

Methods allow the class to do something. There is no magic to methods—they are simply subroutines or functions that
do whatever it is you wish for the object to do. For example, if we created an object to represent a laptop computer in a
company's inventory, then we would like to have a method that reports the laptop's owner. Example 2-6 shows a class
with such a method.

Example 2-6. Creating a class method

Class LaptopComputer
Private modOwner

Public Property Let CompOwner(strOwner)
 modOwner = strOwner
End Property

Public Property Get CompOwner()
 CompOwner = modOwner
End Property

Public Function GetOwner()
 GetOwner = modOwner
End Function

End Class

As with properties, you can use the Public and Private keywords to make methods available inside or outside of the class.
In the previous example, the method and both properties are available outside of the class because they are declared
as Public.

Note that in Example 2-6, the Property Get procedure performs the same functionality as the GetOwner method. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that in Example 2-6, the Property Get procedure performs the same functionality as the GetOwner method. This is
quite common: you often can choose whether you want to implement a feature as a property or as a method. In this
case, you could define both property procedures to be private; then the only way for anyone to get the owner
information from the object would be to invoke the GetOwner method.

The GetOwner method is declared as a function because it returns a value to the calling code. You can write methods as
subroutines as well. You would do this when the method that you are calling does not need to pass back a return value
to the caller.

2.2.5 Class Events

Two events are automatically associated with every class you create:Class_Initialize andClass_Terminate.
Class_Initialize is fired whenever you instantiate an object based on this class. Executing the statement:

Set objectname = New classname

causes the event to fire. You can use this event to set class variables, to create database connections, or to check to
see if conditions necessary for the creation of the object exist. You can make this event handler either public or private,
but usually event handlers are private—this keeps the interface from being fired from outside code. The general format
of the Class_Initialize event is:

Private Sub Class_Initialize()
Initalization code goes here
End Sub

The Class_Terminate event handler is called when the script engine determines that there are no remaining references
on an object. That might happen when an object variable goes out of scope or when an object variable is set equal to
Nothing, but it also might not happen at either of these times if other variables continue to refer to the object. You can
use this handler to clean up any other objects that might be opened or to shut down resources that are no longer
necessary. Consider it a housekeeping event. This is a good place to make sure that you have returned all memory and
cleaned up any objects no longer needed. The format of the Class_Terminate event is:

Private Sub Class_Terminate()
Termination code goes here
End Sub

Once again, the event handler can either be public or private, though ordinarily it's defined as private to prevent
termination code from being executed from outside of the class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Global Code
We've seen that code can be organized into functions, subroutines, and classes, and that some subroutines (and an
occasional function) can be executed automatically if they are event handlers and the event they handle fires. However,
that seems to offer a relatively limited "hook" for a script to run, and it doesn't seem to make it possible for a script to
perform whatever initialization might be required in order for its event handlers to function successfully.

Global code—that is, code outside functions and subroutines—is the answer to this dilemma. It is executed
automatically when the script loads or as the HTML on the page is parsed. The precise meaning of global code and the
exact way in which it is executed depends on the host environment for which the script is written. We'll examine these
in turn.

2.3.1 Active Server Pages

In ASP, global code is synonymous with code in direct ASP commands—it is script that is preceded by the <% or <%=
tags and terminated by the %> tag. (For details on how script is embedded within in ASP page, see Chapter 5.) This
code is executed automatically as the page's HTML is parsed.

It is also possible to include global code in <SCRIPT>...</SCRIPT> tags in an ASP. However, this is not genuine global
code; aside from variable declarations, the order in which this code is executed is undefined.

Figure 2-1 shows the web page produced by Example 2-7, which illustrates global code in an Active Server Page. Note
that although the variable x is defined and assigned a value in global code within the <SCRIPT> tag, the variable
declaration is recognized but the variable assignment isn't. We can determine this because we've used the Option Explicit
statement to require variable declaration, and the VBScript language engine did not raise an error when it first
encountered the use of x on the second line after the <BODY> tag. But our assignment of 10 to x is not recognized,
since the second line of our web page strongly suggests that x is uninitialized.

Example 2-7. Global code in an Active Server Page

 <% Option Explicit %>
<HEAD>
<TITLE>Global code in ASP</TITLE>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

</SCRIPT>
</HEAD>
<BODY>
<H2><CENTER>An Active Server Page</CENTER></H2>
The current value of x is <%= x %>

<%
 Dim y
 y = 20
 If x = 0 Then x = 10
%>
Value returned by Increment function: <%= Increment(x) %>

Value returned by Increment function: <%= Increment(x) %>

Value returned by Decrement function: <%= Decrement(x) %>

The value of <I>x</I> is now <%= x %>.
The value of <I>y</I> is <%= y %>.
</BODY>
</HTML>

Figure 2-1. The web page produced by Example 2-7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. The web page produced by Example 2-7

We can draw the following conclusions from Example 2-7:

Variable declarations placed at script level within the <SCRIPT> tag are recognized by ASP.

Aside from variable declarations, no global code should be placed within the <SCRIPT> tag. The remaining code
located within a <SCRIPT> tag should consist solely of function, subroutine, and class definitions.

Direct commands can contain any global code.

All direct commands are executed as the web server is parsing the HTML and generating a response to the
client. In other words, along with handlers for the events supported by ASP (Application_OnStart,
Application_OnEnd, Session_OnStart, Session_OnEnd, OnTransactionAbort, and OnTransactionCommit), direct
commands are basic "hooks" that allow your code to run.

2.3.2 Windows Script Host

In a standard VBScript file for WSH, global code is any code that's not located in function, subroutine, or class
definitions. This code is executed sequentially regardless of where it is located in the file. This produces some
interesting possibilities for spaghetti code, as illustrated in Example 2-8, which provides a WSH equivalent of the ASP
script in Example 2-7. This script produces the dialog shown in Figure 2-2. Although its program structure should not be
duplicated in your own code, Example 2-8 illustrates that all global code is executed from the beginning of a VBScript
file to the end.

Example 2-8. Global code in WSH

Option Explicit

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

Dim sMsg
sMsg = "The current value of x is " & x & vbCrLf

Dim y
y = 20
If x = 0 Then x = 10

sMsg = sMsg & "Value returned by Increment: " & Increment(x) & vbCrLf
sMsg = sMsg & "Value returned by Increment: " & Increment(x) & vbCrLf
sMsg = sMsg & "Value returned by Decrement: " & Decrement(x) & vbCrLf
sMsg = sMsg & "The value of x is now " & x & vbCrLf
sMsg = sMsg & "The value of y is " & y & vbCrLf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sMsg = sMsg & "The value of y is " & y & vbCrLf

MsgBox sMsg

Figure 2-2. The dialog produced by the script in Example 2-8

If you're using a .wsf file with XML elements rather than a simple VBScript file, the same principles apply to code within
the XML <job> and </job> tags. All code must be assigned to a particular job, and code assigned to a job is independent
of and unrelated to code assigned to any other job. Within the <job> tag, all global code is executed sequentially,
regardless of how many <script> tags are used to contain it.

2.3.3 Client-Side Scripts for Internet Explorer

Global code in client-side scripts is found inside <SCRIPT> . . . </SCRIPT> tags but not inside of functions, subroutines,
and classes. All global code is executed by Internet Explorer, as Example 2-9 and Figure 2-3 show. In fact, global code
can be used as a replacement for the Window_OnLoad event.

Example 2-9. Global code for Internet Explorer

<SCRIPT LANGUAGE="VBScript">
Option Explicit

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

</SCRIPT>
<CENTER><H2>Welcome to our web page!</H2></CENTER>
<SCRIPT LANGUAGE="VBScript">

Document.Write "The current value of x is " & x & "
"

Dim y
y = 20
If x = 0 Then
 Document.Write "Initializing <I>x</I> in the second script block" & "
"
 x = 10
End If

Document.Write "Value returned by Increment: " & Increment(x) & "
"
Document.Write "Value returned by Increment: " & Increment(x) & "
"
Document.Write "Value returned by Decrement: " & Decrement(x) & "
"
Document.Write "The value of x is now " & x & "
"
Document.Write "The value of y is " & y & "
"

</SCRIPT>

Figure 2-3. The document produced by Example 2-9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. The document produced by Example 2-9

2.3.4 Outlook Forms

Like Windows Script Host, Outlook executes all global code—not just variable declarations—when a form is loaded. In
this case, global code corresponds closely to the Outlook form's Item_Open event procedure, which is fired when the
form is opened.

Although you can use global code for executable statements, in most cases it is preferable that you do not. Most
Outlook form programming is event-driven; you should use events, including the Item_Open event, to handle variable
initialization, and confine yourself to using global code to declare public and private variables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Reusable Code Libraries
We've now discussed all of the basic principles of structuring VBScript programs, of constructing subroutines that can be
used by various parts of your program, of building functions that perform calculations and other manipulations and pass
the result back to the calling part of the program, and of creating classes that allow you to encapsulate real-world
processes and objects. The emphasis on subroutines, functions, and classes, though, raises another issue—that of code
reuse. Typically, classes are defined so that they can be used in a variety of applications. Similarly, many subroutines
and functions are intended not only to reduce code in a single application, but also to be "black boxes" that can provide
some service to multiple applications.

Although it generally hasn't been emphasized and is dependent on the host platform, VBScript code can be reused on
three of the four host platforms discussed here. The only platform that doesn't support code reuse isOutlook forms.
That means that if you're scripting for WSH, ASP, or Internet Explorer, you can develop code libraries that you import
into your script.

2.4.1 Active Server Pages

You can import HTML, client-side script, or server-side script into an ASP file by using the #include server-side directive.
Its syntax is:

<!-- #include PathType = sFileName -->

where PathType is one of the following keywords:

File

Indicates that sFileName is relative path from the current directory

Virtual

Indicates that sFileName is a full virtual path from the web server's root folder to the file to be included

and sFileName is the name of the file whose contents are to be included. Note that the #include directive must be
surrounded by an HTML comment. The included file can consist of any combination of client-side script, server-side
script, and HTML, as long as it is syntactically correct and consistent with the script or HTML source at the point in the
ASP page at which it is inserted.

Examples Example 2-10 and Example 2-11 illustrate one possible use of the #include directive. Example 2-10 shows the
contents of classes.inc, an include file that contains a class definition to be used by the ASP application. Example 2-11
shows the ASP page that includes the file. Note that the include file consists entirely of script and is delimited with the
HTML <SCRIPT> and </SCRIPT> tags (or the ASP <% and %> symbols). The ASP page in Example 2-11 inserts the
contents of the include file in the HTML header, immediately after the </TITLE> tag.

Example 2-10. classes.inc, an include file

<SCRIPT RUNAT="Server" LANGUAGE="VBScript">

Class CServer

 Private sName, sProtocol, sSoftware, sURL, lPort

 Public Property Get Name()
 Name = sName
 End Property

 Public Property Get Port()
 Port = lPort
 End Property

 Public Property Get Protocol()
 Protocol = sProtocol
 End Property

 Public Property Get URL()
 URL = sURL
 End Property

 Public Property Get Software()
 Software = sSoftware

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Software = sSoftware
 End Property

 Private Sub Class_Initialize()
 sName = Request.ServerVariables("SERVER_NAME")
 lPort = Request.ServerVariables("SERVER_PORT")
 sProtocol = Request.ServerVariables("SERVER_PROTOCOL")
 sSoftware = Request.ServerVariables("SERVER_SOFTWARE")
 sURL = Request.ServerVariables("URL")
 sSoftware = Request.ServerVariables("SERVER_SOFTWARE")
 End Sub

End Class

</SCRIPT>

Example 2-11. An ASP page that uses an include file

<% Option Explicit %>
<HTML>
<HEAD>
<TITLE>Including a Library File</TITLE>
<!-- #include File="Classes.inc" -->
</HEAD>
<BODY>
<H2>Welcome to our web site!</H2>
Here is information about our server: <P>
<%
 Dim oServer
 Set oServer = New CServer
%>
Name: <%= oServer.Name %>

Software: <%= oServer.Software %>

Port: <%= oServer.Port %>

Protocol <%= oServer.Protocol %>

Resource: <%= oServer.URL %>

</BODY>
</HTML>

The advantage of this approach is obvious: you can store common code in a separate file, making it available to all the
ASP pages and all the ASP applications that require it. When that code requires modification, you need do so only once
since there is only a single copy in a single location, rather than having to search through all of your web pages to
discover which ones incorporate the code.

While reusable code libraries can be useful in ASP development, you should only include the code you actually need in
your library. This is because there's a runtime cost associated with declaring a function for ASP. Including massive
libraries in an ASP application tends to produce noticeable slowdowns in throughput.

2.4.2 Windows Script Host

Although standard Windows Script host files (i.e., .vbs files) do not allow you to import other files, WSH files with XML
elements (i.e., .wsf files) do. Include another file by using the <SCRIPT SRC> tag. The syntax is:

<SCRIPT LANGUAGE="sLanguage" SRC="sFilename" />

where sLanguage is "VBScript" (or any other valid scripting language) and sFileName is either an absolute or a relative
path to the file to be excluded. Note that using the <SCRIPT> tag requires that the .wsf file be structurally correct—that
is, that the <PACKAGE> and <JOB> tags should be present.

The included file must be a standard WSH script file. It can contain only script, without any XML elements or tags. The
include file is simply inserted into the .wsf file as if it were an intrinsic part of it.

Examples Example 2-12 and Example 2-13 illustrate the use of aninclude file. In this case, the code in Example 2-13
imports Lib.vbs, the include file shown in Example 2-12. Example 2-12 simply displays a message box displaying drives
and their free space. To retrieve this information, it calls the GetFreeSpace function, which is located in the include file.
This function returns a Dictionary object whose keys are drive names and whose values are the amount of free space
available on the respective drive.

Example 2-12. Lib.vbs, an include file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-12. Lib.vbs, an include file

Public Function GetFreeSpace()

Dim oDict, oFS, oDrives, oDrive

Set oDict = WScript.CreateObject("Scripting.Dictionary")
Set oFS = WScript.CreateObject("Scripting.FileSystemObject")
Set oDrives = oFS.Drives
For Each oDrive in oDrives
 If oDrive.IsReady Then
 oDict.Add oDrive.DriveLetter, oDrive.FreeSpace
 End If
Next

Set GetFreeSpace = oDict

End Function

Example 2-13. A WSH script that uses an include file

<package>
<job id=GetFreeSpace>
<script language="VBScript" src="Lib.vbs" />
<script>
Option Explicit

Dim oSpace, aDrives
Dim sMsg, sDrive
Dim iCtr

Set oSpace = GetFreeSpace()
aDrives = oSpace.Keys
For iCtr = 0 To UBound(aDrives)
 sDrive = aDrives(iCtr)
 sMsg = sMsg & sDrive & ": " & oSpace(sDrive) & vbCrLf
Next

MsgBox sMsg
</script>
</job>
</package>

Note that files must be included on a per-job basis. In other words, if a .wsf file contains multiple jobs, you must have a
separate <SCRIPT SRC> tag for each job in which you want to include a particular file. An include file applies only to the
job in which it's been included.

2.4.3 Client-Side Scripts for Internet Explorer

Like Windows Script Host, Internet Explorer supports the <SCRIPT SRC> tag, which allows you to include script files. The
syntax of the tag is:

<SCRIPT SRC="sURL " LANGUAGE="sLanguage"> </SCRIPT>

where sURL is the URL of the include file and sLanguage is the language in which the file designated by sURL is written.
sLanguage can be "VBScript" or any other valid scripting language.

The include file is simply inserted into the text stream on the client at the point that the <SCRIPT SRC> tag is
encountered, and both it and the original document are viewed by the VBScript language engine as a single document.
The inserted file can contain only script, without any HTML tags.

Example 2-14 contains an include file and Example 2-15 contains an HTML document that includes a client-side script to
validate data. Note that the IsBlank routine is visible to the web page, since the included script is considered part of the
original document. Note also that Validate.inc contains only script, without any HTML tags, and that the source
document contains a <SCRIPT SRC> tag immediately followed by a </SCRIPT> tag.

Example 2-14. Validate.inc, an include file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-14. Validate.inc, an include file

Private Function IsBlank(sValue)
 If Trim(sValue) = "" Then
 IsBlank = True
 Else
 IsBlank = False
 End If
End Function

Example 2-15. A web page that uses an include file

<HTML>
<HEAD>
<TITLE>The SRC Attribute</TITLE>
<SCRIPT SRC="Validate.inc" LANGUAGE="VBScript" > </SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript">
Private Function frmInfo_OnSubmit()
 With Document.frmInfo
 If IsBlank(.txtName.Value) Or _
 IsBlank(.txtAddress.Value) Or _
 IsBlank(.txtCity.Value) Or _
 IsBlank(.txtState.Value) Then
 frmInfo_OnSubmit = False
 Alert "Please make sure the Name, Address, City, " & _
 "State fields are not blank."
 End If
End With
</SCRIPT>
<H3>Please enter the following data</H3>
<FORM METHOD=POST ACTION="Submission.asp" NAME="frmInfo">
Name: <INPUT TYPE="Text" NAME="txtName"> <P>
Address: <INPUT TYPE="Text" NAME="txtAddress"> <P>
City: <INPUT TYPE="Text" NAME="txtCity">
State <INPUT TYPE="Text" NAME="txtState">
Zip Code <INPUT TYPE="Text" NAME="txtZip"><P>
<INPUT TYPE="submit">
</BODY>
</HTML>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Data Types and Variables
In this chapter, we'll discuss VBScript's rather unusual support for a single data type before turning to variables and
constants in VBScript.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 VBScript Data Types: The Many Faces of the Variant
Unlike Visual Basic and Visual Basic for Applications, VBScript has only a single data type, called a variant. A variant is a
very special data type, since it can contain many different types of data and can automatically select the most
appropriate data type for the particular context in which it is being used. A simplified view of a variant is that it can hold
both string data (characters) and numerical data as well as other data, such as dates, Booleans, and objects. Internally
it is much more complex, which permits it to hold a wide range of different numeric types.

3.1.1 Variant Data Types

While the only data type recognized by VBScript is the variant, any item of variant data belongs to a particular type.
Let's look at the range of types — or the different types of data — that a variant can hold:

Empty

Empty is a type that consists of a single value, also called Empty, that is automatically assigned to new variables
when you declare them, but before you explicitly assign a value to them. For instance, in the code fragment:

Dim var1, var2
var2 = 0

the type of var1 is Empty, whereas var2 is only Empty for the brief period of time between the execution of the
Dim statement on the first line (which declares a variable; it is discussed later in this chapter in Section 3.2.5)
and the assignment statement on the second line. In addition, a variable's type is Empty if it has been explicitly
assigned a value of Empty, as in the following code fragment:

Dim var1
var1 = Empty

Null

Null is a special type that consists of a single value, also called Null, that is used to indicate that a variable does
not contain any valid data. Typically, a Null is used to represent missing data. For instance, a variable called
JanSales might be assigned a value of Null if the total of January's sales is unknown or unavailable. This must be
done by explicit assignment, as in the statement:

JanSales = Null

Because it represents missing data, once a Null value is assigned to a variable, it propagates to any variable
whose value results from the value of the original variable. For instance, in the code

Dim JanSales, FebSales, MarSales, Q1Sales
' At this stage, all four variables are Empty

JanSales = 1276000
FebSales = 1000000
MarSales = Null
' We now have made MarSales Null

Q1Sales = JanSales + FebSales + MarSales
' Because MarSales is Null, Q1Sales will also be Null

the value of Q1Sales will be Null, since its value results from an expression that also includes a Null value.
Because the Null type represents missing or unknown data, this makes sense: if March's sales data is unknown,
then any value that wholly or partially results from it, such as the total sales for the first quarter, must also be
unknown.

Boolean

The Boolean type can contain either of two values, True or False. The keywords True and False are constants (if
you're not sure what a constant is; see Section 3.2 later in this chapter) that are predefined in VBScript, so you
can make use of them in your code when you want to assign a Boolean value to a variable, as the following
code fragment shows:

var1 = True
var2 = False

Many object properties have possible values of True or False, such as the Drive object's IsReady property. In
addition, Boolean variables within programs often serve as flags to control program flow, as the following code
fragment shows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fragment shows:

If Not myBool Then
 myVar = 4
 myBool = True
Else
 myVar = 5
 myBool = False
End If

Note that this example toggles (or reverses) the value of myBool within the If...Else...End If construct.

Byte

A Byte is the smallest numeric type available in VBScript. One byte (8 binary bits) can represent 256 integer
numbers, ranging from 0 to 255 in decimal or 00 to FF in hexadecimal. Because the Byte is an unsigned data
type, only zero or positive integers are valid Byte values. Attempting to convert a value outside this range to a
Byte results in a runtime error.

Integer

An Integer is a whole number that VBscript uses two bytes (or 16 bits) to store in memory. Since one bit is
used to represent the sign (either positive or negative), the value of Integer data can range from -32,768 to
32,767. Attempting to convert a value outside this range to an Integer results in a runtime error.

Long

A Long is a signed integer that VBscript stores in four bytes (or 32 bits) of memory. This allows it to hold a far
greater range of negative or positive numbers than the Integer type; the value of a Long can range from -
2,147,483,648 to 2,147,483,647.

Single

The three numeric data types that we've examined so far (Byte, Integer, and Long) are all integers; they're
unable to represent fractional numbers. Fractions can be handled by a floating-point data type, two of which are
available in VBScript. The first is Single, which is an abbreviation for single precision; it represents numbers
with about seven digits of precision. Because of the large and small numbers involved, we are forced to specify
the ranges as exponential numbers. There are two ranges, one for negative values and one for positive values.
A negative single precision value can range from -3.402823E38 to -1.401298E-45, while the range of a positive
single precision value is 1.401298E-45 to 3.402823E38. A Single can also have a value of zero.

If you need to use a floating-point number in VBScript, there is no reason to use a Single; use a Double instead.
Generally, Singles are used because they offer better performance than Doubles, but this is not true in
VBScript. Not only are Singles not smaller than Doubles in the VBScript implementation, but the processor also
converts Singles to Doubles, performs any numeric operations, and then converts Doubles back to Singles.

Double

The Double type stores a double precision floating-point number; basically, it's the industrial-strength version of
the Single data type. Its value can range from -1.79769313486232E308 to -4.94065645841247E-324 for
negative values and from 4.94065645841247E-324 to 1.79769313486232E308 for positive values. A Double
can also have a value of zero.

Date/Time

The Date type represents the date or time. If the number holds a date value, the earliest date that can be
represented is January 1, 100, and, taking the view that our web sites will be around for a long time, the
furthest into the future that we can go is December 31, 9999.

A literal date can be defined by surrounding the date with the # symbol. For example:

Dim myvacationDay
myVacationDay = #01/10/03#

Currency

The Currency type provides a special numeric format for storing monetary values that eliminates floating-point
error. Because of this, it, rather than the floating-point types, should be used when working with monetary
values. Its value can range from 922,337,203,685,477.5808 to 922,337,203,685,477.5807.

String

The most commonly used VBScript data type isString, which can contain virtually an unlimited number of
characters — the theoretical limit is the size of the address space, which is two billion bytes on Win32 systems.
In practice, though, strings in scripted applications should never be longer than a few thousand bytes at most.
The String type used in VBScript is a variable length data type, so you don't have to worry about specifying how
much memory to allocate to the variable, as you do in some programming languages.

Object

This data type contains a reference to an object. TheObject type includes the intrinsic VBScript Err object, as
well as objects defined by the Class ... End Class construct. It also represents references to external COM objects
instantiated with the CreateObject or GetObject methods. If we view script as the "glue" that binds the services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instantiated with the CreateObject or GetObject methods. If we view script as the "glue" that binds the services
provided by components together, then the Object is the most important data type supported by VBScript.

Error

The Error type contains an error number and is typically used to signal a missing argument or other condition
resulting from missing data. Typically, Error variants are returned by calls to Visual Basic component methods.
VBScript itself does not allow direct creation or manipulation of Error variants.

So what does all this mean to the VBScript programmer? Above all, it means simplicity: as with any well-designed
system, the variant is complex, but not complicated. That is to say, the interface — the part that you deal with — is
straightforward, yet behind the scenes the variant data type does some incredibly complex things, which means you
don't have to concern yourself with juggling code to ensure that data types are not mismatched, as Example 3-1 shows.

Example 3-1. The power of the variant data type

<HTML>
<HEAD>
<TITLE>The Variant #1</TITLE>
</HEAD>
<BODY>
<H2>
<CENTER>VBScript's Automatic Data Type Conversion</CENTER>
</H2>
<P>
<% Dim vVar1, vVar2, vResult
 vVar1 = 1
 vResult = 1
 vVar2 = 50000000.2658
 vResult = vVar1 + vVar2
%>
The result of adding <%=vVar1 %> and <%=vVar2 %> is <%=vResult %>.
</BODY>
</HTML>

When the user requests the ASP page, its script executes. It begins by using the Dim statement to declare three
variables. Next, it assigns the integer value 1 to the first variable, vVar1, and to the third variable, vResult. Just to make
things interesting, it assigns a large, double-precision number, 50,000,000.2658, to the second variable, vVar2. Then
the routine adds the two variables together and stores their result to the integer variable vResult. As you may recall
from the overview of data types, the value assigned to an integer cannot exceed 32,767, nor can it include any digits to
the left of the decimal. Yet our script does not generate a compiler error because of this. So in the process of
performing the calculation, the VBScript engine converts vVar1 to a double-precision number. In most other
programming languages, this task would have to be performed by the programmer.

If you modify the VBScript code in Example 3-1 to try different values for Var1 and Var2, you'll find that the only time
that the variant cannot handle the conversion occurs when one of the expressions is a String — i.e., you can't add 100
to "Hello" and expect a valid result. When this happens, the VBScript engine displays a "Type mismatch" error, which
indicates that one of the items of data was of the wrong type and the engine was unable to convert it. This raises a
good point, though: in a numeric operation, it is possible—especially if the data is input by the user into an HTML form
or a dialog produced by the InputBox function—that one or more of the variables is a string data type. How would you
be able to know this in advance, before VBScript stops executing your script and displays an error message?

3.1.2 Determining the Variant Type

Having the variant data type take care of all your data typing is all well and good, but what happens when you need to
know exactly what type of data is stored to a variable? VBScript provides two easy-to-use functions, VarType, which
returns an integer that indicates the type of data stored to a variable; and TypeName, which returns the name of the
data type.

3.1.2.1 VarType

The syntax of VarType is:

VarType(expression)

where expression is an expression whose type you want to determine; you can provide the name of only a single variable
at a time. Table 3-1 lists the possible values returned by VarType and the data types that they represent. For purposes
of reference, Table 3-1 also lists the VBScript constants that you can use in your code to compare with the values
returned by the VarType function; for details, see Section 3.2.3 later in this chapter.

Table 3-1. The values returned by the VarType function
Value Data type Constant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

0 Empty vbEmpty

1 Null vbNull

2 Integer vbInteger

3 Long vbLong

4 Single vbSingle

5 Double vbDouble

6 Currency vbCurrency

7 Date vbDate

8 String vbString

9 Object vbObject

10 Error vbError

11 Boolean vbBoolean

12 Array of Variant vbVariant

17 Byte vbByte

8192 Array vbArray

Before we see how you use VarType within a script, we should quickly note the value returned by VarType if it detects
an array. Actually, the function never returns 8192 or vbArray, as shown in Table 3-1. 8192 is only a base figure that
indicates the presence of an array. When passed an array, VarType returns 8192 plus the value of the array type. For a
VBScript array, it returns 8192 (or vbArray) plus 12 (or vbVariant), or 8204. For a string array returned by a COM object,
for instance, it returns 8200 (vbArray + vbString).

Example 3-2 provides a simple WSH script that uses the VarType function. It assigns a value of 9 to the MyVal variable
and calls the VarType function, passing to it MyVal as a parameter. The value returned by the function, 2, is then
displayed in a message box; this indicates that MyVal is an Integer.

Example 3-2. The VarType function

Dim MyVal
MyVal = 9
MsgBox VarType(MyVal)

Try modifying this code by assigning various numbers and strings to MyVal. You'll find that you can enter a very large
integer for MyVal and the code will return 3 for Long, or you can enter a word or string (enclosed in quotation marks)
and the code will return 8. You can even enter a number in quotation marks and it will return 8, indicating a String.

3.1.2.2 TypeName

The TypeName function returns the actual variant type rather than a number representing the data type. The syntax for
TypeName is:

result = TypeName(expression)

Like its older brother, TypeName is read-only, which means that you can use it to determine the type of a variable, but
you can't use it to explicitly set the type of a variable; to do this, you must use the conversion functions discussed in
the next section. Table 3-2 shows the string that the TypeName function returns for each data type.

Table 3-2. Strings returned by the TypeName function
Return value Description

<object type> Actual type name of an object

Boolean Boolean value: True or False

Byte Byte value

Currency Currency value

Date Date or time value

Decimal Decimal (single-precision) value

Double Double-precision floating-point value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Empty Uninitialized

Error Error

Integer Integer value

Long Long integer value

Nothing Object variable that doesn't refer to an object instance

Null No valid data

Object Generic object

Single Single-precision floating-point value

String Character string value

Variant() Variant array

Unknown Unknown object type

Of interest in Table 3-2 is thevariant array type, which is not listed in the VBScript official documentation. Whenever
you pass the name of an array to TypeName, even an array that you have forced to be a certain data type by using the
conversion functions, the return value is always "Variant()". Unfortunately, because VBScript does not support strong
typing, there's no clear answer as to what data type lurks within your array; you can determine the data type of only
one element at a time.

As for making your code easier to maintain, just look at this snippet:

If TypeName(x) = "Double" Then

Now you've no excuse for getting those nasty "type mismatch" errors!

Example 3-3 illustrates the use of TypeName. When you type something into the text box and press the OK button, a
message box indicates whether you entered a string, a date, or a number. You may notice, though, that it always
identifies (or perhaps misidentifies) numbers as data of type double. That's because our script uses the CDbl function to
arbitrarily convert a numeric string entered into the text box to a variable of type double; for details on converting data
from one type to another, see the following section.

Example 3-3. The TypeName function

Dim sInput, vResult
Do

 sInput = InputBox("Enter a data value:" , " TypeNameFunction", " ")
 If sInput = " " Then Exit Do

 If IsDate (sInput) Then
 vResult = CDate (sInput)
 ElseIf IsNumeric (sInput) Then
 vResult = CDbl (sInput)
 Else
 vResult = Trim (sInput)
 End If

 MsgBox TypeName(vResult)
Loop While Not sInput = " "

3.1.3 Converting from One Data Type to Another

VBScript provides us with a range of built-in conversion functions that are simple and quick to use. The syntax for each
is basically the same. For example:

CBool(expression)

where expression is either the name of a variable, a constant, or an expression (like x - y). The conversion functions
supported by VBScript are:

CBool

Converts expression to a Boolean. expression can contain any numeric data type or any string capable of being
converted into a number.

CByte

Converts expression to aByte. expression can contain any numeric data or string data capable of conversion into a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts expression to aByte. expression can contain any numeric data or string data capable of conversion into a
number that is greater than or equal to 0 and less than or equal to 255. If expression is out of range, VBScript
displays an Overflow error message. If expression is a floating-point number, it is rounded to the nearest integer
before being converted to byte data.

CDate

Converts expression to a Date/Time. CDate accepts numeric data and string data that appears to be a date,
converting it to the correct format for the machine. The date is returned in the format specified by the locale
information on the client computer. On a machine set to the American date format mm/dd/yy, if you enter the
British date format dd/mm/yy in a text box and then use the CDate function on the contents of the text box,
CDate will convert it to the American mm/dd/yy format.

CCur

Converts expression to a Currency. CCur accepts any numeric or string data that can be expressed as a currency
value. The function recognizes the decimal and thousands separators based on locale information on the client
computer.

CDbl

Converts expression to a Double. The function accepts any numeric data within the limits of the Double or any
string data that can be converted to a number within the range of the double data type.

CInt

Converts expression to an Integer. CInt accepts any numeric data within the limits of the Integer or any string
data that can be converted to a number within the limits of the integer data type.

CLng

Converts expression to a Long. The function accepts any numeric data within the limits of the long integer data
type or any string data that can be converted to a number whose value lies within the range of a long integer.

CSng

Converts expression to a Single. The function accepts any numeric data within the limits of the Single or any
string data that can be converted to a number within the range of the single data type.

CStr

Converts expression to a String. CStr accepts any kind of data.

So now you know what data types VBScript can handle and how to convert from one type to another. You know how to
find out how the variant is handling your data, and you can convert from one type to another. Let's now look at how
you're going to use these data types and data within your scripts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Variables and Constants
A variable is a name for an abstract concept (such as an object, a string value, or a numeric value) in a computer
program. Using variables allows us to refer to the variable by its name, rather than to focus on its implementation
details. Think of the nightmare you'd have trying to keep track of just which memory location your particular piece of
data was occupying (completely ignoring the possibility that its memory location might change while the program
executes). Those nice people who write the software we use to create our programs and scripts solved this problem a
long time ago by giving us variables and constants.

3.2.1 What Is a Variable?

A variable is a placeholder or recognizable name for a memory location. This location is of no consequence to us; all we
have to do is remember the name. When we use the name, the script engine will go to the correct memory location and
either retrieve the data stored there or change the data, depending upon our instructions. It is important therefore to
learn the rules for namingvariables. (These in fact are the rules for naming any identifier in VBScript, including
variables, functions, subs, classes, and constants.)

Variable names can be no more than 255 characters in length. Variable names tend to become pretty
unreadable after about 20 characters anyhow, which defeats the purpose of having longer variable names.

The name must be unique within the scope it is being used. Don't worry too much about scope right now; we'll
discuss it a little later. For now, remember not to use the same name for more than one variable in the same
procedure — it makes sense, really.

The variable name must start with an alphabetic character. 2myVar is illegal, but myVar2 is good.

Variable names must be composed only of letters, numbers, and underscore characters. If you need to split up
the variable name in some way to improve its readability, use the underscore character, like this:
This_Is_My_First_Variable.

You cannot use reserved words — which include someVBScript keywords; these language elements, which
include statement names and intrinsic constant names, are part of the VBScript language.

You can override most of these rules by enclosing the name in brackets. You can, for instance, use names that
include embedded spaces, that start with numeric characters, or that are reserved words.

Variable names within VBScript are not case-sensitive, so myvar is the same as MyVar. You may have noticed in the
examples so far (and if you haven't, go back and take a look) that we've used a combination of lower- and uppercase,
with the first few letters usually in lowercase, for variable names like myVar. This is called camel casing. It improves
readability, but is also a good habit to form; you'll see why when we discuss naming conventions.

So variables can either be a simple single character:

x = 10
y = "Hello World"

or they can be more descriptive:

tableRows = 10
greetingString = "Hello World"

Variables are so called because their value can change throughout their lifetime in your script. But you may have a
requirement for a variable that isn't variable at all, whose value remains the same throughout your script. Guess what
they're called?

3.2.2 What Is a Constant?

Constants perform a similar function to variables: they allow you to replace a value with a more descriptive and
intuitive string. The difference is that a constant keeps the same value throughout its lifetime.

Values are assigned to constants using the same method used for variables, and can contain most of the same data
types. (Constants cannot be of type Single or Object, for instance.) In most respects, therefore, a constant is the same
as a variable. In fact, it could be described as a variable whose value doesn't vary!

VBScript uses the Const declaration to define a constant. Aconstant, which is declared as follows:

Const myConstant = 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Const myConstant = 10

cannot have its value changed throughout the life of the program. If your script mistakenly attempts to modify its
value, VBScript raises an "Illegal Assignment" error. You'll know therefore — using the previous example — that
whenever you use myConstant in your script, you are sure to be using the value 10.

Like the constant declaration in VB, Const in VBScript cannot be used to assign nonconstant
values or the values returned by VBScript functions. This means that a statement like the
following:

Const numConstant = myVar ' Invalid

is invalid, since it attempts to assign the value of a variable to a constant. It also means
that a statement like:

Const long_Int_Len = Len(lNum) ' Invalid

is invalid, since it relies on the value returned by the VBScript Len function. Finally, unlike
VB or VBA, you are not allowed to use any value that includes an operator in defining a
constant. For example, the following declaration, which is valid in VB, generates a syntax
error in VBScript:

Const added_Const = 4 + 1 ' Invalid

3.2.3 Intrinsic Constants

In addition to allowing you to define your own constants using the Const keyword, VBScript includes a number of built-in
or intrinsic constants whose values are predefined by VBScript. Along with saving you from having to define these
values as constants, the major advantage of using intrinsic constants is that they enhance the readability of your code.
So, for instance, instead of having to write code like this:

If myObject.ForeColor = &hFFFF Then

you can write:

If myObject.ForeColor = vbYellow Then

Intrinsic constants are available for the following:

Color

Comparison

Date/Time

Date Format

Message Box

Miscellaneous

Object Error

String

Tristate

VarType

Appendix B contains a complete listing of the built-in constants, along with their meanings and values.

3.2.4 Constants in Type Libraries

Type library files provide definitions of enumerated constants as well as of COM classes and their members (that is, of
their properties, methods, and events). If you're developing either ASP or WSH scripts, you can make type library
definitions accessible to your script. In that case, they are treated just as if they were intrinsic VBScript constants, and
you don't have to define them yourself by using innumerable Const statements.

In ASP, you can make constants in type libraries available to all of the pages of your ASP application by including a
METDATA tag in Global.asa. This offers significantly improved performance over a common alternative—using the ASP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

METDATA tag in Global.asa. This offers significantly improved performance over a common alternative—using the ASP
#include preprocessor directive on a page-by-page basis. Its syntax is:

<!-METADATA TYPE="TypeLibrary" FILE="FileName"
 UUID="TypeLibraryUUID"
 VERSION="MajorVersionNumber.MinorVersionNumber"
 LCIS="LocaleID"

where its parameters are as follows:

FileName

Optional. The physical path and name of the type library file. (Type libraries are often stored with the .DLLs that
they describe, and can also be housed in separate files with an extension of .tlb or .olb.) While optional, either
FileName or TypeLibraryUUID must be specified to identify the type library.

TypeLibraryUUID

Optional. The universally unique identifier of the type library, as defined in the HKEY_CLASSES_ROOT\TypeLib key
of the registry. While optional, either FileName or TypeLibraryUUID must be specified in order to identify the type
library.

MajorVersionNumber

Optional. The major version number of the type library. If you include a MajorVersionNumber, you must also
include a MinorVersionNumber. If version number information is specified and ASP cannot find the library with that
version, a runtime error occurs.

MinorVersionNumber

Optional. The minor number of the type library. If you include a MinorVersionNumber, you must also include a
MajorVersionNumber. If version information is specified and ASP cannot find the library with that version, a
runtime error occurs.

LocaleID

Optional. The locale to use for this type library if the library supports multiple locales. If a LocaleID is specified
that cannot be found in the type library, a runtime error occurs.

For example, the following code from Global.asa makes the enumerated constants in the ADO 2.5 type library
accessible to an ASP application:

<!--METADATA
 TYPE="typelib"
 FILE="D:\Program Files\CommonFiles\System\ADO\msado21.tlb"
-->

In WSH, you can make constants in a type library available to your script by including the <reference /> tag in a script in
a .wsf file. The constants are available only to the script within a single <job> tag. The syntax of <reference /> is:

<reference [object="progID"|guid="typelibGUID"
 [version="version"] />

with the following parameters:

progID

Optional. The version-independent or version-dependent programmatic identifier of the type library, as defined
in the system registry. You must specify either ProgID or typeLibGUID.

typelibGUID

The globally unique identifier (GUID) of the type library, as defined in the system registry. This is the most
common way to reference and access a type library from WSH. You must specify either ProgID or typelibGUID.

version

The version number of the type library your script needs to access.

For example, the following code makes the constants defined in Data Access Objects Version 5.0 available to a WSH
script:

<reference guid="{00025E01-0000-0000-C000-000000000046}"
 version="5.0" />

3.2.5 Declaring Variables and Constants

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike many other programming languages, VBScript allows the implicit declaration of variables. This means that as
soon as you use a variable within your script, VBScript does all the necessary work of allocating memory, etc., and the
variable is considered to be declared. However, it is good programming practice to explicitly declare any variables you
want to use at the start of the procedure or script by using the Dim statement. Its syntax is:

Dim Variable_Name

If you have a number of variables to declare, you can do this on the same line by separating them with commas, as in
the following Dim statement:

Dim intRefNo, intAnyVar

As you start to write more and more complex scripts, you can reduce the number of bugs by referring back to the Dim
statements to check the spelling of the variables you are using. Many bugs have been found to be simple typos of a
variable name. Try the simple WSH script in Example 3-4 exactly as it's written (including the deliberate mistake). Enter
a value into the input box and check the result.

Example 3-4. A typo in a variable name

Dim tstVar1

tstVar1 = InputBox("Enter a value")

MsgBox testVar1

Interesting result, isn't it? No matter what you type into the input box, the message box is always blank. Now in this
small script, it's pretty noticeable that we misspelled the name of the variable, and that VBScript treats tstVar1 and
testVar1 as two different variables altogether. However, more complicated scripts won't bear out this error so easily. We
know many frustrated programmers who have tracked down significant logic errors to misspelled variable names. Don't
despair, though — VBScript has a tool for helping us to eliminate this problem.

3.2.5.1 Option Explicit

Make a very slight amendment to the script shown in Example 3-4: add the statement Option Explicit on a line directly
before the Dim statement. Run the script again, with the mistake still there. Now, instead of getting a useless empty
text box that gives us no clue why our script didn't work, we get the error message, "Variable is undefined." We now
know what we are looking for: the message tells us that we haven't declared a variable, and gives us the line number
on which the error occurred. Even in a complex script, it usually takes only a couple of seconds to find and correct the
bug.

Using Option Explicit is good programming practice. It forces us to declare all variables with Dim, and, should we make an
error in the script, makes it easier to find.

3.2.6 Array Variables

The variables we have dealt with so far have contained single values, or, to give them their correct title, are scalar
variables. But there are many occasions when you need to assign a range of values to a single variable. This type of
variable is called an array. Arrays allow us to store a range of values in memory, each of which can be accessed quickly
and efficiently by referring to its position within the array. You can think of an array as a very simple database of
values. Arrays can hold all data types supported by VBScript.

Before examining arrays in VBScript in detail, let's quickly cover some of the terminology used when talking about
arrays. Creating an array is called dimensioning (i.e., defining its size). The individual data items within the array are
known as elements, and the reference number we use to access these elements is known as an index. The lowest and
highest index numbers are known as bounds or boundaries. There are four main types of arrays; arrays can be either
fixed or dynamic; arrays can also be either one-dimensional or multidimensional.

3.2.6.1 Fixed arrays

Most of the time, we know how many values we need to store in an array in advance. We can therefore dimension it to
the appropriate size, or number of elements, prior to accessing it by using a Dim statement like the following:

Dim myArray(5)

This line of code creates an array, named myArray, with six elements. Why six? All VBScript arrays start with location 0,
so this Dim statement creates an array whose locations range from myArray(0)to myArray(5).

Example 3-5 contains a simple WSH script that illustrates a fixed array. The script begins by instructing the VBScript
engine to check that all our variables are correctly declared, then uses the Dim statement to dimension iArray as an
array containing six elements, with indexes ranging from 0 to 5, as well as to dimension three other variables. The next
six lines of code populate the array with values by explicitly assigning a value to each array element. This entire process
of declaring and populating the array is done outside of a defined subroutine, which means that iArray is available to all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of declaring and populating the array is done outside of a defined subroutine, which means that iArray is available to all
subroutines and functions on the page (if there were any). This is known as scope, which we cover in depth later in this
chapter.

Example 3-5. Using a fixed array

Option Explicit

Dim sNumber, iNumber, iElement
Dim iArray(5)

iArray(0) = 12
iArray(1) = 3
iArray(2) = 13
iArray(3) = 64
iArray(4) = 245
iArray(5) = 75

sNumber = InputBox("Enter a number between 0 and 5", _
 "Fixed Array", "0")
If Not IsNumeric(sNumber) Then
 MsgBox "Invalid string entry"
Else
 iElement = iArray(sNumber)
 MsgBox iElement
End If

When we enter a number into the text box and click the button, the routine makes sure that our entry can be converted
to a number; if not, it displays an error dialog. Otherwise, a message box containing the value of the array element
whose index we entered is displayed. Note that, in this case, VBScript is able to automatically convert the string that we
entered using the InputBox function into an integer used as the array index. If it hadn't been able to do this, or if we
had chosen to handle the conversion ourselves, we could have used the CInt function.

Being the inquisitive type, you've probably already entered a number greater than 5 or less than 0 just to see what
happens, right? You get an error message, "Subscript out of range." The subscript is the index number, and in a real
application, we'd have checked that the number entered was within the limits — or bounds — of the array prior to using
the number. We'll see how this is done in Section 3.2.6.3 later in this chapter.

Fixed arrays are fine when we know in advance how many values or elements we need. But there are many cases
where we do not have prior knowledge of this, and we need a way to expand our array should we have to. We can do
this by declaring and using a dynamic array.

3.2.6.2 Dynamic arrays

The most convenient uses of an array are to store input from the user and to allow the user to input as many items of
data as they like. Our application therefore has no way of knowing how to dimension the array beforehand. This type of
problem calls for a dynamic array. Dynamic arrays allow you to expand the number of array elements by using the
ReDim statement to redimension the array while the program is running.

A dynamic array is declared by leaving out the number of elements, like this:

Dim myDynamicArray()

When you need to resize the array, use the ReDim keyword:

ReDim myDynamicArray(10)

You can also declare a dynamic array, and specify the initial number of elements at the same time, using ReDim:

ReDim anyDynamicArray(4)

To populate an array with a series of values, you can use the intrinsicArray function. The function allows you to quickly
assign a range of comma-delimited values to an array. For instance, assigning values to the array in Example 3-6 with
the Array function would be quite easy.

Dim myArray
myArray = Array(12,3,13,64,245,75)

To use the Array function, simply declare a variable, then assign the values of the array to the variable using the Array
function. Any data type (even mixed data types) can be used with the Array function, as the ASP page in Example 3-5
shows.

There is no limit to the number of times you can redimension a dynamic array, but obviously messing around with
variables in this way carries an element of risk. As soon as you redimension an array, the data contained within it is
lost. Don't panic. If you need to keep the data, use the Preserve keyword:

ReDim Preserve myDynamicArray(10)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReDim Preserve myDynamicArray(10)

In fact, ReDim creates a new array (hence its emptiness). Preserve copies the data from the old array into the new array.
This means that redimensioning arrays using the Preserve keyword results in poor performance for large arrays or for
arrays with elements that have long strings. Another important point to note is that if you resize an array by contracting
it, you lose the data in the deleted array elements.

Example 3-6. Using the array function

<HTML>
<HEAD>
<TITLE>Using the Array Function</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Sub ShowArray()

Dim myArray

myArray = Array("Hello", "World", 2, 1)

Response.Write "Element 0: " & myArray(0) & "
"
Response.Write "Element 1: " & myArray(1) & "
"
Response.Write "Element 2: " & myArray(2) & "
"
Response.Write "Element 3: " & myArray(3) & "
"

End Sub

</SCRIPT>

<% ShowArray %>

</BODY>
</HTML>

Example 3-7 contains a client-side script that shows how to use a dynamic array to save multiple inputs from the user.
When the user clicks the "Add to array" button, the contents of the text box are added to myArray, an array that is
dynamically resized beforehand. When the user clicks the Show Array Contents button, a dialog box like the one shown
in Figure 3-1 displays the data stored to the array.

Figure 3-1. The contents of our dynamic array

Example 3-7. Using dynamic arrays

<HTML>
<HEAD>
<TITLE>Dynamic Array Application</TITLE>
<SCRIPT LANGUAGE="vbscript">

Option Explicit 'require all variables to be declared

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option Explicit 'require all variables to be declared

ReDim myArray(0) 'create a dynamic array with 1 element
Dim intIndex 'variable to track the array index

intIndex = 0 'assign the first index number to counter

Sub cmdButton1_OnClick

 ' Store the user input in the array
 myArray(intIndex) = Document.frmForm1.txtText1.Value
 intIndex = intIndex + 1 'increment the array counter by one
 ReDim Preserve myArray(intIndex) 'increase the size of the array
 Document.frmForm1.txtText1.Value = "" 'Empty the text box again
End Sub

Sub cmdButton2_OnClick
 Dim x, y, strArrayContents 'declare some variables we'll need

 'repeat this process as many times as there are array elements
 'note: the last element will always be empty because we've
 'incremented the counter *after* the assignment.
 'try changing the above sub so that we always fill every element
 For x = 0 to intIndex - 1
 'assign a short description and the element no to the variable
 strArrayContents = strArrayContents & "Element No." & _
 CStr(x) & " = "
 'add to this the contents of the element
 strArrayContents = strArrayContents & myArray(x) & vbCRLF
 'go back and do it again for the next value of x
 Next
 'when we're done show the result in a message box
 y = MsgBox(strArrayContents,0,"Dynamic Array Application")
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
 <FORM NAME="frmForm1">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Add to array"><P>
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Array Contents">
 </FORM>
</BODY>
</HTML>

Because the HTML text box controls return string data, you can save any type of data in your array, but they will
automatically be saved as strings. This means that you must remember to convert the data saved in arrays before
using them in calculations. This in turn requires that you check to make sure that data is actually numeric before
accepting it or using it.

The previous example is fine as it stands, except that, as you can see from the source code, we have to keep track of
the size of the array by using the intIndex variable. But VBScript allows a much cleaner approach to the problem of
finding out how many elements there are in the array.

3.2.6.3 Determining array boundaries: UBound and LBound

The UBound and LBound functions can be used to find the lower index and the upper index, respectively, of an array.
UBound can be put to good use: to find the current size of a dynamic array.

VBScript and the Option Base Statement
In VB and VBA, you can use the Option Base statement to define the initial position of an array. The Option
Base statement, however, is not supported by VBScript. All VBScript arrays begin at position zero. But note
that an ActiveX component created with Visual Basic can return an array with a nonzero lower bound to a
VBScript script.

The syntax for UBound is:

x = UBound(arrayname)

UBound returns the highest index number of an array. This is always one less than the actual number of elements in
the array, unless the array was returned to the script by a Visual Basic component and has had its lower bound set to a
non-zero value. For example, if myArray has ten elements, Ubound(myArray) returns the number nine. So we determine
the total number of elements in an array as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the total number of elements in an array as follows:

myArraySize = UBound(array) + 1

To illustrate the use of UBound, let's rewrite parts of the dynamic array program in Example 3-7, as shown in Example
3-8. Instead of using an integer variable like intIndex in Example 3-7 to continually track the size of the dynamic array,
Example 3-8 uses the UBound function.

Example 3-8. The UBound function

<HTML>
<HEAD>
<TITLE>Dynamic Array Application No.2</TITLE>
<SCRIPT LANGUAGE="vbscript">

Option Explicit 'require all variables to be declared
ReDim myArray(0) 'create a dynamic array with 1 element

Sub cmdButton1_OnClick
 'Store the value enter by the user in the array
 myArray(UBound(myArray)) = Document.frmForm1.txtText1.Value
 'grow the array to be one element greater than its current size
 'Preserve its contents
 ReDim Preserve myArray(UBound(myArray) + 1)
 'Empty the text box for the user
 Document.frmForm1.txtText1.Value = ""
End Sub

Sub cmdButton2_OnClick
 'declare some variables we're going to need
 Dim x, y, strArrayContents
 'repeat this process as many times as there are array elements
 For x = 0 to UBound(myArray) - 1
 'add a short description and the element number to the variable,
 'along with the contents of the element and a carriage return
 strArrayContents = strArrayContents & "Element No." & CStr(x) & _
 " = " & myArray(x) & vbCrLf
 'go back and do it again for the next value of x
 Next
 'when we're done, show the result in a message box
 y = MsgBox(strArrayContents,0,"Dynamic Array Application #2")
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
 <FORM NAME="frmForm1">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Add to array"><P>
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Array Contents">
 </FORM>
</BODY>
</HTML>

The arrays that we have looked at so far are termedsingle-dimension arrays. They hold one element of data in each
index location, which is fine for most needs. However there are times when you need to hold a full set of data for each
element. These are called multidimensional arrays.

3.2.6.4 Multidimensional arrays

To get a sense of when using multidimensional arrays is appropriate, let's look at two situations in which our scripts
benefit from using arrays. First, there's the simple case of the single-dimension array. Let's say we're an importer
putting together an application that will display to a user the country of origin of our company's products when they
click a button. We can use a single-dimension array to hold the data — in this case, a string containing the country of
origin. We have one piece of data for each element, as follows:

Element number Data

0 Product 1 Country of Origin

1 Product 2 Country of Origin

2 Product 3 Country of Origin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then the marketing department suggests that the application be "improved." Instead of just showing the country of
origin of each product, they also want to show its weight and any potential shipping hazard. If we continue to use a
single dimension array, this poses something of a problem, as we can see from the following table.

Element number Data

0 Product 1 Country of Origin

1 Product 1 Weight

2 Product 1 Hazards

3 Product 2 Country of Origin

4 Product 2 Weight

5 Product 2 Hazards

6 Product 3 Country of Origin

7 Product 3 Weight

8 Product 3 Hazards

etc.

As you can see, there is no structure to this data; it's all held sequentially, and as a result, can be very difficult to
access. The solution is to use a multidimensional array. A multidimensional array allows you to have a separate array of
data for each element of your array. Therefore, each element of the array in turn contains an array. To continue our
product importer example, let's say that we have four products, and for each product we want to store three items of
data. We define the multidimensional array as follows:

Dim ourProductData(3,2)

VBScript and User-Defined Structures
If you're an experienced VB or VBA programmer, you might prefer another solution — an array of user-
defined structures — to a multidimensional array. However, this solution is not available with VBScript.
VBScript does not support the Type...End Type construct, and therefore does not allow you to define a
structured data type.

This is the equivalent of the following data table, which consists of four rows and three columns. Each data cell of the
table can therefore be viewed as a coordinate, with the first cell (the one containing product 1's country of origin)
starting at 0,0. The row number defines the first value of the coordinate, while the column number defines the second:

 Country of origin Weight Hazards

Product 1 Element (0,0) Element (0,2)

Product 2

Product 3

Product 4 Element (0,0) Element (0,2)

Multidimensional arrays can contain up to 60 dimensions, though it is extremely rare to
use more than two or three dimensions.

Figures Figure 3-2 and Figure 3-3 illustrate the difference between a one-dimensional array and a multidimensional
array — in this case, with a two-dimensional array. Notice how the two-dimensional array can be thought of as a one-
dimensional array (the top row) with each element having its own individual array dropping down from it to form a
column.

Figure 3-2. A one-dimensional array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-2. A one-dimensional array

Figure 3-3. A two-dimensional array

If in our sample ASP application, which is shown in Example 3-9, we set ourselves a rule that the country of origin will
always be in element 0, the weight in element 1, etc., then we have a method by which we can quickly access each
individual element of data. So if we need to access the weight for product 3, we use the following line of code:

strDataString = strShippingData(2,1) ' row #3 column #2

Because we know that the weight will always be in column two, we can use a constant to help the readability of the
code — something known as self-commenting code. This is an ideal job for a constant, as the following code fragment
shows:

Const weight = 1
strDataString = strShippingData(2, weight)

In this case, the most important part of creating our ASP application occurs before we actually begin writing our script,
when we decide how we want to structure our multidimensional array.

Once that is done, implementing the goal for which the ASP page is created — to display shipping information about a
selected product — is fairly straightforward, as shown in Example 3-9. The ASP page can display a simple list of
products, or it can display a list of products along with information about one product whose hyperlink the user has
clicked. Since the user clicks any of four hyperlinks to display shipping information about a particular product, a single
routine can handle the display of information, as long as it knows which "row" of the multidimensional array contains
that product's information; that routine is named ProductInfo. The HREF attribute of each product's <A> tag includes a
query string consisting of the Product element and its value, which is the index of the product's information in the
strShippingData array. This index value is then passed as an argument to the ProductInfo routine if the user has clicked
on a product hyperlink. The ProductInfo routine then simply retrieves the value of each element in the subarray
belonging to the designated row and displays it to the web page. The result resembles Figure 3-4.

Example 3-9. Using a multidimensional array

<HTML>
<HEAD>
<TITLE>Product Shipping Data</TITLE>
<SCRIPT LANGUAGE="vbscript" RUNAT="Server">

'declare a subroutine to display product info
Sub ProductInfo(Index)
 'declare variable to be used in this sub
 Dim iCtr
 ' Show product caption
 Response.Write "Shipping Data for Product" & CStr(Index + 1) & "<P>"

 'we want a line for each data item - use the constants
 For iCtr = country To hazards
 Response.Write strShippingData(Index,iCtr) & "
"
 Next
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<%
 'declare the constants
 Const country = 0
 Const weight = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Const weight = 1
 Const hazards = 2

 Dim strShippingData(3,2) ' declare a multidimensional array

 'assign values to the array
 strShippingData(0, country) = "Made in Finland"
 strShippingData(1, country) = "Made in Malawi"
 strShippingData(2, country) = "Made in USA"
 strShippingData(3, country) = "Made in Outer Mongolia"
 strShippingData(0,weight) = "Weight = 34 Kilos"
 strShippingData(1,weight) = "Weight = 17 Kilos"
 strShippingData(2,weight) = "Weight = 10 Kilos"
 strShippingData(3,weight) = "Weight = 15 Kilos"
 strShippingData(0,weight) = "No Hazard"
 strShippingData(1,hazards) = "Highly Inflammable"
 strShippingData(2,hazards) = "No Hazard"
 strShippingData(3,hazards) = "Highly Inflammable"
%>

 <%
 Dim iCtr
 For iCtr = 0 to 3
 %>
 <A HREF=MultiDim.asp?Product=<%=iCtr %> >
 Product <%=iCtr + 1 %><P>
 <%
 If Request.QueryString.Count > 0 Then
 If CInt(Request.QueryString("Product")) = iCtr Then
 ProductInfo CInt(Request.QueryString("Product"))
 End If
 End If
 Response.Write "<P>"
 Next
 %>

</BODY>
</HTML>

Figure 3-4. Sample output from Example 3-9

You can use a multidimensional array as a rudimentary database that is located within the client machine's memory.
When you access a particular element of a multidimensional array, the value of the first dimension indicates a particular
record of your database, while the value of the second dimension designates a particular field belonging to that record.

3.2.6.5 Dynamic multidimensional arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Earlier, you saw how a one-dimensional dynamic array can be resized while your program is executing.
Multidimensional arrays can be dynamic, too (as shown in Example 3-10), and the rules for redimensioning them are
similar, but since you have more than one dimension to think about, you have to take care how you use and
redimension them. The rules for using a dynamic multidimensional array are:

You can ReDim a multidimensional array to change both the number of dimensions and the size of each
dimension. This is illustrated by the WSH script in Figure 3-4, where the myArray dynamic array is originally
defined as a dynamic array and the user can choose between redimensioning it as a two-dimensional array with
11 elements in the first dimension and six in the second, or as a three-dimensional array with five elements in
the first dimension, 11 in the second, and three in the third.

If you use the Preserve keyword, you can resize only the last array dimension, and you can't change the number
of dimensions at all. For example:

...
ReDim myArray(10,5,2)
...
ReDim Preserve myArray(10,5,4)
...

Example 3-10. Redimensioning a two-dimensional array

Dim myArray(), nDims, iSelection

iSelection = vbYes
Do While iSelection <> vbCancel

 iSelection = MsgBox("Create 2 dimension array?", _
 vbQuestion Or vbYesNoCancel, "Dynamic Arrays")

 If iSelection = vbYes Then
 ReDim myArray(10,5)
 nDims = 2
 ElseIf iSelection = vbNo Then
 ReDim myArray(4,10,2)
 nDims = 3
 End If

 If iSelection <> vbCancel Then
 MsgBox "The upper bound of dimension " & nDims & _
 " is " & UBound(myArray, nDims)
 End If
Loop

3.2.6.6 Using UBound with multidimensional arrays

As you saw earlier, the UBound function returns the highest subscript (element number) in an array—that is, its Upper
Boundary. You can also use UBound with a multidimensional array, except to find the largest element of a
multidimensional array, you need to also specify a dimension:

largestElement = UBound(arrayname , dimensionNo)

To sum up, use fixed arrays to hold predetermined blocks of data in memory. If you don't know the precise size of an
array prior to defining it, use a dynamic array. Finally, if you need to reference more than one data field per data item,
use a multidimensional array.

We have now covered the basics of variables and constants, apart from one major issue. You may have noticed in some
of the previous examples that some variables and constants were declared at the very beginning of the script, outside
of any subroutines, while some were declared within particular subroutines. Precisely where in a program or script you
declare a variable or constant determines its scope and its lifetime.

3.2.7 Scope and Visibility

A variable's scope determines where within a script you are able to access that particular variable and whether that
variable is visible within a particular routine. In a nutshell, variables declared outside of subroutines and functions can
be accessed by the whole script, while those declared within a subroutine or function can be accessed only in the
procedure in which they've been declared.

Global Scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A variable has global scope when it can be accessed by all the subroutines and functions contained in a
particular script. Variables and constants that have global scope also reside in memory for the lifetime of
the script. That is to say, as long as the script remains in memory, its global variables and constants also
remain in memory. To create a variable with global scope, you must declare it outside of any subroutine or
function.

3.2.7.1 Global scope

Example 3-11demonstrates the use of global variables and constants in a WSH script. Since lngMyVar is defined outside
of any of the script's procedures, it is a global variable that is visible to all routines. This is apparent from the
GetUserInput procedure, which prompts the user to assign a value to lngMyVar and then calls the MySecondProcedure
subroutine. MySecondProcedure displays a message box showing the value of lngMyVar, even though lngMyVar was not
passed as a formal parameter to the procedure. (For a discussion of passing parameters, see Chapter 2.) If lngMyVar
were not visible throughout the script, GetUserInput would not have been able to assign a value to lngMyVar, and the
MySecondProcedure routine would not have been able to access that value.

The IncrementValue procedure illustrates the use of a global constant. Because MY_CONST is defined and assigned a
value outside of a function or procedure, it is visible to IncrementValue, which adds it to the value that the user entered
in the input box and assigns the result back to lngMyVar.

Example 3-11. Global scope

Option Explicit

'any variable or constant declared here will be available to
'all scripts in the document
Dim lngMyVar
Const my_Const=5

GetUserInput()
'use lngMyVar in unrelated procedures just to check whether it's global
MySecondProcedure
IncrementValue
MySecondProcedure
MultiplyConstant
MySecondProcedure

Sub GetUserInput()

 'lngMyVar does not need to be declared here - it's global
 lngMyVar = InputBox("Enter a Number: ", "Script-Level", 0)

End Sub

Sub MySecondProcedure()
 'display the value of lngMyVar
 MsgBox "lngMyVar: " & lngMyVar
End Sub

Sub IncrementValue

 'let's add the value of the global constant to lngMyVar
 lngMyVar = lngMyVar + my_Const

End Sub

Sub MultiplyConstant

 lngMyVar = lngMyVar + (my_Const * 2)

End Sub

One peculiarity of this script is worth noting: in addition to including global constant and variable declarations in this
WSH script, we have also included global executable code. InWSH,Outlook forms, and Internet Explorer, assignments
and other executable code statements that are stored globally are executed. In Internet Explorer, you can include
multiple <SCRIPT> tags, and all constants and variables declared in them but outside of functions and subroutines have
global scope. In addition, all global code is executed.

ASP is an exception to this. Although global code does not generate an error, code generally will not execute. This
means that you should only declare global variables and constants in ASP; you should never make assignments or other
executable code global in scope.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

executable code global in scope.

3.2.7.2 Local scope

A variable that is declared within an individual procedure (that is, within a subroutine or a function) can only be used
within that procedure, and is therefore said to have procedure-level scope. As soon as the procedure is complete,
references to the variables defined within that procedure are erased from the computer's memory. You can therefore
define different variables in different procedures that use the same name, as in the case of the simple x variable
commonly used in the For...Next loop. Procedure-level variables are ideal for temporary, localized storage of information.

To prove that when variables are declared (either implicitly by simply using their name or explicitly using the Dim
statement) within a procedure they do not have scope outside that procedure, take a look at the Example 3-12. Here
we have a variable named MyTestVar. The variable is declared globally and again within a subroutine. However, the
scope is local only to the level where the variable was declared. In this example, the DemonstrateScope subroutine is
called first and displays the value of MyTestVar as "Vacaville, CA", then the subroutine exits back to the main program
and the variable's value is shown as "Anchorage, AK". This clearly demonstrates that the variables are not one and the
same, and hold values only at the scope where they were declared. (Incidentally, this "hiding" of variables with global
scope by assigning identical names to local variables is called shadowing and is generally regarded as a poor
programming practice.

Example 3-12. Procedure-level scope

Option Explicit

Sub DemonstrateScope
Dim MyTestVar
MyTestVar= "Vacaville, CA"
Msgbox MyTestVar
End sub

Dim MyTestVar
myTestVar = "Anchorage, AK"
DemonstrateScope
Msgbox MyTestVar

3.2.7.3 Public visibility

Used outside of a procedure in place of the Dim statement, Public allows a variable to be seen not only by all procedures
in all scripts in the current document, but also by all scripts in all procedures in all currently loaded documents.

3.2.7.4 Private

The Private declaration allows you to protect a variable by restricting its visibility to the document in which it has been
declared. As with the Public declaration, the Private keyword can only be used outside a procedure; its use within a
procedure generates an error. The Public and Private keywords are useful primarily in client-side Internet Explorer
applications, where it is important to make variables either accessible or inaccessible between frames and documents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Error Handling and Debugging
Errors, bugs, and therefore, debugging, are a part of life for a programmer. As the saying goes, if you haven't found
any mistakes, then you aren't trying hard enough.

Dealing with errors actually involves two very different processes: error handling and debugging. Error handling is a
combination of coding and methodology that allows your program to anticipate user and other errors. It allows you to
create a robust program. Error handling does not involve weeding out bugs and glitches in your source code, although
some of the error-handling techniques covered in this chapter can be used to great advantage at the debugging stage.
In general, error handling should be part of your overall program plan, so that when you have an error-free script,
nothing is going to bring it to a screeching halt. With some sturdy error handling in place, your program should be able
to keep running despite all the misuse that your users can — and certainly will — throw at it.

The following ASP page illustrates some simple error handling:

<HTML>
<HEAD><TITLE>Error Checking</TITLE>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Dim n, x

n = 10
x = Request.Form.Item("txtNumber")

If x = 0 Or Not IsNumeric(x) Then
 Response.Write "x is an invalid entry"
Else
 y = n / x
 Response.Write y
End If

</SCRIPT>

</BODY>
</HTML>

The error handling in this example is the best kind — it stops an error before it can occur. Suppose you hadn't used the
conditional If...Else statement and had allowed any value to be assigned to x. Sooner or later, some user will fail to enter
a value or will enter a zero. In the former case, it would generate a type mismatch error, while in the latter, it would
generate divide by zero error. So error handling, as this code fragment illustrates, is as much about careful data
validation as it is about handling actual errors.

While preventing an error before it can occur is one approach to handling errors, the second is to handle the error after
it occurs. For example, the following code fragment is a "real" error handler that we'll examine later in this chapter, so
don't worry about the syntax at this stage. Like the previous code fragment, it aims at handling the "cannot divide by
zero" runtime error—in this case, only after it occurs:

<HTML>
<HEAD><TITLE>Error Checking</TITLE>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

On Error Resume Next

Dim n, x, y

n = 10
x = Server.HTMLEncode(Request.Form.Item("txtNumber"))
y = n / x

If Err.Number <> 0 Then
 y = "Oops! " & Err.Description
End If

Response.Write y

</SCRIPT>

</BODY>
</HTML>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</HTML>

As both of the previous examples show, the code itself is error-free and doesn't contain any bugs, but without either
the data validation code or the error handling code, this program would be brought to its knees the first time a user
enters a zero in the text box. Error handling therefore is a way to prevent a potentially disastrous error from halting
program execution. Instead, if an error does occur, your program can inform the user in a much more user-friendly
manner, and you can still retain control over the program.

Debugging , on the other hand, involves finding errors and removing them from your program. There are many types of
errors that you can unwittingly build into your scripts, and finding them provides hours of fun for all the family. Errors
can result from:

Including language features or syntax that the scripting engine does not support within the script.

Failing to correctly implement the intent of the program or some particular algorithm. This occurs when code
produces behavior or results other than those you intend, although it is syntactically correct and does not
generate any errors.

Including components that contain bugs themselves. In this case, the problem lies with a particular component,
rather than with your script, which "glues" the components together.

The single most important thing you need when debugging is patience: you have to think the problem through in a
structured logical fashion in order to determine why you are experiencing a particular behavior. The one thing that you
do have on your side is that programs will never do anything of their own free will (although they sometimes seem to).
Let's begin by looking more closely at this structured, logical approach to debugging your scripts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Debugging
You've designed your solution and written the code. You start to load it into the browser with high hopes and
excitement, only to be faced with an big ugly gray box telling you that the VBScript engine doesn't like what you've
done. So where do you start?

When confronted with a problem, you first need to know the type of error you're looking for. Bugs come in two main
flavors:

Syntax errors

You may have spelled something incorrectly or made some other typographical or syntactical error. When this
happens, usually the program won't run at all.

Logical errors

Although syntactically correct, your program either doesn't function as you expect or it generates an error
message.

Bugs appear at different times, too:

At compile time

If a compile-time error is encountered, an error message appears as the page is loading. This usually is the
result of a syntax error.

At runtime

The script loads OK, but the program runs with unexpected results or fails when executing a particular function
or subroutine. This can be the result of a syntax error that goes undetected at compile time (such as an
undefined variable) or of a logical error.

Let's look at each type of bug individually. We'll begin by looking at syntax errors—first at compile time and then at
runtime—before looking at logical errors.

4.1.1 Syntax Errors

Ordinarily, objects containing script are compiled as they are loaded, and are then immediately executed. Errors can
occur at either stage of the process. Although the distinction between compile-time and runtime errors is rapidly losing
its importance, it is sometimes helpful to know that the entire script compiled successfully and that the error was
encountered at a particular point in the script.

4.1.1.1 Syntax errors at compile time

Syntax errors at compile time are usually the easiest to trace and rectify. When the script loads, the host calls the
scripting engine to compile the code. If the VBScript engine encounters a syntax error, it cannot compile the program
and instead displays an error message.

For instance, an attempt to run the client-side script shown in Example 4-1 produces the error message shown in Figure
4-1. In this case, it's very easy to identify the source of the error: in the call to the LCase function, the closing
parenthesis is omitted.

Example 4-1. Client-side script with a syntax error

<HTML>
<HEAD>
<TITLE>Syntax Error</TITLE>
<SCRIPT LANGUAGE="vbscript">
Sub cmdButton1_OnClick
 Alert LCase("Hello World"
End Sub
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<INPUT TYPE="button" NAME="cmdButton1" VALUE="OK">
</BODY>
</HTML>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-1. Error message generated by Example 4-1

When using ASP, diagnosing and fixing compile-time errors is a bit more difficult, since errors appear on the client
browser, rather than in a dialog displayed on the server. For example, the simple ASP page shown in Example 4-2
displays the error message shown in Figure 4-2. This is a fairly standard ASP message display. The error code (which is
expressed as a hexadecimal number in this case) appears to be meaningless. The line number causing the error,
however, is correctly identified, and the description informs us of the exact cause of the error. So we can quickly see
that we've omitted a closing quotation mark around the argument we passed to the ServerVariables property of the
Request object.

Example 4-2. ASP page with a syntax error

<HTML>
<HEAD>
<TITLE>ASP Syntax Error</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
 Function BrowserName()
 BrowserName = Request.ServerVariables("HTTP_USER-AGENT)
 End Function
</SCRIPT>
<H2><CENTER>Welcome to Our Web Page!</CENTER></H2>
We are always happy to welcome surfers using <%= BrowserName %>.
</BODY>
</HTML>

Figure 4-2. ASP error information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.1.2 Syntax errors at runtime

Very often, a syntax error in VBScript appears only at runtime. Although the VBScript engine can successfully compile
the code, it cannot actually execute it. (Note, though, that you may not actually be able to tell the difference between
compile-time and runtime behavior in a relatively short script, since these two behaviors occur one after the other.)
Example 4-3 shows a part of an ASP page that, among other things, tries to determine whether an ISBN number is
correct. But attempting to access this page generates a runtime error, which is shown in Figure 4-3.

Example 4-3. Excerpt from an ASP page that generates an error

<HTML>
<HEAD>
<TITLE>Verifying an ISBN</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Function VerifyISBN(sISBN)

Dim sCheckSumDigit, sCheckSum

Dim iPos, iCtr, iCheckSum
Dim lSum
Dim sDigit

iPos = 1
sCheckSumDigit = Right(Trim(sISBN), 1)

' Make sure checksum is a valid alphanumeric
If Instr(1,"0123456789X", sCheckSumDigit) = 0 Then
 VerifyISBN = False
 Exit Function
End If

' Calculate checksum
For iCtr = 1 to Len(sISBN) - 1
 sDigit = Mid(sISBN, iCtr, 1)
 If IsNumeric(sDigit) Then
 lSum = lSum + (11 - iPos) * CInt(sDigit)
 iPos = iPos + 1
 End If
Next
iCheckSum = 11 - (lSum Mod 11)
Select Case iCheckSum
 case 11
 sCheckSum = "0"
 case 10
 sCheckSum = "X"
 case else
 sCheckSum = CStr(iCheckSum)
End Select
' Compare with last digit
If sCheckSum = sCheckSumDigit Then
 VerifyISBN = True
Else
 VerifyISBN = False
End If

End Function

</SCRIPT>

<H2><CENTER>Title Information</CENTER></H2>
Title: <%=Server.HTMLEncode(Request.Form("txtTitle")) %> <P>
ISBN:
<%
 sISBN = Server.HTMLEncode(Request.Form("txtISBN"))
 If Not VerifyIBN(sISBN) Then
 Response.Write "The ISBN you've entered is incorrect."
 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else
 Response.Write sISBN
 End If
%>

</BODY>
</HTML>

Figure 4-3. Error message generated by Example 4-3

In this example, all code has successfully compiled, since the server was able to begin returning output from the page.
At compile time, even though the VerifyIBN (instead of VerifyISBN) function does not exist, the line of code appears to
the compiler to identify a valid function, since it contains the correct syntax for a function call:functioname is followed by
argumentlist. The VBScript engine can therefore compile the code into a runtime program, and an error is generated only
when the engine tries to pass argumentlist to the nonexistent function VerifyIBN.

4.1.2 Logical Errors

Logical errors are caused by code that is syntactically correct — that is to say, the code itself is legal — but the logic
used for the task at hand is flawed in some way. There are two categories of logical errors. One category of errors
produces the wrong program results; the other category of errors is more serious, and generates an error message that
brings the program to a halt.

4.1.2.1 Logical errors that affect program results

This type of logical error can be quite hard to track down, because your program will execute from start to finish
without failing, only to produce an incorrect result. There are an infinite number of reasons why this kind of problem
can occur, but the cause can be as simple as adding two numbers together when you meant to subtract them. Because
this is syntactically correct (how does the scripting engine know that you wanted "-" instead of "+"?), the script
executes perfectly.

4.1.2.2 Logical errors that generate error messages

The fact that an error message is generated helps you pinpoint where an error has occurred. However, there are times
when the syntax of the code that generates the error is not the problem.

For instance, Example 4-4 shows a web page that invokes an ASP page shown in Example 4-5. The ASP page in turn
generates a runtime error, which is shown in Figure 4-4.

Example 4-4. Division.htm, a web page for developing division skills

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-4. Division.htm, a web page for developing division skills

<HTML>
<HEAD>
<TITLE>A Test of Division</TITLE>
</HEAD>
<BODY>
<FORM METHOD="POST" ACTION="GetQuotient.asp">
 Enter Number: <INPUT TYPE="Text" NAME="txtNum1"> <P>
 Enter Divisor: <INPUT TYPE="Text" NAME="txtNum2"> <P>
 Enter Quotient: <INPUT TYPE="Text" NAME="txtQuotient"> <P>
 <INPUT TYPE="Submit">
</FORM>
</HEAD>
</HTML>

Example 4-5. GetQuotient.asp, the ASP page invoked by division.htm

<HTML>
<HEAD>
<TITLE>Checking your division...</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Dim nNum1, nNum2, nQuot

Public Function IsCorrect()

 nNum1 = CDbl(Server.HTMLEncode(Request.Form("txtNum1")))
 nNum2 = CDbl(Server.HTMLEncode(Request.Form("txtNum2")))
 nQuot = CDbl(Server.HTMLEncode(Request.Form("txtQuotient")))

 If (nNum1 / nNum2 = nQuot) Then
 IsCorrect = True
 Else
 nQuot = nNum1 / nNum2
 End If

End Function

</SCRIPT>

<%
 If IsCorrect() Then
 Response.Write "<H2><CENTER>Correct!</H2></CENTER>"
 Response.Write "Your answer is correct.<P>"
 Else
 Response.Write "<H2><CENTER>Incorrect!</H2></CENTER>"
 Response.Write "Your answer is wrong.<P>"
 End If
%>

<%=nNum1 %> divided by <%=nNum2 %> is <%=nQuot %> <P>

Answer another division problem.

</BODY>
</HTML>

Figure 4-4. Error display from Example 4-5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The problem here is not one of syntax. Line 16 (the line with the If statement in the IsCorrect function) is syntactically
correct. We won't get this error every time that we display the HTML page and it invokes the ASP page in Example 4-5.
However, the values of variables can change (after all, that's why they're called variables), and here, the values of the
variables in the ASP page are defined by the values that the user enters into the web page's text boxes—in this case, by
the user entering a 0 into the txtNum2 text box in Example 4-4. It could be said that this type of logical error produces a
syntax error because the following syntax:

If (nNum1 / 0 = nQuot) Then

entails a division by zero and is therefore illegal.

In this case, we should have checked the value of the divisor to make sure that it was nonzero before calling the
function. But more generally, this scenario — in which the value of a variable is incorrect either all of the time or, more
commonly, only under certain conditions — is the essence of the logical error.

4.1.3 The Microsoft Script Debugger

The Script Debugger has been designed to allow you to debug your scripts while they are running in the browser. You
can trace the execution of your script and determine the value of variables during execution. The Script Debugger is
freely downloadable from the Microsoft web site. (For details, see the Microsoft Scripting home page at
http://msdn.microsoft.com/scripting/.) It arrives in a single self-extracting, self-installing archive file, so that you can
be up and running with the debugger in minutes.

You can also use Visual Interdev or Visual Studio .NET to debug scripts.

4.1.3.1 Launching the Script Debugger

The Script Debugger is not a standalone application in the sense that you cannot launch it on its own. Instead, the
Script Debugger runs in the context of the browser or of WSH. When you are runningInternet Explorer, there are two
ways to access the debugger:

Select the Script Debugger option from the View menu

A submenu is displayed that allows you to open the debugger to cause a break at the next statement.

Automatically when a script fails for any reason

This launches the debugger and displays the source code for the current page at the point where the script
failed.

When you are running a WSH script, you can launch the debugger if an error occurs by supplying the //D switch, or you
can run a script in the context of the debugger by supplying the //X switch. Figure 4-5 shows the Script Debugger.

Figure 4-5. The Microsoft Script Debugger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.3.2 The Script Debugger interface

When you launch the Script Debugger, you're faced with a number of different windows, each with its own special
function:

The Script window

This contains the code for the current HTML page just as if you'd selected the View Source option to launch
Notepad. It is from the script window that you control how the debugger steps through program execution and
that you watch the execution of the script. The script in this window is read-only.

The Running Documents window

This displays a graphical view of the applications that support debugging and the documents that are active in
them. To open a particular document, simply double-click its name in the Running Documents window.

The Call Stack window

This displays the current hierarchy of calls made by the program. If the Call Stack window is hidden, you can
display it by selecting the Call Stack option from the View menu. The Call Stack window allows you to trace the
path that program execution has followed to reach the current routine (and, implicitly, that it must also follow in
reverse to "back out" of these routines). For example, let's say you have a client-side script attached to the
OnClick event of a button called cmdButton1, which in turn calls a function named sMyFunction. When
sMyfunction is executing, the call stack will be:

cmdButton1_OnClick
sMyFunction

This allows you to see how program flow has reached the routine it's currently in. It is all too easy when you
have a breakpoint set in a particular function to lose track of how the script reached the function. A quick glance
at the Call Stack window will tell you.

The Command window

This is the most important part of the debugger. If you have experience in Visual Basic, you can now breath a
sigh of relief! The Command window allows you to interrogate the script engine and find the value of variables,
expressions, and built-in functions. If the Command window is not visible, you can open it by selecting the
Command Window option from the View menu. To use the Command window, type a question mark (?) followed
by the name of the variable or value you wish to see, then press Enter. For example:

? sMyString
"Hello World"

4.1.3.3 Tracing execution with the Script Debugger

The goal of tracing program execution is to discover, in a logical sequence, how your program is operating. If your
program runs but generates an error message — or produces results that are inconsistent with what you expected — it
is obviously not operating according to plan. You therefore need to follow the flow of your program as it executes, and
at various stages, test the value of key variables and build up an overall "picture" of what is really happening inside of
your program. This should enable you to discover where and why your program is being derailed.

To trace the execution of your script, you need a way to "break into" the script while it is running, and then to step
through each line of code to determine what execution path is being followed or perhaps where the script is failing. The
Script Debugger gives you two ways to halt execution and pass control over to the debugging environment:

Break at Next Statement

The simplest option is to select the Break at Next Statement option from the Script Debugger's Debug menu (or
from the Script Debugger submenu of the Internet Explorer View menu). Then run your script in the normal
way in the browser. As soon as the first line of scripting code is encountered by the browser, execution is
suspended, and you have control over the script in the debugger. However, the part of the script you want to
concentrate upon may be many lines of code further on from the first, in which case you will waste time
stepping through to the portion that interests you.

Set Breakpoint

You will mostly have a good idea where your code is either failing or not producing the desired results. In this
case, you can set abreakpoint by placing your cursor on the line of code at which to halt execution, and then
either pressing F9 or selecting Toggle Breakpoint from the Script Editor's Debug menu. A line's breakpoint set is
highlighted in red. Run your script from the browser. When the code containing the breakpoint is reached,
execution is suspended; you have control over the script in the Debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

execution is suspended; you have control over the script in the Debugger.

When the code has been suspended, it must be executed manually from the debugger. There are three methods you
can use for stepping through a script one line at a time. For each method, you can either select an option from the
debugger's Debug menu or press a keyboard combination. The options are:

Step Into (F8)

This executes the next line of code. Using Step Into, you can follow every line of execution even if the next line
to be executed is within another subroutine or function.

Step Over (Shift-F8)

This executes the next line of code only within the current subroutine or function. If a call is made to another
subroutine or function, the procedure executes in the background before control is passed back to you in the
current subroutine.

Step Out (Ctrl-Shift-F8)

This is required only if you have chosen Step Into and your script has called a function or subroutine. In some
cases, you may realize that this is a lengthy procedure that has no consequence to your debugging. In this
case, you can select Step Out to automatically execute the rest of the function and break again when control
returns to the original subroutine or function.

4.1.3.4 Determining the value of a variable, expression, or function at runtime

One of the main functions of the Immediate window is to allow you to check the value of a particular variable while the
script is running. The most frustrating part about debugging a script prior to the release of the Script Debugger was
that you could see the results of your script only after it had run (or failed). Most debugging requires you to get inside
the script and wander around while it's in the middle of execution.

In the absence of a debugger, many programmers and content providers inserted calls to the Window.Alert method (for
client-side scripting), to the Response.Write method (for server-side scripting), or to the MsgBox function (for WSH
scripts and Outlook forms) to serve as breakpoints in various places in a script. The dialog would then display thevalues
of particular variables or expressions selected by the programmer. Although this can still be the most efficient method
of debugging when you have a very good idea of what's going wrong with your code, it becomes very cumbersome to
continually move these calls and to change the information the dialogs display when you don't really have a very good
idea of where or why your script is failing.

In contrast, using the Command window to display the value of any non-object variable is easy. Simply type a question
mark (?) followed by a space and the variable name, then press Enter. The Script Debugger will then evaluate the
variable and display its value in the Immediate window. Note, though, that if your script requires variable declaration
because you've included the Option Explicit statement, you must have declared the variable and it must be in scope for
the debugger to successfully retrieve its value; otherwise, an error dialog is displayed. The debugger cannot evaluate
the result of user-defined functions; it can evaluate only intrinsic functions (functions that are a built-in part of the
scripting language).

But you aren't limited to using the Command window to view the values of variables; you can also use it to inspect the
values of expressions, of VBScript intrinsicfunctions, and of the properties and methods of particular objects. To see
how this works, and also to get some experience using the Script Debugger, let's try out the web page and client-side
script in Example 4-6. Basically, the user should be able to enter a number and, if it is actually between zero and two,
be shown the element of the array at that ordinal position. Somewhere in this code is a sneaky little bug causing
problems. The script always tells the user that the number entered into the text box is too large, which indicates that it
is greater than the upper boundary of the array. But this isn't the case; the user can enter the numbers 0 or 2 and still
be told that the number is too large.

Example 4-6. A badly behaving web page

<HTML>
<HEAD><TITLE>Testing the Script Debugger</TITLE></HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">

Dim sTest
sTest = Array("Hello World", "Some Data", "AnyData")

Sub cmdButton1_OnClick
 Dim iTest
 iTest = Document.frmForm1.txtText1.Value
 Alert sGetValue(iTest)
End Sub

Function sGetValue(iVal)
 If iVal > UBound(sTest) Then
 sGetValue = "Number too big"
 Elseif iVal < 0 Then
 sGetValue = "Number too small"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sGetValue = "Number too small"
 Else
 sGetValue = sTest(iVal)
 End If
End Function

</SCRIPT>

<FORM NAME="frmForm1">
 Input a Number (0-2): <INPUT TYPE="text" NAME="txtText1"> <P>
 <INPUT TYPE="button" NAME="cmdButton1" VALUE="OK">
</FORM>

</BODY>
</HTML>

To debug the script in Example 4-6, you can place a breakpoint on the first line of the sGetValue function, since this is
probably where the problem lies. Then run the script and enter the number 2 into the text box txtText1. When
execution is suspended, you can investigate the values of the program's variables. As you can see, the call to the
sGetValue function has a single argument, iTest, which is passed to the function as the iVal parameter. So our first step
is to determine the value of iVal at runtime by entering the following into the Command window:

? iVal

Press Enter, and the debugger displays the result:

2

Next, find out what the script thinks the upper boundary of the array is by entering the following in the immediate
window and pressingEnter:

? UBound(sTest)

Note that here you're not simply asking for the value of a variable; you're actually asking the debugger to evaluate the
UBound function on the sTest array and return the result, which is:

2

So iVal is not greater than UBound(sTest). Next, go back to the script window and press F8 to follow the flow of program
control. Execution is suspended on the following line, where the string "Number too big" is assigned to the variable
sGetValue. That indicates that the scripting engine has evaluated the expression incorrectly and has decided that iVal is
greater then UBound(sTest). So go back to the Command window, and this time try to evaluate the complete expression:

? iVal > UBound(sTest)

As you might expect from the appearance of the "Number too big" dialog when the script is run, the result of the
expression is True, even though the expression that is evaluated (once we replace the variable and expression with their
values) is 2 > 2, which is clearly False. Given this apparent incongruity, it seems likely that our problem may be centered
in the data types used in the comparison. So try the following:

? TypeName(UBound(sTest))

Here, you're asking the debugger to evaluate the UBound function on the sTest array, and, by calling the TypeName
function, to indicate the data type of the value returned by the UBound function. The result is:

Long

Now find out what data type iVal is:

? TypeName(iVal):

The debugger returns:

String

Aha! The Script Debugger shows that, in reality, you're performing the following comparison:

If "2" > 2 Then

which of course is nonsense! Remember that iVal is the name within the sGetValue function of the iTest variable in the
button's OnClick event procedure. And iTest in turn represents the value retrieved from the textbox, which of course
must be string data, as typing the following into the Command window establishes:

? TypeName(iTest)
String

Try this in the debugger:

? CLng(iVal) > UBound(sTest)

Success! The Command window shows:

False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

False

You can see from this debugging exercise that the Command window is a powerful tool allowing you to perform function
calls, evaluate complete expressions, and try out different ways of writing your code.

4.1.3.5 Changing variable values at runtime

Another use for the Command window is to assign a new value to a variable. For example, if you open the web page
and client-side script shown in Example 4-7 and click the button, you'll find that an error halts execution on line 10 with
the message "Invalid procedure call or argument". If you use the Command window to determine the value of myNum,
which specifies the starting position of the InStr search, you'll find that it was erroneously set to -1, an invalid value
that generated the runtime error.

Example 4-7. Runtime error caused by an invalid argument

<HTML>
<HEAD><TITLE>Logical Error</TITLE>
<SCRIPT LANGUAGE="vbscript">

Sub cmdButton1_OnClick
 Dim myNum
 Dim sPhrase

 sPhrase = "This is some error"
 myNum = GetaNumber(CInt(Document.frmForm1.txtText1.Value))
 If Instr(myNum, sPhrase, "is") > 0 Then
 Alert "Found it!"
 End If
End Sub

Function GetaNumber(iNum)
 iNum = iNum - 1
 GetaNumber = iNum
End Function

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM NAME="frmForm1">
<INPUT TYPE="hidden" NAME="txtText1" VALUE=0>
<INPUT TYPE="button" NAME="cmdButton1" VALUE="Click Me">
<FORM>
</BODY>
</HTML>

You can, however, correct the error and continue executing the script. Just place a breakpoint on the offending line and
click on the button when the browser displays it so that the script executes. When program execution halts, you can
check the value of myNum :

? myNum
-1

How the VB Debugger and the Script Debugger Differ
If you have experience with Visual Basic, the debugging concepts covered in this section will be familiar to
you. However, there are a few features that aren't available to you in the Script Debugger:

No "on the fly" editing

Because the scripting window is read-only, you cannot edit the code during execution, as you can
most of the time with VB.

No Instant Watch (Shift-F9)

The VB debugger's instant watch facility, which allows you to highlight a variable in your code,
press Shift-F9, and see the value of the variable, is not available in the Script Debugger.

Cannot set watches

Watches do not exist in the Script Debugger.

Cannot set the next statement

Using the VB Debugger, you can place the cursor on a line of code and, by clicking CTRL-F9, have
program execution resume at that line. This is particularly useful to backtrack or to re-execute a
section of code. Unfortunately, this feature is not available in the Script Debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

section of code. Unfortunately, this feature is not available in the Script Debugger.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Error Handling
Error handling does not involve finding errors in your scripts. Instead, use error-handling techniques to allow your
program to continue executing even though a potentially fatal error has occurred. Ordinarily, all runtime errors that are
generated by the VBScript engine are fatal, since execution of the current script is halted when the error occurs. Error
handling allows you to inform the user of the problem and either halt execution of the program or, if it is prudent,
continue executing the program.

4.2.1 The On Error Resume Next Statement

There are two main elements to error handling in VBScript. The first is the On Error statement, which informs the
VBScript engine of your intention to handle errors yourself, rather than to allow the VBScript engine to display a
typically uninformative error message and halt the program. This is done by inserting a statement like the following at
the start of a procedure:

On Error Resume Next

This tells the VBScript engine that, should an error occur, you want it to continue executing the program starting with
the line of code that directly follows the line in which the error occurred. For example, in the simple WSH script:

On Error Resume Next
x = 10
y = 0
z = x / y
Alert z

a "Cannot divide by Zero" error is generated on the fourth line of code because the value of y is 0. But because you've
placed the On Error statement in line 1, program execution continues with line 5. The problem with this is that when an
error is generated, the user is unaware of it; the only indication that an error has occurred is the blank Alert box (from
line 5) that's displayed for the user.

A particular On Error statement is valid until another On Error statement in the line of
execution is encountered, or an On Error Goto 0 statement (which turns off error handling)
is executed. This means that if Function A contains an On Error statement, and Function A
calls Function B, but Function B does not contain an On Error statement, the error handling
from Function A is still valid. Therefore, if an error occurs in Function B, it is the On Error
statement in Function A that handles the error; in other words, when an error is
encountered in Function B, program flow will immediately jump to the line of code that
followed the call to Function B in Function A. When Function A completes execution, the On
Error statement it contains also goes out of scope. This means that, if the routine that
called Function A did not include an On Error statement, no error handling is in place.

This is where the second element of VBScript's error handling comes in. VBScript includes an error object, named Err,
which, when used in conjunction with On Error Resume Next, adds much more functionality to error handling, allowing you
to build robust programs and relatively sophisticated error-handling routines.

Exception Handling in ASP
ASP 3.0/IIS 5.0 (unlike previous versions of ASP) supports built-in exception handling. Errors in ASP
scripts are handled automatically by the web server in one of three ways: by sending a default message to
the client, by sending the client the contents of a particular file, or by redirecting the client to an error-
handling web page, depending on how the IIS has been configured. Within the error-handling page, the
ASPError object can be examined to determine the cause of the error. In ASP 3.0, using the VBScript On
Error Resume Next statement circumvents ASP's built-in exception handling and replaces it with VBScript's
less flexible error-handling system.

4.2.2 The Err Object

The Err object is part of the VBScript language and contains information about the last error to occur. By checking the
properties of the Err object after a particular piece of code has executed, you can determine whether an error has
occurred and, if so, which one. You can then decide what to do about the error — you can, for instance, continue
execution regardless of the error, or you can halt execution of the program. The main point is that error handling using
On Error and the Err object puts you in control of errors, rather than allowing an error to take control of the program
(and bring it to a grinding halt). To see how the Err object works and how you can use it within an error-handling
regimen within your program, let's begin by taking a look at its properties and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regimen within your program, let's begin by taking a look at its properties and methods.

4.2.2.1 Err object properties

Like all object properties, the properties of the Err object can be accessed by using the name of the object, Err, the dot
(or period) delimiter, and the property name. The Err object supports the following properties:

Number

The Number property is a Long value that contains an error code value between -2,147,483,648 and
2,147,483,647. (The possibility of a negative error code value seems incongruous but results from the fact that
error codes are unsigned long integers, a data type not supported by VBScript.) VBScript itself provides error
code values that range from 0 to 65,535. COM components, however, often provide values outside of this
range. If the value of Err.Number is 0, no error has occurred. A line of code like the following, then, can be used
to determine if an error has occurred:

If Err.Number <> 0 Then

Although the properties of the Err object provide information on the last error to occur in a script, they do not
do so permanently. All the Err object properties, including the Number property, are set either to zero or to
zero-length strings after an End Sub, End Function, Exit Sub, or Exit Function statement. In addition, you can
explicitly reset Err.Number to zero after an error by calling the Err object'sClear method. The WSH script in
Example 4-8 illustrates the importance of resetting theErr object after an error occurs.

Example 4-8. Failing to reset the Err object

Dim x, y ,z

On Error Resume Next

x = 10
y = 0
z = x / y
If Err.Number <> 0 Then
 MsgBox "There's been an error #1"
Else
 MsgBox z
End IF

z = x * y
If Err.Number <> 0 Then
 MsgBox "There's been an error #2"
Else
 MsgBox z
End If

End Sub

The division by zero on the fifth line of the script in Example 4-8 generates an error. Therefore, the conditional
statement on line 6 evaluates to True and an error dialog is displayed. Program flow then continues at line 12.
Line 12 is a perfectly valid assignment statement that always executes without error, but the Err.Number
property still contains the error number from the previous error in line 5. As a result, the conditional statement
on line 13 evaluates to True, and a second error dialog is displayed. Despite the two error messages, there's
only been a single error in the script.

Description

The Description property contains a string that describes the last error that occurred. You can use the
Description property to build your own message box alerting the user to an error, as the WSH script in Example
4-9 shows.

Example 4-9. Using the Description property to display error information

Dim x, y ,z
On Error Resume Next

x = 10
y = 0
z = x / y
If Err.Number <> 0 Then
 MsgBox "Error number " & Err.Number & ", " & _
 Err.Description & ", has occurred"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Err.Description & ", has occurred"
 Err.Clear
Else
 MsgBox z
End If

z = x * y
If Err.Number <> 0 Then
 MsgBox "Error No:" & Err.Number & " - " & _
 Err.Description & " has occurred"
 Err.Clear
Else
 Alert z
End If

Source

The Source property contains a string that indicates the class name of the object or application that generated
the error. You can use the Source property to provide users with additional information about an error—in
particular, about where an error occurred.

The value of the Source property for all errors generated within scripted code is simply "Microsoft VBScript
runtime error." This is true of all VBScript scripts, whether they're written for Active Server Pages, Windows
Script Host, Internet Explorer, or Outlook forms. Obviously, this makes the Source property less than useful in
many cases. However, you can assign a value to the Source property in your own error-handling routines to
indicate the name of the function or procedure in which an error occurred. In addition, the primary use of the
Source property is to signal an error that is generated by some other object, like an OLE automation server
(such as Microsoft Excel or Microsoft Word).

4.2.2.2 Err object methods

The two methods of the Err object allow you to raise or clear an error, while simultaneously changing the values of one
or more Err object properties. The two methods are:

Raise

The Err.Raise method allows you to generate a runtime error. Its syntax is:[1]

[1] A more complete version of the syntax of the Raise method is:

Err.Raise(ErrorNumber)

where ErrorNumber is the numeric code for the error you'd like to generate. At first glance, generating an error
within your script may seem like a very odd thing to want to do! However, there are times, particularly when
you are creating large, complex scripts, that you need to test the effect a particular error will have on your
script. The easiest way to do this is to generate the error by using the Err.Raise method and providing the error
code to the ErrorNumber parameter, then sit back and note how your error-handling routine copes with the error,
what the consequences of the error are, and what side effects the error has, if any. The client-side script in
Example 4-10, for instance, allows the user to enter a number into a text box, which is passed as the error code
value to the Err.Raise method. If the value of the error code is non-zero, an Alert box opens that displays the
error code and its corresponding description. Figure 4-6, for instance, shows the Alert box that is displayed
when the user enters a value of 13 into the text box.

Example 4-10. Calling the Err.Raise method

<HTML>
<HEAD>
<TITLE>Using the Err Object</TITLE>
<SCRIPT LANGUAGE="vbscript">

Sub cmdButton1_OnClick
On Error Resume Next
errN = Document.frm1.errcode.value
Err.Raise(errN)

If Err.Number <> 0 Then
 Alert "Error No:" & Err.Number & " - " & Err.Description
 Err.Number = 0
End If

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<CENTER>
<H2>Generating an Error</H2>
<P>
<FORM NAME="frm1">
Enter an Error Code
<INPUT TYPE="text" NAME="errcode">
<INPUT TYPE="button" NAME="cmdButton1" VALUE="Generate Error">
</CENTER>
</BODY>
</HTML>

An Error Code Generator (ERRCODES1.HTML, ERRCODES1.ASP, and
ERRCODES1.VBS), which allows you to generate a complete list of current VBScript
error codes, can be found on the O'Reilly Visual Basic web site
athttp://vb.oreilly.com.

Figure 4-6. Generating a Type mismatch error at runtime

Table 4-1 lists a few of the most commonruntime errors.

Table 4-1. Some common VBScript error codes
Error number Description

5 Invalid procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

11 Division by zero

13 Type mismatch

Clear

The Clear method clears the information that the Err object is storing about the previous error; it takes no
parameters. It sets the values of Err.Number to 0 and the Err object's Source and Description properties to a null
string.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Common Problem Areas and How to Avoid Them
There is much to be said for the old maxim, "The best way to learn is by making mistakes." Once you have made a
mistake, understood what you did wrong, and rectified the error, you will — in general — have a much better
understanding of the concepts involved and of what is needed to build a successful application. But to save you from
having to experience this painful process of trial and error in its entirety, we'd like to share with you some of the most
common errors that ourselves and other programmers we've worked with have made over the years. These types of
errors are actually not unique to VBScript, nor in fact to VB, but to programming in general. In approximate order of
frequency, they are:

1. Syntax errors generated by typing errors. This is a tough one. Typing errors — the misspelled function call or
variable name — are always going to creep into code somewhere. They can be difficult to detect, particularly
because they are typing errors; we frequently train our eyes to see what should be there, rather than what is
there. When the effect of the typing error is subtle, it becomes even more difficult to detect. For instance, in a
client-side script, we had spelled LANGUAGE as LANGAUGE in coding the <SCRIPT> tag. The result was that
Internet Explorer immediately began reporting JavaScript syntax errors. This isn't surprising, given that in the
absence of a valid LANGUAGE attribute, Internet Explorer used its default scripting language, JScript. But when
confronted with this situation, it takes a while to recognize the obvious — that the LANGUAGE attribute for some
reason is improperly defined; instead, it seems that Internet Explorer and VBScript are somehow mysteriously
"broken." One way to reduce the time spent scratching your head is to build code in small executable stages,
testing them as you go. Another good tip is to use individual small sample scripts if you are using a function or
set of functions for the first time and aren't sure how they'll work. That allows you to concentrate on just the
new functions rather than on the rest of the script as well. And perhaps the most effective technique for
reducing troublesome misspelling of variables is to include the Option Explicit directive under the first <SCRIPT>
tag in ASP, Internet Explorer, and WSH/XML scripts, and at the top of the page of WSH and Outlook form
scripts. This way, any undefined variable — which includes misspelled variables — is caught at runtime.

2. Type mismatches by everyone's favorite data type, the variant. Type mismatches occur when the VBScript
engine is expecting data of one variant type — like a string — but is actually passed another data type — like an
integer.) Type mismatch errors are fairly uncommon in VBScript, since most of the time the variant data type
itself takes care of converting data from one type to another. That tends, though, to make type mismatch
errors all the more frustrating. For instance, in Example 4-5, if we hadn't used the statements:

nNum1 = CDbl(Server.HTMLEncode(Request.Form("txtNum1")))
nNum2 = CDbl(Server.HTMLEncode(Request.Form("txtNum2")))
nQuot = CDbl(Server.HTMLEncode(Request.Form("txtQuotient")))

to convert the form data submitted by the user to numeric data, our application would not have functioned as
expected. The best way to reduce or eliminate type mismatch errors is to adhere as closely as possible to a
uniform set of VBScript coding conventions. (For a review of coding conventions and their significance, see
Chapter 2.) For instance, when you know that a variable is going to hold a string, use a variable name like
strMyVar to indicate its type, etc. Code becomes easier to use if you can tell instantly that some operation (like
strMyString = intMyInt * dteMyDate) doesn't make sense, but you're none the wiser if your line of code reads a = b
* c.

3. Subscript Out Of Range is an error that occurs frequently when usingarrays. It actually doesn't take much to
eliminate this error for good. All you have to do is check the variable value you're about to use to access the
array element against the value of the UBound function, which lets you know exactly what the maximum
subscript of an array is.

4. The next most common error is division by zero. If you try to divide any number by zero, you'll kill your script
stone dead. While it's very easy to generate adivision by zero error in a script, it's also not at all difficult to
prevent it. A division by zero error is easy to diagnose: whenever a variable has a value of zero, it's likely to
cause a problem. So all your script has to do is check its value and, if it turns out to be zero, not perform the
division. There's no rocket science here! Simply use an If x = 0 Thenconditional statement, where x is the
variable representing the divisor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. VBScript with Active Server Pages
At root, web servers are pieces of software: they receive an incoming client request and handle it by transmitting a
stream of bytes back to the client. Getting the web server to do something else—for instance, to respond to user
interaction by sending back one byte stream rather than another, to save user state information from page to page, to
add data from a database to the byte stream returned to the client, or to perform backend processing on the client
request—requires a web server extension. Traditionally,web server extensions for Windows were developed using two
technologies: Common Gateway Interface (CGI) and Common Gateway Interface for Windows (WinCGI). These are out-
of-process extensions that communicate with the web server through standard input and output (in the case of CGI) or
initialization files (WinCGI), which are both very inefficient methods that do not scale well. Microsoft Internet
Information Server 1.0 added a new technology, Internet Server Application Programming Interface (ISAPI), that
allowed developers to create applications or filters that ran in the same process as the web server, thus achieving
better performance and greater scalability. Unfortunately, developing ISAPI applications and filters required an
experienced C or C++ programmer, and thus was out of the reach of the vast majority of web content providers.

Active Server Pages was first introduced in Microsoft Internet Information Server 3.0 and allows web server extensions
to be developed using scripts that can be written in any language that supports Microsoft's Component Object Model
(COM)—although the most common language for developing ASP scripts is VBScript. This makes ASP application
development accessible to more web content providers than any previous technology for creating shell extensions.

In addition, Active Server Pages allows for the use of server-side components (that is, of COM components written in
any of a number of programming languages, most notably Visual Basic) to enhance and better control web applications.
The reasons for developing an ASP component rather than a simple script include the items shown in the following list.

The functionality that an application requires is not available from VBScript or other scripted languages.

The functionality is to be implemented in multiple web pages or web applications, rather than for just one web
page or web application.

The component offers significantly better performance than its scripted counterpart. That is, the scripted
equivalent of the component is a performance bottleneck.

For a book that shows how to develop ASP components using Visual C++, Visual Basic, and Visual J++, see Developing
ASP Components, by Shelley Powers (O'Reilly & Associates).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 How ASP Works
Active Server Pages is implemented as an IIS component—in fact, as an ISAPI filter—that resides in a dynamic link
library named ASP.DLL. (ISAPI filters are custom web server extensions that are called for every HTTP request received
by the web server.) If the file extension of the resource requested by the client is .asp, Active Server Pages is used to
parse the file and handle the client request; otherwise, it is bypassed.

ASP does not view pages purely on a one-by-one basis. Instead, it organizes its pages into applications. AnASP
application is the entire set of files that can be accessed in a virtual directory and its subdirectories. This notion of an
ASP application allows you to define global variables whose values are shared across all users of your ASP application,
as well as to have ASP save state information from a particular client's session.

When ASP is used to parse a web page, it first checks to see whether the request has originated from a new client. If
the client is new, ASP checks the global.asa file (which is stored in the application's virtual root directory) to determine
whether any session-level data is to be initialized. If the client's is the first request for the ASP application, ASP also
checks global.asa for any application-level data as well. ASP then parses the HTML page, executes any script contained
on the page, and includes any output from scripts into the HTML stream. Note that the output of ASP is HTML with or
without client-side script; no server-side script contained in the ASP page is passed on to the client.

5.1.1 The global.asa File

As we've noted, when ASP receives a request from a new user, it checks the global.asa file, which must be located in
the ASP application's virtual root directory. If the request from the new user is the first request for the ASP application,
theApplication_OnStart event procedure, if it is present, is executed before theSession_OnStart event. When a user
session ends, usually because the session has timed out, ASP checks global.asa for aSession_OnEnd event. When the
application's last user session ends, ASP also checks whether code for the Applictaion_OnEnd event is present as well.

In addition, global.asa can use the <OBJECT> tag to define application-level and session-level objects. All objects
declared to have application scope with the <OBJECT> tag are available throughout the application and can be accessed
through the Application object's StaticObjects collection. <OBJECT> tagged objects that have session scope are available
in a single client session and can be accessed through the Session object's StaticObjects collection. The syntax of the
<OBJECT> tag is:

<OBJECT RUNAT=SERVER SCOPE=scope ID=name PROGID=progid>

where scope is either Application or Session, name is the name by which the object variable will be referenced in code, and
progid is the object's programmatic identifier, as defined in the registry.

Example 5-1 shows the shell of a simple global.asa file. This file is fully customizable, so it can be changed to cater to
your specific application needs. Of course, event handlers that you don't intend to use need not be present in the file. If
you choose not to take advantage of any application-level or session-level variables, initialization, and cleanup, you
need not create a global.asa file.

Example 5-1. The structure of a global.asa file

<OBJECT RUNAT=Server SCOPE=Session ID=strName PROGID="progid">
</OBJECT>

<OBJECT RUNAT=Server SCOPE=Application ID=strName
 PROGID="progid">
</OBJECT>

<Script Language=VBScript Runat=Server>

Sub Application_OnStart
 'Code for handling startup events goes here
End Sub

Sub Application_OnEnd
 'Code for terminating events goes here
End Sub

Sub Session_OnStart
 ' Code for handling session startup goes here
End Sub

Sub Session_OnEnd
 'Code for handling session termination goes here
End Sub

</Script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Script>

5.1.2 Including Server-Side Script in Web Pages

ASP offers two methods for incorporating server-side script into a web page: server-side includes and the HTML
<SCRIPT> tag.

The <SCRIPT>...</SCRIPT> tags define a single code block. The <SCRIPT> tag has the following format if you're
developing your ASP applications with VBScript:

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
 VBScript code goes here
</SCRIPT>

RUNAT="Server"
A common source of error for those writing their own ASP code is the omission of the RUNAT attribute. This
causes the code to execute on the client rather than on the server, which invariably produces numerous
syntax and other errors.

A single web page can include any number of <SCRIPT>...</SCRIPT> tags. The tags can be located anywhere within the
<HEAD>...</HEAD> or the <BODY>...</BODY> tags of an ASP document. A single script block must contain code written in
a single language to run at a single location (i.e., either the server or the client). If you want to run code on both the
server and the client, separate script blocks are required. In the latter case, you can omit the RUNAT attribute from the
<SCRIPT> clause. If you want to write script in multiple languages, separate code blocks are required for each language.
Just supply a string that identifies the language to the LANGUAGE attribute for each scripting block.

Within the script tags, the order of execution of any page-level code (that is, code not located within functions or
procedures) is undefined. In other words, you can't rely on it having been executed at the point in your script when
values of its variables may be needed. As a result, it's best to limit the code contained within the <SCRIPT>...</SCRIPT>
tags to complete functions and procedures, as well as to variable declarations (but not assignments) using the Dim,
Public, and Private statements.

The second way to include script in an HTML page is to use the <%...%> or <%= %> delimiters, or the primary script
commands. All code within the delimiters must be written in the primary scripting language defined for the application
or for the ASP page, whichever has the least restrictive scope. The default application scripting language is defined by
theDefault ASP Language property on the App Options tab in the snap-in for IIS 5.0. It can be overridden for an
individual page by including the <@ LANGUAGE=ScriptingEngine%> directive at the beginning of an ASP page, where
ScriptingEngine is the name of the language.

Both types of primary script commands contain code that is executed sequentially as the portion of the HTML page that
contains them is parsed. The difference between the <%...%> and the <%=...%> delimiters is that the former can
contain executable code but does not automatically send output to the HTML response stream, while the latter contains
a variable or expression whose value is output into the HTML response stream. In practice, this is not a restriction for
the former tag, since you can use the Response.Write method from the ASP object model to write to the HTML output
stream.

Example 5-2 shows a simple ASP page that contains both a script block and primary script commands. The first primary
script command calls the user-defined Greeting function and writes the string it returns to the HTML response stream.
The Greeting function itself is defined in the script block. It retrieves the time on the server and returns a string
indicating whether it is morning, afternoon, or evening. The second primary script command simply calls the VBScript
Now function to insert the date and time into the HTML response stream. Notice from the HTML source shown in Figure
5-1 that the HTML page produced by the ASP page in Example 5-2 contains HTML only; the server-side script has been
either discarded or replaced with the text that it has output.

Example 5-2. A simple ASP page

<HTML>
<HEAD><TITLE>A Simple ASP Page</TITLE></HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Private Function Greeting()
 Dim timNow
 timNow = Time
 If timNow <= CDate("12:00:00") Then
 Greeting = "Good Morning"
 ElseIf timNow <= CDate("18:00:00") Then
 Greeting = "Good Afternoon"
 Else
 Greeting = "Good Evening"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Greeting = "Good Evening"
 End If
End Function
</SCRIPT>

<%=Greeting() %>, the time is <%= Now %> on the server.<P>

</BODY>
</HTML>

Figure 5-1. HTML source produced by the ASP page in Example 5-2

Note that ASP allows you to import script or HTML from external files by using the #include server-side directive. It is
discussed in Chapter 3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Active Server Pages Object Model
Although VBScript is a powerful, flexible scripting language when used to develop ASP applications, you can do
relatively little with VBScript by itself. That is, most of the power and efficiency of ASP becomes available only when you
use VBScript to access the Active Server Pages object model. In an ASP application, each of the objects in the ASP
object model is globally available throughout your script; you don't have to do anything special to instantiate ASP
objects.

ASP includes six intrinsic objects, each of which are detailed in the following:

Application

An object whose collections and property values are shared across all instances of the application. (An ASP
application, once again, is the entire set of files that can be accessed in a virtual directory and its
subdirectories.) The Application object supports the members listing in Table 5-1.

Table 5-1. Members of the Application object
Name Description

Contents
Collection Contains all application-scoped variables and objects added by script.

Lock Method Locks the Contents collection, preventing other instances from accessing it until it is
unlocked. Its syntax is Application.Lock().

OnEnd Event Fired when the last user session ends.

OnStart Event Fired when the first user session starts.

StaticObjects
Collection Contains all application-scoped variables added by the <OBJECT> tag.

Unlock Method Unlocks the Contents collection so that other instances can access it. Its syntax is
Application.Unlock().

The Contents and StaticObjects collections have the members shown in Table 5-2.

Table 5-2. Members of the Application object's Contents collections
Name Description

Count
Property Indicates the number of members in the collection.

Item
Property

Retrieves a member by its ordinal position in the collection or its name. Its syntax is
oCollec.Item(index) where index is the one-based position of the member in the collection or its
name.

Key
Property

Returns the name of a particular element in the collection that's found at a specified ordinal
position. Its syntax is oCollec.Key(index) where index is the one-based position of the member in
the collection.

Remove
Method

Removes a designated member from the Contents collection; it is not supported for the
StaticObjects collection. Its syntax is oCollec.Key(index) where index is the one-based position of
the member in the collection or its name. Available in IIS 5.0 only.

RemoveAll
Method

Removes all the members from the Contents collection; it is not supported for the StaticObjects
collection. Available in IIS 5.0 only.

ObjectContext

An object that provides transactional support to scripts. TheObjectContext object supports the members listed
in Table 5-3 from a scripted page.

Table 5-3. Members of the ObjectContext object
Name Description

OnTransactionAbort
Event Fired when a transaction is aborted.

OnTransactionCommit
Event Fired when a transaction is committed.

SetAbort Method Indicates the transaction cannot complete and changes should be rolled back. Its
syntax is ObjectContext.SetAbort().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SetComplete Method

Indicates that from the viewpoint of the script, the transaction has completed
successfully. If all other components participating in the transaction also call
SetComplete, the transaction can be committed. Its syntax is
ObjectContext.SetComplete().

Request

Gives you access to the client's HTTP request header and body, as well as to some information about the server
handling the request. The members of the Request object are listed in Table 5-4. All collections are read-only.
TheRequest object also maintains a sort of "super-collection" that allows you to search for any members of the
QueryString, Form, Cookies, ClientCertificate, and ServerVariables collections using the syntax:

vValue = Request("name")

Table 5-4. Members of the Request object
Name Description

BinaryRead
Method

Returns a SAFEARRAY structure containing data retrieved from the client. This method is
primarily for C/C++ programmers.

ClientCertificate
Collection

Contains the fields stored in the client certificate that is sent in the HTTP request, if there
is one.

Cookies Collection Contains the cookies sent in the HTTP request.

Form Collection Contains form elements sent in the HTTP request body.

QueryString
Collection Contains the values of variables sent in the HTTP query string.

ServerVariables
Collection Contains predefined environment variables and their values.

TotalBytes
Property

Indicates the total number of bytes sent by the client in the body of the request; read-
only.

The collections of the Request object support the members shown in Table 5-5.

Table 5-5. Members of the Request object's collections
Name Description

Count
Property

A read-only property that returns the total number of members in the collection. The property is
not available for the ClientCertificate collection, whose members are predefined.

Item
Property

A read-only property that returns the value of a specific element in the collection. Its syntax is
oCollec.Item(Index) where Index can be either the one-based ordinal position of the item in the
collection or its key.

Key
Property

A read-only property that returns the name or key value of a specific element in the collection. Its
syntax is oCollec.Item(Index) where Index is the one-based ordinal position in the collection of the key
whose name you want to retrieve.

Retrieving and then outputting raw user input from the Request object's Form and
QueryString collections leaves a site open to cross-site security scripting attacks.
For details on what these security holes are and how to avoid them, see an article
written by Michael Howard at http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dncode/html/secure07152002.asp.

Response

Allows you to control the output sent back to the requestor. TheResponse object's members are shown in Table
5-6.

Table 5-6. Members of the Response object
Name Description

AddHeader
Method

Adds a custom HTTP response header and its corresponding value to the HTTP output
stream. Its syntax is Response.AddHeader strName, strValue where strName is the name of the
response header and strValue is its value.

AppendToLog
Method

Adds a string to the server's log entry for the current client request. Its syntax is
Response.AppendToLog strLogEntry where strLogEntry is a string of up to 80 characters without
commas that will be appended to the log.

BinaryWrite
Method

Writes information directly to the response body without any character conversion. Its
syntax is Request.BinaryWrite arbyteData where arbyteData is an array containing the binary
bytes to be written.

Determines whether script output is included in the HTML stream all at once (Buffer = True)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Buffer Property Determines whether script output is included in the HTML stream all at once (Buffer = True)
or a line at a time (Buffer = False).

CacheControl
Property

A string value that determines whether proxy servers serving your pages can cache your
page. If set to "Public," pages can be cached; if set to "Private," pages cannot be cached.

Charset Property Specifies a character set for the HTTP response content. The default character set is ISO-
LATIN.

Clear Method
Clears any part of the response body that's been written to the output buffer. Its syntax is
Response.Clear. The use of this method requires that the Buffer property of the Response
object be set to True.

ContentType
Property

Defines the value of the Content-Type in the HTTP response header, which determines the
type of data sent in the response body. The default value of the ContentType property is
"Text/HTML."

Cookies
Collection

Defines or accesses cookies to be written to the client machine. It has the same members
as the Cookies collection of the Request object, except the Item property can be used to
add a cookie to the collection as well as to retrieve an existing cookie.

End Method Closes the output buffer, sends its contents to the client, and stops the web server from
processing additional code. Its syntax is Response.End.

Expires Property Specifies the number of minutes that the client may cache the current page.

ExpiresAbsolute
Property

Provides a date and time after which the content of the current page should no longer be
cached by the client.

Flush Method Immediately sends all content in the output buffer to the client. Its syntax is
Response.Flush.

IsClientConnected
Property

A read-only property that indicates whether the client is still connected to the server (its
value is True) or not (its value is False).

PICS Property Provides a PICS (Platform for Internet Content Selection) label to the HTTP response
header.

Redirect Method Redirects the client's request to another URL. Its syntax is Response.Redirect strURL where
strURL is the URL of the resource to which the client will be redirected.

Status Property Defines the HTTP status line that is returned to the client. Its default value is "200 OK."

Write Method Writes information directly to the HTTP response body. Its syntax is Response.Write strData
where strData is the data to be written to the output stream.

Server

Provides miscellaneous functionality, including the ability to instantiate ActiveX components and to get any
information from the server necessary for properly handling your application. TheServer object has the
members listed in Table 5-7.

Table 5-7. Members of the Server object
Name Description

CreateObject
Method

Instantiates an object on the server. Its syntax is Set obj = Server.CreateObject(strProgID) where
strProgID is the programmatic identifier of the object to be instantiated, as defined in the
system registry.

You should use the Server object's CreateObject method to instantiate an external component
(like ADO, CDO, or one of the custom components included with IIS) rather than calling the
VBScript CreateObject function.

Execute
Method

Calls an .asp file and processes it as if it were part of the calling script. Its syntax is
Server.Execute strPath where strPath is the location of the .asp file to execute. Available with IIS
5.0 and later.

Returns an ASPError object providing information about the last error. Its syntax is
Server.GetLastError(). The method (as well as the ASPError object) is new to IIS 5.0.

The ASPError object itself has the following members:

ASPCode

Returns the error code generated by IIS.

ASPDescription

For ASP-related errors, returns a longer description of the error than that provided by
the Description property.

Category

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetLastError
Method

Category

Returns a string indicating whether the source of the error was IIS, the scripting
language, or a component.

Column

Indicates the column within the .asp file that generated the error.

Description

Returns a short description of the error.

File

Returns the name of the .asp file that was being processed when the error occurred.

Line

Indicates the line within the .asp file that generated the error.

Number

Returns a standard COM error code.

Source

If available, returns the source code on the line containing the error.

HTMLEncode
Method

Sends the actual HTML source to the output stream. Its syntax is Server.HTMLEncode
strHTMLString where strHTMLString is the string whose HTML code is to be displayed on the
client.

MapPath
Method

Returns the physical path on the server that corresponds to a virtual or relative path. Its
syntax is Server.MapPath strPath where strPath is a complete virtual path or a path relative to the
current script's directory.

ScriptTimeout
Property

Defines the maximum number of seconds that the web server will continue processing a
script. Its default value is 90 seconds.

Transfer
Method

Sends all of the information available to one .asp file—its Application and Session objects and
variables as well as all information from the client request—to a second .asp file for
processing. Its syntax is Server.Transfer strPath where strPath is the path and name of the .asp
file to which control is to be transferred. New to IIS 5.0.

URLEncode
Method

Applies URL encoding to a string so that it can be sent as a query string. Its syntax is
Server.URLEncode strURL where strURL is the string to be encoded.

Session

A Session is created for every visitor to your web site. You can use this object to store Session-specific
information and to retain "state" throughout the client session. The Session object has the members listed in
Table 5-8.

Table 5-8. Members of the Session object
Name Description

Abandon
Method

Releases the memory used by the web server to maintain information about a given user
session. Its syntax is Session.Abandon.

CodePage
Property

Sets or retrieves the code page that the web server uses to display content in the current
page.

Contents
Collection Contains all session-scoped variables and objects added by script.

LCID
Property Sets or returns a valid local identifier that the web server uses to display content to the client.

OnEnd Event Fired when the user session ends.

OnStart
Event Fired when the new user session starts.

SessionID
Property A read-only value of type Long that uniquely identifies each current user session.

StaticObjects
Collection Contains all session-scoped variables and objects added by the <OBJECT> tag.

TimeOut
Property

A Long that defines the number of minutes the web server will maintain a user's session
without the user requesting or refreshing a page. Its default value is 20 minutes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Session object's Contents and StaticObjects collections have the members listed in Table 5-9.

Table 5-9. Members of the Session objects Contents and StaticObjects
collections

Name Description

Count
Property Indicates the number of members in the collection.

Item
Property

Retrieves a member by its ordinal position in the collection or its name. Its syntax is
oCollec.Item(index) where index is the one-based position of the member in the collection or its
name.

Key
Property

Returns the name of a particular element in the collection that's found at a specified ordinal
position. Its syntax is oCollec.Key(index) where index is the one-based position of the member in
the collection.

Remove
Method

Removes a designated member from the Contents collection; it is not supported for the
StaticObjects collection. Its syntax is oCollec.Key(index) where index is the one-based position of
the member in the collection or its name. Available in IIS 5.0 only.

RemoveAll
Method

Removes all the members from the Contents collection; it is not supported for the StaticObjects
collection. Available in IIS 5.0 only.

For more detailed information about the ASP Object Model, refer to ASP in a Nutshell, Second Edition, by A. Keyton
Weissinger (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Programming Outlook Forms
Until the release of Microsoft Office 2000, Microsoft Outlook was clearly an idiosyncratic member of the Office suite.
First released in Office 97 and later released in an interim version as Outlook 98, Outlook was the sole member of the
Office family to feature VBScript as its programming language. Outlook 2000 finally added support forVBA and for the
VBA-integrated development environment. However, in Outlook 2000 and Outlook 2002, VBScript remains as the
programming language behind Outlook's custom forms.

Designing and programming Outlook forms is a large topic that has been the sole focus of a number of books, most
notablyBuilding Applications with Microsoft Outlook, published by Microsoft Press and available in various editions
covering different versions of Outlook. Our focus in this chapter will not be on designing, creating, or modifying Outlook
forms, but rather on programming those forms with VBScript.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Why Program Outlook Forms?
As a general purpose personal information management system (or PIM), Microsoft Outlook includes most of the
general features that an individual or a group must perform, including such tasks as reading, sending, and organizing
email, scheduling meetings, keeping notes, and maintaining a contacts list. The emphasis here, though, is on general;
Outlook offers the basic set of features that most users require. In order to make Outlook capable of addressing the
particular needs of individual users or groups of users, Microsoft added a number of customization and extensibility
features to the product. These include Outlook's programmability (at an application level using VBA or a forms level
using VBScript) and the ability to create custom forms.

By attaching VBScript code to either existing forms or new forms, you can modify the appearance or the behavior of the
form, thus making it suitable for special applications. For example, you can:

Change the recipient of an email message based on the content of the message to which you are replying

Display or hide particular elements of a form depending on the attributes or content of a message, an
appointment, or a contact

Automatically store an item in a nondefault folder based on the item's attributes or content

Get at data in some other document—like a Word document or an Excel spreadsheet—to include as your form's
data

Manipulate data stored in Outlook to summarize or display in an Outlook form

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 The Form-Based Development Environment
Although this chapter will discuss attaching code to Outlook forms, rather than creating and modifying Outlook forms
themselves, we'll begin by looking at how the Outlook object model views the Outlook user interface and by briefly
examining how you access and work with Outlook forms in design mode; both topics provide background that is
necessary in order to begin coding. Then we'll look at Outlook's rather primitive VBScript environment.

6.2.1 Interfaces and Objects

Figure 6-1 shows a more-or-less standard Outlook window with Outlook displaying a mail folder. The Outlook window is
divided into three parts, which correspond to four elements of the Outlook object model.

Figure 6-1. The Microsoft Outlook interface

The Folder List

On the left of the Outlook window is the Folder List. In the Outlook object model, this corresponds to the
NameSpace object, which has a Folders collection in which each Folder object represents a folder in the MAPI
store.

The Explorer

On the upper right of the Outlook window is theExplorer pane. (The term "Explorer" here is unrelated to
Windows Explorer, the utility for displaying the Windows namespace and filesystem.) The Explorer pane is
responsible for listing the items in the current folder. Each type of item has its ownExplorer object, which is a
member of the Explorers collection.

The Inspector

On the lower right of the Outlook window is thePreview pane. In other cases, when the entire right side of the
Outlook window is occupied by the Explorer pane, the Preview pane appears when the user selects an item in
the Explorer pane. The Preview pane is responsible for displaying the item selected in the Explorer pane and
corresponds to anInspector object in the Outlook object model. Note that the Inspector object uses an Outlook
form to present a particular view of an Outlook data item.

An item

An item is one of several different object types that hold information. Outlook items include mail messages,
appointments, and contacts. In the Outlook object model, these correspond to objects of specific kinds. For
instance, a mail message is represented by a MailItem object, while an appointment is represented by an
AppointmentItem object and a contact is represented by a ContactItem object. Table 6-1 lists the items
available in Outlook and their corresponding objects in the Outlook object model.

Table 6-1. Outlook items and their objects
Item type Outlook object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appointment AppointmentItem object

contact ContactItem object

distribution list DistListItem object

document DocumentItem object

journal entry JournalItem object

mail message MailItem object

mail nondelivery report ReportItem object

meeting MeetingItem object

note NoteItem object

post PostItem object

remote mail message RemoteItem object

task TaskItem object

task acceptance notification TaskRequestAcceptItem object

task rejection notification TaskRequestDeclineItem object

task assignment request TaskRequestItem object

task assignment update TaskRequestUpdateItem object

With this basic (and frequently nonintuitive) terminology out of the way, we return to the discussion of accessing the
environment for developing Outlook forms.

6.2.2 Outlook Form Design Mode

Outlook requires that a form be in design mode rather than in run (or display) mode before you can attach code to it.
You can select the form that you'd like to program and open it in run mode in any of the following ways:

Select File New from Outlook's main menu and choose the form type you'd like to create, modify, or code
from the available menu items (Mail Message, Appointment, etc.).

Select File New Choose Form from Outlook's main menu. Outlook opens the Choose Form dialog,
which allows you to select an existing form.

Select Tools Forms Choose Form from Outlook's main menu. Outlook opens the Choose Form dialog,
which allows you to select an existing form.

You can then place the form in design mode by selecting Tools Forms Design This Form from the form's
menu.

You can also open a form and place it in design mode in either of the following ways:

Select Tools Forms Design a Form from Outlook's main menu. Outlook opens the Design Form
dialog, which allows you to select the form you'd like to open. Outlook then opens the form you select in design
mode.

Select Tools Forms Design a Form from the menu of an Outlook form either when it is in design
mode or in run mode. Outlook opens the Design Form dialog, which prompts you for the form you'd like to
open. Outlook then opens the form in design mode.

Since Outlook's form-based development environment is somewhat idiosyncratic, let's review some of the basics of
working with Outlook forms:

You can't create a new Outlook form directly. To create a new form, you have to open an existing form, modify
it, and save it as a new form.

You can modify an existing form by simply overwriting it. However, Outlook won't permit you to overwrite forms
in the Standard Forms Library, where Outlook stores its "hardcoded" forms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the Standard Forms Library, where Outlook stores its "hardcoded" forms.

You can create or modify any type of Outlook form except for a note. Notes cannot be customized, nor are they
programmable, presumably because of their extreme simplicity.

You don't "save" a form that you've modified or created. Instead, you "publish" it by clicking on the Publish
Form button on the item's toolbar or by selecting the Tools Forms Publish Form or Tools Form

 Publish Form As option from the item's menu.

You can retrieve forms from and save forms to a variety of locations:

The Standard Forms library

These are the "out of the box" forms provided by Outlook. The library is read-only; if you modify its
forms, you have to save them elsewhere.

The Personal Forms library

These are customized forms stored in the current user's personal store (.pst) file. As a result, they are
inaccessible to other users.

The Organizational Forms library

For organizations using Microsoft Exchange, these forms are stored on the server and are accessible to
all Outlook users with access to the server and with the necessary permissions. The library is
unavailable for Outlook clients not using Microsoft Exchange.

An Outlook folder

Forms stored in Outlook folders are accessible only in that folder. If the folder is a public one, then the
form is available to all users with access to the folder. Otherwise, the form is stored in the user's .pst
file and is accessible only to him.

Outlook forms use the controls found in the MS Forms library—the same set of controls used in Microsoft Office
UserForms. The controls are displayed on the control toolbox, which becomes visible when you click on the
Control Toolbox button on a form's toolbar, or when you select Form Control Toolbox from a form's menu.

Just as in Visual Basic and in the VBA-hosted environments, you work with controls by setting their properties.
The standard properties sheet is displayed when you select Form Advanced Properties from the form's
menu. A more user-friendly Properties dialog is displayed when you select Form Properties from the
form's menu.

You can choose the data fields that your form displays by selecting them from the Field Chooser. The Field
Chooser can be made visible by clicking on the Field Chooser button on the form's toolbar or by selecting the
Form Field Chooser option from the form's menu.

6.2.3 The VBScript Environment

To write code for your form, open the VBScript editor by clicking on the View Code button on the form's toolbar or
select the View Code option from the form's Form menu. Outlook will open the VBScript editor, which is shown in Figure
6-2.

Figure 6-2. The VBScript editor

If you're familiar with the rich development environments of Visual Basic or the hosted versions of VBA, you'll recognize
the VBScript editor as an extremely poor cousin. In fact, the editor is distinctly Notepad-like, without any of the
amenities of the VBA IDE. Syntax is not checked automatically, nor are auto list members, auto quick info, or auto data
tips available. In fact, the editor does not even have an option that allows you to require variable declaration. This
feature, which is available in the VB and VBA IDEs, automatically adds an Option Explicit statement to each code module.

In keeping with its minimalist approach, the VBScript editor offers an object browser, though it lacks most of the ease-
of-use features of the Object Browser found in the VBA IDE. To open it, select Script Object Browser from the
VBScript Editor's menu. The VBScript object browser is shown in Figure 6-3. It lacks the icons that help identify

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBScript Editor's menu. The VBScript object browser is shown in Figure 6-3. It lacks the icons that help identify
elements in the VBA Object Browser. (For instance, the entries that begin "Ol" in the Classes list box are enumerations;
casual inspection might lead you to completely overlook that fact.) Nor is the VBScript object browser searchable, which
is a serious limitation. Finally, in the case of form-level events (which the object browser depicts as members of the
ItemEvents object), the prototypes displayed by the object browser in the status bar are not completely consistent with
the shells that the editor creates for them. For experienced programmers, this discrepancy will most probably go
unnoticed. For inexperienced programmers, it serves as another source of needless confusion.

Figure 6-3. The VBScript object browser

If you need to browse the Outlook object model while you're programming, it's best to use the VBA Object Browser. It's
available by opening the VBA IDE (select Tools Macro Visual Basic Editor from the Outlook menu) and
pressing F2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Running Your Code
The "hook" that allows your code to run is an event handler or an event procedure. Outlook recognizes particular
external events—like an instance of a form being opened, or the user clicking on the Send button to send a mail
message—and responds by firing an event. If a procedure exists to handle that event, its code is executed
automatically. The event procedure can in turn call other procedures or functions, which can also call other procedures
and functions, and so on.

Using VBScript, you are able to access only form-level events andcontrol-level events; events at other levels, such as
the application or even the Items collection level, cannot be trapped within the scripted environment. You can examine
a list of some of the available events in the VBScript editor by selecting Script Event Handler. The editor opens the
Insert Event Handler dialog like the one shown in Figure 6-4. If you select one of the events from the list box, the editor
automatically creates the code shell for the event procedure. For example, if you were to select the Open item (which is
fired just before a form is opened) in Figure 6-4, the editor would automatically generate the following code:

Function Item_Open()

End Function

Figure 6-4. The Insert Event Handler dialog

Note that Outlook identifies the object whose Open event is being fired as " Item." Each form represents a particular
kind of Item object—an email message, for instance, is represented by a MailItem object, while an appointment is
represented by an AppointmentItem object. In other words, "Item" generically identifies the current item in much the
same way that "Form" in Visual Basic identifies the current form. Each of the Outlook item object types listed in Table
6-1 supports the events for which the VBScript editor automatically generates a code shell.

If any arguments are passed by Outlook to your event handler, they are shown in the code shell created by the editor.
For example, if you were to select the AttachmentAdd item, the editor would generate the following code automatically:

Sub Item_AttachmentAdd(ByVal NewAttachment)

End Sub

In this case, a single argument, which is referred to as NewAttachment within the event handler, is passed by value to
the event handler; it represents the name of the file to be attached to a mail message.

Note that the editor identified the handler for the Item_Open event as a function, while it identified the handler for the
Item_AttachmentAdd event as a subroutine. The difference is significant: a subroutine (defined with the Sub keyword)
does not return a value, while a function (defined with the Function keyword) does. In the case of the Open event, the
function returns a Boolean value that, if True, indicates that the form should be opened and, if False, cancels the open
operation. So if the statement:

Item_Open = False

is executed within the function, the Item_Open event procedure will return a value of False, and Outlook will not open
the item.

Table 6-2 lists theevents that you can select from the Insert Event Handler dialog and for which you can write event
handlers. In addition, the table notes the types of items to which the event applies, lists any arguments passed to the
handler, and, in the case of functions, notes their possible return values.

Table 6-2. Events automatically recognized by the VBScript editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-2. Events automatically recognized by the VBScript editor
Event Description

AttachmentAdd

Fired when an attachment is added to an item.

Parameter: NewAttachment, a reference to an Attachment object passed by value that
represents the newly attached file.

AttachmentRead

Fired when an attachment is opened.

Parameter: ReadAttachment, a reference to an Attachment object passed by value that
represents the attachment.

BeforeAttachmentSave

Fired before an attachment is saved.

Parameter: SaveAttachment, a reference to an Attachment object passed by value that
represents the attachment to save.

BeforeCheckNames

Fired before Outlook begins to check the names in the Recipients collection, which contains
all the recipients of an item.

Return Value: If False, the default value, Outlook checks recipients' names. If set to True, the
names check is cancelled.

Close

Fired before the Inspector (the window that displays an item) associated with the item is
closed.

Return Value: If True, the default value, the Inspector is closed. If set to False, cancels the
close operation and keeps the Inspector open.

CustomAction

Fired when a custom action of an Outlook item executes.

Parameters: Action, a reference to an Action object passed by value that defines the custom
action; NewItem, a ByVal reference to the object created as a result of the custom action.

Return Value: If True (the default), allows the custom action to complete. If set to False, the
custom action is not complete.

Optional: False when the event occurs. If the event procedure sets this argument to True, the
custom action is not completed.

CustomPropertyChange

Fired when the value of a custom property is changed.

Parameter: Name, a string passed by value containing the name of the custom property
whose value was changed.

Forward

Fired when the user attempts to forward the item to one or more recipients.

Parameter: ForwardItem, a reference passed by value to the new item to be forwarded.

Return Value: If True (the default), the new item to be forwarded is displayed; if set to False,
the operation is cancelled and the item is not displayed.

Open

Fired when an Outlook item is being opened in an Inspector but before the Inspector is
displayed.

Return Value: If True (the default), the item is opened; if set to False, the Open operation is
cancelled.

PropertyChange

Fired when the value of a standard property is changed.

Parameter: Name, a string passed by value containing the name of the standard property
whose value was changed.

Read

Fired when an existing item is opened in a view that supports editing. This contrasts with the
Open event, which is fired whenever a new or an existing item is opened. The Read event is
fired before the Open event. And although the VBScript editor treats Item_Read as a
function, setting its return value cannot cancel the read operation.

Reply

Fired when the user attempts to reply to an item.

Parameter: Response, a reference passed by value to the new item to be sent in response to
the original message.

Return Value: If True (the default), the reply is displayed; if set to False, the operation is
cancelled and the new item is not displayed.

ReplyAll

Fired when the user selects the Reply All option in response to an item.

Parameter: Response, a reference passed by value to the new item to be sent in response to
the original message.

Return Value: If True (the default), the reply is displayed; if set to False, the operation is
cancelled and the new item is not displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Send

Fired when the user attempts to send an item.

Return Value: If True (the default), the item is sent; if set to False, the Send operation is
cancelled but the Inspector remains open.

Write

Fired when an item is about to be saved.

Return Value: If True (the default), the item is saved; if set to False, the save operation is
cancelled.

Inaddition to these form-level events, there is a single control event that you can trap in your code that will
automatically be executed. This is the Click event, which is fired whenever the user clicks any of the following controls:

CommandButton control
Frame control
Image control
Label control
Page tab of form
Page tab of MultiPage control

In addition, the Click event is also fired whenever the user changes the values of any of the following controls:

CheckBox control
ComboBox control
ListBox control
OptionButton control (when the value changes to True only)
ToggleButton control

The remaining standard controls (TextBox, ScrollBar, SpinButton, TabStrip, and TextBox) do not support the Click
event.

If you're accustomed to working with controls either in Visual Basic or in Microsoft Office
(or even with intrinsic elements in HTML forms), you'll be very surprised (and probably
disappointed) by an Outlook form's support only for the Click event. The diverse events
that developers have come to rely on are simply not trapped in Outlook's scripted
environment.

VBScript does not automatically create a code shell for these control or page Click events as it does for form events.
Instead, you have to create the code shell. Its general form is:

Sub ControlName_Click()

End Sub

where ControlName is the string assigned to the control's Name property.

Control References in Code
Note that if you want to reference a control incode other than in the shell of its Click event handler, you
either have to provide a complete object reference that identifies the control or instantiate an object
variable that references the control. For instance, if you wanted to populate a list box named
lstFavoriteColors with the names of some colors, you might use the following code fragment:

 ' This is a public variable so we don't have to instantiate
' it over and over
public lstFavoriteColors
' The Open event handler is executed before the form is
' opened
Function Item_Open()

set lstFavoriteColors = _
 Item.GetInspector.ModifiedFormPages("P.2").lstFavoriteColors
lstFavoriteColors.AddItem "Red"
lstFavoritecolors.AddItem "Green"
lstFavoritecolors.AddItem "Black"
lstFavoritecolors.AddItem "Pink"
0
End Function

Strangely, even if you reference the control in its own event handler, you must still retrieve a reference to
it. For example, the following click event generates a syntax error if cmdVerify is not a public variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it. For example, the following click event generates a syntax error if cmdVerify is not a public variable:

Sub cmdVerify_Click()
 If InStr(1, cmdVerify.Caption, "On") > 0 Then
 cmdVerify.Caption = "Verify: Off"
 Else
 cmdVerify.Caption = "Verify: On"
 End If
End Sub

Instead, code like the following is needed to recognize cmdVerify as a valid object:

Sub cmdVerify_Click()
 Dim cmdVerify
 Set cmdVerify = _
 Item.GetInspector.ModifiedFormPages("P.4").cmdVerify
 If InStr(1, cmdVerify.Caption, "On") > 0 Then
 cmdVerify.Caption = "Verify: Off"
 Else

 cmdVerify.Caption = "Verify: On"
 End If

End Sub

The MultiPage control is somewhat unusual in that, while the control itself does not support the Click event, its
individual pages do. (Individual pages are represented by Page objects that are contained in the Pages collection, which
in turn is returned by the MultiPage control's Pages property.) Strangely, clicks on the page proper are detected, while
clicks on the page's tab are not. The general format of a page's Click event is:

Sub PageName_Click()

End Sub

where PageName is the name of the page as defined by its Name property (and not the string that appears on the page's
tab, which is defined by its Caption property). This, of course, requires coding a separate event handler for each page
of the control.

But taking advantage of the hook that automatically runs the code on your form isn't very useful unless Outlook will
automatically load the form itself. This, however, is quite easy. Outlook loads forms on a folder-by-folder basis, with the
form to be used defined by the "When posting to this folder, use" dropdown combo box on the General tab of a folder's
Properties dialog (see Figure 6-5). The dialog is accessible by right-clicking on a folder and selecting Properties from the
popup menu.

Figure 6-5. Defining the form used to display an item

In the case of mail messages, that approach won't work, since Outlook expects that a Post message form will be used
to display messages for all mail folders. A user can be given the choice of loading some form other than the default,
however. To do this, publish the form to the folder in which you want it to be available. The user can then create a form
of that type by selecting Actions New formname from the Outlook menu.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Program Flow
As we have seen, the entry point into an Outlook program is an event handler, which is executed automatically based
on some user action or other event. Program flow proceeds sequentially through the event procedure, with branches to
all procedures and functions called by the event procedure (and of course, with branches to all procedures and
functions called by those procedures or functions, and so on).

The code behind an Outlook form is finite, and consists of the code displayed by the VBScript editor for a single form.
That is to say, Outlook forms provide no facility for importing or including additional code. Nor can thecode in one form
be called by the code in another form; the flow of program control is confined to the code behind a single Outlook form.

The code in an Outlook form itself consists of three components:

Global code

Code outside of any procedure or function. Generally, this code appears anywhere from the beginning of the
script to the script's first procedure or function. All of this code is executed when the form first loads, and before
the Item_Load event procedure (if one is present) is invoked. In Visual Basic and VBA, this is known as a
module's general declarations section, and it can contain only constant and variable declarations (such as Const,
Dim, Private, Public, and Declare statements). In Outlook, it can contain a far larger range of statements; object
assignments and access to the Outlook object model, however, tend to be problematic if their code is placed
here. All variables defined in global code, regardless of whether they are defined using the Dim, Private, or Public
keywords, are public to the script.

Code for event procedures

Event procedures, as we discussed in Section 6.3, are functions or procedures that are automatically executed
based on some event, typically one that results from some action of the user. The scope of all variables
declared in event procedures or in supporting procedures and functions is limited to that routine itself; in order
to be visible in some routine other than the one in which they are declared, they must be explicitly passed as
arguments. Finally, variables in event procedures and in supporting procedures and functions must be declared
using the Dim statement; the use of both the Public and Private keywords generates a syntax error.

Code for supporting procedures and functions

Unlike event procedures, other procedures and functions are not invoked automatically. Instead, they must be
called by an event procedure or by another supporting procedure or function when it is being executed. The
scope of variables declared in supporting procedures and functions is the same as for variables declared in
event procedures.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 The Outlook Object Model
Although VBScript allows you only to program an Outlook form, it nevertheless gives you relatively complete access to
the Outlook object model, which is shown in Figure 6-6. Since the object model is fairly large, we'll focus only on some
of its highlights here, and in particular on those objects that you are most likely to use when programming an Outlook
form.You can explore the Outlook object model by opening the object browser in the VBScript editor, or by using the
Object Browser included with the VBA-integrated development environment.

Figure 6-6. The Outlook object model

Note that when you're attempting to access the Outlook object model using VBScript, the context of your script is the
current item, which can be represented by the Item keyword. In other words, as your script is executing, the Item
object is the current object; to access other objects in the object model, you have to navigate to them from the Item
object.

This also means that a reference to the current item is assumed in any attempt to navigate the object model or access
a particular object, property, or method. For example, the code:

MsgBox Item.Application.Version

is identical to the code:

MsgBox Application.Version

This second line of code is interpreted as an attempt to retrieve the value of the Application object of the current item,
and to retrieve its Version property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and to retrieve its Version property.

If you're making extensive use of the properties and methods of other objects, your script's performance can be
enormously improved by establishing references to those objects. For example, if your script involves accessing the
object representing the form's current page, rather than having to navigate downward through the object model each
time you want to access it, you can define an object reference, as the following code does:

Dim objPage
Set objApp = Item.Application

You could then use the objApp object variable to access the controls on the page.

Although the Outlook Application object is a global object in VBA (that is, its properties and
methods can be called without prefacing them with a reference to the Application object),
this is not true of VBScript. In VBScript, you must explicitly reference the Application
object in order to access its members.

6.5.1 The Current Item

The current item that the form displays is represented by one of the item object types listed in Table 6-1. You can
determine the object type by passing a reference to it to the VBA TypeName function. For example:

strClass = TypeName(Me)

or:

strClass = TypeName(Item)

where Item is an Outlook/VBScript keyword representing the current item.

You can call the general properties and methods that are suitable for any item (see Tables Table 6-3 and Table 6-4,
respectively), as well as the properties and methods appropriate for an item of that particular type. The latter,
unfortunately, are too numerous to mention in this chapter.

Table 6-3. General item properties
Property Description

Actions[1] Returns the Actions collection, which consists of one Action object for each custom action
defined for the item.

Application Returns a reference to the Application object, Outlook's top-level object.

Attachments Returns the Attachments collection, which consists of the Attachment objects stored to the
item.

BillingInformation A read-write string intended to hold billing information associated with the item.

Body A read-write string containing the item's body text.

Categories A read-write string containing the categories assigned to the item. If multiple categories are
present, they are separated from one another by a comma and a space.

Class A read-only value represented by a member of the OlObjectClass enumeration that indicates
the item's class.

Companies A read-write string designed to contain information about the company or companies
associated with the item.

ConversationIndex Returns the index of the item's conversation thread.

ConversationTopic Returns the topic of the item's conversation thread.

CreationTime Returns the date and time that the item was created.

EntryID Returns the item's identifier, which is unique to the items in a particular folder.

FormDescription Returns a FormDescription object that describes the form used to display the item.

GetInspector Returns an Inspector object that represents the window pane that contains the item.

Importance A read-write constant of the OlImportance enumeration; indicates the item's importance.
Enumeration members: olImportanceHigh (2), olImportance Low (0), and olImportanceNormal (1).

LastModificationTime Date and time the item was last modified.

Links Returns the read-only collection of Link objects representing contacts to which the item is
linked.

MessageClass A read-write string indicating the item's message class, which links it to a particular Outlook
form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mileage A read-write string field designed to store the mileage associated with an item for purposes
of reimbursement.

NoAging A read-write Boolean that indicates whether the item should not be aged.

OutlookInternalVersion A read-only Long containing the build number of Outlook associated with the item.

OutlookVersion A read-only string containing the major and minor version of Outlook associated with the
item.

Parent Returns a reference to the item's parent object.

Saved A read-only flag that indicates whether the item has not been modified since it was last
saved.

Sensitivity A constant of the OlSensitivity enumeration (olConfidential, olNormal, olPersonal, or olPrivate) that
indicates the item's sensitivity.

Session Returns the Namespace object for the current session.

Size Returns the item's size in bytes.

Subject
A string containing the subject of the item. It is the default member of all item types. In the
case of NoteItem objects, it is read-only and is calculated from the content of the NoteItem
object's Body property.

Unread A read-write flag indicating if the item hasn't been opened.

UserProperties Returns the UserProperties collection representing all the item's user properties.

[1] Does not apply to the NoteItem object.

Table 6-4. General item methods
Method Description

Close Closes the item and its inspector and optionally saves changes. Its syntax is Item.Close(SaveMode) where
SaveMode is a constant of the OlInspectorClose enumeration (olDiscard, olPromptForSave, olSave).

Copy Creates a copy of the object. The new object is returned by the method call.

Delete Deletes the item.

Display Displays the item in a new Inspector object. Its syntax is Item.Display(Modal) where Modal is a Boolean that
indicates whether the Inspector should be modal; its default value is False.

Move Moves the item to a new folder. Its syntax is Item.Move DestFldr where DestFldr is a reference to the
MAPIFolder object to which the item should be moved.

PrintOut Prints the item using the default settings.

Save Saves the item to the current folder or, in the case of a new item, to the default folder for that type of item.

SaveAs

Saves the item to a specified location in a specified format. Its syntax is Item.SaveAs Path, [Type] where Path
is the path to the location in which the item should be saved, and the optional Type parameter is a constant
of the OlSaveAsType enumeration: olDoc, olHTML, olMSG (the default), olRTF, olTemplate, olTXT, olVCal, or
olVCard.

6.5.2 The Inspector Object

The Inspector object represents the window in which a particular Outlook item is displayed. A reference to the current
item's Inspector object is returned by its GetInspector property. The Inspector object supports the properties shown in
Table 6-5 and the methods shown in Table 6-6.

Table 6-5. Properties of the Inspector object
Property Description

Application Returns a reference to the Application object, Outlook's top-level object.

Caption A read-only string that defines the caption in the inspector's titlebar.

Class A read-only value that indicates the inspector's class. Its value is always olInspector, or 35.

CommandBars Returns a reference to the CommandBars collection, which represents all the menus and toolbars
available to the inspector.

CurrentItem Returns the current item that the inspector is displaying.

EditorType A read-only member of the OlEditorType enumeration: olEditorHTML (2), olEditorRTF (3), olEditorText
(1), or olEditorWord (4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EditorType (1), or olEditorWord (4).

Height A read-write value that determines the height in pixels of the inspector window.

HTMLEditor
Returns the HTML Document Object Model of the displayed message. This property is valid only
if the value of EditorType is olEditorHTML. In addition, since the object reference returned by this
property is temporary, it should not be stored for later use.

Left A read-write value that determines the distance in pixels between the left edge of the screen and
the left edge of the inspector window.

ModifiedFormPages Returns the Pages collection, which consists of the pages of the current form.

Parent Returns a reference to the inspector's parent object, which is the Outlook Application object.

Session Returns the NameSpace object for the current session.

Top A read-write value that determines the distance in pixels between the top edge of the screen and
the top edge of the inspector window.

Width A read-write value that determines the width in pixels of the inspector window.

WindowState A read-write constant of the OlWindowState enumeration (olMaximized, 1; olMinimized, 2;
olNormal, 3) that determines the state of the inspector's window.

WordEditor
Returns the Word Document Object Model of the displayed message. This property is valid only if
the value of EditorType is olEditorWord. In addition, since the object reference returned by this
property is temporary, it should not be stored for later use.

Table 6-6. Methods of the Inspector object
Method Description

Activate Brings the inspector window to the foreground and gives it the focus.

Close
Closes the inspector window and optionally saves changes to the current item. Its syntax is
oInspector.Close(SaveMode) where SaveMode is a constant of the OlInspectorClose enumeration
(olDiscard, olPromptForSave, or olSave).

Display Displays a new Inspector object for the item. Its syntax is Inspector.Display(Modal) where Modal is
a Boolean that indicates whether the Inspector should be modal; its default value is False.

HideFormPage Hides a page of the form displayed in the inspector. Its syntax is oInspector.HideFormPage
PageName where PageName is a string that designates the name of the page to be hidden.

IsWordMail
Returns a Boolean that specifies whether the mail message associated with an inspector is
displayed in an inspector or in Microsoft Word. If True, the value of the inspector's EditorType
property is olEditorWord.

SetCurrentFormPage Displays a particular page of the current form. Its syntax is oInspector.SetCurrentFormPage
PageName where PageName is the name of the page to be displayed.

ShowFormPage Shows a form page in the inspector. Its syntax is oInspector.ShowFormPage PageName where
PageName is a string containing the name of the page to be shown.

6.5.3 The Pages Collection

The Pages collection represents the pages in the form that you want to access in order to customize. The Pages
collection is returned by theModifiedFormPages property of the Inspector object. Initially, the Pages collection is empty.
Individual form pages are added to the collection either explicitly, by calling the collection's Add method, or implicitly,
by referencing a control on one of the forms.

The Pages collection supports the properties shown in Table 6-7 and the methods listed in Table 6-8.

Table 6-7. Properties of the Pages collection
Property Description

Application Returns a reference to the Application object, Outlook's top-level object.

Class A read-only value that indicates the page's class. Its value is always olPages, or 36.

Count A read-only value that indicates the number of pages in the Pages collection.

Parent Returns a reference to the collection's parent object, which is the Inspector object in which the form is
displayed.

Session Returns the NameSpace object for the current session.

Table 6-8. Methods of the Pages collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-8. Methods of the Pages collection
Method Description

Add
Adds a new page to the Pages collection. Its syntax is oPages.Add Name where Name is the name of the page
to be added. The method returns a reference to the added page. Initially, the pages collection is empty, and
there is a limit of five customizable pages per form.

Item Retrieves an individual page from the Pages collection. Its syntax is oPages.Item Index where Index is either
the one-based ordinal position of the page in the Pages collection or the name of the page.

Remove Removes a page from the collection. Its syntax is oPages.Remove Index where Index is the one-based ordinal
position of the page in the Pages colletion.

6.5.4 The FormDescription Object

The FormDescription object represents the form used to display a particular item in an inspector. It is returned by the
current item'sFormDescription property. The FormDescription object has 22 properties (shown in Table 6-9) and a
single method (shown in Table 6-10).

Table 6-9. Properties of the FormDescription object
Property Description

Application Returns a reference to the Application object, Outlook's top-level object.

Category The category assigned to the form description. It corresponds to the Category drop-down list box on
the form's Properties page in design mode.

CategorySub The subcategory assigned to the form description. It corresponds to the Sub-Category dropdown list
box on the form's Properties page in design mode.

Class A read-only value that indicates the form description's class. Its value is always olFormDescription, or
37.

Comment Sets or returns the comment associated with the form description. It corresponds to the Description
text box on the form's Properties page in design mode.

ContactName Sets or returns the name of the person to contact for information regarding the custom form. It
corresponds to the Contact text box on the form's Properties page in design mode.

DisplayName Defines the text that will be used to name the form in the Choose Forms dialog. Setting the
DisplayName property also sets the Name property if it is empty (and vice versa).

Hidden

Determines whether a custom form is hidden (i.e., it does not appear in the Choose Form dialog box
and is used only if designated as the response form for another custom form). Its default value is
False; custom forms are not hidden. This property corresponds to the "Use form only for responses"
checkbox on the form's Properties page in design mode.

Icon Contains the name of the icon file to be displayed for the form. By default, its value is a temporary
icon file generated by Outlook and placed in the Windows temporary directory.

Locked Determines whether the form is read-only. Its default value is False; the form is read-write. It
corresponds to the "Protect form design" checkbox on the form's Properties page in design mode.

MessageClass The form's message class, which links the form to the type of items it can display.

MiniIcon Contains the name of the icon file to be displayed for the form. By default, its value is a temporary
icon file generated by Outlook and placed in the Windows temporary directory.

Name The name of the form. This property must be set before calling the PublishForm method.

Number Defines the number for the form. It corresponds to the Form Number text box on the form's
Properties page in design mode.

OneOff Determines whether the form is discarded after one-time use (True) or retained as a custom form
(False). Its default value is False.

Parent Returns a reference to the form's parent object, which is the item that the form displays.

Password Sets or returns the password needed to modify the form. It is retrievable programmatically as clear
text.

ScriptText Returns a string containing all the VBScript code attached to the form.

Session Returns the NameSpace object for the current session.

Template Sets or returns the name of the Word template (*.dot file) for use with the form.

UseWordMail A Boolean that determines whether Microsoft Word is the default editor for the form.

Version Returns or sets the version number. It corresponds to the Version text box on the form's Properties
page in design mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-10. Method of the FormDescription object
Method Description

PublishForm

Saves the form definition. Its syntax is oFormDescription.PublishForm(Registry,[Folder]) where Registry
determines the location to which the form should be saved and can be olDefaultRegistry (0),
olFolderRegistry (3), olOrganizationRegistry (4), or olPersonalRegistry (2). If Registry is olFolderRegistry, Folder is
a reference to a MAPIFolder object that defines the folder to which the form will be published.

6.5.5 The NameSpace Object

The NameSpace object represents the root object for accessing Outlook data. In other words, from an Outlook form,
the NameSpace object is important because it gives access to the MAPIFolder objects that comprise Outlook's folder
system.

The NameSpace object is returned by theGetNameSpace ("MAPI") method of the Application object. It has the
properties shown in Table 6-11 and the methods listed in Table 6-12.

Table 6-11. Properties of the NameSpace object
Property Description

AddressLists Returns a collection of address lists available for the session.

Application Returns a reference to the Application object, Outlook's top-level object.

Class A read-only value that indicates the NameSpace object's class. Its value is always olNamespace, or 1.

CurrentUser Returns a Recipient object representing the currently logged in user.

Folders Returns the Folders collection, which represents all the Folder objects contained in the NameSpace.

Parent Returns a reference to the namespace's parent object, which is the Application object.

Session Returns the NameSpace object for the current session.

SyncObjects Returns a collection containing all synchronization profiles.

Type Returns the string "MAPI" to indicate the type of the NameSpace object.

Table 6-12. Methods of the NameSpace object
Method Description

AddStore Adds a personal folder file (.pst) to the current profile. Its syntax is oNameSpace.AddStore
Store where Store is the path and name of the .pst file.

CreateRecipient Creates and returns a Recipient object. Its syntax is oNameSpace.CreateRecipient RecipientName
where RecipientName is the display name of the recipient.

GetDefaultFolder

Returns a MAPIFolder object that represents the default folder of a particular type. Its
syntax is oNameSpace.GetDefaultFolder FolderTypeEnum where FolderTypeEnum is a member of
the OlDefaultFolders enumeration: olFolderCalendar (9). oFolderContacts (10), oFolderDeletedItems
(3), oFolderDrafts (16), oFolderInbox (6), oFolderJournal (11), oFolderNotes (12), oFolderOutbox
(4), oFolderSentMail (5), oFolderTasks (13).

GetFolderFromID

Returns the MAPIFolder object that has a particular ID. Its syntax is
oNamespace.GetFolderFromID(EntryIDFolder, [StoreID]) where EntryIDFolder is a string containing
the folder's entry ID, and StoreID is an optional string containing the folder's store ID. These
values are accessible through MAPI and CDO.

GetItemFromID

Returns the item in a folder that has a particular ID. Its syntax is
oNameSpace.GetItemFromID(EntryIDItem, [StoreID]) where EntryIDItem is a string containing
the item's entry ID, and StoreID is an optional string containing the item's store ID. These
values are readily accessible through MAPI and CDO.

GetRecipientFromID
Returns a Recipient object that has a particular ID. Its syntax is
oNameSpace.GetRecipientFromID(EntryID) where EntryID is a string containing the recipient's
entry ID. This value is readily accessible through MAPI and CDO.

GetSharedDefaultFolder

Returns the MAPIFolder object that represents a particular type
of default folder for a specified user. This method is most
useful when one user has given another user access to one or
more default folders. Its syntax is:
 oNameSpace.GetSharedDefaultFolder(RecipientObject, FolderTypeEnum)
where RecipientObject is a Recipient object representing the
owner of the folder, and FolderTypeEnum is a constant from the
OlDefaultFolder enumeration (see the GetDefaultFolder method for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OlDefaultFolder enumeration (see the GetDefaultFolder method for
a list of its members).

Logoff Logs the user off from the current MAPI session.

Logon

Logs the user onto MAPI and begins a MAPI session. Its syntax is oNameSpace.Logon [Profile]
[Password], [ShowDialog], [NewSession] where Profile is the name of the profile to use for the
session, Password is an optional (and usually omitted) string containing the password
associated with the profile, ShowDialog is an optional Boolean that indicates whether the
MAPI logon dialog should be displayed if Profile is incorrect or unavailable, and NewSession is
an optional Boolean that determines whether a new session should be created even if there
is an existing session. (Within Outlook, however, multiple sessions are not supported.)

PickFolder Displays the Pick Folder dialog and returns the MAPIFolder object representing the folder
selected by the user. If the user cancels the dialog, the method returns Nothing.

6.5.6 The MAPIFolder Object

Given a reference to a MAPIFolder object, you can begin to programmatically manipulate the items that the folder
contains. MAPIFolder objects are returned by the NameSpace object's Folders property, as well as by
itsGetDefaultFolder,GetSharedDefaultFolder, and PickFolder methods.

The properties of the MAPIFolder object are shown in Table 6-13, while its methods appear in Table 6-14.

Table 6-13. Properties of the MAPIFolder object
Property Description

Application Returns a reference to the Application object, Outlook's top-level object.

Class A read-only value that indicates the NameSpace object's class. Its value is always olFolder,
or 2.

DefaultItemType
Returns the default Outlook item type that the folder stores. It can be one of the following
OlItemType constants: olAppointmentItem (1), olContactItem (2), olJournalItem (4), olMailItem
(0), olNoteItem (5), olPostItem (6), or olTaskItem (3).

DefaultMessageClass A read-only string containing the default message class of items in the folder.

Description A read-write string containing the folder's description. It corresponds to the Description
text box in the folder's Properties dialog.

EntryID Returns the folder's unique entry ID that was assigned by MAPI when the folder was
created.

Folders Returns the Folders collection, which contains one Folder object for each subfolder in the
current folder.

Items Returns the collection of items in the folder.

Name The name of the folder.

Parent Returns a reference to the folder's parent object, which is either the MAPI NameSpace
object or a MAPIFolder object.

Session Returns the NameSpace object for the current session.

StoreID Returns or sets the folder's StoreID.

UnReadItemCount A read-only value; indicates the number of unread items.

WebViewAllowNavigation A Boolean that determines whether the user can navigate using the Back and Forward
buttons.

WebViewOn A Boolean that determines whether Outlook displays the web page specified by the
WebViewURL property.

WebViewURL A string containing the web page assigned to the folder.

Table 6-14. Methods of the MAPIFolder object
Method Description

CopyTo Copies the current folder. Its syntax is oFolder.CopyTo(DestFldr) where DestFldr is a MAPIFolder object
representing the destination folder.

Delete Deletes the folder.

Display Displays a new Explorer object for the folder.

Returns a new inactive Explorer object in which the current folder is the folder whose GetExplorer
method is called. The method is useful for creating a new Explorer object to display a folder rather than

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetExplorer
method is called. The method is useful for creating a new Explorer object to display a folder rather than
changing the folder displayed in the active Explorer. Its syntax is GetExplorer([DisplayMode])where
DisplayMode is an optional constant of the OlFolderDisplayMode enumeration; its members are
olFolderDisplayFolderOnly (1), olFolderNoNavigation (2), or olFolderDisplayNormal (0, the default).

MoveTo Moves the current folder.

6.5.7 Outlook Constants

The object model for Outlook 2000 defines 275 constants in 49 different enumerations. Unfortunately, though they are
available to Outlook VBA, they are not available to VBScript. If you want to use the constants defined in Outlook's type
library, you'll need to define them yourself using the Const statement. In addition, however, VBScript does not support
the Enum statement, which allows you to define a group of constants. So you'll have to define each constant separately,
as in the following code, which makes the members of the OlInpectorClose enumeration available to a script:

Const olDiscard = 1
Const olPromptForSave = 2
Const olSave = 0

In general, it's best to define all constants with global scope, which makes them available everywhere in your script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.6 Accessing Other Object Models
Although most of the programming done with Outlook forms is likely to involve the Outlook object model, there may be
times when you want to access data from some other application or draw on some system service provided by a
particular object model. The VBScript CreateObject function is used for this purpose to access the object model of some
other application, while the VBScript GetObject function is the only means available to get a reference to an existing
instance of an application—that is, to a running application. (For the syntax of both functions, see their entries in
Chapter 10.)

The GetObject function exists solely within VBScript, and is not implemented as a method
of the Outlook Application object.

As Table 6-15 shows, you can instantiate objects like the following using these methods:

ActiveX Data Objects (ADO)

ADO is a data access technology that offers a uniform methodology for accessing data regardless of location or
format. ADO has a relatively "flat" object model, and many objects (like the Recordset object or the Connection
object) can be instantiated independently of one another.

Data Access Objects (DAO)

DAO is a data access technology intended primarily for use with Access databases. Its top-level object is named
DBEngine.

The Dictionary object

A part of the Scripting Runtime Library, theDictionary object provides high-performance access to data sets that
have identifiable keys.

The Excel Application object

The Excel object model is useful for extracting data from spreadsheets or for manipulating charts. Its top-level
object is the Application object.

The FileSystemObject object

A part of the Scripting Runtime Library, the FileSystemObject provides access to the local filesystem.

The Word Application object

The Word object model makes it easy to manipulate Word .doc files as well as Rich Text Format (.rtf) files. Its
top-level object is the Application object.

Table 6-15. Some object models and their programmatic identifiers
Object ProgID Description

Connection ADODB.Connection An ADO database connection

DBEngine DAO.DBEngine The DAO object model, primarily for Access databases

Dictionary Scripting.Dictionary A high-performance alternative to arrays and collections for keyed data

Excel Excel.Application The Microsoft Excel application, for manipulating spreadsheets and charts

FileSystemObject Scripting.FileSystemObject Represents the local filesystem

Recordset ADODB.Recordset An ADO recordset

Word Word.Application The Microsoft Word application for manipulating documents

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Windows Script Host 5.6
Windows Script Host (WSH) is designed to eliminate one of the major limitations of theWin32 platform: it has no real
batch or macro language that allows common processes (such as creating shortcuts, writing to and reading from the
registry, or getting information on the filesystem) to be automated. Windows' predecessor, the character-based DOS
operating system, for instance, included the DOS batch language. And Windows 3.0 included the idiosyncratic and
unsuccessful Recorder, which allowed the user to "record" keystrokes and mouse clicks and later repeat them.

When you execute a WSH script, WSH usesWScript.exe as the runtime engine for scripts that run within the Windows
environment andCScript.exe as the runtime engine for scripts that execute within a Command Prompt window. WSH is
language-independent; it can be used with any language with a Windows Script-compatible script engine. The language
most commonly used to write WSH scripts, however, is VBScript.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 Why Use WSH?
WSH exposes a relatively small but very significant portion of the functionality of the 32-bit Windows family of operating
systems. In addition, WSH allows you to tap into other object models (such as the FileSystemObject object model
provided by the Scripting Runtime library) that allow you to access additional features of either the operating system or
individual applications.

The advantage of any script is that it allows repetitive tasks—including complex ones that require multiple steps—to be
performed more or less automatically. This makes scripting suitable for batch operations—that is, for repetitive
operations that do not require user intervention. In addition, if you are writing your scripts in VBScript, you can allow
user interaction through the standard VBScript InputBox andMsgBox functions, as well as by instantiating components
that support more sophisticated forms of interaction. Support for user interaction enhances the scripting environment's
flexibility and increases the range of applications for which it is suitable.

Although the flexibility and power of WSH means that its actual uses are limited only by the imagination, we can
nevertheless identify some areas in which WSH clearly excels:

Access to network resources

Although Windows makes automatic (and therefore more or less permanent) access to network resources at
logon very easy, transitory access to network resources is not. WSH can be used to connect to network drives
and printers for a short period, perform some operation, and then disconnect from the network resource.

System administration

A single script that is run locally on the user's machine or that is run from the system administrator's system
and iterates network systems can enormously facilitate the tasks of administering a networked system.

Simple installation scripts

If your installation routine needs merely to check available disk space, determine whether any files are likely to
be overwritten, copy some files, and add some registry settings, writing a WSH script can be as effective as a
professional installation program while involving much less overhead.

File operations

By instantiating the FileSystemObject object, you can gain access to the local computer's filesystem, including
attached network drives. This allows you to perform repetitivefile operations, as well as to determine the status,
capability, and storage space available on individual drives.

Software automation

Using WSH and VBScript, you can access the object model of an application program or a system service to
perform some repetitive operation. For instance, you might use CDO to send a batch of emails with Microsoft
Outlook, use Microsoft Word and Access to print mailing labels, or use Microsoft Excel to update monthly sales
data and print the results in chart form.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Running WSH Scripts
Typically, WSH scripts have a file extension of .vbs (if they are written in VBScript) or.wsf (a Windows Script File, which
contains XML elements along with script written in a language defined by the XML <script> tag), both of which are
associated with the Windows Script Host executable in the registry. This allows the user to simply double-click on the
file in an Explorer window in order to execute the script. If the script is a .wsf file containing multiple jobs, only the
executable script in the first job (which must be delimited by the <job>...</job> tags) is executed.

It is also possible to run a script from the command line by using the syntax:

CScript.exe filename [//options] [/arguments]

or from the Run dialog or a Windows shortcut by using the syntax:

WScript.exe [//options] [/arguments]

where //options is one or more of the WSH features shown in Table 7-1, each of which must be preceded by double
slashes.

Table 7-1. WSH options switches
Switch Description

//B Batch mode (prevents script errors and user interface elements such as those produced by the MsgBox
and InputBox functions from displaying).

//D Enables debugging. Automatically launches the debugger if an unhandled exception occurs.

//E:engine Uses engine (which can be either Jscript or VBScript) for executing script. The switch is useful if your script is
in a file, such as a .txt file, whose extension does not indicate the scripting language.

//H:cscript Changes the default script host to CScript.exe.

//H:wscript Changes the default script host to WScript.exe; this is the default value and the opposite of //H:cscript. You
have to be an administrator to change the default.

//I Interactive mode; this is the default and the opposite of //B.

//Job:xxxx Allows a single job (delimited by the <job>...</job> statements) to be run from a file containing multiple
jobs.

//Logo Displays an opening banner; this applies to onlyCScript.exe and is the default switch.

//Nologo The opposite of //Logo, it suppresses the opening banner; applies to CScript.exe only.

//S Saves the current command-line options for the current user.

//T:nn Time out in seconds; maximum time a script is permitted to run before the scripting engine automatically
terminates it.

//U Generates Unicode command-line output on Windows NT and Windows 2000 systems.

//X Launches the debugger and executes the script in it.

//? Displays help information on command-line options.

Finally, scripts can be launched from an Explorer window or as shortcuts on the desktop by dragging and dropping files
onto them. In this case, each of the dropped files is passed as a command-line parameter to the script and can be
retrieved from its WshArguments collection (see Section 7.4.2 later in this chapter).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Program Flow
WSH supports two kinds of script files: simple script files, which were supported by WSH 1.0 and are suitable for simple
scripting applications; and script files with XML, which are more structured, far more powerful, and have a number of
features of interest to more advanced programmers. In this section, we'll examine how both types of script files can be
used.

7.3.1 Simple Script Files

Simple script files written in VBScript usually have a .vbs extension and contain only VBScript language elements, along
with references to the properties, methods, and events belonging to objects instantiated by the script. XML tags are not
permitted within simple script files.

The program entry point of a simple script is the global area at the top of the file, and program execution terminates
after the last line of code that is not contained within a function or a procedure has executed. This is illustrated by the
simple script in Example 7-1. Program flow begins with the Dim statement on the first line and ends with the MsgBox
function call on the fourth line. The fourth line also causes the AddTwo user-defined function to be executed before the
MsgBox function. The MultTwo function is never executed, since it is not explicitly called by the first four lines of code.

Example 7-1. Program flow in a simple WSH script

Dim iVar1, iVar2

iVar1 = 1
iVar2 = 2
MsgBox AddTwo(iVar1, iVar2)

' Multiplies two numbers
Function MultTwo(var1, var2)
 MultTwo = var1 * var2
End Function

' Adds two numbers
Function AddTwo(var1, var2)
 AddTwo = var1 + var2
End Function

This top-down flow of control in WSH scripts has a very important implication: all variables defined outside of
subroutines in a script file are global variables; that is, they are globally available to all of the routines stored in the file.
To see what this means, let's take a look at the code in Example 7-2. The variable fs, which represents a
FileSystemObject object, is automatically visible to the ShowStorage routine; it does not have to be passed as a
parameter in order to be visible to the routine.

Example 7-2. WSH global variables

Dim fs
Set fs = CreateObject("Scripting.FileSystemObject")

ShowStorage

Public Sub ShowStorage()
 Dim strMsg, dr

 For Each dr In fs.Drives
 strMsg = strMsg & dr.DriveLetter & ": " & _
 dr.FreeSpace & vbcrlf
 Next

 MsgBox strMsg
End Sub

This means, of course, that any modifications to the variable that the routine makes, whether they are deliberate or
inadvertent, are reflected in the variable's value once control returns to the main code block.

To prevent this, parameter lists can be used to make sure that arguments are explicitly passed to called routines. If
those arguments are passed by value, using the ByVal keyword, their value will remain unchanged when control returns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

those arguments are passed by value, using the ByVal keyword, their value will remain unchanged when control returns
to the calling routine, even if their value has been changed in a subordinate routine. This is illustrated by the script in
Example 7-3, which assigns the values 5 and 10 to two variables—intX and intY, respectively—before calling AddTwo
with these two variables as arguments. AddTwo contains a common assignment error: rather than assigning the sum of
the arguments to a new variable, the sum is assigned to the intX parameter, effectively overwriting its value. However,
when control returns to the calling routine and the sum of intX and intY is displayed, it remains as it was before the call
to the AddTwo subroutine, since the changes made to the value of intX in AddTwo does not affect its value once the
routine ends.

Example 7-3. Passing arguments by value

Dim intX, intY

intX = 5
intY = 10

AddTwo intX, intY

MsgBox "intX + intY = " & intX + intY

Sub AddTwo(ByVal intX, ByVal intY)
 intX = intX + intY
 MsgBox intX
End Sub

7.3.2 Script Files with XML Code

As of Version 2.0, WSH allows you to create .wsf files, which must contain one or more jobs that are designated by the
XML <job>...</job> tag. In addition, you can include files containing script by using the <script>...</script> tag and
including its src attribute. (See Section 7.5 later in this chapter for details on XML tags.)

Any script file with a .wsf extension must contain the XML tags needed for the script to
run. At a minimum, these are the <job>...</job> and, if script is present, the <script> ...
</script> tags.

In a .wsf file that contains multiple jobs, each job is independent of others. In other words, the public variables and the
public subroutines and functions of one job are not available to other jobs in the same .wsf file. Program flow begins at
the beginning of the global script in the job designated by the //Job: switch when the script was launched, and continues
until the </job> tag is encountered. If the //Job: switch was not used, program flow begins with the global script
belonging to the first job in the file.

If a script file is included using the src attribute of the <script> tag, it must contain only script and no XML tags. The
entire script file is read, and any global code blocks within the file are executed at the point that the <script> tag is
encountered. Any variables defined in its global code blocks will be visible to the original job, and any functions or
subroutines contained in the included file can be called from code in the job.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 The WSH Object Model
When using VBScript to write WSH scripts, you use VBScript to access the WSH object model. The Windows Script Host
object model, a small and fairly shallow object model with a number of createable objects, is shown in Figure 7-1.

Figure 7-1. The Windows Scripting Host object model

WSH is not intended to be a self-contained, all-encompassing object model. It focuses on three major areas:

Providing resources necessary to support script execution. For instance, the WScript object reports on the
interpreter and version of WSH in use, while the WshShell object allows shortcuts and Internet shortcuts to be
created.

Enhancing the ease with which a system can connect to and disconnect from network resources. This
functionality is supported by the WshNetwork object.

Supporting functionality that is not readily available in other object models. For example, the WshShell object
allows access to environment variables and to the location of Windows system folders.

Through the CreateObject and GetObject methods of the WScript object, WSH allows you to take advantage of the
functionality supported by other objects that support COM automation. This topic is discussed in Section 7.6 later in this
chapter. The remainder of this section provides concise documentation on the objects that form the WSH object model,
along with their properties and methods.

7.4.1 The WScript Object

The WScript object, the top-level object in the WSH object model, provides information about the script host (that is,
about WScript.exe or CScript.exe) and the script file it is executing as well as provides access to other objects. This
object is instantiated automatically by the host whenever a WSH script is launched; you don't have to retrieve a
reference to it. (In fact, calls to either CreateObject or GetObject will fail to return a reference to the WScript object.)
The properties of the WScript object are listed in Table 7-2, while its methods appear in Table 7-3.

Table 7-2. Properties of the WScript object
Property Description

Application Returns a reference to the WScript object itself, which can be passed as an argument to external
routines.

Arguments
Returns a WshArguments object consisting of several collections of strings containing the command-
line arguments (both named and unnamed) passed to the script when it was invoked; see the entry
for the WshArguments object later in this chapter for details.

Fullname The full path and filename of the script host file (which is usually either WScript.exe or CScript.exe).

Name The friendly name of the script host file. For example, the friendly name of both WScript.exe and
CScript.exe is "Windows Script Host." It is the default property of the WScript object.

Path The full path (without the filename) to the script host.

ScriptFullName The full path and filename of the script being executed.

ScriptName Returns a string containing the filename of the script file being executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StdErr

Returns a reference to a write-only TextStream object that provides access to the script's standard
error stream when CScript.exe is the WSH host. Typically, the error output stream is sent to the
console.

The TextStream object is part of the File System object model available from the Microsoft Scripting
Runtime Library. Because it is write-only, the TextStream object returned by the StdErr property
supports only the following methods:

Close

Write

WriteBlankLines

StdIn

Returns a reference to a read-only TextStream object that provides access to the script's standard
input stream when CScript.exe is the WSH host. Typically, standard input to a program comes from
the keyboard, though it can also be provided by a source defined by the command-line redirection
character. For example, in the following statement, the standard input is the contents of the file
Greeting.txt:

CScript.exe ShowGreeting.vbs < Greeting.txt

Any attempt to read input that is unavailable causes the respective read method to block. The read-
only TextStream object returned by the StdIn property supports the following properties and
methods:

AtEndOfLine

AtEndOfStream

Column

Line

Close

Read

ReadAll

ReadLine

Skip

StdOut

Returns a reference to a write-only TextStream object that provides access to the script's standard
output stream when CScript.exe is the WSH interpreter. Typically, standard output from a program
goes to the screen; it can also go to a device defined by the command-line redirection character. For
example, the output is redirected to the first parallel printer:

CScript.exe ShowGreeting.vbs > Greeting.txt

The TextStream object returned by StdOut supports these:

Close

Write

WriteBlankLines

Version The version of the script host.

Table 7-3. Methods of the WScript object
Method Description

CreateObject

Instantiates a new instance of a class. Its syntax is WScript.CreaterObject(strProgID[,strPrefix]) where
strProgID is the programmatic identifier of the object to be created as defined in the registry and
strPrefix is an optional string that instructs WSH to trap the object's events (if it has any) and to fire
public event handlers whose names begin with strPrefix concatenated with the event name. The
method returns a reference to the new object. For example:

Set oRate = _
 WScript.CreateObject("Component1.Rate", "oRate_")

Public Sub oRate_RateChanged()
 WScript.Echo "RateChanged event fired!"
End Sub

The chief difference between the VBScript CreateObject function and the WScript CreateObject
method is that the latter allows you to trap the events raised by an object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ConnectObject

Connects an object's events to functions beginning with a designated prefix. Its syntax is
WScript.ConnectObject strobject, strPrefix where strobject is a reference to the object whose events are
to be trapped, and strPrefix is the prefix of the event handler for the events. Note that the
documentation incorrectly indicates that strObject is the name of the object whose events are to be
trapped. The event handler whose name is a concatenation of strPrefix and the event name is
automatically invoked; for example:

WScript.ConnectObject oRate, "oRate_"

Public Sub oRate_RateChanged()
 WScript.Echo "RateChanged event fired!"
End Sub

Calling the ConnectObject method is equivalent to supplying a strPrefix parameter when retrieving
an object reference using either the CreateObject or GetObject method of the WScript object. In
addition, ConnectObject allows you to handle events raised by objects not createable by the
CreateObject or GetObject methods.

Some objects that source events do not allow runtime discovery of those events. Such objects
cannot be connected with either the CreateObject or the ConnectObject methods of the WScript
object.

DisconnectObject

This method simply "disconnects" an event sync; that is, it "disconnects" the object "connected" by
the ConnectObject method. Its syntax is WScript.DisconnectObject obj where obj is a reference to the
object whose events are no longer to be handled. If the events raised by obj are not currently
being trapped, calling the method has no effect.

Echo

Sends output to a dialog box (if the host is WScript.exe) or the console (for CScript.exe). Its
syntax is WScript.Echo [arg1, [arg2...]] where arg1 and arg2 are the expressions to be output. If
multiple arguments are present, a space is used to separate them. If none are present, the
method outputs a blank line.

GetObject

Returns a reference to an existing instance of a class. Its syntax is WScript.GetObject(strPathname
[,strProgID], [strPrefix]) where strPathname is the path and name of the file containing the object to
retrieve, strProgID is the programmatic identifier of the object to be created as defined in the
registry, and strPrefix is an optional string that instructs WSH to trap the object's events (if it has
any) and to fire public event handlers whose names begin with strPrefix concatenated with the
event name. The method returns a reference to the object.

Quit Terminates script execution and raises an error. Its syntax is WScript.Quit [intErrorCode] where
intErrorCode is the number of the error to raise.

ShowUsage Displays help information explaining how to use a script.

Sleep
Suspends script execution for a specified number of milliseconds. Its syntax is WScript.Sleep(intTime)
where intTime is the number of milliseconds to wait. Events continue to fire and event handlers
continue to run while sleeping.

7.4.2 The WshArguments Object

The WshArguments object is a collection object returned by the Arguments property of the WScript object; it cannot be
created by calls to the WScript object's CreateObject or GetObject methods. The following statement returns a
WshArguments collection object:

Dim oArgs
Set oArgs = WScript.Arguments

It consists of one string for each command-line argument passed to the script when it was invoked. You can iterate the
arguments as follows:

Dim arg
For Each arg in oArgs
 ' Do something with arg, the individual argument
Next

Or you can retrieve an individual argument using code like the following, which retrieves the first argument in the
collection:

Dim arg
arg = WScript.Arguments.Item(0)

WSH supports both named and unnamed arguments. Named arguments are passed to a script by using the syntax:

scriptname /ArgName:ArgValue

ArgName, the argument name, is preceded by a single slash, while the argument name and ArgValue, the value of the
named argument, are separated from one another by a colon. Unnamed arguments are entered on the command line
as values only, with no special syntax; for example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as values only, with no special syntax; for example:

scriptname ArgValue

Both named and unnamed arguments are included in the collection. The arguments can be filtered into named and
unnamed arguments by using the WshArguments object's Named and Unnamed properties.

The properties of the WshArguments object are shown in Table 7-4.

Table 7-4. Properties of the WshArguments object
Property Description

Count Indicates the number of arguments in the collection.

Item Returns a string argument given its ordinal position (or index) in the collection. The first argument is at
position 0. Item is the default member of the WshArguments collection.

length Like the Count method, returns the number of arguments in the collection.

Named Returns a WshNamed object containing the named arguments passed to the script when it was invoked.
For details, see the entry for the WshNamed object later in this chapter.

Unnamed Returns a WshUnnamed object containing the unnamed arguments passed to the script when it was
invoked. For details, see the entry for the WshUnnamed object later in this chapter.

7.4.3 The WshController Object

The WshController object, which is new toWSH 5.6, allows for the creation of a remote script process. WshController is
a createable object that must be instantiated with a code fragment like the following:

Dim cnt
Set cnt = WScript.CreateObject("WSHController")

The WshController object has a single method,CreateScript, as shown in Table 7-5. It is this method that accesses the
script to be run remotely and returns a WshRemote object that provides some control over the resulting script process.
For an example of using remote scripting, see Section 7.4.7 later in this chapter.

Table 7-5. Method of the WshController object
Name Description

CreateScript

Returns a WshRemote object, which represents a remote script process. Its syntax is
object.CreateScript(CommandLine,[MachineName]) where object is a reference to a WshConnection object,
CommandLine provides the name of the script to execute (along with an optional path and any
command-line switches and parameters), and MachineName is an optional parameter containing the UNC
name of the system on which the script is to execute. If MachineName is omitted, the script executes on
the system on which the WshController object is instantiated. If CommandLine identifies a different
system than MachineName, the script is loaded from the system identified by CommandLine but run on the
system identified by MachineName.

7.4.4 The WshEnvironment Object

The WshEnvironment object is a collection object returned by the Environment property of the WshShell object; it
cannot be created by calls to the WScript object's CreateObject or GetObject methods.

WshEnvironment is a collection of strings containing a set of environment variables. Windows systems maintain two
such sets of environment variables, either of which can be returned by the Environment property of the WshShell
object:

A system table, which is retrieved by supplying the string System as an argument to the Environment property
of the WshShell object. The system table contains the environment variables available to all processes running
on the system.

A process table, which is retrieved by supplying the string Process as an argument to the Environment property
of the WshShell object. The process table contains the environment variables defined for the individual process.
It also includes the environment variables in the system table.

The members of the WshEnvironment object are shown in Table 7-6.

Since the WshEnvironment object is a child of the WshShell object, it requires that a WshShell object be instantiated.
This requires that you access the WshEnvironment collection through a code fragment like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This requires that you access the WshEnvironment collection through a code fragment like the following:

Dim wsh, env
Set wsh = WScript.CreateObject("WScript.Shell")
Set env = wsh.Environment

You can then iterate the collection as follows:

Dim str
For Each str in env
 sMsg = sMsg & str & vbCrLf
Next

WScript.Echo sMsg

Table 7-6. Members of the WshEnvironment object
Name Type Description

Count Property Indicates the number of environment variables in the collection.

Item Property

Returns an environment variable's name/value pair (separated by an equals sign) if passed a
string containing its name (or key). Item is the default member of the WshEnvironment
collection. Hence, the code:

WScript.Echo(WshShell.Environment.Item("Path"))

is functionally identical to the code:

WScript.Echo(WshShell.Environment("Path"))

length Property Indicates the number of environment variables in the collection.

Remove Method
Removes an environment variable from the collection. Its syntax is WshEnvironment.Remove strName
where strName is a String representing the name of the environment variable. Attempting to
delete a variable based on its ordinal position in the collection has no effect.

7.4.5 The WshNamed Object

The WshNamed object, which is new to WSH 5.6, is a collection object that contains named command-line arguments.
(A named argument is entered on the command line with the syntax /name:value.) WshNamed is not a createable object,
and is returned by theNamed property of the WshArguments object.

The following statement returns a WshNamed collection object:

Dim namedArgs
Set namedArgs = WScript.Arguments.Named

It consists of one string for each named command-line argument passed to the script when it was invoked. You can
iterate the arguments as follows:

Dim arg
For Each arg in namedArgs
 ' Do something with arg, the individual named argument
Next

Or you can retrieve an individual argument using code like the following, which retrieves the first named argument in
the collection:

Dim arg
arg = WScript.Arguments.Named(0)

The members of the WshNamed object are listed in Table 7-7.

Table 7-7. Members of the WshNamed object
Name Type Description

Count Method Returns an integer indicating the number of named arguments in the collection. Its syntax is
object.Count().

Exists Method Returns a Boolean indicating whether a particular named argument exists in the collection. Its
syntax is object.Exists(strArgName) where strArgName is a String containing the argument name.

Item Property

Returns a String containing the value of a particular named command line argument. Its syntax is:
object.Item(strArgName) where strArgName is a String containing the argument name. If strArgName
is not found in the collection, the property returns an empty string.

Since Item is the default member of the WshNamed object, it need not be called explicitly. Hence,
the following two lines of code function identically:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the following two lines of code function identically:

strVal = oNamed.Item("name")
strVal = oNamed("name")

length Property Returns an integer indicating the number of named arguments in the collection.

7.4.6 The WshNetwork Object

The WshNetwork object representsnetwork resources that are available to a client computer. You can create a
WshNetwork object with a code fragment like the following:

Dim oNet
Set oNet = WScript.CreateObject("WScript.Network")

The WshNetwork object supports the three properties shown in Table 7-8 and the eight methods shown in Table 7-9.

Table 7-8. Properties of the WshNetwork object
Property Description

ComputerName Returns a String containing the name of the local computer.

UserDomain Returns a String containing the name of the user domain.

UserName Returns a String containing the username.

Table 7-9. Methods of the WshNetwork object
Method Description

AddPrinterConnection

Maps a remote printer to a local resource name. Its syntax is
WshNetwork.AddPrinterConnection strLocalName, strRemoteName [,bUpdateProfile]
[, strUser][, strPassword] where strLocalName is the local resource name,
strRemoteName is the name of the remote resource, bUpdateProfile is an optional
Boolean that indicates whether the user profile is to be updated to contain this
mapping, strUser is the optional name of the user for whom the printer is being
mapped, and strPassword is the password of the user for whom the printer is
mapped.

AddWindowsPrinterConnection

Adds a printer connection. Its syntax for Windows NT/2000/XP is WshNetwork
AddWindowsPrinterConnection(strPrinterPath) where strPrinterPath is the path to the printer.
Under Windows 95/98/ME, its syntax is:

WshNetwork.AddWindowsPrinterConnection(strPrinterPath, strDriverName[, strPort])

where strPrinterPath is the path to the printer, strDriverName is the name of the printer
driver to use, and strPort is the optional name of the port to which to attach the
printer. The default value of strPort is LPT1.

This method differs from the AddPrinterConnection method by not requiring that the
printer be assigned a local port.

EnumNetworkDrives

Returns a zero-based collection of strings containing the current network drive
mappings. All members having even index values are local names (drive letters), and
all having odd index values are the remote names of the immediately preceding local
drive. The collection returned by the method supports the following properties:

Count

The number of items in the collection

Item

Returns an individual item from the collection

length

The number of items in the collection

EnumPrinterConnections

Returns a zero-based collection of strings containing the current network printer
mappings. All members having even index values are the ports, and all members
having odd index values are the network mappings of the preceding port. The
collection returned by the method has the following members:

Count

The number of items in the collection

Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item

Returns an individual item from the collection

length

The number of items in the collection

MapNetworkDrive

Maps a network share to a local resource. Its syntax is WshNetwork.MapNetworkDrive
strLocalName, strRemoteName, [bUpdateProfile], [strUser], [strPassword] where strLocalName
is the local resource, strRemoteName is the network resource, bUpdateProfile is a
Boolean value that indicates whether the user's profile should be updated to include
the mapping, strUser is the optional name of the user for whom the printer is being
mapped, and strPassword is the optional password of the user for whom the printer is
being mapped.

RemoveNetworkDrive

Removes a current resource connection. Its syntax is WshNetwork.RemoveNetworkDrive
strName, [bForce], [bUpdateProfile] where strName must be either a local name (if the
remote drive is mapped to a local name) or a remote name, bForce is a Boolean value
that indicates whether the connection should be removed even if the resource is in
use, and bUpdateProfile is a Boolean that indicates whether the mapping should be
removed from the user profile.

RemovePrinterConnection

Removes the connection to a network printer. Its syntax is
WshNetwork.RemovePrinterConnection strName, [bForce], [bUpdateProfile] where strName
must be a local name (if the printer is mapped to a local name) or a remote name,
bForce is a Boolean value that indicates whether the printer should be removed even if
it is in use, and bUpdateProfile is a Boolean that indicates whether the connection
should be removed from the user profile.

SetDefaultPrinter
Sets the default printer to a remote printer. Its syntax is WshNetwork.SetDefaultPrinter
strPrinterName where strPrinterName is the name of the remote printer. The names of
available remote printers can be retrieved with the EnumPrinterConnection method.

7.4.7 The WshRemote Object

The WshRemote object, which is new to WSH 5.6, allows for control over a remote script by the launching script. It is
returned by the CreateScript method of the WshController object. The WshRemote object supports the members shown
in Table 7-10. Note that, unlike most of the objects in the Windows Script Host object model, the WshRemote object
supports three events: Start, End, and Error.

Configuring Remote Scripting
Before you can launch a script remotely, the system on which it runs has to be configured to support
remote scripting. This requires that Windows Script Host 5.6 be installed on the remote machine, that the
user launching the remote script be a member of the remote machine's Local Administrators group, and
that remote scripting be enabled in the registry. The HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Script
Host\Settings key has a value entry named Remote. If its value is 1, remote scripting is enabled; if 0,
disabled. The following script enables the key:

Dim oShell, regKey, regValue
Set oShell = CreateObject("WScript.Shell")
regKey = "HKLM\Software\Microsoft\Windows Script Host\Settings\Remote"
regValue = oShell.RegRead(regKey)
If regValue = "0" Then
 regValue = "1"
 oShell.RegWrite regKey, regValue, "REG_SZ"
End If

Table 7-10. Members of the WshRemote object
Name Type Description

End Event Fired when a remote script completes execution either because the WshRemote object's
Terminate method is called or because the script has itself terminated.

Error Property Returns a WshRemoteError object that, if retrieved from the WshRemote object's Error event
handler, provides information about the error that caused a remote script to terminate.

Error Event Fired when an error occurs in the remote script. No parameters are passed to the event
handler.

Execute Method Starts the execution of a remote script. Its syntax is: object.Execute().

Start Event Fired when the WshRemote object's Execute method is called to begin execution of a remote
script.

Returns the status of the remote script. Possible values are NoTask (0), Running (1), and Finished

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Status Property Returns the status of the remote script. Possible values are NoTask (0), Running (1), and Finished
(2).

Terminate Method Prematurely terminates the execution of a remote script.

The following example illustrates the use of remote scripting and the WshRemote object. A controller script launches
remote scripts on a number of systems in order to assemble a report listing those systems with drives whose free space
is under 200 MB. The following .wsf file launches the remote scripts:

<package>
<reference guid="{6F201540-B482-11D2-A250-00104BD35090}" />
<reference guid="{F935DC20-1CF0-11D0-ADB9-00C04FD58A0B}" />
<reference guid="{563DC060-B09A-11D2-A24D-00104BD35090}" />

<job id="GatherDiskInfo">
<reference guid="{420B2830-E718-11CF-893D-00A0C9054228}" />
<runtime>
 <description>
 This script uses remote scripting to examine the disk drives
 of designated systems and reports those with less than
 200MB free.
 </description>
</runtime>
<script language="VBScript">
Option Explicit

Const fn = "MachineList.txt"
Const NoTask = 0
Const WshRunning = 1
Const WshFinished = 2

Dim fs, ts
Dim ctrl, remote, sh
Dim machineName

' Retrieve file listing machines to examine
Set fs = CreateObject("Scripting.FileSystemObject")
Set ts = fs.OpenTextFile(fn, ForReading, False)
Set sh = CreateObject("WScript.Shell")
Set ctrl = CreateObject("WSHController")

Do While Not ts.AtEndOfStream
 machineName = ts.ReadLine()
 Set remote = ctrl.CreateScript("freespace.vbs " & machineName, _
 machineName)
 WScript.ConnectObject remote, "remote_"

 remote.Execute()
 Do While remote.Status = WshRunning
 WScript.Sleep 100
 Loop
 WScript.DisconnectObject remote
Loop

Sub remote_Start()
 sh.LogEvent 0, "Started remote script on " & machineName
End Sub

Sub remote_End()
 sh.LogEvent 0, "Ended remote script on " & machineName
End Sub

Sub remote_Error()
 Dim wshErr
 Set wshErr = remote.Error
 sh.LogEvent 1, "Error " & wshErr.Number & ": " & wshErr.Description
 WScript.Quit -1
End Sub
</script>
</job>
</package>

The script reads a text file, MachineList.txt, which contains a list of the systems whose drives are to be checked for
available space, one system per line. For each machine, it calls the WshController object's CreateScript method, which
returns a reference to a WshRemote object. The first parameter to the CreateScript method is the name of the script to
be run along with an unnamed argument, the machine name. The argument is included because this makes it very easy
for the remote script to identify the system on which it is running. The second parameter of the CreateScript method is
once again the name of the system on which the remote script is to run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

once again the name of the system on which the remote script is to run.

The call to the CreateScript method returns a reference to a WshRemote object, which is then used in the call to the
WScript object's ConnectObject method so that the script can receive event notifications. The script then executes the
following remote script and enters a loop until the remote script has completed, at which point it disconnects the event
handler and reads another line if one is present in MachineList.txt:

Option Explicit

Const ForAppending = 8
Const ForReading = 1
Const ForWriting = 2
Const Fixed = 2
Const fn = "c:\books\vbscript ian\wsh\freespace.txt"

Dim fs, drives, drive
Dim overWrite
Dim freeSpace
Dim msg

' Retrieve object references
Set fs = CreateObject("Scripting.FileSystemObject")
Set drives = fs.Drives

overWrite = True
 ' Enumerate drives
For Each drive In drives
 ' Examine only fixed drives
 If drive.IsReady And drive.DriveType = Fixed Then
 freeSpace = drive.FreeSpace
 ' Log if under 200MB free
 If freeSpace < 200000000 Then
 ' Form message string
 msg = msg & "System: " & WScript.Arguments.Unnamed(0) & " "
 msg = msg & "Drive " & drive.DriveLetter & ": " & _
 FormatNumber(drive.FreeSpace, 0, False, True, True) _
 & " free"
 msg = msg & " Date: " & Date() & " " & Time()
 WriteToFile msg
 overwrite = False
 End If
 End If
Next

Sub WriteToFile(strToWrite)

 Dim mode, create
 Dim ts

 mode = ForAppending
 create = False

 Set ts = fs.OpenTextFile(fn, mode, create)
 ts.WriteLine strToWrite
 ts.Close
End Sub

When the remote script begins and ends, its Start and End events, respectively, are fired. This executes the
remote_Start and remote_End event handlers in the controller script, which write information about the beginning and
end of the remote script to the controller's event log. If an error occurs, information about it is also written to the
controller's event log.

7.4.8 The WshRemoteError Object

The WshRemoteError object provides access to information about the error that caused a remote script to terminate
execution. The object is new to WSH 5.6. The WshRemoteError object is not createable; instead, it is returned by the
Error property of the WshRemote object. The property's value is typically retrieved in the Error event handler of the
WshRemote object. To see the use of the WshRemoteError object in a script, see the example in Section 7.4.7 earlier in
this chapter.

The properties of the WshRemoteError object are listed in Table 7-11.

Table 7-11. Properties of the WshRemoteError object
Property Description

Character Returns the character position in a line at which the error occurred, or a 0 if a line and character position
could not be identified as containing the source of the error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

could not be identified as containing the source of the error.

Description Returns a String containing a brief description of the error, or an empty string if none is available.

Line Returns the number of the line on which the error occurred, or a 0 if a line containing the source of the
error could not be identified.

Number Returns a Long containing the error number.

Source Identifies the COM object in which the error occurred.

SourceText Returns the line of script containing the error, or an empty string if no line could be identified.

7.4.9 The WshScriptExec Object

The WshScriptExec object represents a local script or application launched by calling the WshShell.Exec method. Its
members provide status information and allow you to access the script or application's standard input, output, and error
streams. The WshScriptExec object is new to WSH 5.6.

The members of the WshScriptExec object are listed in Table 7-12.

Table 7-12. Members of the WshScriptExec object
Name Type Description

Status Property Returns status information about a script or application run using the WshShell.Exec method.
Possible values are WshRunning (0) and WshFinished (1).

StdErr Property Provides access to the WshScriptExec's standard error stream.

StdIn Property Provides access to the WshScriptExec's standard input stream.

StdOut Property Provides access to the WshScriptExec's standard output stream.

Terminate Method
Sends a WM_CLOSE message to a process (a script or an application) launched by calling the
WshShell.Exec method. How the message is handled depends on the application: it can ignore
the message, or it can terminate.

7.4.10 The WshShell Object

The WshShell object provides access to a wide variety of shell services, such asregistry access, access toenvironment
variables and to the location of system folders, and the ability to create shortcuts and to start processes. You can
instantiate a WshShell object with a code fragment like the following:

Dim wsh
Set wsh = WScript.CreateObject("WScript.Shell")

The WShell object supports the 3 properties shown in Table 7-13 and the Table 7-11 methods listed in Table 7-14.

Table 7-13. Properties of the WshShell object
Property Description

CurrentDirectory A read-write property that determines the script's current directory.

Environment

Returns a WshEnvironment collection containing the system or process environment variables and
their values. Its syntax is oShell.Environment([strType]) where strType is an optional string indicating
which table of environment variables (System or Process) the property should return. For details, see
the WshEnvironment object. If omitted, the property returns the system environment variables on
Windows NT/2000/XP and the process environment variables on Windows 95/98/ME.

SpecialFolders Returns a WshSpecialFolders collection containing the names of system folders and their locations;
for details, see the WshSpecialFolders object.

Table 7-14. Methods of the WshShell object
Method Description

AppActivate

Activates an application window. Its syntax is WshShell.AppActivate title where title is the
caption of the application to be activated. If there is no exact match, WSH will attempt to
match title with the application window whose caption begins with title. The
documentation mentions that title can also be the task ID, which is returned by the Shell
function; the Shell function, however, is present in VB but not in VBScript or WSH.

CreateShortcut

Returns a reference to a new or an existing WshShortcut object. Its syntax is WshShell
CreateShortcut- (strPathname) where strPathname is the path and filename of an existing or a
new Windows shortcut file (a file with an extension of *.lnk). (If strPathname has an
extension of *.url, the method returns a reference to a WshUrlShortcut object instead.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extension of *.url, the method returns a reference to a WshUrlShortcut object instead.)

Once you retrieve the object reference, you can create or modify the physical shortcut
file by calling the WshShortcut object's Save method.

Exec
Runs a script or application as a separate process and returns a WshScriptExec object
that provides access to its standard input, standard output, and standard error. The
method is new to WSH 5.6.

ExpandEnvironmentStrings

Expands an environment variable and returns its value. Its syntax is
WshShell.ExpandEnvironmentStrings (strString) where strString is a string that includes the
name of an environment variable delimited by a beginning and closing percentage sign
(%).

LogEvent

Logs an event. Its syntax is WshShell.LogEvent(intType, strMessage [,strTarget]) where intType
defines the type of event and is one of the values in Table 7-15, strMessage is the text of
the event message, and, for Windows NT/2000/XP only, strTarget is the optional name of
the system on which the event should be logged. If strTarget is omitted, the event is
logged on the local system. Under Windows NT/2000/XP, events are logged in the
Windows NT event log. Under Windows 95/98/ME, they're logged in the WSH.log file in
the user's Windows directory; each entry contains the date and timestamp, the event
type, and the text of the log message. The method returns True if successful and False
otherwise.

Popup

Displays a popup message box. Its syntax is:

intButton = WshShell.Popup(strText, [natSecondsToWait],
[strTitle], [natType])

where strText is the text of the message to appear in the pop up, natSecondsToWait is the
optional number of seconds to wait before automatically closing the pop up, strTitle is the
optional pop-up dialog's caption (it defaults to "Windows Script Host" if omitted), and
natType defines the types of buttons and icons to use in the pop-up window and has the
same values as the Win32 MessageBox function. This can consist of any one icon type
combined with (i.e., logically Or'ed with) any one button set shown in Table 7-16. The
method returns one of the integers shown in Table 7-17, which indicates which button is
pressed to close the pop up.

RegDelete

Deletes a key or value from the registry. Its syntax is WshShell.RegDelete strName where
strName is the path to the key or value to delete. If strName ends in a backslash, it
denotes a key; otherwise, it denotes a value. The default (or unnamed) value of a key
cannot be deleted; it must be replaced with an empty string ("") by using the RegRead
method. The abbreviations for the top-level registry keys are shown in Table 7-18.

RegRead

Returns a registry value. Its syntax is WshShell.RegRead- (strName) where strName is the
path to the value to read. If strName ends in a backslash, the method reads the key's
default value; otherwise, it reads a named value. The abbreviations for the top-level keys
are shown in Table 7-18; keys not listed must be accessed by their full name (e.g.,
HKEY_ CURRENT_CONFIG). The RegRead method can read the data types shown in Table
7-19; other data types are not supported. Note that the RegRead method does not
expand environment strings in REG_EXPAND_SZ data; this requires a separate call to the
WshShell object's ExpandEnvironmentStrings method.

RegWrite

Writes a registry value. Its syntax is WshShell.RegWrite strName, anyValue [,strType] where
strName is that path to the value to write. If strName ends in a backslash, the method
writes the key's default value; otherwise, it writes a named value. The abbreviations for
the top-level registry keys are shown in Table 7-18; keys not listed must be accessed by
their full names (e.g., HKEY_USERS).The RegWrite method can read the data types shown
in Table 7-19; other data types are not supported.

Run

Creates a new process. Its syntax is WshShell.Run (strCommand, [intWindowStyle],
[bWaitOnReturn]) where strCommand represents the command to execute, along with any
command-line parameters. Any environment variable in it will be expanded
automatically. intWindowStyle is an optional integer that defines the window style of the
new process (for a list of valid window styles, see Table 7-20), and bWaitOnReturn is an
optional Boolean synchronization flag that determines whether control returns to the
script only after the process ends; by default, control returns to the script immediately
after the Run method is called. The value returned by the function is 0 if bWaitOnReturn is
False; otherwise, the method returns any error code returned by the application.

SendKeys

Sends keystrokes to the active window as if they were typed at the keyboard. Its syntax
is SendKeys string where string is a string expression that specifies the keystrokes to send.
Except for the special symbols shown in Table 7-21, each keyboard character is
represented in string by itself.

The SendKeys method cannot be used to send keystrokes to a non-Windows application.
Nor can SendKeys be used to send the Print Screen key to any window.

Table 7-15. Values of the intType parameter of the LogEvent method
Value Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

0 Success

1 Error

2 Warning

4 Information

8 Audit_Success

16 Audit_Failure

Table 7-16. Values of the natType parameter of the Popup method
Type Value Description

Button 0 OK

Button 1 OK and Cancel

Button 2 Abort, Retry, Ignore

Button 3 Yes, No, Cancel

Button 4 Yes, No

Button 5 Retry, Cancel

Icon 16 Stop

Icon 32 Question

Icon 48 Exclamation

Icon 64 Information

Table 7-17. Return values of the Popup method
Value Description

1 OK button

2 Cancel button

3 Abort button

4 Retry button

5 Ignore button

6 Yes button

7 No button

Table 7-18. Abbreviations for the top-level registry keys
Abbreviation Key

HKCU HKEY_CURRENT_USER

HKLM HKEY_LOCAL_MACHINE

HKCR HKEY_CLASSES_ROOT

Table 7-19. Data types supported by the WshShell registry methods
Data type RegWrite string constant RegRead/RegWrite variant type

string "REG_SZ" String

string with macros "REG_EXPAND_SZ" String

string array not supported String array

long integer "REG_DWORD" Long

binary data (byte array) "REG_BINARY" Variant array of bytes

Table 7-20. Values of the intWindowStyle parameter of the Run method
Value Description

0 Hides the window and activates another window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 Activates and displays a window. If the window is minimized or maximized, the system restores it to its
original size and position. This flag should be used when specifying an application for the first time.

2 Activates the window and displays it minimized.

3 Activates the window and displays it maximized.

4 Displays a window in its most recent size and position. The active window remains active.

5 Activates the window and displays it in its current size and position.

6 Minimizes the specified window and activates the next top-level window in the Z order.

7 Displays the window as a minimized window. The active window remains active.

8 Displays the window in its current state. The active window remains active.

9 Activates and displays the window. If it is minimized or maximized, the system restores it to its original size
and position. An application should specify this flag when restoring a minimized window.

10 Sets the show state based on the state of the program that started the application.

Table 7-21. Special characters for use with the SendKeys method
Key String Key String

Shift + Scroll Lock {SCROLLLOCK}

Ctrl ^ Tab {TAB}

Alt % Up Arrow {UP}

Backspace {BACKSPACE}, {BS}, or {BKSP} F1 {F1}

Break {BREAK} F2 {F2}

Caps Lock {CAPSLOCK} F3 {F3}

Delete {DELETE} or {DEL} F4 {F4}

Down Arrow {DOWN} F5 {F5}

End {END} F6 {F6}

Enter {ENTER} or ~ F7 {F7}

Esc {ESC} F8 {F8}

Help {HELP} F9 {F9}

Home {HOME} F10 {F10}

Insert {INSERT} or {INS} F11 {F11}

Left Arrow {LEFT} F12 {F12}

Num Lock {NUMLOCK} F13 {F13}

Page Down {PGDN} F14 {F14}

Page Up {PGUP} F15 {F15}

Print Screen {PRTSC} F16 {F16}

Right Arrow {RIGHT}

7.4.11 The WshShortcut Object

The WshShortcut object represents a shortcut—that is, a link to a file or other resource on the local system or local
network. A new or existing WshShortcut object is returned by the CreateShortcut method of the WshShell object, as in
the following code fragment:

Set WshShell = WScript.CreateObject("WScript.Shell")
Set oSCut = WshShell.CreateShortcut("Startup Script.lnk")

A WshShortcut object exists in memory only and not in the filesystem until it is saved by
calling the object's Save method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a new shortcut object is created, its FullName property is assigned the value specified by the strPathname
parameter. The remaining properties assume their default values and must be changed programmatically before calling
the WshShortcut object's Save method.

The WshShortcut object supports the eight properties shown in Table 7-22 and the single method shown in Table 7-23.

Table 7-22. Properties of the WshShortcut object
Property Description

Arguments Sets or returns a single String representing the arguments passed to the shortcut.

Description Sets or returns a String representing a description of the shortcut. The Description property is not
visible from the Windows user interface.

FullName Returns a String containing the full path and filename of the shortcut file. Shortcut files have a file
extension of *.lnk.

Hotkey

Sets or returns a String containing the keyboard shortcut that executes the shortcut file; hotkeys
apply only to shortcuts located on the Windows desktop or on the Start menu. Multiple keys are
joined by a "+" sign. For example, a Hotkey value of "Alt+Ctrl+A" indicates that the shortcut's
hotkey is the Alt + Ctrl + A key combination.

According to the documentation, strings indicating alphabetic keys are case-sensitive ("A" is an
uppercase A, but "a" is lowercase), although this does not appear to be the case. The strings that
represent some common nonalphanumeric hotkeys are listed in Table 7-24.

IconLocation
Defines the location of the shortcut's icon. Typically, its value is the complete path and filename to
the file containing the icon followed by a comma and the zero- based position of the icon within
the file. If the default icon is used, the value of IconLocation is " ,0".

TargetPath Sets or returns the path and filename to the shortcut's executable file. Note that the value of the
TargetPath property can also include a data file that's associated with an executable file.

WindowStyle Defines the window style of the application launched by the shortcut. Valid values are shown in
Table 7-25.

WorkingDirectory Defines the shortcut's working directory (i.e., the directory in which the shortcut will start).

Table 7-23. Method of the WshShortcut object
Method Description

Save Saves the Shortcut object to the filesystem at the location specified by the FullName property. Its syntax is
WshShortcut.Save.

Table 7-24. Some common nonalphanumeric hotkey strings
Hotkey String Description

Alt Alt key

Back Backspace key

Ctrl Ctrl key

Escape Esc key

Shift Shift key

Space Space key

Tab Tab key

Table 7-25. Values of the WindowStyle property
Value Description

1 Activates and displays a window.

3 Activates the window and displays it maximized.

7 Displays the window as a minimized window. The active window remains active.

7.4.12 The WshSpecialFolders Object

WshSpecialFolders is a collection object that stores strings that indicate the location of Windowssystem folders, like the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WshSpecialFolders is a collection object that stores strings that indicate the location of Windowssystem folders, like the
Desktop folder of the Windows System folder. The collection is returned by the SpecialFolders property of the WshShell
object, as the following code fragment shows:

Dim oShell, oSpFolders

Set oShell = WScript.CreateObject("WScript.Shell")
Set oSpFolders = oShell.SpecialFolders

Note that the location of a particular WshSpecialFolders object can be accessed by using its key, as discussed in the
entry for the object's Item property in Table 7-26.

The WshSpecialFolders object supports the standard three properties of a WSH collection object, as shown in Table 7-
26.

Table 7-26. Properties of the WshSpecialFolders object
Property Description

Count Indicates the number of items in the collection.

Item

Returns an individual item from the collection; each item is a string that indicates the location of a
particular special folder. If the member doesn't exist, the Item property returns an empty variant. An item
is retrieved from the collection either by its ordinal position in the collection or by its key; valid key values
are: AllUsersDesktop, AllUsersStartMenu, AllUsersPrograms, AllUsersStartup, Desktop, Favorites, Fonts,
MyDocuments, NetHood, PrintHood, Programs, Recent, SendTo, StartMenu, Startup, and Templates.

length Indicates the number of items in the collection.

7.4.13 The WshUnnamed Object

The WshUnnamed object, which is new toWSH 5.6, is a collection object that contains unnamed command-line
arguments. (An unnamed argument is entered on the command line by itself with no special syntax.) WshUnnamed is
not a createable object, and is returned by the Unnamed property of the WshArguments object.

The following statement returns a WshUnnamed collection object:

Dim unnamedArgs
Set unnamedArgs = WScript.Arguments.Unnamed

It consists of one string for each unnamed argument passed to the script when it was invoked. You can iterate the
arguments as follows:

Dim arg
For Each arg in unnamedArgs
 ' Do something with arg, the individual argument
Next

Or you can retrieve an individual argument using code like the following, which retrieves the first unnamed argument in
the collection:

Dim arg
arg = WScript.Arguments.Unnamed(0)

The members of the WshUnnamed object are shown in Table 7-27.

Table 7-27. Members of the WshUnnamed object
Name Type Description

Count Method Returns an integer indicating the number of unnamed arguments in the collection. Its syntax is:
object.Count().

Item Property

Returns a String containing the value of a command-line argument at a particular ordinal position
in the collection. Its syntax is: object.Item(intPos) where intPos is an Integer indicating the ordinal
position of the argument. If intPos is outside of the range of the collection, an error occurs.

Since Item is the default member of the WshUnnamed object, it need not be explicitly referenced.
Hence, the following two lines of code function identically:

strVal = oUnnamed.Item(2)
strVal = oUnnamed(2)

length Property Returns an integer indicating the number of named arguments in the collection.

7.4.14 The WshUrlShortcut Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WshUrlShortcut object represents anInternet shortcut—an Internet link to an Internet resource. A new or an
existing WshUrlShortcut object is returned by the CreateShortcut method of the WshShell object, as in the following
code fragment:

Set WshShell = WScript.CreateObject("WScript.Shell")
Set oURL = WshShell.CreateShortcut("Favorite Website.url")

A WshUrlShortcut object exists in memory only and not in the filesystem until it is saved
by calling the object's Save method.

When a new WshUrlShortcut object is created, its FullName property is assigned the value specified by the strPathname
parameter.

Its remaining property, TargetPath, must be changed programmatically before calling the WshUrlShortcut object's Save
method.

The WshUrlShortcut object supports the three members shown in Table 7-28.

Table 7-28. Members of the WshUrlShortcut object
Member

type
Member

name Description

Property FullName Returns a String containing the full path and filename of the Internet shortcut file. Shortcut
files have a file extension of *.url.

Property TargetPath Sets or returns a String containing the complete URL of the Internet resource to which the
Internet shortcut is linked.

Method Save Saves the Internet shortcut object to the filesystem at the location specified by the FullName
property. Its syntax is WshUrlShortcut.Save .

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.5 WSH Language Elements
All the language elements listed in Table 7-29 have been added to Windows Script Host as of Version 2.0. They are XML
elements that can be used in .wsf files and allow metadata about script-based applications to be embedded in the same
file as the script

Table 7-29. WSH language elements
Element Description

<?job ?>
Defines error handling. It syntax is <?job error="flag" debug="flag" ?> where flag is the string "True" or
"False", "Yes" or "No", or the integers 1 or 0. The error attribute defines whether the user will be
notified of errors; the debug attribute determines whether a debugger is launched when an error is
raised. By default, both attributes are false.

<?xml ?>

Indicates that the contents of a file should be parsed as XML. Its syntax is <?XML version="version"
[standalone="DTDflag"] ?> where version is a string in the format n.n that indicates the XML level of the
file, and DTDflag is a Boolean value that indicates whether the XML file includes a reference to an
external DTD. Since script files do not include DTDs, the value of this attribute must always be
"yes." The <?xml ?> tag must be the first element in the file, and cannot be preceded by any blank
lines. Its most common use is to indicate that the script file can be edited by an XML editor.

<description>
descriptiveText
</description>

Defines the purpose of a script. It is displayed when the WScript.ShowUsage method is called or the
user adds the /? command-line switch when running the script. It is enclosed within the
<runtime>...</runtime> element.

<example>
exampleScript
</example>

Provides an example of a script's usage. It is displayed when the WScript.ShowUsage method is called
or the user adds the /? command-line switch when running the script. It is enclosed within the
<runtime>...</runtime> element.

<job>
script
</job>

Defines an individual job within a script file containing one or more jobs. Its syntax is <job
id="jobid"> where jobid is a string identifier that's unique within the file. Every element that appears
within a <job>...</job> tag applies to that job. An individual job can be invoked using the //Job
command-line switch.

<named
 name=name
 helpstring=hlp
 type=type
 required=req
/>

Provides information about a named argument to a script. It is displayed when the WScript.ShowUsage
method is called or the user adds the /? command-line switch when running the script. name is the
argument's name. hlp describes the argument. type indicates the argument's type and can be string,
boolean, or simple. req is a Boolean that indicates whether the argument is required or optional. The
<named> element must be enclosed within the <runtime>...</runtime> element. The required element
is used in displaying usage information, and name and helpstring are used to describe the named
argument.

<object />

Defines a global object. Its syntax is <object id="objID" [classid="clsid:GUID" | progid="progID"] />
where objID is the name by which the object will be referred in the script or scripts, GUID is the
CLSID of the class from which the object was created (as defined in HKEY_CLASSES_ROOT\CLSID), and
progID is the programmatic identifier of the class. Either one of GUID or ProgID must be present, but
not both.

<package>
script
</package>

Indicates that a Windows Script Host (.ws) file contains multiple job definitions, as defined by the
<job>...</ job> element. If a file contains only a single job, the element is optional.

<reference />

Adds a reference to a type library, making its constants available to the script. Its syntax is
<reference [object="progid" | guid="LibID"] [version="version"] /> where progid is the programmatic
identifier of the type library, LibID is its GUID, and version is its version number. Either progid or
TypeLibGUID must be present, but not both. Typically, this is element causes a good deal of difficulty,
although it does work. While individual classes within type libraries do have programmatic
identifiers, most type libraries do not, which means that you should specify the GUID by determining
its value from a subkey of the HKEY_CLASSES_ROOT\ TypeLib key in the registry. In addition, version
defaults to 1.0, which is rarely the version you'd want to use. Available versions are listed as
subkeys of HKEY_CLASSES_ ROOT\TypeLib\LibID, where LibID is the type library's GUID.

<resource id=id>
text or number
</resource>

Defines a string or number as a resource that can be retrieved by its identifier rather than "hard-
coded" throughout script. Among other uses, resources are invaluable in localizing applications.
Resources can be retrieved using the getResource method, whose syntax is getResource(id) where id
is the ID of the resource. The method returns a string containing the resource value.

<runtime>
runtimeInfo
</runtime>

Provides runtime information about a script when the WScript.ShowUsage method is called or the
user adds the /? command-line switch when running the script. It must appear within the
<job>...</job> element and therefore can apply to only a single script. It in turn can contain
<description>, <usage>, <example>, <named>, and <unnamed> elements.

<script>
script
</script>

Defines the language in which a code block is written and optionally imports that code block from
another file. Its syntax is <script language="lang" [scr="strfile"]> where lang is a COM-compliant
scripting language such as "VBScript" or "JScript" and strfile is the path and name of the file to be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</script> scripting language such as "VBScript" or "JScript" and strfile is the path and name of the file to be
included.

<unnamed
 name=unnamed
 helpstring=hlp
 many=many
 required=req
/>

Provides information about an unnamed argument to a script. It is displayed when the
WScript.ShowUsage method is called or the user adds the /? command-line switch when running the
script. name is the name used for the unnamed argument. hlp describes the argument. many is a
Boolean that indicates whether the argument can be specified more times than the required attribute.
type. req is a Boolean that indicates how many times the argument should appear on the command
line.

<usage>
descriptiveText
</usage>

Provides information about a script that is displayed when the WScript.ShowUsage method is called
or the user adds the /? command-line switch when running the script. It allows the typical usage
display to be overridden, since if it is present, all other tags contained by the <runtime> element are
ignored. The <usage> element must be enclosed within the <runtime>...</runtime> element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.6 Accessing Other Object Models
On the whole, the functionality of WSH is strictly limited. For instance, WSH itself provides almost no access to the
filesystem, nor does it support any application services. This is a deliberate omission; the designers of Windows Script
Host intended that you could draw on the functionality of other object models when writing WSH scripts.

The "hooks" into other object models are provided by the WScript object's CreateObject andGetObject methods; the
former method creates a new instance of an object, while the latter retrieves a reference to an existing instance. As
Table 7-30 shows, using these methods, you can instantiate objects like the following:

Active Directory Service Interface (ADSI)

ADSI provides a single set of directory service interfaces for managing network resources.

ActiveX Data Objects (ADO)

ADO is a data access technology that offers a uniform methodology for accessing data regardless of location or
format. ADO has a relatively "flat" object model, and many objects (like the Recordset object, or the Connection
object) can be instantiated independently of one another.

Collaborative Data Objects (CDO)

CDO is an object model that uses MAPI to create mail-enabled applications. The Session object is its top-level
object.

Data Access Objects (DAO)

DAO is a data access technology intended primarily for use with Access databases and the Jet database engine.
Its top-level object is named DBEngine.

The Dictionary object

A part of the Scripting Runtime Library, theDictionary object provides access to data sets that have identifiable
keys.

The Excel Application object

The Excel object model is useful for extracting data from spreadsheets or for manipulating charts. Its top-level
object is the Application object.

The FileSystemObject object

A part of the Scripting Runtime Library, the FileSystemObject provides access to the local filesystem.

Windows Management Instrumentation (WMI)

WMI is Microsoft's implementation of Web-Based Enterprise Management (WBEM), a technology that aims at
standardizing access to management information in an enterprise environment.

The Word Application object

The Word object model makes it easy to manipulate Word .doc files as well as Rich Text Format (.rtf) files. Note
that its top-level object is the Application object.

Table 7-30. Some object models and their programmatic identifiers
Object ProgID Description

Access Access.Application The forms and reports (primarily) of an Access table

Connection ADODB.Connection An ADO database connection

DBEngine DAO.DBEngine The DAO object model, primarily for Access databases

Dictionary Scripting.Dictionary A high-performance alternative to arrays and collections for
keyed data

Excel Excel.Application The Microsoft Excel application, for manipulating spreadsheets
and charts

FileSystemObject Scripting.FileSystemObject Represents the local filesystem

Recordset ADODB.Recordset An ADO recordset

Session MAPI.Session A Session object using Collaborative Data Objects (CDO)

SWbemLocator WbemScripting.SWbemLocator A WMI object that provides access to WMI on a particular local or
remote host computer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SWbemObjectPath WbemScripting.SWbemObjectPath A WMI object that constructs and validates object paths

SWbemServices winmgmts: A WMI object whose InstancesOf method provides access to WMI
class instances

Word Word.Application The Microsoft Word application for manipulating documents

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. VBScript with Internet Explorer
VBScript was initially intended for client-side scripting. It provided a Visual Basic-like method for HTML developers to
add interactivity to their web pages. The hope was that since many developers were familiar with Visual Basic, a
scripting language modeled after the application development tool would have a wide audience. The basic concept
proved to be correct, although client-side scripting with VBScript never achieved the popularity its developers had
hoped for. This is because client-side scripting with VBScript has a major downside: VBScript is supported only in
Internet Explorer. This means that you have to either force your users to a specific browser (which is really only
possible on intranets), or script with both VBScript and some flavor of ECMAScript to make sure that you are providing
the same functionality to all users. This, however, does not mean that scripting in ECMAScript will answer all of your
compatibility issues, either.Netscape Navigator and Internet Explorer each have their own flavor of ECMAScript, which,
while mostly similar, still have their differences. Anyway, we'll assume that if you are reading this chapter that you are
interested in client-side scripting in Internet Explorer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 The <SCRIPT> Tag
Very much like the <A> tag is used to delimit a hyperlink on your web page, the <SCRIPT> tag is used to contain your
script. The <SCRIPT> tag allows scripts to be written inline with the rest of your HTML document, and indicates where
the embedded scripting code begins. It also indicates the scripting language, and therefore serves to identify which
particular scripting engine is responsible for handling the code. As with nearly all HTML tags, there is a corresponding
end tag (</SCRIPT>) to close the script.

8.1.1 <SCRIPT> Attributes

The <SCRIPT> tag has one main attribute, LANGUAGE, which is optional. There are also two additional attributes, SRC and
FOR, that give the <SCRIPT> tag a specialized meaning.

8.1.1.1 The LANGUAGE attribute

LANGUAGE is used to specify to the browser which scripting language engine is to compile and execute the code
contained within the script tags. In order to indicate that a script should be handled by the VBScript language engine,
either of the following two forms of the <SCRIPT> tag are acceptable:

<SCRIPT LANGUAGE="vbscript">
<SCRIPT LANGUAGE="vbs">

Unless otherwise stated, HTML tags or elements and attributes are not case-sensitive. Therefore, it would be legal to
include the following <SCRIPT> tag in an HTML document:

<script language="VBSCRIPT">

As we saw earlier, the language attribute is actually optional. However, if you do not specify the language, Internet
Explorer will, by default, treat the script as though it were JScript, and use theJScript language engine when compiling
and executing it.

Instead of the LANGUAGE attribute, it is possible to use the TYPE attribute to specify the scripting language. The value of
the TYPE attribute must be the MIME type of a scripting engine. The valid MIME types for VBScript are text/VBScript and
text/VBS. Hence, the following two <SCRIPT> tags are functionally identical:

<script language="VBSCRIPT">
<script type="text/VBScript">

8.1.1.2 The SRC attribute

The <SCRIPT> tag itself need not contain script. Instead, the <SCRIPT> tag, when used with the SRC attribute, can
designate ascript file to be included at that point in the HTML stream. The SRC attribute's value is the URL of the script
file to be included. When the SRC attribute is present, the LANGUAGE attribute should also be used. Otherwise, Internet
Explorer interprets the included script file as having the same language as the last script block parsed; if there is no
previous script block, it defaults to JScript. In addition, the </SCRIPT> end tag should immediate follow the <SCRIPT>
tag. For instance, the following tag includes a file named Include1.htm:

<SCRIPT SRC="Include1.htm" LANGUAGE="VBScript"> </SCRIPT>

The file designated by the SRC attribute should be purely a script file containing source code in the designated scripting
language; that is, it should contain no embedded HTML tags, not even the <SCRIPT> tag. Otherwise, an error results.

Note that the file designated by the SRC attribute is included in the HTML stream and is treated by the scripting engine
as if it were part of the HTML file in which it is included. This means, for instance, that attempting to "hide" global
variables from the scripts in the calling HTML document by declaring them private will not succeed, since the scripting
engine will see them as having been defined in the document from which you're trying to hide them.

The SRC attribute can be extremely useful in allowing you to make a code library accessible to your web pages. You
simply relocate all of the functions and procedures that you use in multiple web pages to a single script file and include
it in all of the web pages that require its functions and procedures. One of the obvious advantages of this approach is
that it leaves you with only a single copy of the source code to maintain, rather than with innumerable frequently
incompatible copies in a multiplicity of locations.

8.1.1.3 The FOR attribute

Strictly speaking, FOR is an attribute of the <SCRIPT> tag. However, we like to separate <SCRIPT> and <SCRIPT FOR> in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Strictly speaking, FOR is an attribute of the <SCRIPT> tag. However, we like to separate <SCRIPT> and <SCRIPT FOR> in
our minds, at least, since they are used somewhat differently. <SCRIPT FOR> is used to enclose the script for a single
event belonging to a single object or control, whereas <SCRIPT> can contain numerous functions, procedures, events,
etc. You can see this clearly in the full <SCRIPT FOR> tag. Unlike all the other <SCRIPT> tags you have seen thus far, this
line attaches its script to a specific event of a specific control:

<SCRIPT FOR="myButton" EVENT="onClick" LANGUAGE="vbscript">

The FOR attribute specifies which control (usually an intrinsic HTML object) the code is to be attached to, and the EVENT
attribute tells the scripting engine what event handler the <SCRIPT FOR> tag script is defining. To put it another way,
the <SCRIPT FOR> tag allows you to define an event handler for a control event without having to name that event
explicitly. For instance, Example 8-1 defines an event handler for the myButton_onClick event.

Example 8-1. The <SCRIPT FOR> tag

<HTML>
<BODY BGCOLOR="white">
<FORM NAME="myForm">
 <INPUT TYPE=text NAME="myText">
 <INPUT TYPE=button NAME="myButton">
 <SCRIPT FOR="myButton" EVENT="onClick" LANGUAGE="vbscript">
 alert Document.myForm.myText.Value
 </SCRIPT>
</FORM>
</BODY>
</HTML>

As you can see from Example 8-1, the VBScript Sub...End Sub construct is not required, since the event and object have
been specified in the <SCRIPT FOR> tag, and the script itself consists of a complete procedure. If you attempt to use the
Sub...End Sub construct, the VBScript compiler displays an error message. This means, incidentally, that the procedure
defined by the <SCRIPT FOR> tag does not have a name; consequently, it cannot be called from any other part of a
VBScript program. Also note that to improve readability, it is usual to place a <SCRIPT FOR> construct directly after the
object to which it relates.

8.1.2 Where to Place the <SCRIPT> Tag

The <SCRIPT> tag can be placed anywhere within the <HEAD> or <BODY> sections of an HTML document. There's also
no limitation on the number of <SCRIPT> sections you can place within a HTML file; you can have as many combinations
of <SCRIPT>...</SCRIPT> as you want. You may choose to bundle all your procedures together into one large <SCRIPT>
section and place this at the end of the BODY section, out of the way of the main HTML coding, or you could quite easily
split the procedures into their own <SCRIPT> sections, placing them near to or directly after the HTML elements they
refer to (or are called from). The three models or templates that appear in Examples Example 8-2 through Example 8-4
show where you can place the <SCRIPT> tag within your HTML document.

Example 8-2. Using a single <SCRIPT> section as part of the <HEAD> section

<HTML>
 <HEAD>
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 </HEAD>
<BODY>
various html coding, etc.
</BODY>
</HTML>

Example 8-3. Using a single <SCRIPT> section at the end of the <BODY> section

<HTML>
 <HEAD>
 </HEAD>
<BODY>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
</BODY>
</HTML>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-4. Using multiple <SCRIPT> sections within the <BODY> section

<HTML>
 <HEAD>
 </HEAD>
<BODY>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 Various HTML coding etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
</BODY>
</HTML>

8.1.3 Using <!——> with <SCRIPT>

Although certainly not mandatory, Microsoft recommends that you "comment out" the contents of the <SCRIPT> section
by using the HTMLcomment tags <!-- and -->. This prevents olderbrowsers that do not recognize the <SCRIPT> tag from
interpreting the script as plain text and displaying it on the HTML page, as illustrated in Figure 8-1.

Figure 8-1. An older browser displaying uncommented script as text

The comment tags <!-- and --> must be placed within the <SCRIPT> tags, as the following code fragment shows:

<SCRIPT LANGUAGE="vbscript">
 <!--
 Sub DoAScript

 End Sub
 -->
</SCRIPT>

Otherwise, the <SCRIPT> tags themselves will be ignored by all browsers. Since browsers are expected to overlook tags
that they don't understand, older browsers will skip over the <SCRIPT> tag. But since they don't "know" that the
<SCRIPT> tag marks the beginning of executable content, rather than of displayable text, they'll display the text unless
the comment tags are present. On the other hand, browsers that support the <SCRIPT> tag use the scripting engine to
interpret all text between the <SCRIPT> and </SCRIPT> tags. The HTML comment tags are ignored by the script engine,
so that it "sees" only the actual code. However, any additional comment tags, or any comment tags in any other
position within the <SCRIPT> and </SCRIPT> tags, are interpreted as script, and generate a syntax error. This means
that if you need to add comments to your code, don't use the HTML comment tags; use either REM or a single quotation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that if you need to add comments to your code, don't use the HTML comment tags; use either REM or a single quotation
mark (') at the start of the line.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 What Can You Do with Client-Side Scripting?
The three main things that you can do with client-side scripting are:

Interact with the client

Handle events

Validate data entry

These tasks are accomplished by manipulating the Internet Explorer Document Object Model (DOM). We'll examine
each of these uses in turn.

8.2.1 Interacting with the Client

First, let's take a look at a small script that displays a message to the user when the web page loads, as shown in
Figure 8-2; its HTML source is shown in Example 8-5. Don't worry about the code now; we'll take a more in-depth look
at it later.

Example 8-5. A little VBScript interactivity

<HTML>
<HEAD>
<Script Language = "VBSCRIPT">
sub window_onload
 msgbox "Welcome to my Website"
end sub
</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
</BODY>
</HTML>

This simple example will pop up a message box to the client when the page loads in the window. Not too complex, but a
nice touch — and more importantly, not something you can do without a scripting language. Let's take a little closer
look at what is happening here.

Figure 8-2. Web page produced by Example 8-5

First, we declare the subroutine in the <HEAD> section of the HTML page. This isn't required, but we highly recommend
it as good practice. Better to have all of your code in one place so you can find the subroutines faster when you need to
make corrections or changes.

The next section is the actual VBScript that has been written for this event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next section is the actual VBScript that has been written for this event:

sub window_onload
 msgbox "Welcome to my Website"
end sub

This should be a common sight for anyone who has written any VB or VBA code. Here we have declared a subroutine
that will fire when the page is being loaded. In this case, it will display a simple message box to the user welcoming
them to our site.

From this small example, it is easy to see how VBScript allows you to add some flavor and depth to your web pages.

Now that you've seen a small example, let's expand on it and add a little more interactivity. Our HTML source code is
shown in Example 8-6.

Example 8-6. A simple interactive web page

<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub window_onload
 msgbox "Welcome to my Website"
end sub

sub cmdMessage_onclick
 msgbox "Hello " & txtName.value
end sub

</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
<input type = "Text" Name = "txtName"/>

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit"/>
</BODY>
</HTML>

You'll notice that there are now two different subroutines in the <HEAD> section of the HTML document. In addition to
the original one from Example 8-1, there is now a new one that is tied to abutton that we have placed on the page.
Again, nothing too complex here, so we will walk through the new code quickly.

You can see that we have added a button to the form with the following line of HTML:

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">

We have named the button cmdMessage, and in the <HEAD> section of the document, we have created an event handler
for this button called cmdMessage_onclick. This event will fire every time this button is clicked. Let's take a look at what
the code does:

sub cmdMessage_onclick
 msgbox "Hello " & txtName.value
end sub

This should seem familiar to you by know. We are again calling the MsgBox function, but this time we are appending a
variable value to our message. In this code, we are referencing the value of the input box directly, but we could have
also used a declared variable as well:

sub cmdMessage_onclick
 dim txtUser
 txtUser = txtName.value
 msgbox "Hello " & txtUser
end sub

There is no real advantage to using a variable in this instance, but most of your code won't be this simple, so it is a
good idea to get used to handling user input or other information with variables.

8.2.2 Handling Events

The previous section demonstrated some simple code based on events that can be triggered from within a web page.
Before we discuss data validation, we should touch on the idea of event-driven programming and look at how we can
use VBScript to handle events that take place on your web pages. Table 8-1 displays some commonHTML intrinsic
controls and their associated events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-1. HTML intrinsic controls and their events
Control Event

Button OnClick

Check Box OnClick

Image OnClick

Form
OnReset

OnSubmit

Radio OnClick

Submit OnClick

Text

OnBlur

OnChange

OnFocus

OnSelect

Textarea

OnBlur

OnChange

OnFocus

OnSelect

Window OnLoad

This is by no means an exhaustive list, just some of the more common events that are available to you. For a complete
list of all of the HTML controls and their corresponding events, we recommendHTML & XHTML: The Definitive Guide,
Fifth Edition, by Chuck Musciano and Bill Kennedy (O'Reilly).

Most of the code that you write will be in response to some sort of action that the user takes. When you write code for a
specific event, it is called an event handler. In other words, you have created code that will be executed in response to
a specific event. The concept of event-driven programming is what makes VB and VBA so popular. In client-side
scripting, you have laid the framework with HTML, and you are using VBScript to respond to the way the user interacts
with the web page.

The code in Example 8-6 handles two different events, one when the window is loaded into the browser, and the other
when the user clicks on a button. Both of these event handlers use the method of appending the name of the event
being handled to the object name; the VBScript parser knows to associate this code with the proper event. In the case
of the button, it looked like this:

Sub btnUser_onclick
Msgbox "Display a message"
End Sub

This method is familiar to VB and VBA developers, since it is how event handlers are named within those two
environments.

In addition, you can use the <SCRIPT FOR> tag to explicitly declare the event that the code will be associated with. For
example:

<SCRIPT FOR="btnUser" EVENT="onclick" LANGUAGE="vbscript"
MsgBox "Display a message"
</SCRIPT>

As in most coding, this is really a matter of which style you prefer. Developers who have worked with VB and VBA may
prefer the implicit style, while HTML programmers adding VBScript to their toolbox may prefer the explicit method.
There is no functional difference between the two, so the choice is yours.

Now that we've had a look at how to write code for the events, let's look at putting that into a little more useful
practice. Next we'll take a look at data validation and how we can use VBScript to make sure that the user has entered
the correct data before we do anything important with it.

8.2.3 Data Validation

One of the best uses of client-side scripting is to check user input before processing it. Let's build on our earlier
example and add a simple routine to check whether data entered by the user meets our requirements. Example 8-7
asks the user to enter a user ID and then checks to make sure that she has entered only numeric data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-7. Simple data validation in client-side script

<HTML>
<HEAD>
<Script Language = VBSCRIPT>
sub window_onload
 msgbox "Welcome to my Website"
end sub

sub cmdMessage_onclick
 dim txtUser
 txtUser = txtName.value
 if isnumeric(txtUser) then
 msgbox "Number Accepted"
 else
 msgbox "Please enter a numeric value"
 end if
end sub
</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
<input type = "Text" Name = "txtName">
 Enter your ID Number

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">
</BODY>
</HTML>

First, we've added some instructions to our HTML to let the user know that we want him or her to enter a numeric user
ID. Second, we have made some changes to the onClick event for the Submit button. Now when the user submits the
information, an If statement is executed that checks whether the value the user entered is a number. If it is, the user
gets a message telling them that the value is correct; if not, the user is prompted to re-enter a correct value.

This is a good example of doing some basic data checking. Let's expand this and look at validating data that the user
has entered into a form. In order to do this, we'll need to expand our HTML a bit and add some new elements. Example
8-8 shows the result.

Example 8-8. Validating form data

<HTML>
<HEAD>
<Script Language = VBSCRIPT>

Function radUserChecked (grpState)
 dim intChkRadio
 radUserChecked = False
 For intChkRadio = 0 to grpState.Length -1
 If grpState(intChkRadio).Checked Then
 radUserChecked = True
 Exit Function
 end if
 Next
End Function

sub cmdMessage_onclick
 If radUserChecked(frmUser.radUserState) Then
 msgbox "Thank you for making a selection"
 else
 msgbox "Please select one of the choices"
 end if
end sub

</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<H1>Matt's Wonderful World of Web</H1>

<Form method=post id=frmUser name=frmUser>
New User
<Input Type = "Radio" id=radUserState name=radUserState value="New User">

Previous User
<Input Type = "Radio" id=radUserState name=radUserState value="Previous User">

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">
</FORM>
</BODY>
</HTML>

Here we have added a form to the HTML document. Inside the form, we have added two radio buttons. We want to
make sure that the user has checked one of the buttons before we submit any information. In order for all of the radio
buttons to be a group, you have to remember to give them the same name. Grouping the buttons allows us to loop
through the collection to make sure that one of them has been selected. We achieve this by creating the
radUserChecked function that will return a value to let us know the state of the group.

Next, let's look at how to handle whether data is submitted to the server. Ultimately, this is the reason that you are
performing data validation. Let's use the example of a web page that asks the user to submit an email address. First,
we will need to determine whether the user has entered anything; second, we will parse the text looking for an @
somewhere in the string. The web page is shown in Example 8-9.

Example 8-9. Cancelling form submission

<HTML>
<HEAD>
<Script Language="VBSCRIPT">
Function frmEmail_onsubmit()

Dim strEmail

strEmail = frmEmail.txtEmail.value

If strEmail = "" Then
 MsgBox "You must submit an email address"
 frmEmail_onsubmit = False
Else
 If InStr(1, strEmail, "@", vbTextCompare) = 0 Then
 MsgBox "You have not entered a valid email address"
 frmEmail_onsubmit = False
 Else
 MsgBox "Thanks for entering your Email"
 End If
End If

End Function

</Script>
</HEAD>
<BODY>
<Form action="getemail.asp" method=POST id=frmEmail
 name=frmEmail>
Please Enter Your Email Address

<INPUT type="text" id="txtEmail" name="txtEmail">

<INPUT type = "submit" value="Send Email" id=btnSubmit
 name=btnSubmit>
</Form>
</BODY>
</HTML>

In this example, we prevented the user from posting the form data without entering a valid email address. The event
handler for the HTML Form object's OnSubmit event (frmEmail_OnSubmit in our example) is a function, rather than a
subroutine, and the function's return value indicates whether the default action of the event — in the case of the
OnSubmit event, that the form data be submitted to the URL defined by the ACTION attribute — should occur. If the
function returns True (its default value), the form data is submitted. But if it returns False, the submission is cancelled.
In Example 8-9, when we detected that the user had not entered the correct data, we sent back a value of
frmEmail_onsubmit = False, which cancels the submit action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

frmEmail_onsubmit = False, which cancels the submit action.

As you can see, you can check and handle most user interaction with VBScript. The previous examples are pretty
straightforward, but don't be fooled by them. You can build in incredibly complex client-side scripting as needed. Now
let's move on to more interaction with the browser itself by taking a look at the Document Object Model.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Understanding the IE Object Model
Once the World Wide Web began to gain popularity, there was a great concern about preserving standards, so that the
exchange of information would remain as open as possible. The Document Object Model (DOM), like HTML, is one of
those standards. Basically, the Document Object Model provides a means for you to interact programmatically with the
document displayed by the browser. Both Netscape Navigator and Internet Explorer have a document object model;
however, there are some large differences between the two. Despite the presence of standards documents, there is
always room for interpretation. (If you are interested in reading more about the Document Object Model standards, or
any of the other standards that apply to the World Wide Web, see http://www.w3.org.)

We are going to take a look at the Internet Explorer Document Object Model. It is a rich environment that will allow you
a measure of control over the document in the browser. Before we jump in, let's have a quick look at the Document
Object Model itself and some of its parts. These are shown in Figure 8-3.

Figure 8-3. Internet Explorer Object Model

As you can see, the Window object is the parent of all of the other objects in this model. Each document will always
have at least one Window object. A Window object will always have at least one Document object. Without the
Document object, there would not be much for you to do with the Document Object Model. This figure shows the
hierarchical nature of the Document Object Model. Like many of the object models that Visual Basic developers work
with, you can access objects via their parent and use their properties to enhance your client-side development.

The object model is too extensive to document fully here. The next section displays some tables that describe the
properties and methods of some of the objects that are programmatically available in the DOM. These tables are not
exhaustive references to the objects; we have included the methods and properties that we consider to be the most
useful and interesting. This will give you an idea of the scope and power of the Document Object Model.

8.3.1 The Window Object

The Window object is the top-level object in the object model. When you reference the Window object, you are actually
interacting directly with the browser and the browser window itself. The Frame object in the object model is also just a
particular type of Window object — the same properties and methods that apply to the Window object apply to the
Frame object as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frame object as well.

Some of the Window object's significant properties are shown in Table 8-2; its methods appear in Table 8-3.

Table 8-2. Some properties of the Window object
Property Description

clientInformation Returns the navigator (or clientInformation) object, which provides information about the browser.

closed A Boolean value that can be checked to see if a window is still open.

event
Returns an event object that is accessible only from within an event handler. The event object
itself conveys a wealth of information (such as mouse location or keyboard status) about the
system environment when the event was fired.

history Returns the History object for the current window or frame.

location Sets or retrieves the URL of the document currently loaded in the window.

name The name of a frame or window.

parent Returns a reference to the parent window.

screen Returns a reference to the screen object.

status Returns or sets the text of the status bar in the browser.

top Returns a reference to the browser window (i.e., the top-level Window object).

Table 8-3. Some methods of the Window object
Method Description

alert Displays a dialog box with a message. Its syntax is Window.alert sMsg where sMsg is an optional string
containing the message.

blur Removes the focus from the window and fires the onBlur event. Its syntax is Window.blur.

clearTimeout
Turns off the timeout delay counter set in a previous call to the setTimeout method. Its syntax is
Window.clearTimeout iTimeoutID where iTimeoutID is the timeout setting returned by the previous call to
setTimeout.

close Closes the current window. Its syntax is Window.close.

execScript

Evaluates one or more script expressions in any scripting language embedded in the browser. Its
syntax is Window.execScript sExpression,sLanguage, where sExpression is a string that specifies the code to
be executed and sLanguage is an optional string that specifies the language of sExpression. The default
value of sLanguage is JScript.

focus Brings the window to the front of all regular browser windows and fires the onFocus event. Its syntax is
Window.focus.

navigate Loads a new document into the window or frame. Its syntax is Window.navigate sURL, where sURL is a
string containing the URL of the document to be loaded.

open

Opens a new window (but does not close the original one). Its syntax is Window.open(sURL, sName,
sFeatures, bReplace), where sURL is the optional URL of the document to be opened in the window (if
absent, the browser will open its default document), sName is the optional name of a window used as
the value of the TARGET attribute of the <FORM> or <A> tag, sFeatures is an optional string that can
contain a wide array of window configuration features, and bReplace is an optional Boolean that
indicates whether the new URL should replace the existing one in the browser's history list (True) or
whether an entry should be added (False). The method returns a reference to the new Window object.

print Starts the printing process for the window or frame. Its syntax is Window.print.

scroll
Sets the scrolled position of the document inside the current window or frame. Its syntax is
Window.scroll ix, iy, where ix and iy are the number of pixels to be offset horizontally and vertically in the
upper-left corner of the window.

showHelp
Displays a help window with the document specified by the URL parameter. Its syntax is
Window.showHelp sURL, vContextID where sURL is the URL of the help file and vContextID is an optional
context identifier that identifies a particular item within the help file.

8.3.2 The Document Object

The Document object represents the document displayed in a window or frame. Its properties are shown in Table 8-4
and its methods are listed in Table 8-5.

Table 8-4. Some properties of the Document object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-4. Some properties of the Document object
Property Description

activeElement Returns a reference to the object that currently has the focus within the document.

alinkColor Retrieves or sets thecolor of the hypertext link as it is clicked.

bgColor Retrieves or sets the background color of the element.

body Returns a reference to the Body object defined by the <BODY> element within the document.

domain Returns or sets the hostname of the server that served up the document.

fgColor Retrieves or sets the foreground color for the document.

linkColor Retrieves or sets the color of a hypertext link that hasn't been visited.

location Returns a location object that allows the URL of the current document to be retrieved or set.

vlinkColor Retrieves or sets the color of a link that has been visited recently.

Table 8-5. Some methods of the Document object
Method Description

clear Removes the document from the window or frame. Its syntax is Document.clear.

close Closes the document writing stream to a window or frame. Its syntax is Document.close.

createStyleSheet

Creates and adds a new stylesheet for the document. Its syntax is Document.createStyleSheet sURL,
iIndex where sURL is an optional string that specifies whether to add style information as a Link
object or as a Style object, and iIndex is an optional integer that indicates where the new stylesheet
is to be inserted in the styleSheets collection. By default, it is inserted at the end of the collection.
The method returns a reference to the new styleSheet object.

open

Opens a new window to receive output from the Write and WriteLn methods. Its syntax is
Document.open(sMimeType, sReplace), where sMimeType must be "text/html," and sReplace is an
optional string that indicates whether the new document replaces the existing one in the history list
(True) or not (False, the default). The method returns the new Document object.

write Allows for dynamic content to be added to the page. Must be called when the page is being
opened. Its syntax is Document.write sText, where sText is the text and HTML to be written.

8.3.3 The Elements Collection and HTML Intrinsic Controls

The Elements collection is a collection of all the HTML intrinsic objects contained in a form. You can access the Elements
collection with a code fragment like the following:

Dim oElements
Set oElements = Document.frmForm.Elements

where frmForm is the name of the form on which the Elements collection resides. The Elements collection has two read-
only properties:

length

Indicates the number of HTML intrinsic controls in the collection.

Item

Retrieves a specific HTML intrinsic control based on either its name or its ordinal position in the collection,
starting at 0. The highest ordinal position in the collection is one less than the value of the length property.

You can then access a particular control with a code fragment like:

Set oCtrl = Document.frmData.Elements.Item("txtName")

However, the Item property is the default member of the Elements collection, so this can be shortened to:

Set oCtrl = Document.frmData.Elements("txtName")

The default member of the Form collection is the Elements collection, though, so this statement can be further
shortened to:

Set oCtrl = Document.frmData("txtName")

or, even more clearly:

Set oCtrl = Document.frmData.txtName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set oCtrl = Document.frmData.txtName

Unfortunately, the way in which you programmatically work with an HTML intrinsic control depends on the control type;
HTML intrinsic controls do not have a uniform set of properties, methods, and events. Each, however, does have a type
property, which allows you to determine the type of control with which you are working.

The following sections will examine the HTML intrinsic controls and their most important properties, methods, and
events.

8.3.3.1 The textbox control

The HTML textbox control is defined by the <INPUT TYPE=Text> tag. Working with the textbox control is very
straightforward, and closely resembles working with a Visual Basic TextBox control or a VBA UserForm TextBox control.
The control's properties include the following:

Property Description

defaultValue The initial contents of the textbox, as defined by the VALUE attribute

name The name assigned to the textbox by the NAME attribute

type The type property of a textbox control is always "text"

value The contents or text of the textbox

The most useful methods of the textbox control (none of which take any parameters) are:

Method Description

Focus Moves the focus to the textbox control if it does not have the focus and fires its onFocus event

Select Selects or highlights all of the text contained in the control

Of the events supported by the textbox control, the following are most useful:

Event Description

onChange Fired when the contents of the textbox control have changed

onFocus Fired when the control receives the input focus

8.3.3.2 The checkbox control

The HTML Checkbox control is defined by the <INPUT TYPE=checkbox> tag. Working with the Checkbox control is very
straightforward, and closely resembles working with a Visual Basic checkbox control or a VBA UserForm checkbox
control. The control's properties include the following:

Property Description

checked A Boolean that reflects whether the control is checked

name The name assigned to the checkbox by the NAME attribute

type The type property of a checkbox control is always "checkbox"

The most useful methods of the checkbox control (none of which take any parameters) are:

Method Description

Click Simulates a click by causing the OnClick event to fire

Focus Moves the focus to the textbox control if it does not have the focus and fires its onFocus event

Of the events supported by the checkbox control, the following are most useful:

Event Description

onClick Fired when the user clicks on the checkbox

onFocus Fired when the control receives the input focus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onReadyStateChange Fired when the state of a checkbox has changed

8.3.3.3 The radio button control

The HTML radio button control is defined by the <INPUT TYPE=radio> tag. Because radio buttons reflect a set of two or
more mutually exclusive choices, there is always more than one radio button with the same name on a form. The
individual button's VALUE attribute determines which of those mutually exclusive choices the button represents, while
the presence of the CHECKED attribute causes it to be the selected button of the set.

Since multiple radio buttons have the same name in the Elements collection, you cannot retrieve the selected radio
button directly from the Elements collection. Instead, you must iterate the collection with the For Each...Next construct,
extract the button whose Selected property is True, and retrieve its value. The code to do this looks something like the
following:

Dim oElement, oElements, oRadio
Dim sValue

' Get reference to Elements collection
Set oElements = Document.frmTest.Elements

' Iterate collection looking for selected radio button
For Each oElement in oElements
 If oElement.Type = "radio" And oElement.Checked
 Set oRadio = oElement
 Exit For
 End If
Next

' Make sure a radio button was selected
If Not oRadio Is Nothing Then
 sValue = oRadio.Value
 ' Perform any other processing
End If

If the form has multiple sets of radio buttons, then you can look for the radio button of a particular name whose
Checked property is True.

The radio button control's properties include the following:

Property Description

checked A Boolean that indicates whether the radio button is selected

name The name assigned to the radio button by the NAME attribute

type The type property of a radio button control is always "radio"

value The option represented by this control in the set of radio button controls

The most useful methods of the radio button control (none of which take any parameters) are:

Method Description

Click Simulates a click by causing the OnClick event to fire

Focus Moves the focus to the textbox control if it does not have the focus and fires its onFocus event

Of the events supported by the radio button control, the following are most useful:

Event Description

onClick Fired when the user clicks on a radio button

onFocus Fired when the control receives the input focus

onReadyStateChange Fired when the state of a radio button has changed

8.3.3.4 The list box

A list box is defined by the <SELECT>...</SELECT> tag, with its individual items defined by <OPTION> tags. Depending on
whether the MULTIPLE attribute is present, multiple items can be selected at a single time. Each item in the list box is a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whether the MULTIPLE attribute is present, multiple items can be selected at a single time. Each item in the list box is a
member of the Options collection, which is returned by the list box's Options property. In a single-selection list, you can
determine the item selected by examining the SelectedIndex property. In a multiple-selection list, you can determine
which items are selected by iterating the Options collection and checking whether the item's Selected property is True.
If it is, you can retrieve the value of its Index and Text properties. The following code fragment illustrates this by
forming strings containing the index numbers of selected items and the text of selected items:

 Dim oElements, oDropDown, oOption
 Dim sSelected, sItems

 Set oElements = Document.frmTest.Elements
 Set oDropDown = oElements("lstColors")

 For each oOption in oDropDown.Options
 If oOption.Selected Then
 sSelected = sSelected & cStr(oOption.index) & vbCrLf
 sItems = sItems & oOption.Text & vbCrLf
 End If
 Next

The list box has the following properties:

Property Description

length The number of items in the list box.

multiple A Boolean value that indicates whether multiple items can be selected at the same time.

name The name of the drop-down list box, which corresponds to its NAME attribute.

options A collection of Option objects, each of which represents an item in the list box.

selectedIndex The index of the selected option. If the list box supports multiple selections, the selectedIndex
property reflects the index of the first selected item in the list.

type The type property of a drop-down list box is either "select-one" if the multiple property is False or
"select-multiple" if the multiple property is True.

The list box's most useful methods (none of which take any parameters) are:

Method Description

Click Simulates a click by causing the OnClick event to fire

Focus Moves the focus to the textbox control if it does not have the focus and fires its onFocus event

Of the events supported by the radio button control, the following are most useful:

Event Description

onChange Fired when a list box selection has changed

onClick Fired when the user clicks on the list box

onFocus Fired when the control receives the input focus

onScroll Fired when the user scrolls the list box

Individual Option objects, which represent individual items in the list box, have the following properties:

Property Description

index The ordinal position of the item in the Options collection. The first item is at position 0, and the last is at 1
less than the value of the list box's length property.

selected A Boolean value that indicates whether the item is selected. For single-selection lists, only one item can
return a True value for the selected property.

text The text used to describe the item in the list box.

8.3.3.5 Command button controls

HTML supports three types of buttons:

The Submit button (defined with an <INPUT TYPE=submit> tag), which submits form data to a web server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Submit button (defined with an <INPUT TYPE=submit> tag), which submits form data to a web server

The Reset button (defined with an <INPUT TYPE=reset> tag), which resets form data to its default values

A general-purpose command button (defined with an <INPUT TYPE=button> tag), whose function is defined
programatically

The three button types share a common set of properties and methods. The most commonly used properties are:

Property Description

name The name assigned to the button by the NAME attribute

type The type property of a button control is defined by the TYPE attribute and is either "submit," "reset," or
"button"

value The button's caption

The most commonly used methods are:

Method Description

Click Simulates a click by causing the OnClick event to fire

Focus Moves the focus to the button if it does not have the focus and fires its onFocus event

Finally, the most commonly used events are:

Event Description

onClick Fired when the user clicks on a command button.

onFocus Fired when the control receives the input focus.

onReset
Fired when the Reset button is clicked and before existing form data is reset to its default values. This
event handler is a function rather than a subroutine; by setting its return value to False, the reset
operation can be cancelled.

onSubmit
Fired when the Submit button is clicked and before form data is submitted to the web server. This event
handler is a function rather than a subroutine; by setting its return value to False, submission of form data
to the server can be cancelled.

8.3.4 The History Object

The History object represents the history list of recently opened documents. It has only one property, which is shown in
Table 8-6, and three methods, which are listed in Table 8-7.

Table 8-6. Property of the History object
Property Description

length Returns the number of items in the history list

Table 8-7. Methods of the History object
Method Description

back Allows for bringing previously viewed document to be loaded into a target window or frame. Its syntax is
History.back iDistance, where iDistance is the number of URLs to go back.

forward Navigates to the next item in the history array. Its syntax is History.forward.

go
Navigates to a specific position in the history listing. Its syntax is History.go vLocation where vLocation can be
an integer that indicates the relative position of the URL in the history list or a string that matches all or
part of a URL contained in the browser's history.

8.3.5 The Event Object

The Event object can be accessed inside of an event handler and provides additional information about that event. Its
major properties are listed in Table 8-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-8. Major properties of the Event object
Property Description

altKey A Boolean that indicates whether the Alt key was pressed when the event fired

button For mouse events, indicates which mouse button set off the event

ctrlKey A Boolean that indicates whether the Ctrl key was pressed when the event fired

fromElement Returns a reference to the object where the cursor had just been prior to the onMouseOver or
onMouseOut event

keyCode The Unicode key value for the keyboard that triggered the onKeyUp, onKeyDown, and onKeyPress
events

reason Returns a code associated with the onDataSetComplete event signifying the state of a data transfer

shiftKey A Boolean that indicates whether the Shift key was pressed when the event fired

srcElement Returns a reference to the element object that fired the current event

type Returns a string containing the name of the current event

8.3.6 Using the Document Object Model

Let's take a look at a simple example, Example 8-10, and then build on that until we are exploiting a few of the
different options available. It's not the most useful piece of code ever written, but it does demonstrate a piece of the
Document Object Model hierarchy.

Example 8-10. A simple example using the Document Object Model

<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub showme_onclick
 dim varTagName
 set varTagName = window.document.all(6)
 MsgBox varTagName.name
end sub

</SCRIPT>
</HEAD>
<BODY>
Demonstrates a simple use of the Document Object Model

<input type = "button" value = "Get Tag Name" name = "showme">
</BODY>
</HTML>

First, we declare a variable called varTagName in the showme_onclick event procedure. We will set this variable equal to
the value returned by the seventh member of the all collection, which corresponds to the seventh tag in the document.
In this instance, this is the input button that we have created. When the user clicks the button, this page will generate a
message box with the name of the tag. It is important to note here that tags are zero-based, so the first tag in the
document will actually be tag 0. You can also refer to the tag by its name.

In Example 8-11, we are using the hierarchy to work into the individual elements of a table. First we reference the table
by the tag name "table1," and then we can set the row and cell references after that. In this instance, we have given
the table a tag name so that we can easily refer to it. If you do not give your tags names, then you must work with
their index position on the page. If you look at the Name property of a tag with no name assigned, you will see the tag
definition.

Example 8-11. Using client-side scripting to create a table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-11. Using client-side scripting to create a table

<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub showme_onclick
 dim varRowCon
 dim varTableCon
 dim varCellCon

 set varTableCon = document.all("table1")
 set varRowCon = varTableCon.all(1)
 set varCellCon = varRowCon.all(2)
 MsgBox varCellCon.InnerText
end sub

</SCRIPT>
</HEAD>
<BODY>
<Table border=1 id="table1" name="table1">
<TR>
 <TD> This is Cell One </TD>
 <TD> This is Cell Two </TD>
 <TD> This is Cell Three </TD
</TR>
<TR>
 <TD> This is Cell One, Row Two </TD>
 <TD> This is Cell Two, Row Two </TD>
 <TD> This is Cell Three, Row Two </TD>
</TR>
</TABLE>

<input type = "button" value = "Show Cell" name = "showme">
</BODY>
</HTML>

The Document Object Model allows us to work with the individual elements on the page pretty effectively. You could
apply this type of logic to make dynamic changes based on user interaction. This is the basis of Dynamic HTML (DHTML)
coding. The Document Object Model is an active living concept, and there is currently an update to the standard being
considered. The nice thing is that with each iteration of the standard, the DOM has become a more powerful tool for
developers. For more information on DHTML, see Dynamic HTML: The Definitive Reference, Second Edition, by Danny
Goodman (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Windows Script Components
Windows Script Components (WSC) is a technology that allows programmers using scripting languages like VBScript to
create COM components (that is, components based on Microsoft's Component Object Model technology). Ordinarily,
COM component creation requires a compiled programming language, such as C++ or Visual Basic. Windows Script
Components relies on a runtime module (scrobj.dll) that handles the implementation details of COM, while a script file
parsed by the script engine contains the component definition.

The source code for a script component is stored in a Windows Script Component (.wsc) file. This is an XML file that
contains the component definition, along with the code for the properties, methods, and events that the component
exposes.

In addition, Windows Script Components supports interface handlers, which are compiled COM components that provide
the implementation for particular interfaces. Windows Script Components automatically provides support for the
interfaces necessary for COM automation, ASP, and DHTML.

Windows Scripts Components automates much of the process of creating a COM component by providing a wizard that
collects information on the component to be created and writes it to a .wsc file. To illustrate the operation of the wizard,
we'll create a simple math component.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 The Script Component Wizard
The opening screen of the Script Component Wizard is shown in Figure 9-1. Although the dialog contains a number of
text boxes, it is only necessary to enter the component name in the Name text box. The Script Component Wizard will
then automatically use this information to complete theFilename and Prog ID text boxes. However, each of these text
boxes, as well as theVersion and Location text boxes, can be manually overridden. The text boxes are described in the
following list:

Name

The name of the component.

Filename

The Windows Script Component (.wsc) file containing the component definition. If you specify an existing
filename, WSC will overwrite it with the new component definition.

Prog ID

The component's programmatic identifier. The programmatic identifier can be any string and is defined in the
system registry. Typically, it consists of two substrings separated by a period. For instance, the VBScript
CreateObject function, which creates a new instance of an object, takes a programmatic identifier as an
argument.

Version

The version number of the component. This has the format MajorVersion.MinorVersion.

Location

The path to the directory in which the .wsc file resides.

WSC allows you to define multiple components within a single .wsc file. This feature is not
supported, however, by the Script Component Wizard; if you attempt to assign a new
component to an existing .wsc file, the wizard overwrites the file containing the original
component. If you do want to create multiple components, you can use the wizard to
define the first component, and then use a text editor to define all remaining components.

Figure 9-1. The component definition dialog of the Script Component Wizard

For our example, we'll name the component MathLib. Figure 9-2 shows the completed dialog after we enter the
component name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-2. The component definition dialog for the MathLib component

The second screen, which is shown in Figure 9-3, allows you to define the general characteristics of the component,
such as its scripting language, the interface handlers it uses, and whether error checking and debugging are available
for the component at runtime.

By default, WSC supports three interface handlers: COM automation, ASP, and DHTML. Support for COM automation is
automatically added whenever you define a property, method, or event for the component. If the component is to be
used within Microsoft Internet Explorer, support for DHTML can be added by checking the "Use this scriptlet with DHTML
behaviors" check box. If the component is to be used in generating ASP pages, check the Support Active Server Pages
check box.

The runtime options check boxes allow you to determine whether any debugging features are enabled at runtime. The
"Error checking" check box allows the component to display a descriptive error message should an error occur in the
component when it is used. Ordinarily, the component will not display an error message, since recognizing and handling
the error is the responsibility of the client that instantiates the component. The Debugging check box allows the Script
Debugger to be launched if an error occurs. If this option is disabled, a runtime error simply terminates the program or
script without prompting the user to open the Script Debugger.

Figure 9-3. The component characteristics dialog of the Script Component Wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the case of our component, we'll uncheck the "Do you want special implements support" box to turn off support for
the ASP and DHTML interface handlers. And we'll leave error checking and debugging enabled.

The third screen, which is shown in Figure 9-4, allows you to define componentproperties. Properties are attributes or
descriptions of the state of component. Along with the property's name, you indicate whether the property is
read/write, read-only, or write-only. In addition, you can assign an optional default value to the property. For our
example MathLib component, define the properties as shown in Figure 9-4.

Figure 9-4. The properties definition dialog of the Script Component Wizard

The fourth screen, which is shown in Figure 9-5, allows you to define component methods, along with their parameters.
Each parameter is specified as a simple parameter name. Multiple parameters are separated from each other by
commas. The methods for our example MathLib component are shown in Figure 9-5.

Figure 9-5. The methods definition dialog of the Script Component Wizard

The fifth screen, shown in Figure 9-6, allows you to define theevents raised by the component. This simply requires that
you enter the name of the event. In the case of our example, we'll define one event, DivByZero. The sixth and final
screen simply summarizes the information that you've entered about thecomponent. Figure 9-7 shows the summary
dialog for our MathLib component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dialog for our MathLib component.

Figure 9-6. The events definition dialog of the Script Component Wizard

Figure 9-7. The summary dialog of the Script Component Wizard

When you click the Finish button, the wizard generates the .wsc file that contains the skeleton code needed by your
component. All that you have to do is to write the script required by your component's properties, methods, and events.
In order to do this, however, it is useful to know something about the format of a .wsc file.

The MathLib.wsc file produced by the Script Component Wizard is shown in Example 9-1. It begins with an <?xml ?> tag,
which is automatically inserted by the wizard and is required if the file is to be edited using an XML editor; otherwise, it
is optional. Its presence indicates that the file is to be parsed using strict XML syntax.

Example 9-1. The MathLib.wsc file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-1. The MathLib.wsc file

<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="MathLib"
 progid="MathLib.WSC"
 version="1.00"
 classid="{ca624be4-9313-4d4a-9f1b-d585f50b321a}"
>
</registration>

<public>
 <property name="Pi">
 <get/>
 </property>
 <property name="E">
 <get/>
 </property>
 <property name="Value">
 <get/>
 <put/>
 </property>
 <method name="IsEven">
 <PARAMETER name="number"/>
 </method>
 <method name="IsOdd">
 <PARAMETER name="number"/>
 </method>
 <method name="Min">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
 <method name="Max">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
 <method name="Divide">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

dim Pi
Pi = 3.14159
dim E
E = 2.71828
dim Value

function get_Pi()
 get_Pi = Pi
end function

function get_E()
 get_E = E
end function

function get_Value()
 get_Value = Value
end function

function put_Value(newValue)
 Value = newValue
end function

function IsEven(number)
 IsEven = "Temporary Value"
end function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end function

function IsOdd(number)
 IsOdd = "Temporary Value"
end function

function Min(number1, number2)
 Min = "Temporary Value"
end function

function Max(number1, number2)
 Max = "Temporary Value"
end function

function Divide(number1, number2)
 Divide = "Temporary Value"
end function

]]>
</script>

</component>

Note that the beginning and end of our MathLib component definition is signaled by the <component> and </component>
tags. If multiple components are stored in a single file, <package> and </package> tags that surround all component
definition tags are required. The <?component ?> tag defines attributes for runtime error handling. It is only inserted by
the wizard if either runtime error handling or debugging are enabled; otherwise, it is omitted. If you've selected the
defaults and nevertheless want to add it, it takes the following form:

<?component error="false" debug="false" ?>

The <registration>...<registration> tag provides the registration information needed to identify and create an instance of
the component. This includes a description or friendly name for the component, its programmatic identifier and version
number, and finally a globally unique identifier (GUID) that uniquely identifies the component. Eventually, the
information provided by the <registration> tag is entered into the system registry.

The <public>...</public> tag defines a component's public interface. Information on all of the properties (indicated by the
<property> tag), methods (indicated by the <method> tag), and events (indicated by the <event> tag, which is not shown
in Example 9-1) exposed by the component is stored here. The presence of the <public> tag also indicates that the
component will use the COM automation interface handler.

The <property> tag has a name attribute that defines the property name, as well as one or two subelements. If the
property is read-only, it has a <get> element, which indicates that a property value can be retrieved. If the property is
write-only, it has a <put> element, which indicates that a property value can be assigned. And if the property is read-
write, it has both a <get> and a <put> element.

The <method> tag has a name attribute as well as zero, one, or more <parameter> subelements that indicate the names
of the method parameters.

The <public> tag can also have one or more <event> subelements that indicate the event name. This syntax means,
incidentally, that we cannot define events that supply arguments to event handlers. But although we've defined an
event for our MathLib component, as Figure 9-6 shows, the <event> element has not been added to our .wsc file. If we
want our component to fire events, we have to add the <event> element manually.

The <property> and <method> elements are responsible for defining the public interface members of a component, but
they do not provide an implementation. The actual operation of properties and methods is determined by code within
the <script>...</script> tags. As Example 9-1 shows, in addition to providing the <script>...</script> tags, the Script
Component Wizard creates a template for each of the component's properties and methods. Both member types,
however, are implemented in code as methods. Property accessor methods (that is, methods responsible for retrieving
a property value) are named by prepending the string get_ to the property name. Property mutator methods (methods
responsible for assigning a value to a property) are named by prepending the string put_ to the property name. The
value to be assigned to a property is represented by the newValue parameter.

In addition to providing a template in which we can supply code to define the operation of our component's public
methods, the Script Component Wizard also handles defining a default value to a property. In the case of our read-only
Pi property, for instance, it defines a variable named Pi (which is not the same as the Pi property) to which it assigns
the default value 3.14159.

In the next section, we'll complete our component by writing the code for its public members. In the process, we'll look
at some of the issues involved in developing components using WSC.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Writing Component Code
For the most part, Example 9-2, which shows the completed script block for our MathLib component, contains
straightforward VBScript code. Only handling the DivByZero event, which will be discussed in Section 9.4.1 later in this
chapter, requires comment.

Example 9-2. Script block for the MathLib component

<script language="VBScript">
<![CDATA[

dim Pi
Pi = 3.14159
dim E
E = 2.71828
dim Value

function get_Pi()
 get_Pi = Pi
end function

function get_E()
 get_E = E
end function

function get_Value()
 get_Value = Value
end function

function put_Value(newValue)
 Value = newValue
end function

function IsEven(number)
 IsEven = (number/2 = number\2)
end function

function IsOdd(number)
 IsOdd = Not IsEven(number)
end function

function Min(number1, number2)
 If number1 < number2 Then
 Min = number1
 Else
 Min = number2
 End If
end function

function Max(number1, number2)
 If number1 > number2 Then
 Max = number1
 Else
 Max = number2
 End If
end function

function Divide(number1, number2)
 If number2 = 0 Then
 fireEvent "DivByZero"
 Divide = 0
 Else
 Divide = number1/number2
 End If
end function

]]>
</script>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Using the Component
Once you've generated the .wsc file and written its code, there are two additional steps that may be required before
you can use the component, depending precisely on how the component is to be used.

9.3.1 Registration

In most cases, unless the component is to be used exclusively to interface with DHTML in Microsoft Internet Explorer, it
should be registered. The registration process stores information about the component that is needed to identify,
locate, and activate it in the system registry. You can register your component in one of two ways:

By right clicking on the file in Windows Explorer and selecting the Register option from the context menu.

By typing the following from the command line:

regsvr32 <componentFilename>

where componentFilename is the name and extension of the .wsc file to be registered.

When registration has succeeded, a dialog appears that reads DllRegisterServer and DllInstall in <path>\scrobj.dll succeeded.

9.3.2 Instantiating the Component

If you're using the component from VBScript, youinstantiate a script component like you would any other object—by
calling the CreateObject function and passing it the programmatic identifier of the object to be created. You can then
access the component's members. For instance, Example 9-3 shows a Windows Script Host script that instantiates the
MathLib component and accesses each of its members. Programmatically, the scripted component is handled identically
to a binary COM component.

Example 9-3. Using the MathLib component

Dim math, sMsg
' Instantiate script component
Set math = CreateObject("MathLib.WSC")
WScript.ConnectObject math, "math_"

' Set and retrieve Value property
math.Value = 12.121
sMsg = "Value: " & math.Value & vbCrLf

' Retrieve read-only properties
sMsg = sMsg & "Pi: " & math.Pi & vbCrLf
sMsg = sMsg & "E:" & math.E & vbCrLf

' Call Min/Max methods
sMsg = sMsg & "Min: " & math.Min(10, 10.3) & vbCrLf
sMsg = sMsg & "Max: " & math.Max(1000,200) & vbCrLf

' Call Divide method
sMsg = sMsg & "Divide by 10: " & math.Divide(100, 10) & vbCrLf
sMsg = sMsg & "Divide by 0: " & math.Divide(2, 0) & vbCrLf

' Call IsEven/IsOdd methods
sMsg = sMsg & "Even: " & math.IsEven(12) & vbCrLf
sMsg = sMsg & "Even: " & math.IsEven(1) & vbCrLf
sMsg = sMsg & "Odd: " & math.IsOdd(12) & vbCrlf
sMsg = sMsg & "Odd: " & math.IsOdd(3) & vbCrlf

MsgBox sMsg

Public Sub math_DivByZero
 Dim eMsg
 eMsg = "Division by Zero Error " & vbCrLf & vbCrLf
 eMsg = eMsg & Err.Number & ": " & Err.Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 eMsg = eMsg & Err.Number & ": " & Err.Description
 eMsg = eMsg & Err.Source
 MsgBox eMsg
End Sub
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 WSC Programming Topics
For the most part, the Script Component Wizard succeeds in automating the process of creating a script component so
that you can focus on the code needed to implement your component's logic, rather than on the code needed to
implement basic "plumbing" so that the component can work properly. In a number of areas, however, WSC offers
functionality that either requires some additional coding or that extend the functionality of VBScript in significant ways.
These include handling events, using interface handlers, taking advantage of resources, and building object models.

9.4.1 Handling Events

VBScript itself provides no native support for firing or handling custom events. Its support for events is limited to the
Initialize and Terminate events, which are fired when a new instance of a class defined by the Class...End Class construct
is created or destroyed, respectively. (And, in fact, they're not real events: the scripting runtime simply calls the
routines if they're present.) Support for any other events must be provided by the environment in which VBScript is
running.

In the case of Windows Script Components, WSC requires that an event be declared using the <event> element. Its
syntax is:

<event name="event_name" dispid="dispid" />

where name defines the name of the event, and dispid is an optional attribute that assigns the event's dispatch ID.
Ordinarily, WSC automatically provides a dispatch ID to identify an event. You might want to provide your own dispatch
ID to map a custom event to a standard COM event, or to insure that dispatch IDs remain the same across different
versions of your component.

Once the event is defined, you can fire it from your code. For this, you use the WSC fireEvent method. Its syntax is:

fireEvent eventName[,...]

where eventName is a string containing the name of the event to be fired. Multiple events can be fired by separating
them from one another with a comma. The use of the fireEvent method is illustrated by the boldface line of code in
Example 9-3.

Once the event is fired, it must also be handled by the client application using the event definition facilities provided by
the client environment. Example 9-3, shown earlier in Section 9.3.2, illustrates how an event is handled in a WSH
script. In the code, the ConnectObject method of the WScript object is invoked to indicate that the script should receive
event notifications for the math object.

9.4.2 Using an Interface Handler: ASP

The <implements> element in a .wsc file allows you to define the interface handlers that are available to your script. The
element's syntax is:

<implements type="handlerName" id="sourceCodeName" assumed=fAssumed >
</implements>

The <implements> element has the following attributes:

type

The name of the interface handler. In scrobj.dll WSC provides an ASP handler for Active Server Pages and a
Behavior handler for DHTML. A third handler for COM automation is automatically referenced without an
<implements> element if the <public> element is encountered in a .wsc file.

id

An optional element that defines the name by which the interface handler will be referenced in code. Since
referenced interfaces are in the script's global namespace (that is, they do not have to be referenced through
an interface object), id is typically used only to uniquely identify an object or member when there is a naming
conflict between multiple interfaces.

assumed

An optional Boolean that determines whether the value of the internalName attribute is assumed in scripts, so
that the referenced interface resides in the script's global namespace and does not have to be referenced
through an object. By default, its value is true.

Ordinarily, once the interface handler is defined, interface classes and members can be referenced as if they were
native to the component. In the case of ASP, for instance, an implements element like:

<implements type="ASP" id="ASP"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<implements type="ASP" id="ASP"/>

means that the ASP intrinsics are globally accessible to a WSC component. As a result, the number of items in the
Contents collection of the Application object, for instance, can be retrieved with the following line of code, which is
identical to the code that would be used within an Active Server Page itself:

Dim iCount = Application.Contents.Count
iCount = Application.Contents.Count

Example 9-4 shows a simple ASP component that displays information from the intrinsic ASP Request object. Although
most of the code is straightforward, several features are worth noting:

Since ASP objects are available in the component's global namespace, they can be accessed without referencing
the interface handler. The user agent string in the ServerVariables collection, for instance, could be accessed
as:

ASP.Request.ServerVariables("Http_User_Agent")

but is instead accessed in Example 9-4 as:

Request.ServerVariables("Http_User_Agent")

WSC supports parameterized properties. For instance, the Value property has a name parameter that contains
the key whose value is to be retrieved. Implementing a parameterized property simply requires editing the .wsc
file with a text editor to add a <parameter> element.

In addition to scalar values, properties can return arrays, objects, or collections. In Example 9-4, for instance,
the Values property returns the ASP Form collection object.

Example 9-4. A simple component for ASP

<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="ASPInfo"
 progid="ASPInfo.WSC"
 version="1.00"
 classid="{783106e5-f78e-402d-b16f-b78e20d2e0b2}"
>
</registration>

<public>
 <property name="Browser">
 <get/>
 </property>
 <property name="ServerName">
 <get/>
 </property>
 <property name="RemoteAddress">
 <get/>
 </property>
 <property name="Value">
 <PARAMETER name="name"/>
 <get/>
 </property>
 <property name="Values">
 <get/>
 </property>

</public>

<implements type="ASP" id="ASP"/>

<script language="VBScript">
<![CDATA[

dim Browser
dim RemoteAddress
dim Values

function get_Browser()
 get_Browser = Request.ServerVariables("HTTP_USER_AGENT")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 get_Browser = Request.ServerVariables("HTTP_USER_AGENT")
end function

function get_ServerName()
 get_ServerName = Request.ServerVariables("SERVER_NAME")
end function

function get_RemoteAddress()
 get_RemoteAddress = Request.ServerVariables("REMOTE_ADDR")
end function

function get_Value(name)
 get_Value = Server.HtmlEncode(Request.Form.Item(name))
end function

function get_Values()
 set get_Values = Request.Form
end function

]]>
</script>

</component>

Example 9-5 provides the HTML source for a page that requests the ASP page whose listing appears in Example 9-6.

Example 9-5. An HTML page

<HTML>
<HEAD><TITLE>Using an ASP Component</TITLE></HEAD>
<BODY>
Enter your name:
<FORM METHOD="POST" ACTION="AspInterface.asp">
<INPUT TYPE="text" NAME="name" SIZE=20> <P>
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

Example 9-6. An ASP page that uses a Windows Script Component

<%
Dim info
Set info = CreateObject("ASPInfo.WSC")
Response.Write "Your Browser: " & Info.Browser & "
"
Response.Write "Server Name: " & info.ServerName & "
"
Response.Write "Your IP Address: " & info.RemoteAddress & "
"
Response.Write "Your Name: " & Server.HTMLEncode(info.Value("name")) & "
"
%>

9.4.3 Using Resources

Typically, strings are handled by hardcoding their values throughout one or more scripts. This creates a maintenance
nightmare when the strings need to be modified or localized. To deal with this problem, WSC offers the <resource>
element, which allows a value to be associated with a resource identifier. The syntax of the resource element is:

<resource id="resourceID">value</resource>

resourceID must be a string that uniquely identifies the resource in the component; it is, in other words, a key value.
value is the string or number that is associated with the resource identifier.

Example 9-7 illustrates one possible way to use resources. The component has a SayHello method that returns a string
in one of four languages. The language name serves as the key or resource ID that provides access to the localized
string. The user can then select his native language from a drop-down list box (see the HTML page in Example 9-8). An
ASP page (see Example 9-9) instantiates the component, retrieves the user's name and language choice from the
Request object's Form collection, and uses the language as the key to look up the localized version of the greeting.

Example 9-7. A component that uses resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-7. A component that uses resources

<?xml version="1.0"?>
<component>

<registration
 description="Greeting"
 progid="Greeting.WSC"
 version="1.00"
 classid="{6c7d1aec-fed2-42b1-bc79-2e87cf34ad9b}" >
</registration>

<public>
 <method name="SayHello">
 <PARAMETER name="language"/>
 </method>
</public>

<resource id="English">Good day</resource>
<resource id="Croat">Dobar dan</resource>
<resource id="French">Bonjour</resource>
<resource id="German">Guten tag</resource>

<script language="VBScript">
<![CDATA[

function SayHello(language)
 SayHello = getResource(language)
end function

]]>
</script>

</component>

Example 9-8. HTML page allowing the user to select a language

<HTML>
<HEAD><TITLE>Using a Resource</TITLE></HEAD>
<BODY>
Enter your name:
<FORM METHOD="POST" ACTION="Resource.asp">
<INPUT TYPE="text" NAME="name" SIZE=20> <P>
Your native language:
<SELECT NAME="language" size="1">
 <OPTION>English
 <OPTION>French
 <OPTION>Croat
 <OPTION>German
</SELECT> <P>
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

Example 9-9. ASP page that uses the Greeting component

<%
Dim greet, lang, name

Set greet = CreateObject("Greeting.WSC")

lang = Request.Form.Item("language")
name = Request.Form.Item("name")
If Not name = "" Then
 Response.Write greet.SayHello(lang) & ", " & name
Else
 Response.Write "You have failed to provide us with your name."
End If
%>

9.4.4 Building an Object Model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Often when you work with your component, you don't want to instantiate just one object. Instead, you want to
instantiate a parent object, which in turn builds a hierarchy of child objects.

To build an object model in this way with Windows Script Component, you can include multiple components in your .wsc
file. This requires some modification to the basic .wsc file created by the Script Component Wizard:

If multiple components are defined in the same .wsc file, a <package> tag within which all <component> tags are
nested must be included.

Each <component> tag must include the optional id attribute, which defines the name by which the component is
referenced within the .wsc file.

You can then instantiate all but the parent or top-level component by calling the Windows Script Component's
createComponent method. Its syntax is:

Set object = createComponent(componentID)

where object is the variable that will contain the object reference, and componentID is the name assigned to the
component by the id attribute of the <component> element.

Example 9-10 illustrates the use of the createComponent method to instantiate child components. A parent Workgroup
object contains a Users component, which in turn contains zero or more User components. When the workgrp
component is instantiated, a users object is also automatically instantiated; it is accessible only through the workgrp
object's Users property. When the users object's Add method is called, a user object is added to the array held by the
users object.

Example 9-10. A three-component object model

<?xml version="1.0"?>
<package>
<component id="workgrp">
<registration
 description="Workgroup"
 progid="Workgrp.WSC"
 version="1.00"
 classid="{6f4d2531-a891-4e8e-9b17-e05603eefee2}"
>
</registration>

<public>
 <property name="Users">
 <get/>
 </property>
 <property name="name">
 <get/>
 </property>
</public>

<script language="VBScript">
<![CDATA[

dim Users, workgroupName

workgroupName = "MyWorkgroup"
Set users = createComponent("Users")

Function get_Users()
 set get_Users = users
End Function

Function get_name()
 get_name = workgroupName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 get_name = workgroupName
End Function
]]>
</script>

</component>

<component id="Users">

<registration progid="users.wsc" />

<public>
 <method name="Add" />
 <method name="Item" dispid="0">
 <parameter name="index" />
 </method>
</public>

<script language="VBScript">
<![CDATA[

Dim ctr, userArray(10)

Sub Add()
 Dim username
 username = InputBox("Enter name of user: ", "User Name")

 If Not username = "" Then

 Set usr = createComponent("user")

 usr.Name = username

 If ctr > 0 And ctr Mod 10 = 0 Then
 ReDim Preserve userArray(UBound(userArray)+10)
 End If

 Set userArray(ctr) = usr

 ctr = ctr + 1
 End If
End Sub

Function Item(index)
 Set Item = userArray(index)
End Function

]]>
</script>

</component>

<component id="user">

<registration progid="user.wsc" />

<public>
 <property name="Name">
 <get />
 <put />
 </property>
</public>

<script language="VBScript">
<![CDATA[

Dim userName

Function get_Name()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function get_Name()
 get_Name = userName
End Function

Function put_Name(newValue)
 userName = newValue
End Function

]]>
</script>

</component>

</package>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: Reference
This section consists of only a single very long chapter, Chapter 10, which contains an alphabetic
reference to VBScript language elements.

The chapter documents the following:

Statements, like Dim or For Each.

Functions, like Format or InStr.

The Scripting Runtime object models: the File System object model and the Dictionary object
model. Here you'll find complete documentation of all of the objects, along with their properties
and methods.

When you're looking for a particular language element but don't quite remember what it's called, an
alphabetic reference is of little value. For this reason, we've included Appendix A. Finally, VBScript
operators aren't included in this section. Instead, you'll find them discussed in Appendix C.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. The Language Reference
The elements of the VBScript language can be broken into four main areas: statements, functions, operators, and
object models.

Statements

Statements form the cornerstone of the language. You'll notice in Appendix A that the largest concentration of
statements is in the program structure section. Statements are used mainly for such tasks as declaring
variables or procedures.

Functions

In general, functions return a value, although, as with any function, you can choose to ignore the return value.

Operators

An operator connects or performs some operation upon one or more language elements to form a single
expression. For example, in the code fragment:

strResult = 16 + int(lngVar1)

the addition operator (+) combines 16 and the value returned by int(lngVar1) into a single expression whose
value is assigned to the variable strResult. Operators are not documented in this chapter but are listed in
Appendix C.

Object models

An integral part of VBScript is the Microsoft Scripting Runtime, which provides an add-on library containing the
Dictionary object (which is similar to a Perl associative array) and the FileSystemObject object (which provides
access to a local filesystem). Because of their significance, both object models are fully documented in this
book.

VBScript is a high-level language and, like all high-level languages, it is a large yet rich language. While this means that
it takes time for new users to understand the intricacies of the functions and statements available to them, at the same
time, the language's syntax is straightforward, logical, and easy to understand.

To speed the process of finding the right function or statement to perform a particular task, you can use Appendix A to
determine what language elements are available for the purpose you require.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Abs Function

Syntax

result = Abs(number)

number

Use: Required

Data Type: Any valid numeric expression

A number or a string representation of a number.

Return Value

The absolute value of number. The data type is the same as that passed to the function if number is numeric, and Double
if it is not.

Description

Returns the absolute value of a number (i.e., its unsigned magnitude). For example, Abs(-1) and Abs(1) both return 1.

Rules at a Glance

number can be a number, a string representation of a number, an object whose default property is numeric, or a
Null or Empty.

If number is Null, the function returns Null.

If number is an uninitialized variable or Empty, the function returns zero.

See Also

IsNumeric Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Array Function

Syntax

Array([element1], [elementN],....)

element

Use: Optional

Data Type: Any

The data to be assigned to the first array element.

elementN

Use: Optional

Data Type: Any

Any number of data items you wish to add to the array.

Return Value

A variant array consisting of the arguments passed into the function.

Description

Returns a variant array containing the elements whose values are passed to the function as arguments.

The code fragment:

Dim vaMyArray
vaMyArray = Array("Mr", "Mrs", "Miss", "Ms")

is similar to writing:

Dim vaMyArray(3)
vaMyArray(0) = "Mr"
vaMyArray(1) = "Mrs"
vaMyArray(2) = "Miss"
vaMyArray(3) = "Ms"

Because Array creates a variant array, you can pass any data type, including objects, to the Array function. You can
also pass the values returned by calls to other Array functions to create multidimensional arrays; these kinds of arrays
are called "ragged" arrays.

Rules at a Glance

Although the array you create with the Array function is a variant array data type, the individual elements of
the array can be a mixture of different data types.

The initial size of the array you create is the number of arguments you place in the argument list and pass to
the Array function.

The lower bound of the array created by the Array function is 0.

The array returned by the Array function is a dynamic rather than a static array. Once created, you can
redimension the array using Redim, Redim Preserve, or another call to the Array function.

If you don't pass any arguments to the Array function, an empty array is created. Although this may appear to
be the same as declaring an array in the conventional manner with the statement:

Dim myArray()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim myArray()

the difference is that you can then use the empty array with the Array function again later in your code.

Example

<%
Dim myArray
myArray = Array(100, 2202, 3.3, 605, 512)
Response.Write myArray(2)
%>

Programming Tips and Gotchas

The Array function was not present in the first version of VBScript and was added to the language in Version 2.

You cannot assign the return value of Array to a variable previously declared as an array variable. Therefore,
don't declare the variant variable as an array using the normal syntax:

Dim MyArray()

Instead, simply declare a variant variable, such as:

Dim MyArray

The Array function is ideal for saving space and time and for writing more efficient code when creating a fixed
array of known elements, for example:

Dim Titles
Title = Array("Mr", "Mrs", "Miss", "Ms")

You can use the Array function to create multidimensional arrays. However, accessing the elements of the array
needs a little more thought. The following code fragment creates a simple two-dimensional array with three
elements in the first dimension and four elements in the second:

Dim vaListOne

vaListOne = Array(Array(1, 2, 3, 4), _
 Array(5, 6, 7, 8), _
 Array(9, 10, 11, 12))

Surprisingly, the code you'd expect to use to access the array returns a "Subscript out of range" error:

'This line generates a Subscript out of range error
Response.Write vaListOne(1, 2)

Instead, since this is an array stored within an array (that is, a ragged array), you can access it as follows:

Response.Write vaListOne(1)(2)

Because you declare the variant variable to hold the array as a simple variant, rather than an array and can
then make repeated calls to Array, the function can create dynamic arrays. For example, the following code
fragment dimensions a variant to hold the array, calls Array to create a variant array, then calls Array again to
replace the original variant array with a larger variant array:

Dim varArray
varArray = Array(10,20,30,40,50)
...
varArray = Array(10,20,30,40,50,60)

The major disadvantage of using this method is that while it makes it easy to replace an array with a different
array, it doesn't allow you to easily expand or contract an existing array.

VBA/VBScript Differences

Unlike Visual Basic, VBScript does not contain an Option Base statement; therefore, arrays created in VBScript using the
Array function have a lower boundary of 0. That is, the first element of the array will always be accessed using an index
value of 0.

See Also

Dim Statement, LBound Function, ReDim Statement, UCase Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Asc, AscB, AscW Functions

Syntax

Asc(string)
AscB(string)
AscW(string)

string

Use: Required

Data Type: String

Any expression that evaluates to a string.

Return Value

An integer that represents the character code of the first character of the string.

Description

Returns the ANSI (in the case of Asc) or Unicode (in the case of AscW) character code that represents the first
character of the string passed to it. All other characters in the string are ignored. The AscB function returns the first
byte of a string.

Rules at a Glance

The string expression passed to the function must contain at least one character, or a runtime error (either
"Invalid use of Null" or "Invalid procedure call or argument") is generated.

Only the first character of the string is evaluated by Asc, AscB, and AscW.

Use the AscW function to return the Unicode character of the first character of a string.

Use the AscB function to return the first byte of a string containing byte data.

Example

<%
Dim sChars
Dim iCharCode

sChars = Request.Form("chars")
If Len(sChars) > 0 Then
 CharCode = Asc(sChars)
 If iCharCode >= 97 And iCharCode <= 122 Then
 Response.Write "The first character must be uppercase"
 Else
 Response.Write iCharCode
 End If
End If
%>

Programming Tips and Gotchas

Always check that the string you are passing to the function contains at least one character using the Len
function, as the following example shows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function, as the following example shows:

If Len(sMyString) > 0 Then
 iCharCode = Asc(sMyString)
Else
 Response.Write "Cannot process a zero-length string"
End If

Surprisingly, although the VBScript documentation shows that the data type of the parameter passed to the Asc
function is String, it can actually be any data type. Evidently the Asc routine converts incoming values to strings
before extracting their first character. Try this quick example for yourself:

<%
sChars = 123
Response.Write Asc(sChars)
%>

Use Asc within your data validation routines to determine such conditions as whether the first character is
upper- or lowercase and whether it's alphabetic or numeric, as the following example demonstrates:

Function CheckText (sText)

Dim iChar

If Len(sText) > 0 Then
 iChar = Asc(sText)
 If iChar >= 65 And iChar <= 90 Then
 CheckText = "The first character is UPPERCASE"
 ElseIf iChar >= 97 And iChar <= 122 Then
 CheckText = "The first character is lowercase"
 Else
 CheckText = "The first character isn't alphabetical"
 End If
Else
 CheckText = "Please enter something in the text box"
End If

End Function

See Also

Chr, ChrB, ChrW Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Atn Function

Syntax

Atn(number)

number

Use: Required

Data Type: Numeric

Any numeric expression, representing the ratio of two sides of a right angle triangle.

Return Value

The return value is a Double representing the arctangent of number in the range -pi/2 to pi/2 radians.

Description

Takes the ratio of two sides of a right triangle (number) and returns the corresponding angle in radians. The ratio is the
length of the side opposite the angle divided by the length of the side adjacent to the angle.

Rules at a Glance

If no number is specified, a runtime error is generated.

The return value of Atn is in radians, not degrees.

Example

<%
Const Pi = 3.14159
 Dim dblSideAdj, dblSideOpp
 Dim dblRatio, dblAtangent, dblDegrees

 dblSideAdj = 50.25
 dblSideOpp = 75.5

 dblRatio = dblSideOpp / dblSideAdj
 dblAtangent = Atn(dblRatio)
 ' convert from radians to degrees
 dblDegrees = dblAtangent * (180 / Pi)
 Response.Write dblDegrees & " Degrees"
%>

Programming Tips and Gotchas

To convert degrees to radians, multiply degrees by pi/180.

To convert radians to degrees, multiply radians by 180/pi.

Don't confuse Atn with the cotangent. Atn is the inverse trigonometric function of Tan, as opposed to the simple
inverse of Tan.

See Also

Tan Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Call Statement

Syntax

[Call] procedurename [argumentlist]

Call

Use: Optional

Use: Required

Data Type: n/a

The name of the subroutine being called.

argumentlist

Use: Optional

Data Type: Any

A comma-delimited list of arguments to pass to the subroutine being called.

Description

Passes program control to an explicitly named procedure or function.

Rules at a Glance

The Call statement requires that the procedure being called be named explicitly. You cannot assign the
subroutine name to a variable and provide that as an argument to the Call statement. For example, the
following is an illegal use of Call:

Dim sProc
sProc = "PrintRoutine"
Call sProc(sReport) ' Illegal: sProc is a variable

The following code fragment shows a valid use of the Call statement:

Call PrintRoutine(sReport) ' Legal usage

You aren't required to use the Call keyword when calling a function procedure. However, if you use the Call
keyword to call a procedure that requires arguments, argumentlist must be enclosed in parentheses. If you omit
the Call keyword from the procedure call, you must also omit the parentheses around argumentlist.

Example

The WSH code fragment shows a call to a procedure that passes two arguments: a string array and a string. Note that
while the call to the ShowList procedure uses the Call keyword, the equivalent call to the MsgBox function within the
ShowList procedure does not:

Dim aList, sCaption

aList = Array("One", "Two", "Three", "Four")
sCaption = "Array Contents"
Call ShowList(aList, sCaption)

Sub ShowList(arr(), s2)
 Dim mem, sMsg

 For Each mem In arr
 sMsg = sMsg & mem & vbCrLf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sMsg = sMsg & mem & vbCrLf
 Next

 MsgBox sMsg, ,s2
End Sub

Programming Tips and Gotchas

You can use the Call keyword to call a function when you're not interested in the function's return value.

The use of the Call keyword is considered outdated. We suggest not using the keyword, as it is unnecessary and
provides no value.

If you remove the Call statement but fail to remove the parentheses from a call to a subroutine with a single
argument, then that argument is passed by value rather than by reference. This can have unintended
consequences.

VBA/VBScript Differences

VBA (as of Version 6.0) supports the CallByName function, which allows you to call a public procedure in a VBA object
module by assigning the procedure name to a variable. VBScript does not support the CallByName function and requires
that you provide the name of the function or sub procedure in the Call statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CBool Function

Syntax

CBool(expression)

expression

Use: Required

Data Type: String or Numeric

Any numeric expression or a string representation of a numeric value.

Return Value

expression converted to a type of Boolean (True or False).

Description

Casts expression as aa Boolean type. Expressions that evaluate to 0 are converted to False (0), and expressions that
evaluate to nonzero values are converted to True (-1).

Rules at a Glance

If the expression to be converted is a string, the string must act as a number. Therefore, CBool("ONE") results in a type
mismatch error, yet CBool("1") converts to True.

Programming Tips and Gotchas

You can check the validity of the expression prior to using the CBool function by using the IsNumeric function.

When you convert an expression to a Boolean, an expression that evaluates to 0 is converted to False (0), and
any nonzero number is converted to True (-1). Therefore, a Boolean False can be converted back to its original
value (i.e., 0), but the original value of the True expression can't be restored unless it was originally -1.

See Also

IsNumeric Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CByte Function

Syntax

CByte(expression)

expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates between 0 and 255.

Return Value

expression converted to a type of Byte.

Description

Converts expression to a Byte data type. The Byte type is the smallest data storage device in VBScript. Being only one
byte in length, it can store unsigned numbers between 0 and 255.

Rules at a Glance

If expression is a string, the string must be capable of being treated as a number.

If expression evaluates to less than 0 or more than 255, an overflow error is generated.

If expression isn't a whole number, CByte rounds the number prior to conversion.

Example

If IsNumeric(sMyNumber) Then
 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then
 BytMyNumber = Cbyte(sMyNumber)
 End If
End If

Programming Tips and Gotchas

Check that the value you pass to CByte is neither negative nor greater than 255.

Use IsNumeric to insure the value passed to CByte can be converted to a numeric expression.

When using CByte to convert floating-point numbers, fractional values up to but not including 0.5 are rounded
down, while values greater than 0.5 are rounded up. Values of 0.5 are rounded to the nearest even number
(i.e., they use the Banker's Rounding Algorithm).

See Also

IsNumeric Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CCur Function

Syntax

CCur(expression)

expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates to a number between -922,337,203,685,477.5808 and
922,337,203,685,477.5807.

Return Value

expression converted to a type of Currency.

Description

Converts an expression into a type of Currency.

Rules at a Glance

If the expression passed to the function is outside the range of the Currency data type, an overflow error
occurs.

Expressions containing more than four decimal places are rounded to four decimal places.

The only localized information included in the value returned by CCur is the decimal symbol.

Example

If IsNumeric(sMyNumber) Then
 curMyNumber = CCur(sMyNumber)
End If

Programming Tips and Gotchas

CCur doesn't prepend or append a currency symbol; for this, you need to use the FormatCurrency function.
CCur does, however, correctly convert strings that include a localized currency symbol. For instance, if a user
enters the string "$1234.68" into a text box whose value is passed as a parameter to the CCur function, CCur
correctly returns a currency value of 1234.68.

CCur doesn't include the thousands separator; for this, you need to use the FormatCurrency function. CCur
does, however, correctly convert currency strings that include localized thousands separators. For instance, if a
user enters the string "1,234.68" into a text box whose value is passed as a parameter to the CCur function,
CCur correctly converts it to a currency value of 1234.68.

See Also

FormatCurrency, FormatNumber, FormatPercent Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CDate Function

Syntax

CDate(expression)

expression

Use: Required

Data Type: String or Numeric

Any valid date expression.

Return Value

expression converted into a Date type.

Description

Converts expression to a Date type. The format of expression—the order of day, month, and year—is determined by the
locale setting of your computer. To be certain of a date being recognized correctly by CDate, the month, day, and year
elements of expression must be in the same sequence as your computer's regional settings; otherwise, the CDate
function has no idea that in the expression "04/01/01," 4 is supposed to be the 4th of the month, not the month of April,
for example.

CDate also converts numbers to a date. The precise behavior of the function, however, depends on the value of
expression :

If expression is less than or equal to 23 and includes a fractional component less than 60, the integer is
interpreted as the number of hours since midnight, and the fraction is interpreted as the number of seconds.

In all other cases, the integer portion of expression is converted to a date that interprets the integer as the
number of days before (in the case of negative numbers) or after December 31, 1899, and its fractional part is
converted to the time of day, with every .01 representing 864 seconds (14 minutes 24 seconds) after midnight.

Rules at a Glance

CDate accepts both numerical date expressions and string literals. You can pass month names into CDate in
either complete or abbreviated form; for example, "31 Dec 1997" is correctly recognized.

You can use any of the date delimiters specified in your computer's regional settings; for most systems, this
includes , / - and the space character.

The oldest date that can be handled by the Date data type is 01/01/100, which in VBScript terms equates to the
number -657434. Therefore, if you try to convert a number of magnitude greater than -657434 with CDate, an
error ("Type mismatch") is generated.

The furthest date into the future that can be handled by the Date data type is 31/12/9999, which in VBScript
terms equates to the number 2958465. Therefore, if you try to convert a number higher than 2958465 with
CDate, an error ("Type mismatch") is generated.

A "Type mismatch" error is generated if the values supplied in expresssion are invalid. CDate tries to treat a
month value greater than 12 as a day value.

Programming Tips and Gotchas

Use the IsDate function to determine if expression can be converted to a date or time.

A common error is to pass an uninitialized variable to CDate, in which case midnight will be returned

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common error is to pass an uninitialized variable to CDate, in which case midnight will be returned

A modicum of intelligence has been built into the CDate function. It can determine the day and month from a
string regardless of their position, but only where the day number is larger than 12, which automatically
distinguishes it from the number of the month. For example, if the string "30/12/97" were passed into the
CDate function on a system expecting a date format of mm/dd/yy, CDate sees that 30 is obviously too large for a
month number and treats it as the day. It's patently impossible for CDate to second guess what you mean by
"12/5/97"—is it the 12th of May, or 5th of December? In this situation, CDate relies on the regional settings of
the computer to distinguish between day and month. This can also lead to problems, as you may have
increased a month value to more than 12 inadvertently in an earlier routine, thereby forcing CDate to treat it as
the day value. If your real day value is 12 or less, no error is generated, and a valid, albeit incorrect, date is
returned.

If you pass a two-digit year into CDate, how does it know which century you are referring to? Is "10/20/97" 20
October 1997 or 20 October 2097? The answer is that two-year digits less than 30 are treated as being in the
21st Century (i.e., 29 = 2029), and two-year digits of 30 and over are treated as being in the 20th Century
(i.e., 30 = 1930).

Don't follow a day number with "st," "nd," "rd," or "th," since this generates a type mismatch error.

If you don't specify a year, the CDate function uses the year from the current date on your computer.

VBA/VBScript Differences

If you pass an initialized variable to the CDate function in VBA, the return value is 31 December 1899. In VBScript, the
function's return value is 12:00:00 AM.

See Also

FormatDateTime Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CDbl Function

Syntax

CDbl(expression)

expression

Use: Required

Data Type: Numeric or String

-1.79769313486232E308 to -4.94065645841247E-324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

Return Value

expression cast as a Double type.

Description

Converts expression to a Double type.

Rules at a Glance

If the value of expression is outside the range of the double data type, an overflow error is generated.

Expression must evaluate to a numeric value; otherwise, a type mismatch error is generated.

Example

Dim dblMyNumber as Double
If IsNumeric(sMyNumber) then
 dblMyNumber = CDbl(sMyNumber)
End If

Programming Tips and Gotchas

Use IsNumeric to test whether expression evaluates to a number.

See Also

IsNumeric Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chr, ChrB, ChrW Functions

Syntax

Chr(charactercode)
ChrB(charactercode)
ChrW(charactercode)

charactercode

Use: Required

Data Type: Long

An expression that evaluates to either an ANSI or Unicode character code.

Return Value

Chr, ChrB, and ChrW return a variant of the string type that contains the character represented by charactercode.

Description

Returns the character represented by charactercode.

Rules at a Glance

Chr returns the character associated with an ANSI character code.

ChrB returns a one-byte string.

ChrW returns a Unicode character.

Programming Tips and Gotchas

Use Chr(34) to embed quotation marks inside a string, as shown in the following example:

sSQL = "SELECT * from myTable where myColumn = " & Chr(34) & _
 sValue & Chr(34)

You can use the ChrB function to assign binary values to String variables.

The following table lists some of the more commonly used character codes that are supplied in the call to the
Chr function:

Code Value Description

0 NULL For C/C++ string functions, the null character required to terminate standard strings; equivalent to
the vbNullChar constant.

9 TAB Equivalent to the vbTab constant.

10 LF Equivalent to the vbLf constant.

13 CR Equivalent to the vbCr constant.

13 &
10 CRLF Equivalent to the CWlocal constant.

34 " Quotation mark. Useful to embed quotation marks within a literal string, especially when forming SQL
query strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Asc, AscB, AscW Functions, CStr Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CInt Function

Syntax

CInt(expression)

expression

Use: Required

Data Type: Numeric or String

The range of expression is -32,768 to 32,767; fractions are rounded.

Return Value

expression cast as an integer type.

Description

Converts expression to a type of integer; any fractional portion of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type mismatch error is generated.

If the value of expression is outside the range of the Integer data type, an overflow error is generated.

When the fractional part of expression is exactly 0.5, CInt always rounds to the nearest even number. For
example, 0.5 rounds to 0, and 1.5 rounds to 2.

Example

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Sub cmdAdd_OnClick()

 Dim iSum, sNum1, sNum2

 sNum1 = Window.Document.frmAdd.txtText1.Value
 sNum2 = Window.Document.frmAdd.txtText2.Value
 If IsNumeric(sNum1) And IsNumeric(sNum2) Then
 iSum = CInt(sNum1) + CInt(sNum2)
 Alert "The sum is: " & iSum
 Else
 Alert "The values you enter in the text boxes must be numeric."
 End If
End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="frmAdd">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="text" NAME="txtText2">

 <INPUT TYPE="button" NAME="cmdAdd" VALUE="Sum">
</FORM>
</BODY>
</HTML>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Use IsNumeric to test whether expression evaluates to a number before performing the conversion.

CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional part of a number.
Also, Fix and Int always return a value of the same type as was passed in.

In client-side scripts, CInt is useful in converting the string in an HTML intrinsic text box control to a number.
This is illustrated in the example.

See Also

CLng Function, Fix Function, FormatCurrency, FormatNumber, FormatPercent Functions, Int Function, IsNumeric
Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Class Statement

Syntax

Class name
 'statements
End Class

name

Use: Required

Data Type: n/a

The name of the class

Description

Defines a class and delimits the statements that define that class's member variables, properties, and methods.

Rules at a Glance

name follows standard Visual Basic variable naming conventions.

statements can consist of the following:

Private variable definitions. These variables are accessible within the class but not outside it.

Public variable definitions. (If variables are declared using the Dim keyword without an explicit indication
of their accessibility, they are Public by default.) These variables become public properties of the class.

Public functions and subroutines defined with the Function...End Function or Sub...End Sub statements. The
scope of routines not explicitly defined by the Public or Private keywords is public by default. These
routines become the public methods of the class.

Private function and subroutines defined with the Function...End Function or Sub...End Sub statements. They
are visible within the Class...End Class code block, but not to code outside the class.

Public properties defined using the Property Let, Property Get, and Property Set statements. Properties
defined without an explicit Public or Private statement are also Public by default. They, along with any
public variables, form the public properties of the class.

Private properties defined using the Property Let, Property Get, and Property Set statements. They are
visible within the class, but inaccessible outside of it.

The default member of the class can be defined by specifying the Default keyword in the member's Function, Sub,
or Property Get statement.

The Initialize event is fired and the Class_Initialize event procedure is executed, if it is present, when the class
is instantiated.

The Terminate event is fired and the Class_Terminate event procedure is executed, if it is present, when an
instance of the class is destroyed. This occurs when the last variable or property holding the object reference is
set to Nothing or when it goes out of scope. Note that, even if all the variables are destroyed, there are
situations (such as circular references) in which the object persists until the script engine is destroyed. Hence,
the Terminate event procedure may not be called until very late.

The class can be instantiated by using the Set statement with the New keyword. For example, if a class named
CObject is defined with the Class...End Class construct, the following code fragment instantiates an object
belonging to the class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

belonging to the class:

Dim oObj
Set oObj = New CObject

Example

The example defines a class, CCounter, with one read-only property, Value, and one method, ShowCount, as well as an
Initialize event procedure and one private variable:

Dim oCtr
Set oCtr = New CCounter

oCtr.Increment
oCtr.Increment
MsgBox "Count: " & oCtr.ShowCount

' definition of CCounter class
Class CCounter
 Private lCtr

 Private Sub Class_Initialize()
 lCtr = 1
 End Sub

 Public Sub Increment()
 lCtr = lCtr + 1
 End Sub

 Public Function ShowCount()
 ShowCount = Me.Value
 End Function
End Class

Programming Tips and Gotchas

A property defined as a simple public variable cannot be designated as the class's default member.

Public properties should be defined using the Property Let, Property Get, and Property Set statements, since they
allow the value of a property to be modified in a controlled and predictable way. Defining a public variable that
becomes accessible outside of the class (that is, defining a variable using either the Dim or Public keywords) is
considered poor programming practice.

The Me Keyword can be used within the Class...End Class construct to reference the object instance.

The Initialize event procedure can be used to initialize variables and property values.

The Terminate event procedure can be used to perform cleanup, such as releasing references to child objects,
or closing database connections or recordsets. But be very careful about what code you run in the Terminate
event terminator. Any code that results in the object being referenced again results in the terminated object's
continued existence.

A VBScript object instance should never be stored to the Session object in an ASP application. Since VBScript
object instances are apartment-threaded, this has the effect of locking down the application to a single thread
of execution.

VBA/VBScript Differences

The Class...End Class construct, which is the scripted equivalent of VBA class modules, is not supported in VBA.

See Also

Dim Statement, Function Statement, Initialize Event, Private Statement, Property Get Statement, Property Let
Statement, Property Set Statement, Public Statement, Set Statement, Sub Statement, Terminate Event

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CLng Function

Syntax

CLng(expression)

expression

Use: Required

Data Type: Numeric or String

The range of expression is -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value

expression cast as a type of Long.

Description

Converts expression to a type of Long; any fractional element of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type mismatch error is generated.

If the value of expression is outside the range of the long data type, an overflow error is generated.

When the fractional part is exactly 0.5, CLng always rounds it to the nearest even number. For example, 0.5
rounds to 0, and 1.5 rounds to 2.

Example

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Sub cmdAdd_OnClick()

 Dim lSum, sNum1, sNum2

 sNum1 = Window.Document.frmAdd.txtText1.Value
 sNum2 = Window.Document.frmAdd.txtText2.Value
 If IsNumeric(sNum1) And IsNumeric(sNum2) Then
 lSum = CLng(sNum1) + CLng(sNum2)
 Alert "The sum is: " & lSum
 Else
 Alert "The values you enter in the text boxes must be numeric."
 End If
End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="frmAdd">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="text" NAME="txtText2">

 <INPUT TYPE="button" NAME="cmdAdd" VALUE="Sum">
</FORM>
</BODY>
</HTML>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Use IsNumeric to test whether expression evaluates to a number.

CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional part of a number.
Also, Fix and Int always return a value of the same type as was passed in.

In client-side scripts, CLng is useful in converting the string in an HTML intrinsic text box control to a number.
This is illustrated in the example.

See Also

CInt Function, Fix Function, FormatCurrency, FormatNumber, FormatPercent Functions, Int Function, IsNumeric
Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Const Statement

Syntax

[Public|Private] Const constantname = constantvalue

constantname

Use: Required

The name of the constant.

constantvalue

Use: Required

Data Type: Numeric or String

A constant value, and optionally, the + and - unary operators. Unlike variables, constants must be initialized.

Description

Declares a constant value; i.e., its value can't be changed throughout the life of the program or routine. One of the
ideas of declaring constants is to make code easier to both write and read; it allows you to replace a value with a
recognizable word.

Rules at a Glance

The rules for constantname are the same as those of any variable: the name can be up to 255 characters in
length and can contain any alphanumeric character or an underscore, although it must start with an alphabetic
character. As is the case with variable names, these rules can be overridden by placing brackets around the
constant name.

constantvalue can be a string or numeric literal. It can be only a single value (a simple constant); that is, it
cannot be an expression that includes a call to an intrinsic or user-defined function, property, or method, nor
can it contain any arithmetic or string operators or variables. In addition, a constant can't be defined in terms of
another constant, as in the statement:

Public Const CDATE = CSTART_DATE ' Invalid

Example

Private Const my_Constant = 3.1417

Programming Tips and Gotchas

The recommended coding convention for constants is the same as variables: use camel casing. This places the
first letter of the first word in lowercase, and the first letter of subsequent words in uppercase. All other
characters are in lowercase. To improve readability, you can also use underscores to separate words. For
example, myConstant or my_Constant are constant names that adhere to this coding convention.

One of the benefits of long variable and constant names (of up to 255 characters) in VBScript is that you can
make your constant names as meaningful as possible while using abbreviations sparingly. After all, you may
know what abbreviations mean, but will others?

Rather than having to explicitly define constants found in type libraries, you can access the type library
definitions from Windows Script Hosts by using the XML <reference> element in an .wsf file (for details, see
Chapter 7), and from Active Server Pages by using the <METADATA> tag in the application's global.asa file.

VBA/VBScript Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA/VBScript Differences

VBA allows you to explicitly define the data type of the constant. VBScript, since it does not support strong
typing, does not.

VBA supports complexconstants; that is, VBA allows you to define constants using other constants, as well as
using expressions containing absolute values, operators, and constants. In contrast, VBScript supports only
simple constants; that is, it allows you to define a constant using only an absolute value.

See Also

Private Statement, Public Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Cos Function

Syntax

Cos(number)

number

Use: Required

Data Type: Numeric expression

An angle in radians.

Return Value

A type of Double denoting the cosine of an angle.

Description

Takes an angle specified in radians and returns a ratio representing the length of the side adjacent to the angle divided
by the length of the hypotenuse.

Rules at a Glance

The cosine returned by the function is between -1 and 1.

Example

Dim dblCosine as Double
dblCosine = Cos(dblRadians)

Programming Tips and Gotchas

To convert degrees to radians, multiply degrees by pi/180.

To convert radians to degrees, multiply radians by 180/pi.

See Also

Atn Function, Sin Function, Tan Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CreateObject Function

Syntax

CreateObject(servername, progID [, location])

servername

Use: Required

Data Type: String

The name of application providing the object.

ProgID

Use: Required

Data Type: String

The programmatic identifier (ProgID) of the object to create, as defined in the system registry.

Location

Use: Optional

Data Type: String

The name of the server where the object is to be created.

Return Value

A reference to an ActiveX object.

Description

Creates an instance of an OLE Automation (ActiveX) object. Prior to calling the methods, functions, or properties of an
object, you are required to create an instance of that object. Once an object is created, you reference it in code using
the object variable you defined.

Rules at a Glance

In order to assign the object reference to a variable, you must use the Set keyword. For example:

Dim oDoc
Set oDoc = CreateObject("Word.Document")

Programmatic identifiers use a string to identify a particular COM component or COM-enabled application. They
are included among the subkeys of HKEY_CLASSES_ROOT in the system registry.

Some common programmatic identifiers are shown in the following table:

ProgID Description

ADODB.Connection An ActiveX Data Objects connection

ADODB.Recordset An ActiveX Data Objects recordset

DAO.DBEngine Data Access Objects

Excel.Application Microsoft Excel

Excel.Chart A Microsoft Excel chart

Excel.Sheet A Microsoft Excel workbook

MAPI.Session Collaborative Data Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAPI.Session Collaborative Data Objects

Outlook.Application Microsoft Outlook

Scripting.Dictionary Dictionary object

Scripting.FileSystemObject File System object model

Word.Application Microsoft Word

Word.Document A Microsoft Word document

If an instance of the ActiveX object is already running, CreateObject may start a new instance when it creates
an object of the required type.

Example

The following WSH example places text in the first cell of an Excel spreadsheet document, changes the font to bold,
saves the document to the MyDocuments folder, and closes the Excel application. In this example, Excel must already
be running for the code to work (the code uses the CreateObject function to create a new workbook, but not to open
Excel itself), but you can just as easily use the CreateObject function to open an application:

' Get MyDocuments folder
Dim oShell
Dim docfolder
Set oShell = WScript.CreateObject ("WScript.Shell")
docfFolder = oShell.SpecialFolders ("MyDocuments")

'Create and save Excel worksheet
Dim XLObj, XLBook, XLSheet
Set XLObj = CreateObject ("Excel.Application")
XLObj.Application.Visible = True
XLObj. Workbooks.Add()
Set XLSheet = XLObj.ActiveSheet
XLSheet.Cells(1,1) = "Insert Text Here"
XLSheet.Cells(1,1).Font.Bold = True
XLSheet.SaveAs docFolder & "\Test.xls"
XLObj.Application.Quit

Programming Tips and Gotchas

In a scripted environment, it's sometimes preferable to use the host application's object model to instantiate
new objects rather than to use the VBScript CreateObject function. For instance, using the CreateObject
method of the IIS Server object instead of the VBScript CreateObject function allows ASP to track the object
instance and allows the object to participate in MTS or COM+ transactions. In Windows Script Host, using the
CreateObject method of the WScript object instead of the VBScript CreateObject function allows WSH to track
the object instance and to handle the object's events. When using VBScript to develop an Outlook form, the
CreateObject method of the Application object is the preferred way to instantiate an external class.

The CreateObject function does not succeed in client-side Internet Explorer scripts if the code attempts to
create a dangerous object or the user's security policy does not allow it. In order to instantiate an object, use
the HTML <OBJECT> tag.

VBScript offers the ability to reference an object on another network server. Using the Location parameter, you
can pass in the name of a remote server and the object can be referenced from that server. This means that
you could even specify different servers depending upon prevailing circumstances, as this short example
demonstrates:

Dim sMainServe
Dim sBackUpServer

sMainServer = "NTPROD1"
sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then
 CreateObject("Sales.Customer",sMainServer)
Else
 CreateObject("Sales.Customer",sBackUpServer)
End If

To use a current instance of an already running ActiveX object, use the GetObject function.

If an object is registered as a single-instance object (i.e., an out-of-process ActiveX EXE), only one instance of
the object can be created; regardless of the number of times CreateObject is executed, you will obtain a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the object can be created; regardless of the number of times CreateObject is executed, you will obtain a
reference to the same instance of the object.

An urban programming legend says it's necessary to release unused object references by setting them to
Nothing when the reference is no longer needed. But since unused object references are released when they go
out of scope, this step is not necessary. In general, object variables need to be explicitly released only to free
circular references.

Using the CreateObject function's location parameter to invoke an object remotely requires that the object be
DCOM-aware. As an alternative, scripts can be run remotely using Remote Windows Script Host, a technology
briefly discussed in Chapter 7.

A apartment-threaded COM object instantiated using the CreateObject function should never be stored to the
Session object in an ASP application, since doing so locks down the ASP application to a single thread of
execution.

VBA/VBScript Differences

In VBA, the CreateObject function is just one of the language constructs that you can use to instantiate a new
object; you can also use the New keyword in either the object variable declaration or the object assignment.
Because VBScript supports only late binding, however, CreateObject (along with a similar method in the target
object model that you're using) is the only method available to instantiate objects that are external to the
script.

While CreateObject under VBA is an intrinsic part of the language, you cannot assume that CreateObject is
necessarily available in a particular scripted environment. In Internet Explorer, for instance, calls to the
CreateObject method generate a runtime error.

See Also

GetObject Function, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CSng Function

Syntax

CSng(expression)

expression

Use: Required

Data Type: Numeric or String

The range of expression is -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to 3.402823E38
for positive values.

Return Value

expression cast as a type of Single.

Description

Returns a single-precision number.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type mismatch error is generated.

If the value of expression is outside the range of the Single data type, an overflow error is generated.

Example

Dim sngMyNumber
If IsNumeric(sMyNumber) then
 sngMyNumber = CSng(sMyNumber)
End If

Programming Tips and Gotchas

If you need to use a floating-point number in VBScript, there is no reason to use a Single; use a Double instead.
Generally, a Single is used because it offers better performance than a Double, but this is not true in VBScript.
Not only is a Single not smaller than a Double in the VBScript implementation, but the processor also converts
Singles to Doubles, performs any numeric operations, and then converts Doubles back to Singles.

Test that expression evaluates to a number by using the IsNumeric function.

See Also

FormatCurrency, FormatNumber, FormatPercent Functions, IsNumeric Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

CStr Function

Syntax

CStr(expression)

expression

Use: Required

Data Type: Any

Any expression that is to be converted to a string.

Return Value

expression converted to a String.

Description

Returns a string representation of expression.

Rules at a Glance

Almost any data can be passed to CStr to be converted to a string.

Example

Dim sMyString
SMyString = CStr(100)

Programming Tips and Gotchas

The string representation of Boolean values is either True or False, as opposed to their underlying values of 0
and -1.

An uninitialized variable passed to CStr returns an empty string.

An object reference cannot be passed to the CStr function. Attempting to do so generates a runtime error.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Date Function

Syntax

Date

Return Value

Date returns a Date.

Description

Returns the current system date.

Rules at a Glance

They don't come any easier than this!

Programming Tips and Gotchas

To return both the current date and time in one variable, use the Now function.

See Also

IsDate Function, Now Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateAdd Function

Syntax

DateAdd(interval, number, date)

interval

Use: Required

Data Type: String

An expression denoting the interval of time you need to add or subtract (see the following table "Interval
Settings").

number

Use: Required

Data Type: Any numeric type

An expression denoting the number of time intervals you want to add or subtract.

date

Use: Required

Data Type: Date

The date on which to base the DateAdd calculation.

Interval Settings

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Return Value

A Date.

Description

Returns a Date representing the result of adding or subtracting a given number of time periods to or from a given date
or time. For instance, you can calculate the date 178 months before today's date, or the date and time 12,789 minutes
from now.

Rules at a Glance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

Specify the interval value as a string enclosed in quotation marks (e.g., "ww").

If number is positive, the result will be after date; if number is negative, the result will be before date.

The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid date. For
example, if you add 10 minutes to 31 December 1999 23:55, DateAdd automatically recalculates all elements
of the date to return a valid date—in this case, 1 January 2000 00:05. In addition, the calendar algorithm takes
the presence of 29 February into account for leap years.

Example

Dim lNoOfIntervals
lNoOfIntervals = 100
Msgbox DateAdd("d", lNoOfIntervals, Now)

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing it as a
parameter to the function.

To add a number of days to date, use either the day of the year "y", the day "d", or the weekday "w".

The Variant date type can handle only dates as far back as 100 A.D. DateAdd generates an error (runtime error
number 5, "Invalid procedure call or argument") if the result precedes the year 100.

The Variant date type can handle dates as far into the future as 9999 A.D.—from a practical application
standpoint, a virtual infinity. If the result of DateAdd is a year beyond 9999 A.D., the function generates
runtime error number 5, "Invalid procedure call or argument."

If number contains a fractional value, it's rounded to the nearest whole number before being used in the
calculation.

See Also

DateDiff Function, DatePart Function, DateSerial Function, IsDate Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateDiff Function

Syntax

DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])

interval

Use: Required

Data Type: String

The units of time used to express the result of the difference between date1 and date2 (see the following
"Interval Settings" table).

date1

Use: Required

Data Type: Date

The first date you want to use in the differential calculation.

date2

Use: Required

Data Type: Date

The second date you want to use in the differential calculation.

firstdayofweek

Use: Optional

Data Type: Integer

A numeric constant that defines the first day of the week. If not specified, Sunday is assumed (see the following
table "First Day of Week Constants").

firstweekofyear

Use: Optional

Data Type: Integer

A numeric constant that defines the first week of the year. If not specified, the first week is assumed to be the
week in which January 1 occurs (see the following table "First Week of Year Constants").

Interval Settings

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First Day of Week Constants

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

First Week of Year Constants

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbFirstJan1 1 Start with the week in which January 1 occurs (default)

vbFirstFourDays 2 Start with the first week that has at least four days in the new year

vbFirstFullWeek 3 Start with first full week of the year

Return Value

A Long specifying the number of time intervals between two dates.

Description

The DateDiff function calculates the number of time intervals between two dates. For example, you can use the function
to determine how many days there are between 1 January 1980 and 31 May 1998.

Rules at a Glance

The calculation performed by DateDiff is always date2-- date1. Therefore, if date1 chronologically follows date2,
the value returned by the function is negative.

If interval is Weekday "w", DateDiff returns the number of weeks between date1 and date2. DateDiff totals the
occurrences of the day on which date1 falls, up to and including date2, but not including date1. Note that an
interval of "w" doesn't return the number of weekdays between two dates, as you might expect.

If interval is Week "ww", DateDiff returns the number of calendar weeks between date1 and date2. To achieve
this, DateDiff counts the number of Sundays (or whichever other day is defined to be the first day of the week
by the firstdayofweek argument) between date1 and date2. date2 is counted if it falls on a Sunday, but date1 isn't
counted, even if it falls on a Sunday.

The firstdayofweek argument affects only calculations that use the "ww" (week) interval values.

Example

Dim dtNow, dtThen
Dim sInterval
Dim lNoOfIntervals

dtNow = Date
dtThen = #01/01/1990#
sInterval = "m"

lNoOfIntervals = DateDiff(sInterval, dtThen, dtNow)

MsgBox lNoOfIntervals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsgBox lNoOfIntervals

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing it as a
function parameter.

When comparing the number of years between December 31 of one year and January 1 of the following year,
DateDiff returns 1, although in reality, the difference is only one day.

DateDiff considers the four quarters of the year to be January 1-March 31, April 1-June 30, July 1-September
30, and October 1-December 31. Consequently, when determining the number of quarters between March 31
and April 1 of the same year, for example, DateDiff returns 1, even though the latter date is only one day after
the former.

If interval is "m", DateDiff simply counts the difference in the months on which the respective dates fall. For
example, when determining the number of months between January 31 and February 1 of the same year,
DateDiff returns 1, even though the latter date is only one day after the former.

To calculate the number of days between date1 and date2, you can use either Day of year "y" or Day "d".

In calculating the number of hours, minutes, or seconds between two dates, if an explicit time isn't specified,
DateDiff provides a default value of midnight (00:00:00).

If you specify date1 or date2 as strings within quotation marks (" ") and omit the year, the year is assumed to be
the current year, as taken from the computer's date. This allows the same code to be used in different years.

See Also

DateAdd Function, DatePart Function, IsDate Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DatePart Function

Syntax

DatePart(interval, date[,firstdayofweek[, firstweekofyear]])

interval

Use: Required

Data Type: String

The unit of time to extract from within date (see the following table "Interval Settings").

date

Use: Required

Data Type: Date

The Date value that you want to evaluate.

firstdayofweek

Use: Optional

Data Type: Integer

A numeric constant that defines the first day of the week. If not specified, Sunday is assumed (see the following
table "First Day of Week Constants").

firstweekofyear

Use: Optional

Data Type: Integer

A numeric constant that defines the first week of the year. If not specified, the first week is assumed to be the
week in which January 1 occurs (see the following table "First Week of Year Constants").

Interval Settings

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

First Day of Week Constants

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

First Week of Year Constants

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbFirstJan1 1 Start with week in which January 1 occurs (default)

vbFirstFourDays 2 Start with the first week that has at least four days in the new year

vbFirstFullWeek 3 Start with first full week of the year

Return Value

An Integer.

Description

Extracts an individual component of the date or time (like the month or the second) from a date/time value. It returns
an Integer containing the specified portion of the given date. DatePart is a single function encapsulating the individual
Year, Month, Day, Hour, Minute, and Second functions.

Rules at a Glance

The firstdayofweek argument affects only calculations that use either the "w" or "ww" interval values.

The firstdayofweek argument affects only calculations that use the "ww" interval value.

Example

Dim sTimeInterval
Dim dtNow

sTimeInterval = "n" 'minutes
dtNow = Now

MsgBox DatePart(sTimeInterval, dtNow)

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing it as a
function parameter.

If you specify date within quotation marks (" ") omitting the year, the year is assumed to be the current year
taken from the computer's date.

If you attempt to extract either the hours, the minutes, or the seconds, but date1 doesn't contain the necessary
time element, the function assumes a time of midnight (0:00:00).

See Also

DateSerial Function, Day Function, Month Function, Year Function, Minute Function, Hour Function, Second Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateSerial Function

Syntax

DateSerial(year, month, day)

year

Use: Required

Data Type: Integer

Number between 0 and 9999, inclusive.

month

Use: Required

Data Type: Integer

Any numeric expression to express the month between 1 and 12.

day

Use: Required

Data Type: Integer

Any numeric expression to express the day between 1 and 31.

Return Value

A Date.

Description

Returns a Date from the three date components (year, month, and day). For the function to succeed, all three
components must be present and all must be numeric values.

Rules at a Glance

If the value of a particular element exceeds its normal limits, DateSerial adjusts the date accordingly. For
example, if you tried DateSerial (96,2,31)—February 31, 1996—DateSerial returns March 2, 1996.

You can specify expressions or formulas that evaluate to individual date components as parameters to
DateSerial. For example, DateSerial (98,10+9,23) returns 23 March 1999. This makes it easier to use DateSerial to
form dates whose individual elements are unknown at design time or that are created on the fly as a result of
user input.

Example

Dim iYear, iMonth, iday

iYear = 1987
iMonth = 3 + 11
iday = 16

MsgBox DateSerial(iYear, iMonth, iday)

Programming Tips and Gotchas

If any of the parameters exceed the range of the Integer data type (-32,768 to 32,767), an error (runtime
error 6, "Overflow") is generated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error 6, "Overflow") is generated.

The Microsoft documentation for this function incorrectly states, "For the year argument, values between 0 and
99, inclusive, are interpreted as the years 1900-1999." In fact, DateSerial handles two-digit years in the same
way as other Visual Basic date functions. A year argument between 0 and 29 is taken to be in the 21st Century
(2000 to 2029); year arguments between 30 and 99 are taken to be in the 20th Century (1930 to 1999). Of
course, the safest way to specify a year is to use the full four digits.

See Also

DateAdd Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

DateValue Function

Syntax

DateValue(stringexpression)

stringexpression

Use: Required

Data Type: String expression

Any of the date formats recognized by IsDate.

Return Value

Variant of type Date.

Description

Returns a Date variant containing the date represented by stringexpression. DateValue can successfully recognize a
stringexpression in any of the date formats recognized by IsDate. DateValue doesn't return time values in a date/time
string; they are simply dropped. However, if stringexpression includes a valid date value but an invalid time value, a
runtime error results.

Rules at a Glance

The order of the day, the month, and the year within stringexpression must be the same as the sequence defined
by the computer's regional settings.

Only those date separators recognized by IsDate can be used.

If you don't specify a year in your date expression, DateValue uses the current year from the computer's
system date.

Example

Dim dateExpression

dateExpression = #10 March 2003#

If IsDate (dateExpression) Then
 MsgBox DateValue(dateExpression)
Else
 MsgBox "Invalid date"
End If

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing it as a
function parameter.

If stringexpression includes time information as well as date information, the time information is ignored;
however, if only time information is passed to DateValue, an error is generated.

DateValue handles two-digit years in the following manner: year arguments between 0 and 29 are taken to be
in the 21st Century (2000 to 2029), and year arguments between 30 and 99 are taken to be in the 20th
Century (1930 to 1999). The safest way to specify a year is to use the full four digits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Century (1930 to 1999). The safest way to specify a year is to use the full four digits.

The current formats being used for dates are easier to discover on Windows NT than on Windows 9x. On
Windows NT, the date formats are held as string values in the following registry keys:

Date Separator

HKEY_CURRENT_USER\Control Panel\International, sDate value entry

Long Date

HKEY_CURRENT_USER\Control Panel\International, sLongDate value entry

Short Date

HKEY_CURRENT_USER\Control Panel\International, sShortDate value entry

The more common approach to date conversion is to use the CDate function. Microsoft also recommends using
CDate and the other C... conversion functions due to their enhanced capabilities and their locale awareness.

See Also

CDate Function, DateSerial Function, IsDate Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day Function

Syntax

Day(dateexpression)

dateexpression

Use: Required

Data Type: Any valid date expression

Any expression capable of conversion to a Date.

Return Value

Variant of type Integer.

Description

Returns a variant integer data type that can take on a value ranging from 1 to 31, representing the day of the month of
dateexpression. dateexpression, the argument passed to the Day function, must be a valid date/time or time value.

Rules at a Glance

dateexpression can be any variant, numeric expression, or string expression that represents a valid date.

The range of dateexpression is 1/1/100 to 12/31/9999.

If dateexpression is Null, Null is returned.

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing it as a
function parameter.

If dateexpression omits the year, Day still returns a valid day.

If the day portion of dateexpression is outside its valid range, the function generates runtime error 13, "Type
mismatch." This is also true if the day and month portion of dateexpression is 2/29 for a nonleap year.

To return the day of the week, use the WeekDay function.

See Also

DatePart Function, Weekday Function, WeekdayName Function, Month Function, Year Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary Object

Createable

Yes

Library

Microsoft Scripting Runtime

Description

The Dictionary object is similar to a Collection object, except that it's loosely based on the Perl associative array. Like
an array or a Collection object, the Dictionary object holds elements, called items or members, containing data. A
Dictionary object can contain any data whatsoever, including objects and other Dictionary objects. Access the value of
these dictionary items by using unique keys (or named values) that are stored along with the data, rather than by using
an item's ordinal position as you do with an array. This makes the Dictionary object ideal when you need to access data
that is associated with a unique named value.

You can access each item stored to a Dictionary object by using the For Each ...Next construct. However, rather than
returning a variant containing the data value stored to the Dictionary object as you would expect, it returns a variant
containing the key associated with the member. You then have to pass this key to the Item method to retrieve the
member, as the following example shows:

Dim vKey
Dim sItem, sMsg
Dim oDict

Set oDict = CreateObject("Scripting.Dictionary")
oDict.Add "One", "Engine"
oDict.Add "Two", "Wheel"
oDict.Add "Three", "Tire"
oDict.Add "Four", "Spanner"

For Each vKey In oDict
 sItem = oDict.Item(vKey)
 sMsg = sMsg & sItem & vbCrLf
Next

MsgBox sMsg

Dictionary Object Properties

The Dictionary object includes the following four properties:

Property Description

CompareMode Determines the order of text comparisons in the Item property

Count Indicates the total number of items in the dictionary

Item Sets or retrieves a particular item of data in the dictionary

Key Renames an existing key

Dictionary Object Methods

The Dictionary object supports the following five methods:

Property Description

Add Adds an item and its associated key to the dictionary

Exists Determines whether a particular key exists in the dictionary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exists Determines whether a particular key exists in the dictionary

Keys Returns all keys in the dictionary

Remove Removes an item from the dictionary

Remove All Removes all the data from the dictionary

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Add Method

Syntax

dictionaryobject.Add key, item

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key

Use: Required

Data Type: Any

A key value that's unique in the Dictionary object.

item

Use: Required

Data Type: Any

The item to be added to the dictionary.

Description

Adds a key and its associated item to the specified Dictionary object.

Rules at a Glance

If the key isn't unique, runtime error 457, "This key is already associated with an element of this collection," is
generated.

item can be of any data type, including objects and other Dictionary objects.

Example

The example uses a Dictionary object to store state abbreviations and their corresponding state names:

Dim StateCode, StateName
Dim StateDict
Dim Key

Set StateDict = CreateObject("Scripting.Dictionary")

StateCode = "CA"
StateName = "California"
StateDict.Add StateCode, StateName

StateCode = "NY"
StateName = "New York"
StateDict.Add StateCode, StateName

StateCode = "MI"
StateName = "Michigan"
StateDict.Add StateCode, StateName

Key = "NY"
MsgBox StateDict.Item(Key)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The order of members within a Dictionary object is officially undefined. That is, you can't control the position of
individual members, nor can you retrieve individual members based on their position within the Dictionary
object. Your code, in short, should make no assumptions about the position of individual elements within the
Dictionary objects.

Once you add a key and its associated data item, you can change the key by using the write-only Key property.

Use the Dictionary object to store tables of data, and particularly to store single items of data that can be
meaningfully accessed by a key value.

The use of the Dictionary object to store multifield data records is not recommended; instead, classes offer a
better programmatic alternative. Typically, you would store a record by adding an array representing the
record's field values to the dictionary. But assigning arrays to items in the Dictionary object is a poor
programming practice, since individual elements of the array cannot be modified directly once they are assigned
to the dictionary.

See Also

Dictionary.Key Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.CompareMode Property

Data Type

Long

Description

Sets or returns the mode used to compare the keys in a Dictionary object.

Rules at a Glance

CompareMode can be set only on a dictionary that doesn't contain any data.

The CompareMode property can have either of the following two values:

0, Binary

This is the default value. It compares the keys with a string byte-per-byte to determine whether a
match exists.

1, Text

Uses a case-insensitive comparison when attempting to match keys with a string.

In addition, the value of CompareMode can be greater than 2, in which case it defines the locale identifier
(LCID) to be used in making the comparison.

Programming Tips and Gotchas

You need to explicitly set the CompareMode property only if you do not wish to use the default binary
comparison mode.

The Scripting Runtime type library defines constants (BinaryCompare and TextCompare) that can be used in place
of their numeric equivalents. You can do this in one of three ways. You can define the constants yourself by
adding the following code to your script:

Const BinaryCompare = 0
Const TextCompare = 1

You can also use the equivalent vbBinaryCompare and vbTextCompare constants that are defined in the VBScript
library.

Finally, if you're an ASP programmer, you can use the METADATA directive to access the Scripting Runtime type
library; if you're developing a Windows Script Host script, you can include the following line in a Windows Script
Host (.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

Practically, the CompareMode property indicates whether the comparison between existing key names and the
key argument of the Dictionary object's Add method, Exists method, Item property, or Key property will be
case-sensitive (BinaryCompare) or case-insensitive (TextCompare). By default, comparisons are case-sensitive.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Count Property

Data Type

Long

Description

A read-only property that returns the number of key/item pairs in a Dictionary object.

Rules at a Glance

This property returns the actual number of items in the dictionary. So if you use the Count property to iterate the items
in the dictionary, you would use code like the following:

Dim ctr
For ctr = 0 to dictionary.Count - 1
 ' do something
Next
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Exists Method

Syntax

dictionaryobject.Exists(key)

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key

Use: Required

Data Type: String

The key value being sought.

Return Value

Boolean

Description

Determines whether a given key is present in a Dictionary object.

Rules at a Glance

Returns True if the specified key exists in the Dictionary object; False if not.

Programming Tips and Gotchas

If you attempt to use the Item property to return the item of a nonexistent key, or if you assign a new key to a
nonexistent key, the nonexistent key is added to the dictionary, along with a blank item. To prevent this, you
should use the Exists property to ensure that the Key is present in the dictionary before proceeding.

The way in which key is compared with the existing key values is determined by the setting of the Dictionary
object's CompareMode property.

Example

If oDict.Exists(strOldKey) Then
 oDict.Key(strOldKey) = strNewKey
End If

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Item Property

Syntax

The syntax for setting an item is:

dictionaryobject.Item(key) = item

The syntax for returning an item is:

value = dictionaryobject.Item(key)

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key

Use: Required

Data Type: String

A unique string key for this Dictionary object.

item

Use: Optional

Data Type: Any

The data associated with key.

Data Type

Any

Description

Sets or returns the data item to be linked to a specified key in a Dictionary object.

Rules at a Glance

The Item property is the default member of the Dictionary object.

The data type is that of the item being returned.

Unlike the Item property of most objects, the Dictionary object's Item property is read/write. If you try to set
item to a nonexistent key, the key is added to the dictionary, and the item is linked to it as a sort of "implicit
add."

Programming Tips and Gotchas

The Dictionary object doesn't allow you to retrieve an item by its ordinal position.

If you provide a nonexistent key when trying to retrieve an item, the dictionary exhibits rather strange
behavior: it adds key to the Dictionary object along with a blank item. You should therefore use the Exists
method prior to setting or returning an item, as the example shows.

If the item to be assigned or retrieved from the Dictionary object is itself an object, be sure to use the Set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the item to be assigned or retrieved from the Dictionary object is itself an object, be sure to use the Set
keyword when assigning it to a variable or to the Dictionary object.

The comparison of key with member keys is defined by the value of the Dictionary object's CompareMode
property.

Although the read/write character of the Dictionary object's Item property has its drawbacks, it also has its
advantages. In particular, it makes it easy to overwrite or replace an existing data item, since its Item property
is read/write: simply assign the new value like you would with any other property.

The Dictionary object should never be used to store HTML form or query data in Session scope in an ASP
application. Since the Dictionary object is an apartment-threaded COM object, this has the effect of locking
down the application to a single thread of execution.

Example

The example uses the Dictionary object as a lookup table to retrieve the state name that corresponds to the state code
entered by the user. The HTML page that submits user information to the server is as follows:

<HTML>
<HEAD><TITLE>Dictionary Object Example</TITLE></HEAD>
<BODY>
Enter your name and location: <P>
<FORM METHOD=POST ACTION=dictobj.asp>
Your name:
<INPUT TYPE="Text" NAME="VisitorName" /><P>
Your location:
<INPUT TYPE="Text" NAME="City" />,
<INPUT TYPE="Text" NAME="State" SIZE=2 /> <P>
<INPUT TYPE="Submit" VALUE="Submit" />
</FORM>
<BODY>
</HTML>

The ASP page that retrieves the information submitted by the user, encodes it, and uses the Dictionary object to
retrieve the full state name is as follows:

<HTML>
<HEAD>
<TITLE>ASP Page for the Dictionary Object Example</TITLE>
</HEAD>
<BODY>

 <% Show Greeting %>

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Sub ShowGreeting()
 Dim StateDict
 Dim ClientName, ClientState

 ' Initialize dictionary
Set StateDict = Server.CreateObject("Scripting.Dictionary")
StateDict.Add "NY", "New York"
StateDict.Add "CA", "California"
StateDict.Add "FL", "Florida"
StateDict.Add "WA", "Washington"
StateDict.Add "MI", "Michigan"
StateDict.Add "MA", "Massachusetts"
StateDict.Add "MN", "Minnesota"
' add other states

ClientName = Server.HTMLEncode(Request.Form("VisitorName"))
ClientState = Server.HTMLEncode(Request.Form("State"))

Response.Write("Hello, " & ClientName & ". <P>")
Response.Write("We are pleased to have a visitor from ")
 Response.Write(StateDict.Item(ClientState) & "!")
End Sub
</SCRIPT>
</BODY>
</HTML>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Items Method

Syntax

dictionaryobject.Items

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Return Value

A Variant array.

Description

Returns an array containing all the items in the specified Dictionary object.

Rules at a Glance

The returned array is always a zero-based variant array whose data type matches that of the items in the Dictionary
object.

Programming Tips and Gotchas

The only way to directly access members of the Dictionary is via their key values. However, using the Items
method, you can "dump" the data from the Dictionary into a zero-based variant array. The data items can then
be accessed like an array in the normal way, as the following code shows:

Dim vArray
vArray = DictObj.Items
For i = 0 to DictObj.Count -1
 Response.Write vArray(i) & "<P>"
Next I

The Items method retrieves only the items stored in a Dictionary object; you can retrieve all the Dictionary
object's keys by calling its Keys method.

See Also

Dictionary.Keys Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Key Property

Syntax

dictionaryobject.Key(key) = newkey

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key

Use: Required

Data Type: String

The key of an existing dictionary item.

newkey

Use: Required

Data Type: String

A new unique key for this dictionary item.

Data Type

A String.

Description

Replaces an existing key with a new one.

Rules at a Glance

The Key property is write-only.

key, the existing key value, must exist in the dictionary or an error results.

newkey must be unique and must not already exist in the dictionary or an error results.

The comparison of key and newkey with existing key values is defined by the Dictionary object's CompareMode
property.

Example

Private Function ChangeKeyValue(sOldKey, sNewKey)
'Assumes oDictionary is a public object
 If oDictionary.Exists(sOldKey) Then
 oDictionary.Key(sOldKey) = sNewKey
 ChangeKeyValue = True
 Else
 ChangeKeyValue = False
 End If
End Function

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Use the Key property to change the name of an existing key. Use the Add method to add a new key and its
associated value to the Dictionary object. Use the Keys method to retrieve the names of all keys; this is
especially useful when you don't know the names or the contents of the dictionary in advance.

Attempting to retrieve the key name (a nonsensical operation, since this amounts to providing the key's name
in order to retrieve the key's name) generates an error, as does attempting to modify a key name that hasn't
already been added to the dictionary.

Using a For Each...Next loop to iterate the members of a Dictionary object involves an implicit call to the Key
property. In other words, each iteration of the loop returns a key, rather than a data item. To retrieve the
member's data, you then must use its key value to access its data through the Item property. This is illustrated
in the example for the Dictionary.Item property.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Keys Method

Syntax

dictionaryobject.Keys

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Return Value

An array of strings.

Description

Returns an array containing all the Key values in the specified Dictionary object.

Rules at a Glance

The returned array is always a 0-based variant array whose data type is String.

Programming Tips and Gotchas

The Keys method retrieves only the keys stored in a Dictionary object. You can retrieve all the Dictionary object's items
by calling its Items method. You can recall an individual data item by using the Dictionary object's Item property.

Example

Dim vArray
vArray = DictObj.Keys
For i = 0 to DictObj.Count -1
 Response.Write vArray(i) & "
"
Next

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.Remove Method

Syntax

dictionaryobject.Remove key

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key

Use: Required

Data Type: String

The key associated with the item to be removed.

Description

Removes both the specified key and its associated data (i.e., its item) from the dictionary.

Rules at a Glance

If key doesn't exist, runtime error 32811, "Element not found," occurs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dictionary.RemoveAll Method

Syntax

dictionaryobject.RemoveAll

dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Description

Clears out the dictionary; in other words, removes all keys and their associated data from the dictionary.

Programming Tips and Gotchas

If you want to remove a selected number of members rather than the entire contents of the dictionary, use the Remove
method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dim Statement

Syntax

Dim varname[([subscripts])], varname[([subscripts])]

varname

Use: Required

Your chosen name for the variable.

subscripts

Use: Optional

Dimensions of an array variable.

Description

Declares and allocates storage space in memory for variables. The Dim statement is used either at the start of a
procedure or the start of a global script block. In the first case, the variable declared using Dim is local to the procedure.
In the second, it's available throughout the module.

Rules at a Glance

You can declare multiple variables in a single Dim statement, as long as you use a comma to delimit them.

When variables are first initialized with the Dim statement, they have a value of Empty. In addition, if a variable
has been initialized but not assigned a value, the following expressions will both evaluate to True:

If vVar = 0 Then
If vVar = "" Then

To declare array variables, use the following syntax:

Fixed length, single dimension

Dim arrayname(upper)

Example: Dim myArray(10)

Fixed length, multidimensional

Dim arrayname(upper, upper, ...)

Example: Dim MyArray(20,30)

Variable length, single or multidimensional

Dim arrayname()

Example: Dim myArray()

You can declare a multidimensional array with up to 60 dimensions.

Variable-length arrays can be resized using the ReDim statement. Fixed-length arrays can't be resized.

Example

The example shows how to use the Dim statement to define a variable that receives an array returned by a function:

Dim Input, NumArray

Input = InputBox("Enter three numbers separated by commas: ")
NumArray = Split(Input, ",")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NumArray = Split(Input, ",")
If IsEmpty(NumArray) Then
 MsgBox "No numbers were entered."
Else
 Dim Sum, Element
 For Each Element in NumArray
 If IsNumeric(Element) Then Sum = Sum + CDbl(Element)
 Next
 MsgBox "The total of the numbers is: " & Sum
End If

Programming Tips and Gotchas

It's accepted practice to place all the Dim statements to be used in a particular procedure at the beginning of
that procedure, and to place all Dim statements for global variables at the beginning of the script block.

Variables declared with Dim in the global script block are available to all procedures within the script. At the
procedure level, variables are available only within the procedure.

VBA/VBScript Differences

VBA allows you to instantiate objects of a particular type through early binding by using the New keyword.
VBScript does not support the New keyword when used with Dim statement, nor does it support strong typing of
objects.

VBA supports the use of the WithEvents keyword, which allows VBA code to trap the events fired by an object of
a particular type (that is, by a strongly typed object). VBScript does not support the keyword and hence does
not allow you to trap events that are not otherwise supported by the host object model. For instance, you can
trap the Application_OnStart, Application_OnEnd, OnTransactionCommit, OnTransactionAbort, Session_OnStart,
and Session_OnEnd events in an ASP application. (For details on events supported by each object model, see
Chapter 5 through Chapter 8, which discuss the object models of each host environment that supports
VBScript.) A partial exception to this lack of support for external events is Windows Script Host, which allows
you to trap an object's events by supplying an extra parameter to the WScript.CreateObject method or by
calling the WScript.ConnectObject method.

In VBA, only variables explicitly declared as variants and variables whose data type has not been declared are
reported by the IsEmpty function to be empty, and return True when compared to zero or to a null string. This is
true of all variables in VBScript, because it does not support strong typing.

See Also

Const Statement, Private Statement, Public Statement, ReDim Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Do . . . Loop Statement

Syntax

Do [{While | Until} condition]
 [statements]
[Exit Do]
 [statements]
Loop

or:

Do
 [statements]
[Exit Do]
 [statements]
Loop [{While | Until} condition]

condition

Use: Optional

Data Type: Boolean expression

An expression that evaluates to True or False.

statements

Use: Optional

Program statements that are repeatedly executed while, or until, condition is True.

Description

Repeatedly executes a block of code while or until a condition becomes True.

Rules at a Glance

On its own, Do...Loop repeatedly executes the code that is contained within its boundaries indefinitely. You
therefore need to specify under what conditions the loop is to stop repeating. Sometimes, this requires
modifying the variable that controls loop execution within the loop. For example:

Do
 intCtr = intCtr + 1 ' Modify loop control variable
 Response.Write "Iteration " & intCtr & _
 " of the Do loop..." & "
"
 ' Compare to upper limit
 If intCtr = 10 Then Exit Do
Loop

Failure to do this results in the creation of an endless loop.

Adding the Until keyword after Do instructs your program to Do something Until the condition is True. Its syntax
is:

Do Until condition
 code to execute
Loop

If condition is True before your code gets to the Do statement, the code within the Do...Loop is ignored.

Adding the While keyword after Do repeats the code while a particular condition is True. When the condition
becomes False, the loop is automatically exited. The syntax of the Do While statement is:

Do While condition
 code to execute
Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loop

Again, the code within the Do...Loop construct is ignored if condition is False when the program arrives at the loop.

In some cases, you may need to execute the loop at least once. You might, for example, evaluate the values
held within an array and terminate the loop if a particular value is found. In that case, you'd need to execute
the loop at least once. To do this, place the Until or While keyword along with the condition after the Loop
statement. Do...Loop Until always executes the code in the loop at least once and continues to loop until the
condition is True. Likewise, Do...Loop While always executes the code at least once, and continues to loop while
the condition is True. The syntax of these two statements is as follows:

Do
 code to execute
Loop Until condition

Do
 code to execute
Loop While condition

A Null condition is treated as False.

Your code can exit the loop at any point by executing the Exit Do statement.

Programming Tips and Gotchas

Inexperienced programmers often think that a loop exits as soon as the condition that terminates the loop is
met. In fact, however, it exits whenever the conditional statement that evaluates the loop control expression is
executed and that expression is True. For example, in the code:

Do While X <> 10
 ' This always executes if the loop is entered

 ' Set loop termination variable
 X = 10

 ' Any code here still executes. There is nothing
 ' monitoring X
Loop

all statements following the assignment execute until the condition at the top of the loop is evaluated.

You'll also encounter situations in which you intend to continually execute the loop while or until a condition is
True, except in a particular case. This type of exception is handled using the Exit Do statement. You can place as
many Exit Do statements within a Do...Loop structure as you require. As with any exit from a Do...Loop, whether
it's exceptional or normal, the program continues execution on the line directly following the Loop statement.
The following code fragment illustrates the use of Exit Do:

Do Until condition1
 'code to execute
 If condition2 Then
 Exit Do
 End if
 'more code to execute—only if condition2 is false
Loop

See Also

For Each . . . Next Statement, For . . . Next Statement, While . . . Wend Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Drive Object

Returned by

File.Drive property
FileSystemObject.Drives.Item property

Createable

No

Library

Microsoft Scripting Runtime

Description

Represents a single drive connected to the current machine, including a network drive. By using the Drive object, you
can interrogate the system properties of any drive. In addition, you can use the Folder object returned by the Drive
object's RootFolder property as your foothold into the physical drive's filesystem.

A new instance of the Drive object cannot be created. Instead, a Drive object that represents an existing physical drive
typically is retrieved from the FileSystemObject object's Drives collection, as in the following code fragment, which
retrieves an object reference that represents the C: drive:

Dim oFS, oDrive
Set oFS = CreateObject("Scripting.FileSystemObject")
set oDrive = oFS.Drives("C")

For an overview of the File System object model, including the library reference needed to access it, see the "File
System Object Model" entry.

Properties

All Drive object properties are read-only. In addition, removable media drives must be ready (i.e., have media inserted)
for the Drive object to read certain properties.

AvailableSpace

Data Type: Long

Returns the number of bytes unused on the disk. Typically, the AvailableSpace property returns the same
number as the Drive object's FreeSpace property, although differences may occur on systems that support
quotas. In early versions of the Scripting Runtime, AvailableSpace was capable of storing only values that
ranged from 0 to 2^31, or 2,147,483,648; in other words, in the case of drives with over 2 GB free, it failed to
accurately report the amount of available free space.

In order to check the amount of available space on the drive, the drive must be ready. Otherwise, an error is
likely to result. This makes it worthwhile to check the value of the IsReady property before attempting to
retrieve a drive's free space, particularly if your script is iterating the Drives collection.

DriveLetter

Data Type: String

The drive letter used for this drive on the current machine (e.g., C). In addition, its value is an empty string
("") if the drive is a network share that has not been mapped to a local drive letter.

DriveType

Data Type: Long

A value (see the following table) indicating the type of drive. Any remote drive is shown only as remote. For
example, a shared CD-ROM or Zip drive that is both remote and removable is shown simply as remote (i.e., it
returns a value of 3) on any machine other than the machine on which it's installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constant Value

CDROM 4

Fixed 2

RAMDisk 5

Remote 3

Removable 1

Unknown 0

The Scripting Runtime type library defines the constants shown in the above table's Constant column that can
be used in place of their numeric equivalents. You can take advantage of these constants in your scripts in one
of two ways. You can define the constants yourself by adding the following code to your script:

Const Unknown = 0
Const Removable = 1
Const Fixed = 2
Const Remote = 3
Const CDRom = 4
Const RAMDisk = 5

You can also use the ASP METADATA tag to access the constants from the type library, or you can include the
following line in a Windows Script Host (.wsf) file in order to access the constants from the Scripting Runtime
type library:

<reference
GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

The DriveType property does not require that the drive be ready to return a value.

FileSystem

Data Type: String

The installed filesystem; returns FAT, FAT32, NTFS, or CDFS. In order to determine that the filesystem in place,
a device must be present on removable drives or runtime error 71, "Disk not ready," results.

FreeSpace

Data Type: Long

The number of bytes unused on the disk. Typically, its value is the same as the Drive object's AvailableSpace
property, although differences may occur on computer systems that support quotas.

In early versions of the scripting Runtime, the property was capable of storing only values that ranged from 0 to
231, or 2,147,483,648. In other words, in the case of drives with over 2 GB free, it failed to accurately report
the amount of available free space.

IsReady

Data Type: Boolean

For hard drives, this should always return True. For removable media drives, True is returned if media is in the
drive; otherwise, False is returned.

A number of Drive object properties raise an error if the drive they represent is not ready. You can use the
IsReady property to check the status of the drive and prevent your script from raising an error.

Path

Data Type: String

The drive name followed by a colon (e.g., C:). (Note that it does not include the root folder.) This is the default
property of the Drive object.

RootFolder

Data Type: Folder object

Gives you access to the rest of the drive's filesystem by exposing a Folder object representing the root folder.

SerialNumber

Data Type: Long

The serial number of the drive, an integer that uniquely identifies the drive or disk. If a disk or CD-ROM has
been assigned a serial number, you can use this property to insure that the correct disk is present in a drive
that has removable media.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that has removable media.

ShareName

Data Type: String

For a network share, returns the machine name and share name in UNC format (e.g., \NTSERV1\TestWork). If
the Drive object does not represent a network drive, the ShareName property returns a zero-length string ("").

TotalSize

Data Type: Double

The total size of the drive in bytes. In early versions of the Scripting Runtime, the TotalSize property was
capable of storing only values that ranged from 0 to 231, or 2,147,483,648. In other words, in the case of
drives larger than 2 GB, it failed to accurately report the total drive size.

In order to check the amount of total space on the drive, the drive must be ready. Otherwise, a "Disk not
ready" error is likely to result. This makes it worthwhile to check the value of the IsReady property before
attempting to retrieve a drive's free space, particularly if your script is iterating the Drives collection.

VolumeName

Data Type: String

The drive's volume name, if one is assigned (e.g., DRIVE_C). If a drive or disk has not been assigned a volume
name, the VolumeName property returns an empty string (""). This is the only read/write property supported by
the Drive object.

In order to retrieve the volume name, the drive must be ready. Otherwise, a "Disk not ready" error is likely to
result. This makes it worthwhile to check the value of the IsReady property before attempting to retrieve a
drive's volume name, particularly if your script is iterating the Drives collection.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Drives Collection Object

Returned by

FileSystemObject.Drives property

Createable

No

Library

Microsoft Scripting Runtime

Description

All drives connected to the current machine are included in the Drives collection, even those that aren't currently ready
(like removable media drives with no media inserted in them). The Drives collection object is read-only.

The Drives collection cannot be created; instead, it is returned by the Drives property of the FileSystemObject object,
as the following code fragment illustrates:

Dim oFS, oDrives
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oDrives = oFS.Drives

For an overview of the filesystem object model, including the library reference needed to access it, see the "File System
Object Model" entry.

Properties

Count

Data Type: Long

Returns the number of Drive objects in the collection.

Item

Syntax: oDrives.Item(key)

Data Type: Drive object

Returns a Drive object whose key is key, the drive letter. This is an unusual collection, since the drive's index
value (its ordinal position in the collection) can't be used; attempting to do so generates runtime error 5,
"Invalid procedure call or argument." Since attempting to retrieve a Drive object for a drive that doesn't exist
generates runtime error 68, it's a good idea to call the FileSystemObject object's DriveExists method
beforehand.

Example

Dim ofsFileSys As FileSystemObject
Dim ofsDrives As Drives
Dim ofsDrive As Drive

Set ofsFileSys = New FileSystemObject
Set ofsDrives = ofsFileSys.Drives
Set ofsDrive = ofsDrives.Item("C")
MsgBox ofsDrive.DriveType

See Also

Drive Object, FileSystemObject.Drives Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drive Object, FileSystemObject.Drives Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

End . . . Statement

Syntax

End Class
End Function
End If
End Property
End Select
End Sub
End With

Description

Ends a procedure or a block of code.

Rules at a Glance

The End statement is used as follows:

Statement Description

End Class Marks the end of a class definition

End Function Marks the end of a Function procedure

End If Marks the end of an If...Then...Else statement

End Property Marks the end of a Property Let, Property Get, or Property Set procedure within a Class...End Class
construct

End Select Marks the end of a Select Case statement

End Sub Marks the end of a Sub procedure

End With Marks the end of a With statement

Programming Tips and Gotchas

The End statement used by itself to terminate the program is not supported within a VBScript script or procedure.
Instead you should terminate execution of a procedure prematurely using the Exit... statement. You can also terminate
the script or application by calling a method belonging to an object of the object model you are using. These are shown
in the following table:

Environment Method

ASP Response.End or Session.Abandon

IE Application.Quit

Outlook form Item.Close

Windows Script Host WScript.Quit

VBA/VBScript Differences

VBA supports the End statement, which immediately terminates execution of code and, in the case of Visual Basic,
terminates the application. The End statement, however, is not supported in VBScript.

See Also

Exit Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Erase Statement

Syntax

Erase arraylist

arraylist

Use: Required

Data Type: Variant array

A list of array variables to clear.

Description

Resets the elements of an array to their initial (unassigned) values. In short, Erase "clears out" or empties an array.

Rules at a Glance

Specify more than one array to be erased by using commas to delimit arraylist.

Fixed array variables remain dimensioned; on the other hand, all memory allocated to dynamic arrays is
released.

After the Erase statement executes, TypeName returns "Variant()" for a fixed-length array; in addition, the
IsEmpty function returns True when individual members of the array are passed to it, and comparisons of an
individual member of the array with an empty string ("") and with zero both return True. On the other hand, the
TypeName function returns Empty for a dynamic array, and comparisons of the array with an empty string ("")
and zero also return True.

Programming Tips and Gotchas

Once you use Erase to clear dynamic arrays, they must be redimensioned with ReDim before being used again. This is
because Erase releases the memory storage used by the dynamic array back to the operating system, which sets the
array to have no elements.

VBA/VBScript Differences

Because VBA can be strongly typed, the behavior of the Erase statement in clearing a fixed array varies, depending on
the array's data type. The effect of the Erase statement on a fixed variant array in VBScript is described earlier in the
"Rules at Glance" section.

See Also

Dim Statement, ReDim Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err Object

Description

The Err object contains properties and methods that allow you to obtain information about a single runtime error in a
VBScript script. It also allows you to generate errors and to reset the error object. Because the Err object is an intrinsic
object (which means that it's part of every VBScript script you create) with global scope, you don't need to create an
instance of it within your code.

When an error is generated in your application—whether it's handled or not—the properties of the Err object are
assigned values you can then access to gain information about the error that occurred. You can even generate your
own errors explicitly using the Err.Raise method. You can also define your own errors to unify the error-handling
process.

When your program reaches an On Error Resume Next or On Error Goto 0 statement, the Err object is cleared and its
properties reinitialized. This can also be achieved explicitly using the Err.Clear method.

Properties

Property name Description

Description The string associated with the given error number

HelpContext A context ID within a VBScript Help file

HelpFile The path to a VBScript Help file

Number A long integer used to describe an error (i.e., an error code)

Source Either the name of the current project or the class name of the application that generated the error

Methods

Method name Description

Clear Resets all the properties of the Err object

Raise Forces an error with a particular error code to be generated

Programming Tips and Gotchas

The VBScript Err object isn't a collection; it contains only information about the last error, if one occurred. You could,
however, implement your own error collection class to store a number of errors by copying error information from the
Err object into an object array that holds error information.

VBA/VBScript Differences

The VBA Err object includes one additional property, LastDLLError, that reports the last error code generated by
a call to a DLL routine.

In VBA, the Err object is automatically reset whenever an Exit Function, Exit Sub, Exit Property, Resume, or On Error
statement is encountered, the Err object is cleared, and its properties reinitialized. In VBScript, this occurs only
when an On Error Resume Next or an On Error Goto 0 statement is executed.

See Also

Err.Clear Method, Err.Raise Method, On Error Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.Clear Method

Syntax

Err.Clear

Description

Explicitly resets all the properties of the Err object after an error has been handled.

Rules at a Glance

You need to clear the Err object only if you need to reference its properties for another error within the same
subroutine or before another On Error Resume Next statement within the same subroutine.

Example

On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If

Programming Tips and Gotchas

Resetting the Err object explicitly using the Clear method is necessary when you use On Error Resume Next and
test the value of Err.Number repeatedly. Unless you reset the Err object, you run the very real risk of catching
the previously handled error, the details of which are still lurking in the Err object's properties.

The Err object is automatically reset when an On Error Resume Next or On Error Goto 0 statement is executed.

It is also possible to set the Err.Number property to 0 instead of calling up the Err.Clear method. However, this
doesn't reset the remaining properties of the Err object.

When testing the value of Err.Number, don't forget that OLE servers often return "negative" numbers. Actually
internally they're not really negative, but are unsigned longs. However, since VBScript has no unsigned long
data type, its value is represented as a negative number.

VBA/VBScript Differences

In VBA, the Err object is automatically reset by an Exit Function, Exit Sub, Exit Property, Resume, or On Error statement. In
VBScript, it's reset only by an On Error statement.

See Also

Err Object, Err.Raise Method, On Error Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.Description Property

Data Type

String

Description

A read/write property containing a short string describing a runtime error.

Rules at a Glance

When a runtime error occurs, the Description property is automatically assigned the standard description of the
error.

If there is no error (that is, if the value of Err.Number is 0), the value of the Description property is an empty
string.

For user-defined errors (that is, for errors that you define in your own scripts), you must assign a string
expression to the Description property or the error won't have an accompanying textual message.

You can override the standard description by assigning your own description to the Err object for both VBScript
errors and user-defined errors.

Example

This example uses the description parameter of the Err.Raise method to return an error message when validating
information from an HTML form. The web page containing the form is:

<HTML>
<HEAD>
<TITLE>Register</TITLE>
</HEAD>
<BODY>
<CENTER><H1>Welcome!</H1></CENTER>
Enter Your Name:
<FORM NAME="frmName" METHOD="POST" ACTION="Err_Desc2.asp" >
<INPUT TYPE="text" NAME="txtName">
<INPUT TYPE="submit">
</FORM>
</BODY>
</HTML>

The source code for Err_Desc2.asp is:

<HTML>
<HEAD>
<TITLE>Welcome to our Web Page</TITLE>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="Server">
Function ValidateString(sString)
 If sString = "" Then
 Err.Raise 61000,,
 "<H4>Please press the Back button and enter your name.</H4>"
 Else
 ValidateString = sString
 End If
End Function
</SCRIPT>
</HEAD>

<BODY>
<%
 On Error Resume Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Resume Next
 Dim sFormName, sName

 sFormName = Server.HTMLEncode(Request.Form.Item("txtName"))
 sName = ValidateString(sFormName)
 If Err.Number = 0 Then
 Response.Write "<H1><CENTER>Welcome, " & sName & "."
 Else
 Response.Write "We encounter an error in the information you
submitted: " & _
"<P>" & Err.Description
 End If
%>
</BODY>
</HTML>Chapter 7

Programming Tips and Gotchas

If you raise an error with the Err.Raise method that does not correspond to a VBScript error and don't set the
Description property, the Description property is automatically set to "Unknown runtime error."

You can also pass the Err.Description to a logging device such as a log file in Windows 95/98/ME or the
application log in Windows NT/2000/XP by using the Windows Script Host WSHShell.LogEvent method; for
details, see Chapter 7.

The best way to set the Description property for your own application-defined errors is to use the description
argument with the Raise method:

Err.Raise 65444,, "Meaningful Error Description"

VBA/VBScript Differences

In VBA, user-defined errors that do not have descriptions are automatically assigned a description of "Application
Defined or Object Defined Error." In VBScript, the description is "Unknown runtime error."

See Also

Err Object, Err.Number Property, Err.Raise Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.HelpContext Property

Data Type

Long

Description

A read/write property that either sets or returns a long integer value containing the context ID of the appropriate topic
within a Help file.

Rules at a Glance

The HelpContext property can be set either directly or by supplying the fifth parameter (the helpcontext
parameter) to the Err.Raise method.

HelpContext IDs are decided upon when writing and creating a Windows help file. Once the Help or HTML help
file has been compiled, the IDs can't be changed. Each ID points to a separate Help topic.

Example

On Error Resume Next

Dim i

i = 8
MsgBox (i / 0)
If Err.Number <> 0 Then
 Err.Description = "You are attempting to divide by zero."
 Err.Helpfile = "C:\Windows\help\CustomApp.CHM"
 Err.HelpContext = 1000000 + Err.Number
 MsgBox Err.Description, vbMsgBoxHelpButton, "Error", Err.HelpFile, _
 Err.HelpContext
End If

Programming Tips and Gotchas

You can display a topic from a help file by supplying values to the Err.HelpFile and Err.HelpContext properties,
using the MsgBox function with the vbMsgBoxHelpButton constant and passing Err.HelpContext as the HelpContext
argument (as shown in the previous example).

If you supply a HelpContext ID that can't be found in a Windows Help file, the contents page for the Help file
should be displayed. However, what actually happens is that a Windows Help error is generated, and a message
box is displayed that informs the user to contact their vendor. If you supply a HelpContextID that cannot be
found in an HTML Help file, VBScript displays an error message indicating that the Help file is either invalid or
corrupted.

In ASP applications, the HelpContext and HelpFile properties should not be used, since context-sensitive help on
the server is undesirable. In Internet Explorer applications, particularly those that are accessible over the
Internet, use of the HelpContext and HelpFile properties is not advisable, since you can't be certain that the
appropriate help file is available on the client.

VBA/VBScript Differences

At runtime, the HelpFile and HelpContext properties are automatically set when a VBA runtime error is
encountered either because of an actual error or because of a call to the Err.Raise method. When a VBScript-
defined error is encountered, on the other hand, these property values are not updated, since it may not make
sense to supply help in a scripted environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sense to supply help in a scripted environment.

An invalid HelpContext ID to an HTML Help file causes VBA to display the file's Contents page. It causes
VBScript to display an error message noting that the file either is not a help file or has been corrupted.

See Also

MsgBox Function, Err.HelpFile Property, Chapter 4

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.HelpFile Property

Data Type

String

Description

A read/write string property that contains the fully qualified path of a Windows Help or HTML Help file.

Rules at a Glance

The HelpFile property can be set either directly or by supplying the fourth parameter (the helpfile parameter) to the
Err.Raise method.

Example

See Err.HelpContext.

Programming Tips and Gotchas

Some objects you may use within your application have their own help files, which you can access using
HelpFile to display highly focused help to your users.

Remember that once the program encounters an On Error statement, all the properties of the Err object are
reset; this includes HelpFile. You must therefore set the Err.HelpFile property each time your application needs
to access the help file.

In ASP applications, the HelpContext and HelpFile properties should not be used, since context-sensitive help on
the server is undesirable. In IE applications, particularly those that are accessible over the Internet, use of the
HelpContext and HelpFile properties is not advisable, since you can't be certain that the appropriate help file is
available on the client.

VBA/VBScript Differences

Much of the utility of the HelpFile and HelpContext properties in VBA stems from the fact that, for errors recognized by
the runtime engine, these values are automatically supplied to the Err object and can in turn be passed to the MsgBox
function. In VBScript, however, these values are not updated automatically; if you want to use a help file or implement
context-sensitive help, you have to supply these values yourself.

See Also

Err.HelpContext Property, Err.Number Property, Chapter 4

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.Number Property

Data Type

Long

Description

A read/write property containing a type Long value that represents the error code for the last error generated.

Rules at a Glance

When a runtime error is generated within the program, the error code is automatically assigned to Err.Number.

The Number property is updated with an application-defined error whose code is passed as an argument to the
Err.Raise method.

When using the Err.Raise method in normal code, your user-defined error codes can't be greater than 65536 or
less than 0. (See the final note in the "Programming Tips and Gotchas" section of the entry for the Err.Raise
method.)

VBScript uses error numbers in the range of 1-1058 as well as 32766-32767 and 32811 for its own trappable
errors. In implementing a series of application-defined errors, your error handlers should either translate
application errors into VBScript trappable errors or, preferably, assign a unique range to application-defined
errors.

If your code instantiates an ActiveX server, its error codes should be increased by the value of the VBScript
intrinsic constant vbObjectError. When control returns to the local application after an error has been raised by
the OLE server, the application can determine that the error originated in the OLE server and extract the error
number with a line of code like the following:

Dim lError
If ((Err.Number And &HFF00) And vbObjectError) Then
 lError = Err.Number XOr vbObjectError

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.Raise Method

Syntax

Err.Raise number, [source], [description], _
 [[helpfile], helpcontext]

number

Use: Required

Data Type: Long integer

A numeric identifier of the particular error.

source

Use: Optional

Data Type: String

The name of the object or application responsible for generating the error.

description

Use: Optional

Data Type: String

A useful description of the error.

helpfile

Use: Optional

Data Type: String

The fully qualified path of a Microsoft Windows Help or HTML Help file containing help or reference material
about the error.

helpcontext

Use: Optional

Data Type: Long

The context ID within helpfile.

Description

Generates a runtime error.

Rules at a Glance

To use the Raise method, you must specify an error number.

If you supply any of the number, source, description, helpfile, and helpcontext arguments when you call the Err.Raise
method, they are supplied as values to the Err object's Number, Source, Description, HelpFile, and HelpContext
properties, respectively. Refer to the entries for the individual properties for full descriptions of and rules for
each property.

Programming Tips and Gotchas

The Raise method doesn't reinitialize the Err object prior to assigning the values you pass in as arguments. This
can mean that if you Raise an error against an Err object that hasn't been cleared since the last error, any
properties you don't specify values for still contain the values from the last error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties you don't specify values for still contain the values from the last error.

As well as using Raise in a runtime scenario, you can put it to good use in the development stages of your
program to test the viability of your error-handling routines under various circumstances.

The fact that Err.Number accepts only numbers in the range 0-65536 may appear to be strange at first because
the data type of the Error Number parameter in the Raise event is a Long; however, deep in the recesses of the
Err object, the error code must be declared as an unsigned integer, which is a data type not supported by
VBScript.

When you raise an error in a scripted environment, it may not make sense to supply arguments to the helpfile
and helpcontext parameters. They have no relevance to ASP applications; in IE applications, the help file itself
may not be available on the host computer.

See Also

Err Object, Err.Clear Method, Err.HelpContext Property, Err.Number Property, Chapter 4

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Err.Source Property

Data Type

String

Description

A read/write string property containing the name of the application or the object that has generated the error.

Rules at a Glance

When a runtime error occurs in your code, the Source property is automatically assigned the string "Microsoft
VBScript runtime error."

If the error occurs in an ActiveX component instantiated by your application, the Source property usually
contains the class name or the programmatic identifier of the component that raised the error.

Programming Tips and Gotchas

Knowing what type of error has occurred within a program is often of little use if you don't know where the error was
generated. However, if you enhance the standard Source property by adding the name of the procedure, class,
property, or method when you raise an error, your debugging time can be cut dramatically.

See Also

Err Object, Chapter 4

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Escape Function

Syntax

Escape (string)
string

string

Use: Optional

Data Type: String

The String to be encoded.

Return Value

An encoded Variant of Type string.

Description

Returns an encoded version of string.

Rules at a Glance

All Unicode characters 255 and below are converted to %xx format except for A-Z, a-z, 0-9, and _*+-./@. For
example, a space is replaced by %20.

Programming Tips and Gotchas

The Escape function is not documented in the VBScript documentation.

The function corresponds to the JScript escape method.

You can use the Escape function to encode an HTML document so that a web browser displays the HTML source
rather than interprets it. Alternatively, you can use the HTMLEncode method of the ASP Server object to
achieve a similar (and more readable) result.

You can use the Escape function to encode an HTTP query string before returning it to a web server.

If string contains no spaces, punctuation characters, accented characters, or non-ASCII characters, the Escape
function simply returns string unchanged.

Example

The following is a very simple routine that allows you to experiment with encoding character strings:

Option Explicit

Dim sIn, sOut
Do While True
 sIn = InputBox("Enter a string:", "UnescapedString", "")
 If sIn = " Then Exit Do

 sOut = Escape(sIn)

 msgbox "In: " & sIn & vbcrlf & _
Loop

For example, the string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the string:

This is a level-1 head: <H1>Hello!</H1>

returns the string:

This%20is%20a%20level-1%20head%3A%20%3CH1%3EHello%21%3C/H1%3E

VB/VBA Differences

This function is not supported in VBA.

See Also

Unescape Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Eval Function

Syntax

[result =]Eval(expression)

result

Use: Optional

Data Type: Any

A variable to hold the result of the Eval function.

expression

Use: Required

Data Type: String

The expression to be evaluated.

Return Value

Any

Description

Evaluates an expression and returns the results.

Rules at a Glance

Eval follows the rules of precedence in evaluating expression.

If an equals sign (=) occurs in expression, it is interpreted as a comparison operator rather than as an
assignment operator. In this case, Eval returns True if the parts of expression are equal and False if they are not.

Example

In this example, the first result will always evaluate to False, since the variables are not equal, and the second will
always evaluate to True, since Test1 is in fact less than Test2:

Dim Test1, Test2, Result

Test1 = 4
Test2 = 5
Result = Eval("Test1 = Test2")
MsgBox Result
Result = Eval("Test1 < Test2")
MsgBox Result
Result = Eval("Test1 / Test2")
MsgBox Result
Result = Eval("Test1 - Test2")
MsgBox Result

Programming Tips and Gotchas

You may wonder why you'd want to bother with Eval when you can do the same thing without it. For example:

 lVar1 = 2
 lVar2 = 3
 lResult = lVar1 + lVar2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lResult = lVar1 + lVar2

is the same as:

 lVar1 = 2
 lVar2 = 3
 lResult = Eval(lVar1 + lVar2)

But the significance of Eval is that it evaluates expressions stored to strings. For example, the code:

 Dim sExp, result, a, b, c

 a = 10
 b = 20
 c = 30

 sExp = "a + b + c"

 result = eval(sExp)

returns 60. This means that you can build expressions and assign them to strings dynamically, then have them
evaluated by passing them to the Eval function.

VBA/VBScript Differences

The Eval function is not supported in VBA.

See Also

Execute Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Execute Statement

Syntax

Execute statement

statement

Use: Required

Data Type: String expression

A string expression containing one or more statements for execution.

Description

Executes one or more statements.

Rules at a Glance

statement must evaluate to a string that contains one or more executable statements. An executable statement
is any call to a user-defined procedure or function, or any intrinsic VBScript command.

You can put multiple statements in the expression; separate them with colons.

You can also separate the arguments with embedded line breaks.

If statement includes an equal sign, it is interpreted as an assignment rather than an evaluation. For example, x
= 3 assigns the value 3 to the variable x, rather than comparing the value of the variable x with 3.

In VBScript, a program fragment such as x=3 can be interpreted as both an assignment statement (assigning
the value 3 to the variable x) or as a comparison expression (for example If x = 3 Then...) The Execute and
ExecuteGlobal statements always treat strings of the form a = b as assignment statements. Use Eval to interpret
strings of this form as expressions.

Example

The following is a corrected version of an example appearing in online help that appears to do nothing. In this case, the
Execute statement is used to execute a procedure named Proc2, and the entire source code for the procedure is also
stored to the string S that is passed to the Execute statement:

dim S

S = "Proc2 : "
S = S & "Sub Proc2 : "
S = S & "Dim x : "
S = S & "x = 10 : "
S = S & "MsgBox X : "
S = S & "End Sub "

Execute S

But since the Execute statement only defines Proc2 as a procedure that's visible within the script block but does not
execute it, we must also execute Proc2 as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

execute it, we must also execute Proc2 as follows:

dim S

S = "Sub Proc2 : "
S = S & "Dim x : "
S = S & "x = 10 : "
S = S & "MsgBox X : "
S = S & "End Sub "

Execute S
Proc2

Programming Tips and Gotchas

The Execute statement does for executable statements what the Eval function does for expressions: it allows you
to dynamically (i.e., at runtime) assign code to a string and execute it by passing it to the Execute statement.

Be careful with this technique, since it can lead to very hard-to-read code.

VBA/VBScript Differences

The Execute statement is not supported by VBA. However, it is not unlike the CallByName function, which appeared for
the first time in VBA 6.0. CallByName allows you to execute a routine whose name you store to a variable; hence, the
name of the routine need not be determined at design time.

See Also

Eval Function, ExecuteGlobal Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ExecuteGlobal Statement

Syntax

ExecuteGlobal statement

statement

Use: Required

Data Type: String

A string expression containing zero or more statements for execution.

Description

Executes zero or more statements in the global namespace of a script.

Rules at a Glance

statement must evaluate to a string containing one or more executable statements. An executable statement is
any call to a user-defined procedure or function, or to an intrinsic VBScript command.

If statement contains multiple statements or lines of code, you can separate them with colons.

You can also separate statements or lines of code with embedded line breaks (i.e., vbCrLf).

If statement includes an equal sign, it is interpreted as an assignment rather than an evaluation. For example, x
= 3 assigns the value 3 to the variable x, rather than comparing the value of the variable x with 3.

Code created by ExecuteGlobal is executed in the script's global namespace. The global namespace is the
following:

In ASP and IE, code within a <SCRIPT>...</SCRIPT> tag, but outside of individual functions or
procedures.

In Outlook, form-level code outside of individual event handlers, functions, or procedures.

In WSH, code outside of individual functions and procedures.

Example

The example WSH script illustrates the difference between Execute and ExecuteGlobal. Each is called within the MainProc
procedure to define a subroutine. Execute creates a procedure named Proc2; however, it is only visible if called from
MainProc. ExecuteGlobal creates a procedure named Proc1 which is globally available throughout the script.

Option Explicit

Dim x
x = 10

MainProc
EndProc
'Proc2 ' procedure not visible

Sub MainProc
 Dim x
 x = 20
 ExecuteGlobal "Sub Proc1 : MsgBox x : End Sub"
 Execute "Sub Proc2 : MsgBox x : End Sub"
 Proc2 ' only callable from MainProc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Proc2 ' only callable from MainProc
 Proc1
End Sub

Sub EndProc
 Proc1
End Sub

Note that both Proc1 and Proc2 access the public variable x, even though a local variable x was visible in MainProc when
the Execute statement created the Proc2 procedure. If we wanted to pass the local variable x to our routine, we'd have to
redefine Proc2 to accept it as a parameter, as follows:

Execute "Sub Proc2(ByVal a) : MsgBox a : End Sub"

Programming Tips and Gotchas

While the Execute statement executes code that inherits the scope of the procedure in which it was declared,
ExecuteGlobal always executes code in the script's global scope. This has two major implications:

After the ExecuteGlobal statement runs, functions, procedures, or classes defined using ExecuteGlobal can
be accessed from anywhere within the script.

Any variables accessed from code defined by the ExecuteGlobal statement must have global scope. In
other words, when using ExecuteGlobal in a local scope, ExecuteGlobal will not see local variables.

VBA/VBScript Differences

The ExecuteGlobal statement is not supported by VBA.

See Also

Eval Function, Execute Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Exit Statement

Syntax

Exit Do
Exit For
Exit Function
Exit Property
Exit Sub

Description

Prematurely exits a block of code.

Rules at a Glance

Exit Do

Exits a Do...Loop statement. If the current Do...Loop is within a nested Do...Loop, execution continues with the
next Loop statement wrapped around the current one. If, however, the Do...Loop is standalone, program
execution continues with the first line of code after the Loop statement.

Exit For

Exits a For...Next loop. If the current For...Next is within a nested For...Next loop, execution continues with the next
Next statement wrapped around the current one. If, however, the For...Next loop is standalone, program
execution continues with the first line of code after the Next statement.

Exit Function

Exits the current function.

Exit Property

Exits the current property procedure.

Exit Sub

Exits the current sub procedure.

Programming Tips and Gotchas

Traditional programming theory recommends one entry point and one exit point for each procedure. However,
you can improve the readability of long routines by using the Exit statement. Using Exit Sub can save having to
wrap almost an entire subroutine (which could be tens of lines long) within an If...Then statement.

With Exit Sub:

Sub MyTestSub(iNumber)
 If iNumber = 10 Then
 Exit Sub
 End If
 ...'code
End Sub

Without Exit Sub:

Sub MyTestSub(iNumber)
 If iNumber <> 10 Then
 ...'code
 End If
End Sub

In the case of the Exit Function, Exit Property, and Exit Sub statements, the point in the program to which program
flow returns depends on the caller of the property, function, or sub, respectively, and not on the property,
function, or sub itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function, or sub itself.

See Also

Do . . . Loop Statement, For . . . Next Statement, For Each . . . Next Statement, Function Statement, Property Get
Statement, Property Let Statement, Property Set Statement, Sub Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Exp Function

Syntax

Exp(number)

number

Use: Required

Data Type: Number

Any valid numeric expression.

Return Value

A Double representing the antilogarithm of number.

Description

Returns the antilogarithm of a number; the antilogarithm is the base of natural logarithms, e (whose value is the
constant 2.7182818), raised to a power.

Rules at a Glance

The maximum value for number is 709.782712893.

Programming Tips and Gotchas

Exp is the inverse of the Log function.

See Also

Log Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File Object

Createable

No

Returned by

Files.Item property
FileSystemObject.GetFile method

Library

Microsoft Scripting Runtime

Description

The File object represents a disk file that can be a file of any type and allows you to interrogate the properties of the file
and to move upward in the filesystem hierarchy to interrogate the system on which the file resides. The process of
instantiating a File object—for example, assigning a reference from the File object's Item property to a local object
variable—doesn't open the file. An open file is represented in the File System object model by a TextStream object,
which can be generated by the File object's OpenAsTextStream method.

There are several methods of retrieving a reference to an existing File object:

If you want to work with a particular file, you can retrieve a reference to it directly by calling the GetFile method
of the FileSystemObject object. For example:

Dim oFS, oFile
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFile = oFS.GetFile("C:\Documents\MyReport.doc")

allows you to retrieve a reference to a File object representing the MyReport.doc file without having to use the
File System object model to navigate the filesystem.

If you want to work with a file as a member of a folder or of a set of files, you can retrieve a reference to a File
object that represents it from the Item property of the Files collection. (The Files collection is returned by the
Files property of a Folder object.) The following code fragment, for instance, retrieves a reference to a file
named MyReport.doc that is a member of the Documents folder:

Dim oFS, oFile
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFile = oFS.Drives("C").RootFolder.SubFolders("Documents"). _
 Files("MyReport.doc")

Note that a File object represents an existing file; you cannot create a File object representing a new file. (You
can, however, create a new TextStream object that represents a new text file by calling the Folder object's
CreateTextFile method.)

Properties

Attributes

Data Type: Long

Sets or returns the file's attributes. The value of the property represents a bit mask consisting of six flags in the
case of a File object, each of which represents a particular file attribute. These values are:

Value Description

1 Read-only

2 Hidden

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 System

32 Archive

1024 Alias

2048 Compressed

All flags are read/write except for the alias and compressed flags. A value of 0 (normal) indicates that no flags
are set.

The attribute flags are represented by the constants of the FileAttribute enumeration in the Scripting Runtime
library. You can access them from an ASP page by including the METADATA tag, or from a WSH script by
including the following line in a Windows Script Host (.wsf) file:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

You can also add Const statements that define the attribute constants.

DateCreated

Data Type: Date

The date and time the file was created; the property is read-only.

DateLastAccessed

Data Type: Date

The date and time the file was last accessed. Whether the property includes the date and time or only the date
depends on the operating system; Windows 95, Windows 98, and Windows ME, for instance, only return the
date, while Windows NT, Windows 2000, and Windows XP return the date and time. The property is read-only.

DateLastModified

Data Type: Date

The date and time the file was last modified; the property is read-only.

Drive

Data Type: Drive object

Returns a Drive object representing the drive on which the file resides; the property is read-only.

Name

Data Type: String

The name of the file. Modifying the value of a File object's Name property renames the file.

ParentFolder

Data Type: Folder object

Returns a Folder object representing the folder in which the file resides; the property is read-only.

Path

Data Type: String

Returns the full path to the file from the current machine, including drive letter or network path/share name;
the property is read-only. Path is the default property of the File object.

ShortName

Data Type: String

Returns a DOS 8.3 filename.

ShortPath

Data Type: String

Returns a DOS 8.3 folder name. The property is read-only.

Size

Data Type: Long

Returns the size of the file in bytes. The property is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the size of the file in bytes. The property is read-only.

The Size property holds a long integer, meaning that it accurately reports file sizes from 0 to 2,147,483,648
bytes. In previous versions of VBScript, the property failed to accurately report the size of large files of over 2
GB.

Type

Data Type: String

Returns a string containing the registered type description. This is the type string displayed for the file in
Windows Explorer. If a file doesn't have an extension, the type is simply "File." When a file's type isn't
registered, the type appears as the extension and "File." The property is read-only.

Methods

Copy
Move
Delete
OpenAsTextStream

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File.Copy Method

Syntax

oFileObj.Copy Destination [, OverwriteFiles]

oFileObj

Use: Required

Data Type: File object

A File object.

Destination

Use: Required

Data Type: String

The path and, optionally, the filename of the copied file.

OverwriteFiles

Use: Optional

Data Type: Boolean

True if the copy operation can overwrite an existing file, False otherwise.

Description

Copies the file represented by oFileObj to another location.

Rules at a Glance

Wildcard characters can't be used in Destination.

Programming Tips and Gotchas

If the Destination path is set to read-only, the Copy method fails regardless of the OverwriteFiles setting and
generates a "Permission denied" error.

If OverwriteFiles is False and the file already exists in Destination, runtime error 58, "File Already Exists," is
generated.

If the user has adequate rights, Destination can be a network path or share name. For example:

MyFile.Copy "\\NTSERV1\d$\RootTwo\"
MyFile.Copy "\\NTSERV1\RootTest"

See Also

FileSystemObject.CopyFile Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File.Delete Method

Syntax

oFileObj.Delete [Force]

oFileObj

Use: Required

Data Type: File object

A File object.

Force

Use: Optional

Data Type: Boolean

If set to True, ignores the file's read-only flag (if it's on), and deletes the file.

Description

Removes the current file.

Rules at a Glance

The Delete method deletes a file permanently; it does not move it to the Recycle Bin.

If the file is open, the method fails with a "Permission Denied" error.

The default setting for Force is False.

If Force is set to False, and the file is read-only, the method will fail.

Programming Tips and Gotchas

Unlike the FileSystemObject object's DeleteFile method, which accepts wildcard characters in the path
parameter and can therefore delete multiple files, the Delete method deletes only the single file represented by
oFileObj.

As a result of the Delete method, the Files collection object containing oFileObj is automatically updated, the
deleted file is removed from the collection, and the collection count is reduced by one. You shouldn't try to
access the deleted file object again; you should set oFileObj to Nothing.

See Also

FileSystemObject.DeleteFile Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File.Move Method

Syntax

oFileObj.Move destination

oFileObj

Use: Required

Data Type: File object

A File object.

destination

Use: Required

Data Type: String

The path to the location where the file is to be moved.

Description

Moves a file from one folder to another.

Rules at a Glance

The file represented by oFileObj must not be open or an error occurs.

Wildcard characters can't be used in Destination.

Destination can be either an absolute or a relative path.

Programming Tips and Gotchas

If a fatal system error occurs during the execution of this method (like a power failure), the worst that can
happen is that the file is copied to the destination but not removed from the source. There are no rollback
capabilities built into the File.Move method; however, because the copy part of this two-stage process is
executed first, the file can't be lost.

If a folder or a file by the same name already exists in destination, the method generates runtime error 58, "File
exists." To prevent this, you can use the FileSystemObject's FileExists and GetAbsolutePath methods prior to
calling the Move method.

Unlike the FileSystemObject's MoveFile method, which accepts wildcard characters in the path parameter and
can therefore move multiple files, the Move method moves only the single file represented by oFileObj.

As a result of the Move method, the Files collection object originally containing oFileObj is automatically updated,
the file is removed from it, and the collection count is reduced by one. You shouldn't try to access the moved
file object again in the same Folders collection object.

oObj, the File object reference, remains valid after the file has been moved. Its relevant properties (the Drive,
ParentFolder, Path, and ShortPath properties, for example) are all updated to reflect the file's new path after
the move.

If the user has rights, destination can be a network path or share name:

oFile.Move "\\NTSERV1\d$\RootTwo\myfile.doc"

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

FileSystemObject.MoveFile Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File.OpenAsTextStream Method

Syntax

oFileObj.OpenAsTextStream ([IOMode[, Format]])

oFileObj

Use: Required

Data Type: File object

A File object.

IOMode

Use: Optional

Data Type: Long

A constant specifying the purpose for opening the file.

Format

Use: Optional

Data Type: Long

A constant specifying ASCII or Unicode format.

Return Value

A TextStream object.

Description

Opens the referenced text file for reading or writing.

Rules at a Glance

IOMode can be one of the following values:

Constant Value Description

ForAppending 8 Opens the file in append mode; that is, the current contents of the file are
protected, and new data written to the file is placed at the end of the file.

ForReading 1 Opens the file for reading; you can't write to a file that has been opened for
reading.

ForWriting 2 Opens the file for writing; all previous file content is overwritten by new
data.

The default value is 1, ForReading.

The Scripting Runtime type library defines constants of the IOMode enumeration that can be used in place of
their numeric equivalents for the IOMode argument. You can use them in your scripts in either of two ways. You
can define the constants yourself by adding the following code to your script:

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

You can also include the ASP METADATA tag in global.asa or include the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

Unicode can be one of the following values:

Constant Value Description

TristateUseDefault -2 Open as System default

TristateTrue -1 Open as Unicode

TristateFalse 0 Open as ASCII

The default value is 0 or ASCII (TristateFalse).

The Scripting Runtime type library defines constants of the Tristate enumeration that can be used in place of
their numeric equivalents for the Unicode argument. You can use them in your scripts in either of two ways. You
can define the constants yourself by adding the following code to your script:

Const TristateFalse = 0
Const TristateTrue = -1
Const TristateUseDefault = -2

You can also include the ASP METADATA tag in global.asa or include the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

If another process has opened the file, the method fails with a "Permission Denied" error.

The TextStream object is so named for a very good reason: it is designed to work with text files rather than
binary files. Although it is possible to use the OpenAs TextStream method to open a binary file, an enormous
number of subtle bugs may crop up when you manipulate binary data as text. Because of this, if you want to
work with binary files, you should use some technology (like the ADO binary file object) or programming
language (like C/C++) that's more amenable to processing binary files.

See Also

FileSystemObject.OpenTextFile Method , TextStream Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

File System Object Model

Library to Reference

Microsoft Scripting Runtime (SCRRUN.DLL)

Description

The FileSystemObject is a boon for all developers using any variety of Visual Basic (VBScript, VBA, and VB). It simplifies
the task of dealing with any type of file input and output and for dealing with the system file structure itself. Rather
than resorting to complex calls to the Win32 API (or, in the case of VBScript, not being able to access the filesystem
altogether), this object allows the developer to easily handle files and navigate the underlying directory structures. This
is especially useful for those developers or administrators who are creating scripts that are used for system
administration or maintenance.

The File System object model is available to both VB and VBA developers, but it is only intrinsically part of the VBScript
scripting language. The File System object model allows you to interrogate, create, delete, and manipulate folders and
text files.

To access the File System object model, you must first create an instance of the FileSystemObject object, the only
externally createable object in the model. From there, you can navigate through the object model, as shown in the
object hierarchy diagram in Figure 10-1. The FileSystemObject object can be instantiated with a code fragment like the
following:

Dim oFS
Set oFS = CreateObject("Scripting.FileSystemObject")

Figure 10-1. The File System object model

It can also be instantiated using the object creation method of the host object model.

See Also

File Object, Files Collection Object, FileSystemObject Object, Folder Object, Folders Collection Object, TextStream
Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Files Collection Object

Createable

No

Returned by

Folder.Files property

Library

Microsoft Scripting Runtime

Description

The Files collection object is one of the objects in the File System object model; for an overview of the model, including
the library reference needed to access it, see the "File System Object Model" entry.

The Files collection object is a container for File objects that is returned by the Files property of any Folder object. All
files contained in the folder are included in the Files collection object. You can obtain a reference to a Files collection
object using a code fragment like the following:

Dim oFS, oFiles

Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFiles = oFS.Drives("C:").RootFolder. _
 SubFolders("Windows").Files

This code returns the Files collection for the Windows folder.

You can obtain a reference to an individual File object using the Files collection object's Item property; this takes the
exact filename, including the file extension, as an argument. To iterate through the collection, you can use the For
Each...Next statement. For details, see the entry for the File Object.

The Files collection object is read-only. Consequently, it supports only the following two properties.

Properties

Count

Data Type: Long

The number of File objects in the collection.

Item

Data Type: File object

Takes the filename (including the file extension) as a parameter and returns the File object representing the file
with that name. Individual File objects can't be accessed by their ordinal position in the collection. Item is the
Files collection object's default property. The code fragment shown next uses the Item property to retrieve the
autoexec.bat File object.

Dim ofsFiles
Dim ofsFile

Set ofsFileSys = CreateObject("Scripting.FileSystemObject")
Set ofsFiles = ofsFileSys.Drives("C:").RootFolder.Files
Set ofsFile = ofsFiles.Item("autoexec.bat")
MsgBox ofsFile.DateCreated & vbCrLf & _
 ofsFile.DateLastModified & vbCrLf & _
 ofsFile.DateLastAccessed

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

File System Object Model, File Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject Object

Createable

Yes

Library

Microsoft Scripting Runtime

Description

The FileSystemObject object is at the top level of the File System object model and is the only externally createable
object in the hierarchy; that is, it's the only object you can create using the CreateObject function or the host object
model's object creation facilities. For example, the following code instantiates a FileSystemObject object named oFS:

Dim oFS
Set oFS = CreateObject("Scripting.FileSystemObject")

The FileSystemObject object represents the host computer's filesystem as a whole. Its members allow you to begin
navigation into the filesystem, as well as to access a variety of common filesystem services. For information about the
FileSystemObject object's properties and methods, see the entry for each property and method.

For an overview of the file system object model, see the "File System Object Model" entry.

Properties

Drives (returns a Drives collection object).

Methods

BuildPath FileExists GetFileName

CopyFile FolderExists GetFolder

CopyFolder GetAbsolutePathName GetParentFolderName

CreateFolder GetBaseName GetSpecialFolderd

CreateTextFile GetDrive GetTempName

DeleteFile GetDriveName MoveFile

DeleteFolder GetExtensionName MoveFolder

DriveExists GetFile OpenTextFile

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.BuildPath Method

Syntax

oFileSysObj.BuildPath(Path, Name)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A drive and/or folder path.

Name

Use: Required

Data Type: String

The folder or file path to append to path.

Return Value

A String.

Description

Creates a single string representing a path and filename or simply a path by concatenating the path parameter with the
folder or filename, adding, where required, the correct path separator for the host system.

Rules at a Glance

Path can be an absolute or relative path and doesn't have to include the drive name.

Neither Path nor Name has to currently exist.

Programming Tips and Gotchas

BuildPath is really a string concatenation method rather than a filesystem method; it does not check the validity
of the new folder or filename. If you intend that the method's return value be a path, you should check it by
passing it to the FolderExists method; if you intend that the method's return value be a path and filename, you
should verify it by passing it to the FileExists method.

The only advantage to using the BuildPath function as opposed to concatenating two strings manually is that
the function selects the correct path separator.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.CopyFile Method

Syntax

oFileSysObj.CopyFile Source, Destination [, OverwriteFiles]

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Source

Use: Required

Data Type: String

The path and name of the file to be copied. The path can be relative or absolute, and the filename (but not the
path) can contain wildcard characters.

Destination

Use: Required

Data Type: String

The path and optionally the filename of the copy to make. Destination cannot include wildcard characters.

OverwriteFiles

Use: Optional

Data Type: Boolean

Flag indicating whether an existing file is to be overwritten (True) or not (False). It's default value is True; files of
the same names in the target folder will be overwritten.

Description

Copies a file or files from one folder to another.

Rules at a Glance

The default value for OverwriteFiles is True.

The source path can be relative or absolute.

The source filename can contain wildcard characters; the source path can't.

Wildcard characters can't be included in Destination.

Programming Tips and Gotchas

If the destination path or file is read-only, the CopyFile method fails, regardless of the value of OverwriteFiles and
generates runtime error 70, "Permission Denied."

If OverwriteFiles is set to False and the file exists in Destination, a trappable error—runtime error 58, "File Already
Exists"—is generated.

If an error occurs while copying more than one file, the CopyFile method exits immediately, thereby leaving the
rest of the files uncopied. There is no rollback facility to undo copies made prior to the error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rest of the files uncopied. There is no rollback facility to undo copies made prior to the error.

Both Source and Destination can include relative paths—that is, paths that are relative to the current folder. The
current folder is the folder in which the script is stored, the folder specified in the "Start in" text box of a
shortcut, or the folder from which the script is launched from the console mode. The symbol to indicate the
parent of the current folder is (..); the symbol to indicate the current folder is (.).

Source must include an explicit filename. For instance, under DOS, you could copy all of the files in a directory
with a command in the format of:

Copy c:\data c:\bckup

or:

Copy c:\data\ c:\bckup

which would copy all the files from the C:\data directory to C:\bckup. The Source argument cannot take any of
these forms; instead, you must include some filename component. For example, to copy all of the files from
C:\data, the CopyFile statement would take the form:

oFS.CopyFile "C:\data*.*", "C:\bckup"

To specify multiple files, the Source argument can include the * and ? wildcard characters. Both are legacies
from DOS. * matches any characters in a filename that follow those characters that are explicitly specified. For
instance, a Source argument of File* matches File01.txt, File001.txt, and File.txt, since all three filenames begin
with the string "File"; the remainder of the filename is ignored. ? is a wildcard that ignores a single character in
a filename comparison. For instance, a Source argument of Fil?01.txt copies File01.txt and Fil_01.txt, since the
fourth character of the filename is ignored in the comparison.

If you want the source and the destination directories to be the same, you can copy only a single file at a time,
since Destination does not accept wildcard characters.

If the path specified in Destination does not exist, the method does not create it. Instead, it generates runtime
error 76, "Path not found."

If the user has adequate rights, the source or destination can be a network path or share name. For example:

CopyFile "c:\Rootone*.*", "\\NTSERV1\d$\RootTwo\"
CopyFile "\\NTSERV1\RootTest\test.txt", "c:\RootOne"

The CopyFile method copies a file or files stored in a particular folder. If the folder itself has subfolders
containing files, the method doesn't copy these; use the CopyFolder method.

The CopyFile method differs from the Copy method of the File object in two ways:

You can copy any file anywhere in a filesystem without having to first instantiate it as a File object.

You can copy multiple files in a single operation, rather than copying only the file represented by the
File object.

See Also

FileSystemObject.CopyFolder Method, Folder.Copy Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.CopyFolder Method

Syntax

oFileSysObj.CopyFolder Source, Destination [, OverwriteFiles]

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Source

Use: Required

Data Type: String

The path and name of the folder to be copied from.

Destination

Use: Required

Data Type: String

The path for the folder where the copy is to be made.

OverwriteFiles

Use: Optional

Data Type: Boolean

Flag indicating whether existing files are to be overwritten (True) or not (False). Its default value is True; files of
the same name will be overwritten if they already exist in Destination.

Description

Copies the contents of one or more folders, including their subfolders, to another location.

Rules at a Glance

Source must end with either a wildcard character or no path separator. If it ends with a wildcard character, all
matching subfolders and their contents will be copied. Wildcard characters can be used in Source only for the
last component.

Wildcard characters can't be used in Destination.

All subfolders and files contained within the source folder are copied to Destination unless disallowed by the
wildcard characters. That is, the CopyFolder method is recursive.

If Destination ends with a path separator or Source ends with a wildcard, CopyFolder assumes that the folder
stated in Source exists in Destination or should otherwise be created. For example, given the following folder
structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo

The code FileSys.CopyFolder "c:\Rootone*", "C:\RootTwo" produces this folder structure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code FileSys.CopyFolder "c:\Rootone*", "C:\RootTwo" produces this folder structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 SubFolder1
 SubFolder2

The code FileSys.CopyFolder "c:\Rootone", "C:\RootTwo\" produces this folder structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 Rootone
 SubFolder1
 SubFolder2

Programming Tips and Gotchas

If the destination path or any of the files contained in Destination are set to read-only, the CopyFolder method
fails, regardless of the value of OverwriteFiles.

If OverwriteFiles is set to False, and the source folder or any of the files contained in Source exists in Destination,
runtime error 58, "File Already Exists," is generated.

If an error occurs while copying more than one file or folder, the CopyFolder function exits immediately, leaving
the rest of the folders or files uncopied. There is no rollback facility to undo the copies prior to the error.

If the user has adequate rights, both the source or destination can be a network path or share name. For
example:

CopyFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"
CopyFolder "\\NTSERV1\RootTest", "c:\RootOne"

See Also

Folder.Copy Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.CreateFolder Method

Syntax

oFileSysObj.CreateFolder(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

An expression that returns the name of the new folder to create.

Return Value

A Folder object.

Description

Creates a single new folder in the path specified and returns its Folder object.

Rules at a Glance

Wildcard characters aren't allowed in Path.

Path can be a relative or absolute path.

If no path is specified in Path, the current drive and directory are used.

If the last folder in Path already exists, the method generates runtime error, "File already exists."

Programming Tips and Gotchas

If Path is read-only, the CreateFolder method fails.

If Path already exists, the method generates runtime error 58, "File already exists."

If the user has adequate rights, Path can be a network path or share name. For example:

CreateFolder "\\NTSERV1\d$\RootTwo\newFolder"
CreateFolder "\\NTSERV1\RootTest\newFolder"

You must use the Set statement to assign the Folder object to an object variable. For example:

Dim oFileSys
Dim oFolder
Set oFileSys = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFileSys.CreateFolder("MyFolder")

See Also

Folders.Add Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Folders.Add Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.CreateTextFile Method

Syntax

oFileSysObj.CreateTextFile Filename [, Overwrite[, Unicode]])

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Filename

Use: Required

Data Type: String

Any valid filename, along with an optional path.

Overwrite

Use: Optional

Data Type: Boolean

Flag indicating if an existing file of the same name should be overwritten.

Unicode

Use: Optional

Variant Sub Type: Boolean

Flag indicating if Filename is to be written in Unicode or ASCII.

Return Value

A TextStream object.

Description

Creates a new file and returns its TextStream object.

Rules at a Glance

Wildcard characters aren't allowed in Filename.

Filename can be a relative or absolute path.

If no path is specified in Filename, the script's current drive and directory are used. If no drive is specified in
Filename, the script's current drive is used.

If the path specified in Filename doesn't exist, the method fails. To prevent this error, you can use the
FileSystemObject object's FolderExists method to insure that the path is valid.

The default value for Overwrite is False.

If Unicode is set to True, the file is created in Unicode; otherwise, it's created as an ASCII text file. The default
value for Unicode is False.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The newly created text file is automatically opened only for writing. If you subsequently wish to read from the
file, you must first close it and reopen it in read mode.

If the path referred to in Filename is set to read-only, the CreateTextFile method fails regardless of the value of
Overwrite.

If the user has adequate rights, Filename can contain a network path or share name. For example:

FileSys.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

You must use the Set statement to assign the TextStream object to your local object variable.

The CreateTextFile method of the Folder object is identical in operation to that of the FileSystemObject object.

See Also

Folder.CreateTextFile Method, TextStream Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.DeleteFile Method

Syntax

oFileSysObj.DeleteFile FileSpec [, Force]

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FileSpec

Use: Required

Data Type: String

The name and path of the file or files to delete.

Force

Use: Optional

Data Type: Boolean

If set to True, the read-only flag on a file is ignored and the file deleted. Its default value is False; read-only files
will not be deleted.

Description

Permanently removes a given file or files.

Rules at a Glance

FileSpec can contain wildcard characters as the final path component, which allows multiple files to be deleted.

FileSpec can be a relative or absolute path.

If any of the files specified for deletion are open, the method fails with a "Permission Denied" error.

If the specified file or files can't be found, the method fails.

If only a filename is used in FileSpec, the application's current drive and directory is assumed.

Programming Tips and Gotchas

If FileSpec specifies a path not ending in a path separator, the method will fail without generating an error. If
FileSpec specifies a path that ends in a path separator, the method fails and generates runtime error 53, "File
not found."

The DeleteFile method differs from the Delete method of the File object in several respects. First, it allows you
to delete a file directly, without first obtaining an object reference to it. Second, by supporting wildcards, it
allows you to delete multiple files at once.

If an error occurs while deleting more than one file, the DeleteFile method exits immediately, thereby leaving
the rest of the files undeleted. There is also no rollback facility to undo deletions prior to the error.

If the user has adequate rights, the source or destination can be a network path or share name. For example:

DeleteFile "\\NTSERV1\RootTest\myFile.doc"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DeleteFile "\\NTSERV1\RootTest\myFile.doc"

DeleteFile permanently deletes files; it doesn't move them to the Recycle Bin.

See Also

Folder.Delete Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.DeleteFolder Method

Syntax

oFileSysObj.DeleteFolder FileSpec[, Force]

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FileSpec

Use: Required

Data Type: String

The name and path of the folders to delete.

Force

Use: Optional

Data Type: Boolean

If set to True, the read-only flag on a file is ignored and the file deleted. By default, its value is False; read-only
files will not be deleted.

Description

Removes a given folder and all its files and subfolders.

Rules at a Glance

FileSpec can contain wildcard characters as the final path component, which allows multiple folders that meet the
file specification to be deleted.

FileSpec can't end with a path separator.

FileSpec can be a relative or absolute path.

If any of the files within the specified folders are open, the method fails with a "Permission Denied" error.

The DeleteFolder method deletes all contents of the given folder, including other folders and their contents.

If the specified folder can't be found, the method fails.

Programming Tips and Gotchas

If an error occurs while deleting more than one file or folder, the DeleteFolder method exits immediately,
thereby leaving the rest of the folders or files undeleted. There is also no rollback facility to undo the deletions
prior to the error.

DeleteFolder permanently deletes folders and their contents; it doesn't move them to the Recycle Bin.

The DeleteFolder method differs from the Delete method of the Folder object in two respects. First, it allows you
to directly delete a folder, without first having to navigate to it or otherwise obtain an object reference to it.
Second, it allows you to delete multiple folders, whereas the Delete method allows you to delete only the folder
represented by the Folder object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

represented by the Folder object.

If the user has adequate rights, the source or destination can be a network path or share name. For example:

FileSys.DeleteFolder "\\NTSERV1\d$\RootTwo"

See Also

Folder.Delete Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.DriveExists Method

Syntax

oFileSysObj.DriveExists (DriveSpec)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

DriveSpec

Use: Required

Data Type: String

A path or drive letter.

Return Value

Boolean (True or False).

Description

Determines whether a given drive (of any type) exists on the local machine or on the network. The method returns True
if the drive exists or is connected to the machine, and returns False if not.

Rules at a Glance

If DriveSpec is a Windows drive letter, it doesn't have to include the colon. For example, "C" works just as well as
"C:".

Returns True if the drive exists or is connected to the machine, and returns False if not.

Programming Tips and Gotchas

DriveExists doesn't note the current state of removable media drives; for this, you must use the IsReady
property of the Drive object representing the given drive.

If the user has adequate rights, DriveSpec can be a network path or share name. For example:

If ofs.DriveExists("\\NTSERV1\d$") Then

This method is ideal for detecting any current drive around the network before calling a function in a remote
ActiveX server located on that drive.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.Drives Property

Syntax

oFileSysObj.Drives

oFileSysObj

Use: Required

Variant Type: FileSystemObject object

A FileSystemObject object.

Return Value

Drives collection object.

Description

Drives is a read-only property that returns the Drives collection; each member of the collection is a Drive object,
representing a single drive available on the system. Using the collection object returned by the Drives property, you can
iterate all the drives on the system using a For...Next loop, or you can retrieve an individual Drive object, which
represents one drive on the system, by using the Drives collection's Item method.

See Also

Drive Object, Drives Collection Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.FileExists Method

Syntax

oFileSysObj.FileExists(FileSpec)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FileSpec

Use: Required

Data Type: String

A complete path to the file.

Return Value

Boolean (True or False).

Description

Determines if a given file exists.

Rules at a Glance

Returns True if the file exists or is connected to the machine, and returns False if not.

FileSpec can't contain wildcard characters.

FileSpec can include either an absolute or a relative path—that is, a path that is relative to the current folder.
The current folder is the folder in which the script is running, or the folder specified in the "Start in" text box of
the shortcut used to launch the script. The symbol to indicate the parent of the current folder is (..); the symbol
to indicate the current folder is (.). If FileSpec does not include a path, the current folder is used.

Programming Tips and Gotchas

If the user has adequate rights, FileSpec can be a network path or share name. For example:

If ofs.FileExists("\\TestPath\Test.txt") Then

See Also

FileSystemObject.FolderExists Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.FolderExists Method

Syntax

oFileSysObj.FolderExists(FolderSpec)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FolderSpec

Use: Required

Data Type: String

The complete path to the folder.

Return Value

Boolean (True or False).

Description

Determines whether a given folder exists; the method returns True if the Folder exists, and returns False if not.

Rules at a Glance

FolderSpec can't contain wildcard characters.

FolderSpec cannot include a filename as well as a path. In other words, the entire FolderSpec string can only
include drive and path information.

If FolderSpec does not include a drive specification, the current drive is assumed.

FolderSpec is interpreted as an absolute path if it begins with a drive name and a path separator, and it is
interpreted as an absolute path on the current drive if it begins with a path separator. Otherwise, it is
interpreted as a relative path.

Programming Tips and Gotchas

If the user has adequate rights, FolderSpec can be a network path or share name. For example:

If FileSys.FolderExists("\\NTSERV1\d$\TestPath\") Then

Among its string manipulation methods, the Scripting Runtime library lacks one that will extract a complete
path from a path and filename. The example provides the GetCompletePath function to perform this useful task,
as well as to illustrate the use of the FolderExists method.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

Function GetCompletePath(sPath)

Dim oFS
Dim sFileName, sPathName
Dim lPos

Set oFS = CreateObject("Scripting.FileSystemObject")

' Check if no backslash is present
If Instr(1, sPath, "\") = 0 Then
 ' Determine if string is a filename
 If oFS.FileExists(sPath) Then
 ' Return current folder
 GetCompletePath = oFS.GetAbsolutePathName(".")
 Else
 ' Check if folder exists
 If oFS.FolderExists("\" & sPath) Then
 GetCompletePath = sPath
 Else
 ' Raise "Path not found" error
 Err.Raise 76
 End If
 End If
' At least one backslash is present
Else
 ' check if last character is a backslash
 If Right(sPath, 1) = "\" Then
 If oFS.FolderExists(sPath) Then
 GetCompletePath = sPath
 Else
 Err.Raise 76
 End If
 ' Extract prospective filename from path
 Else
 ' Check if the string includes a filename
 lPos = InstrRev(sPath, "\")
 sFileName = Mid(sPath, lPos + 1)
 If oFS.FileExists(sPath) Then
 GetCompletePath = Left(sPath, lPos)
 Else
 ' Generate file not found error
 Err.Raise 53
 End If
 End If
End If

End Function

See Also

FileSystemObject.DriveExists Method, FileSystemObject.FileExists Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetAbsolutePathName Method

Syntax

oFileSysObj.GetAbsolutePathName(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A string containing the absolute path of a given path specifier.

Description

Converts a relative path to a fully qualified path, including the drive letter.

Rules at a Glance

(.) returns the drive letter and complete path of the current folder.

(..) returns the drive letter and path of the parent of the current folder.

If Path is simply a filename without a path, the method concatenates the complete path to the current directory
with the filename. For example, if the current folder is C:\Documents\MyScripts, then the method call:

sFileName = GetAbsolutePathName("MyFile.txt")

produces the string "C:\Documents\MyScripts\MyFile.txt".

All relative pathnames are assumed to originate at the current folder. This means, for example, that (.) returns
the drive letter and complete path of the current folder, and that (..) returns the drive letter and path of the
parent of the current folder.

If a drive isn't explicitly provided as part of Path, it's assumed to be the current drive.

Wildcard characters can be included in Path at any point.

Programming Tips and Gotchas

An absolute path provides a complete route from the root directory of a particular drive to a particular folder or
file. In contrast, a relative path describes a route from the current folder to a particular folder or file.

For mapped network drives and shares, the method doesn't return the full network address. Rather, it returns
the fully qualified local path and locally issued drive letter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the fully qualified local path and locally issued drive letter.

The GetAbsolutePathName method is really a string conversion and concatenation method, rather than a
filesystem method. It merely returns a string, but doesn't verify that a given file or folder exists in the path
specified.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetBaseName Method

Syntax

oFileSysObj.GetBaseName(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A string containing the last element in Path.

Description

Returns the name of the last path component, less any extension.

Rules at a Glance

The file extension of the last element in Path isn't included in the returned string.

Programming Tips and Gotchas

GetBaseName doesn't verify that a given file or folder exists in Path.

In stripping the "file extension" and returning the base name of Path, GetBaseName has no intelligence. That is,
it doesn't know whether the last component of Path is a path or a filename. If the last component includes one
or more dots, it simply removes the last one, along with any following text. Hence, GetBaseName returns a null
string for a Path of (.) and it returns (.) for a Path of (..). It is, in other words, really a string manipulation
function, rather than a file function.

See Also

FileSystemObject.GetExtensionName Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetDrive Method

Syntax

oFileSysObj.GetDrive(drivespecifier)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

drivespecifier

Use: Required

Data Type: String

A drive name, share name, or network path.

Return Value

A Drive object.

Description

Obtains a reference to a Drive object for the specified drive.

Rules at a Glance

If drivespecifier is a local drive or the letter of a mapped drive, it can consist of only the drive letter (e.g., "C"),
the drive letter with a colon ("C:"), or the drive letter and path to the root directory (e.g., "C:\") without
generating a runtime error.

If drivespecifier is a share name or network path, GetDrive ensures that it exists as part of the process of
creating the Drive object; if it doesn't, the method generates runtime error 76, "Path not found."

If the specified drive isn't connected or doesn't exist, runtime error 67, "Device unavailable," occurs.

Programming Tips and Gotchas

Individual drive objects can be retrieved from the Drives collection by using the Drives property. This is most
useful, though, if you want to enumerate the drives available on a system. In contrast, the GetDrive method
provides direct access to a particular Drive object.

If you are deriving the drivespecifier string from a path, you should first use GetAbsolutePathName to insure that
a drive is present as part of the path. Then you should use FolderExists to verify that the path is valid before
calling GetDriveName to extract the drive from the fully qualified path. For example:

Dim oFileSys, oDrive

Set oFileSys = CreateObject("Scripting.FileSystemObject")
sPath = oFileSys.GetAbsolutePathName(sPath)
If oFileSys.FolderExists(sPath) Then
 Set oDrive = oFileSys.GetDrive(oFileSys.GetDriveName(sPath))
End If

If drivespecifier is a network drive or share, you should use the DriveExists method to confirm the required drive
is available prior to calling the GetDrive method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is available prior to calling the GetDrive method.

You must use the Set statement to assign the Drive object to a local object variable.

See Also

Drives Collection Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetDriveName Method

Syntax

oFileSysObj.GetDriveName (Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the drive name of a given path.

Rules at a Glance

If the drive name can't be determined from the given path, a zero-length string (" ") is returned.

Programming Tips and Gotchas

For local and mapped drives, GetDriveName appears to look for the colon as a part of the drive's name to
determine whether a drive name is present. For network drives, it appears to look for the computer name and
drive name.

GetDriveName is really a string-parsing method rather than a filesystem method. In particular, it does not
verify that the drive name that it extracts from Path actually exists on the system.

Path can be a network drive or share.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetExtensionName Method

Syntax

oFileSysObj.GetExtensionName(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the extension of the file element of a given path.

Rules at a Glance

If the extension in Path can't be determined, a zero-length string (" ") is returned.

Programming Tips and Gotchas

GetExtensionName is a string parsing method rather than a filesystem method. It does not verify that Path is
valid, does not verify that the filename designated in Path exists, and does not even guarantee that the value it
returns is a valid file extension. In other words, GetExtensionName has no intelligence. It simply parses a string
and returns the text that follows the last dot of the last element.

Path can be a network drive or share.

See Also

FileSystemObject.GetBaseName Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetFile Method

Syntax

oFileSysObj.GetFile(FilePath)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FilePath

Use: Required

Data Type: String

A path and filename.

Return Value

File object.

Description

Returns a reference to a File object.

Rules at a Glance

FilePath can be an absolute or a relative path.

If FilePath is a share name or network path, GetFile ensures that the drive or share exists as part of the process
of creating the File object.

If any part of the path in FilePath can't be contacted or doesn't exist, an error occurs.

Programming Tips and Gotchas

The object returned by GetFile is a File object, not a TextStream object. A File object isn't an open file; the point
of the File object is to perform methods such as copying or moving files and interrogating a file's properties.
Although you can't write to or read from a File object, you can use the File object's OpenAsTextStream method
to obtain a TextStream object. You can also save yourself a step by calling the FileSystemObject object's
OpenTextFile method.

You should first use GetAbsolutePathName to create the required FilePath string.

If FilePath includes a network drive or share, you could use the DriveExists method to confirm that the required
drive is available prior to calling the GetFile method.

Since GetFile generates an error if the file designated in FilePath doesn't exist, you should call the FileExists
method before calling GetFile.

You must use the Set statement to assign the File object reference to a local object variable.

See Also

FileSystemObject.GetFolder Method, FileSystemObject.GetDrive Method, FileSystemObject.OpenTextFile Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileSystemObject.GetFolder Method, FileSystemObject.GetDrive Method, FileSystemObject.OpenTextFile Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetFileName Method

Syntax

oFileSysObj.GetFileName(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the filename element of a given path.

Rules at a Glance

If the filename can't be determined from the given Path, a zero-length string (" ") is returned.

Path can be a relative or absolute reference.

Programming Tips and Gotchas

GetFileName doesn't verify that a given file exists in Path.

Path can be a network drive or share.

Like all the Getx Name methods of the FileSystemObject object, the GetFileName method is more a string
manipulation routine that an object-related routine. GetFileName has no built-in intelligence (and, in fact,
seems to have even less intelligence than usual for this set of methods); it simply assumes that the last
element of the string that is not part of a drive and path specifier is in fact a filename. For example, if Path is
C:\Windows, the method returns the string "Windows"; if Path is C:\Windows\ (which unambiguously denotes a
folder rather than a filename), the method still returns the string "Windows."

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetFileVersion Method

Syntax

oFileSysObj.GetFileVersion(FileName)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A reference to the FileSystemObject object.

FileName

Use: Required

Data Type: String

A path and filename.

Return Value

A String.

Description

Retrieves version information about the file specified in FileName.

Rules at a Glance

FileName should include the path as well as the name of the file. The path component can be either an absolute
or a relative path to the file.

If path information is omitted, VBScript attempts to find FileName in the current folder.

This function reports version information in the format:

Major_Version.Minor_Version.0.Build

If a file does not contain version information, the function returns an empty string (" ").

Programming Notes

The files that can contain version information are executable files (.exe) and dynamic link libraries (.dll).

If you're using VBScript to replace a private executable or DLL with another, be particularly careful with version
checking, since it has been a particularly serious source of error. Ensuring that the new version of the file
should be installed requires that any one of the following conditions be true:

It has the same major and minor version but a later build number than the existing file.

It has the same major version but a greater minor version number than the existing file.

It has a higher version number than the existing file.

It's also a good idea to copy the replaced file to a backup directory, such as the Windows Sysbckup directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's also a good idea to copy the replaced file to a backup directory, such as the Windows Sysbckup directory.

If you're thinking of using VBScript to replace a system executable or DLL with another, it's best to use a
professional installation program for this purpose.

Although this function is listed in the type library and is actually implemented in the Scripting Runtime, no
documentation for it is available in the HTML Help file.

See Also

ScriptEngineBuildVersion Function, ScriptEngineMajorVersion Function, ScriptEngineMinorVersion Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetFolder Method

Syntax

oFileSysObj.GetFolder(FolderPath)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FolderPath

Use: Required

Data Type: String

A path to the required folder.

Return Value

A Folder object.

Description

Returns a reference to a Folder object.

Rules at a Glance

FolderPath can be an absolute or relative path.

If FolderPath is a share name or network path, GetFolder ensures that the drive or share exists as part of the
process of returning the Folder object.

If any part of FolderPath doesn't exist, an error occurs.

Programming Tips and Gotchas

You should first use GetAbsolutePathName to create the required FolderPath string.

If FolderPath includes a network drive or share, you could use the DriveExists method to confirm the required
drive is available prior to calling the GetFolder method.

Since GetFolder requires that FolderPath is the path to a valid folder, you should call the FolderExists method to
verify that FolderPath exists.

The GetFolder method allows you to directly obtain an object reference to a particular folder. You can also use
the Item property of the Folders collection object for cases in which you must navigate the filesystem to reach a
particular folder, or for those cases in which you're interested in enumerating the subfolders belonging to a
particular folder.

You must use the Set statement to assign the Folder object reference to a local object variable.

See Also

Folders Collection Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetParentFolderName Method

Syntax

oFileSysObj.GetParentFolderName(Path)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Path

Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the folder name immediately preceding the last element of a given path. In other words, if Path ends in a
filename, the method returns the path to the folder containing that file. If Path ends in a folder name, the method
returns the path to that folder's parent.

Rules at a Glance

If the parent folder name can't be determined from Path, a zero-length string (" ") is returned.

Path can be a relative or absolute reference.

Programming Tips and Gotchas

GetParentFolderName doesn't verify that any element of Path exists.

Path can be a network drive or share.

GetParentFolderName assumes that the last element of the string that isn't part of a drive specifier is the parent
folder. It makes no other check than this. As with all the Getx Name methods of the FileSystemObject object,
the GetParentFolderName method is more a string parsing and manipulation routine than an object-related
routine.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetSpecialFolder Method

Syntax

oFileSysObj.GetSpecialFolder(SpecialFolder)

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

SpecialFolder

Use: Required

Data Type: Special folder constant

A value specifying one of three special system folders.

Return Value

A Folder object.

Description

Returns a reference to a Folder object of one of the three special system folders: System, Temporary, and Windows.

Rules at a Glance

SpecialFolder can be one of the following special folder constants:

Constant Value Description

SystemFolder 1 The Windows system folder (/windows/system or /windows/system32)

TemporaryFolder 2 The folder that stores temporary files (../windows/temp)

WindowsFolder 0 The root folder of the Windows system folder tree (/windows or /winnt)

Programming Tips and Gotchas

As the previous table shows, the Scripting Runtime type library defines constants of the SpecialFolderConst
enumeration that can be used in place of their numeric equivalents. You can use them in your scripts in either
of two ways. You can define the constants yourself by adding the following code to your script:

Const WindowsFolder = 0
Const SystemFolder = 1
Const TemporaryFolder = 2

You can also include a METADATA tag in an ASP global.asa file or include the following line in a Windows Script
Host (.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

Prior to the development of the Scripting Runtime Library with its support for the FileSystemObject, the only
way to determine the location of system folders was via the Win32 API. This is a much simpler way of getting at
that information. This is especially significant when using VBScript with the Windows Script Host, and adds an
extremely powerful aspect to writing administrative or maintenance scripts with VBScript.

You can use the Set statement to assign the Folder object reference to a local object variable. However, if you're
interested only in retrieving the path to the special folder, you can do it with a statement like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interested only in retrieving the path to the special folder, you can do it with a statement like the following:

sPath = oFileSys.GetSpecialFolder(iFolderConst)

or:

sPath = oFileSys.GetSpecialFolder(iFolderConst).Path

The first statement works because the Path property is the Folder object's default property. Since the
assignment isn't to an object variable, it's the default property's value, rather than the object reference, that is
assigned to sPath.

WSH includes a SpecialFolders collection. However, it does not duplicate the functionality of the
GetSpecialFolder method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetStandardStream Method

Syntax

oFileSys.GetStandardStream(StandardStreamType, [Unicode])

oFileSys

Use: Required

Data Type: FileSystemObject object

A reference to the FileSystemObject object.

StandardStreamType

Use: Required

Data Type: Long

A constant indicating which standard stream (input, output, or error) should be returned by the function.

Unicode

Use: Optional

Data Type: Boolean

A Boolean indicating whether the stream should be Unicode or ASCII.

Return Value

A TextStream object.

Description

Allows you to read from the standard input stream and write to the standard output or standard error streams.

Rules at a Glance

StandardStreamType can be one of the following constants defined in the Scripting Runtime type library:

Constant Value Description

StdIn 0 Standard input

StdOut 1 Standard output

StdErr 2 Standard error

The Scripting Runtime type library defines constants of the StandardStreamTypes enumeration that can be used in
place of their numeric equivalents for the StandardStreamType argument. You can use them in your scripts in
either of two ways. You can define the constants yourself by adding the following code to your script:

Const StdIn = 0
Const StdOut = 1
Const StdErr = 2

You can also include an ASP METADATA tag in the global.asa file or the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

The Unicode parameter can be either Unicode (True) or ASCII (False).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The GetStandardStream method is available from a WSH script run in console mode using CScript.exe as the
WSH engine. Otherwise, attempting to retrieve a reference to the TextStream object returned by the method
generates an "Invalid handle" or (in ASP) a "Server.CreateObject failed" error message.

Note that standard input is a read-only stream, while standard output and standard error are write-only
streams.

Although the function is implemented in the Scripting Runtime library, it is currently undocumented.

This method is functionally equivalent to three methods in the WSH object model: the WScript.StdIn property,
which returns a TextStream object representing the standard input; the WScript.StdOut property, which returns
a TextStream object representing the standard output; the WScript.StdErr property, which returns a
TextStream object representing the standard error stream.

See Also

TextStream Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.GetTempName Method

Syntax

oFileSysObj.GetTempName

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

Return Value

A String.

Description

Returns a system-generated temporary file or folder name.

Rules at a Glance

GetTempName doesn't create a temporary file or folder; it simply provides a name you can use with the CreateTextFile
method.

Programming Tips and Gotchas

As a general rule, you shouldn't create your own temporary filenames. Windows provides an algorithm within
the Windows API to generate the special temporary file and folder names so that it can recognize them later.

If you are calling GetTempName as the first step in creating a temporary file, you can also call the
GetSpecialFolder method to retrieve the path of the temporary directory, as follows:

Const TemporaryFolder = 2
Dim oFS, sTempPath
Set oFS = CreateObject("Scripting.FileSystemObject")
sTempPath = oFS.GetSpecialFolder(TemporaryFolder)

You can then form the complete path to the temporary folder as follows:

<CODE>sFullPath = sTempPath & "' & sTempFileName

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.MoveFile Method

Syntax

oFileSysObj.MoveFile source, destination

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

source

Use: Required

Data Type: String

The path to the file or files to be moved.

destination

Use: Required

Data Type: String

The path to the location where the file or files are to be moved.

Description

Moves a file from one folder to another.

Rules at a Glance

If source contains wildcard characters or if destination ends in a path separator, destination is interpreted as a
path; otherwise, its last component is interpreted as a filename.

If the destination file exists, an error occurs.

source can contain wildcard characters, but only in its last component. This allows multiple files to be moved.

destination can't contain wildcard characters.

Both source and destination can be either absolute or relative paths.

Both source and destination can be network paths or share names.

Programming Tips and Gotchas

MoveFile resolves both arguments before beginning the operation.

Any single file move operation is atomic; that is, any file removed from source is copied to destination. However,
if an error occurs while multiple files are being moved, the execution of the function terminates, but files
already moved aren't moved back to their previous folder. If a fatal system error occurs during the execution of
this method (like a power failure), the worst that can happen is that the affected file is copied to the destination
but not removed from the source. There are no rollback capabilities built into the File.Move method, since,
because the copy part of this two-stage process is executed first, the file can't be lost. But while there is no
chance of losing data, particularly in multifile operations, it's more difficult to determine whether the move
operations have succeeded. This is because an error at any time while files are being moved causes the
MoveFile method to be aborted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MoveFile method to be aborted.

You can use the GetAbsolutePath, FolderExists, and FileExists methods prior to calling the MoveFile method to
ensure its success.

The MoveFile method differs from the File object's Move method by allowing you to directly designate a file to
be moved rather than requiring that you first obtain an object reference to it. It also allows you to move
multiple files rather than the single file represented by the File object.

See Also

FileSystemObject.CopyFile Method, FileSystemObject.FileExists Method, FileSystemObject.GetAbsolutePathName
Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.MoveFolder Method

Syntax

oFileSysObj.MoveFolder source, destination

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

source

Use: Required

Data Type: String

The path to the folder or folders to be moved.

destination

Use: Required

Data Type: String

The path to the location where the folder or folders are to be moved.

Description

Moves a folder along with its files and subfolders from one location to another.

Rules at a Glance

source must end with either a wildcard character or no path separator.

Wildcard characters can be used in source, but only for the last component.

Wildcard characters can't be used in destination.

All subfolders and files contained within the source folder are copied to destination unless disallowed by the
wildcard characters. That is, the MoveFolder method is recursive.

If destination ends with a path separator or Source ends with a wildcard, MoveFolder assumes the folder in Source
exists in Destination. For example:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo

The command MoveFolder "c:\Rootone*", "C:\RootTwo\" produces this folder structure:

C:\
 Rootone
 RootTwo
 SubFolder1
 SubFolder2

The command MoveFolder "c:\Rootone", "C:\RootTwo\" produces this folder structure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The command MoveFolder "c:\Rootone", "C:\RootTwo\" produces this folder structure:

C:\
 RootTwo
 Rootone
 SubFolder1
 SubFolder2

source and destination can be either absolute or relative paths.

source and destination can be network paths or share names.

Programming Tips and Gotchas

MoveFolder resolves both arguments before starting the operation.

If a fatal system error occurs during the execution of this method (like a power failure), the worst that can
happen is that the file is copied to the destination but not removed from the source. There are no rollback
capabilities built into the FileSystemObject.MoveFolder method, since, because the copy part of this two-stage
process is executed first, the file can't be lost.

Although there is no chance of actually losing data, it can be difficult to determine whether the operation has
succeeded or failed in the event of an error when multiple folders are being moved. This is because an error in
the middle of a multifile move operation causes the MoveFolder method to be abandoned and subsequent folder
operations to be aborted.

You can call the GetAbsolutePath and FolderExists methods before calling the MoveFile method to ensure its
success.

If the user has adequate rights, the source or destination can be a network path or share name. For example:

MoveFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"

See Also

FileSystemObject.CopyFile Method, FileSystemObject.FolderExists Method, FileSystemObject.GetAbsolutePathName
Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FileSystemObject.OpenTextFile Method

Syntax

oFileSysObj.OpenTextFile(FileName[, IOMode[, Create[, Format]]])

oFileSysObj

Use: Required

Data Type: FileSystemObject object

A FileSystemObject object.

FileName

Use: Required

Data Type: String

The path and filename of the file to open.

IOMode

Use: Optional

Data Type: Long

A constant specifying the purpose for opening the file.

Create

Use: Optional

Data Type: Boolean

A Boolean flag denoting whether the file should be created if it can't be found in the given path.

Format

Use: Optional

Data Type: Long

A constant specifying ASCII or Unicode format.

Return Value

A TextStream object.

Description

Opens (and optionally first creates) a text file for reading or writing.

Rules at a Glance

File open (IOMode) values are:

Constant Value Description

ForAppending 8 Opens the file for appending; that is, the current contents of the file are protected and new data
written to the file is placed at the end of the file.

ForReading 1 Opens the file for reading; ForReading files are read-only.

ForWriting 2 Opens the file for writing; all previous file content is overwritten by new data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tristate (Format) values are:

Constant Value Description

TristateUseDefault -2 Opens as System default

TristateTrue -1 Opens as Unicode

TristateFalse 0 Opens as ASCII

The path element of FileName can be relative or absolute.

The default IOMode setting is ForReading (1).

The default Format setting is ASCII (False).

If another process has opened the file, the method fails with a "Permission Denied" error.

Programming Tips and Gotchas

You can use the GetAbsolutePath and FileExists methods prior to calling the OpenTextFile method to ensure its
success.

As the table listing values for the IOMode parameter shows, the Scripting Runtime type library defines constants
of the IOMode enumeration that can be used in place of their numeric equivalents. You can use them in your
scripts in either of two ways. You can define the constants yourself by adding the following code to your script:

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8

You can also include a METADATA tag in the ASP global.asa file or the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

The value of IOMode can be only that of a single constant. For example, a method call such as the following:

lMode = ForReading Or ForWriting
oFileSys.OpenTextStream(strFileName, lMode) ' WRONG
generates runtime error 5, "Invalid procedure call or argument."

As the table listing values for the Format parameter shows, the Scripting Runtime type library defines constants
of the Tristate enumeration that can be used in place of their numeric equivalents. You can use them in your
scripts in either of two ways. You can define the constants yourself by adding the following code to your script:

Const TristateFalse = 0
Const TristateTrue = -1
Const TristateUseDefault = -2

You can also include a METADATA tag in the ASP global.asa file or the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

If the user has adequate rights, the path element of FileName can be a network path or share name. For
example:

OpenTextFile "\\NTSERV1\d$\RootTwo\myFile.txt"

See Also

File.OpenAsTextStream Method, TextStream Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Filter Function

Syntax

Filter(SourceArray, FilterString[, Switch[, Compare]])

SourceArray

Use: Required

Data Type: String or numeric

An array containing values to be filtered.

FilterString

Use: Required

Data Type: String or numeric

The string of characters to find in the source array.

Switch

Use: Optional

Data Type: Boolean

A Boolean (True or False) value. If True, the default value, Filter includes all matching values in result; if False,
Filter excludes all matching values (or, to put it another way, includes all nonmatching values).

Compare

Use: Optional

Data Type: Long

An optional constant (possible values are 0, vbBinaryCompare; 1, vbTextCompare) that indicates the type of string
comparison to use. The default value is 0, vbBinaryCompare.

Return Value

A String array of the elements filtered from SourceArray.

Description

Produces an array of matching values from an array of source values that either match or don't match a given filter
string. In other words, individual elements are copied from a source array to a target array if they either match or don't
match a filter string.

Rules at a Glance

The default Switch value is True.

The default Compare value is 0, vbBinaryCompare.

vbBinaryCompare is case-sensitive; that is, Filter matches both character and case. In contrast, vbTextCompare is
case-insensitive, matching only character regardless of case.

Programming Tips and Gotchas

SourceArray elements that are Empty or that contain zero-length strings ("") are ignored by the Filter function.

The array you declare to assign the return value of Filter should be a simple variant, as the following code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The array you declare to assign the return value of Filter should be a simple variant, as the following code
fragment illustrates:

Dim aResult
aResult = Filter(sNames, sCriteria, True)

Although the Filter function is primarily a string function, you can also filter numeric values. To do this, populate
a SourceArray with numeric values. Although FilterString appears to be declared internally as a variant string, a
Long or Integer can be passed to the function. For example:

Dim varSource As Variant, varResult As Variant
Dim strMatch As String

strMatch = CStr(2)
varSource = Array(10, 20, 30, 21, 22, 32)
varResult = Filter(varSource, strMatch, True, _
 vbBinaryCompare)

In this case, the resulting array contains four elements: 20, 21, 22, and 32.

The Filter function is an ideal companion to the Dictionary object. The Dictionary object is a collection-like array
of values, each of which is stored with a unique string key. The Keys method of the Dictionary object allows you
to produce an array of these Key values, which you can then pass into the Filter function as a rapid method of
filtering the members of your Dictionary, as the following example demonstrates.

Example

 Dim sKeys
 Dim sFiltered
 Dim sMatch
 Dim blnSwitch
 Dim oDict

 Set oDict = CreateObject("Scripting.Dictionary")

 oDict.Add "Microsoft", "One Microsoft Way"
 oDict.Add "AnyMicro Inc", "31 Harbour Drive"
 oDict.Add "Landbor Data", "The Plaza"
 oDict.Add "Micron Co.", "999 Pleasant View"

 sKeys = oDict.Keys
 sMatch = "micro"
 blnSwitch = True
 'find all keys that contain the string "micro" - any case
 sFiltered = Filter(sKeys, sMatch, blnSwitch, _
 vbTextCompare)
 'now iterate through the resulting array
 For i = 0 To UBound(sFiltered)
 sMsg = sMsg & sFiltered(i) & ", " & oDict.Item(sFiltered(i)) & _
 vbCrLf
 Next
 MsgBox sMsg

See Also

RegExp Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Fix Function

Syntax

Fix(number)

number

Use: Required

Data Type: Numeric

Any valid numeric expression.

Return Value

The same data type as passed to the function containing only the integer portion of number.

Description

Removes the fractional part of a number. Operates in a similar way to the Int function.

Rules at a Glance

If number is Null, Fix returns Null.

The operations of Int and Fix are identical when dealing with positive numbers: numbers are rounded down to
the next lowest whole number. For example, both Int(3.14) and Fix(3.14) return 3.

If number is negative, Fix removes its fractional part, thereby returning the next greater whole number. For
example, Fix(-3.667) returns -3. This contrasts with Int, which returns the negative integer less than or equal to
number (or -4, in the case of our example).

Example

 Dim dblTest
 Dim varTest

 dblTest = -100.9353
 varTest = Fix(dblTest)
 ' returns -100
 Msgbox varTest & " " & TypeName(varTest)

 dblTest = 100.9353
 varTest = Fix(dblTest)
 'returns 100
 Msgbox.Print varTest & " " & TypeName(varTest)

Programming Tips and Gotchas

Fix doesn't round number to the nearest whole number; it simply removes the fractional part of number. Therefore, the
integer returned by Fix is the nearest whole number less than (or greater than, if the number is negative) the number
passed to the function.

See Also

Int Function, CInt Function, CLng Function, Round Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folder Object

Createable

No

Returned by

Drive.RootFolder property
FileSystemObject.CreateFolder method
FileSystemObject.GetFolder method
Folder.SubFolders.Item property
Folders.Add method

Library

Microsoft Scripting Runtime

Description

The Folder object allows you to interrogate the system properties of the folder and provides methods that allow you to
copy, move, and delete the folder. You can also create a new text file within the folder.

The Folder object is unusual because with it, you can gain access to a Folders collection object. The more usual method
is to extract a member of a collection to gain access to the individual object. However, because the Drive object
exposes only a Folder object for the root folder, you have to extract a Folders collection object from a Folder object (the
collection represents the subfolders of the root). From this collection, you can navigate downward through the
filesystem to extract other Folder objects and other Folders collections. A Boolean property, IsRootFolder, informs you
of whether the Folder object you are dealing with currently is the root of the drive.

The Folder object is one of the objects in the Filesystem object model; for an overview of the model, see the "File
System Object Model" entry.

Properties

Attributes

Data Type: Long

A set of flags representing the folder's attributes. The flags that apply to folders are:

Constant Value

Archive 32

Directory 16

Hidden 2

ReadOnly 1

System 4

As the table shows, the Scripting Runtime type library defines constants of the FileAttribute enumeration that can
be used in place of their numeric equivalents. You can use them in your scripts in either of two ways. You can
define the constants yourself by adding the following code to your script:

Const Normal = 0
Const ReadOnly = 1
Const Hidden = 2
Const System = 4
Const Directory = 16
Const Archive = 32

Or you can take advantage of the host's facilities to make the constants accessible. In Active Server Pages, you
can include the METADATA tag in the global.asa file and provide the type library identifier for the Scripting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can include the METADATA tag in the global.asa file and provide the type library identifier for the Scripting
Runtime as follows:

<!-- METADATA TYPE="TypeLib"
 UUID="420B2830-E718-11CF-893D-00A0C9054228"
-->

In Windows Script Host, you can include the following line in a .wsf file in order to access the constants defined
in the Scripting Runtime:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

You can determine which flag is set by using a logical AND along with the value returned by the property and
the value of the flag you'd like to test. For example:

If oFolder.Attributes And ReadOnly Then
 ' Folder is read-only

To clear a flag, And the value of the Attributes property with a Long in which the flag you want to clear is turned
off. For example, the following code clears a Folder object's read-only flag:

oFile.Attributes = oFile.Attributes And (Not
ReadOnly)

Date Created

Data Type: Date

The date and time the folder was created.

DateLastAccessed

Data Type: Date

The date and, if it's available from the operating system, the time that the folder was last accessed.

DateLastModified

Data Type: Date

The date and time the folder was last modified.

Drive

Data Type: Drive object

Returns a Drive object representing the drive on which this folder resides; the property is read-only.

Files

Data Type: Files collection object

Returns a read-only Files collection object representing all files in the current folder.

IsRootFolder

Data Type: Boolean

Returns True if the folder is the root folder of its drive.

Name

Data Type: String

Returns the name of the folder.

ParentFolder

Data Type: Folder object

Returns a folder object representing the folder that's the parent of the current folder. It returns Nothing if the
current object is the root folder of its drive (i.e., if its IsRootFolder property is True).

Path

Data Type: String

Returns the complete path of the current folder, including its drive. It is the default property of the Folder
object.

ShortName

Data Type: String

Returns a DOS 8.3 folder name without the folder's path. The property is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a DOS 8.3 folder name without the folder's path. The property is read-only.

ShortPath

Data Type: String

Returns the complete path to a folder in DOS 8.3 format. The property is read-only.

Size

Data Type: Long

Returns the total size of all files, subfolders, and their contents in the folder structure, starting with the current
folder. The property is read-only.

In previous versions of the Scripting Runtime, this property failed to accurately report the size of a folder whose
files and subfolders occupied more than 2 GB of disk space.

Attempting to retrieve the value of a Folder object's Size property when that folder is a drive's root folder (that
is, its IsRootFolder property returns True) generates a runtime error.

SubFolders

Data Type: Folders collection object

Returns a Folders collection object representing all subfolders within the current folder.

Type

Data Type: String

Returns the description of a filesystem object, as recorded in the system registry. For Folder objects, the
property always returns "File Folder."

Methods

Copy
Create TextFile
Delete
Move

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folder.Copy Method

Syntax

oFolderObj.Copy Destination [, OverwriteFiles]

oFolderObj

Use: Required

Data Type: Folder object

A Folder object.

Destination

Use: Required

Data Type: String

The path and, optionally, the filename of the copy to be made.

OverwriteFiles

Use: Optional

Data Type: Boolean

Indicates whether existing files and folders should be overwritten (True) or not (False).

Description

Copies the current folder and its contents, including other folders, to another location.

Rules at a Glance

Wildcard characters can't be used in Destination.

The folder and all subfolders and files contained in the source folder are copied to Destination. That is, the Copy
method is recursive.

Unlike the FileSystemObject.CopyFolder method, there is no operational difference between ending Destination
with a path separator or not.

Programming Tips and Gotchas

If the destination path or any of the files contained in the Destination structure are set to read-only, the Copy
method will fail regardless of the value of OverwriteFiles and will generate a "Permission denied" error.

If OverwriteFiles is set to False, and the source folder or any of the files contained in the Destination structure
exists in the Destination structure, then trappable error 58, "File Already Exists," is generated.

If an error occurs while copying more than one file, the Copy method exits immediately, leaving the rest of the
files uncopied. There is also no rollback facility to undo the copies prior to the error.

If the user has adequate rights, Destination can be a network path or share name. For example:

oFolder.Copy "\\NTSERV1\d$\RootTwo\"

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folder.CreateTextFile Method

Syntax

oFolderObj.CreateTextFile FileName[, Overwrite[, Unicode]])

oFolderObj

Use: Required

Data Type: Folder object

A Folder object.

FileName

Use: Required

Data Type: String

Any valid filename and optional path.

Overwrite

Use: Optional

Data Type: Boolean

Flag to indicate whether an existing file of the same name should be overwritten.

Unicode

Use: Optional

Data Type: Boolean

Flag to indicate whether file is to be written in Unicode or ASCII.

Return Value

A TextStream object.

Description

Creates a new file at the specified location and returns a TextStream object for that file.

Rules at a Glance

Filename can be a relative or absolute path. Wildcard characters are not allowed in FileName.

If no path is specified in Filename, the script's current drive and directory are used. If no drive is specified in
Filename, the script's current drive is used.

The default value for Overwrite is False.

If Unicode is set to True, a Unicode file is created; otherwise it's created as an ASCII text file.

The default value for Unicode is False.

Programming Tips and Gotchas

If the path specified in Filename does not exist, the method fails. To prevent this error, you can use the
FileSystemObject object's FolderExists method to be sure that the path is valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileSystemObject object's FolderExists method to be sure that the path is valid.

The newly created text file is automatically opened only for writing. If you subsequently wish to read from the
file, you must first close it and reopen it in read mode.

If the file referred to in Filename already exists as a read-only file, the CreateTextFile method fails regardless of
the value of Overwrite.

You must use the Set statement to assign the TextStream object to a local object variable.

If the user has adequate rights, Filename can contain a network path, or share name. For example:

oFolder.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

The CreateTextFile method in the Folder object is identical in operation to that in the FileSystemObject object.

See Also

FileSystemObject.CreateTextFile Method, TextStream Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folder.Delete Method

Syntax

oFolderObj.Delete [Force]

oFolderObj

Use: Required

Data Type: Folder object

A Folder object.

Force

Use: Optional

Data Type: Boolean

If set to True, any read-only flag on a file or a folder to be deleted is ignored and the file or folder is deleted.
When set to False, a read-only flag prevents that folder or file from being deleted. Its default value is False.

Description

Removes the folder specified by the Folder object and all its files and subfolders.

Rules at a Glance

If any of the files within the folder are open, the method fails with a "Permission Denied" error.

The Delete method deletes all the contents of the given folder, including subfolders and their contents.

The default setting for Force is False. If any of the files in the folder or its subfolders are set to read-only, the
method will fail.

If Force is set to False and any of the files in the folders are set to read-only, the method fails.

Programming Tips and Gotchas

The Delete method deletes a folder and its files and subfolders permanently; it does not move the folder or its
files and subfolders to the Recycle Bin.

If an error occurs while deleting more than one file in the folder, the Delete method exits immediately, thereby
leaving the rest of the folders or files undeleted. There is also no rollback facility to undo the deletions prior to
the error.

Unlike the FileSystemObject's DeleteFolder method, which accepts wildcard characters in the path parameter
and can therefore delete multiple folders, the Delete method deletes only the single folder represented by the
Folder object.

Immediately after the Delete method executes, the Folder's collection object containing the Folder object is
automatically updated. The deleted folder is removed from the collection, and the collection count is reduced by
one. You shouldn't try to access the deleted Folder object again, and you should set the local object variable to
Nothing, as the following code snippet demonstrates:

Set ofsSubFolder = ofsSubFolders.Item("roottwo")
 MsgBox ofsSubFolders.Count
 ofsSubFolder.Delete False
 MsgBox ofsSubFolders.Count
Set ofsSubFolder = Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

FileSystemObject.DeleteFile Method, FileSystemObject.DeleteFolder Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folder.Move Method

Syntax

oFolderObj.Move destination

oFolderObj

Use: Required

Data Type: Folder object

A Folder object.

destination

Use: Required

Data Type: String

The path to the location where the folder or folders are to be moved.

Description

Moves a folder structure from one location to another.

Rules at a Glance

Wildcard characters can't be used in destination.

If any of the files within the folder being moved are open, an error is generated.

All subfolders and files contained within the source folder are copied to destination, unless disallowed by the
wildcard characters. That is, the Move method is recursive.

destination can be either an absolute or a relative path.

Programming Tips and Gotchas

If a fatal system error (like a power failure) occurs during the execution of this method, the worst that can
happen is that the folder is copied to the destination but not removed from the source. There are no rollback
capabilities built into the Folder.Move method; since, the copy part of this two-stage process is executed first,
the folder can't be lost.

If an error occurs in the middle of a move operation, the operation is terminated, and the remaining files and
folders in the folder aren't moved.

If a folder or a file by the same name already exists in destination, the method generates runtime error 58, "File
already exists." To prevent this, you can use the FileSystemObject's FolderExists and GetAbsolutePath methods
prior to calling the Move method.

Unlike the FileSystemObject's MoveFolder method, which accepts wildcard characters in the source parameter
and can therefore move multiple folders, the Move method moves only the single folder represented by the
Folder object and its contents.

Immediately after the Move method executes, the Folders collection object containing the Folder object is
automatically updated, the moved folder is removed from the collection, and the collection count is reduced by
one. You shouldn't try to access the moved folder object again from the same Folders collection object.

oFolderObj, the Folder object reference, remains valid after the folder has been moved. Its relevant properties
(the Drive, ParentFolder, Path, and ShortPath properties, for example) are all updated to reflect the folder's new
path after the move.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path after the move.

If the user has adequate rights, the destination can be a network path or share name. For example:

oFolder.Move "\\NTSERV1\d$\RootTwo\"

See Also

FileSystemObject.MoveFile Method, FileSystemObject.MoveFolder Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folders Collection Object

Createable

No

Returned by

Folder.SubFolders property

Library

Microsoft Scripting Runtime

Description

The Folders collection object is a container for Folder objects. Normally, you'd expect to access a single object from the
collection of that object; for example, you'd expect to access a Folder object from the Folders collection object.
However, things are the other way around here: you access the Folders collection object from an instance of a Folder
object. This is because the first Folder object you instantiate from the Drive object is a Root Folder object, and from it
you instantiate a subfolders collection. You can then instantiate other Folder and subfolder objects to navigate through
the drive's filesystem.

The Folders collection is a subfolder of any Folder object. For instance, the top-level Folders collection (representing all
of the folders in the root directory of a particular drive) can be can be instantiated as follows:

Dim oFS, oFolders
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFolders = oFS.Drives("C").RootFolder.SubFolders

The Folders collection object is one of the objects in the File System object model; see the File System object model
entry for an overview of the model, including the library reference needed to access it.

Properties

Item

Data Type: Folder object

Retrieves a particular Folder object from the Folders collection object. You can access an individual folder object
by providing the exact name of the folder without its path. However, you can't access the item using its ordinal
number. For example, the following statement returns the Folder object that represents the roottwo folder:

Set ofsSubFolder = ofsSubFolders.Item("roottwo")

Count

Data Type: Long

The number of Folder objects contained in the Folders collection.

Methods

Add

See Also

Folders.Add Method, Folder Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Folders.Add Method

Syntax

oFoldersCollObj.Add newfoldername

oFoldersCollObj

Use: Required

Data Type: Folders collection object

Any object variable returning a Folders collection object.

newfoldername

Use: Required

Data Type: String

The name of the new folder.

Return Value

Folder object.

Description

Creates a new folder. The location of the new folder is determined by the parent to which the Folders collection object
belongs. For example, if you are calling the Add method from a Folders collection object that is a child of the root Folder
object, the new folder is created in the root (i.e., it's added to the root's subfolders collection). For example:

Dim oFileSys
Dim oRoot, oChild
Dim oRootFolders

Set oFileSys = CreateObject("Scripting.FileSystemObject")
Set oRoot = oFileSys.Drives("C").RootFolder
Set oRootFolders = oRoot.SubFolders
Set oChild = oRootFolders.Add("Downloads")

Rules at a Glance

You can't use a path specifier in newfoldername ; you can use only the name of the new folder.

See Also

FileSystemObject.CreateFolder Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

For . . . Next Statement

Syntax

For counter = initial_value To maximum_value [Step stepcounter]
 code to execute on each iteration
 [Exit For]
Next

counter

Use: Required

Data Type: Numeric

A variable to be used as the loop counter.

initial_value

Use: Required

Data Type: Numeric

Any valid numeric expression that specifies the loop counter's initial value.

maximum_value

Use: Required

Data Type: Numeric

Any valid numeric expression that specifies the loop counter's maximum value.

stepcounter

Use: Optional (required if Step used)

Data Type: Numeric

Any valid numeric expression that indicates how much the loop counter should be incremented with each new
iteration of the loop.

Description

Defines a loop that executes a given number of times, as determined by a loop counter. To use the For...Next loop, you
must assign a numeric value to a counter variable. This counter is either incremented or decremented automatically
with each iteration of the loop. In the For statement, you specify the value that is to be assigned to the counter initially
and the maximum value the counter will reach for the block of code to be executed. The Next statement marks the end
of the block of code that is to execute repeatedly, and also serves as a kind of flag that indicates the counter variable is
to be modified.

Rules at a Glance

If initial_value is greater than maximum_value, and no Step keyword is used or the step counter is positive, the
For...Next loop is ignored and execution commences with the first line of code immediately following the Next
statement.

If initial_value and maximum_value are equal and stepcounter is 1, the loop executes once.

counter can't be a variable of type Boolean or an array element.

counter is incremented by one with each iteration unless the Step keyword is used.

If the Step keyword is used, stepcounter specifies the amount counter is incremented if stepcounter is positive or
decremented if it's negative.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decremented if it's negative.

If the Step keyword is used, and stepcounter is negative, initial_value should be greater than maximum_value. If this
isn't the case, the loop doesn't execute.

The For...Next loop can contain any number of Exit For statements. When the Exit For statement is executed,
program execution commences with the first line of code immediately following the Next statement.

Example

This example demonstrates how to iterate from the end to the start of an array of values:

sArray=Array(10, 12, 14, 16, 18, 20, 22, 24)
For i = UBound(sArray) To LBound(sArray) Step -1
 total = total +sArray(i)
Next

This example demonstrates how to select only every other value from an array of values:

sArray=Array(10, 12, 14, 16, 18, 20, 22, 24)
For i = LBound(sArray) To UBound(sArray) Step 2
 total = total +sArray(i)
Next

Programming Tips and Gotchas

You can also nest For...Next loops:

For iDay = 1 to 365
 For iHour = 1 to 23
 For iMinute = 1 to 59
 ...
 Next
 Next
Next

You should avoid changing the value of counter in the code within the loop. Not only can this lead to unexpected
results, but it also makes for code that's incredibly difficult to read and to understand.

See Also

For Each . . . Next Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

For Each . . . Next Statement

Syntax

For Each element In group
[statements]
[Exit For]
[statements]
Next

element

Use: Required

Data Type: Variant

A variable to which the current element from the group is assigned.

group

Use: Required

A collection or an array.

statements

Use: Optional

A line or lines of program code to execute within the loop.

Description

Loops through the items of a collection or the elements of an array.

Rules at a Glance

The For...Each code block is executed only if group contains at least one element.

All statements are executed for each element in group in turn until either there are no more elements in group, or
the loop is exited prematurely using the Exit For statement. Program execution then continues with the line of
code following Next.

For Each...Next loops can be nested, but each element must be unique. For example:

For Each myObj In anObject
 For Each subObject In myObject
 sName(ctr) = subObject.NameProperty
 ctr = ctr + 1
 Next
Next

uses a nested For Each...Next loop, but two different variables, myObj and subObject, represent element.

Any number of Exit For statements can be placed with the For Each...Next loop to allow for conditional exit of the
loop prematurely. On exiting the loop, execution of the program continues with the line immediately following
the Next statement. For example, the following loop terminates once the program finds a name in the myObj
collection that has fewer than 10 characters:

For Each subObject In myObj
 SName = subObject.NameProperty
 If Len(Sname) < 10 then
 Exit For
 End if
Next

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

Each time the loop executes when iterating the objects in a collection, an implicit Set statement is executed. The
following code reflects the "longhand" method that is useful for explaining what is actually happening during
each iteration of the For Each...Next loop:

For i = 1 to MyObject.Count
 Set myObjVar = MyObject.Item(i)
 MsgBox myObjVar.Name
Next

Because the elements of an array are assigned to element by value, element is a local copy of the array element
and not a reference to the array element itself. This means that you can't make changes to the array element
using For Each...Next and expect them to be reflected in the array once the For Each...Next loop terminates, as
demonstrated in the example shown next.

Dim strNameArray(1)
Dim intCtr

strNameArray(0) = "Paul"
strNameArray(1) = "Bill"

intCtr = 0

For Each varName In strNameArray
 varName = "Changed"
 Msgbox strNameArray(intCtr)
intCtr = intCtr + 1
Next

For example, on the first iteration of the loop, although varName has been changed from "Paul" to "Changed,"
the underlying array element, strNameArray(0), still reports a value of "Paul." This proves that a referential link
between the underlying array and object variable isn't present; instead, the value of the array element is
passed to element by value.

See Also

Exit Statement, For . . . Next Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FormatCurrency, FormatNumber, FormatPercent
Functions

Syntax

FormatCurrency(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatNumber(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatPercent(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])

number

Use: Required

Data Type: Any numeric expression

The number to be formatted.

DecimalPlaces

Use: Optional

Data Type: Long

Number of digits the formatted string should contain after the decimal point.

IncLeadingZero

Use: Optional

Data Type: Long

Indicates whether the formatted string is to have a 0 before floating-point numbers between 1 and -1.

UseParenthesis

Use: Optional

Data Type: Long

Specifies whether parentheses should be placed around negative numbers.

GroupDigits

Use: Optional

Data Type: Long

Determines whether digits in the returned string should be grouped using the delimiter specified in the
computer's regional settings. For example, on American English systems, the value 1000000 is returned as
1,000,000 if GroupDigits is True.

Return Value

String

Description

The three functions are almost identical. They all take identical arguments. The only difference is that FormatCurrency
returns a formatted number beginning with the currency symbol specified in the computer's regional settings, while
FormatNumber returns just the formatted number, and FormatPercent returns the formatted number followed by a
percentage sign (%).

Rules at a Glance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

If DecimalPlaces isn't specified, the value in the computer's regional settings is used.

Possible values for the IncLeadingZero, UseParenthesis, and GroupDigits parameters are -1, TristateTrue; 0,
TristateFalse; and -2, TriStateUseDefault. You can define the constants in your scripts by using the VBScript Const
statement as follows:

Const TristateTrue = -1
Const TristateFalse = 0
Const TristateUseDefault = -2

If you're using the constants in a WSH script, you could also include the following line in a Windows Script Host
(.wsf) file in order to access the constants from the Scripting Runtime type library:

<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

To access the constants in the ASP page, you can add the following METADATA tag to the application's global.asa
file:

<!--METADATA TYPE="TypeLib"
 UUID="420B2830-E718-11CF-893D-00A0C9054228"
-->

Programming Tips and Gotchas

These three functions first appeared in VBScript Version 2 as "light" alternatives to the VBA Format function. They are
quick and easy to use, and make your code more self-documenting; you can instantly see what format is being applied
to a number without having to decipher the format string.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

FormatDateTime Function

Syntax

FormatDateTime(date[,format])

date

Use: Required

Data Type: Date or String

Any expression that can be evaluated as a date.

format

Use: Optional

Data Type: Long

Defines the format; see the list of values in "Rules at a Glance."

Return Value

String

Description

Formats a date or time expression based on the computer's regional settings.

Rules at a Glance

The intrinsic constants to use for the format argument are:

vbGeneralDate

Value: 0

Displays a date and/or time. If there is a date part, displays it as a short date. If there is a time part,
displays it as a long time. If present, both parts are displayed. For example:

 MsgBox FormatDate Time(#04/10/03#, vbGeneralDate)

displays 4/10/2003.

VbLongDate

Value: 1

Uses the long date format specified in the client computer's regional settings. For example:

MsgBox FormatDate Time(#04/10/03#, vbLongDate)

displays Thursday, April 10, 2003.

VbShortDate

Value: 2

Uses the short date format specified in the client computer's regional settings. For example:

MsgBox FormatDate Time(#04/10/03#, vbShortDate)

displays 4/102003.

VbLongTime

Value: 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value: 3

Uses the time format specified in the computer's regional settings. For example:

MsgBox FormatDate Time(#1:03:00 PM#, vbLong Time)

displays 1:03:00 PM.

VbShortTime

Value: 4

Uses a 24-hour format (hh:mm). For example:

MsgBox FormatDate Time(#1:03:00 PM#, vbShortTime)

displays 13:03.

The default date format is vbGeneralDate(0).

These constants are all defined in the VBScript library and hence are an intrinsic part of the language.

Programming Tips and Gotchas

Remember that date and time formats obtained from the client computer are based on the client computer's regional
settings. It's not uncommon for a single application to be used internationally, so that date formats can vary widely. Not
only that, but you can never be sure that a user has not modified the regional settings on a computer. In short, never
take a date coming in from a client machine for granted; ideally, you should always insure it's in the format you need
prior to using it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Function Statement

Syntax

[Public [Default] | Private] Function name [(arglist)] [()]
 [statements]
 [name = expression]
 [Exit Function]
 [statements]
 [name = expression]
End Function

Public

Use: Optional

Type: Keyword

Indicates that the function is accessible in all scripts. If used in a class, indicates that the function is a member
of the class's public interface. Public and Private are mutually exclusive; Public is the default.

Default

Use: Optional

Type: Keyword

Defines a method as the default member of a class. It is valid only for a public function defined within a
Class...End Class statement. Only one property or method in a class block can be defined as the default member
of the class.

Private

Use: Optional

Type: Keyword

Restricts access to the function to other procedures in the script where it is declared. If the function is a
member of a class, it makes the function accessible only to other procedures in that class.

name

Use: Required

The name of the function.

arglist uses the following syntax and parts:

Use: Optional

A comma-delimited list of variables to be passed to the function as arguments from the calling procedure.

statements

Use: Optional

Program code to be executed within the function.

expression

Use: Optional

The value to return from the function to the calling procedure.

arglist uses the following syntax and parts:

[ByVal | ByRef] varname[()]

ByVal

Use: Optional

Type: Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type: Keyword

The argument is passed by value; that is, the local copy of the variable is assigned the value of the argument.

ByRef

Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the argument being
passed. All changes made to the local variable are also reflected in the calling argument. ByRef is the default
method of passing variables.

varname

Use: Required

The name of the local variable containing either the reference or value of the argument.

Description

Defines a function procedure.

Rules at a Glance

If you don't include either Public or Private keywords, a function is Public by default.

Any number of Exit Function statements can be placed within the function. After an Exit Function statement,
execution continues on the line of code from which the function was called. For example, in the code:

var = AddOne (AddTwo(x))

an Exit Function statement in the AddTwo function causes execution to return to the line of code calling the
function, so that the AddOne function is called next. If a value has not been assigned to the function when the
Exit Function statement executes, the function will return Empty.

The return value of a function is passed back to the calling procedure by assigning a value to the function name.
This may be done more than once within the function.

To return an object reference from a function, the object must be assigned to the function's return value using
the Set statement. For example:

Set x = GetAnObject ()

Function GetAnObject ()
 Dim oTempObject
 Set oTempObject = New SomeObject
 oTempObject.Name = "Jane Doe"
 Set GetAnObject = oTempObject
End Function

VBScript allows you to return arrays of any type from a procedure. Here's a quick example showing this in
operation. Here, the PopulateArray function is called and is passed a string value. PopulateArray takes this
value and concatenates the number 0 to 10 to it, assigns each value to an element of an array, then passes this
array back to the calling procedure. Note that in the calling procedure, the variable used to accept the array
returned from the function is a simple variant that is never explicitly dimensioned as an array:

Dim i
Dim sReturnedArray

sReturnedArray = PopulateArray("A")

For i = 0 To UBound(sReturnedArray)
 msgbox sReturnedArray(i)
Next

Private Function PopulateArray(sVal)

 Dim sTempArray(10)
 Dim i

 For i = 0 To 10
 sTempArray(i) = sVal & CStr(i)
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PopulateArray = sTempArray

End Function

Programming Tips and Gotchas

There is often confusion between the ByRef and ByVal methods of assigning arguments to the function. ByRef
assigns a reference to the variable in the calling procedure to the variable in the function; any changes made to
the variable from within the function are in reality made to the variable in the calling procedure. On the other
hand, ByVal assigns the value of the variable in the calling procedure to the variable in the function. Changes
made to the variable in the function have no effect on the variable in the calling procedure.

Functions can return only one value, or can they? Look at the following code:

Sub testTheReturns()

 Dim iValOne

 iValOne = 10
 If testValues(iValOne) Then
 Msgbox iValOne
 End If

End Sub

Function testValues(ByRef iVal)

 iVal = iVal + 5
 testValues = True

End Function

Because the argument was passed ByRef, the function acted upon the underlying variable iValOne. This means
you can use ByRef to obtain several "return" values (although they're not strictly return values) from a single
function call.

There are many occasions where you will run into the dreaded (by some!) recursive function call. Recursion
occurs when you call a function from within itself. Recursion is a legitimate and often essential part of software
development; for example, it's an efficient method for enumerating or iterating a hierarchical structure.
However, you must be aware that recursion can lead to stack overflow. The extent to which you can get away
with recursion really depends upon the complexity of the function concerned, the amount and type of data
being passed in, and an infinite number of other variables and unknowns.

See Also

Sub Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GetLocale Function

Syntax

GetLocale()

Return Value

A Long indicating the current locale ID.

Description

Gets the current locale ID.

Rules at a Glance

A locale ID represents a language as well as regional conventions. It determines such things as keyboard
layout, alphabetic sort order, and date, time, number, and currency formats.

Appendix D lists valid locale IDs.

Programming Tips and Gotchas

If you want to temporarily change the locale, there is no need to call GetLocale and store its returned value
before calling SetLocale, since SetLocale returns the value of the previous locale ID.

GetLocale returns the locale ID currently in use by the script engine.

Although you can set the locale using either a decimal, hexadecimal, or string locale ID, the GetLocale function
returns only a decimal locale ID value.

The default value of the script engine's locale ID is determined as follows: When the script engine starts up, the
host passes it a locale ID. If the host does not do so, the script engine uses the user's default locale ID. If there
is no user, then the script engine uses the system's default locale ID.

Note that the script engine's locale ID is different from the system locale ID, the user locale ID, and the host
application's locale ID. The GetLocale function reports the locale ID in use by the script engine only.

VBA/VBScript Differences

The GetLocale function is not supported by VBA.

See Also

SetLocale Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GetObject Function

Syntax

GetObject([pathname] [, class])

pathname

Use: Optional

Data Type: String

The full path and filename of a file that stores the state of an automation object, or a moniker (that is, a name
that represents an object) along with the information required by the syntax of the moniker to identify a specific
object.

class

Use: Optional

Data Type: String

The object's programmatic identifier (ProgID), as defined in the system registry.

Return Value

A reference to an ActiveX object.

Description

Returns a reference to an automation object. The GetObject function has three functions:

It retrieves references to objects from the Running Object Table.

It loads persisted state into objects.

It creates objects based on monikers.

Rules at a Glance

Although both pathname and class are optional, at least one argument must be supplied.

GetObject can be used to retrieve a reference to an existing instance of an automation object from the Running
Object Table. For this purpose, you supply the object's programmatic identifier as the class argument. However,
if the object cannot be found in The Running Object Table, GetObject is unable to create it and instead returns
runtime error 429, "ActiveX component can't create object." To create a new object instance, use the
CreateObject function.

If you specify a class argument and specify pathname as a zero-length string, GetObject returns a new instance
of the object—unless the object is registered as single instance, in which case the current instance is returned.
For example, the following code launches Excel and creates a new instance of the Excel Application object:

Dim excel
Set excel = GetObject (" ", "Excel. Application")

In this case, the effect of the function is similar to that of CreateObject.

To assign the reference returned by GetObject to your object variable, you must use the Set statement:

Dim myObject
Set myObject = GetObject("C:\OtherApp\Library.lib")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set myObject = GetObject("C:\OtherApp\Library.lib")

To load an object's persisted state into an object, supply the filename in which the object is stored as the
pathname argument and omit the class argument.

The details of how you create different objects and classes are determined by how the server has been written;
you need to read the documentation for the server to determine what you need to do to reference a particular
part of the object. There are three ways you can access an ActiveX object:

The overall object library. This is the highest level, and it gives you access to all public sections of the
library and all its public classes:

GetObject("C:\OtherApp\Library.lib")

A section of the object library. To access a particular section of the library, use an exclamation mark (!)
after the filename, followed by the name of the section:

GetObject("C:\OtherApp\Library.lib!Section")

A class within the object library. To access a class within the library, use the optional Class parameter:

GetObject("C:\OtherApp\Library.lib", "App.Class")

To instantiate an object using a moniker, supply the moniker along with its required arguments. For details, see
the discussion of monikers in the Programming Tips and Gotchas section.

Example

The example uses the IIS moniker to retrieve a reference to the IIS metabase. It then iterates the IIS metabase class
hierarchy and writes the names of all classes to a file. Its code is:

Dim oIIS, oFS, msg, txtStream, filename

fileName = "C: \ IISClasses.txt"

Set oIIS = GetObject ("IIS:// localhost")
IterateClasses oIIS, 0
Set oFS = CreateObject ("Scripting.FileSystemObject")
txtStream.Write msg
txtStream. Close

MsgBox "IIS Metabse information written to " & filename

Sub IterateClasses (collec, indent)

 Dim oItem

 For Each oItem In collec
 msg = msg & space(indent) & oItem.Name & vbCrL
 IterateClasses oItem, indent + 3f
 Next
End Sub

Programming Tips and Gotchas

Pay special attention to objects registered as single instance. As their type suggests, there can be only one
instance of the object created at any one time. Calling CreateObject against a single-instance object more than
once has no effect; you still return a reference to the same object. The same is true of using GetObject with a
pathname of " "; rather than returning a reference to a new instance, you obtain a reference to the original
instance of the object. In addition, you must use a pathname argument with single-instance objects (even if this
is " "); otherwise an error is generated.

You can't use GetObject to obtain a reference to a class created with VBScript; this can only be done using the
New keyword.

The following table shows when to use GetObject and CreateObject :

Use Task

CreateObject Create a new instance of an OLE server

CreateObject Create a subsequent instance of an already instantiated server (if the server isn't registered as single
instance)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetObject Obtain a further reference to an already instantiated server without launching a subsequent instance

GetObject Launch an OLE server application and load an instance of a subobject

CreateObject Instantiate a class registered on a remote machine

GetObject Instantiate an object using a moniker

A moniker is simply a name that represents an object without indicating how the object should be instantiated.
(It contrasts with a programmatic identifier, for instance, which indicates that information stored in the system
registry is used to locate and instantiate an object.) The following are some of the valid monikers recognized by
the GetObject function, along with their required arguments:

Moniker Arguments Description

IIS: metabasepath Retrieves a reference to an IIS metabase object, which allows the programmer to view or
modify the configuration of IIS

JAVA: classname Returns a reference to an unregistered Java object stored in the java\trustlib folder

SCRIPT: path Returns a reference to an unregistered Windows Script Component

CLSID: clsid Returns a reference to an object based on its class identifier (ClsID) in the system registry

WINMGMTS: string Returns a reference to a WMI object that allows access to core Windows functionality

QUEUE: clsid or
progid Uses MSMQ to return a reference to a queued COM+ component

NEW: clsid or
progid

Creates a new instance of any COM component that supports the IClassFactory interface
(that is, of any createable COM component)

See Also

CreateObject Function, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

GetRef Function

Syntax

GetRef(procname)

procname

Use: Required

Data Type: String

Name of a sub or function

Return Value

A Long containing a reference to procname.

Description

Returns a reference to a sub or function. This reference can be used for such purposes as binding to events or defining
callback functions.

Rules at a Glance

GetRef can be used whenever a function or procedure reference is expected.

When using GetRef to define event handlers for events, the Set keyword is required. For example, the code
required to bind the Window.OnLoad event to a procedure named ShowGreetingDialog is:

Set Window.OnLoad = GetRef("ShowGreetingDialog")

Example

<HTML>
<HEAD>
<TITLE>The VBScript GetRef Function</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">

Set popWin = Window.CreatePopup()
Set Window.Onload = GetRef("ShowPopup")

Sub ShowPopup()
 Set popBody = popWin.Document.Body
 popBody.Style.BackgroundColor = "lightblue"
 popBody.Style.Border = "solid black"
 popBody.innerHTML = "Click outside popup to close."
 popWin.Show 100, 100, 220, 30, Document.body
End Sub

</SCRIPT>
</BODY>
</HTML>

Programming Tips and Gotchas

A common use of GetRef is to bind to DHTML events in Internet Explorer. You can use GetRef to bind to any of
the events in the DHTML object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the events in the DHTML object model.

GetRef can be used to pass the address of a procedure to a routine that expects the address of a callback
function as an argument.

VBA/VBScript Differences

The GetRef function is not supported by VBA. However, similar functionality is provided in VBA by the AddressOf
operator, which returns a pointer to (or the address of) a procedure.

See Also

Function Statement, Sub Statement, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hex Function

Syntax

Hex(number)

number

Use: Required

Data Type: Numeric or String

A valid numeric or string expression.

Return Value

String representing the hexadecimal value of number.

Description

Returns a string that represents the hexadecimal value of a number.

Rules at a Glance

If number contains a fractional part, it's rounded automatically to the nearest whole number prior to processing.
If the number ends in .5, it's rounded to the nearest even whole number.

number must evaluate to a numeric expression that ranges from -2,147,483,648 to 2,147,483,647. If the
argument is outside this range, runtime error 6, "Overflow," results.

The return value of Hex is dependent upon the value and type of number :

number Return value

Null Null

Empty Zero (0)

Any other number Up to eight hexadecimal characters

Programming Tips and Gotchas

If the value of number is known beforehand and isn't the result of an expression, you can represent the number as a
hexadecimal by simply affixing &H to number. Each of the following statements assigns a hexadecimal value to a
variable:

lngHexValue1 = &HFF ' Assigns 255

VBA/VBScript Differences

The Hex$ function is not available in VBScript.

See Also

Oct Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour Function

Syntax

Hour(time)

time

Use: Required

Data Type: Any expression that can be converted to a date.

Any valid time expression.

Return Value

A variant of data type Integer representing the hour of the day.

Description

Extracts the hour element from a time expression.

Rules at a Glance

Hour returns a whole number between 0 and 23, representing the hour of a 24-hour clock.

If time contains Null, Null is returned.

See Also

Minute Function, Now Function, Second Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

If . . . Then . . . Else Statement

Syntax

If condition Then
 [statements]
[ElseIf condition-n Then
 [elseifstatements] ...
[Else
 [elsestatements]]
End If

Or, you can use the single-line syntax:

If condition Then [statements] [Else elsestatements]

condition

Use: Required

Data Type: Boolean

An expression returning either True or False or an object type.

statements

Use: Optional

Program code to be executed if condition is True.

condition-n

Use: Optional

Same as condition.

elseifstatements

Use: Optional

Program code to be executed if the corresponding condition-n is True.

elsestatements

Use: Optional

Program code to be executed if the corresponding condition or condition-n is False.

Description

Executes a statement or block of statements based on the Boolean (True or False) value of an expression.

Rules at a Glance

If condition is True, the statements following the If statement are executed.

If condition is False and no Else or ElseIf statement is present, execution continues with the corresponding End If
statement. If condition is False and ElseIf statements are present, the condition of the next ElseIf is tested. If
condition is False, and an Else is present, the statements following the Else are executed.

In the block form, each If statement must have a corresponding End If statement. ElseIf statements don't have
their own End If. For example:

If condition Then
 statements
ElseIf condition Then
 statements
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

ElseIf and Else are optional, and any number of ElseIf and Else statements can appear in the block form.
However, no ElseIf statements can appear after an Else.

condition can be any statement that evaluates to True or False.

If condition returns Null, it's treated as False.

statements are optional only in the block form of If. However, statements are required when using the single-line
form of If in which there is no Else clause.

Programming Tips and Gotchas

You can use the single-line form of the If statement to execute multiple statements, which you can specify by
delimiting the statements using colons; however, single-line form If statements are hard to read and maintain,
and should be avoided for all but the simplest of situations.

In situations where you have many possible values to test, you will find the Select Case statement much more
flexible, manageable, and readable than a bunch of nested If statements.

You will come across situations in which very large blocks of code have to execute based one or more
conditions. In these—and in all situations—you should try to make your code as readable as possible, not only
for other programmers, but for yourself when you try to maintain the code several months down the line. Take
a common scenario in which, at the beginning of a procedure, a check is made to see if the procedure should in
fact be executed under the current circumstances. You have the choice of surrounding the whole code with an
If...Then...End If construct, like this:

If iSuccess Then
 ...
 ...
 ... 'x000 lines of code
End If

Or you can switch the result to look for a False, then exit the sub, like this:

If Not iSuccess Then
 Exit Sub
End If
.... 'x000 lines of code

The difference is that, with the second method, you don't have to scroll down screens worth of code looking for
the matching End If.

Indentation is important for the readability of If, and especially nested If, statements. The recommended
indentation is four characters. The set of statements within each new If...Else...End If block should be indented.
The following example shows correctly indented code:

If x = y Then
 DoSomethingHere
 If y < z Then
 DoSomethingElseToo
 Else
 DoAnotherThing
 If z = 101 Then
 DoAThing
 End If
 End If
Else
 DoAlternative
End If

Use of the If statement requires some understanding of the implicit and explicit use of True in VBScript. The
following If statement uses an implicit True:

If iSuccess Then

Notice that you are allowing VBScript to evaluate the iSuccess variable to True or False. When this implicit form is
used, any nonzero value evaluates to True, and conversely, a zero value evaluates to False. The following code
evaluates iSuccess as True and prints the "OK" message box:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

evaluates iSuccess as True and prints the "OK" message box:

Dim iSuccess
iSuccess = 41
If iSuccess Then
 MsgBox "OK"
Else
 MsgBox "False"
End If

However, when you compare a variable to an explicit True or False, the value must be -1 to evaluate to True, and
0 for False. If you amend:

iSuccess = 41
If iSuccess = True Then

iSuccess doesn't evaluate to VB's version of True (-1). As you can imagine, this can lead to some confusion, since
a variable can evaluate to True when using an implicit comparison but not when using an explicit comparison.
Actually, just to add to the confusion, you could get the explicit comparison to behave the same as the implicit
one by converting iSuccess to a Boolean:

If CBool(iSuccess) = True Then

This isn't entirely recommended, but it does show that VBScript's built-in constants of True and False evaluate
only -1 and 0, respectively.

Logical comparison operators can be included in the condition expression, allowing you to make decisions based
on the outcome of more than one individual element. The most common are And and Or. You can create:

If x = 1 And y = 3 Then

VBScript always evaluates both sides of a logical comparison, unlike some languages that stop once the value of
the expression is known; this is known as short circuiting. For example, in the following code, if x does equal 1,
then the If condition is true. Some languages would stop the evaluation here. But regardless of the value of x,
VBScript still evaluates the comparison with y . This means that the second part of an expression can generate
an error even if the result of the expression is already known. This is the case if the second comparison
assumes the truth or falsity of the first comparison. For example:

If (Not x Is Nothing) And x.SomeProperty = 123 Then 'BAD CODE

Here, the first comparison tests whether x is a valid object reference. But the second comparison, which tests
the value of the value of x's SomeProperty property, presupposes that x is a valid object reference.

If x = 1 Or y = 3 Then

The If statement is also used with objects to determine if an object reference has been successfully assigned to
an object variable. (Actually, that's not completely accurate; you check to see whether the object variable is still
set to Nothing.) However, you can't use the equality operator (=) for this comparison. Instead, you must use the
object comparison operator Is:

If Not objectname Is Nothing Then

VBA/VBScript Differences

In VBA, you can determine an object type with a statement like:

If TypeOf oObj Is CClass Then

In VBScript, however, the TypeOf operator is not supported; you must use the TypeName function instead.

See Also

Select Case Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Initialize Event

Syntax

Sub object_Initialize()

Description

Use the Initialize event of a class defined with the Class...End Class construct to prepare the object or class for use,
setting any references to subobjects or assigning default values to properties and values to class-level variables.

Rules at a Glance

The Initialize event is triggered automatically when a class is first instantiated by the Set statement. For
example, in the following code, the Set statement generates the Initialize event:

Dim MyObject As MyClass
'some code
...
'initialize event called here
Set MyObject = New MyClass
StrName = MyObject.CustName

The Initialize event doesn't take any arguments.

It is best to declare the Initialize event as Private, although this is not required.

Programming Tips and Gotchas

While it's possible to explicitly call the Initialize event from within the object at any stage after the object has
been created, it isn't recommended, because the code in the Initialize event should be written to be "run once"
code.

Use the Initialize event of a class module to generate references to dependent objects. For example:

Option Explicit

Dim custOrder
Set custOrder = New Order
' ...other code

Class Order
 Private cust, itemsOrdered
 Private Sub Class_Initialize()
 Set cust = New Customer
 Set itemsOrdered = New Items
 End Sub
End Class

Class Customer
 ' Implementation of Customer
End Class

Class Items
 Dim orderItem(10)

 Private Sub Class_Initialize()
 Set orderItem(0) = New Item
 End Sub
 ' Other implementation details of Items collection
End Class

Class Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class Item
 ' Implementation of Item
End Class

The Initialize event is triggered only once, when a new object is created. When an object variable is assigned a
reference to an existing object, the Initialize event isn't invoked. For example, in the following code fragment,
the Initialize event is invoked only once when the Set objMine1 statement is executed:

Dim objMine1, objMine2
Set objMine1 = New MyObj
Set objMine2 = objMine1

See Also

Set Statement, Terminate Event

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InputBox Function

Syntax

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])

prompt

Use: Required

Data Type: String

The message in the dialog box.

title

Use: Optional

Data Type: String

The titlebar of the dialog box.

default

Use: Optional

Data Type: String

String to be displayed in the text box on loading.

xpos

Use: Optional

Data Type: Numeric

The distance from the left side of the screen to the left side of the dialog box.

ypos

Use: Optional

Data Type: Numeric

The distance from the top of the screen to the top of the dialog box.

helpfile

Use: Optional

Data Type: String

The Help file to use if the user clicks the Help button on the dialog box.

context

Use: Optional

Data Type: Numeric

The context number to use within the Help file specified in helpfile.

Return Value

InputBox returns a variant string containing the contents of the text box from the InputBox dialog.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

Displays a dialog box containing a label, which prompts the user about the data you expect them to input, a text box for
entering the data, an OK button, a Cancel button, and optionally, a Help button. When the user clicks OK, the function
returns the contents of the text box.

Rules at a Glance

If the user clicks Cancel, a zero-length string (" ") is returned.

prompt can contain approximately 1,000 characters, including nonprinting characters like the intrinsic vbCrLf
constant.

If the title parameter is omitted, "VBScript" is displayed in the titlebar.

If you don't use the default parameter to specify a default entry for the text box, the text box is shown empty; a
zero-length string is returned if the user doesn't enter anything in the text box prior to clicking OK.

xpos and ypos are specified in twips. A twip is a device-independent unit of measurement that equals 1/20 of a
point or 1/1440 of an inch.

If the xpos parameter is omitted, the dialog box is centered horizontally.

If the ypos parameter is omitted, the top of the dialog box is positioned approximately one-third of the way
down the screen.

If the helpfile parameter is provided, the context parameter must also be provided, and vice versa.

In VBScript, when both helpfile and context are passed to the InputBox function, a Help button is automatically
placed on the InputBox dialog, allowing the user to click and obtain context-sensitive help.

Programming Tips and Gotchas

If you are omitting one or more optional arguments and using subsequent arguments, you must use a comma
to signify the missing argument. For example, the following code fragment displays a prompt, a default string in
the text box, and the help button, but default values are used for the title and positioning.

sString = InputBox("Enter it now", , "Something", , _
 , "help.hlp", 321321)

Because it is a user-interface element that would execute on the server, the InputBox function should not be
used in Active Server Pages or it will generate runtime error 70, "Permission denied."

In a client-side web page, it's preferable to rely on HTML intrinsic controls with validation using client-side
script, rather than on the InputBox function.

VBA/VBScript Differences

In VBA, in an Office-hosted environment, the maximum length of prompt is 256 characters. This limitation doesn't exist
in VBScript.

See Also

MsgBox Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InStr, InStrB Functions

Syntax

InStr([start,]stringtosearch, stringtofind[, comparemode])

start

Use: Optional

Data Type: Numeric

The starting position for the search.

stringtosearch

Use: Required

Data Type: String

The string being searched.

stringtofind

Use: Required

Data Type: String

The string being sought.

comparemode

Use: Optional

Data Type: Integer

The type of string comparison.

Return Value

A Long.

Description

Finds the starting position of one string within another.

Rules at a Glance

The return value of InStr is influenced by the values of stringtosearch and stringtofind, as shown in the following
table:

Condition InStr return value

stringtosearch is zero-length 0

stringtosearch is Null Null

stringtofind is zero-length start

stringtofind is Null Null

stringtofind is not found 0

stringtofind is found within stringtosearch Position at which the start of stringtofind is found

start > len(stringtofind) 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the start argument is omitted, InStr commences the search with the first character of stringtosearch.

If the start argument is Null, an error occurs.

You must specify a start argument if you are specifying a comparemode argument.

VBScript supports intrinsic constants for comparemode, as follows:

Comparison mode Value Constant

Binary (default) 0 vbBinaryCompare

Text—case- insensitive 1 vbTextCompare

In effect, a binary comparison means that the search for stringtofind in stringtosearch is case-sensitive. A text
comparison means that the search for stringtofind in stringtosearch is not case-sensitive.

If the comparemode argument contains Null, an error is generated.

If comparemode is omitted, the type of comparison is vbBinaryCompare.

Programming Tips and Gotchas

You can use the InStrB function to compare byte data contained within a string. In this case, InStrB returns the byte
position of stringtofind, as opposed to the character position.

VBA/VBScript Differences

In VBA, the default value of the compare parameter is determined by the setting of the Option Compare statement.
VBScript, however, does not support the Option Compare statement, and comparemode defaults to vbBinaryCompare.

See Also

InstrRev Function, Left, LeftB Functions, Mid, MidB Functions, Right, RightB Functions, StrComp Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

InstrRev Function

Syntax

InstrRev(sourcestring, soughtstring[, start[, compare]])

sourcestring

Use: Required

Data Type: String

The string to be searched.

soughtstring

Use: Required

Data Type: String

The substring to be found within sourcestring.

start

Use: Optional

Data Type: Numeric

Starting position of the search. If no value is specified, start defaults to 1.

compare

Use: Optional

Data Type: Integer

The method that compares soughtstring with sourcestring ; its value can be vbBinaryCompare or vbTextCompare

Return Value

Variant of type Long.

Description

Determines the starting position of a substring within a string by searching from the end of the string to its beginning.

Rules at a Glance

While InStr searches a string from left to right, InStrRev searches a string from right to left.

vbBinaryCompare is case-sensitive; that is, InstrRev matches both character and case, whereas vbTextCompare is
case-insensitive, matching only character, regardless of case.

The default value for compare is vbBinaryCompare.

start designates the starting point of the search and is the number of characters from the start of the string.

If start is omitted, the search begins from the last character in sourcestring.

sourcestring is the complete string in which you want to find the starting position of a substring.

If soughtstring isn't found, InStrRev returns 0.

If soughtstring is found within sourcestring, the value returned by InStrRev is the position of sourcestring from the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If soughtstring is found within sourcestring, the value returned by InStrRev is the position of sourcestring from the
start of the string.

Programming Tips and Gotchas

One of the useful applications of InstrRev is to search backward through a path and filename to extract each successive
component.

Example

This example uses both InStr and InStrRev to highlight the different results produced by each. Using a sourcestring that
states "I like the functionality that InStrRev gives," InStr finds the first occurrence of "th" at character 8, while InStrRev
finds the first occurrence of "th" at character 26:

Dim myString
Dim sSearch
myString = "I like the functionality that InStrRev gives"
sSearch = "th"

Msgbox InStr(myString, sSearch)
Msgbox InStrRev(myString, sSearch)

See Also

InStr, InStrB Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Int Function

Syntax

Int(number)

number

Use: Required

Data Type: Any valid numeric data type

The number to be truncated.

Return Value

Returns a value of the numeric data type passed to it.

Description

Returns the integer portion of a number.

Rules at a Glance

The fractional part of number is removed and the resulting integer value returned. Int doesn't round number to
the nearest whole number; for example, Int(100.9) returns 100.

If number is negative, Int returns the first negative integer less than or equal to number ; for example, Int(-10.1)
returns -11.

Programming Tips and Gotchas

Int and Fix work identically with positive numbers. However, for negative numbers, Fix returns the first negative
integer greater than number. For example, Int(-10.1) returns -10.

Don't confuse the Int function with CInt. CInt casts the number passed to it as an Integer data type, whereas Int
returns the same data type that was passed to it.

See Also

Fix Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Is Operator

Syntax

object1 Is object2

object1

Use: Required

Data Type: Object

An object variable.

object2

Use: Required

Data Type: Object

A second object variable.

Return Value

Boolean.

Description

Compares two object variables to determine whether they reference the same object.

Rules at a Glance

Both object1 and object2 must be object references, or runtime error 424, "Object required," results.

The operation returns a result of True if the object references are identical and False if they are not.

It is also possible to determine whether an object contains a valid reference by replacing object2 with the special
Nothing keyword. For example:

If oDrive Is Nothing Then

returns True if oDrive does not refer to an object and False if it does. This should be used to test for an
uninitialized object reference.

Programming Tips and Gotchas

Note that objects in VBScript are references—that is, they reference an object in memory. This means that if
two variables reference the same object and you make changes to the object's properties using the first object
variable, those changes are reflected when you retrieve the object's property settings using the second object
variable.

You may wonder why there is a special Is operator for objects. When you perform a comparison of scalar
variables, you want to know whether their values are the same. But in the case of objects, you want to know
whether two references point to a single object. (Many objects have identical property values; a test for equal
values is meaningless.) This is the reason for the Is operator.

You can create identical object references in a number of ways. One is by assigning an existing reference to a
second object variable:

Dim oDrive1, oDrive2
Set oDrive1 = oFS.Drives("C")
Set oDrive2 - oDrive1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set oDrive2 - oDrive1

You can also set two objects equal to a third object reference:

Dim oDrive1, oDrive2, oDrive
Set oDrive = oFS.Drives("C")
Set oDrive1 = oDrive
Set oDrive2 = oDrive

Finally, you can set both object references equal by retrieving them from the same object in an object model.
For example:

Dim oDrive1, oDrive2
Set oDrive1 = oFS.Drives("C")
Set oDrive2 - oFS.Drives("C")

Typically, the Is operator is used in an If...Then...Else construct to take some action if objects are the same or if
an object reference does not point to a valid object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsArray Function

Syntax

IsArray(varname)

varname

Use: Required

Data Type: Any

The name of the variable to be checked.

Return Value

Boolean (True or False).

Description

Tests whether a variable is an array.

Rules at a Glance

If the variable passed to IsArray is an array or contains an array, True is returned; otherwise, IsArray returns False.

Programming Tips and Gotchas

Due to the nature of variants, it isn't always obvious if a variant variable contains an array, especially if you pass the
variant to a function, and the function may or may not attach an array to the variant. Calling any of the array functions
— such as LBound or UBound—or trying to access an element in an array that doesn't exist will obviously generate an
error. In these situations, you should first use the IsArray function to determine whether you can safely process the
array.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsDate Function

Syntax

IsDate(expression)

expression

Use: Required

Data Type: Any.

Variable or expression containing a date or time.

Return Value

Boolean (True or False).

Description

Determines whether a variable's value can be converted to a date.

Rules at a Glance

If the expression passed to IsDate is a valid date, True is returned; otherwise, IsDate returns False.

Programming Tips and Gotchas

IsDate uses the locale settings of the current Windows system to determine whether the value held within the
variable is recognizable as a date. Therefore, what is a legal date format on one machine may fail on another.

IsDate is particularly useful for validating data input.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsEmpty Function

Syntax

IsEmpty(varname)

varname

Use: Required

Data Type: Any

A numeric or string expression.

Return Value

Boolean (True or False).

Description

Determines whether the variable has been initialized by having an initial value (other than Empty) assigned to it.

Rules at a Glance

If the variant passed to IsEmpty has not been initialized, True is returned; otherwise, IsEmpty returns False.

Although IsEmpty can take an expression as the value of varname, it always returns False if more than one
variable is used in the expression. IsEmpty is therefore most commonly used with single variables.

Programming Tips and Gotchas

When passed an object variable that has been set equal to Nothing, the IsEmpty function returns False. Hence, the
function should not be used to test whether a previously initialized object variable now holds a valid object reference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsNull Function

Syntax

IsNull(expression)

expression

Use: Required

Data Type: Any

An expression containing string or numeric data.

Return Value

Boolean (True or False).

Description

Determines whether expression contains is Null.

Rules at a Glance

If the expression passed to IsNull is Null, True is returned; otherwise, IsNull returns False.

All variables in expression are checked for null values. If a null value is found in any one part of the expression,
True is returned for the entire expression.

In VBScript, Null is a separate data type that can take on a single value, Null. It is used to indicate that data is
missing. Because it represents missing data, all expressions that include a Null value also result in a Null value.
This makes perfect sense. For instance, if we have an array containing two valid months of sales data and a Null
representing the third month's sales data, the quarter's sales data should also be Null, since accurate data for
the quarter is not available.

Programming Tips and Gotchas

IsNull is useful when returning data from a database. You should check field values in columns that allow Nulls
against IsNull before assigning the value to a collection or other variable. This stops the common "Invalid Use of
Null" error from occurring.

IsNull is the only way to evaluate an expression containing a null. For example, the seemingly correct
statement:

If varMyVar = Null Then

always evaluates to False, even if varMyVar is null. This occurs because the value of an expression containing Null
is always Null, and therefore False.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsNumeric Function

Syntax

IsNumeric(expression)

expression

Use: Required

Data Type: Any

A numeric or string expression.

Return Value

Boolean (True or False).

Description

Determines whether expression can be evaluated as a number.

Rules at a Glance

If the expression passed to IsNumeric evaluates to a number, True is returned; otherwise, IsNumeric returns False.

Programming Tips and Gotchas

If expression is a date or time, IsNumeric evaluates to False.

If expression is a currency value, including a string that includes the currency symbol defined by the Control
Panel's Regional Settings applet, IsNumeric evaluates to True.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IsObject Function

Syntax

IsObject(varname)

varname

Use: Required

Data Type: Any

Name of the variable to be evaluated.

Return Value

Boolean (True or False).

Description

Indicates whether a variable contains a reference to an object—in other words, if it's an object variable.

Rules at a Glance

If the variable passed to IsObject references or has referenced an object, even if its value is Nothing, True is returned;
otherwise, IsObject returns False.

Programming Tips and Gotchas

IsObject doesn't validate the reference being held by an object variable; it simply determines whether the
variable is an object. To ensure that an object reference is valid, you can use the syntax Is Nothing, as shown in
this code snippet:

If objVar Is Nothing Then
...
End if

IsObject is simply a "convenience" function that is roughly equivalent to the following user-defined function:

Public Function IsObject(varObj)

If VarType(varObj) = vbObject Then
 IsObject = True
Else
 IsObject = False
End If

End Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Join Function

Syntax

result = Join(sourcearray, [delimiter])

sourcearray

Use: Required

Data Type: Array

Array whose elements are to be concatenated.

delimiter

Use: Optional

Data Type: String

Character used to delimit the individual values in the string.

Return Value

A type String.

Description

Concatenates an array of values into a delimited string using a specified delimiter.

Rules at a Glance

If no delimiter is specified, the space character is used as a delimiter.

The members of sourcearray must be convertible to strings. The individual members of sourcearray can be any
data type except Object. In fact, the individual members of sourcearray can be objects as long as the object's
default member is not another object. For example, the Join function in the code fragment:

Set oFS = CreateObject("Scripting.FIleSystemObject")
Set oDrive1 = oFS.Drives("C")
Set oDrive2 = oFS.DRives("D")

Set vArr(0) = oDrive1
Set vArr(1) = oDrive2

sJoin = Join(vArr, ",")
returns the string "C:,D:".

When a delimiter is specified, unused sourcearray elements are noted in the return string by the use of the
delimiter. For example, if you specify a delimiter of "," and a source array with 11 elements, of which only the
first two are used, Join returns a string similar to the following:

"a,b,,,,,,,,,"

Programming Tips and Gotchas

The Join function is ideal for quickly and efficiently writing out a comma-delimited text file from an array of values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LBound Function

Syntax

LBound(arrayname[, dimension])

arrayname

Use: Required

Data Type: Array

The name of the array.

dimension

Use: Optional

Data Type: Long

A number specifying the dimension of the array.

Return Value

A Long.

Description

Determines the lower limit of a specified dimension of an array. The lower boundary is the smallest subscript you can
access within the specified array.

Rules at a Glance

If dimension isn't specified, 1 is assumed. To determine the lower limit of the first dimension of an array, set dimension to
1, to 2 for the second, and so on.

Programming Tips and Gotchas

This function appears to have little use in VBScript, since VBScript does not allow you to control the lower
bound of an array. Its value, which is 0, is invariable. However, it is possible for ActiveX components created
using Visual Basic to return a array with a lower bound other than 0 to a VBScript script.

LBound is useful when handling arrays passed by ActiveX controls written in VB, since these may have a lower
bound other than 0.

VBScript/VB & VBA Differences

Unlike VBA, there is no Option Base available in VBScript, nor does VBScript support the To keyword in the Dim, Private,
Public, and ReDim statements. Therefore, all arrays will have a lower bound of 0.

See Also

Array Function, UBound Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LCase Function

Syntax

LCase(string)

string

Use: Required

Data Type: String

A valid string expression.

Return Value

A String.

Description

Converts a string to lowercase.

Rules at a Glance

LCase affects only uppercase letters; all other characters in string are unaffected.

LCase returns Null if string contains a Null.

VBScript/VB & VBA Differences

There is no LCase$ function available in VBScript.

See Also

UCase Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Left, LeftB Functions

Syntax

Left(string, length)

string

Use: Required

Data Type: String

The string to be processed.

length

Use: Required

Data Type: Long

The number of characters to return from the left of the string.

Return Value

Left and LeftB return a String.

Description

Returns a string containing the left-most length characters of string.

Rules at a Glance

If length is 0, a zero-length string (" ") is returned.

If length is greater than the length of string, string is returned.

If length is less than 0 or Null, the function generates runtime error 5, "Invalid procedure call or argument," and
runtime error 94, "Invalid use of Null," respectively.

If string contains Null, Left returns Null.

Left processes strings of characters; LeftB is used to process binary data.

Programming Tips and Gotchas

Use the Len function to determine the overall length of string.

When you use the LeftB function with byte data, length specifies the number of bytes to return.

VBScript/VB & VBA Differences

There are no Left$ or LeftB$ functions available in VBScript.

See Also

Len, LenB Functions, Mid, MidB Functions, Right, RightB Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Len, LenB Functions

Syntax

Len(string | varname)
LenB(string | varname)

string

Use: Required

Data Type: String

A valid string literal or string expression.

varname

Use: Required

Data Type: Any except Object

A valid variable name.

Return Value

Long.

Description

Len returns the number of characters in a string or variable. LenB returns the number of bytes required to store a
string in memory.

Rules at a Glance

string and varname are mutually exclusive; that is, you must specify either string or varname, but not both.

If either string or varname is Null, Len and LenB return Null.

You can't use Len or LenB with an object variable.

If varname is an array, you must also specify a valid subscript. In other words, Len and LenB can't determine the
total number of elements in or the total size of an array. To determine the size of an array, use the LBound and
UBound functions.

Programming Tips and Gotchas

Nonstring data is treated the same as strings when passed to the Len and LenB functions. For example, in the
code:

Dim number
number = 100
WScript.Echo Len(number)

the Len function returns 3, since that is the number of characters in the value of number.

LenB is intended to work with string data, and returns the number of bytes required to store that string. If a
nonstring data type is passed to the LenB function, its value is first converted to a string before its length is
determined.

VBA/VBScript Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA/VBScript Differences

Although the Len and LenB functions handle strings identically in VBA and VBScript, they handle non-string data types
quite differently. Len and LenB in VBA reports the number of bytes required to store the non-string data type in
memory. In contrast, in VBScript, Len reports the number of characters in the string representation of non-character
data, and LenB reports the number of bytes needed to store the string representation of noncharacter data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LoadPicture Function

Syntax

LoadPicture(picturename)

picturename

Use: Required

Data Type: String

The path and filename of the picture file.

Return Value

A StdPicture object.

Description

Loads a picture object.

Rules at a Glance

picturename consists of an optional path along with the name of a supported image file. If the path component of
picturename is omitted, the VBScript runtime engine attempts to find the image in the script's current directory.

picturename can be a bitmap (.bmp), enhanced metafile (.emf), icon (.ico), Graphics Interchange Format (.gif),
JPEG (.jpg), run-length encoded (.rle), or Windows metafile (.wmf).

Example

The following example loads an image into an Outlook contact form:

Function Item_Open()

Dim oPic

Set oPic = LoadPicture("C:\windows\" & Item.FullName & ".bmp")

Set Item.GetInspector.ModifiedFormPages("General").imgContact.Picture = _
 oPic
End Function

Programming Tips and Gotchas

The StdPicture object is defined by the OLE Automation library STDOLE2.TLB. It supports the members shown
in the following table:

Name Type Description

Handle Property Returns a handle to the image.

Height Property Indicates the height of the image in HiMetric units.

hPal Property Returns a handle to the Picture object's palette.

Render Method Draws all or part of the image to a destination object.

Type Property Returns the Picture object's graphics format. Possible values are 0 (none), 1 (bitmap), 2
(metafile), 3 (icon), and 4 (enhanced metafile).

Width Property Indicates the width of the image in HiMetric units.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Width Property Indicates the width of the image in HiMetric units.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Log Function

Syntax

Log(number)

number

Use: Required

Data Type: Double

A numeric expression greater than zero.

Return Value

A Double.

Description

Returns the natural logarithm of a given number.

Rules at a Glance

The natural logarithm is based on e, a constant whose value is approximately 2.718282. The natural logarithm
is expressed by the equation:

ez = x

where z = Log(x). In other words, the natural logarithm is the inverse of the exponential function.

number, the value whose natural logarithm the function is to return, must be a positive real number. If number
is negative or zero, the function generates runtime error 5, "Invalid procedure call or argument."

Programming Tips and Gotchas

You can calculate base-n logarithms for any number x, by dividing the natural logarithm of x by the natural
logarithm of n, as the following expression illustrates:

Logn(x) = Log(x) / Log(n)

For example, the Log10 function shows the source code for a custom function that calculates base-10
logarithms:

Function Log10(X)
 Log10 = Log(X) / Log(10)
End Function

A number of other mathematical functions that aren't intrinsic to VBScript can be computed using the value
returned by the Log function. The functions and their formulas are:

Inverse Hyperbolic Sine

HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic Cosine

HArccos(X) = Log(X + Sqr(X * X - 1))

Inverse Hyperbolic Tangent

HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse Hyperbolic Secant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inverse Hyperbolic Secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic Cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse Hyperbolic Cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

LTrim Function

Syntax

LTrim(stringexp)

stringexp

Use: Required

Data Type: String

A string expression.

Return Value

A String.

Description

Removes any leading spaces from stringexp.

Rules at a Glance

LTrim returns a String.

If stringexp contains a Null, LTrim returns Null.

Programming Tips and Gotchas

Unless you need to keep trailing spaces, it's best to use the Trim function, which is the equivalent of
LTrim(RTrim(string)). This allows you to remove both leading and trailing spaces in a single function call.

Although we have seen it done, it's extremely unwise to create data relationships that rely on leading spaces.
Most string-based data types in relational database management systems like SQL Server and Access
automatically remove leading spaces.

VB/VBA Differences

VBScript does not support the VBA LTrim$ function.

See Also

RTrim Function, Trim Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Match Object

Description

A member of the Matches collection that is returned by a call to the RegExp object's Execute method, the Match object
represents a successful regular expression match.

Createable

No.

Returned by

Matches.Item property.

Properties

The Match object supports the following three properties:

FirstIndex

Data Type: Long

Indicates the position in the original search string where the regular expression match occurred. The first
character in the search string is at position 1.

Length

Data Type: Long

Indicates the number of characters in the match found in the search string. This is also the number of
characters in the Match object's Value property.

Value

Data Type: String

The text of the match found in the search string.

Example

Since the RegExp object's Execute method searches only a string, the example program writes the filename of each file
in the Windows directory to a variable named strNames. Each filename is preceded by two spaces. The RegExp object's
Execute method is then called to search for every filename beginning with the letter "B" (the regular expression
searches for two spaces followed by a "B"). The Matches collection is then iterated so that each filename can be
extracted from strNames and displayed in a message box:

Dim fs, root, dir, fls, fl
Dim rexp
Dim mtchs, mtch
Dim strNames, strMsg
Dim lStartPos

strNames = " "
Set fs = CreateObject("Scripting.FileSystemObject")
Set root = fs.Drives("C").RootFolder
Set dir = root.SubFolders("Windows")
Set fls = dir.Files

For Each fl In fls
 strNames = strNames & fl.Name & " "

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strNames = strNames & fl.Name & " "
Next
MsgBox Len(strNames)
Set rexp = New RegExp
rexp.Global = True
rexp.Pattern = "(\s\sB)"
Set mtchs = rexp.Execute(strNames)

For Each mtch In mtchs
 lStartPos = mtch.FirstIndex + 2
 strMsg = strMsg & Mid(strNames, lStartPos, _
 InStr(lStartPos, strNames, " ") - lStartPos + 1) & vbCrLf
Next

MsgBox strMsg

See Also

RegExp Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Matches Collection Object

Description

The collection of zero or more Match objects returned by the RegExp object's Execute method; each Match object
allows you to identify and manipulate one of the strings found by the regular expression.

Createable

No.

Returned by

RegExp.Execute Method.

Properties

The Matches collection object supports the following two properties:

Count

Data Type: Long

Indicates the number of objects in the collection. A value of zero indicates that the collection is empty. The
property is read-only.

Item

Syntax: Matches.Item(index)

Data Type: Match object

Returns a particular Match object based on index, its ordinal position in the collection. Matches is a zero-based
collection; that is, its first member is at ordinal position 0, while its last member is at ordinal position
Matches.Count - 1.

Example

See the example for the Match object.

See Also

Match Object, RegExp Object, RegExp.Execute Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Me Keyword

Syntax

Me

Description

The Me Keyword represents the current instance of the class in which code is executing.

Rules at a Glance

Me is an implicit reference to the current object as defined by the Class...End Class statement.

Me is automatically available to every procedure in a VBScript class.

Example

In this example, a class method in a WSH script passes an instance of itself to a function outside of the class by using
the Me Keyword:

Dim oCtr
Set oCtr = New CCounter
oCtr.Increment
oCtr.Increment
MsgBox "Count: " & oCtr.ShowCount

' definition of CCounter class
Class CCounter

Private lCtr

Property Get Value
 Value = lCtr
End Property

Private Sub Class_Initialize()
 lCtr = 1
End Sub

Public Sub Increment()
 lCtr = lCtr + 1
End Sub

Public Function ShowCount()
 ShowCount = ShowObjectValue(Me)
End Function

End Class

' Show value of an object's Value property
Public Function ShowObjectValue(oObj)
 ShowObjectValue = oObj.Value
End Function

Programming Tips and Gotchas

Values can't be assigned to the Me Keyword.

The Me Keyword is particularly useful when passing an instance of the current class as a parameter to a routine
outside of the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outside of the class.

See Also

Class Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Mid, MidB Functions

Syntax

Mid(string, start[, length])

string

Use: Required

Data Type: String

The expression from which to return a substring.

start

Use: Required

Data Type: Long

The starting position of the substring.

length

Use: Optional

Data Type: Long

The length of the substring.

Return Value

A String.

Description

Returns a substring of a specified length from within a given string.

Rules at a Glance

If string contains a Null, Mid returns Null.

If start is more than the length of string, a zero-length string is returned.

If start is less than zero, error 5, "Invalid procedure call or argument," is generated.

If length is omitted or is greater than the length of string, all characters from start to the end of string are
returned.

The MidB version of the Mid function is used with byte data held within a string. When using MidB, both start and
length refer to numbers of bytes as opposed to numbers of characters.

Example

The following example is a function that parses a string passed to it as a parameter and writes each word to a dynamic
array. Note the use of the InStr function to determine the position of a space, which in this case is the character that
can terminate a word:

Public Function ParseString(strString)

Dim arr()
Dim intStart, intEnd, intStrLen, intCtr

intCtr = 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

intCtr = 0
intStart = 1
intStrLen = Len(strString)
Redim Preserve arr(10)

Do While intStart > 0
 intEnd = InStr(intStart, strString, " ") - 1
 If intEnd <= 0 Then intEnd = intStrLen
 If intCtr > UBound(arr) Then
 Redim Preserve arr(UBound(arr)+10)
 End If
 arr(intCtr) = Mid(strString, intStart, _
 intEnd - intStart + 1)
 intStart = intEnd + 2
 intCtr = intCtr + 1
 If intStart > intStrLen Then intStart = 0
Loop

ParseString = arr

End Function

Programming Tips and Gotchas

Use the Len function to determine the total length of string.

Use InStr to determine the starting point of a given substring within another string.

VBA/VBScript Differences

Because it does not support strong typing, VBScript does not support the Mid$ and MidB$ functions, which
explicitly return a string, rather than a String.

VBA supports the Mid statement, which allows a portion of the string to be replaced with another substring. For
example:

Dim strPhrase As String

strPhrase = "This will be the day."
Mid(strPhrase, 3, 2) = "at"

changes the value of strPhrase to "That will be day." This usage of Mid in statement form is not supported by
VBScript.

See Also

Left, LeftB Functions; Len, LenB Functions; Right, RightB Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Minute Function

Syntax

Minute(time)

time

Use: Required

Data Type: Date

Any valid date/time expression, or an expression that can be evaluated as a date/time expression.

Return Value

An Integer.

Description

Returns an integer between 0 and 59 representing the minute of the hour from a given date/time expression.

Rules at a Glance

If time is Null, the Minute function returns Null.

Programming Tips and Gotchas

If time isn't a valid date/time expression, the function generates runtime error 13, "Type mismatch." To prevent this,
use the IsDate function to check the argument before calling the Minute function.

See Also

Hour Function, Second Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Month Function

Syntax

Month(date)

date

Use: Required

Data Type: Date

Any valid date expression.

Return Value

An Integer between 1 and 12.

Description

Returns a variant representing the month of the year of a given date expression.

Rules at a Glance

If date contains Null, Month returns Null.

Programming Tips and Gotchas

The validity of the date expression and the position of the month element within the date expression are initially
determined by the locale settings of the current Windows system. However, some intelligence has been built
into the Month function that surpasses the usual comparison of a date expression to the current locale settings.
For example, on a Windows machine set to U.S. date format (mm/dd/yyyy), the date "13/12/2000" is technically
illegal. However, the Month function returns 12 when passed this date. The basic rule for the Month function is
that if the system-defined month element is outside legal bounds (i.e., greater than 12), the system-defined
day element is assumed to be the month and is returned by the function.

Since the IsDate function adheres to the same rules and assumptions as Month, it determines whether a date is
valid before passing it to the Month function.

See Also

DatePart Function, Day Function, IsDate Function, MonthName Function, Year Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MonthName Function

Syntax

MonthName monthnumber [, abbreviate]

monthnumber

Use: Required

Data Type: Long

The ordinal number of the month, from 1 to 12.

abbreviate

Use: Optional

Data Type: Boolean

A flag to indicate whether an abbreviated month name should be returned.

Return Value

A String.

Description

Returns the month name of a given month. For example, 1 returns January, or if abbreviate is True, Jan.

Rules at a Glance

The default value for abbreviate is False.

Programming Tips and Gotchas

monthnumber must be an integer or a long; it can't be a date. Use DatePart("m", dateval) to obtain a month number from a
date.

See Also

DatePart Function, Month Function, WeekdayName Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MsgBox Function

Syntax

MsgBox(prompt[, buttons][, title][, helpfile, context])

prompt

Use: Required

Data Type: String

The text of the message to display in the message box dialog.

buttons

Use: Optional

Data Type: Numeric

The sum of the Button, Icon, Default Button, and Modality constant values.

title

Use: Optional

Data Type: String

The title displayed in the titlebar of the message box dialog.

helpfile

Use: Optional

Data Type: String

An expression specifying the name of the help file to provide help functionality for the dialog.

context

Use: Optional

Data Type: Numeric

An expression specifying a context ID within helpfile.

Return Value

An Integer indicating the button clicked by the user.

Description

Displays a dialog box containing a message, buttons, and optional icon to the user. The action taken by the user is
returned by the function as an integer value.

Rules at a Glance

prompt can contain approximately 1,000 characters, including carriage return characters such as the built-in
vbCrLf constant.

In order to divide prompt onto multiple lines, you can use any of the vbCr, vbLf, vbCrLf, or vbNewLine constants.
For example:

SMsg = "This is line 1" & vbCrLf & _
"This is line 2"

If the title parameter is omitted, the text of title depends on the type of script being executed, as the following

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the title parameter is omitted, the text of title depends on the type of script being executed, as the following
table shows:

Script type Caption

ASP script not applicable

IE script "VBScript"

Outlook form "VBScript"

WSH script "VBScript"

If the helpfile parameter is provided, the context parameter must also be provided, and vice versa.

When both helpfile and context are passed to the MsgBox function, a Help button is automatically placed on the
MsgBox dialog, allowing the user to click and obtain context-sensitive help.

If you omit the buttons argument, the default value is 0; VB opens an application modal dialog containing only
an OK button.

The following intrinsic constants can be added together (or logically Or'ed) to form a complete buttons argument:

ButtonDisplayConstant + IconDisplayConstant + _
DefaultButtonConstant + ModalityConstant

Only one constant from each group can make up the overall buttons value.

Button Display Constants

Constant Value Buttons to display

vbOKOnly 0 OK only

vbOKCancel 1 OK and Cancel

vbAbortRetryIgnore 2 Abort, Retry, and Ignore

vbYesNoCancel 3 Yes, No, and Cancel

vbYesNo 4 Yes and No

vbRetryCancel 5 Retry and Cancel

Icon Display Constants

Constant Value Icon To display

vbCritical 16 Critical Message

vbQuestion 32 Warning Query

vbExclamation 48 Warning Message

vbInformation 64 Information Message

Default Button Constants

Constant Value Default button

vbDefaultButton1 0 First button

vbDefaultButton2 256 Second button

vbDefaultButton3 512 Third button

vbDefaultButton4 768 Fourth button

Modality Constants

Constant Value modality

vbApplicationModal 0 Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vbSystemModal 4096 System

The following intrinsic constants determine the action taken by the user and represent the value returned by the
MsgBox function:

Return Values

Constant Value Button clicked

vbOK 1 OK

vbCancel 2 Cancel (or Esc key pressed)

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

If the MsgBox contains a Cancel button, the user can press the Esc key, and the function's return value is that
of the Cancel button.

The Help button doesn't itself return a value, because it doesn't close the MsgBox dialog. If the user clicks the
Help button, a Help window is opened. Once the Help window is closed, the user clicks one of the other buttons
on the message box to close the dialog; this then returns a value.

Programming Tips and Gotchas

Application modality means that the user can't access other parts of the application until a response to the
message box has been given. In other words, the appearance of the message box prevents the application from
performing other tasks or from interacting with the user other than through the message box.

System modality used to mean that all applications were suspended until a response to the message box was
given. However, with multitasking operating systems such as the Windows family of 32- and 64-bit operating
systems, this isn't the case. Basically the message box is defined to be a "Topmost" window that is set to "Stay
on Top," which means that the user can switch to another application and use it without responding to the
message box; but because the message box is the topmost window, it's positioned on top of all other running
applications.

Unlike its InputBox counterpart, MsgBox can't be positioned on the screen; it's always displayed in the center of
the screen.

Since it produces a user interface that is displayed on the server rather than on the client, MsgBox should not
be used within an ASP script that runs on the server. It can, however, be included as script in the text stream
that an ASP page sends to the client.

If WSH scripts are run in batch mode (that is, with the /B switch), calls to the MsgBox function are ignored.
Note that, if the return value of the MsgBox function is used to define the value of variables or to control
program flow, the script may no longer function as intended when run in batch mode.

VBA/VBScript Differences

In VBA, if the title parameter is omitted, the name of the current application or project is displayed in the title bar. In
VBScript, the string that appears on the title bar depends on the type of script that executes.

See Also

InputBox Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Now Function

Syntax

Now

Return Value

A Date.

Description

Returns the current date and time based on the system setting.

Example

The following example returns the date 10 days from today:

Dim dFutureDate
dFutureDate = DateAdd("d", 10, Now)

Programming Tips and Gotchas

It's often overlooked that workstations in a modern Windows environment are at the mercy of the user! If your
application relies on an accurate date and time setting, you should consider including a line in the workstation's
logon script to synchronize the time with one of the servers. Many so-called bugs have been traced to a
workstation that has had its date or time wrongly altered by the user. The following line of code, when added to
the logon script of an NT/Windows 2000 machine, synchronizes the machine's clock with that of a server called
NTSERV1:

net time \\NTSERV1 /set

If you convert the date returned by Now to a string, it takes the Windows General Date format based on the
locale settings of the local computer. The U.S. setting for General Date is mm/dd/yy hh:mm:ss.

The Now function is often used to generate timestamps. However, for short-term timing and intra-day
timestamps, the Timer function, which returns the number of milliseconds elapsed since midnight, affords
greater precision.

See Also

Timer Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Oct Function

Syntax

Oct(number)

number

Use: Required

Data Type: Numeric or String

Number or string representation of a number to convert.

Return Value

A String.

Description

Returns a string containing the octal representation of a given number.

Rules at a Glance

If number isn't already a whole number, it's rounded to the nearest whole number before being evaluated.

If number is Null, Oct returns Null.

If number is the special Empty variant, Oct returns 0 (zero).

Oct returns up to 11 octal characters.

Programming Tips and Gotchas

You can also use literals in your code to represent octal numbers by appending &O to the relevant octal value. For
example, 100 decimal has the octal representation &O144. The following statement assigns an octal value to a variable:

lngOctValue1 = &o200 ' Assigns 128

See Also

Hex Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

On Error Statement

Syntax

On Error Resume Next
On Error Goto 0

Description

Enables or disables error handling within a procedure. If you don't use an On Error statement in your procedure, or if
you have explicitly switched off error handling, the VBScript runtime engine handles the error automatically. First, it
displays a dialog containing the standard text of the error message, something many users are likely to find
incomprehensible. Second, it terminates the application, so any error that occurs in the procedure produces a fatal
runtime error.

Rules at a Glance

When a runtime error occurs in the routine in which the On Error Resume Next statement occurs, program
execution continues with the program line following the line that generated the error. This means that, if you
want to handle an error, this line following the line that generated the error should call or include an inline
error-handling routine.

When a runtime error occurs in any routine called by the routine in which the On Error Resume Next statement
occurs, or by its subroutines, program execution returns to the statement immediately after the subroutine call
in the routine containing the On Error Resume Next statement.

When used in an ASP page for IIS 5.0, On Error Resume Next disables ASP's own error handling.

You disable error handling by using the On Error Goto 0 statement.

Programming Tips and Gotchas

If you have no error handling in your procedure, the VBScript runtime engine traces back through the call stack
until a procedure is reached where error handling is enabled. In this case, the error is handled by that
procedure by executing the statement immediately after the call to the subroutine that caused program control
to leave the procedure. However, if no error handler can be found in the call stack, a runtime error occurs, and
program execution is halted.

On Error Resume Next can be useful in situations where you are certain that errors will occur, or where the errors
that could occur are minor. The following example shows how you can quickly cycle through an array with some
uninitialized values to sum its elements. By using the On Error Resume Next statement, you force your program to
ignore errors caused by elements with invalid data and carry on with the next element. For example, the
following code fragment allows you to ignore errors caused by attempting to add nonnumeric data:

On Error Resume Next
Dim arr, element, sum
arr = array(12, "string", 14, 7, 19, 2)

For Each element in arr
 sum = sum + element
Next

The quality of error trapping, error handling, and error reporting within a program often determines the success
or failure of the application. Attention to detail in this area can be the difference between a stable, well-
behaved, and robust application and one that seems to generate nothing but hassle. Using logs like the
application and event logs in Windows NT, Windows 2000, and Windows XP within your error-handling routines
can help you track down persistent problems quickly and efficiently. See Chapter 4, which explains creation of
robust VBScript error-handling routines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

robust VBScript error-handling routines.

It's important to understand the flow of program control in the event an error occurs in a subroutine, and in
particular, to understand that in the event of an error in a called routine, program execution returns to the
statement after the statement that caused program flow to leave the routine containing the On Error Resume Next
statement. In most cases, this behavior is highly undesirable. It can be prevented by including an On Error
Resume Next statement in each routine of a script or module.

You can provide inline error handling after lines of code that are particularly likely to cause errors. Typically, this
is done by checking whether the Err object's Number property is nonzero, as in the following code fragment:

On Error Resume Next

Dim oDAO

Set oDAO = CreateObject("DAO.DBEngine.30")
If Err.Number <> 0 Then
 MsgBox Err.Number & ": " & Err.Description 'Handle error
Err.Clear
End If

Note that it's particularly important to test for a nonzero error code rather than a positive error code, since
most errors are unsigned long integers that VBScript (which does not support unsigned integers) represents as
negative numbers. It's also important, once you've handled the error, to clear the error information by calling
the Err object's Clear method.

You cannot trap syntax errors with the On Error statement. This is because syntax errors do not terminate a
program; a program with syntax errors never even begins execution.

VBA/VBScript Differences

Unlike VBA, which also supports the On Error Goto syntax to branch program flow to an error-handling section within a
routine or function, VBScript supports only the On Error Resume Next statement. This means that, if you're programming
with VBScript, you must use inline error handling.

See Also

Err Object, Chapter 6

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Option Explicit Statement

Syntax

Option Explicit

Description

Use Option Explicit to generate an error whenever a variable that has not been declared is encountered.

Rules at a Glance

The Option Explicit statement must appear in a script before any other statements; otherwise, a nontrappable
error occurs.

In modules where the Option Explicit statement isn't used, any undeclared variables are declared automatically.

Where Option Explicit is used, all variables must be declared using the Dim, Private, Public, or ReDim statements.

Programming Tips and Gotchas

It's considered good programming practice to always use the Option vbCrLfExplicit statement. The following
example shows why:

 Dim iVariable

 iVariable = 100
 iVariable = iVarable + 50
 MsgBox iVariable

In this code snippet, a variable, iVariable, has been declared. However, because the name of the variable has
been mistyped in line 3, the message box shows its value as 50 instead of 150. This is because iVarable is
assumed to be an undeclared variant whose value is 0. If the Option Explicit statement had been used, the code
wouldn't have executed without generating an error, and iVarable would have been highlighted as the cause
when Error 500, "Variable is undefined," was raised.

For ASP pages, the Option Explicit statement must appear before the beginning of the HTML stream. For
example:

<% Option Explicit %>
<HTML>

A single Option Explicit statement applies to all script blocks in an ASP page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Private Statement

Syntax

Private varname[([subscripts])] [, varname[([subscripts])] . . .

varname

Use: Required

Variant Type: Any

The name of the variable, following Visual Basic naming conventions.

subscripts

Use: Optional

Variant Type: Integer or Long

Denotes varname as an array and optionally specifies the number and extent of array dimensions.

Description

Used in a script or in a class to declare a private variable and allocate the relevant storage space in memory.

Rules at a Glance

A Private variable's visibility is limited to the script in which it's created for global variables and to the class in
which it is declared for class-level variables. Elsewhere, the Private keyword generates an error.

varname follows standard VB naming conventions. It must begin with an alphabetic character, can't contain
embedded periods or spaces, can't be the same as a VBScript reserved word, must be shorter than 255
characters, and must be unique within its scope.

You can override standard variable naming conventions by placing your variable name in brackets. This allows
you to use reserved words or illegal characters in variable names. For example:

Private [me]
Private [1Var]
Private [2-Var]

The subscripts argument has the following syntax:

upperbound [,upperbound]...

For example:

Private strNames(10)

defines an array of 11 elements (an array whose lower bound is 0 and whose upper bound is 10). Similarly:

Private lngPrices(10, 10)

defines a two-dimensional array of eleven elements in each dimension.

Using the subscripts argument, you can declare up to 60 multiple dimensions for the array.

If the subscripts argument isn't used (i.e., the variable name is followed by empty parentheses), the array is
declared dynamic. You can change both the number of dimensions and the number of elements of a dynamic
array using the ReDim statement.

VBScript supports only the variant data type: all variables are variants. The following table shows the values
held by each type of variant when it is first initialized:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variable type Initial value Example

Array Variant() Private arrNames(10)

Array Element Empty arr(0)

Variant Variable Empty Private vCtr

Programming Tips and Gotchas

The behavior of variables defined using the Private statement outside of a class is determined by the host. In
general, there is rarely a good reason to declare a private variable outside of a class.

Within a class, you should prevent variables from being modified outside of the class by declaring them as
private. Instead, public properties should be used to provide a means of accessing and modifying private
variables. For example, rather than defining a public variable Age as follows:

Class Person
 Dim Age
End Class

You can define it as follows and allow properties to provide access to the private data:

Class Person
 Dim iAge

 Public Property Get Age()
 Age = iAge
 End Property

 Public Property Let Age(value)
 iAge = value
 End Property
End Class

One of the uses of private variables is in client-side scripts for IE. If there are multiple script blocks in a single
page, a private variable is visible only in the script block in which it is declared; it is not visible in any other
script block on that page.

All variables created at procedure level (that is, in code within a Sub...End Sub, Function...End Function, or
Property...End Property construct are local by default. That is, they don't have scope outside the procedure in
which they are created. The use of the Private keyword in these cases generates a runtime error.

You cannot change the dimensions of arrays that were defined to be dynamic arrays while preserving their
original data.

It's good practice to always use Option Explicit at the beginning of a module to prevent misnamed variables from
causing hard-to-find errors.

VBA/VBScript Differences

In VBA, you can explicitly define the lower bound of an array in the subscripts argument. In VBScript, this is not
permitted; the lower bound of all arrays is always 0.

VBA supports the WithEvents keyword to allow an object reference to receive notification of the events fired by
its corresponding object. VBScript, however, does not support the WithEvents keyword. Note, though, that some
scriptable applications (such as Windows Script Host, Internet Explorer, and Active Server Pages) do expose
their events to scripts.

VBA supports the New keyword to create early bound objects. However, since scripting languages necessarily
rely on late binding, the New keyword is not supported in a variable declaration statement.

See Also

Dim Statement, Public Statement, ReDim Statement, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Property Get Statement

Syntax

[Public [Default] | Private Property Get name [(arglist)]
 [statements]
 [name = expression]
 [Exit Property]
 [statements]
 [name = expression]
End Property

Public

Use: Optional

Type: Keyword

Makes the property accessible from outside the class, giving it visibility through all procedures in all scripts.
Public and Private are mutually exclusive.

Default

Use: Optional

Type: Keyword

Used only with the Public keyword to indicate that a public property is the default property of the class.

Private

Use: Optional

Type: Keyword

Restricts the visibility of the property to those procedures within the same Class...End Class code block. Public and
Private are mutually exclusive.

name

Use: Required

The name of the property.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the property as arguments from the calling procedure.

statements

Use: Optional

Program code to be executed within the property.

expression

Use: Optional

Variant Type: Any

The value to return from the property to the calling procedure.

arglisthas the following syntax:

[ByVal | ByRef] argname[()]

ByVal

Use: Optional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use: Optional

The argument is passed by value; that is, a local copy of the variable is assigned the value of the argument.

ByRef

Use: Optional

The argument is passed by reference; that is, the local variable is simply a reference to the argument being
passed. Changes made to the local variable are reflected in the argument. ByRef is the default way of passing
variables.

argname

Use: Required

The name of the local variable representing the argument.

Description

Declares the name, arguments, and code for a procedure that reads the value of a property and returns it to the calling
procedure. The Property Get statement is used within a class defined by the Class...End Class construct.

Rules at a Glance

Property procedures are Public by default.

The Default keyword indicates that this Property Get procedure is the class's default member. A default member is
automatically executed in an assignment statement without the need to explicitly reference it. To take a
common example, the following two statements are identical:

Set oCDrive = FileSystemObject.Drives.Item("C")
Set oCDrive = FileSystemObject.Drives("C")

Both return a reference to a Drive object representing the local system's C drive. The second statement works
because Item is the default member of the Drives collection.

A class can have only a single default member. This must be a public procedure defined either by the Property
Get statement or by the Function statement.

Unlike other function and procedure names, the name of the PropertyGetprocedure doesn't have to be unique
within its class module. Specifically, the PropertyLet and PropertySet procedures can have the same name as the
PropertyGet procedure. For example:

Property Let Name(sVal)
 msName = sVal
End Property

Property Get Name()
 Name = msName
End Property

The number of arguments passed to a Property Get statement must match the corresponding Property Let or
Property Set statement. For example:

Public Property Let MyProperty(sVal, iVal)
 miMyProperty = iVal
End Property

Public Property Get MyProperty(sVal)
 MyProperty = miMyProperty
End Property

Both the PropertyLet and PropertyGet procedures share a common argument, sVal. The PropertyLet procedure has
one additional argument, iVal, which represents the value that is to be assigned to the MyProperty property.
(For details, see the next point.)

In a PropertyLet procedure, the last argument defines the data assigned to the property. The data returned by
the PropertyGet procedure must match the last argument of a corresponding PropertyLet or PropertySet procedure.

If an Exit Property statement is executed, the property procedure exits and program execution immediately
continues with the statement from which the property procedure was called. Any number of Exit Property
statements can appear in a PropertyGet procedure.

If the value of the PropertyGet procedure has not been explicitly set when the program execution exits the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the value of the PropertyGet procedure has not been explicitly set when the program execution exits the
procedure, its value will be empty, the uninitialized value of a variant.

Programming Tips and Gotchas

You can create a read-only property by defining a PropertyGet procedure without a corresponding PropertyLet or
PropertySet procedure.

If the value of the property is an object, be sure to use the Set keyword when the Property Get procedure is
called. For example:

Property Get Drive
 Set Drive = oDrive
End Property

You should protect the value of properties by defining a Private variable to hold the internal property value and
control the updating of the property by outside applications through the Property Let and Property Get statements,
as the following template describes:

Class Object
 'Class Module Declarations Section
 'private data member only accessible from within
 'this code module
 Private miMyProperty

 Public Property Let MyProperty(iVal)
 'procedure to allow the outside world to
 'change the value of private data member
 miMyProperty = iVal
 '(do not use a Property Let when creating a
 'Read-Only Property)
 End Property

 Public Property Get MyProperty() As Integer
 'procedure to allow the outside world to
 'read the value of private data member
 MyProperty = miMyProperty
 End Property
End Class

Otherwise, if the variable used to store a property value is public, its value can be modified arbitrarily by any
application that accesses the class containing the property.

Using a Property Let procedure rather than allowing the user to access a class variable directly allows you to
perform validation on incoming data. For example, the following code insures that the value assigned to the Age
property is a number that is between 0 and 110:

Class Person
 Private iAge

 Property Get Age
 Age = iAge
 End Property
 Property Let Age(value)
 ' Check that data is numeric
 If Not IsNumeric(value) Then
 Err.Raise 13 ' Type mismatch error
 Exit Property
 ' Check that number is in range
 ElseIf value < 0 Or value > 110 Then
 Err.Raise 1031 ' Invalid number error
 End If

 iAge = value
 End Property
End Class

The default method of passing a parameter is ByRef, which means that any modifications made to a variable
passed as an argument to the Property Get statement are reflected in the variable's value when control returns
to the calling routine. If this behavior is undesirable, explicitly pass parameters by value using the ByVal
keyword in arglist.

You can use only the property defined by the Property Get statement on the right side of a property assignment.

VBA/VBScript Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA/VBScript Differences

VBScript allows you to designate a particular PropertyGet procedure as the default member of its class. As of
Version 6.0, VBA does not.

VBA supports Friend property procedures as well as public and private ones. VBScript supports only public and
private property procedures.

VBA supports the Static keyword in the property declaration, which preserves the value of all local variables
between calls to the PropertyGet procedure. VBScript does not have an Optional keyword to support optional
arguments. "Optional arguments" in VBScript are supported only by omitting arguments to a procedure call.
VBScript provides no way of assigning default values to optional arguments.

VBA supports optional parameters and allows them to be assigned a default value. VBScript does not support
optional arguments.

See Also

Property Let Statement, Property Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Property Let Statement

Syntax

[Public | Private Property Let name ([arglist,] value)
 [statements]
 [Exit Property]
 [statements]
End Property

Public

Use: Optional

Type: Keyword

Makes the property visible outside of the class, giving it visibility through all procedures in all scripts. Public and
Private are mutually exclusive.

Private

Use: Optional

Type: Keyword

Restricts the visibility of the property to those procedures within the same Class...End Class code block. Private
and Public are mutually exclusive.

name

Use: Required

The name of the property.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the property as arguments from the calling procedure.

value

Use: Required

Data Type: Any

The last (or only) argument in arglist; a variable containing the value to be assigned to the property.

statements

Use: Optional

Program code to be executed within the property.

arglist uses the following syntax:

[ByVal | ByRef] varname[()]

ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, a local copy of the variable is assigned the value of the argument.

ByRef

Use: Optional

Type: Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the argument being
passed. All changes made to the local variable are reflected in the calling argument when control returns to the
calling procedure. ByRef is the default method of passing variables.

varname

Use: Required

The name of the local variable containing either the reference or value of the argument.

Description

Declares the name, arguments, and code for a procedure that assigns a value to a property. The Property Let statement
is used within a class defined by the Class...End Class construct.

Rules at a Glance

A Property Let statement must contain at least one argument in arglist. If there is more than one argument, the
last one contains the value to be assigned to the property. (This is the argument indicated as value in the
prototype for the Property Let statement.)

The last argument in arglist should correspond to both the private data member (at least, it should be defined as
Private; see the first comment in the "Programming Tips and Gotchas" section) used to hold the property value
and the return value of the corresponding Property Get procedure, if there is one.

Property procedures are Public by default.

Unlike other functions and procedures, the name of the Property Let procedure can be repeated within the same
module as the name of the Property Get and Property Set procedures.

The number of the arguments passed to a Property Let statement must match the corresponding Property Get
statement. For details, see the section "Rules at a Glance" in the entry for Property Get.

If an Exit Property statement is executed, program flow continues with the statement following the call to the
property. Any number of Exit Property statements can appear in a Property Let procedure.

Programming Tips and Gotchas

You should protect the values of properties by defining a Private variable to hold the internal property value and
control the updating of the property by outside applications via Property Let and Property Get statements, as
described in the "Programming Tips and Gotchas" section of the Property Get statement.

You can create a write-only property by defining a Property Let procedure without a corresponding Property Get
procedure. Write-only properties, however, are comparatively rare, and are used primarily to prevent access to
sensitive information such as passwords.

The default method of passing parameters is ByRef, which means that any modifications made to a variable
passed as an argument to the Property Let statement are reflected in the variable's value when control returns to
the calling routine. If this behavior is undesirable, explicitly pass arguments by value using the ByVal keyword in
arglist.

You can use the property defined by the Property Let statement only on the left side of a property assignment.

VBA/VBScript Differences

VBA supports Friend property procedures as well as public and private ones. VBScript supports only public and
private property procedures.

VBA supports the Static keyword in the property declaration, which preserves the value of all local variables
between calls to the Property Let procedure. VBScript does not have an Optional keyword to support optional
arguments. "Optional arguments" in VBScript are supported only by omitting arguments to a procedure call.
VBScript provides no way of assigning default values to optional arguments.

VBA supports optional parameters and allows them to be assigned a default value. VBScript does not support
optional arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Property Get Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Property Set Statement

Syntax

[Public | Private Property Set name ([arglist,] reference)
 [statements]
 [Exit Property]
 [statements]
End Property

Public

Use: Optional

Type: Keyword

Makes the property accessible from outside the class, so that it is visible to all procedures in all scripts. Public
and Private are mutually exclusive.

Private

Use: Optional

Type: Keyword

Restricts the scope of the property to code within the Class...End Class construct in which the property is
declared. Public and Private are mutually exclusive.

name

Use: Required

The name of the property.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the property as arguments from the calling procedure.

reference

Use: Required

Data Type: Object

The last (or only) argument in arglist, it must be a variable containing the object reference to be assigned to the
property.

statements

Use: Optional

Program code to be executed within the property.

arglist uses the following syntax and parts:

[ByVal | ByRef] varname[()] _

ByVal

Use: Optional

Type: Keyword

The argument is passed by value; that is, a local copy of the variable is assigned the value of the argument.

ByRef

Use: Optional

Type: Keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the argument being
passed. All changes made to the local variable are reflected in the calling argument when control returns to the
calling procedure. ByRef is the default method of passing variables.

varname

Use: Required

Data Type: Any

The name of the local variable containing either the reference or value of the argument.

Description

Declares the name, arguments, and code for a procedure that assigns an object reference to a property. The Property
Set statement is used within a class defined by the Class...End Class construct.

Rules at a Glance

A Property Set statement must contain at least one argument in arglist. (This is the argument indicated as
reference in the statement's prototype.) If there is more than one argument, it's the last one that contains the
object reference to be assigned to the property.

The last argument in arglist must match both the private data member used to hold the property value and the
data returned by the corresponding Property Get procedure, if there is one.

Property procedures are Public by default.

Unlike other variables and procedures, the name of a Property Set procedure can be repeated within the same
module as the name of a Property Get procedure.

The number of arguments passed to a Property Set statement must match the corresponding Property Get
statement. For example:

Public Property Set MyProperty(iVal, oVal)
 Set miMyProperty(iVal) = oVal
End Property

Public Property Get MyProperty(iVal)
 Set MyProperty = miMyProperty(iVal)
End Property

Both the Property Set and the Property Get procedures share a common argument, iVal. The Property Set procedure
has one additional argument, oVal, which represents the object that is to be assigned to the MyProperty
property.

If an Exit Property statement is executed, program execution immediately continues with the statement following
the call to the property. Any number of Exit Property statements can appear in a Property Set procedure.

Programming Tips and Gotchas

You should protect the values of properties by defining a Private variable to hold the internal property value and
control the updating of the property by outside applications via Property Set and Property Get statements, as
described in the "Programming Tips and Gotchas" section of the entry for the Property Get statement.

The default method of passing parameters is ByRef, which means that any modifications made to a variable
passed as an argument to the Property Set statement are reflected in the variable's value when control returns to
the calling routine. If this behavior is undesirable, explicitly pass arguments by value using the ByVal keyword in
arglist.

The property defined by the Property Set statement can occur only on the left side of a statement that assigns an
object reference.

VBA/VBScript Differences

VBA supports Friend property procedures as well as public and private ones. VBScript supports only public and
private property procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private property procedures.

VBA supports the Static keyword in the property declaration, which preserves the value of all local variables
between calls to the Property Set procedure. VBScript does not have an Optional keyword to support optional
arguments. "Optional arguments" in VBScript are supported only by omitting arguments to a procedure call.
VBScript provides no way of assigning default values to optional arguments.

VBA supports optional parameters and allows them to be assigned a default value. VBScript does not support
optional arguments.

See Also

Property Get Statement, Property Let Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Public Statement

Syntax

Public varname[([subscripts])] _
 varname[([subscripts])]

varname

Use: Required

Data Type: Any

The name of the variable, which must follow VBScript naming conventions (see the second bullet in "Rules at a
Glance").

subscripts

Use: Optional

Data Type: Integer or Long

Denotes varname as an array and optionally specifies the dimensions and number of elements of the array.

Description

Used in a script or a Class block to declare a public variable and allocate the relevant storage space in memory. A Public
variable has global scope—that is, it can be used by all procedures in a script. When used in a class construct, it is
visible outside the class project.

Rules at a Glance

The behavior of a Public variable depends on where it's declared, as the following table shows:

Variable declared in... Scope

Any procedure, Function or Property
statement Illegal; generates a syntax error; use the Dim statement instead.

Global code Variable is available throughout the script.

Class block declarations section Variable is available as a property of the class to all code within the
script.

You can override standard variable naming conventions by placing your variable name in brackets. This allows
you to use reserved words or illegal characters in variable names. For example:

Public [me]
Public [1Var]
Public [2-Var]

varname follows standard VB naming conventions. It must begin with an alphabetic character, can't contain
embedded periods or spaces, can't be the same as a VBScript reserved word, must be shorter than 255
characters, and must be unique within its scope.

The subscripts argument has the following syntax:

upperbound [, upperbound]

Using the subscripts argument, you can declare up to 60 dimensions for the array.

If the subscripts argument isn't used (i.e., the variable name is followed by empty parentheses), the array is
declared as dynamic. You can change both the number of dimensions and number of elements of a dynamic
array using the ReDim statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array using the ReDim statement.

All variables are variants. The following table shows the values held by each type of variant when it is first
initialized:

Data type Initial value Example

Array Variant() Public arrNames(10)

Array Element Empty arr(0)

Scalar Variable Empty Public vCtr

Programming Tips and Gotchas

The precise meaning of a public variable is defined by the host environment. In Internet Explorer, a variable
defined as public in a script block is visible in all other script blocks on the page, including those written in
JScript.

Instead of declaring a variable as Public within a class construct, you should create Property Let and Property Get
procedures that assign and retrieve the value of a private variable, respectively.

You cannot change the dimensions of arrays that were not defined to be dynamic arrays.

It's good programming practice to always use Option Explicit at the beginning of a module to prevent misnamed
variables causing hard-to-find errors.

VBA/VBScript Differences

In VBA, you can explicitly define the lower bound of an array in the subscripts argument. In VBScript, this is not
permitted; the lower bound of all arrays is always 0.

VBA supports the WithEvents keyword to allow an object variable to receive notification of the events fired by the
object to which it refers. VBScript, however, does not support the WithEvents keyword. Note, though, that some
scriptable applications (such as Windows Script Host, Internet Explorer, and Active Server Pages) do expose
their events to scripts.

VBA supports the New keyword to create early bound objects. However, since scripting languages necessarily
rely on late binding, the New keyword is not supported in a variable declaration statement.

See Also

Private Statement, ReDim Statement, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Randomize Sub

Syntax

Randomize [number]

number

Use: Optional

Data Type: Numeric

Any valid numeric expression.

Description

Initializes the random number generator.

Rules at a Glance

Randomize uses number as a new seed value to initialize the random number generator used by the Rnd
function. The seed value is an initial value that generates a sequence of pseudorandom numbers.

If you don't pass number to the Randomize statement, the value of the system timer is used as the new seed
value.

Repeatedly passing the same number to Randomize doesn't cause Rnd to repeat the same sequence of random
numbers.

If Randomize is not used and the Rnd function is called either with no argument or with 1 as an argument, the
Rnd function always uses the same number as the seed value the first time it is called, and subsequently uses
the last generated number as a seed value.

Programming Tips and Gotchas

If you need to repeat a sequence of random numbers, you should call the Rnd function with a negative number as an
argument immediately prior to using Randomize with any numeric argument. This is illustrated in the example program.

Example

RepeatNumbers()

Sub RepeatNumbers()
 Dim arr(9, 3)
 Dim loopCtr, intCtr
 Dim strMsg

 For loopCtr = 0 To 3
 Rnd -1
 Randomize(100)
 For intCtr = 0 To 9
 strMsg = strMsg & Rnd() & " "
 Next
 strMsg = strMsg & vbCrLf
 Next

 MsgBox strMsg
End Sub

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Rnd Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ReDim Statement

Syntax

ReDim [Preserve] varname(subscripts)_
 [, varname(subscripts)] ...

Preserve

Use: Optional

Type: Keyword

Preserves the data within an array when changing its single or its last dimension.

varname

Use: Required

Data Type: Any

Name of the variable.

subscripts

Use: Required

Number of elements and dimensions of the array, using the following syntax:

upper [, upper] . . .

where upper is the upper bound of a particular array dimension.

Description

Used within a procedure to resize and reallocate storage space for a dynamic array.

Rules at a Glance

A dynamic array is created using a Private, Public, or Dim statement with empty parentheses. Only dynamic
arrays created in this manner can be resized using the ReDim statement. There is no limit to the number of
times you can redimension a dynamic array.

Use of the Preserve keyword allows you to retain the current values within the array, but it also places several
limitations on how the Redim statement can be used:

Only the last dimension of an array can be resized.

The number of dimensions can't be changed.

Only the upper bound of the array can be changed.

If you reduce either the number of elements of the array or the number of dimensions in the array, data in the
removed elements is permanently lost, irrespective of the use of the Preserve keyword.

Programming Tips and Gotchas

You can pass an array by reference to a procedure, redimension it within the procedure, and return the
modified array to the calling program. This is illustrated in the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modified array to the calling program. This is illustrated in the following code:

CreateArray()

Private Sub CreateArray()

 Dim strArray(), strElement, strMsg
 Dim intCtr

 ReDim strArray(9)

 For intCtr = 0 To UBound(strArray)
 strArray(intCtr) = "Original element"
 Next

 ExpandArray strArray

 For intCtr = 0 To UBound(strArray)
 strMsg = strMsg & strArray(intCtr) & vbCrLf
 Next

 MsgBox strMsg

End Sub

Private Sub ExpandArray(ByRef arrDynamic())

 Dim intBound, intCtr

 intBound = UBound(arrDynamic)

 ReDim Preserve arrDynamic(UBound(arrDynamic) * 2)

 For intCtr = intBound + 1 To UBound(arrDynamic)
 arrDynamic(intCtr) = "New element"
 Next

End Sub

When you run this example, both the original elements and new elements are listed in a message box, proving
that the array was successfully expanded in the ExpandArray procedure.

It's possible to create a new dynamic array within a procedure using the ReDim statement if the array to which it
refers doesn't already exist. Typically, this results from an error of omission; the programmer forgets to
explicitly define the array using Dim, Public, or Private. Since this method of creating an array can cause conflicts
if a variable or array of the same name is subsequently defined explicitly, ReDim should be used only to
redimension an existing array, not to define a new one.

When a dynamic array is initialized, its individual elements are Empty. You can determine whether a value has
been assigned to a particular element by using the IsEmpty function.

VBA/VBScript Differences

VBA allows you to define the lower limit of a redimensioned array as well as its upper limit. Arrays in VBScript, on the
other hand, are always zero-based.

See Also

Dim Statement, Private Statement, Public Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp Object

Description

The RegExp object provides support for regular expression matching—for the ability to search strings for substrings
matching general or specific patterns.

In order to conduct a pattern search, you must first instantiate the regular expression object, with code like the
following:

Dim oRegExp ' Instance of RegExp object
Set oRegExp = New RegExp

To conduct a search using the RegExp object, do the following:

Determine whether the search should be case-sensitive.

Determine whether all instances or just the first instance of the substring should be returned.

Supply the pattern string that you want to find.

Provide a string that the RegExp object is to search.

The RegExp object allows you to search for a substring that matches your pattern string in any of three ways:

You can determine whether a pattern match is found in the string.

You can return one or all of the occurrences of the matching substrings. In this case, results are returned in
Match objects within the Matches collection.

You can replace all substrings matching the pattern string with another string.

Properties

The RegExp object supports the three properties shown in the following table. Each is documented in depth in its own
section in the Language Reference.

Property name Description

Global Indicates whether to search for all occurrences of the pattern string or just for the first one

IgnoreCase Indicates whether the pattern search is case-sensitive

Pattern Indicates the pattern string to search for

Methods

The RegExp object supports the three methods shown in the following table. Each is documented in depth in its own
section in the Language Reference.

Method
name Description

Execute Returns a Matches collection containing information about the substrings in a larger string that match a
pattern string

Replace Replaces all substrings in a larger string that match a pattern string with a second string

Test Indicates whether the search of a string has succeeded in finding a pattern match

VBA/VBScript Differences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA/VBScript Differences

The RegExp object, which was introduced to give VBScript comparable features to JScript, is exclusive to VBScript; it
does not exist as a core part of the VBA language. However, the RegExp object is implemented as a member of the
VBScript.dll library and can be added to any Visual Basic project. It is listed in the References dialog (which is available
by selecting the References option from the Visual Basic Project menu) as "Microsoft VBScript Regular Expressions."

See Also

InStr, InStrB Functions, InstrRev Function, Match Object, Matches Collection Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.Execute Method

Syntax

RegExp.Execute(string)

string

Use: Required

Data Type: String

The string to be searched.

Return Value

A Matches collection containing one or more Match objects.

Description

Performs a regular expression search against string and returns the results in the Matches collection.

Rules at a Glance

The method searches string using the RegExp object's Pattern property.

The results are returned in the Matches collection, which is a collection of Match objects.

If the search finds no matches, the Matches collection is empty.

Programming Tips and Gotchas

Remember to use the Set statement to assign the Matches collection returned by the Execute method to an
object variable.

You can determine whether the Matches collection returned by the Execute method is empty by examining its
Count property. It is empty if the value of Count is 0.

Example

See the example for the RegExp.Pattern Property.

See Also

Matches Collection Object, RegExp.Pattern Property, RegExp.Replace Method, RegExp.Test Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.Global Property

Data Type

Boolean

Description

Determines whether the search for a pattern string should match all occurrences in the search string or just the first
one.

Rules at a Glance

A search will attempt to locate only the first occurrence of the pattern string in a search string; that is, the default value
of the Global property is False. If you want to search for all occurrences of the pattern string in the search string, you
must set the Global property to True.

Programming Tips and Gotchas

If you're interested only in determining whether the pattern string exists in the search string, there's no point in
overriding the Global property's default value of False.

See Also

Matches Collection Object, Match Object, RegExp Object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.IgnoreCase Property

Data Type

Boolean

Description

Determines whether the search for a pattern string is case-sensitive.

Rules at a Glance

By default, regular expression searches are case-sensitive; that is, the default value of the IgnoreCase property is False.
If you don't want the search to be case-sensitive, you must set the IgnoreCase property to True.

Programming Tips and Gotchas

If your search string does not attempt to match any alphabetic characters (A-Z and a-z), you can safely ignore the
setting of IgnoreCase, since it won't affect the results of your search.

See Also

RegExp Object, RegExp.Pattern Property

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.Pattern Property

Data Type

String

Description

Contains a pattern string that defines the substring to be found in a search string.

Rules at a Glance

The following table defines the meaning of the individual characters that can be included in the pattern string. The table
in the "Programming Tips and Gotchas" section lists a pattern string using each symbol and shows the results returned
by the Execute method.

Symbol Description

\

Marks the next character as either a special character (such as \n for the newline character) or as a literal
(if that character otherwise has special meaning in a pattern search string). The special characters are:

\f

form feed character

\n

newline character

\r

carriage return character

\t

tab character

\v

vertical tab character

^ Matches the beginning of input.

$ Matches the end of input.

* Matches the preceding atom zero or more times.

+ Matches the preceding atom one or more times.

? Matches the preceding atom zero or one time.

. Matches any single character except a newline character.

()

Defines a subexpression within the larger subexpression. A subexpression:

Overrides the order of precedence used in evaluating pattern strings.

Can be referenced again in the pattern string. To insert the result of the subexpression later in the
pattern string, reference it by its one-based ordinal position among subexpressions, preceded by
the backslash symbol (e.g., \1). See the example using the \num syntax in the "Programming Tips
and Gotchas" section.

Can be referenced again in the replacement string in calls to the RegExp.Replace method. To use
the result of the original subexpression as a replacement string, reference its one-based ordinal
position among subexpressions, preceded by a dollar sign (e.g., $1). See RegExp.Replace Method
for an example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x|y Matches either x or y.

{n} Matches exactly n times, where n is a nonnegative integer.

{n,} Matches at least n times, where n is a nonnegative integer. o{1,} is the same as o+, and o{0,} is the same as
o*.

{n,m} Matches at least n and at most m times, where m and n are nonnegative integers. o{0,1} is the same as o?.

[abc] Matches any one of the enclosed characters (represented by abc) in the character set.

[^xyz] Matches any character (represented by xyz) not enclosed in the character set. For example, [^abc] matches
the "p" in "plain."

[a-z] Matches any character in a range of characters (represented by a-z).

[^m-z] Matches any character not included in a range of characters (represented by m-z).

\b Matches a word boundary; that is, the position between a word and a space. The word boundary symbol
does not include newline characters or the end of input (see the \s symbol).

\B Matches a nonword boundary. ea*r\B matches the "ear" in "never early."

\d Matches a digit character. Equivalent to [0-9].

\D Matches a nondigit character. Equivalent to [^0-9].

\s Matches any whitespace, including space, tab, form-feed, etc. Equivalent to [\f\n\r\t\v].

\S Matches any nonwhitespace character. Equivalent to [^ \f\n\r\t\v].

\w Matches any word character including underscore. Equivalent to [A-Za-z0-9_].

\W Matches any nonword character, including whitespace and carriage returns. Equivalent to [^A-Za-z0-9_].

\num Matches the subexpression (enclosed in parentheses) whose ordinal position in the pattern is num, where
num is a positive integer.

\n Matches n, where n is the octal value of an ASCII code. Octal escape values must be 1, 2, or 3 digits long
and must not exceed 256; if they do, only the first two digits are used.

\xn Matches n, where n is the hexadecimal value of an ASCII code. Hexadecimal escape values must be two
digits long.

Programming Tips and Gotchas

The following table shows a search string and the Value property of each Match object returned by the Execute method
when the string:

"To be or not to be. That is the question." & vbCrLf & _
"Whether 'tis nobler in the mind to endure..."

is passed to the Execute method. The RegExp object's Global property is set to True, and its IgnoreCase property is set
to True.

Pattern Matches

\n..... Wheth

^..... To be

.....$ re...

no* no, n, no, n, n, n (6 matches)

no+ no, no (2 matches)

bo*e? be, be, b (3 matches)

qu... quest

th(at|e) That, the, the, the (4 matches)

to|i To, to, i, i, i, i, i, to (8 matches)

\.{3} ...

\.{2,} ...

\.{1,3) ., ., ... (3 matches)

i[nst] is, is, in, in (4 matches)

[^bhm]e ue, le, e, re (4 matches)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[^bhm]e ue, le, e, re (4 matches)

[r-z]o To, to, to (3 matches)

[^o-z]o o, no, io, no (4 matches)

.o\b To, to, to (3 matches)

.o\B o, no, io, no (4 matches)

\d (0 matches)

\D\.\b e., n. (2 matches)

...\s be, not, be., hat, the, on., her, tis, ler, the, ind (11 matches)

\b\S{3}\b not, the, tis, the (3 matches)

\w{3}\.\s ion.

\W{3} . (vbCrLf), ... (2 matches)

(\S+)(\s+)\S+\2\S+\2\S+\2 To be or not, to be. That is, Whether `tis nobler in (3 matches)

\164\157 To, to, to (3 matches)

\x74\x6f To, to, to (3 matches)

Searches using regular expressions can be quite complex. If you're interested in a book that deals exclusively with
regular expressions and pattern searches, see Mastering Regular Expressions, written by Jeffrey E. Friedl (O'Reilly).

Example

The following routine allows you to experiment with searches using regular expressions. When you call it, just pass the
string you'd like to search. A dialog appears repeatedly, prompting you for a pattern string, followed by another dialog
that displays the results of the search using the regular expression you've entered. When you're finished, simply click
the Cancel button to exit the routine:

Public Sub SearchExp(strSearch)

Dim oRegExp, colMatches, oMatch
Dim strPattern

Set oRegExp = New RegExp

oRegExp.Global = True
oRegExp.IgnoreCase = True

Do

 strPattern = InputBox("Enter pattern string: ", "Pattern", "")
 if strPattern = "" then
 Exit Do
 Else
 oRegExp.Pattern = strPattern
 end If
 strMsg = "Pattern: " & oRegExp.Pattern

 Set colMatches = oRegExp.Execute(strSearch)
 strMsg = strMsg & ", Matches: " & colMatches.Count & vbcrlf & vbcrlf
 if colMatches.Count > 0 Then
 for each oMatch in colMatches
 strMsg = strMsg & oMatch.Value & vbCrLf
 next
 Else
 strMsg = strMsg & "No match found"
 End If

 MsgBox strMsg

Loop

End Sub

See Also

RegExp Object, RegExp.Execute Method, RegExp.Replace Method, RegExp.Test Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.Replace Method

Syntax

RegExp.Replace(searchString, replaceString)

searchString

Use: Required

Data Type: String

The string to be searched.

replaceString

Use: Required

Data Type: String

The replacement string.

Return Value

A String containing the entire string that results when matched substrings in searchString are replaced with replaceString.

Description

Performs a regular expression search against searchString and replaces matched substrings with replaceString.

Rules at a Glance

The method searches searchString using the RegExp object's Pattern property.

If no matches are found, the method returns searchString unchanged.

Programming Tips and Gotchas

replaceString the replacement string, can contain pattern strings that control how substrings in searchString should be
replaced.

Example

The following WSH code illustrates the use of subexpressions in the search and replacement strings. The search returns
three subexpressions: "to be", "or", and "not to be". The first subexpression is replaced with the third, while the third
subexpression is replaced with the first, resulting in the string "not to be or to be":

Dim strString, strPattern, strReplace, strResult
Dim oRegExp

strString = "to be or not to be "
strPattern = "(\S+\s+\S+\s+)(\S+\s+)(\S+\s+\S+\s+\S+\s+)"
strReplace = "$3$2$1"

Set oRegExp = New RegExp
oRegExp.Pattern = strPattern

strResult = oRegExp.Replace(strString, strReplace)
If strResult = strString Then
 MsgBox "No replacements were made"
Else
 MsgBox strResult
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

See Also

RegExp.Execute Method, RegExp.Pattern Property, RegExp.Test Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RegExp.Test Method

Syntax

RegExp.Test(string)

string

Use: Required

Data Type: String

The string to be searched.

Return Value

A Boolean indicating whether a match was found.

Description

Performs a regular expression search against string and indicates whether a match was found

Rules at a Glance

Prior to calling the Test method, the search string should be defined by setting the Pattern property.

The method searches string using the RegExp object's Pattern property.

The method returns True if the search succeeds and False otherwise.

Programming Tips and Gotchas

Since a search is successful if one match is found, you do not have to set the RegExp object's Global property
before calling the Test method.

You can use the method to determine whether a match exists before calling either the Execute or the Replace
methods.

See Also

RegExp.Execute Method, RegExp.Pattern Property, RegExp.Replace Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Rem Statement

Syntax

Rem comment
' comment

comment

Use: Optional

A textual comment to place within the code.

Description

Use the Rem statement or an apostrophe (') to place remarks within the code.

Rules at a Glance

Apostrophes held within quotation marks aren't treated as comment markers, as this code snippet shows:

myVar = "'Something'"

VBA/VBScript Differences

In VBA, if you use the Rem statement (but not the apostrophe) on the same line as program code, a colon is
required after the program code and before the Rem statement. For example:

Set objDoc = Server.CreateObject("MyApp.MyObj") : Rem Define the object
 Rem reference

VBScript, on the other hand, successfully recognizes the Rem statement even without the colon.

In VBA using the VBA editor, if you "comment out" a line, that line and all of its line continuations are affected.
In VBScript, the comment keyword or symbol must be added to each line to be "commented out."

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Replace Function

Syntax

Replace(string, stringToReplace, replacementString [, start[, count[,
compare]]])

string

Use: Required

Data Type: String

The complete string containing the substring to be replaced.

stringToReplace

Use: Required

Data Type: String

The substring to be found by the function.

replacementString

Use: Required

Data Type: String

The new substring to replace stringToReplace in string.

start

Use: Optional

Data Type: Long

The character position in string at which the search for stringToReplace begins.

count

Use: Optional

Data Type: Long

The number of instances of stringToReplace to replace.

compare

Use: Optional

Data Type: Integer

The method that compares stringToReplace with string ; its value can be vbBinaryCompare or vbTextCompare.

Return Value

The return value from Replace depends on the parameters you specify in the argument list, as the following table
shows:

If Return value

string = "" Zero-length string ("")

string is Null An error

StringToReplace = "" Copy of string

replacementString = "" Copy of string with all instances of stringToReplace removed

start > Len(string) Zero-length string ("")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

count = 0 Copy of string

Description

Replaces a given number of instances of a specified substring in another string.

Rules at a Glance

If start is omitted, the search begins at the start of the string.

If count is omitted, its value defaults to -1, which means that all instances of the substring after start are
replaced.

vbBinaryCompare is case-sensitive; that is, Replace matches both character and case, whereas vbTextCompare is
case-insensitive, matching only character, regardless of case.

The default value for compare is vbBinaryCompare.

start not only specifies where the search for stringToReplace begins, but also where the new string returned by
the Replace function commences.

Programming Tips and Gotchas

If count isn't used, be careful when replacing short strings that may form parts of unrelated words. For example,
consider the following:

Dim sString
sString = "You have to be careful when you do this " _
 & "or you could ruin your string"
Msgbox Replace(sString, "you", "we")

Because we don't specify a value for count, the call to Replace replaces every occurrence of "you" in the original
string with "we." But the fourth occurrence of "you" is part of the word "your," which is modified to become
"wer."

The best way to avoid this problem is to use regular expressions. By specifying the word-break pattern in your
search criterion, you can insure that only whole words are matched. For example:

strSearch = "You have to be careful when you do this " _
 & "or you could ruin your string for you."

oRegExp.Pattern = "you·"
str = oRegExp.Replace(strSearch, "we")

MsgBox str

You must also be aware that if start is greater than 1, the returned string starts at that character and not at the
first character of the original string, as you might expect. For example, given the statements:

sOld = "This string checks the Replace function"
sNew = Replace(sOld, "check", "test", 5, _
 vbTextCompare)
sNew will contain the value:
"string tests the Replace function"

See Also

InStr, InStrB Functions, Mid, MidB Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RGB Function

Syntax

RGB(red, green, blue)

red

Use: Required

Data Type: Integer

A number between 0 and 255, inclusive.

green

Use: Required

Data Type: Integer

A number between 0 and 255, inclusive.

blue

Use: Required

Data Type: Integer

A number between 0 and 255, inclusive.

Return Value

A Long integer representing the RGB color value.

Description

Returns a system color code that can be assigned to object color properties.

Rules at a Glance

The RGB color value represents the relative intensity of the red, green, and blue components of a pixel that
produces a specific color on the display.

The RGB function assumes any argument greater than 255 is 255.

The following table demonstrates how the individual color values combine to create certain colors:

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Red 255 0 0

White 255 255 255

Programming Tips and Gotchas

The RGB value is derived with the following formula:

RGB = red + (green * 256) + (blue * 65536)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RGB = red + (green * 256) + (blue * 65536)

In other words, the individual color components are stored in the opposite order one would expect. VBScript
stores the red color component in the low-order byte of the long integer's low-order word, the green color in
the high-order byte of the low-order word, and the blue color in the low-order byte of the high-order word.

VBScript has a wide range of intrinsic color constants that can assign color values directly to color properties of
objects. For a list of these, see Appendix B.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Right, RightB Functions

Syntax

Right(string, length)

string

Use: Required

Data Type: String

The string to be processed.

length

Use: Required

Data Type: Long

The number of characters to return from the right of the string.

Return Value

A String.

Description

Returns a string containing the right-most length characters of string.

Rules at a Glance

If length is 0, a zero-length string (" ") is returned.

If length is greater than the length of string, string is returned.

If length is less than zero or is Null, an error is generated.

If string contains a Null, Right returns Null.

Example

The following function assumes it's passed either a filename or a complete path and filename, and returns the filename
from the end of the string:

Private Function ParseFileName(strFullPath)

Dim lngPos, lngStart
Dim strFilename

lngStart = 1
Do
 lngPos = InStr(lngStart, strFullPath, "\")
 If lngPos = 0 Then
 strFilename = Right(strFullPath, Len(strFullPath) - lngStart + 1)
 Else
 lngStart = lngPos + 1
 End If
Loop While lngPos > 0

ParseFileName = strFilename

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Function

Programming Tips and Gotchas

Use the Len function to determine the total length of string.

When you use the RightB function with byte data, length specifies the number of bytes to return.

VB/VBA Differences

Because VBScript doesn't support strong typing, it does not support the Right$ and RightB$ functions, which explicitly
return a data type.

See Also

Len, LenB Functions, Left, LeftB Functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Rnd Function

Syntax

Rnd[(seed)]

seed

Use: Optional

Data Type: Single

Any valid numeric expression.

Return Value

A random number of variant type Single.

Description

Returns a random number.

Rules at a Glance

The behavior of the Rnd function is determined by seed, as described in this table:

Number Rnd generates...

< 0 The same number each time, using seed as the seed number

> 0 The next random number in the current sequence

0 The most recently generated number

Not supplied The next random number in the current sequence

The Rnd function always returns a value between and 1.

If number isn't supplied, the Rnd function uses the last number generated as the seed for the next generated
number. This means that given an initial seed (seed), the same sequence is generated if number isn't supplied
on subsequent calls.

Example

The following example uses the Randomize statement along with the Rnd function to fill 100 cells of an Excel worksheet
with random numbers:

Public Sub GenerateRandomNumbers()

Dim objExcel, objBook, objSheet
Dim intRow, intCol

' Start Excel
Set objExcel = CreateObject("Excel.Application")

' Get or create active worksheet
If objExcel.ActiveSheet Is Nothing Then
 Set objBook = objExcel.Workbooks.Add
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If
Set objSheet = objExcel.ActiveWorkbook.ActiveSheet
Randomize

' make Excel visible
objExcel.Visible = True
' Set the color of the input text to blue
objSheet.Cells.Font.ColorIndex = 5
' Loop through first 10 rows & columns,
' filling them with random numbers
For intRow = 1 To 10
 For intCol = 1 To 10
 objSheet.Cells(intRow, intCol).Value = Rnd
 Next
Next
' Resize columns to accommodate random numbers
objSheet.Columns("A:C").AutoFit

End Sub

Programming Tips and Gotchas

Before calling the Rnd function, you should use the Randomize statement to initialize the random number
generator.

The standard formula for producing numbers in a given range is as follows:

Int((highest - lowest + 1) * Rnd + lowest)

where lowest is the lowest required number in the range, and highest is the highest.

See Also

Randomize Sub

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Round Function

Syntax

Round(expression[, numdecimalplaces])

expression

Use: Required

Data Type: Numeric

Any numeric expression.

numdecimalplaces

Use: Optional

Data Type: Long

The number of places to include after the decimal point.

Return Value

The same data type as expression.

Description

Rounds a given number to a specified number of decimal places.

Rules at a Glance

numdecimalplaces can be any whole number between 0 and 16.

Round follows standard rules for rounding:

If the digit in the position to the right of numdecimalplaces is greater than 5, the digit in the
numdecimalplaces position is incremented by one.

If the digit in the position to the right of numdecimalplaces is less than 5, the digits to the right of
numdecimalplaces are dropped.

If the digit in the position to the right of numdecimalplaces is 5 and the digit in the numdecimalplaces
position is odd, the digit in the numdecimalplaces position is incremented by one.

If the digit in the position to the right of numdecimalplaces is 5 and the digit in the numdecimalplaces
position is even, the digits to the right of numdecimalplaces are dropped.

Programming Tips and Gotchas

If expression is a string representation of a numeric value, Round converts it to a numeric value before rounding.
However, if expression isn't a string representation of a number, Round generates runtime error 13, "Type mismatch."
The IsNumeric function insures that expression is a proper numeric representation before calling Round.

See Also

Fix Function, Int Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

RTrim Function

Syntax

RTrim(stringexp)

stringexp

Use: Required

Data Type: String

A valid string expression.

Return Value

A String.

Description

Removes any trailing spaces from stringexp.

Rules at a Glance

If stringexp contains a Null, RTrim returns Null.

Programming Tips and Gotchas

Unless you need to keep leading spaces, you should use the Trim function, which is the equivalent of
RTrim(LTrim(string)), thereby clearing both leading and trailing spaces in a single function call.

VB/VBA Differences

Because it does not support strong typing, VBScript does not support the VBA RTrim$ function, which returns a strongly
typed string rather than a string variant.

See Also

LTrim Function, Trim Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScriptEngine Function

Syntax

ScriptEngine()

Return Value

A String.

Description

Indicates the scripting language currently in use.

Rules at a Glance

According to the documentation, the function returns the values shown in the following table:

Return value Description

JScript Microsoft JScript

VBA Visual Basic for Applications

VBScript VBScript

Programming Tips and Gotchas

The function is implemented in VBScript.dll, as well as in JScript.dll. However, it is not implemented in the VB Version 6
runtime libraries. Calls to this function from VBA code will generate an error rather than return the string "VBA".

VBA/VBScript Differences

This function is not supported in VBA.

See Also

ScriptEngineBuildVersion Function, ScriptEngineMajorVersion Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScriptEngineBuildVersion Function

Syntax

ScriptEngineBuildVersion()

Return Value

A Long.

Description

Returns the build number of the VBScript script engine.

Programming Tips and Gotchas

The function is also implemented in the JScript script engine.

VBA/VBScript Differences

This function is not supported in VBA.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScriptEngineMajorVersion Function

Syntax

ScriptEngineMajorVersion()

Return Value

A Long.

Description

Indicates the major version (1, 2, etc.) of the scripting language currently in use.

Rules at a Glance

The following table lists the versions of VBScript through 5.0, as well as the year in which they were released and the
products with which they were initially released:

Version Year Product

1.0 1996 Internet Explorer 3.0

2.0 1997 IIS 2.0

3.0 1998 Internet Explorer 4.0, IIS 4.0, WSH 1.0, Outlook 98

4.0 1998 Visual Studio 6.0

5.0 1999 Internet Explorer 5.0

5.5 2001 Internet Explorer 5.5

5.6 2002 Microsoft Visual Studio .NET

Programming Tips and Gotchas

The function is also implemented in the JScript script engine.

If your script requires some functionality available in a baseline version, ordinarily you want to make sure that
the script is running on that version or a later version. For instance, if your script requires regular expression
support, which became available only in VBScript Version 5, you would test for the version with a code fragment
like:

If ScriptingEngineMajorVersion >= 5 Then

You do not want to test for equality, as in:

If ScriptingEngineMajorVersion = 5 Then

since that may leave your script unable to run on versions of VBScript later than Version 5.

VBA/VBScript Differences

This function is not supported in VBA.

See Also

ScriptEngineBuildVersion Function, ScriptEngineMinorVersion Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ScriptEngineMinorVersion Function

Syntax

ScriptEngineMinorVersion()

Return Value

A Long.

Description

Indicates the minor version (the number to the right of the decimal point) of the scripting language engine currently in
use.

Programming Tips and Gotchas

The function is also implemented in the JScript script engine.

If your script requires some functionality available in a baseline minor version, you ordinarily would want to
make sure that the script is running on that version or a later version. Test for a minor version with a code
fragment like:

lMajor = ScriptingEngineMajorVersion
lMinor = ScriptingEngineMinorVersion
If (lMajor = 5 And lMinor >= 1) Or (lMajor > 5) Then

You should not test for equality, and you should never test for a minor version alone, without considering the
major version.

VBA/VBScript Differences

This function is not supported in VBA.

See Also

ScriptEngine Function, ScriptEngineBuildVersion Function, ScriptEngineMajorVersion Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Second Function

Syntax

Second(time)

time

Use: Required

Data Type: String, numeric, or date/time

Any valid expression that can represent a time value.

Return Value

An Integer in the range 0 to 59.

Description

Extracts the seconds from a given time expression.

Rules at a Glance

If the time expression time is Null, the Second function returns Null.

See Also

Hour Function, Minute Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Select Case Statement

Syntax

Select Case testexpression
 [Case expressionlist
 [statements-n]] ...
 [Case Else
 [elsestatements]]
End Select

testexpression

Use: Required

Data Type: Any

Any numeric or string expression whose value determines which block of code is executed.

expressionlist

Use: Required

Data Type: Any

Comma-delimited list of expressions to compare values with testexpression.

statements-n

Use: Optional

Program statements to execute if a match is found between any section of expressionlist and testexpression.

elsestatements

Use: Optional

Program statements to execute if a match between testexpression and any expressionlist can't be found.

Description

Allows for conditional execution of a block of code, typically out of three or more code blocks, based on some condition.
Use the Select Case statement as an alternative to complex nested If...Then...Else statements.

Rules at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testexpression and any part of expressionlist is found, the program statements following the
matched expressionlist are executed. When program execution encounters the next Case clause or the End Select
clause, execution continues with the statement immediately following the End Select clause.

Both expressionlist and testexpression must be a valid expression that can consist of one or more of the following:
a literal value, a variable, an arithmetic or comparison operator, or the value returned by an intrinsic or user-
defined function.

If used, the Case Else clause must be the last Case clause. Program execution encounters the Case Else clause—
and thereby executes, the elsestatements—only if all other expressionlist comparisons fail.

Select Case statements can also be nested, resulting in a successful match between testexpression and
expressionlist being another Select Case statement.

Example

The following example uses Select Case to read a variable populated by the user and determine the name of the user's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example uses Select Case to read a variable populated by the user and determine the name of the user's
operating system:

Dim varOS, varOSDesc

Select Case varOS
 Case 1
 varOSDesc = "Windows NT"
 Case 2
 varOSDesc = "Windows 98"
 Case 3
 varOSDesc = "Windows 95"
 Case 4
 varOSDesc = "Windows 3.11"
 Case 5
 varOSDesc = "Windows 2000"
 Case 6
 varOSDesc = "Windows ME"
 Case 7
 varOSDesc = "Windows XP"
 Case Else
 varOSDesc = "OS is unknown"
End Select

Programming Tips and Gotchas

The Select Case statement is the VBA/VBScript equivalent of the Switch construct found in C and C++.

The Case Else clause is optional. However, as with If...Then...Else statements, it's often good practice to provide a
Case Else to catch the exceptional instance when—perhaps unexpectedly—a match can't be found in any of the
expressionlists you have provided.

If testexpression satisfies more than one expressionlist comparison, only the code in the first is executed.

VBA/VBScript Differences

VBA supports two variations of expressionlist that are not supported by VBScript. These are shown in the following table:

Not supported Examples

To keyword Case 10 To 20, 110 To 120

Is keyword Case Is >= 100Case Is <= 10, Is >= 100

See Also

If...Then Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SetLocale Function

Syntax

SetLocale(lcid)

lcid

Use: Optional

Data Type: Long or String

A number representing a locale ID.

Return Value

A Long indicating the previous locale ID.

Description

Sets the current locale ID.

Rules at a Glance

A locale ID represents language as well as regional conventions. It determines such things as keyboard layout,
alphabetic sort order, and date, time, number, and currency formats.

Appendix D lists valid locale IDs.

If SetLocale is called with no arguments, it resets the script locale back to the host default, which is usually the
user default.

If lcid is zero or 1024, the locale is set as defined by the user's locale ID.

If lcid is 2048, the local is set as defined by the system's regional settings.

Programming Tips and Gotchas

There is no need to call GetLocale and store its returned value before calling SetLocale, since SetLocale returns
the value of the previous locale ID.

SetLocale sets the locale ID of the script engine only. It does not affect the system, user, or host/application
locale IDs.

VBA/Script Differences

The SetLocale function is not supported by VBA.

See Also

GetLocale Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Set Statement

Syntax

Set objectvar = (objectexpression | New classname Nothing)

objectvar

Use: Required

Data Type: Object

The name of the object variable or property.

objectexpression

Use: Optional

Data Type: Object

An expression evaluating to an object.

New

Use: Optional

Type: Keyword

Creates a new instance of an object defined using the Class...End Class construct, or with the syntax New RegExp
instantiates the Regular Expression object.

classname

Use: Required

Data Type: String literal

The name of the class defined by the Class...End Class construct to be instantiated.

Nothing

Use: Optional

Type: Keyword

Assigns the special data type Nothing to objectvar, thereby releasing the reference to the object.

Description

Assigns an object reference to a variable or property.

Rules at a Glance

objectvar doesn't hold a copy of the underlying object; it simply holds a reference to the object.

If the New keyword is used is used to instantiate a VBScript class defined using the Class...End Class construct, a
new instance of the class is immediately created and its Class Initialize event fires. This applies only to classes
defined using the Class...End Class construct.

You can also instantiate a Regular Expression object with the New keyword by using a statement like the
following:

 Set oRegExp = New RegExp

All classes defined by the Class...End Class construct can be created using the New keyword. For external objects,
the application's object model determines which objects can be created and which cannot.

If objectvar holds a reference to an object when the Set statement is executed, the current reference is released

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If objectvar holds a reference to an object when the Set statement is executed, the current reference is released
and the new one referred to in objectexpression is assigned.

objectexpression can be any of the following:

The name of an object. This creates a duplicate object reference in which two references point to the
same object. For instance:

 Dim oFS, oRoot, oFolder
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oRoot = oFS.Drives("C").RootFolder
 Set oFolder = oRoot

A variable that has been previously declared and instantiated using the Set statement and that refers to
the same type of object:

 Dim dSpace
 Dim oFS, oDrive

 dSpace = CDbl(0)
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oDrive = oFS.Drives("C")
 dSpace = dSpace + oDrive.FreeSpace
 Set oDrive = oFS.Drives("D")
 dSpace = dSpace + oDrive.FreeSpace

 MsgBox "Total free space: " & dSpace & " " & typename(dSpace)

A call to a function, method, or property that returns the same type of object.

By assigning Nothing to objectvar, the reference held by objectvar to the object is released.

Example

The following code creates a simple web page that prompts the user for a name and an email address if she desires to
be added to a discussion forum:

<HTML>
<HEAD>
<TITLE>Join Discussion Forum</TITLE>
</HEAD>
<BODY>
<H2><CENTER>Join the Discussion Forum</CENTER></H2>
<FORM ACTION="AddContact.asp" NAME=frmAdd METHOD="POST">
 Name:
 <INPUT TYPE="Text" NAME="txtName">

 Email Address:
 <INPUT TYPE="Text" NAME="txtEmail">

 <INPUT TYPE="Submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

Following is the source for AddContact.asp, the ASP application that instantiates an instance of the CContact class to
handle data access using ADO:

<HTML>
<HEAD>
<TITLE>Our Discussion Forum</TITLE>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Const adLockOptimistic = 3
Const adOpenDynamic = 2
Const adCmdTable = 2

Class CContact

Private rs
Private sName, sEmail

Public Property Get ShowCount()
 rs.MoveLast
 ShowCount = rs.RecordCount
End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Property

Public Function AddContact
 Dim sRetString

 sName = Server.HTMLEncode(Request.Form("txtName"))
 sEmail = Request.Form("txtEmail")
 If sName = "" Or sEmail = "" Then
 sRetString = "Please press the back button and enter both " & _
 "your name and your email address."
 Else
 rs.AddNew
 rs.Fields("ContactName") = sName
 rs.Fields("Email") = sEmail
 rs.Update
 sRetString = "<H3><CENTER>" & _
 "Thank you for joining our forum!" & _
 "</H3></CENTER><P>" & _
 "Your information has been added to the " & _
 "forum membership list.<P>" & _
 "The forum now has " & Me.ShowCount & " members.<P>"
 End If

 AddContact = sRetString
End Function

Private Sub Class_Initialize()
 Dim sConnect
 sConnect = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=E:\Databases\DiscussionList.mdb"
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Contacts", sConnect, adOpenDynamic, adLockOptimistic, _
 adCmdTable
End Sub

Private Sub Class_Terminate()
 rs.Close
 Set rs = Nothing
End Sub

End Class
</SCRIPT>
</HEAD>
<BODY>
<H1>From the Discussion Forum...</H1><P>
<%
 Dim oContact
 Set oContact = New CContact
 Response.Write oContact.AddContact
%>
</BODY>
</HTML>

Programming Tips and Gotchas

You can have more than one object variable referring to the same object. However, bear in mind that a change
to the underlying object using one object variable is reflected in all the other object variables that reference
that object. For example, consider the following code fragment, in which the objColorCopy object reference is set
equal to the objColor object:

Dim objColor, objColorCopy
Set objColor = New CColor ' CColor class not shown
Set objColorCopy = objColor

objColor.CurrentColor = "Blue"
Msgbox objColorCopy.CurrentColor

Since both objColor and objColorCopy reference a single object, the value of the CurrentColor property is Blue in
both cases.

It is commonly believed that you should release object references as soon as you are finished with them using
code like the following:

Dim myClass
Set myClass = New SomeObject
' Do something here
Set myClass = Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set myClass = Nothing

Most of the time, though, releasing object references is unnecessary, since they are released anyway by the
garbage collector when the object reference goes out of scope. There are only a couple of situations in which it
is necessary to explicitly release object references:

1. When the object encapsulates a scarce resource, such as a database connection. In this case, it often
makes sense to release the object reference as soon as you are done with it.

2. When two objects hold references to one another. In this situation, the objects are not destroyed when
their references go out of scope. And their references going out of scope means that it is no longer
possible to release the objects programmatically. VBScript objects (i.e., objects instantiated from
classes declared with the Class... End Class construct will be destroyed when the scripting engine is torn
down, which may be before application shutdown. COM objects instantiated with the CreateObject or
GetObject functions, though, may persist until the application terminates. Since terminating a web
server or the ASP process, in particular, is highly undesirable, it is far preferable to release object
references explicitly by setting them to nothing. The following code illustrates a circular reference:

 Class MyClass
 Dim Subclass

 Public Property Get MySubclass
 Set MySubclass = Subclass
 End Property

 Public Property Set MySubclass(value)
 Set Subclass = value
 End Property
 End Class

 Dim myClass1, myClass2

 Set myClass1 = New MyClass
 Set myClass2 = New MyClass

 Set myClass1.MySubclass = myClass2
 Set myClass2.MySubclass = myClass1

When trying to discover whether an object reference has been successfully assigned, you should determine if
the object variable has been assigned as Nothing. However, you can't use the equality comparison operator (=)
for this purpose; you must use the Is operator, as the following code snippet shows:

If objectvar Is Nothing Then
 ... 'assignment failed
End If

Any function that returns an object reference requires the use of the Set statement to assign the reference to a
variable. This includes the VBScript CreateObject and GetObject functions, as well as the WSH
WScript.CreateObject method and the ASP Server.CreateObject method.

Dim oMainObject
Set oMainObject = CreateObject("MainLib.MainObject")

VBA/VBScript Differences

An external createable object can be instantiated using VBA's New when the variable is declared if the VBA
project has a reference to its type library:

Dim oFS As New Scripting.FileSystemObject

In this case, there is no need use the Set statement to instantiate the object, since it will be instantiated when it
is next referenced in code. Since this early binding is not supported by VBScript, however, this use of the New
keyword is not allowed.

An external createable object can be instantiated using the VBA New keyword along with the Set statement if the
VBA project has a reference to its type library. For example:

Dim oFS As Scripting.FileSystemObject
Set oFS = New Scripting.FileSystemObject

Since VBScript does not support early binding, however, this usage is not allowed. The Set statement, along
with the New keyword, can be used only to instantiate a class declared with the Class...End Class construct.

See Also

CreateObject Function, GetObject Function, GetRef Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CreateObject Function, GetObject Function, GetRef Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Sgn Function

Syntax

Sgn(number)

number

Use: Required

Data Type: Any expression capable of conversion into a numeric value

A numeric expression.

Return Value

An Integer.

Description

Determines the sign of a number.

Rules at a Glance

The return value of the Sgn function is determined by the sign of number:

If number is... Sgn returns

Positive 1

Zero 0

Negative -1

Programming Tips and Gotchas

If you're planning on using the Sgn function to evaluate a result to False (0) or True (any nonzero value), you
could also use the CBool function.

The major use for Sgn—a fairly trivial one—is to determine the sign of an expression. It's equivalent to the
following code:

Function Sgn(varNumber)
 If varNumber > 0 Then
 Sgn = 1
 ElseIf varNumber = 0 Then
 Sgn = 0
 Else
 Sgn = -1
 End If
End Function

Sgn is useful in cases in which the sign of a quantity defines the sign of an expression. For example:

lngResult = lngQty * Sgn(lngValue)

Although Sgn handles the conversion of strings to numeric data, it's a good idea to make sure that number is
valid by calling the IsNumeric function before the call to Sgn.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

If...Then Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Sin Function

Syntax

Sin(number)

number

Use: Required

Data Type: Numeric

An angle expressed in radians.

Return Value

A Double containing the sine of an angle.

Description

Returns the ratio of two sides of a right triangle in the range -1 to 1.

Rules at a Glance

The ratio is determined by dividing the length of the side opposite the angle by the length of the hypotenuse.

Programming Tips and Gotchas

You can convert radians to degrees using the formula:

radians = degrees * (pi/180)

You can convert degrees to radians using the formula:

degrees = radians * (180/pi)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Space Function

Syntax

Space(number)

number

Use: Required

Data Type: Integer

An expression evaluating to the number of spaces required.

Return Value

A String containing number spaces.

Description

Creates a string containing number spaces.

Rules at a Glance

While number can be zero (in which case the function returns a empty string), runtime error 5, "Invalid
procedure call or argument," is generated if number is negative.

Space is a "convenience function" that is equivalent to the function call:

sString = String(number, 32)

VBA/VBScript Differences

VBScript doesn't support the VBA Space$ function.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Split Function

Syntax

Split(expression, [delimiter[, count[, compare]]])

expression

Use: Required

Data Type: String

A string to be broken up into multiple strings.

delimiter

Use: Optional

Data Type: String

The character used to delimit the substrings in expression.

count

use: Optional

Data Type: Long

The number of strings to return.

compare

Use: Optional

Data Type: Long

The method of comparison. Possible values are vbBinaryCompare or vbTextCompare. Note that both are intrinsic
VBScript constants; you do not have to define them yourself using the Const statement.

Return Value

A variant array consisting of the arguments passed into the function.

Description

Parses a single string containing delimited values into an array.

Rules at a Glance

If delimiter isn't found in expression, Split returns the entire string in element 0 of the return array.

If delimiteris omitted, a space character is used as the delimiter.

If count is omitted or its value is -1, all strings are returned.

The default comparison method is vbBinaryCompare. If delimiter is an alphabetic character, this setting controls
whether the search for it in expression is case-sensitive (vbBinaryCompare) or not (vbTextCompare).

Once count has been reached, the remainder of the string is placed, unprocessed, into the next element of the
returned array.

Programming Tips and Gotchas

The variable you declare to assign the return value of Filter must be a simple variant, rather than a variant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The variable you declare to assign the return value of Filter must be a simple variant, rather than a variant
array. The following code is incorrect:

' Incorrect
Dim sArray()
sArray = Split(sString, ",")

This error is corrected in the following code fragment:

' Correct
Dim sArray
sArray = Split(sString, ",")

Strings are written to the returned array in the order in which they appear in expression.

See Also

Join Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Sqr Function

Syntax

Sqr(number)

number

Use: Required

Data Type: Double

Any numeric expression greater than or equal to 0.

Return Value

A Double containing the square root of number.

Description

Calculates the square root of a given number.

Rules at a Glance

number must be equal to or greater than zero or runtime error 5, "Invalid procedure call or argument," occurs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StrComp Function

Syntax

StrComp(string1, string2[, compare])

string1

Use: Required

Data Type: String

Any string expression.

string2

Use: Required

Data Type: String

Any string expression.

compare

Use: Optional

Data Type: Integer constant

The type of string comparison to perform.

Return Value

An Integer.

Description

Determines whether two strings are equal and which of two strings is greater.

Rules at a Glance

The following intrinsic constants are available as the settings for compare:

Constant Value Comparison to perform

vbBinaryCompare 0 Binary (default)

vbTextCompare 1 Textual

If compare isn't specified, its value defaults to vbBinaryCompare. In other words, the comparison of string1 and
string2 is case-sensitive.

This table describes the possible return values from the StrComp function:

Scenario Return value

string1 < string2 -1

string1 = string2 0

string1 > string2 1

string1 or string2 is Null Null

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

If you just need to know whether string1 is greater than string2 (or vice versa), couldn't you simply use the < or
> comparison operators? When you're dealing with strings of characters, VBScript sees each character as a
number. Simply using the comparison operators therefore compares the numerical value of one string with the
other. Take this scenario:

Dim sString1
Dim sString2

sString1 = "hello world"
sString2 = "HELLO WORLD"

Subjectively, because of the significance of uppercase letters in text, we'd probably say that sString2 is greater
than sString1. But VBScript sees these strings as a series of Unicode numbers, and because uppercase
characters have a lower Unicode number than lowercase numbers, the lowercase string (sString1) is greater.

This is similar to how the default StrComp option vbBinaryCompare operates—comparing the Unicode numbers of
each string at binary level. The sort order is derived from the international binary representations of the
characters. vbCompareText performs a case-insensitive search, which means that it ignores the difference
between upper- and lowercase characters. It also means that it will equate different representations of the
same character in some Far Eastern character sets. vbCompareText, in other words, indicates a case-insensitive
textual sort order as determined by the user's locale.

Even performing a simple single comparison like:

If UCase(sString1) < UCase(sString2) Then

shows a performance hit of about 30 percent over the much more elegant and efficient StrComp function call:

If StrComp(sString1,sString2, vbTextCompare) = -1
Then

The former version, though, is easier to read and makes the code self-documenting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

String Function

Syntax

String(number, character)

number

Use: Required

Data Type: Long

The length of the required string.

character

Use: Required

Data Type: Variant

Character or character code used to create the required string.

Return Value

A string made up of character, repeated number times.

Description

Creates a string comprising a specified single character repeated a specified number of times.

Rules at a Glance

If number contains Null, Null is returned.

If character contains Null, Null is returned.

character can be specified as a string or as an ANSI character code. For example:

strBuffer1 = String(128, "=") ' Fill with "="
strBuffer2 = String(128, 0) ' Fill with Chr$(0)

If character consists of multiple characters, the first character is used only, and the remainders are discarded.

Programming Tips and Gotchas

The String function is useful for creating long strings of _, -, or = characters to create horizontal lines for
delimiting sections of a report.

VB/VBA Differences

VBScript does not support the VBA String$ function.

See Also

Space Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

StrReverse Function

Syntax

StrReverse(str_expression)

str_expression

Use: Required

Data Type: String

The string whose characters are to be reversed.

Return Value

A String.

Description

Returns a string that is the reverse of the string passed to it. For example, if the string "and" is passed to it as an
argument, StrReverse returns the string "dna."

Rules at a Glance

If str_expression is a zero-length string (" "), the function's return value is a zero-length string.

If str_expression is Null, the function generates runtime error 94, "Invalid use of Null."

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Sub Statement

Syntax

[Public [Default] | Private] Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub

Public

Use: Optional

Type: Keyword

Gives the sub procedure visibility to all scripts. If used in a class definition, the sub procedure is also accessible
from outside the class. Public and Private are mutually exclusive.

Default

Use: Optional

Type: Keyword

Indicates that a public procedure defined in a VBScript class (that is, defined within a Class...End Class construct)
is the default member of the class.

Private

Use: Optional

Type: Keyword

Restricts the visibility of the sub procedure to those procedures within the same script. In a class definition,
restricts the visibility of the sub procedure to the class itself. Public and Private are mutually exclusive.

name

Use: Required

The name of the sub procedure.

arglist

Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the sub procedure as arguments from the calling procedure.

statements

Use: Optional

Program code to be executed within the sub procedure.

arglist uses the following syntax and parts:

[ByVal | ByRef] varname[()]

ByVal

Use: Optional

The argument is passed by value; that is, a local copy of the variable is assigned the value of the argument.

ByRef

Use: Optional

The argument is passed by reference; that is, the local variable is simply a reference to the argument being
passed. All changes made to the local variable are also reflected in the calling argument. ByRef is the default
method of passing variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method of passing variables.

varname

Use: Required

The name of the local variable containing the reference or argument value.

Description

Defines a sub procedure.

Rules at a Glance

If you don't include the Public or Private keywords, a sub procedure is Public by default.

Unlike a Function procedure, a sub procedure doesn't return a value to the calling procedure. You would think
that this means that a sub procedure can't be used as part of an expression, but in fact this isn't the case; subs
can be included in expressions are treated as functions that return Empty.

Any number of Exit Sub statements can be placed within the sub procedure. Execution continues with the line of
code immediately following the call to the sub procedure.

Only one property, procedure, or function in a class can be designated as its default member by assigning it the
Default keyword.

The Default keyword can be used only with public procedures.

You can invoke a sub procedure using the Call statement, in which parameters are enclosed in parentheses. For
example:

 Call MySub(param1, param2)

You can also omit the Call keyword, in which case the parentheses around parameters are also omitted. For
example:

 MySub param1, param2

Programming Tips and Gotchas

There is often confusion between the ByRef and ByVal methods of assigning arguments to the sub procedure.
ByRef assigns the reference of the variable in the calling procedure to the variable in the sub procedure. As a
result, any changes made to the variable from within the sub procedure are, in reality, made to the variable in
the calling procedure. On the other hand, ByVal assigns the value of the variable in the calling procedure to the
variable in the sub procedure; that is, it makes a separate copy of the variable in a separate memory location.
Changes made to the variable in the sub procedure have no effect on the variable in the calling procedure.

You can override arguments passed to sub procedures by reference and instead pass them by value by
enclosing them in parentheses. For instance, in the code:

 Dim x
 x = 10
 SubByRef(x)
 MsgBox "x after SubByRef: " & x

 Sub SubByRef(y)
 y = 20
 End Sub

x retains its original value of 10 when control returns from the SubByRef sub procedure. Note that you can
enclose the argument list in parentheses when there is a single argument, but that argument is then passed to
the calling sub procedure by value rather than by reference.

If a sub procedure has two or more arguments, you can pass a particular argument by reference by enclosing it
in parentheses. For instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in parentheses. For instance:

 Dim x, x1
 x = 10
 x1 = 10
 SubByRef (x),x1 ' after return, x=10, x1=20
 x1 = 10
 Call SubByRef((x), x1) ' after return, x=10, x1=20
 Sub SubByRef(y, z)
 y = 20
 z = 20
 End Sub

Sub procedures can't return a value, or can they? Look at the following code:

Sub testTheReturns()
 Dim iValOne

 iValOne = 10
 testValues iValOne
 Msgbox iValOne
End Sub

Sub testValues(ByRefiVal)
 iVal = iVal + 5
End Sub

Because the argument was passed with ByRef, the sub procedure acted upon the underlying variable iValOne.
This means that you can use ByRef to obtain a "return" value or values (although they're not strictly return
values) from a sub procedure call.

There are many occasions in which recursively calling a sub procedure can be used to solve a programming
problem. Recursion occurs when you call a sub procedure from within itself. Recursion is a legitimate and often
essential part of software development; for example, it offers a reliable method of enumerating or iterating a
hierarchical structure. However, you must be aware that recursion can lead to stack overflow. The extent to
which you can get away with recursion really depends upon the complexity of the sub procedure concerned, the
amount and type of data being passed in, and an infinite number of other variables and unknowns.

See Also

Call Statement, Exit Statement, Function Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Tan Function

Syntax

Tan (number)
number

Use: Required

Data Type: Numeric expression

An angle in radians.

Return Value

A Double containing the tangent of an angle.

Description

Returns the ratio of two sides of a right-angle triangle.

Rules at a Glance

The returned ratio is derived by dividing the length of the side opposite the angle by the length of the side adjacent to
the angle.

Programming Tips and Gotchas

You can convert degrees to radians using the following formula:

radians = degrees * (pi/180)

You can convert radians to degrees using the following formula:

degrees = radians * (180/pi)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Terminate Event

Syntax

Private Sub Class_Terminate()

Description

The Terminate event is fired when an instance of a class is removable from memory.

Rules at a Glance

The Terminate event applies to classes defined with the Class...End Class construct.

Instances of a class are removed from memory by explicitly setting the object variable to Nothing or by the
object variable going out of scope.

If a script ends because of a runtime error, a class's Terminate event isn't fired.

Example

The following example shows a typical Terminate event in a class object that decrements a global instance counter used
to ensure that only a single instance of a particular utility object is created. When the counter reaches 0, the global
object reference to the utility object is destroyed.

Private Sub Class_Terminate()

 glbUtilCount = glbUtilCount - 1
 If glbUtilCount = 0 then
 Set goUtils = Nothing
 End If

End Sub

Programming Tips and Gotchas

Because the Terminate event is fired when an object becomes removable from memory, it is possible, but not
recommended, for the Terminate event handler to add references back to itself and thereby prevent its
removal. However, in this case, when the object actually is released, the Terminate event handler will not be
called again.

The Terminate event is fired under the following conditions:

An object goes out of scope.

The last reference to an object is set equal to Nothing.

An object variable is assigned a new object reference.

The Terminate event is fired when an object is about to be removed from memory, not when an object
reference is about to be removed. In other words, if two variables reference the same object, the Terminate
event will be fired only once, when the second reference is about to be destroyed.

See Also

Initialize Event, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream Object

Createable

No

Returned by

File.OpenTextStream Method
FileSystemObject.CreateTextFile Method
FileSystemObject.GetStandardStream Method
FileSystemObject.OpenTextFile Method

Library

Microsoft Scripting Runtime

Windows Script Host

Description

Most commonly, the TextStream object represents a text file. As of Windows Script Host 2.0 and VBScript 5.5,
however, it also represents any input/output stream, such as standard input, standard output, and the standard error
stream. Depending on the precise character of the I/O stream, you can open a TextStream object to read from, append
to, or write to the stream. The TextStream object provides methods to read, write, and close the text file or I/O stream.

When dealing with files, note that the TextStream object represents the file's contents or internals; the File object
represents the file's externals or the file as an object in the filesystem.

The TextStream object is one of the objects in the File System object model; for an overview of the model, including
the library reference needed to access it, see the File System Object Model entry.

Properties

The availability of TextStream object properties depends on the precise character of the TextStream object; some
properties are available only when the stream is opened in read mode (indicated by an R in the Availability field);
others are available in both read and write modes (indicated by a RW in the Availability field). All of the following
TextStream object properties are read-only:

AtEndOfLine

Data Type: Boolean

Availability: R

A flag denoting whether the end-of-a-line marker has been reached (True) or not (False). Relevant only when
reading a file.

When reading a standard input stream from the keyboard, the end of a line is indicated by pressing the Enter
key.

AtEndofStream

Data Type: Boolean

Availability: R

A flag denoting whether the end of the stream has been reached (True) or not (False). Relevant only when
reading a file.

When reading from a standard input stream from the keyboard, the end of the input stream is indicated by the
Ctrl-Z character.

Column

Data Type: Long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Type: Long

Availability: RW

Returns the column number position of the file marker. The first column position in the input stream and in each
row is 1.

Examining the value of the Column property is most useful in input streams after calls to the TextStream
object's Read and Skip methods. Although it is less useful for output streams, it can be used after a call to the
TextStream object's Write method.

Line

Data Type: Long

Availability: RW

Returns the line number position of the file marker. Lines in the text stream are numbered starting at 1.

Unless the end of the text stream has been reached, the value of the Line property is incremented after calls to
the ReadAll, ReadLine, and SkipLine methods. Similarly, in output streams, it is incremented after calls to the
WriteLine and WriteBlankLines methods.

Methods

Close
Read
ReadAll
ReadLine
Skip
SkipLine
Write
WriteBlankLines
WriteLine

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.Close Method

Syntax

oTextStreamObj.Close

Availability

RW

Description

Closes the current TextStream object.

Rules at a Glance

Although calling the Close method does not invalidate the object reference, you shouldn't try to reference a TextStream
object that has been closed.

Programming Tips and Gotchas

After closing the TextStream object, set oTextStreamObj to Nothing.

If you are writing to a file-based text stream, text is automatically written to the file. You do not have to call the
Save method to commit changes to a disk file before calling the Close method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.Read Method

Syntax

oTextStreamObj.Read(Characters)

oTextStreamObj

Use: Required

Data Type: TextStream object

Any property or object variable returning a readable TextStream object.

Characters

Use: Required

Data Type: Long

The number of characters you want to read from the input stream.

Return Value

A String.

Availability

R

Description

Reads a given number of characters from a file or the standard input and returns the resulting string.

Rules at a Glance

Files opened for writing or appending can't be read; you must first close the file and reopen it using the
ForReading constant.

After the read operation, the file pointer advances Characters characters, unless the end of the file is
encountered.

If the number of characters available to be read are less than Characters, all characters will be read.

When reading the standard input stream from the keyboard, program execution pauses until an end-of-line or
end-of-stream character is encountered. However, only the first Characters characters of the stream are read. If
at least Characters characters are available in the input stream for subsequent read operations, program
execution does not pause to wait for further keyboard input. The usual technique is to process keystrokes in a
loop until the end-of-stream marker is encountered. For example:

Do While Not oIn.AtEndOfStream
 sIn = oIn.Read(10) ' Read up to 10 characters
 ' process text
Loop

See Also

TextStream.ReadAll Method , TextStream.ReadLine Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.ReadAll Method

Syntax

oTextStreamObj.ReadAll

Return Value

A String.

Availability

R

Description

Reads the entire file or input stream into memory.

Rules at a Glance

For large files, use the ReadLine or Read methods to reduce the load on memory resources.

Files opened for writing or appending can't be read; you must first close the file and reopen it using the
ForReading constant.

When used to read the standard input stream from the keyboard, the ReadAll method pauses program
execution and polls the keyboard until the AtEndOfStream symbol is encountered. For this reason, the ReadAll
method should not be executed repeatedly in a loop.

See Also

TextStream.Read Method , TextStream.ReadLine Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.ReadLine Method

Syntax

oTextStreamObj.ReadLine

Return Value

A String.

Availability

R

Description

Reads a line of the text file or input stream into memory, from the start of the current line up to the character
immediately preceding the next end-of-line marker.

Rules at a Glance

Files opened for writing or appending can't be read; you must first close the file and reopen it using the ForRead
constant.

The ReadLine method causes the file pointer to advance to the beginning of the next line, if there is one.

When used to retrieve standard input from the keyboard, the ReadLine method pauses program execution and
waits until the end-of-line character (i.e., the Enter key) has been pressed. Unless your script expects to
retrieve just one line of input, it's best to call the ReadLine method repeatedly in a loop.

See Also

TextStream.Read Method , TextStream.ReadAll Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.Skip Method

Syntax

oTextStreamObj.Skip (Characters)

oTextStreamObj

Use: Required

Data Type: TextStream object

Any property or object variable returning a readable TextStream object.

NoOfChars

Use: Required

Data Type: Long

Number of characters to skip when reading.

Availability

R

Description

Ignores the next Characters characters when reading from a text file or input stream.

Rules at a Glance

As a result of the skip operation, the file pointer is placed at the character immediately following the last
skipped character.

The Skip method is available only for input streams—that is, for files or streams opened in ForReading mode.

See Also

TextStream.SkipLine Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.SkipLine Method

Syntax

oTextStreamObj.SkipLine

Availability

R

Description

Ignores the current line when reading from a text file.

Rules at a Glance

The SkipLine method is available only for files opened in ForReading mode.

After the SkipLine method executes, the internal file pointer is placed at the beginning of the line immediately
following the skipped line, assuming that one exists.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.Write Method

Syntax

oTextStreamObj.Write(Text)

oTextStreamObj

Use: Required

Data Type: TextStream object

Any property or object variable returning a writable TextStream object.

Text

Use: Required

Data Type: String

Any string expression to write to the file.

Availability

W

Description

Writes a string to the text file.

Rules at a Glance

The file marker is set at the end of string. As a result, subsequent writes to the file adjoin each other, with no spaces
inserted. To write data to the file in a more structured manner, use the WriteLine method.

See Also

TextStream.WriteBlankLines Method , TextStream.WriteLine Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.WriteBlankLines Method

Syntax

oTextStreamObj.WriteBlankLines(Lines)

oTextStreamObj

Use: Required

Data Type: TextStream object

Any property or object variable returning a writable TextStream object.

Lines

Use: Required

Data Type: Long

The number of newline characters to insert.

Availability

W

Description

Inserts one or more newline characters in the file or output stream at the current file marker position.

See Also

TextStream.Write Method , TextStream.WriteLine Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TextStream.WriteLine Method

Syntax

oTextStreamObj.WriteLine (String)

oTextStreamObj

Use: Required

Data Type: TextStream object

Any property or object variable returning a writable TextStream object.

String

Use: Required

Data Type: String

A string expression to write to the file.

Availability

W

Description

Writes a string immediately followed by a newline character to a text file.

See Also

TextStream.WriteBlankLines Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Time Function

Syntax

Time

Return Value

A Date.

Description

Returns the current system time.

Rules at a Glance

The Time function returns the time.

Programming Tips and Gotchas

The Time function returns but does not allow you to set the system time.

VBA/VBScript Differences

VBA includes a Time$ function that returns the time as a string rather than a variant. Because VBScript does not
support strong typing, the function is not implemented in VBScript.

See Also

Now Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Timer Function

Syntax

Timer()

Return Value

A Single.

Description

Returns the number of seconds since midnight.

Programming Tips and Gotchas

You can use the Timer function as an easy method of passing a seed number to the Randomize statement, as
follows:

Randomize Timer

The Timer function is ideal for measuring the time taken to execute a procedure or program statement, as the
following ASP snippet shows:

<%
Dim sStartTime
Dim i, j

sStartTime = Timer()
For i = 1 To 100
 Response.Write "Hello
"
 For j = 0 To 1000
 Next
Next
Response.Write "Time Taken = " & _
 FormatDateTime(Timer - sStartTime, vbShortTime) & _
 " Seconds"
%>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TimeSerial Function

Syntax

TimeSerial(hour, minute, second)

hour

Use: Required

Data Type: Integer

A number in the range 0 to 23.

minute

Use: Required

Data Type: Integer

Any valid integer.

second

Use: Required

Data Type: Integer

Any valid integer.

Return Value

A Date.

Description

Constructs a valid time given a number of hours, minutes, and seconds.

Rules at a Glance

Any of the arguments can be specified as relative values or expressions.

The hour argument requires a 24-hour clock format; however, the return value is always in a 12-hour clock
format suffixed with A.M. or P.M.

If any of the values are greater than the normal range for the time unit to which it relates, the next higher time
unit is increased accordingly. For example, a second argument of 125 is evaluated as 2 minutes 5 seconds.

If any of the values are less than zero, the next higher time unit is decreased accordingly. For example,
TimeSerial(2,-1,30) returns 01:59:30.

If any of the values are outside the range -32,768 to 32,767, an error occurs.

If the value of any parameter causes the date returned by the function to fall outside the range of valid dates,
an error occurs.

Programming Tips and Gotchas

Because TimeSerial handles time units outside of their normal limits, it can be used for time calculations. However,
because the DateAdd function is more flexible and is internationally aware, it should be used instead.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

DateAdd Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TimeValue Function

Syntax

TimeValue(time)

time

Use: Required

Data Type: String

Any valid string representation of a time.

Return Value

A Date.

Description

Converts a string representation of a time to a Variant Date type.

Rules at a Glance

If time is invalid, a runtime error is generated.

If time is Null, TimeValue returns Null.

Both 12- and 24-hour clock formats are valid.

Any date information contained within time is ignored by the TimeValue function.

If TimeValue returns invalid time information, an error occurs.

Programming Tips and Gotchas

A time literal can also be assigned to a Variant or Date variable by surrounding the date with hash characters
(#), as the following snippet demonstrates:

Dim dMyTime
dMyTime = #12:30:00 AM#

The CDate function can also cast a time expression contained within a string as a Date variable, with the
additional advantage of being internationally aware.

See Also

CDate Function, TimeSerial Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Trim Function

Syntax

Trim(string)

string

Use: Required

Data Type: String

Any string expression.

Return Value

A String.

Description

Returns a string in which any leading and trailing spaces in an original string are removed.

Rules at a Glance

If string is Null, the Trim function returns Null.

Programming Tips and Gotchas

Trim combines into a single function call what would otherwise be separate calls to the RTrim and LTrim functions.

VBA/VBScript Differences

VBA includes a Trim$ function that returns the a trimmed string rather than a trimmed string variant. Because VBScript
does not support strong typing, the function is not implemented in VBScript.

See Also

LTrim Function, RTrim Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

TypeName Function

Syntax

TypeName(varname)

varname

Use: Required

Data Type: Any

The name of a variable.

Return Value

A String.

Description

Returns a string containing the name of the data type of a variable.

Rules at a Glance

TypeName returns the variant's data type. If the variant has not been assigned a value, TypeName returns
Empty. Therefore, TypeName never actually returns the string "Variant."

The following table describes the possible return values and their meaning:

Return value Underlying data type

Boolean Boolean

Byte Byte

classname An object variable of type classname

Currency Currency

Date Date

Decimal Decimal

Double Double-precision floating-point number

Empty Uninitialized variable

Error A missing argument error

Integer Integer

Long Long integer

Nothing A variable of type Object that is not set to a valid object

Null No valid data

Object A generic object

Single Single-precision floating-point number

String String

Unknown An object whose type is unknown

Variant() An array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA/VBScript Differences

In VBA, the data type of a strongly typed variable can be ascertained earlier than the data type of a VBScript
variable. For instance, in VBA, the code fragment:

Dim lNumber As Long
MsgBox TypeName(lNumber)

indicates that lNumber is a long. The equivalent VBScript code fragment:

Dim lNumber
MsgBox TypeName(lNumber)

indicates that lNumber is Empty, since it hasn't yet been assigned a value and therefore VBScript cannot
determine its data type. (Note that, in VBA, if lNumber is defined as a variant, the behavior of the TypeName
function is identical to its behavior in VBScript.)

In VBA, the type name of an object variable that has been declared but not yet initialized returns "Nothing." In
VBScript, the TypeName function returns "Nothing" only for object variables that have been explicitly set equal
to Nothing.

In VBScript, all arrays return the value Variant(). In VBA, the return value depends on whether the array is
strongly typed.

In part because VBA can be strongly typed, a number of data types are more common than their corresponding
VBScript data types. The Decimal data type does not exist in VBScript, since VBScript does not support the
CDec function, which is the only method available for defining a Decimal. Similarly, the Byte and Currency data
types are much rarer in VBScript than in VBA.

See Also

VarType Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UBound Function

Syntax

UBound(arrayname[, dimension])

arrayname

Use: Required

An array variable or an expression that evaluates to an array.

dimension

Use: Optional

Data Type: Long

A number specifying the dimension of the array.

Return Value

A Long.

Description

Indicates the upper limit of a specified dimension of an array. The upper boundary is the largest subscript you can
access within the specified array.

Rules at a Glance

If dimension isn't specified, 1 is assumed. To determine the upper limit of the first dimension of an array created
by VBScript code, set dimension to 1, set it to 2 for the second dimension, and so on.

The upper bound of an array dimension can be set to any integer value using Dim, Private, Public, and Redim.

Programming Tips and Gotchas

Note that UBound returns the actual subscript of the upper bound of a particular array dimension.

UBound is especially useful for determining the current upper boundary of a dynamic array.

The UBound function works only with conventional arrays. To determine the upper bound of a collection object,
retrieve the value of its Count or Length property.

See Also

LBound Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UCase Function

Syntax

UCase(string)

string

Use: Required

Data Type: String

A valid string expression.

Return Value

A String.

Description

Converts a string to uppercase.

Rules at a Glance

UCase affects only lowercase alphabetical letters; all other characters within string remain unaffected.

UCase returns Null if string contains a Null.

VBA/VBScript Differences

VBA includes a UCase$ function that returns an uppercase string rather than a uppercase string variant. Because
VBScript does not support strong typing, the function is not implemented in VBScript.

See Also

LCase Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Unescape function

Syntax

Unescape(string)
string

Use: Required

Data Type: String

An encoded string

Return Value

A string variant containing the decoded version of string.

Description

Decodes a URL-encoded or HTML-encoded string.

Rules at a Glance

Replaces all encoded characters with their corresponding characters. Encoded values in the form of %xx are replaced
with their corresponding ASCII characters, while values in the form %uxxxx are replaced with their corresponding
Unicode characters.

Programming Notes

The Unescape function is not documented in the VBScript documentation.

The function corresponds to the JScript Unescape method.

If string has no encoded characters, the function merely returns string unchanged.

All encoded characters in the form %xx are replaced with their equivalent ASCII strings.

All encoded characters in the form %uxxxx are replaced with their equivalent Unicode character strings.

VB/VBA Differences

This function is not supported in VBA.

See Also

Escape Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

VarType Function

Syntax

VarType(varname)

varname

Use: Required

The name of a variable.

Return Value

An Integer representing the data type of varname.

Description

Determines the data type of a specified variable.

Rules at a Glance

The following intrinsic constants can test the return value of the VarType function:

Constant Value Data type

vbBoolean 11 Boolean

vbByte 17 Byte

vbCurrency 6 Currency

vbDataObject 13 A data access object variable

vbDate 7 Date

vbDecimal 14 Decimal

vbDouble 5 Double-precision floating-point number

vbEmpty 0 Uninitialized

vbError 10 An error type that indicates a missing argument

vbInteger 2 Integer

vbLong 3 Long integer

vbNull 1 No valid data

vbObject 9 A generic object

vbSingle 4 Single-precision floating-point number

vbString 8 String

vbVariant 12 Variant—returned only with vbArray (8194)

If varname is an array created by VBScript code, the VarType function returns 8200 (vbArray) and vbVariant.

If varname is an array returned to the script by a component, the VarType function returns 8200 (vbArray) and
the value representing the data type of the array. For instance, a Visual Basic Integer array returned to a
VBScript script produces a value of 8196(vbInteger + vbArray).

To test for an array, you can use the intrinsic constant vbArray. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To test for an array, you can use the intrinsic constant vbArray. For example:

If VarType(myVar) And vbArray Then
 MsgBox "This is an array"
End If

Alternatively, you can also use the IsArray function.

Programming Tips and Gotchas

When you use VarType with an object variable, you may get what appears to be an incorrect return value. The
reason for this is that if the object has a default property, VarType returns the data type of the default property.

There is no such value as vbNothing.

For most purposes, the TypeName function, which returns a string indicating a variable's data type, is much
more convenient and easy to use.

VBA/VBScript Differences

In VBA, the data type of a strongly typed variable can be ascertained earlier than the data type of a VBScript
variable. For instance, in VBA, the code fragment:

Dim lNumber As Long
MsgBox VarType(lNumber)

returns vbLong, indicating that lNumber is a Long. The equivalent VBScript code fragment:

Dim lNumber
MsgBox VarType(lNumber)

returns vbEmpty, indicating that lNumber is Empty, since it hasn't yet been assigned a value and therefore
VBScript cannot determine its data type. (Note that, in VBA, if lNumber is defined as a variant, the behavior of
the VarType function is identical to its behavior in VBScript.)

In VBA, if varname is an array, the value returned by the function is 8194 (vbArray) plus the value of the data
type of the array. For example, an array of strings will return 8192 + 8 = 8200, or vbArray + vbString. In
VBScript, all arrays return 8192 + 10, or vbArray + vbVariant.

In part because VBA can be strongly typed, a number of data types are more common than their corresponding
VBScript data types. The Decimal data type does not exist in VBScript, since VBScript does not support the
CDec function, which is the only method available for defining a Decimal. Similarly, the Byte and Currency data
types are much rarer in VBScript than in VBA.

See Also

TypeName Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Weekday Function

Syntax

Weekday(date, [firstdayofweek])

date

Use: Required

Data Type: Variant

Any valid date expression.

firstdayofweek

Use: Optional

Data Type: Integer

Integer specifying the first day of the week.

Return Value

An Integer.

Description

Determines the day of the week of a given date.

Rules at a Glance

The following intrinsic VBScript constants determine the value returned by the Weekday function:

Constant Return value Day represented

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

If date is Null, the Weekday function also returns Null.

The following table describes the settings for the firstdayofweek argument:

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Programming Tips and Gotchas

If you specify a firstdayofweek argument, the function returns the day of the week relative to firstdayofweek. For
instance, if you set the value of firstdayofweek to vbMonday (2), indicating that Monday is the first day of the
week, and attempt to determine the day of the week on which October 1, 1996, falls, the function returns a 2.
That's because October 1, 1996, is a Tuesday, the second day of a week whose first day is Monday.

Because the function's return value is relative to firstdayofweek, using the day of the week constants to interpret
the function's return value is confusing, to say the least. If we use our October 1, 1996, example once again,
the following expression evaluates to True if the day of the week is Tuesday:

If vbMonday = WeekDay(CDate("10/1/96"), vbMonday) Then

See Also

DatePart Function, Day Function, Month Function, Year Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WeekdayName Function

Syntax

WeekdayName(WeekdayNo, [abbreviate [, FirstDayOfWeek]])

WeekdayNo

Use: Required

Data Type: Long

The ordinal number of the required weekday, from 1 to 7.

abbreviate

Use: Optional

Data Type: Boolean

Specifies whether to return the full day name or an abbreviation.

FirstDayOfWeek

Use: Optional

Data Type: Integer

Specifies which day of the week should be first.

Return Value

A String.

Description

Returns the real name of the day.

Rules at a Glance

WeekDayNo must be a number between 1 and 7, or the function generates runtime error 5, "Invalid procedure
call or argument."

If FirstDayOfWeek is omitted, WeekdayName treats Sunday as the first day of the week.

The default value of abbreviate is False.

Programming Tips and Gotchas

You'd expect that, given a date, WeekDayName would return the name of that date's day. But this isn't how the
function works. To determine the name of the day of a particular date, combine WeekDayName with a call to
the WeekDay function, as the following code fragment shows:

sDay = WeekDayName(Weekday(dDate, iFirstDay), _
 bFullName, iFirstDay)

Note that the value of the FirstDayOfWeek argument must be the same in the calls to both functions for
WeekDayName to return an accurate result.

See Also

Weekday Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

While . . . Wend Statement

Syntax

While condition
 [statements]
Wend

condition

Use: Required

Data Type: Boolean

An expression evaluating to True or False.

statements

Use: Optional

Program statements to execute while condition remains True.

Description

Repeatedly executes program code while a given condition remains True.

Rules at a Glance

A Null condition is evaluated as False.

If condition evaluates to True, the program code between the While and Wend statements is executed. After the
Wend statement is executed, control is passed back up to the While statement, where condition is evaluated
again. When condition evaluates to False, program execution skips to the first statement following the Wend
statement.

You can nest While...Wend loops within each other.

Programming Tips and Gotchas

The While...Wend statement remains in VBScript for backward compatibility only. It has been superseded by the much
more flexible Do...Loop statement.

See Also

Do . . . Loop Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

With Statement

Syntax

With object
 [statements]
End With

object

Use: Required

Data Type: Object

A previously declared object variable.

statements

Use: Optional

Program code to execute against object.

Description

Performs a set of property assignments and executes other code against a particular object, thus allowing you to refer
to the object only once. Because the object is referred to only once, the "behind the scenes" qualification of that object
is also performed only once, leading to improved performance of the code block.

Rules at a Glance

The single object referred to in the With statement remains the same throughout the code contained within the
With...End With block. Therefore, only properties and methods of object can be used within the code block without
explicitly referencing the object. All other object references within the With...End statement must start with a
fully qualified object reference.

With statements can be nested, as long as the inner With statement refers to a child object or a dependent
object of the outer With statement.

See Also

Do . . . Loop Statement, Set Statement

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Year Function

Syntax

Year(date)

date

Use: Required

Data Type: Date

Any valid date expression.

Return Value

An Integer.

Description

Returns an integer representing the year in a given date expression.

Rules at a Glance

If date contains Null, Year returns Null.

Programming Tips and Gotchas

The validity of the date expression and position of the year element within the given date expression are initially
determined by the locale settings of the Windows system. However, some extra intelligence relating to two-digit
year values has been built into the Year function that surpasses the usual comparison of a date expression to
the current locale settings.

What happens when you pass a date over to the Year function containing a two-digit year? Quite simply, when
the Year function sees a two-digit year, it assumes that all values equal to or greater than 30 are in the 20th
Century (i.e., 30 = 1930, 98 = 1998) and that all values less than 30 are in the 21st century (i.e., 29 = 2029,
5 = 2005). Of course, if you don't want sleepless nights rewriting your programs in the year 2029, you should
insist on a four-digit year, which will see your code work perfectly for about the next 8,000 years!

See Also

DatePart Function, Day Function, IsDate Function, Month Function, Weekday Function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Appendixes
Part III contains five appendixes that supplement the core reference material provided in Part II. These
include:

Appendix A, which lists each VBScript statement, function, procedure, property, or method in
each of a number of categories. You can use it to identify a particular language element so that
you can look up its detailed entry in Part II.

Appendix B, which lists the constants that are automatically supported by VBScript.

Appendix C, including a somewhat more detailed treatment of the logical and bitwise operators.

Appendix D, which lists valid locale IDs for the GetLocale and SetLocale functions.

Appendix E, which documents the Script Encoder, a tool for creating encoded script

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Language Elements by Category
This appendix lists all the functions and statements, available within the VBScript language by category. The categories
are:

Section A.1

Section A.2

Section A.3

Section A.4

Section A.5

Section A.6

Section A.7

Section A.8

Section A.9

Section A.10

Section A.11

Section A.12

Section A.13

Section A.14

Section A.15

Section A.16

Section A.17

Where necessary, individual language elements may appear in more than one category. Note that neither constants nor
operators are listed here; the former are listed in Appendix B, while the latter appear in Appendix C.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.1 Array Handling

Array Function Creates and returns an array from a comma-delimited list of values

Dim Statement Declares a fixed or dynamic array

Erase Statement Clears the contents of an array

Filter Function Returns an array of strings matching (or not) a specified value

IsArray Function Indicates whether a variable is an array

Join Function Returns a string constructed by concatenating an array of values with a given separator

LBound Function Returns the lower bound of an array, which is always 0 in VBScript

Preserve Statement Used with the ReDim statement to copy a dynamic array to a resized dynamic array

ReDim Statement Declares or redimensions a dynamic array

Split Function Returns an array of values derived from a single string and a specified separator

UBound Function Returns the upper bound of an array

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.2 Assignment

= Operator Assigns a value to a variable or property

Set Statement Assigns an object reference to a variable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.3 Comment

' Statement Declares all text from the apostrophe onward as a comment to be ignored by the language engine

Rem Statement Declares all text following the Rem statement as a comment to be ignored by the language engine

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.4 Constants

Const Statement Defines a constant

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.5 Data Type Conversion

Asc Function Returns the ASCII code for a character

AscW Function Returns the Unicode code for a character

CBool Function Converts a value to a Boolean

CByte Function Converts a value to a Byte

CCur Function Converts a value to Currency

CDate Function Returns a Date data type

CDbl Function Converts a value to a Double

Chr Function Returns the character corresponding to a numeric ASCII code

ChrW Function Returns the character corresponding to a particular Unicode value

CInt Function Converts a value to an Integer

CLng Function Converts a value to a Long

CSng Function Converts a value to a Single

CStr Function Converts a value to a String

DateSerial Function Returns a date from valid year, month, and day values

DateValue Function Returns a date from any valid date expression

Fix Function Returns an integer portion of number

Hex Function Returns a hexadecimal representation of a number

Int Function Returns the integer portion of a number

Oct Function Returns an octal representation of a number

TimeSerial Function Returns a date from valid hour, minute, and second values

TimeValue Function Returns a date value from any valid time expression

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.6 Date and Time

CDate Fujnction Converts a value to a date

Date Function Returns the current system date

DateAdd Function Returns the result of a data/time addition or subtraction calculation

DateDiff Function Returns the difference between two dates

DatePart Function Returns the part of the date requested

DateSerial Function Returns a date from an expression containing month, day, and year

DateValue Function Returns a date from a representation of a date

Day Function Returns a number representing the day of the month

FormatDateTime Function Returns a string variant formatted using the date settings for the current locale

Hour Function Returns a number representing the hour of the day

Minute Function Returns a number representing the minute of the hour

Month Function Returns a number representing the month of the year

MonthName Function Returns the name of the month for a given date

Now Function Returns the current system time

Second Function Returns a number representing the second of the minute

Time Property Returns or sets the current system time

Timer Property Returns the number of seconds elapsed since midnight

TimeSerial Function Returns a representation of a given hour, minute, and second

TimeValue Function Returns a time value from a string representation of a time

Weekday Function Returns a number representing the day of the week

WeekdayName Function Returns a string indicating the day of the week

Year Function Returns a number representing the year in a date expression

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.7 Dictionary Object

Add Method Adds an item to the dictionary

CompareMode Property Returns or sets the comparison mode

Count Property Returns the number of items in the dictionary

Exists Method Returns True if the key exists

Item Property Returns or sets the item associated with a given key

Items Method Returns an array of all items in the dictionary

Key Property Renames a given key

Keys Method Returns an array of all keys in the dictionary

Remove Method Removes an item associated with a given key

RemoveAll Method Removes all items from the dictionary

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.8 Error Handling

Clear Method Resets the current Err object

Description Property Returns or sets the Err object's description of the current error

Err Object Contains information about the last error

HelpContext Property Returns or sets the help file ID for the Err object's current error

HelpFile Property Returns or sets the name and path of the help file relating to the Err object's current error

Number Property Returns or sets the current error code for an Err object

On Error Resume Next
Statement

Indicates that errors will be handled within script and that program execution should
continue on the line of code following an error

Raise Method Generates a user-defined error

Source Property Returns or sets the name of the object or application which raised an Err object's error

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.9 File System Objects

A.9.1 Drive Object

AvailableSpace Property Returns a number representing the available space on the drive in bytes

DriveLetter Property Returns a string containing the drive letter

DriveType Property Returns a DriveTypeConst specifying the type of drive

FileSystem Property Returns a string containing an abbreviation for the filesystem type (i.e., FAT)

FreeSpace Property Returns the free space on the drive in bytes

IsReady Property Returns True if the specified drive is ready

Path Property Returns a string containing the full path of the drive

RootFolder Property Returns a Folder object representing the root of the drive

SerialNumber Property Returns a Long containing the serial number of the disk

ShareName Property Returns a String containing the share name, if any

TotalSize Property Returns a variant containing the total size of the disk in bytes

VolumeName Property Returns a string containing the name of the current volume

A.9.2 Drives Collection Object

Count Property Returns the number of Drive objects in the collection

Item Property Returns the Drive object associated with the given key (the drive name)

A.9.3 File Object

Attributes Property Returns a FileAttributes constant

Copy Method Copies this file to another location

DateCreated Property Returns the date the file was created

DateLastAccessed Property Returns the date the file was last accessed

DateLastModified Property Returns the date the file was last modified

Delete Method Removes this file

Drive Property Returns a Drive object representing the drive on which this file is located

Move Method Moves this file to another location

Name Property Returns the name of this file

OpenAsTextStream Opens this file for text manipulation and returns the open file as a TextStream object

ParentFolder Property Returns a Folder object representing the folder in which this file is contained

Path Property Returns a string containing the full path of this file

ShortName Property Returns a string containing the short name of this file

ShortPath Property Returns a string containing the short path of this file

Size Property Returns a Variant specifying the size of this file

Type Property Returns a string detailing the type of this file

A.9.4 Files Collection Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Count Property Returns the number of Folder objects in the collection

Item Property Returns the File object associated with the specified key

A.9.5 FileSystemObject Object

BuildPath Function Returns a string containing the full path

CopyFile Method Copies a file

CopyFolder Method Copies a folder and its contents

CreateFolder Function Returns a Folder object for the newly created folder

CreateTextFile Function Returns a TextStream object for the newly created text file

DeleteFile Method Removes a file from disk

DeleteFolder Method Removes the folder and its contents from disk

DriveExists Function Returns True if the specified drive is found

Drives Property Returns a Drive object

FileExists Function Returns True if the specified file is found

FolderExists Function Returns True if the specified folder is found

GetAbsolutePathName
Function Returns the canonical representation of the path

GetBaseName Function Returns the base name from a path

GetDrive Function Returns a Drive object for the specified drive

GetDriveName Function Returns a string representing the name of a drive

GetExtensionName
Function Returns a string containing the extension from a given path

GetFile Function Returns a File object

GetFileName Function Returns a string containing the name of a file from a given path

GetFileVersion Function Returns a string containing the version of a file

GetFolder Function Returns a Folder object

GetParentFolderName
Function Returns the name of the folder immediately above the folder in a given path

GetSpecialFolder Function Returns a folder object representing one of the special Windows folders

GetStandardStream Returns a TextStream object representing the standard input, standard output, or
standard error stream

GetTempName Function Returns a string containing a valid windows temporary filename

MoveFile Method Moves a file from one location to another

MoveFolder Method Moves a folder and all its contents from one location to another

OpenTextFile Function Returns a TextStream object of the opened file

A.9.6 Folder Object

Attributes Property Returns a FileAttributes constant value

Copy Method Copies this folder and its contents to another location

CreateTextFile Function Returns a TextStream object for the newly created text file

DateCreated Property Returns the date the folder was created

DateLastAccessed
Property Returns the date the folder was last accessed

DateLastModified
Property Returns the date the folder was last modified

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Returns the date the folder was last modified

Delete Method Removes the folder and all its contents

Drive Property Returns a Drive object representing the drive on which the folder is located

Files Property Returns a Files collection object representing the files in the folder

IsRootFolder Property Returns True if the folder is the root of the drive

Move Method Moves the folder and its contents to another location

Name Property Returns the name of the folder

ParentFolder Property Returns a Folder object representing the next folder up in hierarchy

Path Property Returns a string containing the full path of the folder

ShortName Property Returns a string containing the short name of the folder

ShortPath Property Returns a string containing the short path of the folder

Size Property Returns a Variant specifying the total size of all files and all subfolders contained in the
folder

SubFolders Property Returns a Folders collection object representing the subfolders contained in the folder

Type Property Returns a string detailing the type of folder

A.9.7 Folders Collection Object

Add Function Returns a Folder object for the newly created folder

Count Property Returns the number of Folder objects in the collection

Item Property Returns the Folder object associated with the specified key

A.9.8 TextStreamObject

AtEndOfLine Property Returns True if the end of the line has been reached

AtEndOfStream Property Returns True if the end of the text stream has been reached

Close Method Closes the TextStream object

Column Property Returns a Long specifying the current column number

Line Property Returns a Long specifying the current line number

Read Function Returns a string containing a specified number of characters from the TextStream

ReadAll Function Returns a string containing the entire contents the TextStream

ReadLine Function Returns a string containing the current line within the TextStream

Skip Method Skips a specified number of characters

SkipLine Method Skips to the next line

Write Method Writes a specified string to the TextStream

WriteBlankLines Method Writes a specified number of blank lines to the TextStream

WriteLine Method Writes a specified string and a line break to the TextStream

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.10 Information Functions

GetLocale Function Returns the ID of the current locale

IsArray Function Returns True if a variable is an array

IsDate Function Returns True if an expression can be converted to a date

IsEmpty Function Returns True if a variant variable has not been initialized

IsNull Function Returns True if an expression evaluates to Null

IsNumeric Function Returns True if an expression can be evaluated as a number

IsObject Function Returns True if a variable contains an object reference

Len Function Returns the length of a variable

LenB Function Returns the number of bytes needed to hold a given variable

RGB Function Returns a number representing an RGB color value

ScriptEngine Function Returns a string representing the scripting language in use

ScriptEngineBuildVersion Function Returns VBScript's build number

ScriptEngineMajorVersion Function Returns VBScript's major version number

ScriptEngineMinorVersion Function Returns VBScript's minor version number

TypeName Function Returns the data type name of a variable

VarType Function Returns a number representing the data type of a variable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.11 Mathematical and Numeric

Abs Function Returns the absolute value of a given number

Atn Function Returns the arctangent of a number

Cos Function Returns the cosine of an angle

Exp Function Returns the base of a natural logarithm raised to a power

FormatNumber Function Returns a number formatted according to a specified format

FormatPercent Function Returns a number formatted using the % symbol

Fix Function Returns the integer portion of number

Int Function Returns the integer portion of a number

Log Function Returns the natural logarithm of a number

Randomize Sub Initializes the random number generator

Rnd Function Returns a random number

Round Function Rounds a number

Sgn Function Indicates the sign of a number

Sin Function Returns the sine of an angle

Sqr Function Returns the square root of a number

Tan Function Returns the tangent of an angle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.12 Miscellaneous

Eval Function Evaluates an expression that can be built dynamically at runtime and returns the result

Execute Statement Executes one or more statements that can be built dynamically at runtime

ExecuteGlobal
Statement

Executes one or more statements that can be built dynamically at runtime in the script's
global namespace

LoadPicture Function Returns a Picture object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.13 Object Programming

Class...End Class
Statement Defines a class

CreateObject Function Returns a reference to a COM component

For Each...Next
Statement

Iterates through a collection or array of objects or values, returning a reference to each of
the members

Function Statement Defines a function

GetObject Function Returns a reference to a COM object

GetRef Function Returns a reference to a procedure that can be used as an object's event handler

Initialize Event Fired when a class is first instantiated

Is Operator Compares two object references to determine whether they are identical

Property Get Statement Returns the value of a property

Property Let Statement Sets the value of a property

Property Set Statement Assigns an object reference to a property

Set Statement Assigns an object reference to an object variable

Sub Statement Defines a sub; that is, a procedure that does not return a value

Terminate Event Fired when the last reference to an instance of a class is destroyed

With...End With
Statement Allows the implicit use of an object reference

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.14 Program Structure and Flow

Call Statement Passes execution to a subroutine or event handler

Do... Loop
Statement

Repeats a section of code while or until a condition is met; can take the form of Do Until...Loop
(loops until an expression is True), Do...Loop Until (loops at least once until an expression is
True), Do While...Loop (loops while an expression is True), and Do...Loop While (loops at least
once while the expression is True)

Exit Statement Branches to the next line of code outside of the currently executing structure; can take the
form of Exit Do, Exit For, Exit Function, Exit Property, and Exit Sub

End Statement Marks the end of a program control structure; can take the form of End Class, End Function,
End If, End Property, End Select, End Sub, and End With

For Each...Next
Statement

Iterates through a collection or array of objects or values, returning a reference to each of the
members

For...Next
Statement Iterates through a section of code a given number of times

Function Statement Declares a procedure

If..Then..ElseIf...Else
Statement Defines a conditional block or blocks of code

Private Statement Declares the procedure or variable to have scope only within the module in which it is defined

Property Get
Statement Defines a prototype for a property procedure that returns a value

Property Let
Statement Defines a prototype for a property procedure that accepts a value

Property Set
Statement Defines a prototype for a property procedure that sets a reference to an object

Public Statement Declares a global or public variable or function. In a class, marks the member as part of the
class' public interface

Select Case...

End Select
Statement

A series of code blocks of which only one will execute based on a given value

Sub Statement Declares a procedure that does not return a value

While...Wend
Statement Repeats a section of code while or until a condition is met

With...End With
Statement Allows the implicit use of an object reference

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.15 String Manipulation

Asc Function Returns a number representing the ASCII character of the first character of a string

AscB Function Returns the value of the first byte in a string

AscW Function Returns the Unicode character code of the first character in a string

Chr Function Returns a string containing the character associated with the specified character code

ChrB Function Returns a string containing the specified single byte

ChrW Function Returns a string with the character that corresponds to a particular Unicode character code

Escape Function Returns an encoded version of a string

Execute Method Performs a regular expression search on a string

Filter Function Returns an array of strings matching (or not) a specified value

FirstIndex Property Returns the starting position in a search string where a regular expression match represented
by a Match object occurred.

FormatCurrency
Function Returns a string formatted using the currency settings for the current locale

FormatDateTime
Function Returns a string formatted using the date settings for the current locale

FormatNumber
Function Returns a number formatted to a specified format

FormatPercent
Function Returns a number formatted using the % symbol

Global Property Indicates whether a RegExp object's pattern should match all occurrences in a search string or
just one

IgnoreCase
Property Indicates whether a RegExp object's pattern match should be case-insensitive

InStr Function Returns the position of the first occurrence of one string within another

InStrB Function Returns the byte position of the first occurrence of one string in another

InStrRev Function Returns the last occurrence of a string within another string

Join Function Returns a string constructed by concatenating an array of values with a given separator

LCase Function Returns a variant string converted to lowercase

Left Function Returns a variant string containing the leftmost n characters of a string

LeftB Function Returns a variant string containing the leftmost n bytes of a string

Len Function Returns the length of a given string

LenB Function Returns the number of bytes in a given string

Length Property Returns the length of a match represented by a Match object in a search string

LTrim Function Returns a variant string with any leading spaces removed

Match Object Represents a single match from a regular expression search

Matches Collection Contains all the Match objects representing the matches found in a regular expression search

Mid Function Returns a variant substring containing a specified number of characters

MidB Function Returns a variant string containing a specified number of bytes from a string

Pattern Property Sets or returns the pattern that the RegExp object attempts to find in its search string

RegExp Object An object designed to provide regular expression support

Replace Function Returns a string where a specified value has been replaced with another given value

Replace Method Replaces substrings found in a regular expression search

Right Function Returns a variant string containing the rightmost n characters of a string

RightB Function Returns a variant string containing the rightmost n bytes of a string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RightB Function Returns a variant string containing the rightmost n bytes of a string

RTrim Function Returns a variant string with any trailing spaces removed

Space Function Returns a variant string consisting of the specified number of spaces

Split Function Returns an array of values derived from a single string and a specified separator

StrComp Function Returns the result of a comparison of two strings

String Function Returns a variant string containing a repeated character

StrReverse
Function Returns the reverse of a string

Test Method Indicates whether a match was found in a RegExp object search

Trim Function Returns a variant string with both leading and trailing spaces removed

UCase Function Returns a variant string converted to uppercase

Unescape Function Decodes a URL- or HTML-encoded string

Value Property Returns the text of a regular expression match represented by a Match object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.16 User Interaction

InputBox Function Displays a dialog box to allow user input

MsgBox Function Displays a dialog box and returns a value indicating the command button selected by the user

SetLocale Function Sets the current locale and returns the ID of the previous locale

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.17 Variable Declaration

Const Statement Declares a constant

Dim Statement Declares a variable

Option Explicit
Statement Requires variable declaration

Private Statement Declares the procedure or variable to have scope only in the module in which it is defined

Public Statement Declares a global or public variable or function; marks the member as part of the class' public
interface in a class

ReDim Statement Declares a dynamic array variable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. VBScript Constants
What follows is a series of tables listing the intrinsic constants supported by VBScript and their values. Note that,
because the constants are part of the VBScript language, you don't have to define them using the Const statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.1 Color Constants
These constants represent the values returned by RGB for standard colors:

Constant Value Description

vbBlack 0 Black

vbRed 255 Red

vbGreen 65280 Green

vbYellow 65535 Yellow

vbBlue 16,711,680 Blue

vbMagenta 16,711,935 Magenta

vbCyan 16,776,960 Cyan

vbWhite 16,777,215 White

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.2 Comparison Constants
The comparison constants are used by a number of functions (Filter, StrComp, Split, and Replace), as well as by the
CompareMode property of the Dictionary object, to determine whether astring comparison should be case-sensitive or
not:

Constant Value Description

vbBinaryCompare 0 Binary (case-sensitive comparison)

vbTextCompare 1 Text (case-insensitive comparison)

vbDatabaseCompare 2 Database (unused in VBScript)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.3 Date and Time Constants
A number of functions (DateDiff, DatePart, Weekday, and WeekdayName) have a FirstDayOfWeek parameter whose value
can be one of the day of the week constants (vbSunday through vbSaturday) as well as vbUseSystemDayOfWeek.

The DateDiff and DatePart functions also have a FirstWeekOfYear parameter whose value can be vbUseSystem, vbFirstJan1,
vbFirstFourDays, or vbFirstFullWeek.

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystem 0 Use the date format defined by the local computer's regional settings

vbUseSystemDayOfWeek 0 Use the day of the week specified in your system settings for the first day of the week

vbFirstJan1 1 Use the week in which January 1 occurs; this is the default value for both DateDiff and
DatePart

vbFirstFourDays 2 Use the first week that has at least four days in the new year

vbFirstFullWeek 3 Use the first full week of the year

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.4 Date Format Constants
The FormatDateTime function allows you to specify the format in which a date or time is displayed by choosing one of
the date format constants to supply to its NamedFormat parameter:

Constant Value Description

vbGeneralDate 0 Display a date in short date format and a time in long time format. If present, both parts are
displayed.

vbLongDate 1 Use the long date format defined in the local computer's regional settings.

vbLongTime 3 Use the long time format defined in the local computer's regional settings.

vbShortDate 2 Use the short date format defined in the local computer's regional settings.

vbShortTime 4 Use the short time format defined in the local computer's regional settings.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.5 Error Constant
vbObjectError is used as a base error number for user-defined errors:

Constant Value Description

vbObjectError -
2,147,221,504

The base error number, to which a specific number is added when a user-defined error
is raised. For example:

Err.Raise vbObjectError + 102

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.6 Logical and TriState Constants
In many cases, only the logical constants vbTrue and vbFalse can be used. In other cases, the third constant,
vbUseDefault, can be used to indicate a setting that is neither True nor False, or a setting that is defined elsewhere in the
system:.

Constant Value Description

vbFalse 0 False

vbTrue -1 True

vbUseDefault -2 Use the default value defined by the system, or not applicable

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.7 Message Box Constants
Except for vbMsgBoxHelpButton, any one of the following constants can be used with the buttons parameters of the
MsgBox function to determine which buttons appear in the dialog. The vbMsgBoxHelpButton constant can be ORed with
the button constant to add a Help button to provide context-sensitive help; this, however, also requires that arguments
be supplied to the function's helpfile and context parameters.

Constant Value Description

vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons

vbMsgBoxHelpButton 16384 Help button

vbOKCancel 1 OK and Cancel buttons

vbOKOnly 0 OK button; this is the default value

vbRetryCancel 5 Retry and Cancel buttons

vbYesNo 4 Yes and No buttons

vbYesNoCancel 3 Yes, No, and Cancel buttons

You can determine which of these buttons is the default (that is, it appears selected and will be chosen if the user
presses the Enter key) by logically ORing any one of the following constants with any other constants passed to the
buttons parameter. The selected button is designated by its position on the dialog. By default, the first button appears
selected.

Constant Value Description

vbDefaultButton1 0 First button is the default

vbDefaultButton2 256 Second button is the default

vbDefaultButton3 512 Third button is the default

vbDefaultButton4 768 Fourth (Help) button is the default

The MsgBox function also allows you to designate an icon that appears in the message box to indicate the message
type. You can logically OR any one of the message box icon constants with the other values that you pass as arguments
to the buttons parameter, as in the following code fragment:

iResult = MsgBox("Is this OK?", vbYesNo Or vbQuestion Or _
 vbApplicationModal, "Delete File")

Constant Value Description

vbCritical 16 Critical (stop sign) icon

vbExclamation 48 Exclamation (caution) icon

vbInformation 64 Information icon

vbQuestion 32 Question mark icon

You can also determine the modality of the message box by ORing one of the following constants with any other
constants passed to the buttons parameter:

Constant Value Description

vbApplicationModal 0 The focus cannot move to another interface object in the application until the dialog is
closed.

vbSystemModal 4096 The focus cannot move elsewhere in the system until the dialog is closed.

Three miscellaneous constants can be used to control the behavior of the dialog. Once again, they must be logically
ORed with any other constants passed to the buttons parameter.

Constant Value Description

vbMsgBoxRight 524288 Right aligns text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vbMsgBoxRight 524288 Right aligns text

vbMsgBoxRtlReading 1048576 On Hebrew and Arabic systems, specifies that text should appear from right to left

vbMsgBoxSetForeground 65536 Makes the message box the foreground window

Finally, the value returned by the MsgBox function can be compared with the following constants to determine which
button was selected. Note that there is no need for a vbHelp constant, since selecting the Help button, if it is displayed,
keeps the message box open but opens a help window to display context-sensitive help information.

Constant Value Description

vbAbort 3 The Abort button

vbCancel 2 The Cancel button

vbIgnore 5 The Ignore button

vbNo 7 The No button

vbOK 1 The OK button

vbRetry 4 The Retry button

vbYes 6 The Yes button

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.8 String Constants
The following constants are replacements for one or more characters. For instance, to add a line break to a string that's
not being displayed in a web page, you can use a statement like the following:

sMsg = sMsg & vbCrLf

Constant Value Description

vbCr Chr(13) Carriage return

vbCrLf Chr(10) & Chr(13) Carriage return and linefeed characters

vbFormFeed Chr(12) Form-feed character

vbLf Chr(10) Linefeed character

vbNewLine Platform Specific New line character

vbNullChar Chr(0) Null character

vbNullString 0 Null pointer, used for calling external routines

vbTab Chr(9) Tab character

vbVertical Tab Chr(11) Vertical tab character

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.9 Variable Type Constants
The VarType constant returns one of the following constants to indicate the data subtype of the variable passed to it as a
parameter. The exception is an array, which returns a value of 8204, or vbArray Or vbVariant.

Constant Value Description

vbArray 8192 Array

vbBoolean 11 Boolean

vbByte 17 Byte

vbCurrency 6 Currency

vbDataObject 13 Data Object

vbDate 7 Date

vbDecimal 14 Decimal (unavailable in VBScript)

vbDouble 5 Double

vbEmpty 0 Empty

vbError 10 Error

vbInteger 2 Integer

vbLong 3 Long

vbNull 1 Null

vbObject 9 Object

vbSingle 4 Single

vbString 8 String

vbVariant 12 Variant

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. Operators
There are four groups of operators in VBScript: arithmetic, concatenation, comparison, and logical. You'll find some to
be instantly recognizable, while others may be unfamiliar. However, if you have the need to use these types of
operators, it is likely that you know the mathematics fundamentals behind them. We will look at each group of
operators in turn before discussing the order of precedence VBScript uses when it encounters more than one type of
operator within an expression.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.1 Arithmetic Operators
+

The addition operator. Used to add numeric expressions, as well as to concatenate (join together) two string
variables. However, it's preferable to use the concatenation operator with strings to eliminate ambiguity. For
example:

result = expression1 + expression2

-

The subtraction operator. Used to find the difference between two numeric values or expressions, as well as to
denote a negative value. Unlike the addition operator, it cannot be used with string variables. For example:

result = expression1 - expression2

/

The division operator. Returns a floating-point number.

result = expression1 / expression2

*

The multiplication operator. Used to multiply two numerical values. For example:

result = expression1 * expression2

\

The integer division operator. Performs division on two numeric expressions and returns an integer result (no
remainder or decimal places). For example:

result = expression1 \ expression2

Mod

The modulo operator. Performs division on two numeric expressions and returns only the remainder. If either of
the two numbers are floating-point numbers, they are rounded to integer values prior to the modulo
operation.For example:

result = expression1 Mod expression2

^

The exponentiation operator. Raises a number to the power of the exponent. For example:

result = number ^ exponent

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.2 String Operator
There is only one operator for strings: the concatenation operator, represented by the ampersand symbol (&). It is used
to bind a number of string variables together, creating one string from two or more individual strings. Any nonstring
variable or expression is converted to a string prior to concatenation. Its syntax is:

result = expression1 & expression2

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.3 Comparison Operators
There are three main comparison operators: < (less-than), > (greater-than), and = (equal to). They can be used
individually, or any two operators can be combined with each other. Their general syntax is:

result = expression1 operator expression2

The resulting expression is True (-1), False (0), or Null. A Null results only if either expression1 or expression2 itself is Null.

What follows is a list of all the comparison operators supported by VBScript, as well as an explanation of the condition
required for the comparison to result in True:

>

expression1 is greater than and not equal to expression2

<

expression1 less than and not equal to expression2

<> or ><

expression1 not equal to expression2 (less than or greater than)

>= or =>

expression1 greater than or equal to expression2

<= or =<

expression1 less than or equal to expression2

=

expression1 equal to expression2

Comparison operators can be used with both numeric and string variables. Literal numbers and strings are called hard.
Variables and other expressions are called soft. When comparing two expressions where one is a string and one is a
numeric, the rules are:

1. If both are hard, the string is converted to a number before the comparison is executed.

2. If one is hard and one is soft, then the soft one is converted to the type of the hard one before the comparison.

3. If both are soft, then the number will be considered "smaller" than the string.

C.3.1 The Is Operator

The Is operator determines whether two object reference variables refer to the same object. Thus, it tests for the
"equality" of two object references. Its syntax is:

result = object1 Is object2

If both object1 and object2 refer to the same object, the result is True; otherwise, the result is False. You also use the Is
operator to determine whether an object variable refers to a valid object. This is done by comparing the object variable
to the special Nothing value:

If oVar Is Nothing Then

The result is True if the object variable does not hold a reference to an object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.4 Logical and Bitwise Operators
Logical operators allow you to evaluate one or more expressions and return a logical value. VBA supports six logical
operators: And, Or, Not, Eqv, Imp, and Xor. These operators also double as bitwise operators. A bitwise comparison
examines each bit position in both expressions and sets or clears the corresponding bit in the result depending upon the
operator used. The result of a bitwise operation is a numeric value.

And

Performs logical conjunction; that is, it returns True only if both expression1 and expression2 evaluate to True. If
either expression is False, then the result is False. If either expression is Null, then the result is Null. Its syntax is:

result = expression1 And expression2

For example:

If x = 5 And y < 7 Then

In this case, the code after the If statement will be executed only if the value of x is five and the value of y is
less than seven.

As a bitwise operator, And returns 1 if the compared bits in both expressions are 1, and returns 0 in all other
cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 0

1 0 0

1 1 1

For example, the result of 15 And 179 is 3, as the following binary representation shows:

00000011 = 00001111 And 10110011

Or

Performs logical disjunction; that is, if either expression1 or expression2 evaluates to True, or if both expression1
and expression2 evaluate to True, the result is True. Only if neither expression is True does the Or operation return
False. If either expression is Null, then the result is also Null. The syntax for the Or operator is:

result = expression1 Or expression2

For example:

If x = 5 Or y < 7 Then

In this case, the code after the If statement will be executed if the value of x is five or if the value of y is less
than seven.

As a bitwise operator, Or returns 0 if the compared bits in both expressions are 0, and returns 1 in all other
cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 1

For example, the result of 15 Or 179 is 191, as the following binary representation shows:

10111111 = 00001111 Or 10110011

Not

Performs logical negation on a single expression; that is, if the expression is True, the Not operator causes it to
become False, while if it is False, the operator causes its value to become True. If the expression is Null, though,
the result of using the Not operator is still a Null. Its syntax is:

result = Not expression1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result = Not expression1

For example:

If Not IsNumeric(x) Then

In this example, the code following the If statement will be executed if IsNumeric returns False, indicating that x
is not a value capable of being represented by a number.

As a bitwise operator, Not simply reverses the value of the bit, as shown in the following table:

expression1 Result

0 1

1 0

For example, the result of Not 16 is 239 (or -17, depending on how the high-order bit is interpreted), as the
following binary representation shows:

Not 00010000 = 11101111

Eqv

Performs logical equivalence; that is, it determines whether the value of two expressions is the same. Eqv
returns True when both expressions evaluate to True or both expressions evaluate to False, but it returns False if
either expression evaluates to True while the other evaluates to False. Its syntax is:

result = expression1 Eqv expression2

As a bitwise operator. Eqv returns 1 if the compared bits in both expressions are the same, and it returns 0 if
they are different, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 1

0 1 0

1 0 0

1 1 1

For example, the result of 15 Eqv 179 is 67 (or -189), as the following binary representation shows:

01000011 = 00001111 Eqv 10110011

Imp

Performs logical implication, as shown in the following table:

expression1 expression2 Result

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

Its syntax is:

result = expression1 Imp expression2

As a bitwise operator, Imp returns 1 if the compared bits in both expressions are the same or if expression1 is 1;
it returns 0 if the two bits are different and the bit in expression1 is 1, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 1

0 1 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 0 0

1 1 1

For example, the result of 15 Imp 179 is 243 (or -13), as the following binary representation shows:

11110011 = 00001111 Imp 10110011

Xor

Perform logical exclusion, which is the opposite of Eqv; that is, Xor (an abbreviation for eXclusive OR)
determines whether two expressions are different. When both expressions are either True or False, then the
result is False. If only one expression is True, the result is True. If either expression is Null, the result is also Null.
Its syntax is:

result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 if the bits being compared are different, and returns 0 if they are the same,
as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 0

For example, the result of 15 Xor 179 is 188, as the following binary representation shows:

10111100 = 00001111 Xor 10110011

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.5 Operator Precedence
If you include more than one operator in a single line of code, you need to know the order in which VBScript will
evaluate them. Otherwise, the results may be completely different than you intend. The rules that define the order in
which a language handles operators is known as the order of precedence. If the order of precedence results in
operations being evaluated in an order other than the one you intend—and therefore if the value that results from these
operations is "wrong" from your point of view—you can explicitly override the order of precedence through the use of
parentheses. However, the order of precedence still applies to multiple operators within parentheses.

When a single line of code includes operators from more than one category, they are evaluated in the following order:

1. Arithmetic operators

2. Concatenation operators

3. Comparison operators

4. Logical operators

Within each category of operators except for the single concatenation operator, there is also an order of precedence. If
multiple comparison operators appear in a single line of code, they are simply evaluated from left to right. The order of
precedence of arithmetic operators is as follows:

1. Exponentiation (^)

2. Division and multiplication (/,*) (No order of precedence between the two)

3. Integer division (\)

4. Modulo arithmetic (Mod)

5. Addition and subtraction (+,-) (No order of precedence between the two)

If the same arithmetic operator is used multiple times in a single line of code, the operators are evaluated from left to
right.

The order of precedence of logical operators is:

1. Not

2. And

3. Or

4. Xor

5. Eqv

6. Imp

If the same arithmetic or logical operator is used multiple times in a single line of code, the operators are evaluated
from left to right.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix D. Locale IDs
The following table lists the locale IDs used by the GetLocale and SetLocale functions. The GetLocale function returns a
Long containing the decimal locale ID. In most cases, the SetLocale function accepts a locale ID in the form of a
decimal, a hexadecimal, or a string value.

Locale Decimal ID Hex ID String ID

Afrikaans 1078 &h0436 af

Albanian 1052 &h041C sq

Arabic (No location) 1 &h0001 ar

Arabic (United Arab Emirates) 14337 &h3801 ar-ae

Arabic (Bahrain) 15361 &h3C01 ar-bh

Arabic (Algeria) 5121 &h1401 ar-dz

Arabic (Egypt) 3073 &h0C01 ar-eg

Arabic (Iraq) 2049 &h0801 ar-iq

Arabic (Jordan) 11265 &h2C01 ar-jo

Arabic (Kuwait) 13313 &h3401 ar-kw

Arabic (Lebanon) 12289 &h3001 ar-lb

Arabic (Libya) 4097 &h1001 ar-ly

Arabic (Morocco) 6145 &h1801 ar-ma

Arabic (Oman) 8193 &h2001 ar-om

Arabic (Qatar) 16385 &h4001 ar-qa

Arabic (Saudi Arabia) 1025 &h0401 ar-sa

Arabic (Syria) 10241 &h2801 ar-sy

Arabic (Tunisia) 7169 &h1C01 ar-tn

Arabic (Yemen) 9217 &h2401 ar-ye

Azeri (Latin) 1068 &h042C az-az

Basque 1069 &h042D eu

Belarusian 1059 &h0423 be

Bulgarian 1026 &h0402 bg

Catalan 1027 &h0403 ca

Chinese (No location) 4 &h0004 zh

Chinese (China) 2052 &h0804 zh-cn

Chinese (Hong Kong S.A.R.) 3076 &h0C04 zh-hk

Chinese (Singapore) 4100 &h1004 zh-sg

Chinese (Taiwan) 1028 &h0404 zh-tw

Croatian 1050 &h041A hr

Czech 1029 &h0405 cs

Danish 1030 &h0406 da

Dutch (The Netherlands) 1043 &h0413 nl

Dutch (Belgium) 2067 &h0813 nl-be

English (No location) 9 &h0009 en

English (Australia) 3081 &h0C09 en-au

English (Belize) 10249 &h2809 en-bz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

English (Belize) 10249 &h2809 en-bz

English (Canada) 4105 &h1009 en-ca

English (Caribbean) 9225 &h2409
English (Ireland) 6153 &h1809 en-ie

English (Jamaica) 8201 &h2009 en-jm

English (New Zealand) 5129 &h1409 en-nz

English (Philippines) 13321 &h3409 en-ph

English (South Africa) 7177 &h1C09 en-za

English (Trinidad) 11273 &h2C09 en-tt

English (United Kingdom) 2057 &h0809 en-gb

English (United States) 1033 &h0409 en-us

Estonian 1061 &h0425 et

Farsi 1065 &h0429 fa

Finnish 1035 &h040B fi

Faroese 1080 &h0438 fo

French (France) 1036 &h040C fr

French (Belgium) 2060 &h080C fr-be

French (Canada) 3084 &h0C0C fr-ca

French (Luxembourg) 5132 &h140C fr-lu

French (Switzerland) 4108 &h100C fr-ch

Gaelic (Ireland) 2108 &h083C
Gaelic (Scotland) 1084 &h043C gd

German (Germany) 1031 &h0407 de

German (Austria) 3079 &h0C07 de-at

German (Liechtenstein) 5127 &h1407 de-li

German (Luxembourg) 4103 &h1007 de-lu

German (Switzerland) 2055 &h0807 de-ch

Greek 1032 &h0408 el

Hebrew 1037 &h040D he

Hindi 1081 &h0439 hi

Hungarian 1038 &h040E hu

Icelandic 1039 &h040F is

Indonesian 1057 &h0421 in

Italian (Italy) 1040 &h0410 it

Italian (Switzerland) 2064 &h0810 it-ch

Japanese 1041 &h0411 ja

Korean 1042 &h0412 ko

Latvian 1062 &h0426 lv

Lithuanian 1063 &h0427 lt

FYRO Macedonian 1071 &h042F mk

Malay (Malaysia) 1086 &h043E ms

Maltese 1082 &h043A mt

Marathi 1102 &h044E mr

Norwegian (Bokmål) 1044 &h0414 no

Norwegian (Nynorsk) 2068 &h0814

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Polish 1045 &h0415 pl

Portuguese (Portugal) 2070 &h0816 pt

Portuguese (Brazil) 1046 &h0416 pt-br

Raeto-Romance 1047 &h0417 rm

Romanian (Romania) 1048 &h0418 ro

Romanian (Moldova) 2072 &h0818 ro-mo

Russian 1049 &h0419 ru

Russian (Moldova) 2073 &h0819 ru-mo

Sanskrit 1103 &h044F
Serbian (Cyrillic) 3098 &h0C1A sr

Serbian (Latin) 2074 &h081A
Setsuana 1074 &h0432 tn

Slovenian 1060 &h0424 sl

Slovak 1051 &h041B sk

Sorbian 1070 &h042E sb

Spanish (Spain) 1034 &h0C0A es

Spanish (Argentina) 11274 &h2C0A es-ar

Spanish (Bolivia) 16394 &h400A es-bo

Spanish (Chile) 13322 &h340A es-cl

Spanish (Colombia) 9226 &h240A es-co

Spanish (Costa Rica) 5130 &h140A es-cr

Spanish (Dominican Republic) 7178 &h1C0A es-do

Spanish (Ecuador) 12298 &h300A es-ec

Spanish (Guatemala) 4106 &h100A es-gt

Spanish (Honduras) 18442 &h480A es-hn

Spanish (Mexico) 2058 &h080A es-mx

Spanish (Nicaragua) 19466 &h4C0A es-ni

Spanish (Panama) 6154 &h180A es-pa

Spanish (Peru) 10250 &h280A es-pe

Spanish (Puerto Rico) 20490 &h500A es-pr

Spanish (Paraguay) 15370 &h3C0A es-py

Spanish (El Salvador) 17418 &h440A es-sv

Spanish (Uruguay) 14346 &h380A es-uy

Spanish (Venezuela) 8202 &h200A es-ve

Sutu 1072 &h0430 sx

Swahili 1089 &h0441
Swedish (Sweden) 1053 &h041D sv

Swedish (Finland) 2077 &h081D sv-fi

Tamil 1097 &h0449

Tatar 1092 0X0444
Thai 1054 &h041E th

Turkish 1055 &h041F tr

Tsonga 1073 &h0431 ts

Ukrainian 1058 &h0422 uk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Urdu 1056 &h0420 ur

Uzbek (Cyrillic) 2115 &h0843 uz-uz

Uzbek (Latin) 1091 &h0443 uz-uz

Vietnamese 1066 &h042A vi

Xhosa 1076 &h0434 xh

Yiddish 1085 &h043D
Zulu 1077 &h0435 zu

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix E. The Script Encoder
The Script Encoder, screnc.exe, is a command-line utility that encodes script, including the script embedded in HTML
page, ASP pages (including incline ASP script), and .wsf scripts for the Windows Script Host. The encoded script, rather
than the original source code, is then decoded and executed when the script is run. Using the Script Encoder to encode
script offers two advantages:

Source code protection

Ordinarily, script is plainly visible to prying eyes. Client-side script in particular can be inspected by anyone who
requests a web page. Although both ASP and WSH scripts are accessible to a smaller number of users, they
nevertheless can be read by anyone with access to the system on which they reside. By encrypting the code,
the Script Component renders it illegible.

Security

Not only can scripts be viewed, but in some cases they can even be modified. Once a script is encoded,
however, any further modification renders it inoperable. By permitting scripts to be encoded, the Script Encoder
has two objectives:

Stop casual inspection and modification of a script.

Provide a legal recourse, should inspection or modification take place.

At the same time, it is important to recognize that the script encoder is not cryptographically strong; encoded
scripts can be unencoded very easily (and unencoders are readily downloadable from the Internet). The Script
Encoder ultimately offers the same level of minimal protection as locking a car provides to its contents. It
mitigates casual inspection of code, but should not be used to protect valuable or sensitive information like
passwords.

The Script Encoder can successfully encode most scripts written in VBScript. An exception,
however, is script written for Outlook forms, in part because their script is not stored in
standalone script files, and in part because Outlook forms support only one language,
VBScript, whereas from the viewpoint of the host, encoded script is a separate language:
VBScript.Encode.

In addition, problems arise when using encoded script on Far East operating systems. In
particular, it is possible for collisions with DBCS characters to occur, causing the encoded
script to be incorrectly decoded. As a result, the Script Encoder should not be used if a
script is ever going to be run on a Far East operating system.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.1 How Encoding and Decoding Works
The command-line Script Encoder utility (screnc.exe) is responsible for encodingscripts. To determine what to encode,
the Script Encoder looks for a start encode marker, which takes the following form for VBScript code:

'**Start Encode**

The Script Encoder encodes the file from the point at which the start encode marker is encountered until the closing
</SCRIPT> or %> tag, or until the end of the file is found. If there is no start encode marker, the Script Encoder encodes
the entire script block indicated by the <SCRIPT>...</SCRIPT>, <%...%>, or <%=...%> tags, or it will encode the entire
file if no tags are encountered.

In addition to encoding the script, the Script Encoder changes the LANGUAGE attribute of the <SCRIPT> tag from VBScript
to VBScript.Encode. For an ASP page, it also adds the following attribute to the beginning of the page:

<%@ LANGUAGE = VBScript.Encode %>

When the page is loaded and the script is executed, VBScript.Encode serves as the programmatic identifier that specifies
not only the language in use, but also the COM component responsible for parsing and handling the script. The hosting
environment, such as ASP or the MSIE browser, uses the programmatic identifier to look up the class identifier, which,
in this case, corresponds to COM components in vbscript.dll. So vbscript.dll is responsible for not only interpreting and
executing the codes, but also for decoding it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.2 Script Encoder Syntax
The Script Encoder has the following simplified syntax:

screnc inputfile outputfile

where inputfile is the target file containing script to be decoded, along with its optional path, and outputfile is the file
containing encoded script that the Script Encoder is to create, along with its optional path. Note that inputfile and
outputfile can include the standard wildcard characters.

The Script Encoder also accepts the following optional command-line switches:

/?

Display help information for the Script Encoder.

/f

The output file is to overwrite the source file, which means that the original decoded source file is lost. With the
/f switch, outputfile need not be specified. By default, the Script Encoder will not overwrite inputfile.

/s

The Script Encoder is to work in silent mode, without producing screen output. By default, the Script Encoder
produces verbose output.

/xl

Specifies that the Script Encoder should not add the @LANGUAGE directive to the top of ASP files. (The
@LANGUAGE directive determines the scripting language used by ASP to process the page; VBScript is the
default.) By default, the Script Encoder adds an @LANGUAGE directive whenever it encodes an ASP page.

/l defLanguage

Defines the default scripting language for the Script Encoder to use. Script blocks lacking a LANGUAGE attribute
are assumed to be written in this language. If no language is specified, the Script Encoder otherwise assumes
that JScript is the default language for HTML pages and .js files, and that VBScript is the default language for
ASP and .vbs files. The Script Encoder does not recognize a default language for Windows Script Component
(.wsc) files. Either the LANGUAGE attribute must be specified in the file's <SCRIPT> tag, or the /l switch must be
used; otherwise, no script will be encoded.

/e defExtension

Associates inputfile, whose file extension does not correspond to a scriptable file type, with a recognizable file
type. Recognized extensions are .asa, .asp, .cdx, .htm, .html, .js, .sct, and .vbs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.3 Encoding Examples
Encoding most file types containing VBScript (such as .asp files without client-side script or .htm or .html files with
client-side script) is quite intuitive. Consequently, in this section, we'll examine how to use the Script Encoder's
command-line parameters to encode some of the scripted files that are otherwise difficult to encode. In each case, the
conventional syntax of:

screnc inputfile outputfile

either generates an error or does not achieve the desired results.

E.3.1 Encoding .vbs Files

Although the documentation notes that the Script Encoder encodes VBScript (.vbs) files "out of the box," it does not
indicate how to do this. The usual syntax, such as the following:

screnc OriginalScript.vbs EncodedScript.vbs

creates an encoded file, but attempting to execute it generates a runtime error.

The reason for this is that VBScript files lack any equivalent to the @ LANGUAGE directive or the <SCRIPT> tag, which tell
the VBScript interpreter what type of code (VBScript or VBScript.Encode) the file contains. Instead, when the VBScript
interpreter is invoked and is passed a filename, it determines the file type from the file's extension. The .vbs extension
indicates a file of type VBScript—that is, an unencoded VBScript file. The VBScript interpreter detects encoded files (files
of type VBScript.Encode) by their .vbe file extension.

Example E-1 shows the contents of a .vbs file that lists free space on available drives. This script can be encoded using
the following command-line syntax:

screnc freespace.vbs freespace.vbe

The result (with line breaks added) is shown in Example E-2. Note that there is no need to add the /xl switch, since the
encoder recognizes a VBScript file and automatically suppresses its default @ LANGUAGE directive.

Example E-1. An unencoded .vbs file

' FreeSpace Script
' Calculates the amount of free space on available drives
' (c) 2003 O'Reilly & Associates
'**Start Encode**

Const FIXED = 2

Dim oFS, oDrive, oDrives
Dim sMsg

Set oFS = CreateObject("Scripting.FileSystemObject")

Set oDrives = oFS.Drives
sMsg = "Drive Space Information:" & vbCrLf
For Each oDrive in oDrives
 If oDrive.DriveType = FIXED Or oDrive.IsReady Then
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " " _
 & FormatNumber(oDrive.Freespace, 0, True, False, True)
 Else
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " Unavailable"
 End If
Next
WScript.Echo sMsg

Example E-2. An encoded .vbs file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example E-2. An encoded .vbs file

' FreeSpace Script
' Calculates the amount of free space on available drives
' (c) 2003 O'Reilly & Associates
'**Start Encode**#@~^YgIAAA==@#@&@#@&;W /Y,s&p2GPxPy@#@&@#@&fks~Ww?~,
G9Db\~~W9.b\n/@#@&fb:~dt/o@#@&@#@&j+D~Ksj,',ZDlDnr(LnmD`Ej1DkaOk oRwrs
+UXkYn:68N+^Yrb@#@&@#@&jYPG9Mk-+k~{PGw?cfDb\d@#@&/\/TPx~rfDb-+,?wm^nP&x6W.:
CObWU)r~[,\8/MS0@#@&wW.PAC1t~KfMk\PbUPKf.k7+d@#@&PP,(0,WfMr-+cfMk-+Pza+~',
oqo29~}DPG9Mk-+c(kInmNHPK4+ @#@&,P~P,Pd\koP{~/t/o,'~\(ZMSW@#@&~,P~P,dHko~x,
/HdL,[~J,~,P~rPLPWGDb-+cf.k7+JnDY+M~[,JPr~m@#@&P,P~P~~,P~P,~P,P~~LPsG.slO1!h(+
.vWGDk7+coD+dwmmnS,!~,PD!+~,oCVk+BPPD;n*@#@&P,~2^/n@#@&PP~~,PdHkL,
'~kHkoPLP78ZMSW@#@&P~~,PPk\/TP',d\/TPLPEP~~,
PEPL~WGDr-Rf.r7+J+DOD~LPrPj l7Ck^l8VJ@#@&,PPAUN,q0@#@&H+XY@#@& ?^.
bwORA^tKPd\koVKMAAA==^#~@

E.3.2 Encoding .wsf Files

The Script Encoder does not appear to be able to encode Windows Script Host's .wsf files. This seems curious, since
Windows Script Files contain <SCRIPT>... </SCRIPT> tags that should make the encoding and decoding processes easy.
Nevertheless, there are two reasons that .wsf files cannot be encoded using the most simple Script Encoder syntax:

.wsf is not a file extension recognized by the Script Encoder.

The Script Encoder automatically inserts an @ LANGUAGE directive at the top of the page, which causes WSH to
generate an error.

Both of these problems can be addressed using command-line switches. In particular, we can use the /xl switch to
suppress the @ LANGUAGE directive. And we can indicate a file type, such as an .htm file, that's similar to a .wsf file and
that the Script Encoder does know how to handle. (We can't the .asp file type, since because the <SCRIPT> tag lacks the
RUNAT attribute, Script Encoder won't encode the script.)

Example E-3 shows the unencoded contents of a .wsf file that includes a routine to list free space on available drives.
This script can be encoded using the following command-line syntax:

screnc filesystemutil.wsf filesystemutilenc.wsf /e htm /xl

The result (with line breaks added) is shown in Example E-4.

Example E-3. An unencoded .wsf file

<package>
<job id="ShowDiskSpace">
<?job error="true"?>
 <script language="vbscript">
 ' ShowDiskSpace script
 '
 ' Calculates the amount of free space on available drives
 ' (c) 2003 O'Reilly & Associates
 '**Start Encode**
 Dim oFS, oDrive, oDrives
 Dim sMsg
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oDrives = oFS.Drives
 sMsg = "Drive Space Information:" & vbCrLf
 For Each oDrive In oDrives
 If oDrive.DriveType = Fixed Or oDrive.IsReady Then
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " " _
 & oDrive.FreeSpace
 Else
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " Unavailable"
 End If
 Next
 WScript.Echo sMsg
 </script>
</job>
</package>

Example E-4. An encoded .wsf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example E-4. An encoded .wsf file

<package>
<job id="ShowDiskSpace">
<?job error="true"?>
 <script language="VBScript.Encode">
 ' ShowDiskSpace script
 '
 ' Calculates the amount of free space on available drives
 ' (c) 2003 O'Reilly & Associates
 '**Start Encode**#@~^VgIAAA==~,@#@&,P,fksPKo?BPGfMk-
nBPWG.k7+/@#@&~P,fb:~/\dT@#@&P,~?Y~Gw?Px~;DnlDn}4%mD`JUmMrw
DkUocsrs?XkO+sr4Nn^Yr#@#@&~P~jY~WG.k7+d~{PWojcf.k7nk@#@&,P,
/Hko,xP,J9Db\n~Uwl1nP&x0K.hlDkKxlJ~',\8ZMJ0@#@&~~,sW.~Al^t,
GGDr7+,qx,WG.k7+d@#@&P~~,PP&WPKfDb-nRGDb\nKz2PxPwr6N~6MPW9.b
\nR&d"+C9X,Ktx@#@&P,P~P,P~~kH/T~',
/HkL~[,\(Z.SW@#@&P~P,~P,P~dt/o~x,/\/T~LPE,P,PPrPL~WGDr\R9.b
\+dnYD+D,'~J,J,{@#@&~~,P~P,~P,P~~,PP~~,P~PL~Kf.b\RsM+jwmmn
@#@&P~~,PPAs/@#@&,~~P,P,P~/\dTPxPk\/TP'~74Z.J6@#@&P,~,P~,P,
/Hko,xPkHdo,[~E,PP,~J,[PK9.k7+cf.k-nd+OY.PLPE~`xl-CbVC4^nr
@#@&,P,PP,2[P&0@#@&,P~H6Y@#@&P,PU^.kaYc2^tG~kHdo@#@&P,PJJo
AAA==^#~@
</script>
</job>
</package>

E.3.3 Encoding ASP Files with Client-Side Script

Encoding ASP files is simple enough, as is encoding HTML files with client-side script. But encoding all script in an ASP
file that contains embedded (rather than dynamically generated) client-side script is not straightforward. Using the
simple version of the Script Encoder's syntax to encode an ASP file leaves client-side script unencoded. Encoding an
ASP file as if it were an HTML file, as with the following syntax:

screnc form2.asp form2enc.asp /e htm

encodes both client-side script and ASP <SCRIPT> blocks, but it does not encode script in the <%...%> and <%=...%>
tags found within the HTML stream.

The solution is to double-encode an ASP file. For example, Example E-5 shows a very simple ASP page that contains
embedded client-side script. It can first be encoded using the conventional syntax:

screnc form2.asp form2enc.asp

This encodes the ASP script only. The next step is to encode the client-side script using the following syntax:

screnc form2enc.asp /f /e htm

These command-line switches treat the ASP file as if it were an HTML file and overwrite the source form2enc.asp file.
The result, which is shown (with added line breaks) in Example E-6, is encoded ASP script and client-side script

Example E-5. An unencoded ASP file with client-side script

<HTML>
<HEAD>
<TITLE>A Sample Form</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">
 '
 ' Event handler fired when window loads
 ' Displays dialog to user
 Sub Window_OnLoad()
 Alert "Thank you for filling out the form!"
 End Sub
</SCRIPT>
You provided us with the following information: <P>
<% ShowInformation %>
<P>
Thank you for submitting this information.

<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Sub ShowInformation()
 If Not Request("txtName") = "" Then
 Response.Write "Name: " & Server.HTMLEncode(Request("txtName")) & "
"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Response.Write "Name: " & Server.HTMLEncode(Request("txtName")) & "
"
 Response.Write "Country: " & Server.HTMLEncode(Request("txtCountry")) &
"<P>"
 Else
 Response.Write "None"
 End If
End Sub
</SCRIPT>
</BODY>
</HTML>

Example E-6. An ASP page with both ASP and client-side script encoded

<%@ LANGUAGE = VBScript.Encode %>
<HTML>
<HEAD>
<TITLE>A Sample Form</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript.Encode">#@~^twAAAA==@#@&P~,B@#@&P,PE~27+UY,
tCU9V+M~0bD+9~Atx,hrx[GSPsWm[/@#@&~~,BP9rkwslHd,NrmVKoPDW,;/D@#@&,
P~j!4Pqrx9Wh|6USKl9`b@#@&~,P~P,)VDO~rKtCU0PzW!~6W.,0bVVbxT~W!Y~Y4+~WKD:
eE@#@&PP,3UN,?!4@#@&sTIAAA==^#~@</SCRIPT>
You provided us with the following information: <P>
<%#@~^EQAAAA==~UtGSq 0WM:mOkKx~ZwYAAA==^#~@%>
<P>
Thank you for submitting this information.

<SCRIPT LANGUAGE="VBScript.Encode" RUNAT="SERVER">
#@~^OgEAAA==@#@&@#@&UE(P?4WS(x6W.:mYrG `#@#@&P,Pq6~HWDP"+5EndD`EYXO1m:
nE*P'~ErPPtU@#@&~,P,PP"+k2W /nRqDrOPJgC:)Pr~'PU+M
\nD u:HJ2 ^W9+c];EndD`EYXOglhJ*#PLPr@!A"@*E@#@&P~~,
PP"n/aWxkn MkD+~J/G!xODHlPrP'~U+D-nMRuKtJAx^KN`I;!n/D`EYXY
/G!xYMzJ*#PL~E@!h@*r@#@&P~~AVd+@#@&P,P~~,
I+d2Kxd+c MkOPr1W +r@#@&,P~2 N~(6@#@&AUN,
?E(@#@&X1QAAA==^#~@</SCRIPT>
</BODY>
</HTML>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of VBScript in a Nutshell, Second Edition is a miniature pinscher. Known only to have existed in
Germany up until about 100 years ago, the miniature pinscher is said to have descended from the German pinscher or
is possibly a cross between the Italian greyhound and the dachshund. He is not a small Doberman pinscher, as some
may think. He was bred to be a ratter and a good barking watchdog.

The miniature pinscher is considered the smallest breed of guard dog. It is classified in Group 2, which also includes the
Doberman pinscher, rottweiler, mastiff, boxer, and Great Dane.

The miniature pinscher has been characterized as having a heroic demeanor and a striking personality. Pinscher owners
commonly affirm that the dog is small and fragile only in appearance, not in temperament. Mary Brady was the
production editor and proofreader for VBScript in a Nutshell, Second Edition. Emily Quill and Claire Cloutier provided
quality control. Jamie Peppard and Derek Di Matteo provided production support. Brenda Miller wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was converted by Mike
Sierra to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Maureen Dempsey.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

#include directive
<?xml ?> tag
 in .wsc files
<description> tag
<event> tag
<example> tag
<implements> element
<job> tag 2nd 3rd 4th
<method> tag
<named> tag
<OBJECT> tag
<object> tag
<package> tag 2nd
<property> tag
<public> tag
<reference> tag
<registration> tag
<resource id=id> tag
<runtime> tag
<SCRIPT FOR> tag 2nd
<SCRIPT> tag (HTML) 2nd
 attributes of
 global code and
 using <!-- --> comment tags with
 where to put it
<script> tag (XML) 2nd 3rd 4th
<unnamed> tag
<usage> tag
.asp file extension
.doc files
.rtf files
.vbs files 2nd 3rd
.wsc files 2nd
.wsf files 2nd 3rd 4th
//Job: switch
+ addition operator
\ integer division operator
< less-than operator
& concatenation (string) operator
* multiplication operator
- subtraction operator
. dot delimiter
. period
/ division operator
<!-- --> comment tags
<%= %> delimiter
<%=%> delimiter
<> not equal operator
= equal to operator
> greater-than operator
^ exponentiation operator

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Abandon method, Session object (ASP)
Abs function
absolute pathnames
absolute values
accessing file data
accessing other object models
 from Outlook forms
 from WSH
Actions property, current item (Outlook)
Activate method, Inspector object (Outlook)
Active Directory Service Interface (ADSI), WSH and
Active Server Pages [See entries at ASP]
Active Server Pages object model
 resources for further reading
activeElement property, Document object (IE)
ActiveX Data Objects (ADO objects)
 Outlook and
 WSH and
ActiveX objects
 creating
 references to
Add method
 Dictionary object
 Folders collection object
 Pages collection (Outlook)
AddHeader method, Response object (ASP)
addition operator (+)
AddPrinter Connection method, WshNetwork object
AddressLists property, NameSpace object (Outlook)
AddStore method, NameSpace object (Outlook)
AddWindows PrinterConnection method, WshNetwork object
ADO objects
 Outlook and
 WSH and
ADSI (Active Directory Service Interface), WSH and
alert method, Window object (IE)
alinkColor property, Document object (IE)
allocating space for variables
altKey property, Event object (IE)
And operator
ANSI character codes
anti-tangents
antilogarithms
AppActivate method, WshShell object
AppendToLog method, Response object (ASP)
Application object (ASP)
Application property
 current item (Outlook)
 FormDescription object (Outlook)
 Inspector object (Outlook)
 MAPIFolder object (Outlook)
 NameSpace object (Outlook)
 Pages collection (Outlook)
 WScript object (WSH)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application_OnEnd event
Application_OnStart event
applications
 code for [See code]
 tracing execution of
argument lists
Arguments property
 WScript object (WSH)
 WshShortcut object
arithmetic operators
Array function 2nd
arrays
 concatenating
 creating
 determining bounds/boundaries of 2nd 3rd
 filtering elements from
 handling, list of functions/statements for
 IsArray function for testing
 parsing strings into
 resetting elements of
 Subscript Out Of Range error and
 variant
As keyword, unsupported in VBScript
Asc, AscB, AscW functions
ASCII codes, converting to characters
ASP (Active Server Pages) 2nd
 compile-time errors in
 CreateObject method and
 global code and 2nd
 how it works
 resources and (sample code)
 reusable code libraries and
 Script Encoder for
ASP applications 2nd
ASP components
ASP interface handler
ASP object model
 resources for further reading
ASP.DLL
assignment procedures
assignments, operator and statement for
Atn function
AttachmentAdd event (Outlook)
AttachmentRead event (Outlook)
Attachments property, current item (Outlook)
automation, WSH and

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

back method, History object (IE)
base pathnames
BeforeAttachmentSave event (Outlook)
BeforeCheckNames event (Outlook)
bgColor property, Document object (IE)
BillingInformation property, current item (Outlook)
BinaryRead method, Request object (ASP)
BinaryWrite method, Response object (ASP)
bitwise operators
blur method, Window object (IE)
Body property, current item (Outlook)
body property, Document object (IE)
Boolean type
 converting expressions to
bounds/boundaries
 lower, determining for arrays
 upper, determining for arrays
Break at Next Statement option (Script Debugger)
breakpoint, setting
browsers, commenting out scripts for older
Buffer property, Response object (ASP)
bugs [See debugging errors error handling]
BuildPath method, FileSystemObject object
built-in constants 2nd
built-in conversion functions
button property, Event object (IE)
buttons
 adding to web pages
 radio
Byte type
 converting expressions to

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

CacheControl property, Response object (ASP)
Call Stack window (Script Debugger)
Call statement 2nd
CallByName function, not supported in VBScript
calling
 functions
 subroutines
Caption property, Inspector object (Outlook)
case sensitivity
 HTML attributes/elements and
 strings and
 comparison constants for
 converting 2nd
 variable names and
Categories property, current item (Outlook)
Category property, FormDescription object (Outlook)
CategorySub property, FormDescription object (Outlook)
CBool function
CByte function 2nd
CCur function 2nd
CDate function 2nd
CDbl function 2nd
CDO objects, WSH and
CGI (Common Gateway Interface)
characters [See also strings]
 character codes, converting to
 ignoring when reading
 lowercase, converting to
 repeating into strings
 uppercase, converting to
Characters property, WshRemoteError object
Charset property, Response object (ASP)
Checkbox control (HTML)
checked property
 Checkbox control (HTML)
 radio button control (HTML)
Chr, ChrB, ChrW functions
CInt function 2nd
class events
class methods
class properties
Class property
 current item (Outlook)
 FormDescription object (Outlook)
 Inspector object (Outlook)
 MAPIFolder object (Outlook)
 NameSpace object (Outlook)
 Pages collection (Outlook)
Class statement
 Class...End Class construct and
class variables
Class_Initialize event
Class_Terminate event
classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 defining
Clear method
 Err object 2nd 3rd
 Response object (ASP)
clear method, Document object (IE)
clearing [See deleting]
clearTimeout method, Window object (IE)
Click event (Outlook)
Click method
 Checkbox control (HTML)
 command button controls (HTML)
 list box control (HTML)
 radio button control (HTML)
client-side scripting
 uses for
ClientCertificate collection, Request object (ASP)
clientInformation property, Window object (IE)
CLng function 2nd
Close event (Outlook)
Close method
 current item (Outlook)
close method
 Document object (IE)
Close method
 Inspector object (Outlook)
 TextStream object
close method
 Window object (IE)
closed property, Window object (IE)
closing files
code [See also sample code]2nd
 comments in
 controls, referencing in
 for event procedures
 global 2nd
 Outlook forms and 2nd
 protection for via Script Encoder
 reusable
 structuring
 writing for script components
code library, making accessible to web pages
CodePage property, Session object (ASP)
Collaborative Data Objects, WSH and
Collection object [See also Dictionary object]
 Files collection object
 Folders collection object
colors
 background/foreground
 color constants for
 RGB function for
COM (Component Object Model) 2nd
COM automation interface handler
COM objects
Command window (Script Debugger)
 variable values, working with via
CommandBars property, Inspector object (Outlook)
comment tags (<!-- -->)
comments
 Comment property, FormDescription object (Outlook)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 in program code
 statements for
Common Gateway Interface (CGI)
Common Gateway Interface for Windows (WinCGI)
Companies property, current item (Outlook)
CompareMode property, Dictionary object
comparison constants, for strings 2nd
comparison operators
compile-time errors 2nd
Component Object Model (COM) 2nd
<component> tag
<?component ?> tag
ComputerName property, WshNetwork object
concatenation (string) operator (&)
conditional execution
 If...Then...Else statement
 Select Case statement
 While...Wend statement
ConnectObject method, WScript object (WSH)
Const statement 2nd
 defining Outlook constants and
constants
 complex
 declaring 2nd 3rd
 intrinsic 2nd
 in Outlook object model
ContactName property, FormDescription object (Outlook)
Contents collection
 Application object (ASP)
 Session object (ASP)
ContentType property, Response object (ASP)
control events 2nd
controls
ConversationIndex property, current item (Outlook)
ConversationTopic property, current item (Outlook)
conversion functions, for data types
converting strings
 to lowercase
 representing time, to Variant Date type
 to uppercase
Cookies collection
 Request object (ASP)
 Response object (ASP)
Copy method
 current item (Outlook)
 File object
 Folder object
CopyFile method, FileSystemObject object
CopyFolder method, FileSystemObject object
copying
 files 2nd
 folders
CopyTo method, MAPIFolder object (Outlook)
Cos function
cosines
Count method
 WshNamed object
 WshUnnamed object
Count property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Contents collection
 Application object (ASP)
 Session object (ASP)
 Dictionary object
 Pages collection (Outlook)
 Request object (ASP)
 StaticObjects collection (Session object, ASP)
 WshArguments object
 WshEnvironment object
 WshSpecialFolders object
CreateFolder method, FileSystemObject object
CreateObject function 2nd
 accessing object models via
CreateObject method
 Server object (ASP)
 WScript object (WSH)
 accessing object models via
CreateRecipient method, NameSpace object (Outlook)
CreateScript method, WshController object
 WshRemote object and
CreateShortcut method, WshShell object
createStyleSheet method, Document object (IE)
CreateTextFile method
 FileSystemObject object
 Folder object
CreationTime property, current item (Outlook)
CScript.exe
CSng function 2nd
CStr function 2nd
ctrlKey property, Event object (IE)
Currency type
 converting expressions to
currency, FormatCurrency function for
current item (Outlook)
CurrentItem property, Inspector object (Outlook)
CurrentUser property, NameSpace object (Outlook)
custom procedures, passing variables into subroutines
custom subroutines
CustomAction event (Outlook)
CustomPropertyChange event (Outlook)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Data Access Objects (DAO objects)
 Outlook and
 WSH and
data formatting
data types
 converting from one to another
 list of functions for
 supported by WshShell registry methods
 variant [See variant data type]
data validation
date and time
 constants for
 converting expressions and
 FormatDateTime function for
 list of functions for
Date function
Date type
 converting expressions to
DateAdd function
DateDiff function
DatePart function
DateSerial function
DateValue function
Day function
debugging 2nd [See also errors; error handling]
 common problems and how to avoid them
 RUNAT attribute omitted and
 script components and
declaring/defining
 constants 2nd 3rd
 functions 2nd
 storage space for variables
 subprocedures
 subroutines
 variables
 errors when undeclared
 list of statements for
Default ASP Language property
DefaultItemType property, MAPIFolder object (Outlook)
DefaultMessageClass property, MAPIFolder object (Outlook)
defaultValue property, textbox control (HTML)
Delete method
 current item (Outlook)
 File object
 Folder object
 MAPIFolder object (Outlook)
DeleteFile method, FileSystemObject object
DeleteFolder method, FileSystemObject object
deleting (clearing)
 Dictionary keys and data
 Err object, resetting and
 files 2nd
 folders 2nd
 whitespace from strings 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description property
 Err object 2nd
 MAPIFolder object (Outlook)
 WshRemoteError object
 WshShortcut object
design mode for Outlook forms
DHTML (Dynamic HTML)
DHTML interface handler
dialog boxes 2nd
Dictionary object 2nd
 list of methods/properties for
 Outlook and
 WSH and
Dim statement
 arrays and
 constants/variables and
 replaced with public visibility
dimensioning arrays
DisconnectObject method, WScript object (WSH)
Display method
 current item (Outlook)
 Inspector object (Outlook)
 MAPIFolder object (Outlook)
DisplayName property, FormDescription object (Outlook)
division by zero error
division operator (/)
Do...Loop statement
Document Object Model (DOM)
DOM (Document Object Model)
domain property, Document object (IE)
dot (.) delimiter in properties
Double type 2nd
 converting expressions to
Drive object
 list of properties for
DriveExists method, FileSystemObject object
drives 2nd
 existence of, determining
 name of, determining
 reference to, obtaining
Drives collection object
 list of properties for
Drives property, FileSystemObject object
dynamic arrays
 multidimensional
 redimensioning
Dynamic HTML (DHTML)
 interface handler for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

early binding
Echo method, WScript object (WSH)
ECMAScript
EditorType property, Inspector object (Outlook)
elements
 concatenating
 filtering from arrays
 parsing strings into
 resetting values of
Elements collection
Empty type
End event, WshRemote object
End method, Response object (ASP)
End... statement
EntryID property
 current item (Outlook)
 MAPIFolder object (Outlook)
Enum statement, unsupported in VBScript
EnumNetworkDrives method, WshNetwork object
EnumPrinterConnection method, WshNetwork object
Environment property, WshShell object 2nd
environment variables 2nd
equal operator (=)
Eqv operator
Erase statement
Err object 2nd
 methods of
 properties of
 resetting
Err.Raise method
Error Code Generator
error constant
Error event, WshRemote object
error handling 2nd 3rd [See also errors; debugging]
 common problems and how to avoid them
 list of methods/properties/statements for
 On Error statement and
 RUNAT attribute omitted and
 script components and
Error property, WshRemote object
Error type
errors
 common problems and how to avoid them
 last generated, code for
 in remote scripting
 type mismatch 2nd
 types of
 undeclared variables and
Eval function
EVENT attribute
event handlers 2nd 3rd 4th
event-handling support for script components
Event object (IE)
event procedures 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 code and
 program flow and
event property, Window object (IE)
events
 defining for script components
 recognized automatically by VBScript editor
examples [See sample code]
Excel object model
 Outlook and
 WSH and
Exec method, WshShell object
execScript method, Window object (IE)
Execute method
 Server object (ASP)
 WshRemote object
Execute statement
executing WSH scripts 2nd
existence check
 Dictionary keys
 drives
 files
 folders
 IsEmpty function
 IsNull function
 named arguments
Exists method
 Dictionary object
 WshNamed object
Exit statement 2nd
Exp function
ExpandEnvironmentStrings method, WshShell object
Expires property, Response object (ASP)
ExpiresAbsolute property, Response object (ASP)
Explorer object (Outlook)
Explorer pane (Outlook)
exponentiation operator (^)
expressions
 Match object
 values of
 checking at runtime
 displaying
Extensible Markup Language [See XML]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fgColor property, Document object (IE)
File object
 list of methods/properties for
 reference to
File System object model
 list of objects for
FileSystemObject object 2nd
 list of methods/functions for
 Outlook and
 WSH and
FileExists method, FileSystemObject object
filename extensions
Filename text box (Script Component Wizard) 2nd
filenames, determining
files
 accessing data from
 copying 2nd
 creating 2nd
 deleting 2nd
 from folders
 existence of, determining
 help
 moving
 name of, determining
 for temporary name
 opening/closing 2nd
 performing repetitive operations on with WSH
 text [See text files]
 version of, determining
 writing to
Files collection object
 list of properties for
Filter function
 comparison constants for
fireEvent method (WSC)
first day of the week
first week of the year
Fix function
fixed arrays
Flush method, Response object (ASP)
Focus method
 Checkbox control (HTML)
 command button controls (HTML)
 list box control (HTML)
 radio button control (HTML)
 textbox control (HTML)
focus method, Window object (IE)
Folder List (Outlook)
Folder object
 list of functions/methods/properties for 2nd
 reference to 2nd
FolderExists method, FileSystemObject object
folders
 copying 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating 2nd
 deleting 2nd
 existence of, determining
 moving 2nd
 name of, determining
 for temporary name
Folders collection object
 list of functions/properties for
Folders property
 MAPIFolder object (Outlook)
 NameSpace object (Outlook) 2nd
FOR attribute 2nd [See also <SCRIPT FOR> tag]
For Each...Next statement
 radio buttons and
For...Next statement
Form collection, Request object (ASP)
form-based development environment (Outlook)
form-level events
FormatCurrency function
FormatDateTime function
 date format constants for
FormatNumber function
FormatPercent function
FormDescription object (Outlook)
FormDescription property, current item (Outlook)
 FormDescription object and
Forward event (Outlook)
forward method, History object (IE)
fromElement property, Event object (IE)
FullName property
 WScript object (WSH)
 WshShortcut object
 WshSpecialFolders object
Function statement
Function...End Function construct
 full form of
functions 2nd
 Call statement and
 calling
 code for
 defining 2nd
 return values and
 values of
 checking at runtime
 displaying

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GetAbsolutePathName method, FileSystemObject object
GetBaseName method, FileSystemObject object
GetDefaultFolder method, NameSpace object (Outlook)
 MAPIFolder object and
GetDrive method, FileSystemObject object 2nd
GetDriveName method, FileSystemObject object 2nd
GetExplorer method, MAPIFolder object (Outlook)
GetExtensionName method, FileSystemObject object
GetFile method, FileSystemObject object
GetFileName method, FileSystemObject object
GetFileVersion method, FileSystemObject object
GetFolder method, FileSystemObject object
GetFolderFromID method, NameSpace object (Outlook)
GetInspector property, current item (Outlook) 2nd
GetItemFromID method, NameSpace object (Outlook)
GetLastError method, Server object (ASP)
GetLocale function, locale IDs for
GetNameSpace method, Application object (Outlook)
GetObject function 2nd
GetObject method, WScript object (WSH)
 accessing object models and
GetParentFolderName method, FileSystemObject object
GetRecipientFromID method, NameSpace object (Outlook)
GetRef function
GetSharedDefaultFolder method, NameSpace object (Outlook)
 MAPIFolder object and
GetSpecialFolder method, FileSystemObject object
GetStandardStream method, FileSystemObject object
GetTempName method, FileSystemObject object
global code 2nd
global variables
global.asa file
"glue" languages
go method, History object (IE)
greater-than operator (>)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Height property, Inspector object (Outlook)
HelpContext property, Err object
HelpFile property, Err object
Hex function
hexadecimal numbers
Hidden property, FormDescription object (Outlook)
HideFormPage method, Inspector object (Outlook)
History object (IE)
history property, Window object (IE)
Hotkey property, WshShortcut object
hotkey strings (WSH)
Hour function
HTML
 Script Encoder for
 using resources and (sample code)
HTMLEditor property, Inspector object (Outlook)
HTMLEncode method, Server object (ASP)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Icon property, FormDescription object (Outlook)
IconLocation property, WshShortcut object
IDE (integrated development environment)
IE [See Internet Explorer]
If...Then...Else statement
IIS (Internet Information Server) 2nd
 IIS components, ASP implemented as
 snap-in for
images, LoadPicture function for
Immediate window
Imp operator
Importance property, current item (Outlook)
include files
 in ASP
 in Internet Explorer
 in Windows Script Host (WSH)
index
 finding upper/lower
index property, Individual Option object (HTML list box control)
information functions, list of
Initialize event
InputBox function
 WSH support for
Insert Event Handler dialog (VBScript editor)
Inspector object (Outlook) 2nd
Inspector pane (Outlook)
installation scripts, WSH and
instantiating objects
InStr, InStrB functions
InstrRev function
Int function
integer division operator (\)
integer type 2nd
integrated development environment (IDE)
interface handlers 2nd
 for script components
Internet, shortcuts for
Internet Explorer (IE)
 global code and 2nd
 object model for
 using
 reusable code libraries and
 Script Debugger, accessing via
 VBScript with
Internet Explorer Document Object Model
 using
Internet Information Server [See IIS]
Internet Server Application Programming Interface (ISAPI) 2nd
intrinsic constants 2nd
intrinsic controls (HTML) 2nd
inverse tangents
Is operator 2nd
ISAPI (Internet Server Application Programming Interface)
ISAPI filters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsArray function
IsClientConnected property, Response object (ASP)
IsDate function
IsEmpty function
IsNull function
IsNumeric function
IsObject function
IsWordMail method, Inspector object (Outlook)
Item method, Pages collection (Outlook)
Item property
 Contents collection
 Application object (ASP)
 Session object (ASP)
 Dictionary object
 Elements collection
 Request object (ASP)
 StaticObjects collection (Session object, ASP)
 WshEnvironment object
 WshNamed object
 WshSpecialFolders object
 WshUnnamed object
Item_Open event procedure
items (Outlook) 2nd
 current
Items method, Dictionary object
Items property, MAPIFolder object (Outlook)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

<?job ?> tag
Join function
JScript language engine

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Key property
 Contents collection
 Application object (ASP)
 Session object (ASP)
 Dictionary object
 Request object (ASP)
 StaticObjects collection (Session object, ASP)
keyCode property, Event object (IE)
Keys method, Dictionary object
keywords

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

LANGUAGE attribute 2nd
language elements
 by category
 format for used in this book
 for WSH
LastModificationTime property, current item (Outlook)
late binding
LBound function 2nd
LCase function
LCID property, Session object (ASP)
Left property, Inspector object (Outlook)
Left, LeftB functions
Len, LenB functions
length property
 Elements collection
 History object (IE)
 list box control (HTML)
 WshArguments object
 WshEnvironment object
 WshNamed object
 WshSpecialFolders object
 WshUnnamed object
less-than operator (<)
Line property, WshRemoteError object
linkColor property, Document object (IE)
list box control (HTML)
LoadPicture function
locale IDs
location property
 Document object (IE)
 Window object (IE)
Location text box (Script Component Wizard) 2nd
Lock method, Application object (ASP)
Locked property, FormDescription object (Outlook)
Log function
logarithms
LogEvent method, WshShell object
 intType parameter values of
logical constants
logical errors 2nd
logical operators
Logoff method, NameSpace object (Outlook)
Logon method, NameSpace object (Outlook)
Long type 2nd
loops
LTrim function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAPIFolder object
MapNetworkDrive method, WshNetwork object
MapPath, Server object (ASP)
Match object
Matches collection object
mathematical functions, list of
message box constants
MessageClass property
 current item (Outlook)
 FormDescription object (Outlook)
methods
 defining for script components
Microsoft Internet Explorer [See Internet Explorer]
Microsoft Internet Information Server [See IIS]
Microsoft Outlook [See entries at Outlook]
Microsoft Script Debugger
 vs. VB Debugger
Microsoft Scripting Runtime Library
Microsoft Visual Basic Scripting Edition [See VBScript]
Mid, MidB functions
Mileage property, current item (Outlook)
MiniIcon property, FormDescription object (Outlook)
Minute function
mod (modulo operator)
ModifiedFormPages property, Inspector object (Outlook)
 Pages collection and
modulo operator (mod)
monikers
Month function
Move method
 current item (Outlook)
 File object
 Folder object
MoveFile method, FileSystemObject object
MoveFolder method, FileSystemObject object
MoveTo method, MAPIFolder object (Outlook)
moving
 files 2nd
 folders
MsgBox function
 WSH support for
MSIE [See Internet Explorer]2nd [See Internet Explorer]
multidimensional arrays
 dynamic
 vs. single-dimensional arrays
multiple property, list box control (HTML)
multiplication operator (*)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name property
 Checkbox control (HTML)
 command button controls (HTML)
Name property
 FormDescription object (Outlook)
name property
 list box control (HTML)
Name property
 MAPIFolder object (Outlook)
name property
 radio button control (HTML)
 textbox control (HTML)
 Window object (IE)
Name property
 WScript object (WSH)
Name text box (Script Component Wizard) 2nd
named arguments vs. positional arguments
Named property, WshArguments object 2nd
names
 of data types
 of drives
 of filename extensions
 of files, determining
 of folders
 temporary
 of pathnames 2nd
 of weekdays
NameSpace object (Outlook) 2nd
naming script components
natural logarithms
navigate method, Window object (IE)
negativity of numbers
Netscape Navigator, ECMAScript and
network resources
 accessing via WSH
 WshNetwork object and
New keyword, not supported in VBScript when used with Dim statement
NoAging property, current item (Outlook)
nonalphanumeric hotkey strings (WSH)
not equal operator (<>)
Not operator
Now function
null data, IsNull function for
Null type
Number property
 Err object 2nd
 FormDescription object (Outlook)
 WshRemoteError object
numbers
 formatting
 list of numeric functions for
 random 2nd
 rounding
 signs/negativity of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 truncating 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object browsers
Object data type
object models 2nd
 accessing other
 from Outlook forms
 from WSH
 ASP
 building
 COM
 Document
 Excel 2nd
 File System
 IE
 Outlook
 Word 2nd
 WSH
object property assignment procedures
object references
ObjectContext object (ASP)
objects
 creating
 GetObject function for
 IsObject function for
 programming, list of events/functions/statements for
Oct function
octal numbers
On Error Resume Next statement
On Error statement
onChange event
 list box control (HTML)
 textbox control (HTML)
onClick event
 Checkbox control (HTML)
 command button controls (HTML)
 list box control (HTML)
 radio button control (HTML)
one-dimensional arrays
 vs. multidimensional arrays
OnEnd event
 Application object (ASP)
 Session object (ASP)
OneOff property, FormDescription object (Outlook)
onFocus event
 Checkbox control (HTML)
 command button controls (HTML)
 list box control (HTML)
 radio button control (HTML)
 textbox control (HTML)
onReadyStateChange event
 Checkbox control (HTML)
 radio button control (HTML)
onReset event, command button controls (HTML)
onScroll event, list box control (HTML)
OnStart event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Application object (ASP)
 Session object (ASP)
onSubmit event, command button controls (HTML)
OnTransactionAbort event, ObjectContext object (ASP)
OnTransactionCommit event, ObjectContext object (ASP)
Open event (Outlook)
open method
 Document object (IE)
 Window object (IE)
OpenAsTextStream method, File object
opening files
OpenTextFile method, FileSystemObject object
operators 2nd
 order of precedence for
Option Base statement, not supported in VBScript 2nd
Option Explicit statement 2nd
 reducing errors with
 unavailable with VBScript editor
option switches for WSH
options property, list box control (HTML)
Or operator
order of precedence
Organizational Forms library (Outlook)
Outlook 2000
Outlook constants
Outlook folders
Outlook forms
 accessing other object models from
 code and
 code reuse not supported for
 global code 2nd
 design mode for
 loading
 program flow and
 reasons for programming
 VBScript editor for
 working with
Outlook items 2nd
Outlook object model
 accessing
 browsing
 Outlook window and
OutlookInternalVersion property, current item
OutlookVersion property, current item

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Pages collection (Outlook)
parameters, passing
 to procedures
 by reference/value
parent folders
Parent property
 current item (Outlook)
 FormDescription object (Outlook)
 Inspector object (Outlook)
 MAPIFolder object (Outlook)
 NameSpace object (Outlook)
 Pages collection (Outlook)
parent property, Window object (IE)
Password property, FormDescription object (Outlook)
Path property, WScript object (WSH)
paths
 absolute pathnames
 base pathnames
 determining for files/folders
performance, VBScript vs. VBA
period (.) in properties
Personal Forms library (Outlook)
PickFolder method, NameSpace object (Outlook)
PICS property, Response object (ASP)
pop-up messages
Popup method, WshShell object
positional arguments vs. named arguments
precedence, order of for operators
Preserve keyword
 dynamic multidimensional arrays and
primary script commands
print method, Window object (IE)
PrintOut method, current item (Outlook)
Private statement 2nd
private variables, wrapping
procedure-level scope
procedures 2nd
 Call statement for
 code for
 GetRef function for
Prog ID text box (Script Component Wizard) 2nd
program structure, list of statements for
programs
 code for [See code]
 tracing execution of
properties
 assigning object references to
 defining for script components
property assignment procedures
Property Get statement 2nd
Property Let statement 2nd
property retrieval procedures
Property Set statement
PropertyChange event (Outlook)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public statement 2nd
public visibility
PublishForm property, FormDescription object (Outlook)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QueryString collection, Request object (ASP)
Quit method, WScript object (WSH)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radio button control (HTML)
radio buttons
Raise method, Err object 2nd
random numbers 2nd
Randomize statement
Read event (Outlook)
Read method, TextStream object
ReadAll method, TextStream object
reading file data
ReadLine method, TextStream object
reason property, Event object (IE)
ReDim statement
redimensioning dynamic arrays
Redirect method, Response object (ASP)
references
 to ActiveX objects
 assigning
RegDelete method, WshShell object
RegExp object
RegExp.Execute method
RegExp.Global property
RegExp.IgnoreCase property
RegExp.Pattern property
RegExp.Replace method
RegExp.Text method
registry keys, abbreviations for top-level
registry, access to via WshShell object
RegRead method, WshShell object
RegWrite method, WshShell object
Rem statement
remarks in program code
remote scripting, WSH and
Remove method
 Contents collection
 Application object (ASP)
 Session object (ASP)
 Dictionary object
 Pages collection (Outlook)
 StaticObjects collection (Session object, ASP)
 WshEnvironment object
RemoveAll method
 Contents collection
 Application object (ASP)
 Session object (ASP)
 Dictionary object
 StaticObjects collection (Session object, ASP)
RemoveNetworkDrive method, WshNetwork object
RemovePrinterConnection method, WshNetwork object
Replace function
 comparison constants for
Reply event (Outlook)
ReplyAll event (Outlook)
Request object (ASP)
reserved words

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset button (HTML)
resetting
 array element values
 Err object properties
resources for further reading
 ASP components
 ASP object model
 DHTML
 Document Object Model
 HTML controls
 Outlook forms
resources, using
Response object (ASP)
return values, functions and
reusable code libraries
reversing strings
RGB function
 color constants and
Right, RightB functions
Rnd function
Round function
rounding numbers
routines, Exit statement for
RTrim function
Run method, WshShell object
 intWindowsStyle parameter values and
RUNAT attribute
Running Documents window (Script Debugger)
running WSH scripts
runtime engines
runtime errors 2nd
 common, list of
 generating
 string describing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

sample code
 <SCRIPT FOR> tag
 <SCRIPT> tag
 arrays
 multidimensional
 two-dimensional
 ASP
 ASP components
 class methods
 client-side scripting 2nd
 custom subroutines
 data validation
 Document Object Model hierarchy
 encoding scripts
 error handling/debugging
 form submission, cancelling
 functions, calling
 global code
 global.asa file
 include files
 object models, building
 private variables, wrapping
 remote scripting
 resources, using
 scope 2nd
 script components 2nd 3rd
 TypeName function
 UBound function
 variables, passing by reference/value
 variant data type
 VarType function
 web pages, interactive
 WSH 2nd
Save method
 current item (Outlook)
 WshShortcut object
 WshSpecialFolders object
SaveAs method, current item (Outlook)
Saved property, current item (Outlook)
scalar variables
scope 2nd
screen property, Window object (IE)
screnc.exe file
Script Component Wizard
script components
 instantiating
 registering
 summary information for
Script Debugger
 vs. VB Debugger
Script Encoder
script files
 encoding, Script Encoder for
 including in HTML stream

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 simple
 tracing/stepping through
 with XML code
script-level scope
Script window (Script Debugger)
ScriptEngine function
ScriptEngineBuildVersion function
ScriptEngineMajorVersion function
ScriptEngineMinorVersion function
ScriptFullName property, WScript object (WSH)
scripting, WshScriptExec object and
scripting language
 ScriptEngine function for
ScriptName property, WScript object (WSH)
ScriptText property, FormDescription object (Outlook)
ScriptTimeout property, Server object (ASP)
scrobj.dll
scroll method, Window object (IE)
scrrun.dll
Second function
security, Script Encoder and
Select Case statement
Select method, textbox control (HTML)
selected property, Individual Option object (HTML list box control)
selectedIndex property (HTML list box control)
Send event (Outlook)
SendKeys method, WshShell object
 special characters used with
Sensitivity property, current item (Outlook)
Server object (ASP)
server-side script, including in web pages
ServerVariables collection, Request object (ASP)
Session object (ASP)
Session property
 current item (Outlook)
 FormDescription object (Outlook)
 Inspector object (Outlook)
 MAPIFolder object (Outlook)
 NameSpace object (Outlook)
 Pages collection (Outlook)
Session_OnEnd event
Session_OnStart event
SessionID property, Session object (ASP)
Set statement
SetAbort method, ObjectContext object (ASP)
SetComplete method, ObjectContext object (ASP)
SetCurrentFormPage method, Inspector object (Outlook)
SetDefaultPrinter method, WshNetwork object
SetLocale function, locale IDs for
Sgn function
shell services, WshShell object and
shiftKey property, Event object (IE)
ShowFormPage method, Inspector object (Outlook)
showHelp method, Window object (IE)
ShowUsage method, WScript object (WSH)
sign of numbers
simple script files
Sin function
sines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Single type 2nd
single-dimensional arrays
 vs. multidimensional arrays
Size property, current item (Outlook)
Skip method, TextStream object
SkipLine method, TextStream object
Sleep method, WScript object (WSH)
software automation, WSH and
Source property
 Err object 2nd
 WshRemoteError object
SourceText property, WshRemoteError object
Space function
special characters used with SendKeys method
SpecialFolders property, WshShell object
Split function
 comparison constants for
Sqr function
square roots
SRC attribute
srcElement property, Event object(IE)
Standard Forms library (Outlook)
Start event, WshRemote object
statements
StaticObjects collection
 Application object (ASP)
 Session object (ASP)
Status property
 Response object (ASP)
 WshRemote object
 WshScriptExec object
status property, Window object (IE)
StdErr property
 WScript object (WSH)
 WshScriptExec object
StdIn property
 WScript object (WSH)
 WshScriptExec object
StdOut property
 WScript object (WSH)
 WshScriptExec object
Step Into option (Script Debugger)
Step Out option (Script Debugger)
Step Over option (Script Debugger)
StoreID property, MAPIFolder object (Outlook)
StrComp function
 comparison constants for
string (&) operator
string constants
String function
String type 2nd
strings [See also characters]
 case conversion for 2nd
 comparing 2nd
 length/size of
 manipulating, list of functions/methods/properties for
 reversing
StrReverse function
Sub statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub...End Sub construct
Subject property, current item (Outlook)
Submit button (HTML)
subprocedures, defining
subroutines
 defining
 values returned by
 variables, passing into
Subscript Out Of Range error
substrings [See strings]
subtraction operator (-)
SyncObjects property, NameSpace object (Outlook)
syntax errors 2nd
system administration, with WSH
system folders, location of
 WshShell object
 WshSpecialFolders object
system time

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Tan function
tangents
TargetPath property
 WshShortcut object
 WshSpecialFolders object
Template property, FormDescription object (Outlook)
temporary files/folders
Terminate event
Terminate method
 WshRemote object
 WshScriptExec object
testing, reducing errors and
text files
 creating 2nd
 opening 2nd
 reading
 skipping characters/lines and
 writing to
text property, Individual Option object (HTML list box control)
textbox control (HTML)
TextStream object
 closing
 list of functions/methods/properties for 2nd
time [See date and time]
Time function
TimeOut property, Session object (ASP)
Timer function
TimeSerial function
TimeValue function
Top property, Inspector object (Outlook)
top property, Window object (IE)
top-level registry keys, abbreviations for
TotalBytes property, Request object (ASP)
tracing program execution
Transfer method, Server object (ASP)
Trim function
tristate constants
truncating numbers 2nd
TYPE attribute
type libraries, constants in
type mismatch errors 2nd
type property
 Checkbox control (HTML)
 command button controls (HTML)
 Event object (IE)
 list box control (HTML)
 radio button control (HTML)
 textbox control (HTML)
Type property, NameSpace object (Outlook)
Type...End Type construct, not supported in VBScript
TypeName function 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UBound function 2nd
 using with multidimensional arrays
UCase function
Unicode character codes
Unlock method, Application object (ASP)
unnamed arguments (WSH)
Unnamed property, WshArguments object
Unread property, current item (Outlook)
UnReadItemCount property, MAPIFolder object (Outlook)
URLEncode method, Server object (ASP)
URLs
 Document Object Model
 Error Code Generator
UserDomain property, WshNetwork object
UserName property, WshNetwork object
UserProperties property, current item (Outlook)
users, interacting with
 data validation for
 list of functions for
UseWordMail property, FormDescription object (Outlook)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

value property
 command button controls (HTML)
 radio button control (HTML)
 textbox control (HTML)
variable type constants
variables
 allocating space for
 array [See arrays]
 assigning object references to
 data types of, determining
 declaring
 list of statements for
 global
 naming, rules for
 passing
 by reference/by value
 into subroutines
 scope of
 size of
 undeclared, generating error for
 values of
 changing at runtime
 checking at runtime
 displaying
variant array type
variant arrays
variant data type
 benefits of
 determining
Variant Date type
VarType function 2nd 3rd
VB Debugger, vs. Script Debugger
VBA (Visual Basic for Applications)
 Outlook and
 vs. VBScript 2nd
VBA Object Browser
VBScript
 gluing objects together
 vs. VBA 2nd
 versions of
VBScript editor (Outlook)
 events automatically recognized by
 Insert Event Handler dialog and
VBScript object browser
Version property
 FormDescription object (Outlook)
 WScript object (WSH)
Version text box (Script Component Wizard) 2nd
visibility
Visual Basic for Applications [See VBA]
Visual Basic Scripting Edition [See VBScript]
vlinkColor property, Document object (IE)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

web pages
 displaying pop-up messages in
 including server-side script in
 making code library accessible to
web server extensions
WebViewAllowNavigation property, MAPIFolder object (Outlook)
WebViewOn property, MAPIFolder object (Outlook)
WebViewURL property, MAPIFolder object (Outlook)
Weekday function
WeekdayName function
While...Wend statement
whitespace
 creating strings of
 deleting from strings 2nd 3rd
Width property, Inspector object (Outlook)
Win32 platform, WSH and
WinCGI (Common Gateway Interface for Windows)
Window_OnLoad event, replacing
Windows Management Instrumentation (WMI), WSH and
Windows Script Components (WSC) 2nd [See also script components]
 instantiating
Windows Script Host [See WSH]
WindowState property, Inspector object (Outlook)
WindowStyle property, WshShortcut object
With statement
WithEvents keyword, not supported in VBScript
WMI (Windows Management Instrumentation), WSH and
Word object model
 Outlook and
 WSH and
WordEditor property, Inspector object (Outlook)
WorkingDirectory property, WshShortcut object
Write event (Outlook)
Write method
 Response object (ASP)
 TextStream object
write method, Document object (IE)
WriteBlankLines method, TextStream object
WriteLine method, TextStream object
writing to files
WSC (Windows Script Components) 2nd [See also script components]
 instantiating
WScript object (WSH)
WScript.exe
WSH (Windows Script Host) 2nd
 accessing other object models from
 global code and 2nd
 language elements for
 Release 5.6, objects new to
 WshController
 WshRemote
 WshRemoteError
 WshShell
 WshUnnamed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 remote scripting and
 reusable code libraries and
 Script Debugger, accessing via
 Release 5.6, objects new to
 WshNamedWSH
WSH object model
WSH scripts
 reasons for using
 running
 Script Encoder for
WshArguments object 2nd
WshController object
WshEnvironment object
WshNamed object
WshNetwork object
WshRemote object 2nd
WshRemoteError object
WshScriptExec object
WshShell object
WshShortcut object
WshSpecialFolders object
WshUnnamed object
WshUrlShortcut object

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML
 <job> tag and 2nd
 .wsc files and 2nd
 script files with
Xor operator

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Year function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero, error of division by

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

