
Visual Basic 2005 Cookbook
By John Clark Craig, Tim Patrick
...
Publisher: O'Reilly
Pub Date: September 2006
Print ISBN-10: 0-596-10177-5
Print ISBN-13: 978-0-59-610177-0
Pages: 740

Table of Contents | Index

This book will help you solve more than 300 of the most common and not-so-common tasks that working Visual Basic
2005 programmers face every day. If you're a seasoned .NET developer, beginning Visual Basic programmer, or a
developer seeking a simple and clear migration path from VB6 to Visual Basic 2005, the Visual Basic 2005 Cookbook
delivers a practical collection of problem-solving recipes for a broad range of Visual Basic programming tasks.

The concise solutions and examples in the Visual Basic 2005 Cookbook range from simple tasks to the more complex,
organized by the types of problems you need to solve. Nearly every recipe contains a complete, documented code
sample showing you how to solve the specific problem, as well as a discussion of how the underlying technology
works and that outlines alternatives, limitations, and other considerations. As with all O'Reilly Cookbooks, each recipe
helps you quickly understand a problem, learn how to solve it, and anticipate potential tradeoffs or ramifications.

Useful features of the book include:

Over 300 recipes written in the familiar O'Reilly Problem-Solution-Discussion format

Hundreds of code snippets, examples, and complete solutions available for download

VB6 updates to alert VB6 programmers to code-breaking changes in Visual Basic 2005

Recipes that target Visual Basic 2005 features not included in previous releases

Code examples covering everyday data manipulation techniques and language fundamentals

Advanced projects focusing on multimedia and mathematical transformations using linear algebraic methods

Specialized topics covering files and file systems, printing, and databases

In addition, you'll find chapters on cryptography and compression, graphics, and special programming techniques.
Whether you're a beginner or an expert, the Visual Basic 2005 Cookbook is sure to save you time, serving up the
code you need, when you need it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic 2005 Cookbook
By John Clark Craig, Tim Patrick
...
Publisher: O'Reilly
Pub Date: September 2006
Print ISBN-10: 0-596-10177-5
Print ISBN-13: 978-0-59-610177-0
Pages: 740

Table of Contents | Index

 Copyright

 Dedication

 Preface

 Chapter 1. Visual Basic Programming

 Introduction

 Recipe 1.1. Creating a Windows Forms Application

 Recipe 1.2. Creating a Console Application

 Recipe 1.3. Creating an ASP.NET Web Forms Application

 Chapter 2. The Development Environment

 Introduction

 Recipe 2.1. Discovering and Using a Code Snippet

 Recipe 2.2. Creating a New Snippet

 Recipe 2.3. Sharing Snippets

 Recipe 2.4. Adding Snippet Files to Visual Studio

 Recipe 2.5. Getting an Application's Version Number

 Recipe 2.6. Letting Visual Studio Automatically Update an Application's Version Number

 Recipe 2.7. Setting the Startup Form for an Application

 Recipe 2.8. Setting the Startup to a Sub Main Procedure

 Recipe 2.9. Getting an Application's Command Line

 Recipe 2.10. Testing an Application's Command Line

 Recipe 2.11. Obfuscating an Application

 Recipe 2.12. Determining if an Application Is Running in the Visual Studio Environment

 Recipe 2.13. Accessing Environment Variables

 Recipe 2.14. Accessing the Registry

 Recipe 2.15. Getting System Information

 Recipe 2.16. Getting the User's Name

 Chapter 3. Application Organization

 Introduction

 Recipe 3.1. Creating a Code Module

 Recipe 3.2. Creating a Class

 Recipe 3.3. Creating a Structure

 Recipe 3.4. Creating Other Item Types

 Recipe 3.5. Creating Object Instances

 Recipe 3.6. Initializing a Class Instance with Data

 Recipe 3.7. Releasing an Instance's Resources

 Recipe 3.8. Using Namespaces

 Recipe 3.9. Splitting a Class Across Multiple Files

 Recipe 3.10. Creating a Form Based on Another Form

 Recipe 3.11. Passing and Returning Structures and Other Objects

 Recipe 3.12. Creating and Using an Enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 3.13. Converting Between Numeric and String Enumeration Values

 Recipe 3.14. Creating a Method That Accepts Different Sets of Arguments

 Recipe 3.15. Using Standard Operators for Nonstandard Purposes

 Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly Typed Collection

 Chapter 4. Forms, Controls, and Other Useful Objects

 Introduction

 Recipe 4.1. Creating and Adding Controls at Runtime

 Recipe 4.2. Iterating Through All Controls on a Form

 Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

 Recipe 4.4. Working with Timers

 Recipe 4.5. Determining If a Control Can Take the Focus

 Recipe 4.6. Programmatically Clicking a Button

 Recipe 4.7. Drawing a Control

 Recipe 4.8. Making a Form the Top-Most Form

 Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

 Recipe 4.10. Remembering a Form's Position Between Uses

 Recipe 4.11. Attaching a Control to the Edge of a Form

 Recipe 4.12. Moving or Resizing Controls as a Form Resizes

 Recipe 4.13. Limiting the Sizing of a Form

 Recipe 4.14. Centering a Form

 Recipe 4.15. Creating and Moving a Borderless Form

 Recipe 4.16. Creating a Fading Form

 Recipe 4.17. Creating a Nonrectangular Form

 Recipe 4.18. Changing Menus at Runtime

 Recipe 4.19. Creating Shortcut Menus

 Chapter 5. Strings

 Introduction

 Recipe 5.1. Using a StringBuilder

 Recipe 5.2. Creating a String of N Identical Characters

 Recipe 5.3. Creating a String by Repeating a String N Times

 Recipe 5.4. Obfuscating a String

 Recipe 5.5. Converting Binary Data to a Hexadecimal String

 Recipe 5.6. Extracting Substrings from Larger Strings

 Recipe 5.7. Converting a String's Case

 Recipe 5.8. Comparing Strings with Case Sensitivity

 Recipe 5.9. Comparing Strings Without Case Sensitivity

 Recipe 5.10. Converting Strings to and from Character Arrays

 Recipe 5.11. Converting Strings to and from Byte Arrays

 Recipe 5.12. Tallying Characters

 Recipe 5.13. Counting Words

 Recipe 5.14. Removing Extra Whitespace

 Recipe 5.15. Using the Correct End-of-Line Characters

 Recipe 5.16. Replacing Substrings

 Recipe 5.17. Inserting a Character or String

 Recipe 5.18. Inserting a Line

 Recipe 5.19. Double-Spacing a String

 Recipe 5.20. Formatting Numbers into Strings

 Recipe 5.21. Trimming Sets of Characters from a String

 Recipe 5.22. Identifying and Validating Types of Data in a String

 Recipe 5.23. Converting Strings Between Encoding Systems

 Recipe 5.24. Determining a Character's Type

 Recipe 5.25. Parsing Strings

 Recipe 5.26. Concatenating Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 5.26. Concatenating Strings

 Recipe 5.27. Speeding Up String Manipulation

 Recipe 5.28. Counting Occurrences of a Substring

 Recipe 5.29. Padding a String for Exact Length and Alignment

 Recipe 5.30. Converting Tabs to Spaces

 Recipe 5.31. Reversing a String

 Recipe 5.32. Shuffling a String

 Recipe 5.33. Using a Simple String Encryption

 Recipe 5.34. Converting a String to Morse Code

 Recipe 5.35. Adding Strings to an Application's Resources

 Recipe 5.36. Converting Any Data to a String

 Recipe 5.37. Using Regular Expressions to Extract All Numbers

 Recipe 5.38. Getting a Count of Regular Expression Matches

 Recipe 5.39. Getting the Nth Regular Expression Match

 Recipe 5.40. Compiling Regular Expressions for Speed

 Recipe 5.41. Using Regular Expressions to Validate Data

 Recipe 5.42. Using Regular Expressions to Count Characters, Words, or Lines

 Recipe 5.43. Converting a String to and from Base64

 Recipe 5.44. Splitting a String

 Recipe 5.45. Creating a String of Space Characters

 Chapter 6. Numbers and Math

 Introduction

 Recipe 6.1. Using Compact Operator Notation

 Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

 Recipe 6.3. Using Unsigned Integers

 Recipe 6.4. Swapping Two Integers Without Using a Third

 Recipe 6.5. Using Single- and Double-Precision Variables

 Recipe 6.6. Using Decimal Variables for Maximum Precision

 Recipe 6.7. Converting Between Number Types

 Recipe 6.8. Rounding Numbers Accurately

 Recipe 6.9. Declaring Loop Counters Within Loops

 Recipe 6.10. Converting Between Radians and Degrees

 Recipe 6.11. Limiting Angles to a Range

 Recipe 6.12. Creating Double-Precision Point Variables

 Recipe 6.13. Converting Between Rectangular and Polar Coordinates

 Recipe 6.14. Creating Three-Dimensional Variables

 Recipe 6.15. Converting Between Rectangular, Spherical, and Cylindrical Coordinates

 Recipe 6.16. Working with Complex Numbers

 Recipe 6.17. Solving Right Triangles

 Recipe 6.18. Solving Any Triangle

 Recipe 6.19. Determining if a String Contains a Valid Number

 Recipe 6.20. Converting Numbers to Integers

 Recipe 6.21. Calculating π to Thousands of Digits

 Recipe 6.22. Getting a Number's Prime Factors

 Recipe 6.23. Using Recursion to Calculate Factorials

 Recipe 6.24. Manipulating Bits with Bitwise Operators

 Recipe 6.25. Storing and Retrieving Bits in a BitArray

 Recipe 6.26. Enhancing the Random Number Generator

 Recipe 6.27. Generating Random Integers in a Range

 Recipe 6.28. Generating Random Real Numbers in a Range

 Recipe 6.29. Generating Normal-Distribution Random Numbers

 Recipe 6.30. Generating Exponential-Distribution Random Numbers

 Recipe 6.31. Creating a Matrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 6.32. Inverting a Matrix

 Recipe 6.33. Calculating the Determinant of a Matrix

 Recipe 6.34. Solving Simultaneous Equations

 Recipe 6.35. Listing of the MatrixHelper Class

 Chapter 7. Dates and Times

 Introduction

 Recipe 7.1. Getting the System Date and Time

 Recipe 7.2. Accessing the System's Time Zone

 Recipe 7.3. Using System Ticks

 Recipe 7.4. Timing Application Activities

 Recipe 7.5. Calculating Elapsed Time Using Ticks

 Recipe 7.6. Calculating Elapsed Time with the Stopwatch

 Recipe 7.7. Extracting Year, Month, and Day Numbers from a Date Value

 Recipe 7.8. Extracting Hour, Minute, and Second Numbers from a Date Value

 Recipe 7.9. Creating a Date or Time Value from Its Parts

 Recipe 7.10. Formatting Dates and Times

 Recipe 7.11. Parsing and Validating Dates and Times

 Recipe 7.12. Adding to Dates and Times

 Recipe 7.13. Subtracting from Dates and Times

 Recipe 7.14. Determining the Number of Days Between Two Dates

 Recipe 7.15. Determining the Day of the Week for a Date

 Recipe 7.16. Determining the Day of the Year for a Date

 Recipe 7.17. Determining the Number of Days in a Month

 Recipe 7.18. Using Controls to Enter or Select a Date

 Recipe 7.19. Calculating the Phase of the Moon

 Recipe 7.20. Creating a Calendar

 Recipe 7.21. Checking for Leap Years

 Recipe 7.22. Dates and Times in ISO 8601 Formats

 Chapter 8. Arrays and Collections

 Introduction

 Recipe 8.1. Filling an Array While Declaring It

 Recipe 8.2. Sorting Array Elements

 Recipe 8.3. Reversing an Array

 Recipe 8.4. Inserting into an Array

 Recipe 8.5. Shuffling an Array

 Recipe 8.6. Swapping Two Array Values

 Recipe 8.7. Resizing Arrays Without Losing Existing Values

 Recipe 8.8. Quickly Copying Part of an Array into Another

 Recipe 8.9. Writing a Comma-Separated-Values File from a String Array

 Recipe 8.10. Reading a Comma-Separated-Values File into a String Array

 Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional Array

 Recipe 8.12. Converting Between Delimited Strings and Arrays

 Recipe 8.13. Formatting an Array as a Single String

 Recipe 8.14. Iterating Through Array Elements

 Recipe 8.15. Passing Arrays to Methods

 Recipe 8.16. Returning Arrays from Functions

 Recipe 8.17. Creating a Collection

 Recipe 8.18. Inserting an Item into a Collection

 Recipe 8.19. Deleting a Collection Item

 Recipe 8.20. Iterating Through a Collection

 Chapter 9. Graphics

 Introduction

 Recipe 9.1. Creating Graphics Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 9.1. Creating Graphics Objects

 Recipe 9.2. Drawing on Controls for Special Effects

 Recipe 9.3. Letting the User Select a Color

 Recipe 9.4. Working with Coordinate Systems (Pixels, Inches, Centimeters)

 Recipe 9.5. Creating a Bitmap

 Recipe 9.6. Setting a Background Color

 Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

 Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

 Recipe 9.9. Forcing a Form or Control to Redraw

 Recipe 9.10. Using Transparency

 Recipe 9.11. Scaling with Transforms

 Recipe 9.12. Using an Outline Path

 Recipe 9.13. Using Gradients for Smooth Color Changes

 Recipe 9.14. Drawing Bezier Splines

 Recipe 9.15. Drawing Cardinal Splines

 Recipe 9.16. Limiting Display Updates to Specific Regions

 Recipe 9.17. Drawing Text

 Recipe 9.18. Rotating Text to Any Angle

 Recipe 9.19. Mirroring Text on the Canvas

 Recipe 9.20. Getting the Height and Width of a Graphic String

 Recipe 9.21. Drawing Text with Outlines and Drop Shadows

 Recipe 9.22. Calculating a Nice Axis

 Recipe 9.23. Drawing a Simple Chart

 Recipe 9.24. Creating Odd-Shaped Forms and Controls

 Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

 Recipe 9.26. Creating a Rubber-Band Rectangular Selection

 Recipe 9.27. Animating with Transparency

 Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

 Chapter 10. Multimedia

 Introduction

 Recipe 10.1. Playing an Audio File

 Recipe 10.2. Displaying Image Files

 Recipe 10.3. Playing a Video File

 Recipe 10.4. Making Your Computer Beep

 Recipe 10.5. Creating an Animation Using Multiple Images

 Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

 Recipe 10.7. Creating an Animation by Drawing at Runtime

 Recipe 10.8. Creating Animated Sprites

 Recipe 10.9. Resizing and Compressing JPEG Files

 Recipe 10.10. Getting JPEG Extended Information

 Recipe 10.11. Creating Thumbnails

 Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

 Recipe 10.13. Scrolling Images

 Recipe 10.14. Merging Two or More Images

 Recipe 10.15. Using Resource Images

 Recipe 10.16. Capturing an Image of the Screen

 Recipe 10.17. Getting Display Dimensions

 Recipe 10.18. Speeding Up Image Processing

 Recipe 10.19. Converting an Image to Grayscale

 Recipe 10.20. Performing Edge Detection on an Image

 Recipe 10.21. Full Listing of the LockImage Class

 Chapter 11. Printing

 Introduction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 11.1. Enumerating Printers

 Recipe 11.2. Sending "Raw" Data to a Printer

 Recipe 11.3. Get Details About the Default Printer

 Recipe 11.4. Creating a Print Preview

 Recipe 11.5. Prompting for Printed Page Settings

 Recipe 11.6. Drawing Text and Graphics to a Printer

 Recipe 11.7. Determining the Print Destination

 Recipe 11.8. Creating Graph Paper

 Chapter 12. Files and File Systems

 Introduction

 Recipe 12.1. Enumerating Drives

 Recipe 12.2. Determining if a Directory Exists

 Recipe 12.3. Creating a New Directory

 Recipe 12.4. Copying Directories

 Recipe 12.5. Moving Directories

 Recipe 12.6. Renaming Directories

 Recipe 12.7. Parsing File and Directory Paths

 Recipe 12.8. Searching Iteratively Through Directories and Subdirectories

 Recipe 12.9. Finding Directories and Files Using Wildcards

 Recipe 12.10. Determining If a File Exists

 Recipe 12.11. Getting and Setting File Attributes

 Recipe 12.12. Accessing Special User and Windows Directories

 Recipe 12.13. Determining the Space on a Drive

 Recipe 12.14. Browsing for a Directory

 Recipe 12.15. Getting File Information

 Recipe 12.16. Using File-Access Methods

 Recipe 12.17. Reading and Writing Files as Strings

 Recipe 12.18. Reading and Writing Binary Files

 Recipe 12.19. Copying or Moving a File

 Recipe 12.20. Sending a File to the Recycle Bin

 Recipe 12.21. Creating a Temporary File

 Recipe 12.22. Calculating a Checksum for a File

 Recipe 12.23. Comparing Two Files for Equality

 Recipe 12.24. Locking a File During Access

 Recipe 12.25. Reading from a File at a Specific Position

 Recipe 12.26. Reading and Writing Objects in a File

 Recipe 12.27. Creating a Comma-Separated-Values File

 Chapter 13. Databases

 Introduction

 Recipe 13.1. Connecting to a Data Provider

 Recipe 13.2. Issuing SQL Commands

 Recipe 13.3. Retrieving Results from a Database Query

 Recipe 13.4. Using SQL Parameters

 Recipe 13.5. Using Stored Procedures

 Recipe 13.6. Using Transactions

 Recipe 13.7. Storing the Results of a Query in Memory

 Recipe 13.8. Creating In-Memory Data Tables Manually

 Recipe 13.9. Writing In-Memory Data Tables to an XML File

 Recipe 13.10. Reading an XML File into In-Memory Data Tables

 Chapter 14. Special Programming Techniques

 Introduction

 Recipe 14.1. Preventing Multiple Instances of a Running Application

 Recipe 14.2. Creating a Simple User Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 14.2. Creating a Simple User Control

 Recipe 14.3. Describing User Control Properties

 Recipe 14.4. Starting Other Applications by EXE, Document, or URL

 Recipe 14.5. Waiting for Applications to Finish

 Recipe 14.6. List All Running Processes

 Recipe 14.7. Terminating a Running Process

 Recipe 14.8. Pausing Execution of a Program

 Recipe 14.9. Control Applications by Simulating Keystrokes

 Recipe 14.10. Watching for File and Directory Changes

 Recipe 14.11. Creating an Icon in the System Tray

 Recipe 14.12. Accessing the Clipboard

 Recipe 14.13. Adding Tooltips to Controls

 Recipe 14.14. Dragging and Dropping Files to a ListBox

 Recipe 14.15. Dragging and Dropping Between ListBox Controls

 Recipe 14.16. Disposing of Objects Appropriately

 Recipe 14.17. Fine-Tuning Garbage Collection

 Recipe 14.18. Moving the (Mouse) Cursor

 Recipe 14.19. Intercepting All Key Presses on a Form

 Recipe 14.20. Accessing the Registry

 Recipe 14.21. Running Procedures in Threads

 Recipe 14.22. Reading XML into a TreeView

 Recipe 14.23. Creating an XML Document

 Recipe 14.24. Validating an XML Document

 Recipe 14.25. Using Generic Collections

 Recipe 14.26. Creating a Screensaver

 Recipe 14.27. Localizing the Controls on a Form

 Recipe 14.28. Adding Pop-up Help to Controls

 Recipe 14.29. Maintaining User-Specific Settings Between Uses of an Application

 Recipe 14.30. Verifying a Credit Card Number

 Recipe 14.31. Capturing a Console Application's Output

 Recipe 14.32. Reading an Assembly's Details

 Recipe 14.33. Performing Serial I/O

 Recipe 14.34. Rebooting the System

 Chapter 15. Exceptions

 Introduction

 Recipe 15.1. Catching an Exception

 Recipe 15.2. Throwing an Exception

 Recipe 15.3. Catching Unhandled Exceptions

 Recipe 15.4. Displaying Exception Information

 Recipe 15.5. Creating New Exception Types

 Recipe 15.6. Ignoring Exceptions in a Block of Code

 Chapter 16. Cryptography and Compression

 Introduction

 Recipe 16.1. Generating a Hash

 Recipe 16.2. Encrypting and Decrypting a String

 Recipe 16.3. Encrypting and Decrypting a File

 Recipe 16.4. Prompting for a Username and Password

 Recipe 16.5. Handling Passwords Securely

 Recipe 16.6. Compressing and Decompressing a String

 Recipe 16.7. Compressing and Decompressing a File

 Recipe 16.8. Generating Cryptographically Secure Random Numbers

 Recipe 16.9. Complete Listing of the Crypto.vb Module

 Recipe 16.10. Complete Listing of the Compress.vb Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 17. Web Development

 Introduction

 Recipe 17.1. Displaying Web Pages on a Form

 Recipe 17.2. Accessing Content Within an HTML Document

 Recipe 17.3. Getting All Links from a Web Page

 Recipe 17.4. Get the Local Computer's IP Address

 Recipe 17.5. Resolving a Host Name or IP Address for Another Computer

 Recipe 17.6. Pinging an IP Address

 Recipe 17.7. Using FTP to Download Files

 Recipe 17.8. Calling a Web Service

 Recipe 17.9. Sending Email Using SMTP

 Recipe 17.10. Getting POP3 Emails

 Recipe 17.11. Sending a Message to Another Computer

 Recipe 17.12. Adding Hyperlinks to a (Desktop) Form

 About the Authors

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

Editor: John Osborn Indexer: John Bickelhaupt

Production Editor: Colleen Gorman Cover Designer: Karen Montgomery

Copyeditor: Rachel Wheeler Interior Designer: David Futato

Proofreader: Mary Anne Mayo Illustrators: Robert Romano and Jessamyn Read

Printing History:
September 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The Cookbook series designations, Visual Basic 2005 Cookbook, the image of a bream, and related trade dress are
trademarks of O'Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-10177-5

ISBN-13: 978-0-596-10177-0

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

In loving memory of Jeanie Craig (19502005).

Jeanie… Thank you for sharing your life, your spirit, and your love. Our dreams go
on, and our love is eternal.

John Craig

To my parents, Don and Darla, who both know how to cook.

Tim Patrick

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
Most of us learn to cook at an early age, starting with peanut butter and jelly sandwiches and quickly progressing to
macaroni and cheese. But very few people make it to the advanced cooking stage, whipping up new culinary creations
in the blink of an eye and dazzling all who taste the literal fruits of our labor. And for most of us, that's OK. We don't
expect any more than the ordinary, the mundane, on our daily plates.

But in the programming world, things are different. Users expect the moon when it comes to software quality, and if
you can't deliver something more than just the mundane, you're sure to get an earful. Visual Basic 2005 is a good tool
for writing great programs, but it is also very good at letting people write ordinary software. Ordinary cooking usually
only results in ordinary food, but ordinary programming can lead to something much worse: bugs. So how can you take
your programming to the "master chef" level?

For those of you who have limited creative talent in the kitchen, and even for experts who are just looking to try
something new, there are cookbooks galore at your local bookstore and smiling chefs each Saturday morning on your
local PBS station. For Visual Basic programmers, locating a similar type of cookbook of "programming recipes" has been
somewhat difficultuntil now. The book you are now holding, Visual Basic 2005 Cookbook, is the recipe book you have
been looking for. It's chock full of tasty software development tidbits that you can try right now in your kitchenthat is,
at your computer.

The recipes in this cookbook will introduce you to a wide range of Visual Basic 2005 programming topics, from simple
string and number manipulation to advanced topics involving animations and matrix transformations. Some of the
recipes may not be to your taste, but many of them will be just what you need. Perhaps you're in the middle of a meaty
project, and you aren't sure how to copy an existing directory from one place to another. A quick look at Recipe 12.4,
"Copying Directories," will provide the missing ingredients and keep your whole project from boiling over. Or maybe you
are trying to format some content for the printer, and you want to draw a text string at a 27.3-degree angle. If so, you
are likely hungry for what's in Recipe 9.18, "Rotating Text to any Angle."

In the world of cooking, regular practice brings noticeable improvements in the quality of your food. It is our belief that
regular programming practice using the recipes in this book will bring similar improvements in your software
development life. Bon appétit!

Who This Book Is For
Visual Basic 2005 Cookbook includes a large variety of recipes, and it was written to meet the needs of a wide range of
software developers, from the novice programmer trying out new code to the professional full-time developer. No
matter what your level of expertise, you will benefit from the recipes found in each chapter. But even the simplest
recipes assume a minimum understanding of Visual Basic and .NET programming concepts. If you are a first-time
programmer still learning the basics of loop constructs and conditions, you might want to spend a little more time with
a good tutorial book such as Programming Visual Basic 2005 by Jesse Liberty (O'Reilly) before you dive into the recipes
found in these pages.

This book was written with two purposes in mind. The first was a desire to help readers expand their understanding of
general and specific programming concepts and algorithms. As you read and study the recipes in this book, you should
become more fluent not just in the Visual Basic language, but in the mindset that is required to develop high-quality
and stable code. The book's second purpose was to help professional programmers (and also recreational
programmers) become more productive by providing a collection of software answers to the questions that may stump
them from time to time. If either of these purposes resonates with you and your programming needs, this book is
definitely for you.

How This Book Is Organized
Visual Basic 2005 Cookbook is primarily a reference book. Each recipe is organized as a problem/solution pair: you
have a problem, you locate a recipe that concerns your problem, and then you obtain the solution through the code and
discussion included with the recipe. If you are the adventurous type, you can read through the book from cover to
cover, and we will applaud you all the way. For most readers, the skim-and-look-up method will probably work better.
The ample index pages should help you find the recipe you need quickly.

The recipes in the book are organized into general programming topic areas, by chapter. The following miniature table
of contents quickly summarizes what you'll find in each chapter:

Chapter 1, Visual Basic Programming

This chapter introduces you to the three main types of projects you will develop using Visual Basic: desktop
applications, console applications, and web (ASP.NET) applications.

Chapter 2, The Development Environment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2, The Development Environment

This chapter shows you how to use some of the newer features of Visual Studio and introduces the new Visual
Basic 2005 My namespace feature. It also discusses development issues concerning general system resources
such as the registry and the clipboard.

Chapter 3, Application Organization

The recipes in this chapter cover the core programming concepts found in classes, structures, and modules,
including method usage and operator overloading.

Chapter 4, Forms, Controls, and Other Useful Objects

As the chapter title implies, the recipes found here deal with Windows Forms (desktop) applications, with a
strong emphasis on using the various controls available for building them.

Chapter 5, Strings

This chapter includes dozens of recipes that focus on strings and string manipulation. A few recipes focus on
regular expression processing.

Chapter 6, Numbers and Math

The .NET Framework, and by extension Visual Basic, includes several data types that each manipulate different
sizes and ranges of numbers. This chapter's recipes show you ways to interact with those data types and
values. For those who miss their high school math classes, there are several recipes that deal with more
advanced math topics, including geometry and linear algebra.

Chapter 7, Dates and Times

The recipes in this chapter demonstrate how to use and manipulate date and time values and the components
from which they are built. Timing and time ranges are also covered.

Chapter 8, Arrays and Collections

Storing individual data values is fine, but sometimes you need to store a whole bunch of similar values as a
group. This chapter shows you how to do just that by demonstrating various features of arrays and collections.
Generics, new to Visual Basic 2005, play a prominent role in this chapter.

Chapter 9, Graphics

This chapter discusses the graphics features included with .NET, focusing on the many GDI+ graphic objects
that let you draw complex shapes and text on almost any display surface.

Chapter 10, Multimedia

Moving pictures and sounds are the core of this chapter. The recipes found here will help you bring action to
otherwise static forms and applications.

Chapter 11, Printing

Printing in .NET depends on GDI+ and its drawing engine. While some of the recipes in Chapter 9 will be useful
for general printing, you'll find recipes dealing with other printing-specific topics, such as print preview support
and the incorporation of user-specified page settings, in this chapter.

Chapter 12, Files and File Systems

This chapter focuses on the interaction between software and the data stored in disk files. Also covered are the
different methods you can use to access and manage the file systems and directories where such files reside.

Chapter 13, Databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13, Databases

Most Visual Basic applications communicate with one or more database systems. This chapter's recipes
demonstrate different methods you can use in your applications to join databases and users through the
medium of your custom software.

Chapter 14, Special Programming Techniques

If you didn't find it in another chapter, it's here. This somewhat large chapter covers topics that didn't fit neatly
into other chapters. But in our opinion, it includes some of the most interesting and tasty recipes in the entire
book.

Chapter 15, Exceptions

Error processing is the focus of this chapter. Its recipes deal specifically with exceptions and error management
in your Visual Basic applications.

Chapter 16, Cryptography and Compression

Shhsome of the recipes in this chapter are secret. But it's all right for you to read them and use them to protect
and ensure the integrity of the data managed by your application.

Chapter 17, Web Development

Most of the recipes in this book can be used in desktop or web-based applications, but there are a few special
topics that are unique to ASP.NET applications. They appear in this chapter.

Most of the book's recipes include source code you can use in your own applications. Some of the code samples are
rather long, and typing them in while reading this book would be a chore. That's why we've made the source code for
most recipes available as a separate download from the O'Reilly Media web site. To access the code, locate this book's
web page at http://www.oreilly.com/catalog/vb2005ckbk/.

What You Need to Use This Book
The recipes included in this book were designed specifically for use with Visual Basic 2005 or later. While some of the
more general recipes will work with earlier versions of Visual Basic .NET, many other recipes will generate compile-time
or runtime errors if you attempt to use them with earlier versions.

If you do not yet own a copy of Visual Studio 2005, and you aren't sure if you are ready to make the financial
investment to obtain it, you can use the free version of the development environment, Microsoft Visual Basic 2005
Express Edition. Although this version does not include all of the features included with the Standard, Professional, and
Enterprise editions of the product, you will be able to use most of the recipes in this book with it.

Microsoft Visual Basic 2005 Express Edition can build only desktop applications. If you are looking for a no-cost tool for
ASP.NET application development, try the Microsoft Visual Web Developer 2005 Express Edition.

Both Express Edition tools are available from Microsoft's MSDN web site at http://msdn.microsoft.com/express/.

The recipes in this book were all developed using Visual Studio 2005 Professional Edition.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, and directories.

Constant width

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, statements, keywords, events, event handlers, XML
tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user; also used for emphasis within code.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Visual Basic 2005 Cookbook by Tim Patrick and John Clark Craig. Copyright 2006 O'Reilly Media, Inc., 978-0-
596-10177-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book that lists errata, examples, and any additional information. You can access this page
at:

http://www.oreilly.com/catalog/vb2005ckbk/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you see a Safari Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

Acknowledgments
For those of you who plan on writing a computer book some day, we wholeheartedly recommend O'Reilly Media for your
publishing consideration. It produces great booksincluding this oneyear after year, books that regularly meet the
computing needs of readers. And here is why: the people who work at O'Reilly aren't just book publishers, they are
technology lovers. They actually understand and try out the code included in their books.

The authors wish to especially thank John Osborn and Ralph Davis for their constant editorial devotion and dedication to
this book, from the first glimmer of interest during the "idea phase," to the final push to get every word just where it
needed to be. Also essential were Caitrin McCollough and the dozens of other technically adept people who had their
fingers in this project.

Jay Schmelzer and Steve Saunders provided regular and valuable feedback on all technical aspects of the book. If you
find any problem with any of the code in this book, it was probably something we added in after they had a chance to
review each chapter.

From Tim Patrick
Once again my family has been incredibly patient with me as I spent time playing with the computer. You would think
that there would be a limit on how many times a person can hear me say "Just one more paragraph," and still love me.
But they do.

My beautiful wife Maki is certainly the best wife anyone could find, and I sometimes feel sad for all of the other
husbands who have to settle for less than what I have. And when I also take into account my son Spencer, who is just
becoming a fourth grader as I write this, I truly know that I am one blessed man. It is a miracle of God that such joy
comes through the two people I get to be with each and every day.

Although I see her much less often, my agent Claudette Moore is also a treasure. She lets me call her and talk about
boring paperwork and new book ideas that I should get to work on later today. Thank you again for being part of the
fun of writing.

Thanks to John Craig, John Osborn, Ralph Davis, and the team at O'Reilly for trusting me with a portion of this book's
content. As everyone in the computer industry already knew, O'Reilly Media is a top-notch group producing great
technical resources.

From John Clark Craig
This has been a bittersweet year of transition for me, starting with the unexpected death of Jeanie, my wonderful wife
of 34 years, soon after the first few chapters were authored. Jeanie was always supportive of my book writing, and she
was very excited about this one. I know she still is.

My family and friends have been a steadfast source of joy, inspiration, and support throughout this year. Dakotah and
Makayla are the best grandkids a guy could ever hope for, and all my parents, siblings, and in-laws have been there for
me when I needed them most.

My fiancée EJ Thornton has been an absolute angel, and a bright guiding light in my life for the past few months. Thank
you EJ for bringing a renewal of meaning and purpose to my life, and thank you Jeanie for blessing us and for bringing
us together!

I owe a huge debt of gratitude to Tim Patrick for jumping in with his tremendous talent to help create this book, to
Ralph Davis for his great editorial skills and emotional support (Ralph's wife passed away recently, too), to John Osborn
for his nearly infinite patience, understanding, and guidance on this project, and to everyone else involved at O'Reilly.

Finally, I want to thank Microsoft for creating an excellent set of programming tools for today's software development
needs. In particular, the recent decision to make Visual Basic 2005 Express "free forever" to the public was a smart
win/win decision for us all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Visual Basic Programming
Introduction

Recipe 1.1. Creating a Windows Forms Application

Recipe 1.2. Creating a Console Application

Recipe 1.3. Creating an ASP.NET Web Forms Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
When Visual Basic 1.0 was introduced in the early 1990s, it greatly simplified Windows application development. Visual
Basic 2005continues the tradition by providing a programmer-friendly environment in which you can write powerful
desktop, web-based, and mobile applications quickly and easily.

In this introductory chapter you'll see just how easy it is to write a variety of applications by developing a simple
application in three Visual Basicsupported flavors: a desktop application (" Windows Forms"), a console application, and
a web-based application ("Web Forms" via ASP.NET).

The three recipes in this chapter are meant to be read as a set. The first recipe, which focuses on Windows Forms,
includes additional background information concerning the logic of the application developed in all three recipes. Be
sure to read this recipe first.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.1. Creating a Windows Forms Application

Problem

You want to develop a Windows Forms application that converts between the Fahrenheit, Celsius, and kelvin temperature systems.

Solution

Sample code folder: Chapter 01\Forms Version

Create a Windows Forms application, and add the appropriate controls and logic.

Discussion

Start Visual Studio 2005, and then create a new project. The Start Page includes a link to do this, or you can use the File
Project menu command. The New Project dialog appears, as shown in Figure 1-1.

Figure 1-1. Visual Studio's New Project dialog

Each template listed in this dialog starts with the most basic and empty Visual Basic project and adds just enough source code and
configuration settings to get you started on the selected application type. You could choose the Blank Solution template and work your
way up to the functionality provided through the Windows Application template, but that's more than we need to accomplish right
now.

Select Visual Basic (or the Windows entry under Visual Basic) in the "Project types" field and Windows Application in the Templates
field, enter the name of your project in the Name field (let's call ours "FormConvertTemp"), and click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

field, enter the name of your project in the Name field (let's call ours "FormConvertTemp"), and click the OK button.

As Visual Studio works behind the scenes to configure the initial project features, let's take a few minutes to review some high school
science. The three temperature systems in this programFahrenheit, Celsius, and kelvinare often used to measure heat in the various
scientific disciplines:

In the Celsius (or Centigrade) scale, water freezes at 0°C and reaches its boiling point at 100°C. This makes it a pretty simple
measurement system, at least where water is concerned. Celsius is used as the common temperature measurement system in
most countries.

The Fahrenheit system uses the environment of its founder, Gabriel Fahrenheit, as its basis for measurement. 0°F, at the
lower end of the 0-to-100 scale, is rumored to be the coldest temperature that Fahrenheit measured near his home one
winter. The 100°F mark is based on his own body temperature. This system, used in America and a few other locations, is
especially convenient if you are a German scientist with a slight fever.

The kelvin system uses the same scale size as the Celsius system, but places 0K at absolute zero, the theoretical temperature
at which all super-quantum molecular activity ceases. 0K is equivalent to-273.15°C, and all other temperatures on the kelvin
scale are converted to Celsius through a simple adjustment of that same 273.15°value. Kelvin is one of the seven base SI
(Système International d'Unités) units of measure and is used in scientific work.

The ability to convert between the different systems is important, not only for international relations, but also for health considerations
("Mom, I'm too sick to go to school today; I have a temperature of 310.15K!").

By now, Visual Studio should have completed its work and presented you with the initial project form (Figure 1-2).

Figure 1-2. Your project's initial form

The form you see represents the initial main form of your application. It is part of a project, a collection of files usually tied to a single
target, such as an application, a dynamic-link library, or some other output. In Windows Forms projects, the target is an executable
file (with an EXE file extension) that contains a compiled .NET application. All of the files in your project are listed in the Solution
Explorer, one of the standard tool windows in Visual Studio (Figure 1-3).

The top edge of the Solution Explorer includes a set of toolbar buttons that help you "explore the solution." The most interesting of
these buttons is the second from left, the Show All Files button. Clicking this button toggles the view of files included in your project.
Most of the files included in your application are hidden from view by default. Visual Studio does an amazing amount of work behind
the scenes, and most of this work is stored in hidden project files. Most of these files contain code automatically generated by Visual
Studio as you design your program. A few of these files, such as ApplicationEvents.vb, do contain code that you can update manually,
but most of your development time will focus on the files that are always displayed.

Figure 1-3. The Visual Studio Solution Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. The Visual Studio Solution Explorer

The main area of the form is its design surface, on which you place (or "draw") controls. The Toolbox (Figure 1-4) contains the
controls that you can add to your form; it's just one of the many "tool windows" available within Visual Studio. If it's not already
displayed, open the Toolbox now through the View Toolbox menu command.

Figure 1-4. Partial view of the Visual Studio Toolbox

The selection of controls included in the Toolbox varies based on the active project and window. Beyond the default controls, several
third parties offer enhanced controls for use in your projects. Once installed, these controls also appear in the Toolbox.

Each form or control has a default configuration, as determined by the developer of the control. You can alter this configuration by
changing the active form's or control's properties through the Properties window (Figure 1-5). If it is not already in view, display the
Properties window with the View Properties Window menu command.

Figure 1-5. Partial view of the Properties window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The properties for the active item are pretty easy to adjust: select the form or control you want to modify, select a property in the
Properties window based on the property name in the left column, and use the mouse or keyboard to modify its value in the right
column. Some properties can be expanded into distinct sub-properties using the plus sign (+) to the left of the property name. And
while most properties accept simple text values, others have mouse-friendly drop-down editors.

Before adding controls to our form, let's configure the properties of the form itself. Using the Properties window, set the form's
properties as shown in Table 1-1. This table lists only those properties that deviate from their default settings.

Table 1-1. Application form property changes
Property name New setting

(Name) ConvertForm

FormBorderStyle FixedSingle

MaximizeBox False

MinimizeBox False

StartPosition CenterScreen

Text Convert Temperatures

Now let's add the controls to the form. This project will use seven controls:

Three RadioButton controls to select the source temperature system

Three TextBox controls for entering and displaying temperatures

One Button control to initiate the conversion

Use the Toolbox to select and add controls to the form. Add a control either by double-clicking on the control in the Toolbox or by
selecting the control in the Toolbox and then "drawing" it on the surface of the form using the mouse. Go ahead and add the three
RadioButton controls, three TextBox controls, and one Button control, and arrange them so that your form resembles Figure 1-6
also want to resize the form to visually fit the contained controls.

Figure 1-6. Project form with included controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some of the properties in these controls also need to be adjusted. Use the values in Table 1-2 to guide you through the property
updates.

Table 1-2. Custom property settings for each control
Control Property name New setting

RadioButton1 (Name) SourceFahrenheit

 Checked true

 Text &Fahrenheit

RadioButton2 (Name) SourceCelsius

 Text &Celsius

RadioButton3 (Name) SourceKelvin

 Text &kelvin

TextBox1 (Name) ValueFahrenheit

TextBox2 (Name) ValueCelsius

TextBox3 (Name) ValueKelvin

Button (Name) ConvertTemperature

 Text Convert

The "&" character added to some of the properties sets the keyboard shortcut for that control so that the user can activate it with the
Alt+key keyboard sequence.

There are two more tasks to perform on the form itself before we start writing code, both destined to make the form easier to use.
The first is to allow the Enter or Return key to act like a click on the ConvertTemperature button. This is done by setting one of the
form's properties: AcceptButton. Setting this property to the name of a valid controlin this case, the ConvertTemperature button
controlenables this keyboard action. Go ahead and set the form's AcceptButton property now.

The second user-friendly update involves setting the " tab order" of the controls on the form. The Tab key allows the user to move
from one form control to another, but the movement may look somewhat random to the user unless you specifically declare the order.
To set the tab order, first make sure that the formand not one of its contained controlsis the active object in the designer window.
Then select the View Tab Order menu command. A small number appears next to each control. To readjust the tab order, click
the controls in the order you want them to appear (Figure 1-7). You can also set the tab order by altering the TabIndex property of each
control, but the mouse method is generally quicker.

Figure 1-7. Project form with tab order set for each control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you are finished, select the View Tab Order menu command once more (or press the Escape key) to return to standard
editing.

Now it's time to program! All of the code for this application will appear in the ConvertTemperature button's Click event procedure, which
you can access by double-clicking on the ConvertTemperature button itself. Visual Studio switches to a code editor with the following event
procedure template ready to use:

 Public Class ConvertForm
 Private Sub ConvertTemperature_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ConvertTemperature.Click

 End Sub
 End Class

Add the following code to the Click event procedure body. It determines the source temperature type, checks for valid input, and then
performs the conversion:

 ' ----- Convert between Fahrenheit, Celsius, and kelvin.
 On Error Resume Next

 If (SourceFahrenheit.Checked = True) Then
 ' ----- Convert from Fahrenheit to other types.
 If (IsNumeric(ValueFahrenheit.Text) = True) Then
 ' ----- F->C, F->K.
 ValueCelsius.Text = _
 (Val(ValueFahrenheit.Text) - 32) / 1.8
 ValueKelvin.Text = _
 ((Val(ValueFahrenheit.Text) - 32) / 1.8) + 273.15
 Else
 ' ----- Invalid data.
 ValueCelsius.Text = "Error"
 ValueKelvin.Text = "Error"
 End If
 ElseIf (SourceCelsius.Checked = True) Then
 ' ----- Convert from Celsius to other types.
 If (IsNumeric(ValueCelsius.Text) = True) Then
 ' ----- C->F, C->K.
 ValueFahrenheit.Text = _
 (Val(ValueCelsius.Text) * 1.8) + 32
 ValueKelvin.Text = Val(ValueCelsius.Text) + 273.15
 Else
 ' ----- Invalid data.
 ValueFahrenheit.Text = "Error"
 ValueKelvin.Text = "Error"
 End If
 Else
 ' ----- Convert from kelvin to other types.
 If (IsNumeric(ValueKelvin.Text) = True) Then
 ' ----- K->F, K->C.
 ValueFahrenheit.Text = _
 ((Val(ValueKelvin.Text) - 273.15) * 1.8) + 32
 ValueCelsius.Text = Val(ValueKelvin.Text) - 273.15
 Else
 ' ----- Invalid data.
 ValueFahrenheit.Text = "Error"
 ValueCelsius.Text = "Error"
 End If
 End If

The program is now ready to use in all weather conditions.

Although this program is pure .NET through and through, the only .NET code we witnessed was through the event handler. The call to
the ConvertTemperature_ Click event happens indirectly in the code; there is no line of source code, at least in your code, that makes a
direct call to the event handler.

When the user clicks on the ConvertTemperature button, the low-level device driver for the mouse inserts mouse-down and mouse-up
events into the global Windows input-processing queue. The device driver doesn't know anything about the various windows displayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

events into the global Windows input-processing queue. The device driver doesn't know anything about the various windows displayed
on-screen or about .NET; it reports only that a mouse event occurred at a specific X and Y position on the screen. The Windows
operating system uses this location to determine which window or control was clicked. Once that's determined, it sends relevant
messages to the message queue of the application that owns the clicked window. The application notifies the clicked control that the
user has, in fact, clicked that control. Finally, the code within the .NET control issues a RaiseEvent statement, which triggers a call to the
ConvertTemperature_Click event handler.

That's a lot of steps between your finger and the event handler. Fortunately, you don't have to handle all of those steps yourself. The
relevant logic already exists in Windows and in .NET; you just have to write the event handler and connect it to the specific event
through the handler's Handles keyword (which Visual Basic 2005generates for you):

 Private Sub ConvertTemperature_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ConvertTemperature.Click

The rest of the code in the application is composed of standard logic and calculations that you might find in code from any
programming language: If conditional statements, assignment statements, and expression processing with operators such as the
multiplication operator (*).

See Also

The other recipes in this chapter demonstrate how to implement the same program, using different types of interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.2. Creating a Console Application

Problem

You want to develop a Console application that converts between the Fahrenheit, Celsius, and kelvin temperature
systems.

Solution

Sample code folder: Chapter 01\ Console Version

Create a Windows Console application, and add logic to perform all the calculations based on the user's input. First,
read through Recipe 1.1 for background information on using Visual Studio and on converting between the various
temperature systems.

Discussion

Start Visual Studio 2005, and then use the File New Project menu command to create a new project. Select the
Windows project type, and then select the Console Application template. Click OK to create the new project. Since a
console application doesn't have a special user interface, Visual Studio simply displays the default code block for the
new project:

Module Module1
 Sub Main()

 End Sub
 End Module

There are a few different ways to rename the module. If you only want to change the name in the code, just replace
the word "Module1" with something like "Convert-Temperature":

 Module ConvertTemperature

Unfortunately, this requires you to make a change to the project's properties. Before the change, Visual Studio planned
to start the program from the Sub Main routine in the Module1 module. But since you changed the name, there is no longer
a Module1 for Visual Studio to use.

To modify the properties, select the Project ConsoleApplication1 Properties menu command, or double-click on the
My Project item in the Solution Explorer panel. When the Project Properties window appears, the Application tab in that
window should already be active. To change the starting code for the program, select "ConvertTemperature" from the
"Startup object" field. Then close the Project Properties window, and return to the code.

If you want to avoid all of this unpleasantness, rename the module's filename instead of its name in the code. To do
this, right-click the Module1.vb file in the Solution Explorer, choose the Rename command from the shortcut menu that
appears, and give it a new name such as ConvertTemperature.vb. (Don't forget the .vb extension.) Visual Studio will
change the module name as well and fix up all the other loose connections.

All of the conversion code will go in the Sub Main routine:

 Module ConvertTemperature
 Sub Main()
 ' ----- The program starts here.
 Dim userInput As String
 Dim sourceType As String

 On Error Resume Next

 ' ----- Display general instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Console.WriteLine("Instructions:" & vbCrLf & _
 "To convert temperature, enter a starting " & _
 "temperature, followed" & vbCrLf & _
 "by one of the following letters:" & vbCrLf & _
 " F = Fahrenheit" & vbCrLf & _
 " C = Celsius" & vbCrLf & _
 " K = kelvin" & vbCrLf & _
 "Enter a blank line to exit." & vbCrLf)

 ' ----- The program continues until the user
 ' enters a blank line.
 Do While True
 ' ----- Prompt the user.

Console.WriteLine("Enter a source temperature.")
 Console.Write("> ")
 userInput = Console.ReadLine()

 ' ----- A blank line exits the application.
 If (Trim(userInput) = "") Then Exit Do

 ' ----- Determine the source type.
 userInput = UCase(userInput)
 If (InStr(userInput, "F") > 0) Then
 ' ----- Start with Fahrenheit.
 sourceType = "F"
 userInput = Replace(userInput, "F", "")
 ElseIf (InStr(userInput, "C") > 0) Then
 ' ----- Start with Celsius.
 sourceType = "C"
 userInput = Replace(userInput, "C", "")
 ElseIf (InStr(userInput, "K") > 0) Then
 ' ----- Start with kelvin.
 sourceType = "K"
 userInput = Replace(userInput, "K", "")
 Else
 ' ----- Invalid entry.
 Console.WriteLine("Invalid input: " & _
 userInput & vbCrLf)
 Continue Do
 End If

 ' ----- Check for a valid temperature.
 userInput = Trim(userInput)
 If (IsNumeric(userInput) = False) Then

Console.WriteLine("Invalid number: " & _
 userInput & vbCrLf)
 Continue Do
 End If

 ' ----- Time to convert.
 If (sourceType = "F") Then
 ' ----- Convert from Fahrenheit to other types.

Console.WriteLine(" Fahrenheit: " & userInput)
 Console.WriteLine(" Celsius: " & _
 (Val(userInput) - 32) / 1.8)
 Console.WriteLine(" kelvin: " & _
 ((Val(userInput) - 32) / 1.8) + 273.15)
 ElseIf (sourceType = "C") Then
 ' ----- Convert from Celsius to other types.
 Console.WriteLine(" Fahrenheit: " & _
 (Val(userInput) * 1.8) + 32)
 Console.WriteLine(" Celsius: " & userInput)
 Console.WriteLine(" kelvin: " & _
 Val(userInput) + 273.15)
 Else
 ' ----- Convert from kelvin to other types.
 Console.WriteLine(" Fahrenheit: " & _
 ((Val(userInput) - 273.15) * 1.8) + 32)
 Console.WriteLine(" Celsius: " & _
 Val(userInput) - 273.15)
 Console.WriteLine(" kelvin: " & userInput)
 End If
 Loop
 End
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Module

Running the program opens up a command window. You will immediately be prompted to enter a source temperature.
The program continues to convert values until it detects a blank line for input. Here is a typical short session:

 Instructions:
 To convert temperature, enter a starting temperature, followed
 by one of the following letters:
 F = Fahrenheit
 C = Celsius
 K = kelvin
 Enter a blank line to exit.

 Enter a source temperature.
 > 37c
 Fahrenheit: 98.6
 Celsius: 37
 kelvin: 310.15
 Enter a source temperature.
 >

Console applications bring back memories of those pre-Windows days when the 80-by-24-character console display was
the primary user interface mechanism on the IBM PC platform. Text input and output, and maybe some simple
character-based graphics and color, were all the visual glitz that a programmer could use.

Console applications in .NET use that same basic text-presentation system as their primary interface, but they also
include the full power of the .NET libraries. For the actual user interaction, the Console object takes center stage. It
includes features that let you display text on the console (Write(), WriteLine()), retrieve user input (Read(), ReadKey(),
ReadLine()), and manipulate the console window in other useful ways.

The temperature conversion program uses the Console object and some basic temperature formulas within its core
processing loop. First, it gets a line of input from the user and stores it as a string:

 userInput = Console.ReadLine()

The input must be a valid number, plus the letter F, C, or K. The letter can appear anywhere in the number: 37C is the
same as C37 is the same as 3C7. Once the program has extracted the numeric temperature and its source system, it
performs the conversion; it then outputs the results using the Console.WriteLine() method.

See Also

The recipes in this chapter should be read together to gain a full understanding of general .NET application development
concepts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.3. Creating an ASP.NET Web Forms Application

Problem

You want to develop a Web Forms application in ASP.NET that converts between the Fahrenheit, Celsius, and kelvin temperature
systems.

Solution

Sample code folder: Chapter 01\Web Version

Create a new Web Forms application, and use ASP.NET development tools and coding methods to craft your application. First, read
through Recipe 1.1 for background information on using Visual Studio and on converting between the various temperature systems.

Discussion

Start Visual Studio 2005, and then create a new web site (not a "New Project"). You can use either the Create Web Site link on the
Start Page or the File New Web Site menu command. The New Web Site dialog appears, as shown in Figure 1-8.

Figure 1-8. Visual Studio's New Web Site dialog

Make sure that ASP.NET Web Site is selected in the list of templates, choose File System for the location type, enter the new directory
name (or just use the default, although we're going to use "WebConvertTemp" as the final directory component), naturally select
Visual Basic as the programming language, and then click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic as the programming language, and then click the OK button.

Visual Studio does a little work and then presents you with a blank page. This is a web page document on which you will place your
various web display elements. By default, it acts like a word processing document, in which added elements flow left to right, top to
bottom. You can opt to place elements at specific locations, but we'll stick with the default placement mode for this program.

If it's not already in view, display the Toolbox through the View Toolbox menu command. No doubt you've already seen the
Toolbox used in Windows Forms applications. The tools displayed now are similar, although they are for specific use by ASP.NET
applications only.

As with Windows Forms applications, Visual Studio presents the user interface to you, secretly writing the code behind the scenes. The
generated code in Windows Forms is all Visual Basic code; you can write an entire Windows Forms application in Notepad using only
Visual Basic statements. ASP.NET applications use Visual Basic for core logic and "code behind" event handlers, but the user interface
is defined through an HTML/XML mix. You can modify this HTML yourself (click on the Source button at the bottom of the web page
window to see the HTML generated so far) and have the changes reflected in the user interface.

For this project, let's take things easy and simply use the Toolbox to add display elements. Make sure you are in Design view (instead
of HTML Markup/Source view). Type the following text into the web page document, and then press Enter:

 Convert Temperature

Add the following usage text below this, and press Enter again:

 Select the source temperature system, enter the value,
 and then click the Convert button.

The text is somewhat plain, so let's do a little formatting. Highlight the word "Convert" in the usage text, and press the Control-B key
combination to make the text bold, just as you would in most word processors.

I think the title line would also look better as a heading. Switch into HTML mode by clicking on the Source button at the bottom of the
page or selecting the View Markup menu command. You should see the following HTML code, or something pretty close to it:

 <%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 Convert Temperature

 Select the source temperature system, enter the value,
 and then click the Convert
 button.

 </div>
 </form>
 </body>
 </html>

If you've written HTML in the past, this should mostly look familiar. Modify the "Convert Temperature" line to include <h1>
level #1) tags around the text, removing the
 tag:

 <h1>Convert Temperature</h1>

Return to the user interface designer by clicking on the Design button at the bottom of the page or using the View Designer
menu command.

Next, we need to add a selector for the three different temperature systems. To add an instance of the RadioButtonList control to the end
of the web page, click at the bottom of the web page and then double-click on the RadioButtonList item in the Toolbox. A default single-
item list appears. This list includes a "task pane," as shown in Figure 1-9 (Visual Studio includes such "smart tags" and task panes for
many user interface elements). Click on the Edit Items link in this pop up.

Figure 1-9. Convenient features for user interface elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-9. Convenient features for user interface elements

Use the ListItem Collection Editor that appears to add each temperature system. Table 1-3 contains the data you need to enter your
selections. When you are done, close the ListItem Collection Editor window.

Table 1-3. Radio button list items
Member Text Value

0 Fahrenheit F

1 Celsius C

2 kelvin K

Since we'll be interacting with this radio button list in code, we need to give it a meaningful name. In the Properties window, set the
(ID) property to "SourceType."

Back in the web page designer, start a new line with the text "From Temperature:" and follow it with a TextBox control from the
Toolbox. Name the control (that is, set its (ID) field to) "SourceValue."

On yet another line, add a Button control, name it "ConvertNow," and set its Text property to "Convert." A click on this button is
destined to generate the converted temperatures.

That's it for the data-entry portion, though we still need a place to display the results. We'll use a simple table presentation. First, set
off the results visibly by adding a Horizontal Rule control. This is actually a standard HTML element, so you'll find it in the HTML section of
the Toolbox. After that, add a title that reads "Temperature Results" (add the <h1> tags if you wish).

Now add a table through the Layout Insert Table menu command. When the Insert Table form (Figure 1-10) prompts you for a
table size, specify three rows and two columns, and then click OK. When the table appears, enter the names of the three temperature
systems in the left-most cells: Fahrenheit, Celsius, and kelvin.

Figure 1-10. Inserting a new table on a web page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET table cells can include names, and we will use such names to update the right-most cells with converted temperature data.
As you click in each right-column cell, the Properties window displays the details for each related <td> element. Update the (
property of each cell to use the following cell names, from top to bottom: "ResultFahrenheit," "ResultCelsius," and "ResultKelvin."

Let's make one final change to the presentation. In Visual Studio's Properties window, select DOCUMENT from the list of objects at the
top of the panel. Modify the Title property, which currently contains "Untitled Page," to read "Convert Temperature" instead. This is the
title that appears in the browser's titlebar when running the application.

That's it for the user interface design. You should now have a web-page display similar to Figure 1-11.

Figure 1-11. A beautiful ASP.NET Web Forms application

Let's move on to the source code. Visual Studio has generated all of the HTML markup on our behalf, but we need to supply the
temperature conversion logic. Click on the View Code button in the Solution Explorer, or select the View Code menu command.
Although it's not much, Visual Studio wrote a little bit of this code, too:

 Partial Class _Default
 Inherits System.Web.UI.Page

 End Class

The only code we need to add is the event handler for the Convert button that performs the actual conversion. Add this code to the
project. You can double-click on the Convert button in the designer to have Visual Studio add the event handler template:

 Protected Sub ConvertNow_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ConvertNow.Click
 ' ----- The conversion occurs here.
 Dim origValue As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim origValue As Double

 If (IsNumeric(SourceValue.Text) = True) Then
 ' ----- The user supplied a number. Convert it.
 origValue = CDbl(SourceValue.Text)
 If (SourceType.SelectedValue = "F") Then
 ' ----- From Fahrenheit.
 ResultFahrenheit.Text = CStr(origValue)
 ResultCelsius.Text = CStr((origValue - 32) / 1.8)
 ResultKelvin.Text = CStr(((origValue - 32) / 1.8) + _
 273.15)
 ElseIf (SourceType.SelectedValue = "C") Then
 ' ----- From Celsius.
 ResultFahrenheit.Text = CStr((origValue * 1.8) + 32)
 ResultCelsius.Text = CStr(origValue)
 ResultKelvin.Text = CStr(origValue + 273.15)
 Else
 ' ----- From kelvin.
 ResultFahrenheit.Text = CStr(((origValue - 273.15) * _
 1.8) + 32)
 ResultCelsius.Text = CStr(origValue - 273.15)
 ResultKelvin.Text = CStr(origValue)
 End If
 Else
 ' ----- Unknown source value.
 ResultFahrenheit.Text = "???"
 ResultCelsius.Text = "???"
 ResultKelvin.Text = "???"
 End If
 End Sub

If you've already read the other recipes in this chapter, this code should look some-what familiar. It simply applies the standard
temperature-conversion formulas to the source number based on the type of source temperature selected, then puts the results in the
output display fields.

When you run this recipe, it properly converts temperatures but only when you click on the Convert
button directly. If you're like us, you want to reduce the number of keystrokes and mouse clicks you
need to use in any program. The program doesn't convert properly if you simply hit the Enter key from
the source temperature field, SourceValue. ASP.NET has a way to change this behavior. Add this event
handler to your application to enable conversion via the Enter key (or add the RegisterHiddenField()
statement to your Page_Load event if you already have that handler).

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ClientScript.RegisterHiddenField("_ _EVENTTARGET", _
 "ConvertNow")
 End Sub

It's hard to read, but there are two underscore characters before "EVENTTARGET."

The code you use to develop ASP.NET applications is not exactly the same as the code you use for desktop applications, but it's close.
Event handlers in ASP.NET look like event handlers in Windows Forms applications, although the timing of the events is a little
different. Functions that exist for calculation purposes only and that have no direct interaction with the user or the user interface may
be moved freely between Windows Forms and Web Forms applications, but some of the code is very much tied to the ASP.NET
programming model. Still, that's what you would expect given that half of a Web Forms application's user-interface code is written in
HTML instead of Visual Basic.

The HTML code that is included is a little nonstandard. Take a look at the HTML markup associated with the application (select View
 Markup when the designer is in view). Although there are the standard <body> and <table> tags throughout the page, there are

also some tags that begin with asp:, as in <asp:RadioButtonList>. Each tag represents a Web Forms Server Control and is directly tied to a
.NET Frameworkcoded class (a class you can instantiate and manipulate just like any other .NET class). The RadioButtonList class, for
instance, is found in the System.Web.UI.WebControls namespace, along with most of the other ASP.NET-specific controls.

When ASP.NET processes a web page with these embedded web controls, the control class emits standard HTML code in place of the
<asp:RadioButtonList> tag set.

Fortunately, you don't need to know how the internals of these classes work or exactly what kind of HTML they emit. You can simply
add the controls to your web page using drag-and-drop, and interact with each control through its events and properties. And that's
what we did here. We added a couple of controls to a form, adjusted their properties, and then responded to a single event. These
actions resulted in a complete web-based application. ASP.NET even adjusts the emitted HTML for the user based on the flavor of the
browser being used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browser being used.

See Also

The recipes in this chapter should be read together to gain a full understanding of general .NET application development concepts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. The Development Environment

Introduction

Recipe 2.1. Discovering and Using a Code Snippet

Recipe 2.2. Creating a New Snippet

Recipe 2.3. Sharing Snippets

Recipe 2.4. Adding Snippet Files to Visual Studio

Recipe 2.5. Getting an Application's Version Number

Recipe 2.6. Letting Visual Studio Automatically Update an Application's Version Number

Recipe 2.7. Setting the Startup Form for an Application

Recipe 2.8. Setting the Startup to a Sub Main Procedure

Recipe 2.9. Getting an Application's Command Line

Recipe 2.10. Testing an Application's Command Line

Recipe 2.11. Obfuscating an Application

Recipe 2.12. Determining if an Application Is Running in the Visual Studio Environment

Recipe 2.13. Accessing Environment Variables

Recipe 2.14. Accessing the Registry

Recipe 2.15. Getting System Information

Recipe 2.16. Getting the User's Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Did you know that the Visual Basic 2005 compiler is available to you free of charge? You can download the .NET
Framework with all included compilers directly from Microsoft's web site, and start using it immediately to develop and
distribute your own .NET applications, all without shelling out a single penny.

Well, there are a few caveats. The main one is that you will have to use a tool such as Notepad to write all of your
source code. And you will need to hand-type the statements that start the compilation process through the Windows
Command Prompt. But other than that, it's a piece of cake. And it's still free.

If you're not that bold, you should probably fork over a little cash to obtain Visual Studio, the programming
environment of choice for .NET application development. Although it's not free, you definitely get what you pay for.
(Actually, Visual Basic 2005 Express Edition is free, so you get even more than you pay for.) Visual Studio is stuffed
with features and support tools and visual designers and behind-the-scenes automatic code generation wizards, all of
which let you concentrate on developing great code without having to worry about the picky details of setting up the
compiler and deployment options.

This chapter discusses some of the snazzy features included with Visual Studio 2005. As with all the chapters in this
book, we have concentrated on Visual Studio 2005 Professional Edition. However, most, if not all, recipes in this book
should work with any edition of Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.1. Discovering and Using a Code Snippet

Problem

You know that Visual Studio came with a bunch of prewritten "snippets" that you can use in your applications, but you don't know where to
find them in the vast Visual Studio menu system.

Solution

Code snippets are among the IntelliSense features included with Visual Studio. To find and insert a snippet, use the different snippet-
related menus and keyboard sequences.

Discussion

To insert a code snippet into your source code, right-click at the desired location with the mouse, choose Insert Snippet from the shortcut
menu (Figure 2-1), and navigate to the snippet you want to use.

Figure 2-1. Inserting a snippet with the mouse

An even faster method is to type a question mark (?) anywhere in the source code and then press the Tab key. The more formal location
of this same command within the Visual Studio menu system is at Edit IntelliSense Insert Snippet. If you are in any way
mouse-phobic when developing source code, you can use the default Visual Basic keyboard shortcut of Control-K followed by Control-X to
get to the snippet picker.

Using any of these methods to access snippets presents the top-level set of snippet folders, as shown in Figure 2-2.

Figure 2-2. Primary snippet categories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-2. Primary snippet categories

To negotiate the hierarchy, use the mouse or arrow keys to select a folder or item in the pop-up list, or type a partial list name followed by
the Enter key. Selecting a snip-pet folder updates the list with the items and subfolders in that selected folder. For example, in
selecting "Math" with the mouse or typing "Math" from the keyboard followed by the Enter key, will open the "Math" snippet folder and
display any folders or items contained within that folder. Selecting an item inserts the chosen snippet.

Each snippet contains a useful block of prewritten code, but many also include some intelligence. Some snippets include "fill in the blank"
templates that provide areas for you to supply your custom values. For instance, the Data Typesdefined by Visual Basic
Number to a Hexadecimal String snippet includes a field for the source value, moving the insertion point to that field immediately upon
pasting the snippet in the code:

 Dim hexString As String = Hex(48)

Some snippets place multiple lines of source code in the code editor, sometimes with multiple replacement fields. The Common Code
Patterns Types Define a Structure snippet defines this multiline structure:

 Structure MyStructure
 Public ValueOne As Integer
 Public ValueTwo As Boolean
 End Structure

Some snippets add code to various places in your source-code file and may make other updates to your project. The Security
a String snippet not only adds code to the active procedure but also adds Imports statements to the top of the source-code file if references
to the namespaces it uses are not already there.

Snippets are somewhat location-dependent. Most are written to be used inside a sub-routine, function, or property accessor, while a few
are designed for placement out-side of routines or classes. If you insert a snippet at the top of a source-code file, outside of any class
context, it will be riddled with errors.

Snippets are actually specially formatted XML files, with attributes containing the special insertion rules for each snippet.

See Also

Recipes 2.2, 2.3, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.2. Creating a New Snippet

Problem

You've written an especially useful block of source code, and you want to save it as a code snippet for use in other applications.

Solution

To save a block of code as a snippet for reuse, use the Code Snippet Editor for Visual Basic 2005 to create and store the snippet, or hand-code the
required XML file yourself and place it in an appropriate directory.

Discussion

To add a new snippet to the set of available snippets in your Visual Studio environment, fire up the Snippet Editor, and right-click on the folder where
you want the snippet to appear, then select Add New Snippet from the shortcut menu.(An Add New Folder option lets you adjust the available folders.
You can also create subordinate folders to a reasonable depth.) Type or paste your code into the blank pane of the Editor tab, using the Replacements
tab to add any replaceable parameters. Click the Save icon near the top of the Snippet Editor to store your results. The new snippet will be available
immediately within Visual Studio.

The Snippet Editor is a community-developed application available to you as a free download. You can contribute
features to it yourself if you are so inclined. It's part of the "GotDotNet" Community, located at
http://www.gotdotnet.com, in its "Workspaces" area.

It's also possible to code snippets yourself, using the markup specified by the Microsoft XML snippet schema. However,
doing so is not for the faint of heart, and with few exceptions, the Snippet Editor is more than adequate.

Figure 2-3 shows the "Convert a Number to a Hexadecimal String" snippet used earlier, as presented in the Snippet Editor.

You are probably dying to see the actual XML that makes up a code snippet, so here is the XML for that snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <CodeSnippets xmlns=
 "http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
 <CodeSnippet Format="1.0.0">
 <Header>
 <Title>Convert a Number to a Hexadecimal String</Title>
 <Author>Microsoft Corporation</Author>
 <Description>Returns the hexadecimal
 representation of an integer.</Description>
 <Shortcut>typeHex</Shortcut>
 </Header>
 <Snippet>
 <Imports>
 <Import>
 <Namespace>System</Namespace>
 </Import>
 <Import>
 <Namespace>Microsoft.VisualBasic</Namespace>
 </Import>
 </Imports>
 <Declarations>
 <Literal>
 <ID>Number</ID>
 <Type />
 <ToolTip>Replace with an integer.</ToolTip>
 <Default>48</Default>
 <Function />
 </Literal>
 </Declarations>
 <Code Language="VB" Kind="method body">
 <![CDATA[Dim hexString As String = Hex($Number$)]]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <![CDATA[Dim hexString As String = Hex($Number$)]]>
 </Code>
 </Snippet>
 </CodeSnippet>
 </CodeSnippets>

Figure 2-3. The Snippet Editor

You can find this particular block of snippet code at C:\Program Files\Microsoft Visual Studio 8\VB\
Snippets\1033\datatypes\ConvertaNumbertoaHexaDecimalString.snippet. It's pretty easy to read, although a pain to write. That's why we have
software applications like the Snippet Editor.

See Also

Recipes 2.1, 2.3, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipes 2.1, 2.3, and 2.4 provide additional information on code snippets.

If you really feel that you must write your own snippets and use all the advanced features available within the XML schema, Microsoft's MSDN Library
has full documentation on using and designing snippets.Link to http://msdn.microsoft.com, and search for "snippet."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.3. Sharing Snippets

Problem

You've created a number of terrific code snippets, and you would like to share them with others.

Solution

The .snippet files used to store your code snippets are simple disk-based XML files. To share snippets with others, make
copies of the files, and distribute them as needed.

Discussion

The code snippet technology included in Visual Studio is pretty basic. It simply presents a list of code snippet files found
in directories you specify. As long as snippet files appear in directories referenced by Visual Studio, those snippets are
available for use.

On your system, you can probably find all the Microsoft-supplied snippets in the C:\Program Files\Microsoft Visual
Studio 8\VB\Snippets\1033 folder.

See Also

Recipes 2.1, 2.2, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.4. Adding Snippet Files to Visual Studio

Problem

Someone else has chosen to share snippet files with you, and you're ready to use them.

Solution

Upon receiving one or more snippet files, you can integrate them into your own copy of Visual Studio using the Code
Snippets Manager.

Discussion

The Code Snippets Manager is accessed through Visual Studio's Tools Code Snippets Manager menu command.
The Add button on the form lets you add an entire directory of snippets to Visual Studio, while the Import button adds a
single snippet file.

The quality of the code snippets you receive from others may be limited by the skill and trustworthiness of their
developers. Caveat emptor.

See Also

Recipes 2.1, 2.2, and 2.3 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.5. Getting an Application's Version Number

Problem

You would like to display the version number of your application on its "About" form.

Solution

Sample code folder: Chapter 02\VersionNumbers

Use the My.Application.Info.Version object to access the version number of the application, and store the result in a Label
control.

Discussion

Visual Basic stores an application's version number as a four-part "dot"-delimited value, such as:

 1.2.3.4

The four components represent the major, minor, build, and revision numbers, respectively. They are made available
through an instance of the System.Version class obtained from the My.Application.Info.Version object. You can use the members
of this class to display version information when needed. The following code assumes your form has a label named
VersionNumber:

 Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 With My.Application.Info.Version
 VersionNumber.Text = "Version " & .Major & _
 "." & .Minor & " (Build " & .Build & "." & _
 .Revision & ")"
 End With
 End Sub
 End Class

Figure 2-4 displays the typical output for a version value set to 1.2.3.4.

Figure 2-4. Displaying an application version number

If you aren't concerned about the display format of the version number, have the Version object format itself:

 VersionNumber.Text = My.Application.Info.Version.ToString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each .NET assembly has a four-part version number, defined as an assembly attribute in the project's source code. In a
typical Visual Basic 2005 application, this attribute is stored in the AssemblyInfo.vb file, which appears only when you
have Show All Files enabled in Visual Studio's Solution Explorer panel. If you open this file, you will quickly find the line
that sets the version number:

 <Assembly: AssemblyVersion("1.0.0.0")>

Altering the four-part number in the string modifies the assembly's version number. Visual Studio also provides a way
to set this through a property form. From the Project Properties window, select the Application tab, and then click the
Assembly Information button. The version number is set through the four fields named Assembly Version.

See Also

Recipe 2.6 adds some automation to the version number process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.6. Letting Visual Studio Automatically Update an
Application's Version Number

Problem

You want to ensure that the version number changes at least a little each time you build the application, but repeatedly
updating the version number by hand is a hassle.

Solution

Let Visual Basic update the build and revision components of the version number for you. Instead of supplying digits for
these components, use an asterisk for the build component:

 <Assembly: AssemblyVersion("1.2.*")>

If you want to control the build number but have Visual Basic generate the revision number, include the digits for the
build component and use an asterisk for the revision component:

 <Assembly: AssemblyVersion("1.2.3.*")>

Discussion

Visual Basic will auto-generate build and revision numbers for you if you supply an asterisk in place of actual digits.
When auto-generating the build number, Visual Basic uses the number of days since January 1, 2000. When auto-
generating the revision number, Visual Basic uses the number of seconds elapsed since midnight of the current day,
divided by two. This value starts over at zero each midnight.

Although Visual Basic will update the build and revision numbers for you, you must supply the major and minor version
numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.7. Setting the Startup Form for an Application

Problem

You want to indicate which of the several Windows Forms your application uses is the "main" form, the focal point of the
application.

Solution

The application's main form is set through the Project Properties window. From that window, select the Application tab,
and then use the " Startup form" field to select the form to use for the main form.

Discussion

You can start up your Visual Basic application using the Windows Forms Application Framework, or without it. The "
Enable application framework" field on the Application tab of the Project Properties window enables or disables this
feature. When it's enabled, Visual Basic controls the startup process associated with your selected startup form. The
Application Framework fires events during the startup process that you can use to include your own custom code. To
access these events, click the View Application Events button on the Application panel of the Project Properties window.

If you disable the Application Framework, you have more control over the startup process. All Visual Basic applications
begin by running a shared method named Main(), which will appear somewhere in your application's source code. You
can use the "Startup form" field on the Application tab to tell Visual Basic to use the Main() method included with a
specific form's code. If you do not supply such a method, Visual Basic will implicitly add one to the startup form, using
code that looks something like this:

 Public Shared Sub Main()
 Application.Run(My.Forms.Form1)
 End Sub

You may add such a method to your startup form and include additional code as needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.8. Setting the Startup to a Sub Main Procedure

Problem

You decide, after all, that you want to run your own startup code and display the main form after doing some initial
nonform processing.

Solution

Sample code folder: Chapter 02\SubMainStartup

Add a Main() method to a module in your application, and use that as the startup code. You will need to display forms on
your own.

Discussion

Add a module to your project, and then add the Main() method with at least the following code:

 Module Module1
 Public Sub Main()
 ' ----- Add startup code here, then…
 Application.Run(My.Forms.Form1)
 ' …passing the startup form as the argument.
 End Sub
 End Module

Next, mark this Main() method as the startup code for your application, via the Application tab of the Project Properties
window. Disable the Windows Forms Application Framework by clearing the "Enable application framework" field. Then
set the "Startup form" field on that same tab to "Sub Main."

As discussed in the previous recipe, all applications begin from some shared method named Main(). You can supply your
own Main() method, and it doesn't need to be part of a form. Adding it to a module with your own initialization code
gives you the most control over the application's startup process.

The Application.Run() method runs the primary message loop for your application, a standard part of all Windows desktop
programs. Pass an instance of your startup form as an argument; Visual Basic will display this form and keep the
program running until the user closes this form.

Because you must disable the Application Framework to use a custom Main() method, some of the convenience and
usability features included with the Framework will not be enabled by default. For instance, you will have to manually
display and hide any "splash" form that appears during the initialization phase of your application.

See Also

See Recipe 2.7 for additional discussion about startup procedures in Visual Basic applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.9. Getting an Application's Command Line

Problem

You've designed your program to support optional command-line arguments, and you want to process them.

Solution

There are a few different ways to examine and process the command-line options supplied to your program. The first
and easiest of the methods involves the Visual Basic Command() function, part of the Microsoft.VisualBasic namespace. This
function returns the entire set of command-line options as a String. For instance, if the user enters the following
command:

 MyApp.exe /option1 /option2 filename.txt

the Command() function returns:

 /option1 /option2 filename.txt

The application name and extension are always removed from the string; Command() returns only the options, not the
program name.

Because Command() returns a single string with the entire command-line option text, the responsibility for parsing each
option from the string rests on your shoulders. However, Visual Basic also supplies a pre-parsed version of the options
through the My.Application.CommandLineArgs collection. Each zero-based argument in the collection includes one of the
original space-delimited options as entered by the user. Thus, using the example command line from just a few
paragraphs ago, the following method call:

 MsgBox(My.Application.CommandLineArgs(1))

displays /option2, because the collection is zero-based.

Discussion

Many applications support optional command-line arguments, generally to alter the initial view of the application on
startup. Normally such arguments are entered through the Windows command prompt, cmd.exe. For example, the
Notepad.exe program accepts a single command-line argument, a filename to open immediately:

 Notepad.exe c:\temp\DataFile.txt

Windows does provide some support for command-line option usage. If you create a shortcut to an application, the
Target field in the shortcut's properties (accessed by right-clicking on the shortcut icon and selecting Properties) will
accept commandline arguments after the executable name.

If you use the Windows File Explorer to drag and drop a file onto an application (EXE) icon, Windows starts the
application, adding the dropped file's name as a command-line argument.

No matter which method you use to add command-line arguments to your application, they are received through the
Command() and My.Application.CommandLineArgs features of Visual Basic.

There is one exception to this general rule. Visual Basic applications can be configured as "single-instance" applications
by selecting the " Make single instance application" field on the Application tab of the Project Properties window. If a
user tries to start a second instance of a single-instance application when an instance is already running, the second
instance will not run. Instead, a special event triggers in the first instance, informing the program that the user wants
to start a new instance. It is up to the program to determine how to handle such requests. The Command() and
CommandLineArgs features indicate only the options for the initial instance of a single-instance program; command-line
arguments for subsequent instances are processed as part of the arguments to the special additional-instance event.

To use this special StartupNextInstance event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use this special StartupNextInstance event:

1. Access the Application tab of the Project Properties window.

2. Click on the View Application Events button on that tab to display the source code from the ApplicationEvents.vb
file.

3. Select "(MyApplication Events)" from the Class Name list that is above and to the left of the code window.

4. Select "StartupNextInstance" from the Method Name list just to the right of the Class Name list.

The following code fragment appears:

 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance

 End Sub

The e argument includes a CommandLine collection member that works just like the My.Application.CommandLineArgs collection
but is specific to the new instance requested by the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.10. Testing an Application's Command Line

Problem

You have written an application that supports various custom command-line arguments, and you'd like to test the
argument-parsing code from within the development environment.

Solution

Use the "Command line arguments" field in the Project Properties window to enter or modify the temporary testing
command-line arguments.

Discussion

You can test this code by setting a temporary command-line argument string for use in your program:

1. Access the Debug tab of the Project Properties window.

2. Type your temporary command line in the "Command line arguments" field.

This temporary argument string is used only when running programs within the Visual Studio development
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.11. Obfuscating an Application

Problem

You've written a pretty cool application, and you'd like to sell it to customers. But you also know that the Intermediate Language (IL) code
generated by the Visual Basic compiler can easily be read and turned back into reasonable source code by ne'er-do-wells intent on reaping ill-
gotten rewards from your hard effort.

Solution

Use an obfuscator to alter the compiled application, making futile any attempt to reverse-engineer the application back into understandable
source code. There are several third-party obfuscators on the market that target .NET-compiled applications.

These programs work with any compiled .NET application, whether they were written in Visual Basic, C#, or some other .NET-enabled language.

Visual Studio 2005 also includes an obfuscator you can use with your own applications. It's called Dotfuscator Community Edition, and although
it comes with Visual Studio, it's actually developed by a separate company named PreEmptive Solutions.

It's pretty easy to perform a basic obfuscation using Dotfuscator. First, make sure you have built your application to an EXE executable (or DLL,
if relevant). From Visual Studio, select the Tools Dotfuscator Community Edition menu command. Once you get past some advertising, you
will be prompted to create a new project. This is not a Visual Studio project, but a Dotfuscator project. A new project appears via the main
Dotfuscator form, as shown in Figure 2-5.

Figure 2-5. A new Dotfuscator project

On the Input tab, use the left-most icon (the Open Folder icon) to locate your EXE assembly. Use the other tabs to fine-tune the obfuscation, if
desired. Then use the File Build menu command to generate an obfuscated version of the project. You'll be prompted to save the settings
for this project. Once generated, the obfuscated version of the project appears in a directory named Dotfuscated in the same directory where
you saved the settings.

Discussion

We obfuscated a simple Windows Forms application that contained (1) a mostly empty form, (2) a static label on that form, and (3) a
handler for the label that just displays a message box. We used Microsoft's IL Disassembler (ildasm.exe, one of the tools included with the .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handler for the label that just displays a message box. We used Microsoft's IL Disassembler (ildasm.exe, one of the tools included with the .NET
Framework SDK installed with Visual Studio) to view the internals of the "before" (Figure 2-6) and "after" (Figure 2-7) assemblies.

Figure 2-6. Before obfuscation

Figure 2-7. After obfuscation

Clearly, the obfuscation process did make some changes, but in a simple program like this, it's not too difficult to see what it did. It's interesting
that the old set_Label1 property component was renamed to a, but the related get_Label1 was renamed b; that's obfuscation in action. Local
variables and even embedded strings go through some of the same scrambling procedures. The goal is to scramble the code enough to keep it
safe from prying eyes but keep it stable enough to work exactly as it did before obfuscation.

Dotfuscator Community Edition contains basic obfuscation functionality. If you want something more stringent, you will have to upgrade to one
of PreEmptive's more advanced versions (for a fee) or find another obfuscation product from a different vendor. Be aware that obfuscation is not
for all applications, at least according to the warning label on the Dotfuscator product. It implies that the product is safe to use as long as your
application:

is not designed or intended for use in, or on applications intended for use in on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in medical, biological, pharmaceutical, or other life-dependent applications; or in the
design, construction, operation or maintenance of any nuclear facility.

See Also

Some of the recipes in Chapter 16 will help you obfuscatethat is, encryptthe data used by your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.12. Determining if an Application Is Running in the Visual
Studio Environment

Problem

Your application needs to respond one way if it is running in the Visual Studio development environment and another
way if it is running as a standalone application. For instance, you might want to issue a Stop statement on errors when
in the debugging environment but log the errors to a file when running as a standalone application.

Solution

There are a few different ways to determine the running environment of your application, but the simplest is to examine
the System.Diagnostics.Debugger. IsAttached flag. If this property is TRue, your application is running in the development
environment.

Discussion

The IsAttached property indicates TRue whenever your application is running in a debugger that properly sets the
underlying value of this flag. That means that if the flag is true, the program may be running in some environment other
than Visual Studio. But if your program is running in some nonVisual Studio debugger, there are probably bigger issues
of concern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.13. Accessing Environment Variables

Problem

Your program relies on data stored in DOS-style environment variables, and you're ready to retrieve some of those
values.

Solution

Use the My.Application. GetEnvironmentVariable() method to retrieve specific environment variable values.

Discussion

Microsoft's MS-DOS operating system predated Windows, and when Windows was first released, it needed to use and
support many of the existing MS-DOS features. One such feature involved environment variables, a collection of
name/value pairs that served as a set of global constants programs could read and use. For instance, the PATH variable
stored a list of directories Windows used to locate programs. Other applications could read the PATH variable for their
own use.

To retrieve the PATH environment variable from Visual Basic, use this statement:

 Dim thePath As String = _
 My.Application.GetEnvironmentVariable("PATH")

An error occurs if you supply a variable name that does not exist. If it does exist, the method returns just the value of
the variable, not its name.

Visual Basic also includes a built-in Environ() function that provides similar functionality:

 Dim thePath As String = Environ("PATH")

If the supplied variable name cannot be found, Environ() returns an empty string without raising an error.

Environ() also retrieves environment variables by numeric position. The following code scans through the set of
environment variables until it hits a blank result, indicating the end of the set of variables:

 Dim counter As Integer
 Dim fullVariable As String
 Dim namePart As String
 Dim valuePart As String
 Dim equalsPosition As Integer

 For counter = 1 To 255
 fullVariable = Environ(counter)
 If (fullVariable = "") Then Exit For
 equalsPosition = InStr(fullVariable, "=")
 If (equalsPosition > 0) Then
 namePart = Left(fullVariable, equalsPosition - 1)
 valuePart = Mid(fullVariable, equalsPosition + 1)
 ' ----- Use these values as needed.
 End If
 Next counter

See Also

For additional information on environment variables, see the online help included with Microsoft Windows. On Windows
XP, access help from the Start button (Start Help), and search for "environment variables."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.14. Accessing the Registry

Problem

Although you have been warned that accessing the registry can lead to system instability, you need to store and retrieve values in one or more of the
registry hives.

Solution

Use the registry features in the My.Computer. Registry object to read, write, and otherwise manipulate registry information.

Discussion

The My.Computer.Registry object includes the following members:

ClassesRoot field

Returns a RegistryKey object that refers to the HKEY_CLASSES_ROOT top-level key of the registry.

CurrentConfig field

Returns a RegistryKey object that refers to the HKEY_CURRENT_CONFIG top-level key of the registry.

CurrentUser field

Returns a RegistryKey object that refers to the HKEY_CURRENT_USER top-level key of the registry.

DynData field

Returns a RegistryKey object that refers to the HKEY_DYN_DATA top-level key of the registry.

GetValue() method

Retrieves the data associated with a specific key and value somewhere in the registry.

LocalMachine field

Returns a RegistryKey object that refers to the HKEY_LOCAL_MACHINE top-level key of the registry.

PerformanceData field

Returns a RegistryKey object that refers to the HKEY_PERFORMANCE_DATA top-level key of the registry.

SetValue() method

Adds or updates the data associated with a specific key and value somewhere in the registry.

Users field

Returns a RegistryKey object that refers to the HKEY_USERS top-level key of the registry.

Most of the Registry members return a RegistryKey object, a generic object that can refer to any key within the registry. This object also has many useful
members. Some members let you manipulate the keys that appear just below the one represented by the RegistryKey object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

members. Some members let you manipulate the keys that appear just below the one represented by the RegistryKey object:

CreateSubKey() method

DeleteSubKey() method

DeleteSubKeyTree() method

GetSubKeyNames() method

OpenSubKey() method

SubKeyCount property

Other members focus on the values tied to the active key:

DeleteValue() method

 GetValue() method

GetValueKind() method

GetValueNames() method

SetValue() method

ValueCount property

Using any of the registry-related members is simple. For instance, you can display the \\HKEY_CURRENT_USER\Environment\TEMP
TEMP is a value) using the following statement:

 MsgBox(My.Computer.Registry.GetValue(_
 "HKEY_CURRENT_USER\Environment", "TEMP", ""))

On our system, this statement displays the following result:

 C:\Documents and Settings\Administrator\Local Settings\Temp

But if you use the RegEdit application to view that same value, you see something a little different:

 %USERPROFILE%\Local Settings\Temp

The GetValue() method performs some basic environment variable substitution on the stored registry value before returning it back to you. To get the
unexpanded version, you need to go through one of the exposed RegistryKey objects:

 Dim envKey As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentUser.OpenSubKey(_
 "Environment", False)
 MsgBox(envKey.GetValue("TEMP", "", _
 Microsoft.Win32.RegistryValueOptions. _

DoNotExpandEnvironmentNames))
 envKey.Close()

The DoNotExpandEnvironmentNames flag prompts the GetValue() method to return the original unexpanded version of the value.

The Windows registry combines a machine-and user-specific hierarchical database of text, numeric, and binary values for use by both the operating
system and applications installed on the local system. The hierarchy is akin to the directory/file structure used in the Windows file system, in which
keys parallel directories, and values are similar to files. However, the registry is much more limited in what it can store at each hierarchy level.

Keys are named branches, all starting from a limited set of top-level keys known as hives. Each key can include any number of subkeys, plus zero or
more values. Each value can store basic data values or can simply exist without data. Each key has a default value that includes no specific name.
Figure 2-8 shows some of the components of the registry as viewed through the RegEdit application included with Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-8. RegEdit and the parts of the registry

Users needing access to the registry must be authorized through Windows. Normally, a user has full read/write access to all hives associated with the
active user account, plus at least read access to most of the system hives. However, an administrator can place restrictions on portions of the registry,
so error handling is recommended when using the various registry features of .NET.

The focus on the Windows registry has changed over the years. Originally, it was designed to support the Object Linking and Embedding (OLE) features
of Windows and to provide central access to common system settings. For a while, Microsoft encouraged software developers to use the registry for
application-specific settings as well. Unfortunately, this led to "registry bloat" that in some cases reduced overall application and system performance.
Microsoft now recommends that applications store system-wide and user-specific settings in separate configuration files in the standard file system.
With .NET's limited dependence on OLE/ActiveX components, even Microsoft is getting in on the separate-configuration-file act.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.15. Getting System Information

Problem

You've heard that .NET provides powerful access to the most essential features of Windows, but the Framework Class
Library is huge, and you're not sure where to find the total amount of memory installed on the local system. How can
you get system-specific information quickly and easily?

Solution

Use the various objects and members of Visual Basic's My namespace. Microsoft introduced this new feature in the 2005
release of the language.

Discussion

The My namespace was added to Visual Basic to help restore some of the simplicity and accessibility of Visual Basic that
was lost in its transition to .NET.

For example, to determine the amount of installed memory on the local system, use the following statement:

 Dim installedMemory As Long = _
 My.Computer.Info.TotalPhysicalMemory

Another useful source of system settings is the System.Windows.Forms. SystemInformation object, which has dozens of
informative members.

The My hierarchy makes an incredible number of features available in one easy-to-access place. Table 2-1 includes a
small sampling of the information you can obtain from the My namespace.

Table 2-1. A sampling of My features
If you need to access this information… …use this My namespace member

The command-line arguments used to start the program My.Application.CommandLineArgs

The application version number My.Application.Info.Version

The set of all forms currently open My.Application.OpenForms

Features to read and write clipboard data My.Computer.Clipboard

The current value of the system timer My.Computer.Clock.TickCount

The current directory recognized by the application My.Computer.FileSystem.CurrentDirectory

The location of the user's "My Documents" directory My.Computer.FileSystem.SpecialDirectories.MyDocuments

The directory used to store the user's temporary files My.Computer.FileSystem.SpecialDirectories.Temp

The version of the operating system My.Computer.Info.OSVersion

Total installed memory My.Computer.Info.TotalPhysicalMemory

Whether the user's mouse has a scroll wheel installed My.Computer.Mouse.WheelExists

The assigned name of the computer My.Computer.Name

Whether access to Internet or the local network is enabled My.Computer.Network.IsAvailable

The assigned name of the current Windows user My.User.Name

The My namespace collects some of the most useful and (sometimes) complex areas of the .NET Framework Class
Libraries and makes them available in a simpler and more ordered format. The My keyword, a new 2005 feature specific

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Libraries and makes them available in a simpler and more ordered format. The My keyword, a new 2005 feature specific
to Visual Basic, is at the top of a hierarchy of features that are organized much like .NET namespaces. Each major
object node within the hierarchy implements various properties and methods that are relevant to the specific object. In
most cases, each method or property can be found somewhere else in the large set of .NET classes, although it may
take several source code steps to obtain the information you need from that distant member.

The following list of objects summarizes the features exposed through the My hierarchy:

My.Application

Provides access to application- and instance-specific settings, such as commandline arguments, and in-effect
regional and language settings.

My.Application.Info

Reports details about the active executing assembly, including its title and version number.

My.Application.Log

Provides access to trace recording and logging features for desktop and console applications (not ASP.NET).

My.Computer

Exposes information pertaining to the computer running the application. Most of the members of this object are
other subordinate objects with their own methods and properties.

My.Computer.Audio

Enables you to play system and file-based sounds.

My.Computer.Clipboard

Provides access to features that let you place data on the system clipboard and retrieve data back from that
same clipboard in a variety of common and custom data formats.

My.Computer.Clock

Provides access to the current system time in a standard or local format.

My.Computer.FileSystem

Provides access to various features that let you manage files and directories on local and remote file systems
and that manipulate path strings.

My.Computer.FileSystem.SpecialDirectories

Reports locations of the various special directories, such as the "My Documents" directory.

My.Computer.Info

Reveals information about the local operating system and memory usage.

My.Computer.Keyboard

Reports the current state of the keyboard.

My.Computer.Mouse

Reports various properties of the installed mouse.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

My.Computer.Network

Reports availability of the network connection on the current workstation, and provides features that let you
transfer data over that network.

My.Computer.Ports

Provides access to the system serial ports.

My.Computer.Registry

Provides features that let you manage the keys and values within the Windows registry.

My.Forms

Provides access to all forms defined in the active Windows Forms application.

My.Log

Provides access to trace recording and logging features for ASP.NET applications only.

My.Request

Replicates the Active Server Pages "Request" object within an ASP.NET application.

My.Resources

Provides access to application-specific resources, including string, graphic, and binary resource data.

My.Response

Replicates the Active Server Pages "Response" object within an ASP.NET application.

My.Settings

Provides access to system- and user-focused configuration settings used by the application and automatically
stored in application-specific XML configuration files.

My.User

Contains authentication and identity details gathered about the current user, either through Windows
authentication or some other authentication scheme.

My.WebServices

Contains a collection of all XML web services known to the active application. This object is not available in
ASP.NET applications; it is only used by Windows Forms, console, and other non-web application types.

See Also

For a full reference of the objects and members included in the My hierarchy, see Visual Basic 2005 in a Nutshell by Tim
Patrick, Steven Roman, Ron Petrusha, and Paul Lomaxone, one of O'Reilly's reference works focused on the Visual Basic
language.

All members of the My namespace hierarchy are fully documented in the MSDN documentation included with Visual
Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.16. Getting the User's Name

Problem

You need to obtain the name of the current Windows user.

Solution

Use the My.User.Name property to get the domain and login ID of the current user.

Discussion

The My.User.Name property returns a string containing the current user ID and related domain name in the format
"domain/user." If the user is part of a workgroup instead of a domain, the domain portion may be replaced by the local
machine name. Applications written using ASP.NET do not have access to the same type of user information as desktop
applications because Web Forms programs run in the context of a special web-application user.

If your application uses an authentication system other than the default Windows security scheme, My.User.Name may
return information about the current user in a different format.

If you don't like the merged "domain/user" format, you can get the individual components from other areas within the
.NET object hierarchy. These three properties will probably get you what you need:

System.Environment.MachineName

System.Environment.UserDomainName

System.Environment.UserName

If you are interested in identifying the registered owner of the local workstation, you can find that information in the
system portion of the registry. The key is:

 \\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

The RegisteredOrganization and RegisteredOwner values within that key supply the values that you often see when installing
new software on your system.

See Also

Recipe 2.15 provides additional resources for gathering system-and user-specific details from .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Application Organization

Introduction

Recipe 3.1. Creating a Code Module

Recipe 3.2. Creating a Class

Recipe 3.3. Creating a Structure

Recipe 3.4. Creating Other Item Types

Recipe 3.5. Creating Object Instances

Recipe 3.6. Initializing a Class Instance with Data

Recipe 3.7. Releasing an Instance's Resources

Recipe 3.8. Using Namespaces

Recipe 3.9. Splitting a Class Across Multiple Files

Recipe 3.10. Creating a Form Based on Another Form

Recipe 3.11. Passing and Returning Structures and Other Objects

Recipe 3.12. Creating and Using an Enumeration

Recipe 3.13. Converting Between Numeric and String Enumeration Values

Recipe 3.14. Creating a Method That Accepts Different Sets of Arguments

Recipe 3.15. Using Standard Operators for Nonstandard Purposes

Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly Typed Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
This chapter shows you how some of the object-oriented programming (OOP) features in Visual Basic 2005 are used to
build Visual Basic applications. These features include class constructors, namespaces, and support for overloading.
While you will spend most of your coding life writing the basic logic of your functions, properties, and Sub procedures,
you wouldn't be able to do it without the basic container systems introduced here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.1. Creating a Code Module

Problem

You would like to add some general methods and fields that are accessible to your entire application.

Solution

Add a code modulea construct that is similar to a class, but uses the Module key-word instead of Classto your application.

Discussion

Visual Basic includes three major code and value containers: classes, structures, and modules. All three types are based on the core
definition of a class, but there are times when you'll want to choose one over another. Modules are useful for storing functions,
subroutines, constants, and variable fields that are considered "global" to your entire application. In pre-.NET versions of Visual Basic,
most nonform-specific code was stored in a similar "module file" (with a " .bas" file extension). Modules in .NET provide some of that
same functionality but in an object-oriented context.

If you've already created a new project or opened an existing project in Visual Studio, you can add a new module through the Project
 Add Module menu command. The Add New Item dialog (Figure 3-1) should already have the Module template selected. Simply

give it a useful name in the Name field, then click the Add button.

Figure 3-1. Visual Studio's Add New Item dialog

Visual Studio presents you with the code for this new template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio presents you with the code for this new template:

 Module Module1

 End Module

You can start adding members to the module immediately. Supported members include Sub procedures, functions, properties, events,
delegates, classes, structures, and enumerations. Before coding each member, decide the access you want to grant and prefix the
definition with the appropriate access keyword (Public, Shared, or Friend). For instance, the following block of code adds a function to the
module Module1 and assigns the function Public access:

 Module Module1
 Public Function DoubleIt(ByVal origValue As Integer) _
 As Integer
 Return origValue * 2
 End Function
 End Module

Modules specify their own access levels, using the Public or Friend keywords; the default is Friend. All members of a module act as if they
are marked with the Shared keyword. That is, you can use any member of a module without creating an instance of the module itself.
And that's a good thing because Visual Basic will not allow you to create an instance of a module.

You aren't required to create separate source- code files for new modules (or for classes or structures, which are discussed in later
recipes), although you should. Having a one-to-one correspondence between modules (or classes or structures) and source-code files
makes things easier to manage. Still, you may need to double up constructs in a single source-code file. If you already have a file with
a class defined, you can include a module definition in the same file, outside the class:

 Class SomeClass
 ' ----- Class members go here.
 End Class
 Module SomeModule
 ' ----- Module members go here.
 End Module

If you try to do this in a form class file for a desktop application project, the Visual Studio Form Designer looks only at the first class in
the file. If you insert a module (or a structure or another class) before the form-derived class in the file, Visual Studio can't display the
form.

All members of a module are shared and can be used immediately throughout the application. You can limit a member to just the code
within the module by using the Private access-level keyword with that member:

 Module Module1
 Private Sub InModuleUseOnly()
 End Sub
 End Module

This is commonly done with so-called helper methods that can be accessed only by other, more prominent methods in the same
module.

See Also

Recipes 3.2 and 3.3 introduce classes and structures, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.2. Creating a Class

Problem

You need to add a new class to your Visual Basic application.

Solution

To add a new project class to your application, select the Project Add Class menu command, and complete the Add New Item
dialog.

Discussion

The Add New Item dialog, shown in Figure 3-2, prompts you by selecting the Class template.

Figure 3-2. Adding a new class in Visual Studio

Give your class a new name, and then click the Add button. Visual Basic displays your newly added class in a code editor window. For
example, providing "Class1.vb" for the new class filename adds the class source-code file and displays the following empty class
template:

 Public Class Class1

 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Of the various object types included with Visual Basic (classes, structures, and modules), classes have the most flexibility and the
least restrictions on use. You can add pretty much any supported member type, including Sub procedures, functions, fields, constants,
enumerations, events, delegates, other classes and structures, and proper-ties. Here is a simple class that uses many of those
features:

 Public Class Employee
 ' ----- Basic employee information fields.
 Public LastName As String
 Public FirstName As String
 Public HireDate As Date
 Public JobType As EmployeeJobType
 Private CurrentSalary As Decimal

 ' ----- Supplies values to the JobType public field.
 Public Enum EmployeeJobType
 CLevel
 Manager
 NonManager
 Contractor
 End Enum

 ' ----- Used by the SalaryChanged event arguments.
 Public Class SalaryChangedEventArgs
 Inherits System.EventArgs
 Public OldSalary As Decimal
 Public NewSalary As Decimal
 End Class

 ' ----- Argument signature for the SalaryChanged event.
 Public Delegate Sub SalaryChangedDelegate(_
 ByVal sender As Object, _
 ByVal e As SalaryChangedEventArgs)

 ' ----- Issued when private CurrentSalary field changes.
 Public Event SalaryChanged As SalaryChangedDelegate

 Public Function GetFullName() As String
 ' ----- Return a nicely formatted name.
 Return FirstName & " " & LastName
 End Function

 Public Sub GiveRaise(ByVal percentIncrease As Decimal)
 ' ----- To raise 10%, set percentIncrease to 0.10.
 Dim changeDetail As New SalaryChangedEventArgs

 ' ----- Record the new salary, keeping track
 ' of the change.
 changeDetail.OldSalary = CurrentSalary
 CurrentSalary += (CurrentSalary * percentIncrease)
 changeDetail.NewSalary = CurrentSalary

 ' ----- Inform anyone who may be interested.
 RaiseEvent SalaryChanged(Me, changeDetail)
 End Sub

 Public Property Salary() As Decimal
 Get
 ' ----- Report the current salary level.
 Return CurrentSalary
 End Get
 Set(ByVal value As Decimal)
 ' ----- Update the private CurrentSalary field.
 Dim changeDetail As New SalaryChangedEventArgs

 ' ----- Ignore negative salaries.
 If (value < 0@) Then Exit Property

 ' ----- Record the new salary, keeping track
 ' of the change.
 changeDetail.OldSalary = CurrentSalary
 CurrentSalary = value
 changeDetail.NewSalary = value

 ' ----- Inform anyone who may be interested.
 RaiseEvent SalaryChanged(Me, changeDetail)
 End Set
 End Property
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

One source-code file may include multiple classes, structures, and modules:

 Class Class1
 ' ----- First class members go here.
 End Class
 Class Class2
 ' ----- Second class members go here.
 End Class

If you attempt this in a form class file, the Visual Studio Form Designer looks only at the first class in the file. If you insert a class (or
structure or module) before the form-derived class in the file, Visual Studio can't display the form.

Classes are the basic building blocks of Visual Basic applications. The two other major types structures and modulesare variations of
the basic class type, with certain restrictions that make them useful in certain cases.

The code for a class usually appears in a source-code file all its own, although you can divide a class into multiple files (see
3.9). You can also store multiple classes in a single source-code file, but this can quickly clutter your code.

See Also

Recipes 3.1 and 3.3 introduce modules and structures, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.3. Creating a Structure

Problem

You would like to add a new structure to your Visual Basic application.

Solution

Visual Studio does not include an Add Structure menu command, or even a structure-focused template available via the Project
Add New Item menu command. If you want to include a structure in a file all its own, use the Project Add New Item menu
command, and select the Code File template in the Add New Item dialog, as shown in Figure 3-3. You can also simply type a new
structure construct in any existing source-code file.

Figure 3-3. Adding a new structure in Visual Studio

Discussion

The syntax for a structure is very similar to that of a class:

 Structure Structure1

 End Structure

Add members to your structure just as you would in a class. Since structures cannot be used to derive other structures, some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add members to your structure just as you would in a class. Since structures cannot be used to derive other structures, some
keywords that support derived classes (such as the Protected and MustOverride keywords) cannot be used.

Structures must have at least one public instance member or event definition.

The .NET Framework defines two categories of types: reference types and value types. Value types contain basic data at the memory
location assigned for a specific instance. If you looked at the memory location assigned to an Integer value type instance, you would
find the Integer value that the program last assigned to that variable.

Reference types store their data indirectly. The memory location assigned to a reference type contains another memory address that
identifies the true storage area of the data. (This is similar to the pointer used in programming languages such as C.)

In Visual Basic, classes define reference types, while structures define value types. All classes and structures ultimately derive from
the common System.Object class, but value types go through the related System.ValueType class on the way to System.Object.

Because structures store their data directly, they are sometimes faster to use (by the CPU) than classes, and their data can be stored
on the application stack. Classes always require one or more trips to main memory. However, structures do have some limitations not
placed on classes. Structures cannot be used as bases for other structures, nor can a structure derive from other structures or classes.
Also, structures do not support destructors, which are special methods included in classes that perform final cleanup of resources
whenever a class instance is being destroyed.

See Also

Recipes 3.1 and 3.2 introduce modules and classes, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.4. Creating Other Item Types

Problem

Are there any other types of files or items I can add to a Visual Basic project?

Solution

The Add New Item dialog, accessed through the Project Add New Item menu command, includes a large selection
of template choices. Select the one that meets your needs. Some templates use a different default file extension than
the standard .vb extension.

Discussion

Here are the Visual Basicspecific template choices installed by default with Visual Studio 2005 Professional Edition:

Windows Form

Adds a blank Windows form, derived from System.Windows.Forms.Form.

Dialog

Adds a new Windows "dialog-style" form to your project, derived from System.Windows.Forms.Form. The form
includes basic OK and Cancel buttons and is con-figured for typical dialog presentation.

Explorer Form

Adds a new Windows form to your project that has the basic look and functionality of the Windows File Explorer
(explorer.exe). The main area of the form combines TReeView and ListView controls that provide an interface to
the file system.

MDI Parent Form

If you are designing a Multi Document Interface (MDI) application, this form represents the parent that will
include the various child "document" forms.

About Box

Adds a new "About" form to your project. This is a standard Windows form, pre-designed to look like a typical
About form. It automatically fills in application-specific details such as the version number. You must add the
code elsewhere in your project to display this form.

Login Form

Adds a new "Login" form to your project. This form includes the "look and feel" of a login form only; you must
supply authentication code on your own.

Splash Screen

Adds a new "Splash Screen" form to your project. This form appears as your application performs basic
initialization during startup.

Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class

Adds a new class file to your project, containing an empty class definition named according to the filename you
provide.

Module

Adds a new module file to your project, containing an empty module definition named according to the filename
you provide.

Interface

Adds a new interface file to your project, containing an empty interface definition named according to the
filename you provide. By custom, interface names always begin with a capital letter "I."

Component Class

Adds a new "component" to your project, derived from System.ComponentModel.Component. The .NET component
model provides basic interaction services for classes defined as components. All Windows Forms controls are
components.

COM Class

Adds a new class file to your project that exposes COM interface features. This is done via the ComClassAttribute
attribute. All exposed interfaces have to be marshaled across the managed .NET boundary, although .NET
performs most of the difficult work for you.

Data Set

Adds a new data set to your project with an .xsd file extension. These data sets provide a visual design
experience to underlying data stores, such as databases. You can include queried data from several data
sources.

SQL Database

Adds a new SQL Server database file with an .mdf file extension. This file is managed by SQL Server, and you
must have that product installed to use this item type.

Report

Visual Studio includes its own banded report writer that you can use to create data reports. This item adds a
new report with an .rdlc file extension. The report designer interacts with data sources defined in your
application.

Crystal Report

Crystal Reports is a third-party banded reporting tool included with Visual Studio. This item adds a new Crystal
Report to your application with an " .rpt" file extension. Enhanced versions of the Crystal Reports product are
available from its vendor, Business Objects. (Crystal Reports has passed through several owner-ship changes
since its initial version. Business Objects is the owner as of this writing.)

User Control

Adds a new user control file to your application, derived from System.Windows.Forms.UserControl. User controls
contain full user interaction functionality, similar to the controls already included in the Visual Studio Toolbox.
You can build your control from other controls in the Toolbox or from scratch by managing all input and display
needs.

Inherited Form

Adds a new form based on another form already found in your project. When selected, Visual Studio displays
the Inheritance Picker dialog with a list of all forms in your project. Visual Studio must be able to create an
instance of each potential form. Therefore, you must have built your project at least once, including the form to
be inherited. Also, the Inheritance Picker will exclude any form marked as MustInherit. You can manually create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be inherited. Also, the Inheritance Picker will exclude any form marked as MustInherit. You can manually create
inherited forms using the Inherits keyword.

Inherited User Control

Adds a new user control based on another user control already found in your project. When selected, Visual
Studio displays the Inheritance Picker dialog with a list of all user controls in your project. Visual Studio must be
able to create an instance of each potential user control. Therefore, you must have built your project at least
once, including the user control to be inherited. Also, the Inheritance Picker will exclude any user control
marked as MustInherit. You can manually create inherited controls using the Inherits keyword.

Custom Control

Creates a new user control but with more emphasis on controls that will contain no existing subordinate
controls. You will manage the full display of the control yourself.

Web Custom Control

Creates a new web control for use in ASP.NET applications that's similar to the controls supplied with the Web
Forms package. You are responsible for all HTML rendering code.

Resources File

Adds a new resource file to your project, with an .resx file extension. New Windows Forms projects already
include a project-focused resource file.

Settings File

Adds a " .settings" file to your application that stores application-or user-specific settings. Windows Forms
applications already include both kinds of settings support.

Code File

Adds a blank code file to your project. The file will be completely empty, waiting for you to add a class, module,
structure, or other content.

Class Diagram

Adds a new class diagram file with a .cd file extension. Class diagrams let you define classes, structures,
interfaces, and other basic types using a visual designer interface. Visual Studio manages the other files in your
application as you make changes to the class diagram.

XML File

Adds a new XML (Extensible Markup Language) file with an .xml file extension. Visual Studio includes basic
IntelliSense support for editing XML files.

XML Schema

Adds a new XSD (XML Schema Definition) file with an .xsd file extension. XSD files can be used to validate XML
data.

XSLT File

Adds a new XSLT (Extensible Stylesheet Language Transformation) file with an .xslt file extension. XSLT files
are used to transform XML data into another format (either XML or any other format).

Text File

Adds a blank text file to your project with a .txt file extension. You can add any text to this file that you wish.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML Page

Adds a new HTML file with an .htm file extension. Visual Studio includes extended support for editing web
pages.

Bitmap File

Adds a new bitmap file with a .bmp file extension that you can edit directly in Visual Studio.

Cursor File

Adds a new icon file with a .cur file extension that you can edit directly in Visual Studio.

Icon File

Adds a new icon file with an .ico file extension that you can edit directly in Visual Studio.

Application Configuration File

Adds a new .config settings file to your application. This file is often used to con-figure an application from
.NET's point of view. To store application-and user-specific usage settings, consider a settings file instead.

Transactional Component

Adds a new transactional component that manages the lifetime of some data, resource, or activity. These
components inherit from the System.EnterpriseServices.ServicedComponent class and exist mainly to interact within
COM+ environments.

Installer Class

Adds an installer class you can use to create custom installation scenarios for .NET applications. For typical .NET
applications, you should consider creating a standard deployment project instead.

Windows Service

Adds a class that supports the creation of a Windows Service. Services have no direct user interface, so you
should not add this template to a Windows Forms application.

If you use one of the other Visual Studio editions, such as the Express Edition, the list of available templates may differ.
If you have installed third-party products that enhance Visual Studio, you may see additional templates related to those
products.

The My Templates section of the Add New Item dialog includes custom file templates that you have added yourself,
primarily through the Export Template Wizard available through the File Export Template menu command.

See Also

This recipe does not discuss the types of items you can add to an ASP.NET web project. See the recipes in Chapter 17
for additional information on creating web projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.5. Creating Object Instances

Problem

You need to create an instance of a class or structure.

Solution

Use the New keyword to create a new class or structure instance.

Discussion

There are three basic places you use the New keyword:

When you declare a new instance of a type. The Dim statement offers a few different variations when using the
New keyword. Both of the following examples create a new instance of a project-specific Employee class. Other
than the minor syntax differences, the two lines are functionally identical:

 Dim someEmployee As New Employee
 Dim someEmployee As Employee = New Employee

When you assign new instances to existing variables. Once you have a variable defined, you can assign it an
instance using New:

 Dim someEmployee As Employee
 someEmployee = New Employee

In-line, whenever you need an instance that you don't capture in a variable. Sometimes you simply need a class
to exist only within a statement, perhaps as an argument to another function. This is quite common when
working with GDI+ graphic elements, such as pens. The following code block draws a line on a form during its
Paint event. It creates a new Pen object that disappears once the call to DrawLine() ends:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 e.Graphics.DrawLine(New Pen(Color.Red), 0, 0, 100, 100)
 End Sub

All three uses of New can be intermixed within the same block of code, and you can choose what best fits the needs and
logic of the code block.

See Also

The New keyword is also used in a different context to create class constructors. See Recipe 3.6 for additional details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.6. Initializing a Class Instance with Data

Problem

You want to ensure that some of the fields of a class are initialized before any of the exposed members of the class are
used.

Solution

Add one or more custom constructors to your class.

Discussion

Constructors are Sub procedures named New:

 Public Sub New()

 End Sub

A constructor with no arguments implements the default constructor. This is the constructor that is called anytime a
new instance of the class is requested without additional initialization:

 Dim someEmployee As New Employee

' Custom constructors include one or more arguments. This sample accepts an initial employee name and assigns it to
the public Name field:

 Class Employee
 Public Name As String = "Unknown"

 Public Sub New(ByVal fullName As String)
 If (Trim(fullName) <> "") Then Name = fullName
 End Sub
 End Class

One feature of classes is overloaded methods, which use the special Overloads key-word. This feature lets you use the
same method name more than once in the same class, but have each method accept a different set of arguments. (See
Recipe 3.14 for more information.) Constructors can also be overloaded, but they don't require the Overloads keyword:

 Class Employee
 Public Name As String = "Unknown"
 Public Salary As Decimal = 0@

 Public Sub New(ByVal fullName As String)
 If (Trim(fullName) <> "") Then Name = fullName
 End Sub

 Public Sub New(ByVal fullName As String, _
 ByVal startingSalary As Decimal)
 If (Trim(fullName) <> "") Then Name = fullName
 If (startingSalary >= 0@) Then Salary = startingSalary
 End Sub
 End Class

Visual Basic calls the appropriate constructor based on the argument signature:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic calls the appropriate constructor based on the argument signature:

 ' ----- Uses the one-argument constructor.
 Dim someEmployee As New Employee("John Smith")
 ' ----- Uses the two-argument constructor.
 Dim someEmployee As New Employee("John Smith", 50000@)

As an alternative way of doing the same thing, this sample class could have used an optional argument on a single
constructor:

 Class Employee
 Public Name As String = "Unknown"
 Public Salary As Decimal = 0@

 Public Sub New(ByVal fullName As String, _
 Optional ByVal startingSalary As Decimal = 0@)

 If (Trim(fullName) <> "") Then Name = fullName
 If (startingSalary >= 0@) Then Salary = startingSalary
 End Sub
 End
Class

If you don't supply a default constructor but do supply constructors with arguments, any use of the class requires
constructor arguments. If you want the arguments to be optional, either use the Optional keyword or include a default
constructor with no arguments.

All classes must have a constructor, even classes that perform no specific initialization. Consider this empty class:

 Class Employee

 End Class

Although you don't see a specific constructor, a default constructor is there, supplied on your behalf by the Visual Basic
compiler. Any constructor you supply, default or with arguments, replaces the one added by Visual Basic.

All classes (except System.Object) derive from some other class. The default constructor for the base class is called
implicitly from a derived class's constructor. Derived classes can also use a specific base-class constructor by calling it
directly:

 Class Manager
 Inherits Employee

 Public Sub New()
 MyBase.New("Unnamed New Employee")
 End Sub
 End Class

You can create instances of either classes or structures in your code. Modules cannot be instantiated, and therefore
they do not use constructors.

See Also

Recipe 3.7 discusses destructors, which handle the end of an instance's lifetime instead of its beginning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.7. Releasing an Instance's Resources

Problem

Your class instance allocates resources during its lifetime, and you want to ensure that those resources are freed when
the object is destroyed.

Solution

Add a Finalize() method to your class that includes any cleanup code you need to run before .NET destroys the class
instance. Finalize() is a method included in the System.Object base class. To use it in your code, you must override it:

 Protected Overrides Sub
Finalize()

Because a base class from which you derive may need to perform its own cleanup, you should always call its Finalize()
method:

 Protected Overrides Sub Finalize()
 ' ----- Perform my cleanup, then…
 MyBase.Finalize()
 End Sub

Discussion

.NET includes a process, known as garbage collection, which automatically releases all memory associated with a class
instance. However, it doesn't know what processing is required to release any acquired external resources, such as
database connections. Therefore, you must provide that logic in a special method, implemented through an override of
the Finalize() method. This special method is known as the class's destructor.

The garbage collector in .NET runs as needed, so there is no guarantee that your Finalize() method will be called at the
moment you release all references to an instance. It may be called one second, ten seconds, or ten minutes later,
possibly long after your application has stopped running. If you need resources to be released in a timelier manner,
combine the destructor with the IDisposable interface. This interface defines features that help release resources on a
schedule you determine. More specifically, resources are released whenever the related Dispose() method is called on
your instance. (You could simply include your own custom FreeResources() method in your class, but using IDisposable
allows Visual Basic to get more involved in the cleanup process.)

To enable IDisposable in your class, add an Implements statement at the top of the class:

 Class ResourceUsingClass
 Implements IDisposable
 End Class

When you add that Implements line to your class, Visual Studio automatically adds a template of features:

 Class ResourceUsingClass
 Implements IDisposable

 ' To detect redundant calls
 Private disposedValue As Boolean = False
 ' IDisposable
 Protected Overridable Sub Dispose(_
 ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ' TODO: free unmanaged resources when
 ' explicitly called
 End If

 ' TODO: free shared unmanaged resources
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Me.disposedValue = True
 End Sub

 #Region " IDisposable Support "
 ' This code added by Visual Basic to correctly
 ' implement the disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ' Do not change this code. Put cleanup code in
 ' Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
 #End Region

 End Class

Fill in the "TODO" parts of the code with your resource-freeing logic.

When using the IDisposable interface, you should still implement the Finalize()destructor just in case someone forgets to
call Dispose(). Maintain a flag in your class that indicates whether resources have been properly freed or not. The
disposedValue variable that Visual Studio generated serves this purpose.

Some Visual Basic features call Dispose() automatically when working with IDisposable-enabled objects. The Visual Basic
Using statement exists to destroy objects when they are no longer needed, and it calls Dispose() automatically:

 Using externalResources As New ResourceUsingClass
 ' ----- Work with the externalResources instance here.
 End Using
 ' ----- At this point, externalResources.Dispose has been
 ' called automatically by the End
Using statement.

See Also

Recipe 3.6 discusses constructors, the opposite of destructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.8. Using Namespaces

Problem

You want to place your classes within a specific .NET namespace.

Solution

Use the Namespace statement together with the default namespace identified in a project's properties.

Discussion

Every Visual Basic application resides within a default namespace, what we'll call the "absolute namespace position" for
your application. Visual Studio automatically sets this to a top-level namespace with the same name as your project.
For instance, if you just accept the default "WindowsApplication1" name for a new Windows Forms application, the
namespace is also named WindowsApplication1. Since it's a top-level namespace, it resides at the same hierarchy position
as the System namespace.

To alter the namespace for your project, open the Project Properties window, and change the "Root namespace" field on
the Application tab. You can change it to use an existing namespace, such as System.Windows.Forms, but then you must
take care to avoid naming conflicts with your classes.

When generating a full .NET application (EXE), your choice of namespace is not too problematic because that
namespace exists only within the view of your program and its lifetime. Two applications using the WindowsApplication1
namespace will not conflict with each other. However, if you generate a .NET library (DLL) for general distribution to
others outside your organization, you should select a namespace that will avoid conflicts with others. Microsoft
recommends that you use a combination of your company name and the product name, as they did with the
Microsoft.VisualBasic namespace.

Beyond the absolute namespace position, you can place your classes and other types in a "relative namespace position"
within the larger default absolute namespace. When you add a class (or other type) to your project, it appears in the
absolute namespace position:

 Class Class1

 End Class

If your project uses WindowsApplication1 as its absolute namespace, this class appears as WindowsApplication1.Class1. In
relative positioning, you can insert a new namespace between the absolute position and the class:

 Namespace CoolClasses
 Class Class1

 End Class
 End Namespace

Now, Class1 is fully referenced as WindowsApplication1.CoolClasses.Class1.

The Namespace keyword may include multiple namespace components (separated by periods), and you can nest them as
well:

 Namespace CoolClasses
 Namespace SomewhatCool.BarelyCool
 Class Class1

 End Class
 End Namespace
 End Namespace

This Class1 lives at WindowsApplication1.CoolClasses.SomewhatCool.BarelyCool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.9. Splitting a Class Across Multiple Files

Problem

You have a class that is simply too much to manage reasonably in a single sourcecode file, and you would like to split it
up.

Solution

Use the Partial keyword on a class to enable splitting the implementation of that class across multiple physical source
files:

Partial Class Class1

 End Class

Discussion

Visual Basic now includes a partial class feature that Visual Studio uses to separate automatically generated code from
nongenerated code. This feature is available to use in your own classes. Before Visual Basic 2005, if you tried to split a
class by using the Class statement multiple times on the same class name, the program would not compile. But now you
can break up your class into separate sections:

 Class Class1
 ' ----- Some class members are defined here.
 End Class
 Partial Class Class1
 ' ----- More class members are defined here.
 End Class

The key is the word Partial. Adding the keyword Partial to at least one of the class components tells the Visual Basic
compiler to collect all the parts and put them together before it builds the compiled version of your program, even if
those parts exist in different files.

You do not need to include Partial on every part of the class, just on one of the parts. Also, if your class inherits from
another class or implements an interface, you need to include only the Inherits or Implements keyword in one of the class
portions.

All class parts must exist in the context of the same namespace. If you create different class definitions with the same
name but in different namespaces, they will be distinct and unrelated classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.10. Creating a Form Based on Another Form

Problem

You've created a basic form, and you would like to use it to create other forms that extend the functionality of the basic
form.

Solution

Create an inheritance relationship between the original form (the "base" class) and the form with the extended features
(the "inherited" class). There are a few different ways to accomplish this, but the easiest is to let Visual Studio establish
the inheritance relationship for you through the Inheritance Picker dialog.

Discussion

Use the Project Add Windows Form menu command to add the new form to a new or existing Windows Forms
project. When the Add New Item dialog appears, select Inherited Form from the list of templates, type your new form's
filename in the Name field, and then click the Add button. As long as there are other forms defined in your application,
you will see the Inheritance Picker dialog (Figure 3-4).

Figure 3-4. Visual Studio's Inheritance Picker dialog

To establish the inheritance relationship, select the base form from the list of available forms, and then click the OK
button. Visual Studio will add a new form that is derived from the selected base form.

All forms added to your Windows Forms project use inheritance. By default, new forms derive from
System.Windows.Forms.Form, but you can indicate another base form from your own project. If you look in the "designer" file
associated with the form, you will see the following statements in standard forms:

 Partial Class Form2
 Inherits System.Windows.Forms.Form

When you alter the base class through the Inheritance Picker, these statements change to reflect the selected base
form:

 Partial Class Form2
 Inherits WindowsApplication1.Form1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(A form's designer file is hidden by default. Click on the Show All Files button in the Solution Explorer, and then expand
the branch for a form to see its designer file.)

You can manually establish the inheritance relationship by modifying the Inherits statement yourself to include the
correct base class.

Visual Studio must be able to create an instance of the base form before it can show you the derived form through the
Form Designer (or even list the form in the Inheritance Picker). This requires that a compiled version of that base form
exists. Before using the Inheritance Picker to establish form relationships, build your project using the Build Build
WindowsApplication1 (or similar) menu command.

See Also

Although it's not covered in a separate recipe in this chapter, creating inherited user controls follows the same process.
Select Inherited User Control in the Add New Item dialog's template list to establish such a relationship.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.11. Passing and Returning Structures and Other Objects

Problem

You need to pass complex data types to a function, or return an equally complex type.

Solution

Just pass the data. Complex data in .NET is really no different from simple data in how it is passed to or returned from
functions.

Discussion

Arrays are probably the most cumbersome, only because you have to add two extra characters in the function
definition. The following function definition accepts an Integer array and returns a related String array:

 Public Function ConvertIntArrayToString(_
 ByVal origArray() As Integer) As String()
 ' ----- Take a basic Integer array, and return a
 ' String equivalent.
 Dim newArray(UBound(origArray)) As String

 For counter As Integer = 0 To UBound(origArray)
 newArray(counter) = CStr(origArray(counter))
 Next counter

 Return newArray
 End Function

In some non-.NET languagesincluding earlier versions of Visual Basicit is not always obvious how you pass complex data
types, such as complete arrays, into and out of functions. In .NET, it's a snap. All complex data typesinstances of
structures and classesare simple variables that can be passed freely through arguments or return values. An array is a
standard reference type, even if it contains value type elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.12. Creating and Using an Enumeration

Problem

You want to add a set of related constants to your project and establish variables based on that set of constants.

Solution

Add an enumeration to your namespace, class, or other type using the Enum statement. Then use the name of the
enumeration just as you would any other .NET integral data type.

Discussion

Enum lets you build a list of related integer values:

 Enum StorageMedia
 Floppy
 CD
 DVD
 FlashRAM
 Paper
 End Enum

In this enumeration, all elements are of type Integer, with values ranging from 0 (Floppy) to 4 (Paper). You can select a
different type through an As clause, and you can indicate specific numeric values:

 Enum StorageMedia As Short
 Floppy = 100
 CD
 DVD
 FlashRAM
 Paper = 500
 End Enum

After you've created your enumeration, refer to individual members by combining the enumeration name and the
member name:

 storageType = StorageMedia.FlashRAM

Creating variables of an enumeration type is just as simple:

 Dim storageType As StorageMedia

Although storageType might act like a Short or Integer (as defined through the underlying Enum statement), it is truly a
variable of type StorageMedia, a new data type all its own.

Without enumerations, the only way to create a related set of integer values is to define multiple constants and trust
yourself to use them as a set. Enumerations bundle like elements, making it easier to keep track of the relationships.
Visual Studio also picks up on this relationship, using enumerations to enhance IntelliSense, as shown in Figure 3-5.

Figure 3-5. Using IntelliSense with enumerations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-5. Using IntelliSense with enumerations

Although enumeration variables are typed to the specific Enum, Visual Basic allows you to assign any numeric values
(limited to the underlying type of the Enum) to those variables. For instance, Visual Basic doesn't stop you from
assigning the value 700 to the storageType variable, even though none of the StorageMedia enumeration members have a
value of 700.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.13. Converting Between Numeric and String Enumeration
Values

Problem

While you intend to use an enumeration through its members and their numeric equivalents, you also need to be able
to get the string name of an enumeration member and convert it back to numeric form from that string.

Solution

Use the string conversion features of the System.Enum class and its derived enumerations to manipulate the members
through strings.

Discussion

Moving from a numeric member to string form is simple, and you've probably already done something similar for other
types. Let's reuse the enumeration from Recipe 3.12:

 Enum StorageMedia
 Floppy
 CD
 DVD
 FlashRAM
 Paper
 End Enum

If you've created an enumeration variable:

 Dim storageType As StorageMedia = StorageMedia.FlashRAM

you can convert its value to string form using the ToString() member:

 Dim stringForm As String = storageType.
ToString()
 MsgBox(stringForm) ' Displays "FlashRAM"

Converting back from a string is just slightly more indirect. Use the System.Enum class's Parse() method to restore a string
back to its original numeric value:

 storageType = System.Enum.
Parse(GetType(StorageMedia), "DVD")
 MsgBox(CInt(storageType)) ' Displays 2
 MsgBox(storageType.ToString) ' Displays "DVD"

Visual Basic compiles the full name of each enumeration member into the target application. You can take advantage of
these stored names to shuttle enumeration values between their integer and string forms.

If you pass an invalid string to the Parse() method, an error will occur, so keep an eye on that enumerated data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.14. Creating a Method That Accepts Different Sets of
Arguments

Problem

You have a great function that generates its results based on one type of data, but you'd like to reuse that function with
other data types or argument signatures.

Solution

Use method overloading to provide different versions of the same method.

Discussion

You may sometimes write applications that communicate with Oracle databases. Supplying dates to Oracle SQL
statements is frequently done using Oracle's TO_DATE function. When building SQL statements in my .NET application,
you can prepare a Date variable for use in Oracle by first wrapping it in a TO_DATE function. There are other times when
all you have is a date in a user-entered string format, and you need to prepare that date for use by Oracle. To support
both original date and string data values, you can use an overloaded Oracle preparation function:

 Public
Overloads Function ToOracleDate(_
 ByVal origDate As Date) As String
 Return "TO_DATE('" & Format(origDate, "MM/dd/yyyy") & _
 "', 'MM/DD/YYYY')"
 End Function

 Public Overloads Function ToOracleDate(_
 ByVal origDate As String) As String
 If (Trim(origDate) = "") Then
 Return "NULL"
 Else
 Return ToOracleDate(CDate(origDate))
 End If
 End Function

The Overloads keyword informs Visual Basic that you are trying to overload a single function name with two different
argument signature variations. In this example, the string version calls the date version for some of its processing. This
sharing of processing logic can help keep your code simple even when using multiple overloads.

The .NET Framework makes extensive use of method overloading, including over-loads of some Visual Basic features.
The InStr() function, which locates a smaller string within a larger one, uses overloading to support the interesting
syntax it inherited from Visual Basic 1.0. The basic syntax uses two strings, the one being searched and the one being
sought:

 Public Function InStr(ByVal String1 As String, _
 ByVal String2 As String) As Integer

The second variation inserts an Integer starting position as the first argument:

 Public Function InStr(ByVal Start As Integer, _
 ByVal String1 As String, ByVal String2 As String) As Integer

Since Visual Basic does not support optional arguments anywhere but at the end of an argument list, this function uses
overloading to support the argument variety.

Overloading is different from overriding. Overriding occurs only in inheritance relationships, when a function in a
derived class alters or replaces the logic for an identical function in a base class. Overridden functions must have the
same argument signature in both the base and derived classes.

There are no fixed limits on the number of overloads you can use in a single method. And while constructors (Sub New

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are no fixed limits on the number of overloads you can use in a single method. And while constructors (Sub New
procedures) also use a form of overloading, they do not require the Overloads keyword.

See Also

See Recipe 3.6 for information on overloading using class constructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.15. Using Standard Operators for Nonstandard Purposes

Problem

The basic Visual Basic operators, such as the addition operator (+), seem so useful that you would like to use them for
your own custom classes.

Solution

Use operator overloading, a new feature in Visual Basic 2005, to allow your own classes to interact with each other
through the standard Visual Basic operators.

Discussion

Operator overloading extends method overloading to include the standard Visual Basic operators. In a way, it treats
operators such as +, *, and Or as method names. Consider a class that manages scientific specimens:

 Class Specimen

If your application supports the idea of combining two specimens, resulting in a merged yet single larger specimen, it
would be great to be able to use the addition operator to merge two distinct specimens into a single combined
specimen:

 Dim part1 As New Specimen
 Dim part2 As New Specimen
 Dim combinedParts As Specimen
 '…later…
 combinedParts = part1 + part2

To add support for addition to this class, overload the + operator by adding an Operator definition to the class:

 Public Shared Operator +(ByVal firstPart As Specimen, _
 ByVal secondPart As Specimen) As Specimen
 Dim mergedSpecimen As New Specimen

 ' ----- Add logic to merge the two parts, then…
 Return mergedSpecimen
 End Operator

You can include different input or output types in the overloaded function, as long as at least one input or output
matches the class in which the overload appears:

 Public Shared Operator +(ByVal singlePage As Page, _
 ByVal sourceBook As Book) As Book
 ' ----- Adds a page to a book.

 End Operator

All overloaded operators must include the Shared keyword in the definition.

For unary operators, such as the Not operator, only a single argument is sent to the overloaded function. Table 3-1 lists
the overloadable operators.

Table 3-1. Overloadable operators
Operator Description

Unary plus operator, as in the expression "+5." Unary plus is seldom used in standard Visual Basic
programming, but you can use it for your own classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+(Unary)

programming, but you can use it for your own classes.

 Shared Operator +(ByVal arg1 As Type) As Type

-(Unary)

Unary negation operator, as in "-5."

 Shared Operator -(ByVal arg1 As Type) As Type

+

Addition operator, used to "add" items together.

 Shared Operator +(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

-

Subtraction operator, used to "subtract" one item from another.

 Shared Operator -(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

*

Multiplication operator.

 Shared Operator *(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

/

Division operator.

 Shared Operator /(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

\

Integer division operator.

 Shared Operator \(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Mod

Modulo operator.

 Shared Operator Mod(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

&

Concatenation operator.

 Shared Operator &(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

^

Exponentiation operator.

 Shared Operator ^(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

<<

Shift left operator. Since the operand to the right of the standard operator is always an Integer, the second
argument passed to the overload is also an Integer.

 Shared Operator <<(ByVal arg1 As Type, _
 ByVal arg2 As Integer) As Type

>>

Shift right operator. Since the operand to the right of the standard operator is always an Integer, the
second argument passed to the overload is also an Integer.

 Shared Operator >>(ByVal arg1 As Type, _
 ByVal arg2 As Integer) As Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal arg2 As Integer) As Type

=

Equal to comparison operator, for use in If and similar statements. You must also overload the related <>
(not equal to) operator.

 Shared Operator =(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<

Less than comparison operator, for use in If and similar statements. You must also overload the related >
(greater than) operator.

 Shared Operator <(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

>

Greater than comparison operator, for use in If and similar statements. You must also overload the related
< (less than) operator.

 Shared Operator >(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<=

Less than or equal to comparison operator, for use in If and similar statements. You must also overload
the related >= (greater than or equal to) operator.

 Shared Operator <=(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

>=

Greater than or equal to comparison operator, for use in If and similar statements. You must also overload
the related <= (less than or equal to) operator.

 Shared Operator >=(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<>

Not equal to comparison operator, for use in If and similar statements. You must also overload the related
= (equal to) operator.

 Shared Operator <>(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

Not

Bitwise negation operator.

 Shared Operator Not(ByVal arg1 As Type) As Type

IsTrue

Used to support overloading of the OrElse operator. You must also overload the related IsFalse operator, and
you will probably want to overload Or as well.

 Shared Operator IsTrue(ByVal arg1 As Type) _
 As Boolean

IsFalse

Used to support overloading of the AndAlso operator. You must also overload the related IsTrue operator,
and you will probably want to overload And as well.

 Shared Operator IsFalse(ByVal arg1 As Type) _
 As Boolean

And

Bitwise conjunction operator.

 Shared Operator And(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Bitwise disjunction operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Or

Bitwise disjunction operator.

 Shared Operator Or(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Xor

Bitwise exclusion operator.

 Shared Operator Xor(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Like

Pattern comparison operator. The second operator is always a pattern string.

 Shared Operator Like(ByVal arg1 As Type, _
 ByVal arg2 As String) As Boolean

CType

Type conversion operator, for converting between different core and custom data types. Visual Basic
supports two types of conversions: narrowing and widening. In narrowing conversions there is a chance
that the source data will not fit in the target data type, as when converting a Long to an Integer.
Conversions in the other direction are widening, and these never result in data loss. You must specify the
type of conversion using the Narrowing or Widening keyword.

 Shared [Narrowing | Widening] Operator _
 CType(ByVal sourceData As Type) As Type

You can overload overloaded operators. That is, you can include multiple overloads for, say, the addition (+) operator in
a single class, as long as the argument signatures differ.

While operator overloading can make your code more straightforward, it can also add a level of confusion, since you will
be using operators in a way that is not part of the standard language usage. Where there is the possibility of confusion,
add meaningful comments to the code to guide the reader through the rough spots.

See Also

Recipe 3.14 discusses standard method overloading.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly
Typed Collection

Problem

You have created a generic collection class that is quite useful and will support data of any class or type. You want to
ensure that data types are never mixed within a single instance of the collection. That is, if a collection contains String
values, you never want Integer values added to that same collection.

Solution

Use generics to restrict the types of data interactions a class may have.

Discussion

Generics allow you to make substitutions of generic data-type placeholders with actual data types. Consider this simple
class:

 Class MultiShow
 Public DisplayValue As String
 Public InterValue As String
 Public Sub ShowDouble()
 ' ----- Display two copies of the value.
 MsgBox(DisplayValue & InterValue & DisplayValue)
 End Sub
 Public Sub ShowTriple()
 ' ----- Display three copies of the value.
 MsgBox(DisplayValue & InterValue & DisplayValue & _
 InterValue & DisplayValue)
 End Sub
 End Class

This class facilitates the display of some stored string value. But what if you wanted to display Integer data? You would
have to rewrite the class, redefining DisplayValue and InterValue as Integer types. And that wouldn't help you much if you
then wanted to use Date values. You could replace String with Object, but this approach would not help you if you needed
to ensure that DisplayValue and InterValue were the same data type.

Generics allow you to treat a class in a generic manner where data types are concerned. Adding generics to our
MultiShow class results in the following code:

 Class MultiShow(Of T)
 Public DisplayValue As T
 Public InterValue As T
 Public Sub ShowDouble()
 ' ----- Display two copies of the value.
 MsgBox(_
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString())
 End Sub
 Public Sub ShowTriple()
 ' ----- Display three copies of the value.
 MsgBox(_
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString())
 End Sub
 End Class

The Of T clause enables generics on the class. T acts like a placeholder (you don't have to use T; you can give the
placeholder any name you want) for a data type used somewhere in the class. In this example, we used T twice to set
the data types for the public fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the data types for the public fields:

 Public DisplayValue As T
 Public InterValue As T

To use this class, include an Of datatype clause in your reference declaration:

 Dim dataShow As New MultiShow(Of String)

In the dataShow instance, String is used anywhere T appears in the class definition. It's as if Visual Basic generated a String-
specific version of the MultiShow class for you. To generate an Integer version, just update the declaration:

 Dim dataShow As New MultiShow(Of Integer)

Each instance variation of a generic class you define is truly a distinct data type. You cannot pass data freely between
instances of MultiShow(Of Integer) and MultiShow(Of String) without conversion, just as you cannot pass data between Date and
Integer data types without conversion.

You can include multiple data-type placeholders by separating them with commas:

 Class MultiShow(Of T1, T2)
 Public DisplayValue As T1
 Public InterValue As T2

Now you can provide either identical or distinct data types for T1 and T2:

 Dim dataShowUnited As New MultiShow(Of String, String)
 Dim dataShowDivided As New MultiShow(Of String, Integer)

In addition to simple data-type placeholders, you can include restrictions on each placeholder to limit the types of data
used by the class. You can design a generic class that will limit the data-type substitution to just the Form class or any
class derived from Form:

 Class FunForms(Of T As System.Windows.Forms.Form)

 End Class

Interface-specific limits work as well:

 Class ThrowAways(Of T As System.IDisposable)

 End Class

If you want to create new instances of T (whatever it is) within your class, use the As New restriction in the generic
definition:

 Class EntryManager(Of T As New)
 Public Function BuildNewEntry() As T
 ' ----- Create a new object.
 Dim result As New T
 …
 Return result
 End Function
 End Class

This works only if the data type replacing T includes a default constructor (that is, a constructor with no arguments).

Each data-type placeholder in the generic definition can include multiple constraints, all surrounded with curly braces:

 Class FunForms(Of T As {System.Windows.Forms.Form, New})

 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

The list of multiple restrictions can include multiple interfaces if needed, but only one standard class (such as
System.Windows.Forms.Form) is permitted per placeholder.

Generics are useful when defining collection classes. Adding a generic restriction to a collection ensures that objects of
only a single type can be added to the collection, a restriction that may be useful in some cases. For example, a
Collection(Of String) allows only String values to be added to the collection.

See Also

Chapter 14 includes recipes that show you how to use specific generic collection classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Forms, Controls, and Other Useful
Objects

Introduction

Recipe 4.1. Creating and Adding Controls at Runtime

Recipe 4.2. Iterating Through All Controls on a Form

Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

Recipe 4.4. Working with Timers

Recipe 4.5. Determining If a Control Can Take the Focus

Recipe 4.6. Programmatically Clicking a Button

Recipe 4.7. Drawing a Control

Recipe 4.8. Making a Form the Top-Most Form

Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

Recipe 4.10. Remembering a Form's Position Between Uses

Recipe 4.11. Attaching a Control to the Edge of a Form

Recipe 4.12. Moving or Resizing Controls as a Form Resizes

Recipe 4.13. Limiting the Sizing of a Form

Recipe 4.14. Centering a Form

Recipe 4.15. Creating and Moving a Borderless Form

Recipe 4.16. Creating a Fading Form

Recipe 4.17. Creating a Nonrectangular Form

Recipe 4.18. Changing Menus at Runtime

Recipe 4.19. Creating Shortcut Menus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
If you are writing a desktop application, you are dealing with forms and controls. Since its first release, Visual Basic has
made the dream of drag-and-drop programming possible: just add some controls to a form, press F5, and go.

While this method works, it allows you to design only the most rudimentary applications. Most programs require gobs of
code for each on-screen control. Fortunately, .NET simplifies a lot of the plumbing associated with complex controls, so
you can just focus on the logic that responds directly to a user action. This chapter shows you how to take advantage of
the control features included with .NET's Windows Forms library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.1. Creating and Adding Controls at Runtime

Problem

You need to add one or more controls to a form dynamically at runtime. You used to do something similar to this in
Visual Basic 6.0 using control arrays, but those do not exist in Visual Basic 2005.

Solution

Sample code folder: Chapter 04\DynamicControls

You can add any control to a form at runtime just by creating an instance of it. Your code can define the initial
properties, such as the location of the control on the form, at runtime. You can also connect events for these runtime
controls to event handlers, although the handler methods must exist at design time. (Technically, it's possible to write a
method at runtime, but such programming is beyond the scope of this book and is generally frowned upon.)

Discussion

To test this method of dynamically creating controls, start by creating a new Windows Forms application and add the
following source code to Form1's code template:

 Private Sub ShowTheTime(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 ' ----- Display the time in the text box, if it exists.
 Dim theTextBox As TextBox

 ' ----- Locate and update the text control.
 theTextBox = Me.Controls("TimeTextBox")
 If (theTextBox IsNot Nothing) Then
 theTextBox.Text = Now.ToLongTimeString()
 End If
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add controls at runtime.
 Dim dynamicText As TextBox = Nothing
 Dim dynamicButton As Button

 ' ----- Dynamically add a text box control to the form.
 dynamicText = New Windows.Forms.TextBox
 dynamicText.Name = "TimeTextBox"
 dynamicText.Location = New System.Drawing.Point(8, 8)
 dynamicText.Size = New System.Drawing.Size(232, 20)
 dynamicText.TabIndex = 0
 Me.Controls.Add(dynamicText)

 ' ----- Dynamically add a button control to the form.
 dynamicButton = New Windows.Forms.Button
 dynamicButton.Location = New System.Drawing.Point(144, 32)
 dynamicButton.Size = New System.Drawing.Size(99, 23)
 dynamicButton.Text = "Get Time"
 dynamicButton.UseVisualStyleBackColor = True
 dynamicButton.TabIndex = 1
 Me.Controls.Add(dynamicButton)

 ' ----- Connect the button to an event handler.
 AddHandler dynamicButton.Click, AddressOf ShowTheTime
 End Sub

When you run the program, you will see two controlsa TextBox control and a Button controlmagically appear on the
previously empty form. Clicking the button calls the prewritten event handler, which inserts the current time into the
text box, as shown in Figure 4-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text box, as shown in Figure 4-1.

In Visual Basic 6.0, if you wanted to add a control to a form at runtime it was necessary to create a design-time control
just like it, and create a dynamic copy of it at run-time. This was due, in part, to the special design-time method used
to record form controls. If you opened up the .frm file for a Visual Basic 6.0 form, you would see nonVisual Basic code
at the top of the file that defined the controls and the form itself.

Figure 4-1. Dynamically generated controls on a form

In Visual Basic 2005, all form controls, and even the form itself, exist through standard object creation. When Form1
appears on the screen in a running program, it's because somewhere in your program there is code that creates a new
instance of Form1 and calls its Show method:

 (New Form1).Show

Although you add controls to your form using the Visual Studio Form Designer, Visual Studio actually generates runtime
code for you that dynamically creates the controls and adds them to the form. All this code is generally hidden in the
form's designer file. To view this file, select the Project Show All Files menu command, and expand the branch for
one of your forms in the Solution Explorer panel. By default, Form1's designer file is named Form1.Designer.vb.

To create the source code for this project, we added a TextBox and a Button control to the form and then opened the
designer code file. We then copied selected lines from that file and made slight adjustments before pasting that code
into the form's Load event handler. Finally, we deleted the design-time controls from the form.

See Also

Recipes 4.2 and 4.3 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.2. Iterating Through All Controls on a Form

Problem

You need to make updates to some or all controls on a form at runtime, and all in a common way. You aren't excited
about copying and pasting the same lines over and over again to make the changes to every instance of the same
control type.

Solution

Sample code folder: Chapter 04\IteratingControls

The form maintains a collection of all controls on the form. Iterate through this collection, and make your changes as
you pass by each item.

Discussion

Create a new Windows Forms application, and add three Label controls to Form1. Name the controls whatever you want,
and change their Text properties to anything you want as well. Next, add two Button controls to the form, named ActRed
and ActNormal. Set their Text properties to Red and Normal, respectively. Then add the following source code to the form's
code template:

 Private Sub ActRed_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActRed.Click
 ' ----- Set the background of all labels to red.
 UpdateAllLabels(Color.Red)
 End Sub

 Private Sub ActNormal_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActNormal.Click
 ' ----- Set the background of all labels to the
 ' standard color.
 UpdateAllLabels(SystemColors.Control)
 End Sub

 Private Sub UpdateAllLabels(ByVal withColor As Drawing.Color)
 ' ----- Scan all controls, looking for labels.
 For Each scanControls As Control In Me.Controls
 If (TypeOf scanControls Is Label) Then
 scanControls.BackColor = withColor
 End If
 Next scanControls
 End Sub

When you run the code and click on each button, the background color of the three labels changes as indicated by the
clicked button. Figure 4-2 shows a sample use of this code.

Figure 4-2. All labels set to red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All of a form's controls appear in a collection accessed through the form's Controls property. Because it is a standard
collection, you can iterate through it using the For Each statement, or any other technique that accesses elements of a
collection. You can also reference controls by string name:

 Dim firstButton = Me.Controls("ActRed")

Although controls of all types are added to the Controls collection, you can still determine their derived data types using
the TypeOf statement, as is done in this recipe's sample code. This can help you limit updates to a certain type of control
in the collection.

See Also

Recipes 4.1 and 4.3 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

Problem

You have many controls that should use identical event-handler logic for some of their events. You don't want to rewrite
the logic for each control. You accomplished this in Visual Basic 6.0 using control arrays, but they no longer exist in
Visual Basic 2005.

Solution

Sample code folder: Chapter 04\SharingControlLogic

You can use a single .NET method as the event handler for any number of control events on the form, as long as those
events share a common set of event arguments.

Discussion

Visual Basic 6.0 included a feature called control arrays that allowed developers to share a single event-handler
procedure among multiple controls. The controls in the array had to be of the same type and share a common name.
They differed only by the values of their numeric Index properties. Each event handler also included an extra argument
that identified the index of the control triggering the event.

Visual Basic in the .NET world no longer allows control arrays, but you can still share event handlers. To do this, you
alter the event method's Handles clause to include all the control events it should handle.

Create a new Windows Forms application, and add three new TextBox controls to Form1. By default, they are named
TextBox1, TextBox2, and TextBox3. Add a Label control named ShowInfo. Then add this source code to the form's code
template:

 Private Sub MultipleEvents(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles _
 TextBox1.Enter, TextBox2.Enter, TextBox3.Enter, _
 TextBox1.TextChanged, TextBox2.TextChanged, _
 TextBox3.TextChanged

 ' ----- Report the current status of this field.
 Dim activeControl As TextBox
 activeControl = CType(sender, TextBox)
 ShowInfo.Text = "Field #" & _
 Microsoft.VisualBasic.Right(activeControl.Name, 1) & _
 ", " & activeControl.Text.Length & " character(s)"
 End Sub

Run this program. As you move from text box to text box and type things in, the ShowInfo label updates to show you
which text box you are in (based on the number extracted from its control name) and the length of its content. Figure
4-3 shows the form in use.

Figure 4-3. A single event handler dealing with multiple events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 4.1 and 4.2 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.4. Working with Timers

Problem

You need to have some action occur on a regular basis in your form.

Solution

Sample code folder: Chapter 04\ClockTimer

Use a Timer control, and set it for the desired interval. Create a new Windows Forms application, and add a Label control
named CurrentTime to the form. Also add a Timer control to the form, and name it ClockTimer. Set its Interval property to 1000,
and set its Enabled property to true. Then add the following source code to the form's code template:

 Private Sub ClockTimer_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ClockTimer.Tick
 CurrentTime.Text = Now.ToLongTimeString
 End Sub

When you run the program, that label updates once each second with the current time.

Discussion

The Timer control's Interval property sets the time between Tick events in milliseconds (1,000 per second). Although you
can set the Interval as low as one millisecond, the timer's resolution is limited by your system's hardware and operating-
system-level factors.

The Tick event fires at approximately the interval you specify, if nothing more important is going on. If the code within
your Tick event handler is still running when the next Tick event should occur, that subsequent Tick event is disposed
without a call to the event handler.

See Also

Recipe 14.8 shows how to have a section of code sleep, or take a small break. Some older Visual Basic code used
timers for this purpose, although a timer is not the best solution in this case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.5. Determining If a Control Can Take the Focus

Problem

You need to move the current focus to a specific control, but you want to avoid conditions where the focus-setting
action would fail.

Solution

Use the control's CanFocus() method to determine whether the application can take the focus or not:

 If (SomeControl.CanFocus() = True) Then _
 SomeControl.Focus()

Discussion

Event-driven programming can lead to many runtime surprises based on timing. Depending on how you write your
code, it's possible that an event handler will be temporarily interrupted so that another event handler can run instead.
Or, more commonly, unrelated event handlers may fire in an order you did not anticipate because of some interesting
input action by the user.

If you have an event handler that disables and enables a specific control, and another handler that sets the focus to
that control, some situations may arise in which the focus action faisl because the control is disabled. While you could
check the Enabled flag before setting the focus, there are other conditions (such as the presence of a separate modal
dialog) that can also stop a control from receiving the focus, even when the Enabled flag is true. Using the CanFocus()
method provides a more accurate method of determining when it is safe to call the Focus() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.6. Programmatically Clicking a Button

Problem

You want the Click event handler for a button to run, but you want to initiate this action from code instead of waiting for
the user to click the button.

Solution

Call the button's PerformClick() method:

 Button1.PerformClick()

Discussion

While it's nice that the Button control has a PerformClick() method to run its Click event handler in an object-oriented
manner, most controls and most control events have no such related method. If you wish to call an event handler
immediately through code, you have to call it like any other method, passing the correct arguments:

 ' ---- Call the text box control's GotFocus handler.
 TextBox1_GotFocus(TextBox1, New System.EventArgs)

In this case, calling the TextBox1 control's GotFocus() event handler will run that handler's code, but it will not cause the
focus to move to the text box. An even better solution would be to write a shared routine that the GotFocus() event
handler and your other code both call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.7. Drawing a Control

Problem

You want to provide custom drawing code for a control.

Solution

Sample code folder: Chapter 04\ControlDrawing

For most controls, provide an event handler for the Paint event, and add your drawing code there. This event's second
argument includes a Graphics property representing the canvas on which you can issue your drawing commands. Some
controls also provide separate DrawItem events that let you draw specific portions of the control, such as distinct items in
a ListBox control. You can also draw directly on the form's surface. This recipe's code includes samples for all these
activities.

Create a new Windows Forms application, and add two controls: a Button control named XButton and a ComboBox control
named ColorList. Change the ColorList control's DrawMode property to OwnerDrawFixed and its DropDownStyle property to
DropDownList. Then add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add some basic colors to the color list.
 ColorList.Items.Add("Red")
 ColorList.Items.Add("Orange")
 ColorList.Items.Add("Yellow")
 ColorList.Items.Add("Green")
 ColorList.Items.Add("Blue")
 ColorList.Items.Add("Indigo")
 ColorList.Items.Add("Violet")
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw an ellipse on the form.
 e.Graphics.DrawEllipse(Pens.Black, 10, 10, _
 Me.ClientRectangle.Width - 20, _
 Me.ClientRectangle.Height - 20)
 End Sub

 Private Sub XButton_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles XButton.Paint
 ' ----- Draw a big x in a rectangle on the button surface.
 Dim usePen As Pen

 ' ----- Provide a neutral background.
 e.Graphics.Clear(SystemColors.Control)

 ' ----- Draw the outline box.
 usePen = New Pen(SystemColors.ControlText, 3)
 e.Graphics.DrawRectangle(usePen, XButton.ClientRectangle)

 ' ----- Draw the x.
 e.Graphics.DrawLine(usePen, 0, 0, _
 XButton.Width, XButton.Height)
 e.Graphics.DrawLine(usePen, 0, _
 XButton.Height, XButton.Width, 0)
 usePen.Dispose()
 End Sub

 Private Sub ColorList_DrawItem(ByVal sendesender As Object, _
 ByVal e As System.Windows.Forms.DrawItemEventArgs) _
 Handles ColorList.DrawItem
 ' ----- Draw the color instead of the text.
 Dim useBrush As Brush

 ' ----- Check for a nonselected item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Check for a nonselected item.
 If (e.Index = -1) Then Return

 ' ----- Set the neutral background.
 e.DrawBackground()

 ' ----- Fill in the color.
 useBrush = New SolidBrush(Color.FromName(CStr(_
 ColorList.Items(e.Index))))
 e.Graphics.FillRectangle(useBrush, _
 e.Bounds.Left + 2, e.Bounds.Top + 2, _
 e.Bounds.Width - 4, e.Bounds.Height - 4)
 useBrush.Dispose()

 ' ----- Surround the color with a black rectangle.
 e.Graphics.DrawRectangle(Pens.Black, _
 e.Bounds.Left + 2, e.Bounds.Top + 2, _
 e.Bounds.Width - 4, e.Bounds.Height - 4)

 ' ----- Show the item selected if needed.
 e.DrawFocusRectangle()
 End Sub

 Private Sub XButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles XButton.Click
 MsgBox("Button clicked.")
 End Sub

Run the program. The XButton control no longer looks like a button; it instead looks like a custom-drawn "X." Although
the button looks strange, it still works. The ellipse we drew directly on the form's surface is there. Also, the ComboBox
control now displays actual colors instead of just the names of colors. This all appears in Figure 4-4.

Figure 4-4. Controls drawn with custom code

Discussion

Some of the controls that support item-level drawing, such as the ListBox and ComboBox controls, include an e.State
property in the data passed to the event handler. This value indicates the current state of the item being
drawn:selected, not selected, or a half dozen other relevant states. You do not need to take that property into account
if your implementation doesn't require it, but it is generally a good idea to provide feedback to the user in a way the
user expects. Adjusting the display based on this property helps achieve that purpose.

As shown in the sample code, the DrawItem event handler includes e.DrawBackground() and e.DrawFocusRectangle() methods
that help you properly draw the item. Availability of these methods varies by control type.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See the recipes in Chapter 9 for examples that use the various GDI+ drawing commands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.8. Making a Form the Top-Most Form

Problem

You want a specific form to appear on top of all other forms in your application, no matter which form is selected.

Solution

If you wish to have a Toolbox-type form that is accessible at the same time as other forms but always remains on top,
set the form's TopMost property to TRue.

Discussion

If you also want to disable access to all other forms, open the important form of the moment using its ShowDialog()
method:

 Form1.ShowDialog()

No other forms already displayed by the application will be available until the ShowDialog() form closes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

Problem

On a form, you want to have the Enter key trigger a specific button (such as an "OK" button) and have the Escape key
trigger another button (such as a "Cancel" button).

Solution

Use the form's AcceptButton and CancelButton properties to assign the appropriate buttons. In the Visual Studio Form
Designer, setting these form properties to the names of buttons on the form will enable the keyboard shortcuts for
those buttons.

Discussion

Setting a button to be a form's CancelButton object has the side effect of changing that button's DialogResult property to
Cancel.

Even if you set an accept button, the Enter key doesn't always trigger it. For instance, if another button on the form has
the focus, that button, and not the form's accept button, is triggered when the user presses the Enter key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.10. Remembering a Form's Position Between Uses

Problem

You would like the position of a form to be retained between exiting the application (or closing that form) and the next time you access that same form.

Solution

Sample code folder: Chapter 04\RememberFormPosition

Tie the form's Location property to a member of the My.Settings object. You do this using the form's application-setting property bindings.

Create a new Windows Forms application. Access the Project Properties window through the Project WindowsApplication1 Properties (or similar)
menu command. Select the Settings tab in this window, as shown in Figure 4-5.

Figure 4-5. The Settings tab of the Properties window

In the first row of the Settings grid, set the Name field to MainFormLocation, and select System.Drawing.Point in the Type field (Figure 4-6
Properties window.

Figure 4-6. The added MainFormLocation property

Back on Form1, expand its (ApplicationSettings) property. One of the subproperties should be Location. Change its value to MainFormLocation

The program is ready to use. Run it, and move the form to a conspicuous location. Then exit the program. When you run the program again, the form
will be where you moved it.

Discussion

If, when you expand the (ApplicationSettings) property, you don't see the Location subproperty, use the (PropertyBinding) subproperty instead. Click on the "…"
button in its value area to display the "Application Settings for 'Form1'" dialog. Locate the Location enTRy in the form's settings list, and set its value to
MainFormLocation, as shown in Figure 4-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-7. The Application Settings dialog for Form1

Any settings added to the Settings tab in the Project Properties window appear as members of the My.Settings object. In this recipe's case, you get a new
property of type System.Drawing.Point with the name My.Settings.MainFormLocation. You can access this property as needed in your code.

Another way to add a control-linked setting is to skip the trip to the Project Properties' window's Settings panel, and add the new setting directly from
the control's list of properties. When you select the (ApplicationSettings) property for the form or control and bring up the Application Settings dialog (
4-7), if you click the drop-down button in the second column for any property, one of the choices that appears is "(new)." Clicking this link brings up
the New Application Setting dialog, where you can enter the name and starting value of a new setting. The new property automatically obtains the right
data type for the linked field. Figure 4-8 shows this method in action.

Figure 4-8. Adding a new setting for the form's Location property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.11. Attaching a Control to the Edge of a Form

Problem

You want a specific control, such as a toolbar, to always "stick" to one edge of the form, no matter how it is resized.

Solution

Use the control's Dock property to permanently affix the control to the selected side or other "dock region."

Discussion

Dock has six possible values:

None

The control performs no docking.

Top

The control attaches itself to the top of the form's client area and fills the entire width of the client area, if the
control supports such resizing.

Bottom

The control attaches itself to the bottom of the form's client area and fills the entire width of the client area, if the
control supports such resizing.

Left

The control attaches itself to the left edge of the form's client area and fills the entire height of the client area, if
the control supports such resizing.

Right

The control attaches itself to the right edge of the form's client area and fills the entire height of the client area, if
the control supports such resizing.

Fill

The control fills the entire client area of the form, if the control supports such resizing.

If multiple controls have Dock settings other than None, they are attached to the form edges according to their z-order
settings, starting from the back-most control. To alter the z-order of a control, right-click on the control in the Form
Designer and select either "Bring to Front" or "Send to Back" from the shortcut menu. Figures 4-9 and 4-10 show a form
with two controls with different z-orders docked to its bottom edge: a MonthCalendar control (notice how it automatically fills
the width of the form by adding months) and a StatusStrip control.

Figure 4-9. The form when the calendar's z-order is in front

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-9. The form when the calendar's z-order is in front

Some controls are designed to dock along a specific edge of the form's client area. The most obvious example is the
StatusStrip control, shown in this recipe's figures, which is designed to dock along the bottom edge of the form. Other
controls, such as the CheckBox control, really aren't designed for docking. While you can still dock them, they may not look
very nice.

Docking also applies to panels and other containers that can include subordinate controls. Figure 4-11 displays a Panel
control with an included ComboBox control that is docked along the top edge of the panel.

Figure 4-10. The form when the calendar's z-order is in back

Figure 4-11. Docking within a container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-11. Docking within a container

See Also

Recipe 4.12 discusses the Anchor property, which can be used to attach a control to one, two, three, or four sides of the
form. The Dock and Anchor properties cannot be used at the same time on the same control. The last one you set on that
control is the one used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.12. Moving or Resizing Controls as a Form Resizes

Problem

You want a control to move or stretch in proportion to how the form is resized.

Solution

Use the control's Anchor property to attach it to one or more sides of the form.

Discussion

Setting the Anchor property of a control tells that control to permanently maintain a consistent distance relationship with one or more
sides of the form or container. You can anchor a control to any or all of the four sides of a form. By default, controls are anchored to
the left and top sides of the form. This means that as the form resizes, the controls remain the same distance from the form's left
and top edges (i.e., they do not appear to move).

The available Anchor property choices include Left, Top, Right, and Bottom, and you can use them in any combination. The following list
shows the types of combinations you can use with the Anchor property:

Anchored to one side

As the form is resized, the center point of the control along the anchored edge is matched to a position on that form edge
relative to the changing size of the form. The size of the control does not change. For instance, if a control is anchored to the
top of a form and the form is made wider, the control moves to the right in proportion to the size of the form, as shown in
Figure 4-12.

Figure 4-12. The top-anchored control moves when the form is resized

Anchored to two adjacent sides

As the form is resized, the control maintains its distance from both anchor sides. In other words, it seems to be joined to the
corner that is shared by the two anchor sides. By default, most controls anchor to the left and top sides of the form and do
not appear to move when the right and bottom borders of the form are moved in a resize operation.

Anchored to two opposite sides

The anchor sides of the control remain a fixed distance from the anchor borders. For instance, if a control is anchored on the
left and right, the control grows by the same number of pixels as the form is widened (see Figure 4-13). When the
unanchored direction is resized, the control is moved to keep the portion of space between the unanchored sides and the
control the same, but the control is not resized in that direction.

Figure 4-13. The left-and-right-anchored control stretches as the form widens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-13. The left-and-right-anchored control stretches as the form widens

Anchored to three sides

The control resizes between the two anchor sides that are opposite to each other and remains the same distance from the
single anchor border, as shown in Figure 4-14.

Figure 4-14. Anchored to top, left, and right, the edges of the control remain a fixed
distance from all but the bottom edge of the form

Anchored to all four sides

The control is continually resized with the form. All its sides stay the same distance from all anchored form borders, as
shown in Figure 4-15.

Figure 4-15. Anchored to top, left, bottom, and right, the proportions of the control
change in concert with the form's proportions

Anchoring also applies to panels and other containers that can include subordinate controls.

See Also

See Recipe 4.11 for details on the Dock property, which you can use to attach a control to one side of a form's client area. The
and Anchor properties cannot be used at the same time on the same control. The last one you set on that control is the one used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.13. Limiting the Sizing of a Form

Problem

You want the user to be able to resize a form, but within limits.

Solution

Use the MinimumSize and MaximumSize properties of the form to limit the user's adjustments of the form's size. As with the
standard Size property, these two properties encapsulate separate width and height values. Figure 4-16 shows these
settings in use in the Properties panel.

Figure 4-16. MaximumSize and MinimumSize properties in use

Discussion

These properties do limit the size of the form, whether the user is resizing the form directly or your code sets the Size
property. You will usually want to set the form's FormBorderStyle property to Sizable, and you must set the MaximizeBox
property to False (or in some other way hide the maximize box, such as by setting the ControlBox property to False).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.14. Centering a Form

Problem

You want a form to be in the center of the display when it first appears.

Solution

Set the form's StartPosition property to CenterScreen.

Discussion

That was easy, but there may be cases where you need to set this property to Manual, but you still want the form to
appear centered sometimes. To accomplish this, add the following code to the Load event handler for your form:

 Me.Location = New Point((_
 Screen.PrimaryScreen.Bounds.Width - Me.Width) / 2, _
 (Screen.PrimaryScreen.Bounds.Height - Me.Height) / 2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.15. Creating and Moving a Borderless Form

Problem

You want to display a form without any of the typical window border elements. Also, you want the user to be able to
move the window around by clicking and dragging a PictureBox control.

Solution

Sample code folder: Chapter 04\MoveBorderlessForm

Turning off the border elements is easy: set the form's FormBorderStyle property to None. Then you can manage the
drawing of the form elements yourself.

Creating a fake titlebar that moves the form is a little more involved. Create a new Windows Forms application, and add
two controls: a Button control named ActClose and a PictureBox control named DragBar. Change the button's Text property to
Close. Change the picture box's BackColor property to ActiveCaption, one of the system colors. Also, change the form's
FormBorderStyle property to None. The form should look something like Figure 4-17.

Figure 4-17. A borderless form with a pretend titlebar

Now, add the following source code to the form's code template:

 Const HT_CAPTION As Integer = &H2
 Const WM_NCLBUTTONDOWN As Integer = &HA1

 Private Sub DragBar_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles DragBar.MouseDown
 ' ----- When the user clicks the left mouse button, act
 ' as if the user actually clicked on the form's
 ' title bar.
 If (e.Button = Windows.Forms.MouseButtons.Left) Then
 ' ----- Don't hold on to the mouse locally.
 DragBar.Capture = False

 ' ----- Trick the form into thinking it received a
 ' title click.
 Me.WndProc(Message.Create(Me.Handle, WM_NCLBUTTONDOWN, _
 CType(HT_CAPTION, IntPtr), IntPtr.Zero))
 End If
 End Sub
 Private Sub ActClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 Me.Close()
 End Sub

Run the program, and drag the colored picture box control to move the form around the display.

Discussion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All of the activity within a Windows form happens through messages being processed through a Windows procedure, or
WndProc. This method has existed since the introduction of Windows. The .NET Framework put a bunch of pretty classes
around the messy parts of this messaging system, but it's still there, and you can interact with it to suit your needs.

Normally, when you left-click on a form window (or a control, which is just a different type of window), a
WM_LBUTTONDOWN message is passed to the relevant Windows procedure. That message ultimately triggers a call to one
of your form's MouseDown event handlers.

Your application includes a "message pump" that makes calls to each form's WndProc procedure for message processing.
But there is nothing to stop you from calling that procedure yourself. In fact, it's exposed as a form class member.

When the DragBar picture box control receives the mouse down event, it says, "Hey, I'll just send a fake message to my
window's WndProc routine so that it thinks the user clicked on the titlebar." And that's what the code does. It sends a
WM_NCLBUTTONDOWN message to the form. The "NCL" part of that code means "Non-Client," the area that contains the
titlebar and borders. The HT_CAPTION flag tells the message that the click occurred in the caption area (the titlebar). This
is all that's needed to trick the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.16. Creating a Fading Form

Problem

You want a form to fade out and disappear.

Solution

Sample code folder: Chapter 04\FadingForm

Use the form's Opacity property to slowly fade it out. Create a new Windows Forms application, and add a Button control
named ActClose to the form. Change the button's Text property to Close. Then add the following source code to the form's
code template:

 Private Sub ActClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 ' ----- Fade out the form.
 Dim counter As Integer

 For counter = 90 To 10 Step -20
 Me.Opacity = counter / 100
 Me.Refresh()
 Threading.Thread.Sleep(50)
 Next counter

 Me.Close()
 End Sub

Run the program, and click on the Close button to see the form fade away.

Discussion

You'll find that on some systems, the form momentarily blinks to black right when it makes the transition from an
opacity of 1.0 to any other opacity value. On such systems, setting the Opacity property to a non-1.0 value during the
Load event handler still causes a blink, but it does so when the form first opens, not during the cool fadeout.

 Private Sub AboutProgram_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Prepare the form for later fade-out.
 Me.Opacity = 0.99
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.17. Creating a Nonrectangular Form

Problem

You want to display a form that is nonrectangular; that is, you want some of the form to be invisible.

Solution

Sample code folder: Chapter 04\PartialInvisibility

Use the form's transparencyKey property to identify a color that will be invisible. The sample code in this recipe uses
fuchsia for its "invisible color," but you can choose any color that meets your display requirements.

Create a new Windows Forms application. Change Form1's FormBorderStyle property to None, its StartPosition property to
CenterScreen, and its transparencyKey property to Fuchsia. Then add the following source code to the form's code template:

 Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 ' ----- Any click closes the form.
 Me.Close()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw a nice logo form.
 e.Graphics.Clear(Color.Fuchsia)
 e.Graphics.FillRectangle(Brushes.Gold, 0.0F, _
 Me.ClientRectangle.Height / 3.0F, _
 CSng(Me.ClientRectangle.Width), _
 Me.ClientRectangle.Height / 3.0F)
 e.Graphics.FillPolygon(Brushes.Gold, New PointF() { _
 New Point(Me.ClientRectangle.Width / 4, 0), _
 New Point(Me.ClientRectangle.Width / 2, _
 Me.ClientRectangle.Height / 2), _
 New Point(Me.ClientRectangle.Width / 4, _
 Me.ClientRectangle.Height), _
 New Point(0, Me.ClientRectangle.Height / 2)})
 Dim largerFont = New Font(Me.Font.Name, 20)
 e.Graphics.DrawString("My Nice Program", _
 largerFont, Brushes.Black, 20, _
 (Me.ClientRectangle.Height / 2) - _
 (largerFont.Height / 2))
 End Sub

When you run the program, it appears similar to the display in Figure 4-18. (We left the development environment
behind the form so that you could see the invisibility.)

Figure 4-18. A form with transparent portions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The initial release of Visual Basic 2005 included a bug that prevented the transparency color from properly appearing as
transparent in some cases. Specifically, if your form included an image that contained the transparency color, and the
workstation was using more than 24 bits of color for its display, the image appeared as opaque. To get around this
problem, you need to set transparency on the image manually before you draw it:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- This code assumes that the form's
 ' TransparencyKey property is "Fuchsia".
 Dim logoImage As Bitmap = Bitmap.FromFile(_
 "C:\MyLogo.bmp")
 logoImage.MakeTransparent(Color.Fuchsia)
 e.Graphics.DrawImage(logoImage, 0, 0)
 End Sub

The Microsoft Knowledge Base number for this article is 822495.

See Also

Recipe 9.10 discusses invisibility colors and the transparencyKey property in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.18. Changing Menus at Runtime

Problem

You want to customize the menu structure in your main form at runtime. The structure should be based on settings
made available by some user-configurable method.

Solution

Sample code folder: Chapter 04\RuntimeMenus

The menu-specific classes included in the Windows Forms library can be created at either design time or runtime. This
recipe's code adds a basic menu to a form at design time and enhances it at runtime by adding the user's Internet
Explorer "Favorites" to one of the menus.

Create a new Windows Forms application, and add a MenuStrip control named MainMenu to the form. Perform the following
actions on this menu:

Add a top-level menu named MenuFile, using &File for its Text property.

Add a top-level menu named MenuFavorites, using Fa&vorites for its Text property.

Add a menu item named MenuExitProgram that is subordinate to MenuFile, using E&xit for its Text property. Set its
ShortcutKeys property to Alt+F4.

Add a menu item named MenuNoFavorites that is subordinate to MenuFavorites, using (empty) for its Text property. Set
its Enabled property to False.

Figure 4-19 shows a partial look at this form's menu structure in design mode.

Figure 4-19. The initial menus for the runtime menu sample

Next, replace the form's code template with the following code. I've highlighted the lines that do the actual adding of
menu items:

 Imports MVB = Microsoft.VisualBasic

 Public Class Form1
 Private Declare Auto Function GetPrivateProfileString _
 Lib "kernel32" _
 (ByVal AppName As String, _
 ByVal KeyName As String, _
 ByVal DefaultValue As String, _
 ByVal ReturnedString As System.Text.StringBuilder, _
 ByVal BufferSize As Integer, _
 ByVal FileName As String) As Integer

 Private Sub MenuExitProgram_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) _
 Handles MenuExitProgram.Click
 ' ----- Exit the program.
 Me.Close()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Scan through the user's "Favorites" and
 ' add them as menu items.
 Dim favoritesPath As String

 ' ----- Determine the location of the "Favorites"
 ' folder.
 favoritesPath = Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites)
 If (favoritesPath = "") Then Return
 If (My.Computer.FileSystem.DirectoryExists(_
 favoritesPath) = False) Then Return

 ' ----- Call the recursive routine that builds the menu.
 BuildFavorites(MenuFavorites, favoritesPath)

 ' ----- If favorites were added, hide the
 ' "no favorites" item.
 If (MenuFavorites.DropDownItems.Count > 1) Then _
 MenuNoFavorites.Visible = False
 End Sub

 Private Sub BuildFavorites(ByVal whichMenu As _
 ToolStripMenuItem, ByVal fromPath As String)
 ' ----- Given a starting directory, add all files
 ' and directories in it to the specified menu.
 ' Recurse for suborindate directories.
 Dim oneEntry As String
 Dim menuEntry As ToolStripMenuItem
 Dim linkPath As String
 Dim displayName As String

 ' ----- Start with any directories.
 For Each oneEntry In My.Computer.FileSystem. _
 GetDirectories(fromPath)
 ' ----- Create the parent menu, but don't
 ' attach it yet.
 menuEntry = New ToolStripMenuItem(_
 My.Computer.FileSystem.GetName(oneEntry))
 ' ----- Recurse to build the sub-directory branch.
 BuildFavorites(menuEntry, oneEntry)

 ' ----- If that folder contained items,
 ' then attach it.
 If (menuEntry.DropDownItems.Count > 0) Then _
 whichMenu.DropDownItems.Add(menuEntry)
 Next oneEntry

 ' ---- Next, build the actual file links. Only
 ' look at ".url" files.
 For Each oneEntry In My.Computer.FileSystem. _
 GetFiles(fromPath, FileIO.SearchOption. _
 SearchTopLevelOnly, "*.url")
 ' ----- Build a link based on this file. These
 ' files are old-style INI files.
 linkPath = GetINIEntry("InternetShortcut", _
 "URL", oneEntry)
 If (linkPath <> "") Then
 ' ----- Found the link. Add it to the menu.
 displayName = My.Computer.FileSystem. _
 GetName(oneEntry)
 displayName = MVB.Left(displayName, _
 displayName.Length - 4)
 menuEntry = New ToolStripMenuItem(displayName)
 menuEntry.Tag = linkPath
 whichMenu.DropDownItems.Add(menuEntry)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 whichMenu.DropDownItems.Add(menuEntry)

 ' ----- Connect this entry to the event handler.
 AddHandler menuEntry.Click, _
 AddressOf RunFavoritesLink
 End If
 Next oneEntry
 End Sub

 Private Sub RunFavoritesLink(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 ' ----- Run the link.
 Dim whichMenu As ToolStripMenuItem

 whichMenu = CType(sender, ToolStripMenuItem)
 Process.Start(whichMenu.Tag)
 End Sub

 Private Function GetINIEntry(ByVal sectionName As String, _
 ByVal keyName As String, _
 ByVal whichFile As String) As String
 ' ----- Extract a value from an INI-style file.
 Dim resultLength As Integer
 Dim targetBuffer As New System.Text.StringBuilder(500)

 resultLength = GetPrivateProfileString(sectionName, _
 keyName, "", targetBuffer, targetBuffer.Capacity, _
 whichFile)
 Return targetBuffer.ToString()
 End Function
 End Class

Run the program, and access its Favorites menu to browse and open the current user's Internet Explorer favorites.

Discussion

The bulk of this recipe's code deals with scanning through a directory structure and examining each file and
subdirectory. Most of the files in the "Favorites" folder have a .url extension and contain data in an "INI file" format.

Here's a sample link to a popular search engine:

 [DEFAULT]
 BASEURL=http://www.google.com/
 [InternetShortcut]
 URL=http://www.google.com/

The last "URL=" line provides the link we need to enable favorites support in our program.

The important part of the program is the building of the menu structure. Each menu item attached to the form's main
menu MenuStrip control is a related ToolStripMenuItem class instance. These can be attached to the menu at any time
through its DropDownItems collection. Each menu item in turn has its own DropDownItems collection that manages
subordinate menu items.

To make each new menu item do something, as you add them, connect them to the previously written RunFavoritesLink
method:

 AddHandler menuEntry.Click, AddressOf RunFavoritesLink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.19. Creating Shortcut Menus

Problem

You want to display a custom shortcut menu to users when they right-click on a form or one of its controls.

Solution

Sample code folder: Chapter 04\ShortcutMenus

Use the ContextMenuStrip control to design a shortcut menu (also called a context or pop-up menu) that you can attach to
the controls (or form) of your choice.

Create a new Windows Forms application, and add a ContextMenuStrip control named MainShortcutMenu to the form. When
you select that control, it adds a temporary standard menu to the control that you can use to add new menu items (see
Figure 4-20).

Figure 4-20. Shortcut menus in design mode

Add two menu items to this shortcut menu:

A menu item named MenuHello, using Say Hello for its Text property

A menu item named MenuGoodbye, using Say Goodbye for its Text property

Select the form itself, and then change its ContextMenuStrip property to MainShortcutMenu.

Now, add the following source code to the form's code template:

 Private Sub MenuHello_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MenuHello.Click
 MsgBox("Hello")
 End Sub

 Private Sub MenuGoodbye_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MenuGoodbye.Click
 MsgBox("Goodbye")
 End Sub

Run the program, and right-click on the form. The shortcut menu will present itself, as shown in Figure 4-21. Clicking
on the items puts up a message box saying "Hello" or "Goodbye."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on the items puts up a message box saying "Hello" or "Goodbye."

Figure 4-21. The shortcut menu in use

Discussion

Each form and control includes a ContextMenuStrip property that you can assign to any ContextMenuStrip control included with
your form. You can create as many shortcut menus as needed for your controls.

Some controls, such as the TextBox control, already include default shortcut menus. If you wish to enhance one of these
menus, you will have to design your own menu from scratch and provide your own implementations for menu items
previously found in that control's shortcut menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Strings
Introduction

Recipe 5.1. Using a StringBuilder

Recipe 5.2. Creating a String of N Identical Characters

Recipe 5.3. Creating a String by Repeating a String N Times

Recipe 5.4. Obfuscating a String

Recipe 5.5. Converting Binary Data to a Hexadecimal String

Recipe 5.6. Extracting Substrings from Larger Strings

Recipe 5.7. Converting a String's Case

Recipe 5.8. Comparing Strings with Case Sensitivity

Recipe 5.9. Comparing Strings Without Case Sensitivity

Recipe 5.10. Converting Strings to and from Character Arrays

Recipe 5.11. Converting Strings to and from Byte Arrays

Recipe 5.12. Tallying Characters

Recipe 5.13. Counting Words

Recipe 5.14. Removing Extra Whitespace

Recipe 5.15. Using the Correct End-of-Line Characters

Recipe 5.16. Replacing Substrings

Recipe 5.17. Inserting a Character or String

Recipe 5.18. Inserting a Line

Recipe 5.19. Double-Spacing a String

Recipe 5.20. Formatting Numbers into Strings

Recipe 5.21. Trimming Sets of Characters from a String

Recipe 5.22. Identifying and Validating Types of Data in a String

Recipe 5.23. Converting Strings Between Encoding Systems

Recipe 5.24. Determining a Character's Type

Recipe 5.25. Parsing Strings

Recipe 5.26. Concatenating Strings

Recipe 5.27. Speeding Up String Manipulation

Recipe 5.28. Counting Occurrences of a Substring

Recipe 5.29. Padding a String for Exact Length and Alignment

Recipe 5.30. Converting Tabs to Spaces

Recipe 5.31. Reversing a String

Recipe 5.32. Shuffling a String

Recipe 5.33. Using a Simple String Encryption

Recipe 5.34. Converting a String to Morse Code

Recipe 5.35. Adding Strings to an Application's Resources

Recipe 5.36. Converting Any Data to a String

Recipe 5.37. Using Regular Expressions to Extract All Numbers

Recipe 5.38. Getting a Count of Regular Expression Matches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38. Getting a Count of Regular Expression Matches

Recipe 5.39. Getting the Nth Regular Expression Match

Recipe 5.40. Compiling Regular Expressions for Speed

Recipe 5.41. Using Regular Expressions to Validate Data

Recipe 5.42. Using Regular Expressions to Count Characters, Words, or Lines

Recipe 5.43. Converting a String to and from Base64

Recipe 5.44. Splitting a String

Recipe 5.45. Creating a String of Space Characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Every Visual Basic developer quickly learns how to manipulate strings, but it's often easy to overlook some of the more
powerful techniques available, especially with all the new features in Visual Basic 2005. A good example is the powerful
StringBuilder object, which provides an order-of-magnitude improvement for concatenating strings. Visual Basic 6
developers, in particular, will discover lots of exciting new string-processing features. For example, Visual Basic 2005's
Substring() method provides similar functionality not only to the Mid() function, but also to the Left() and Right() string
functions. The regular expression library included with .NET also provides new and powerful ways to analyze and
process string data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.1. Using a StringBuilder

Problem

You need to process many pieces of string data with more efficiency than is allowed using standard .NET Framework
immutable strings.

Solution

The StringBuilder object provides extremely fast and efficient in-place processing of string and character data. The
following code demonstrates several of its powerful methods and some of the techniques you can use to speed up your
string processing:

 Dim workText As New System.Text.StringBuilder

 ' ----- Build a basic text block.
 workText.Append("The important")
 workText.Append(vbNewLine)
 workText.Append("thing is not")
 workText.AppendLine()
 workText.AppendLine("to stop questioning.")

 workText.
Append("--Albert Einstein")
 MsgBox(workText.ToString())

 ' ----- Delete the trailing text.
 Dim endSize As Integer = "--Albert Einstein".Length
 workText.Remove(workText.Length - endSize, endSize)
 MsgBox(workText.ToString())

 ' ----- Modify text in the middle.
 workText.Insert(4, "very ")
 MsgBox(workText.ToString())

 ' ----- Perform a search and replace.
 workText.Replace("not", "never")
 MsgBox(workText.ToString())

 ' ----- Truncate the existing text.
 workText.Length = 3
 MsgBox(workText.ToString())

Discussion

The first line of the previous code creates a new instance of the StringBuilder object. The next half dozen or so lines of
code show various common uses of the StringBuilder's Append() and AppendLine() methods. Each call to Append() or AppendLine()
concatenates another string or character piece into the StringBuilder's buffer. Figure 5-1 shows the result of these first few
append actions.

Figure 5-1. Piecing together strings with the StringBuilder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Avoid the temptation to concatenate these string pieces using the & operator as you prepare the various pieces for
appending to the StringBuilder. Doing so detracts from the efficiency and speed advantages of the StringBuilder. For
example, both of the following lines of code are legal and correct, but the line that uses the & operator does a lot more
work behind the scenes:

 ' ----- Don't do this!
 workText.Append("This " & "is " & "not advisable!")

 ' ----- Please do this.
 workText.Append("This ").Append("is ").Append("faster!")

The first statement (the one using the & operator) must make working copies of the immutable strings to do the
concatenations. Timing tests demonstrate that this can slow down your code measurably.

Besides Append(), the StringBuilder object also provides methods that parallel other functions available for processing true
strings. These include Remove(), Replace(), and Insert() methods, as demonstrated in the sample code presented earlier in
this recipe. The Length property shown in the sample is also available as a standard property of strings. The remaining
lines of code in the sample demonstrate the use of these methods by modifying parts of the original quote.

A StringBuilder's contents are technically not a string. Rather, the StringBuilder maintains an internal buffer of characters that
at any time can easily be converted to a string using the StringBuilder's ToString() method. Think of a StringBuilder as a string
in the making that's not really a string until you want it to be.

Behind the scenes, the default StringBuilder's buffer starts out with a working space, or capacity, of only 16 bytes. The
buffer automatically doubles in size whenever it needs more space, jumping to 32 bytes, then 64, and so on. If you
have a good idea how much space your string processing may require, you can initialize StringBuilder's buffer to a given
capacity during the declaration. For example, this declaration creates a StringBuilder instance with a preallocated buffer
size of 1,000 bytes:

 Dim workText As New System.Text.StringBuilder(1000)

The advantage of providing the starting capacity is a potential performance boost. In this case, the buffer's workspace
won't need to be doubled until enough strings have been appended to overflow the 1,000-byte limit.

You can access the StringBuilder's capacity at runtime through its Capacity property. It's enlightening to read this property
to follow along as the StringBuilder doubles in size during execution. You can set the Capacity to a new value at any time,
but if you set the Capacity to less than the StringBuilder's current Length, an exception occurs. If your intent is to shorten, or
truncate, the contents of the buffer, set the Length property instead, and leave Capacity alone. The easiest way to empty a
StringBuilder of its contents is to set its Length property to zero.

See Also

Recipe 5.26 also discusses building up strings from smaller components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.2. Creating a String of N Identical Characters

Problem

You need to create a string comprised of a single character repeated many times. These strings are sometimes useful in
the formatting of ASCII text for display or printed output.

Solution

Create a new string of repeated characters using the String class itself. One of its overloaded constructors accepts a
character to repeat and a repetition count.

Discussion

Most of the time you create string variables using the default constructor, which initializes the variables to Nothing. This
is why you must assign a string value to a string variable after creating it, but before using its contents. However, you
can use over-loaded versions of the string constructor to assign string data immediately upon creation. One version of
the string constructor takes a character and a count and efficiently builds a string by repeating the character the given
number of times. The following statement builds a string of 72 asterisks:

 Dim lotsOfAsterisks As New String("*"c, 72)

Visual Basic 2005 also provides a second way to create strings of duplicated characters. The StrDup() function, which is
very similar to the original String() function found in Visual Basic 6, does the trick:

 lotsOfAsterisks = StrDup(72, "*")

Notice the difference in the order of the parameters between the string constructor syntax and the function call.
Fortunately, Visual Studio's IntelliSense means you don't have to memorize the order of the parameters.

VB 6 Users' Update

The VB 6 String() function returns a string based on a count and the first character of the string:

 lotsOfAsterisks = String(72, "*")

Most sources mention only the new String constructor technique to create strings of duplicate characters
in Visual Basic 2005, but after doing a lot of timing tests, we've seen that the StrDup() function is very
nearly identical in speed and efficiency. Also, its syntax is much more like that of the original VB 6 String()
function. Use whichever technique suits you better.

See Also

Recipe 5.45 demonstrates another method of creating strings of a common character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.3. Creating a String by Repeating a String N Times

Problem

You want a string comprised of a sequence of characters repeated many times. For example, you want to create a fancy
separator string comprised of alternating "+" and "~" characters, as shown in Figure 5-2.

Figure 5-2. A string formed by repeating two characters many times

Solution

Use a StringBuilder to append as many copies of the string as desired. Then convert the result to a true string using the
StringBuilder's ToString() method:

 Dim fancyString As New System.Text.StringBuilder
 For counter As Integer = 1 To 35
 fancyString.Append("+~")
 Next counter
 MsgBox(fancyString.ToString())

Discussion

Strings in .NET are immutable, which means that once they've been created, they sit in one spot in memory and can
never be modified. All functions that might appear to be changing a string's contents are actually making new copies of
the original string, modified en route. In most cases, immutability provides superior string handling and processing
capabilities, but when it comes to concatenating strings, the speed and efficiency advantages are nullified.

The StringBuilder object solves the concatenation dilemma nicely. It allows dynamic, in-place modification of a buffer
containing a sequence of string characters, without the need to constantly reallocate String objects. If the allocated
buffer space runs out, the StringBuilder efficiently and automatically doubles the number of bytes for its character
workspace, and it will do so as many times as are required to handle the strings and characters appended to it.

See Also

Recipe 5.27 shows how the StringBuilder alternative really is faster than standard string concatenation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.4. Obfuscating a String

Problem

You need to store a string in such a way that a user won't recognize it, but you also want to make sure that the string
stays the same length and that it contains only printable ASCII characters.

Solution

Sample code folder: Chapter 05\ObfuscateString

Process each printable character of the string by shifting its ASCII value to that of another character within the same
set. The following two functions can be used to obfuscate strings in this way and then return them to their original
states:

 Public Function Obfuscate(ByVal origText As String) As String
 ' ----- Make a string unreadable, but retrievable.
 Dim textBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(origText)
 For counter As Integer = 0 To textBytes.Length - 1
 If (textBytes(counter) > 31) And _
 (textBytes(counter) < 127) Then
 textBytes(counter) += CByte(counter Mod 31 + 1)
 If (textBytes(counter) > 126) Then _
 textBytes(counter) -= CByte(95)
 End If
 Next counter
 Return System.Text.Encoding.UTF8.GetChars(textBytes)
 End Function

 Public Function DeObfuscate(ByVal origText As String) _
 As String
 ' ----- Restore a previously obfuscated string.
 Dim textBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(origText)
 For counter As Integer = 0 To textBytes.Length - 1
 If (textBytes(counter) > 31) And _
 (textBytes(counter) < 127) Then
 textBytes(counter) -= CByte(counter Mod 31 + 1)
 If (textBytes(counter) < 32) Then _
 textBytes(counter) += CByte(95)
 End If
 Next counter
 Return System.Text.Encoding.UTF8.GetChars(textBytes)
 End Function

Figure 5-3 shows a string before and after calling Obfuscate(), and after returning it to its original state by calling
DeObfuscate().

Figure 5-3. Results of obfuscating a string to make it unreadable, then
deobfuscating it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The Obfuscate() function lets you modify strings to an unreadable state without resorting to full-blown cryptographic
techniques. An example of where this might come in handy is for storing string data in the registry in such a manner
that the original contents are not easily searched for and that the typical user won't recognize the data.

When modifying individual bytes of a string, it's often best to first convert the string to an array of bytes, as shown in
these functions. You can freely modify the byte values in place, unlike the contents of the immutable string they came
from, and generate a new string result by converting the entire byte array in one function call.

If you work with international character sets, consider using the Unicode versions of the encoding conversion functions
instead of the UTF8 versions. The byte arrays will be twice as large, but you should be able to handle other sets of
characters. You'll also need to pay close attention to the numerical shift of the byte values, modifying the above code to
keep the results within the desired range of characters.

See Also

Recipe 5.23 discusses additional modifications to strings that can be reversed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.5. Converting Binary Data to a Hexadecimal String

Problem

You need to convert a byte array to a hexadecimal string. This is handy for the display or documentation of binary data.

Solution

Use a bit converter to get the hexadecimal representation of each byte within a block of data. The following code generates the hexadecimal string from
source data:

 Dim result As String = Replace(BitConverter.ToString(_
 origBytes), "-", "")

Discussion

There are several approaches to solving this problem. A quick review of some of these approaches will demonstrate several different programming
techniques available to you in Visual Basic 2005.

The code samples in this recipe assume a byte array named origBytes built using the following code, which creates a byte array of length 256 containing
one each of the byte values 0 through 255:

 Dim origBytes(255) As Byte
 For counter As Byte = 0 To 255
 origBytes(counter) = counter
 Next counter

The first approach is somewhat "brute force" in nature. Each byte of the array is converted to a two-character string using one of the many formatting
options of the byte's ToString() method. These short strings are concatenated to the result string one at a time:

 Dim result As String = ""
 For counter As Byte = 0 To 255
 result &= origBytes(counter).ToString("X2")
 Next counter

This is fine for small arrays of bytes, but the string concatenation quickly becomes problematic as the byte count increases. The next approach uses a
StringBuilder to make the concatenation more efficient for large data sources:

 Dim workText As New System.Text.StringBuilder(600)
 For counter = 0 To 255
 workText.Append(origBytes(counter).ToString("X2"))
 Next counter
 Dim result As String = workText.ToString()

This solution runs faster, but it seems to lack the elegance and power we expect of Visual Basic. Fortunately, the .NET Framework is full of surprises,
and of useful objects too. The BitConverter object provides a shared method that converts an entire array of bytes to a hexadecimal string in one call. The
resulting string has dashes between each pair of hexadecimal characters. This can be nice in some circumstances, but in this case, we're trying to
create a compact hexadecimal string comprised of only two characters for each byte. The following two lines of code show how to call the
BitConverter.ToString() method, and then squeeze out all the dashes using a single call to the Replace() function:

 Dim result As String
 result = BitConverter.ToString(origBytes) '00-3F-F7 etc.
 result = Replace(result, "-", "") '003FF7 etc.

The solution presented first in this recipe is the result of combining these two function calls into a single line of code. Figure 5-4
hexadecimal string displaying all possible byte values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4. The hexadecimal string equivalent of a byte array comprised of the values 0 to 255

See Also

Recipes 5.16 and 5.26 show other useful ways of modifying portions of strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.6. Extracting Substrings from Larger Strings

Problem

You want to extract substrings located at the left end, the right end, or somewhere in the middle of a string.

Solution

Visual Basic 2005 strings now have a built-in method named Substring() that provides an alternative to the traditional
Visual Basic functions Left(), Mid(), and Right(), although the language retains these features if you wish to use them. To
emulate each of these functions, set the Substring() method's parameters appropriately. The following code shows how to
do this:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 ' ----- Left(quote, 3) … "The"
 MsgBox(quote.Substring(0, 3))

 ' ----- Mid(quote, 5, 9) … "important"
 MsgBox(quote.Substring(4, 9))

 ' ----- Mid(quote, 58) … "Einstein"
 MsgBox(quote.Substring(57))

 ' ----- Right(quote, 8) … "Einstein"
 MsgBox(quote.Substring(quote.Length - 8))

Discussion

Each line of code in the sample is prefaced by a comment line showing the equivalent syntax from VB 6. One of the big
differences apparent in these examples is that the first character in the string is now at offset position 0 instead of 1,
requiring a change in the offsets supplied to the Substring() method. The lengths of the sub-strings are still the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.7. Converting a String's Case

Problem

You want to convert a string to all uppercase, all lowercase, or mixed case (with only the first letter of each word in
uppercase).

Solution

Sample code folder: Chapter 05\MixedCase

The string methods ToUpper() and ToLower() make it easy to convert strings to upper-and lowercase, and a short special-
purpose function can perform the mixed conversion. You can also use the standard Visual Basic UCase() and LCase()
methods. To mix-case a string, use Visual Basic's StrConv() function.

Discussion

Changing strings to upper- or lowercase is standard Visual Basic fare:

 ' ----- To upper case.
 newString = oldString.ToUpper()
 newString = UCase(oldString)

 ' ----- To lower case.
 newString = oldString.ToLower()
 newString = LCase(oldString)

To convert the string to mixed or "proper" case, use one of the conversion methods included in the StrConv() function:

 newString = StrConv(oldString, VbStrConv.ProperCase)

This function converts the first letter of each word to uppercase, making every other letter lowercase. Its rules are
pretty basic, and it doesn't know about special cases. If you need to correctly capitalize names such as "MacArthur,"
you have to write a custom routine. The following code provides the start of a routine using an algorithm that works
much like the StrConv() function. It assumes that space characters separate each word:

 Public Function MixedCase(ByVal origText As String) As String
 ' ----- Convert a string to "proper" case.
 Dim counter As Integer
 Dim textParts() As String = Split(origText, " ")

 For counter = 0 To textParts.Length - 1
 If (textParts(counter).Length > 0) Then _

 textParts(counter) = _
 UCase(Microsoft.VisualBasic.Left(_
 textParts(counter), 1)) & _
 LCase(Mid(textParts(counter), 2))
 Next counter

 Return Join(textParts, " ")
 End Function

The code splits up the original text into an array at space-character boundaries using the Split() function. It then
processes each word separately and merges them back together with the Join() method.

Figure 5-5 shows the results of various conversions on a string, including a conversion using the custom MixedCase()
function. Notice that "albert" is not capitalized in the mixed-case string. This is because the two leading dashes are
considered to be part of this word, based on how the Split() function separated the words at space-character locations.

Figure 5-5. The original string before and after various case conversions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-5. The original string before and after various case conversions

VB 6 Users' Update

VB 2005 strings have a built-in Split() method, but this example doesn't use it. Instead, we chose to use
the Split() function, provided for backward compatibility with VB 6. Generally speaking, this function is
preferablebecause it makes it easier to split a string using a multicharacter substring at the point of each
split. The newer Split() method of VB 2005 strings works great for splitting at single-character boundaries.

See Also

Recipe 5.44 discusses the Split() function and the Split() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.8. Comparing Strings with Case Sensitivity

Problem

You need to compare two strings, taking into account their case.

Solution

Use the shared Compare() method provided by the String object to compare two strings:

 Select Case String.Compare(content1, content2, False)
 Case Is < 0
 MsgBox("Content1 comes before Content2.")
 Case Is > 0
 MsgBox("Content1 comes after Content2.")
 Case Is = 0
 MsgBox("Content1 and Content2 are the same.")
 End Select

Setting the third parameter of the Compare() method to False instructs the method to perform a case-sensitive
comparison.

Discussion

Consider the results shown in Figure 5-6, which indicate that "apples" is less than "Apples". The ASCII values for the
lowercase character "a" and the uppercase character "A" are 97 and 65, respectively, which normally puts the
uppercase version first. But the String.Compare() method compares text using culture-defined sorting rules, and by default,
English words beginning with lowercase letters are considered "less than" the same words beginning with uppercase
letters.

Figure 5-6. Culture-defined rules apply to case-sensitive string comparisons

You can change the comparison rules in several ways to match what you want to accomplish. See the Visual Studio
online help for the CompareOptions property for more information on how to make these changes.

See Also

Recipe 5.9 discusses related comparisons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.9. Comparing Strings Without Case Sensitivity

Problem

You need to compare two strings without regard to their case.

Solution

Use the shared Compare() method provided by the String object to compare two strings:

 Select Case String.Compare(content1, content2, True)
 Case Is < 0
 MsgBox("Content1 comes before Content2.")
 Case Is > 0
 MsgBox("Content1 comes after Content2.")
 Case Is = 0
 MsgBox("Content1 and Content2 are the same.")
 End Select

Setting the third parameter of the Compare() method to True instructs the method to perform a case-insensitive
comparison.

Discussion

This type of string comparison compares all alphabetic characters as though lower-case and uppercase characters were
identical. Figure 5-7 shows that "apples" is equal to "Apples" when the strings are compared this way.

Figure 5-7. When case is ignored, lowercase and uppercase are treated identically

String comparisons are culturally defined by default, so be sure the sort order you get is really what you want. See the
Visual Studio online help for the CompareOptions property to find more information on how to make changes to the way
strings are sorted.

See Also

Recipe 5.8 discusses related comparisons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.10. Converting Strings to and from Character Arrays

Problem

You need to work with individual characters in a string efficiently, changing them in place in memory if possible.

Solution

Sample code folder: Chapter 05\StringsAndCharArrays

Use CType() to convert the string to an array of characters, modify characters throughout the array, and then directly
convert the character array back to a string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim charArray() As Char = CType(quote, Char())
 charArray(46) = "!"c
 Dim result As String = New String(charArray)
 MsgBox(result)

Discussion

In this example, the string is converted to a character array using the versatile CType() type-conversion function. In this
form, it's easy to make a change such as replacing the period at index 46 with an exclamation point. The array is then
recombined into a string by passing it to the overloaded version of the String constructor that takes an array of
characters to initialize the new string. Figure 5-8 shows the displayed string result, now showing an exclamation point
instead of a period.

Figure 5-8. Converting a string to an array of characters enables easy modification
of individual characters in that string

There is another way to access individual characters in a string, but it's read-only, so you can't use the technique to
modify the string:

 MsgBox(someString.
Chars(46))

All strings have a Chars() property that lets you access an indexed character from the string with minimal overhead. The
index is zero-based, so Chars(46) returns the 47th character.

See Also

Recipe 5.12 also examines working with individual characters within a larger string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.11. Converting Strings to and from Byte Arrays

Problem

You need to convert a string to bytes, and back to a string from a byte array. This enables you to work with the exact
binary data comprising the string.

Solution

Sample code folder: Chapter 05\StringsAndByteArrays

Use shared methods of the System.Text. Encoding object to convert to and from bytes. If you know the string data to be
comprised entirely of ASCII characters, use UTF8 encoding to minimize the length of the byte array. Unicode encoding,
which results in two bytes per character instead of one, can be used to guarantee no loss of data when making these
conversions.

Discussion

The following sample code shows both UTF8 and Unicode encoding methods:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim bytes() As Byte
 Dim result As String

 ' ----- Assumed to be all ASCII character.
 bytes = System.Text.Encoding.UTF8.GetBytes(quote)
 bytes(46) = 33 ' ASCII exclamation point
 result = System.Text.Encoding.UTF8.GetString(bytes)
 MsgBox(result)

 ' ----- Works with all character sets.
 bytes = System.Text.Encoding.Unicode.GetBytes(quote)
 bytes(92) = 63 ' ASCII question mark
 bytes(93) = 0
 result = System.Text.Encoding.Unicode.GetString(bytes)
 MsgBox(result)

When using UTF8 encoding, the number of bytes in the array is the same as the number of characters in the string. The
character at indexed position 46 in the string is a period. During the first conversion, this period is changed to an
exclamation point, and the resulting string is displayed, a result identical to that previously shown in Figure 5-8.

A Unicode-encoded byte array contains twice as many bytes as the number of characters in the original string. This
makes sense when you consider that Unicode characters are 16 bits each (or two bytes) in size. Take a close look at
the byte array modifications in the second part of the example code. The byte at position 92 (twice as far into the array
as the ASCII variation) is set to the desired ASCII value (63 in this case, for the question mark). But because each
character now consumes two bytes in the array, you must set both bytes. Setting the byte at position 93 clears the
other half of the two-byte set. Figure 5-9 shows the resulting string, now sporting a question mark at the 46th
character position.

Figure 5-9. Changing the Unicode character at byte locations 92 and 93 to a
question mark

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.12. Tallying Characters

Problem

You want to tally, or count the occurrences of, each character value in a string.

Solution

Sample code folder: Chapter 05\TallyCharacters

Convert the string to a byte array, and then tally the 256 possible byte values into an array of integer counts.

Discussion

In the case presented, the string is assumed to be all ASCII, which means conversion using UTF8 encoding is
appropriate, and the tally array only needs to be dimensioned to hold 256 counting bins:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim counter As Integer
 Dim tally(255) As Integer

Convert the string to a byte array, and then loop through each byte of the array to increment the count for each byte
value:

 Dim bytes() As Byte = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 For counter = 0 To bytes.Length - 1

 tally(bytes(counter)) += 1
 Next counter

The rest of the example prepares the tally for display. For efficiency, the code presents only characters with nonzero
counts:

 Dim result As New System.Text.StringBuilder(quote)
 For counter = 0 To 255
 If (tally(counter) > 0) Then
 result.AppendLine()
 result.Append(Chr(counter))
 result.Append(Space(3))
 result.Append(tally(counter).ToString())
 End If
 Next counter
 MsgBox(result.ToString())

Figure 5-10 shows the results.

Figure 5-10. A quick tally of the characters in a string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to tally Unicode characters, you need to either dimension a much larger tally array or use a lookup system
that constantly adds and counts characters as it finds them.

See Also

Recipe 5.11 provides additional details on encoded conversions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.13. Counting Words

Problem

You want to count the words in a string.

Solution

Sample code folder: Chapter 05\CountWords

Use the Split() function to split the string at each space character. The length of the resulting array is a good
approximation of the number of words in the string.

Discussion

There always seems to be more than one way to get things done in Visual Basic 2005, and counting words is no
exception. The following code shows one quick-and-dirty technique that requires very little coding to get the job done:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim wordCount As Integer = Split(quote, Space(1)).Length
 MsgBox(quote & vbNewLine & "Number of words: " & _
 wordCount.ToString)

Figure 5-11 shows the resulting number of words in the string.

Figure 5-11. Splitting a string to count its words

Inaccuracies can creep in if there are multiple spaces between some words in the string, if extra spaces appear at either
or both ends of the string, or if other whitespace characters (such as tabs) are involved. A little preparation of the string
can help eliminate some of these problems, but at the expense of added complexity. For example, the following lines of
code get rid of runs of two or more space characters, replacing them with single spaces. Adding this code just before
the Split() function can provide a more accurate word count:

 Do While (quote.IndexOf(Space(2)) >= 0)
 quote = quote.Replace(Space(2), Space(1))
 Loop

Similarly, you can use the Replace() method to replace all tabs with spaces (probably best done just before converting all
multiple spaces to single spaces). As you can probably sense, efforts to guarantee a more accurate count cause the
code to grow quickly. The best course is to decide what degree of word-counting accuracy is required, how much value
to place on speed of operation, and so on before deciding how much cleanup code to add.

Another solution to this problem involves regular expressions, which are covered in Recipes 5.37, 5.38, 5.39, 5.40,
5.41 through 5.42.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.42 shows how to solve this same problem using a different solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.14. Removing Extra Whitespace

Problem

You want to remove all extra whitespace characters from a string, leaving a single space character between each word.

Solution

Sample code folder: Chapter 05\RemoveWhitespace

There are several possible ways to remove extra whitespace from a string. One approach, presented here, is to test
each character of the string to see if it is whitespace and to build up the resulting string using a StringBuilder:

 Dim source As String = _
 Space(17) & "This string had " & Chr(12) & _
 StrDup(5, Chr(9)) & "extra whitespace. " & Space(27)
 Dim thisIsWhiteSpace As Boolean
 Dim prevIsWhiteSpace As Boolean
 Dim result As New System.Text.StringBuilder(source.Length)
 Dim counter As Integer

 For counter = 0 To source.Length - 1
 prevIsWhiteSpace = thisIsWhiteSpace
 thisIsWhiteSpace = _
 Char.IsWhiteSpace(source.Chars(counter))
 If (thisIsWhiteSpace = False) Then
 If (prevIsWhiteSpace = True) AndAlso _
 (result.Length > 0) Then result.Append(Space(1))
 result.Append(source.Chars(counter))
 End If
 Next counter
 MsgBox("<" & result.ToString() & ">")

Discussion

The previous code first builds a test string comprised of words separated by extra spaces, tabs, and other whitespace
characters. After processing to replace runs of whitespace characters with single spaces, the resulting string is
displayed for inspection, as shown in Figure 5-12.

Figure 5-12. The test string after zapping extra whitespace characters

Another straightforward approach to removing extra whitespace is to use a series of Replace() functions, first to replace
tabs and other whitespace characters with spaces, and finally to replace multiple spaces with single ones. This will work
fine, but the disadvantage is that many temporary strings are built in memory as the immutable strings are processed.
The code presented here moves each character in memory only once, or not at all if the character is an extra
whitespace.

Another good approach is to use regular expressions to grab an array of the words and then piece them back together
with single spaces using a StringBuilder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 5.42 shows how to use regular expressions to attack the multiwhitespace problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.15. Using the Correct End-of-Line Characters

Problem

You are developing an application that will run on several platforms, so you want to use end-of-line characters that are
compatible with all platforms.

Solution

Sample code folder: Chapter 05\EndOfLine

Use the property Environment.NewLine, which returns the end-of-line characters for the current platform. For example, the
following code adds a self-describing line of text to a StringBuilder and ends the line with the newline characters for the
current platform:

 Dim result As New System.Text.StringBuilder
 result.Append("Environment.NewLine").Append(_
 Environment.NewLine)
 MsgBox(result.ToString())

Discussion

The following code, which simply extends the prevous short snippet, terminates lines in 10 different ways, all with the
same result in the Windows environment:

 Dim result As New System.Text.StringBuilder

 result.Append("
vbNewLine").Append(vbNewLine)
 result.Append("vbCrLf").Append(vbCrLf)
 result.Append("vbCr").Append(vbCr)
 result.Append("vbLf").Append(vbLf)
 result.Append("Chr(13)").Append(Chr(13))
 result.Append("Chr(10)").Append(Chr(10))
 result.Append("Chr(13) & Chr(10)").Append(Chr(13) & Chr(10))
 result.Append("Environment.NewLine").Append(_
 Environment.NewLine)
 result.Append("ControlChars.CrLf").Append(ControlChars.CrLf)
 result.Append("ControlChars.NewLine").Append(_
 ControlChars.NewLine)

 MsgBox(result.ToString())

Figure 5-13 shows each of these self-describing lines as displayed by the message box in the last line.

Figure 5-13. No less than 10 ways to terminate a line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Different platforms, such as Linux and Mac OS, expect different combinations of carriage-return and line-feed
characters to terminate lines in documents or in displayed text. Visual Basic 2005 defines several constants you can use
that explicitly combine these characters in a variety of ways. These named constants are easily identified by their "vb"
prefix.

The somewhat generic vbNewLine constant provides a platform-dependent end of line, but only if an application is
recompiled on each platform. Feel free to substitute any of the others if you find them more suitable.

The ControlChars.NewLine property is not a constant. Instead, this property polls the current operating system and returns
the correct sequence of characters. This is your best choice when you want to compile a .NET application on one
platform but run it on another.

The StreamWriter object has a property named NewLine, which can be altered to change its
default end-of-line definition. This lets you change the set of characters inserted into the
stream at the end of each call to the StreamWriter's WriteLine() method. This can be handy, for
example if you wish to automate double spacing of lines.

See Also

Recipe 5.19 makes use of line endings in its adjustment of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.16. Replacing Substrings

Problem

You need to find and replace all occurrences of a substring in a larger string.

Solution

Use the String object's Replace() method.

Discussion

The following example replaces all occurrences of lowercase "ing" with uppercase "ING" in a sample string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As String = quote.Replace("ing", "ING")
 MsgBox(result)

Figure 5-14 shows the results, where two occurrences were found and replaced.

Figure 5-14. Replacing multiple substrings

In this example, the substrings are replaced with a new string of the same length, but the replacement string can be of
differing length. In fact, a useful technique is to make a replacement with a zero-length string, effectively deleting all
occurrences of a given substring. For example, the following code, applied to the original string, results in the shortened
string displayed in Figure 5-15:

 result = Quote.Replace("not to stop ", "")

Figure 5-15. Zapping substrings by replacing them with an empty string

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.21 shows how to remove characters from the start and end of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.17. Inserting a Character or String

Problem

You want to insert a character or string into another string at a given location.

Solution

Use the String object's Insert() method.

Discussion

The string method Insert() is overloaded to accept either a character or a string to be inserted at a given location. For
example, the following Insert() method adds a comma just after the word "thing" in the sample string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As String = quote.Insert(19, ","c)
 MsgBox(result)

Figure 5-16 shows the result of inserting the comma character.

Figure 5-16. Sample string with a character inserted

In this case the character is inserted after the 19th character of the string, or just after the "g" in "thing." You can
insert a character in the first position of a string by using position 0, and at the end of a string by using the string's
Length value.

The following code inserts the word "definitely " into the sample string. The inserted text includes a space at the end to
keep the words spaced correctly in the result:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 quote = quote.Insert(23, "definitely ")
 MsgBox(quote)

The 23rd position in the original string is just after the "s" character in "is not." Figure 5-17 shows the result of this
word insertion.

Figure 5-17. Sample string with the word "definitely" (followed by a space)
inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inserted

VB 6 Users' Update

The equivalent VB 6 string manipulations to insert one string into another are not nearly as
straightforward or as efficient as using Visual Basic 2005's Insert() method. The following VB 6 line uses
two function calls and concatenates three pieces of strings to get the same result:

 quote = Left(Quote, 23) & "definitely " & Mid(Quote, 24)

See Also

Recipe 5.18 also discusses text insertions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.18. Inserting a Line

Problem

You want to insert a complete line of text in a string that contains multiple lines separated by newlines. The desired
insertion point is after the nth line.

Solution

Sample code folder: Chapter 05\InsertLine

Split the string into a string array using the newlines as the split point, append the line to be inserted to the nth string,
and use Join() to glue the string back together again.

Discussion

Use the string function Split(), which is not to be confused with the String.Split() method, to split the string into a string
array. The Split() method splits the string at individual-character split points, but the Split() function lets you split the
string using a multicharacter string for the defined split point. The vbNewLine constant is actually a two-character string,
so you must use the Split() function to avoid splitting on the carriage-return character only, leaving the line-feed
character at the front end of each array string.

Rather than redimensioning the string array to shuffle the lines and create a slot in which to insert the new one, it's
easier to just concatenate the new string, accompanied by a newline constant, to the appropriate string in the array.
This is a simpler and more efficient procedure that involves less shuffling of string data in memory, and the results after
doing a Join() are identical.

This insert functionality works well as a standalone function, which is presented in the following lines of code:

 Public Function InsertLine(ByVal source As String, _
 ByVal lineNum As Integer, _
 ByVal lineToInsert As String) As String
 ' ----- Insert a line in the middle of a set of lines.
 Dim lineSet() As String
 Dim atLine As Integer

 ' ----- Break the content into multiple lines.
 lineSet = Split(source, vbNewLine)

 ' ----- Determine the new location, being careful not
 ' to fall off the edge of the line set.
 atLine = lineNum
 If (atLine < 0) Then atLine = 0
 If (atLine >= lineSet.Length) Then
 ' ----- Append to the end of everything.
 lineSet(lineSet.Length - 1) &= vbNewLine & lineToInsert
 Else
 ' ----- Insert before the specified line.
 lineSet(atLine) = _
 lineToInsert & vbNewLine & lineSet(atLine)
 End If

 ' ----- Reconnect and return the parts.
 Return Join(lineSet, vbNewLine)
 End Function

The string is first split at line boundaries into a string array. LineNum is the number of the line after which the lineToInsert
string is inserted. You can pass zero to this parameter to insert the new line before the first one. After appending the
new string to the appropriate string in the array, along with a vbNewLine to separate it from the original line, the array is
glued back together with the Join() function, using a vbNewLine between each line to restore its original structure. This
new string is then returned as the result of the InsertLine() function.

The following lines of code demonstrate the function's use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following lines of code demonstrate the function's use:

 Dim result As New System.Text.StringBuilder
 result.AppendLine("This string")
 result.AppendLine("contains")
 result.AppendLine("several")
 result.AppendLine("lines")
 result.Append("of text.")

 ' ----- Show the original content.
 Dim resultAsString As String = result.ToString()
 MsgBox(resultAsString)

 ' ----- Show the modified content.
 resultAsString = InsertLine(resultAsString, 3, "(inserted)")
 MsgBox(resultAsString)

A StringBuilder is used to build the original string containing several lines of text separated by vbNewLines. The first message
box (displayed in Figure 5-18) shows the string before the extra line is inserted. The second message box (displayed in
Figure 5-19) shows the new string inserted after the third line.

Figure 5-18. The original string containing five lines of text

The Split() method will accept either a character or a string to define the split points in a
string, but only the first character of the string is used. The Split() function, however, uses
the entire string parameter, of any length, to split the string. Both the Split() method and
the Split() function are very handy, but make sure you understand the difference in the way
they work.

Figure 5-19. The same string after "(inserted)" is inserted after the third line

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.17 also discusses text insertions. The difference between the Split() method and the Split() function is further
discussed in Recipe 5.44.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.19. Double-Spacing a String

Problem

You want to double-space a string comprised of multiple lines of text separated by newlines.

Solution

Use the String object's Replace() method to replace all vbNewLines with two vbNewLines.

Discussion

The Replace() method provides an easy solution to this problem. Simply replace each occurrence of a vbNewLine separating
the lines of text with a double vbNewLine:

 content = content.Replace(vbNewLine, vbNewLine & vbNewLine)

Figures 5-20 and 5-21 show a multiline example string before and after this replacement.

Figure 5-20. A string comprised of five lines of single-spaced text

Figure 5-21. The same string, double spaced

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 5.16 shows how to replace specific substrings within a larger string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.20. Formatting Numbers into Strings

Problem

You want to format a number into a string suitable for displaying or printing, something that provides formatting control
beyond the defaults.

Solution

Sample code folder: Chapter 05\ FormatNumbers

Apply the String object's Format() method, and use its custom formatting codes to get the output you desire.

Discussion

There are several ways and places in Visual Basic 2005 to apply formatting to numerical data. One of the best (and
possibly the easiest to remember) is the Format() method, available as a shared method of the String object. A few simple
examples will show you how to use this method:

 Dim intValue As Integer = 1234567
 Dim floatValue As Double = Math.PI
 Dim result As New System.Text.StringBuilder

 result.AppendLine(String.Format("{0} … {1}", _
 intValue, floatValue))
 result.AppendLine(String.Format("{0:N} … {1:E}", _
 intValue, floatValue))
 result.AppendLine(intValue.ToString("N5") & " … " & _
 floatValue.ToString("G5"))

 MsgBox(result.ToString())

This example formats an Integer and a Double in several different ways. Other numerical values, such as Long, Short, Single,
Decimal, and so on, can be formatted in the same ways. Figure 5-22 shows the result of applying the above formatting.

Figure 5-22. A sampling of the many ways numbers can be formatted into strings

The Format() method's first argument is a formatting string that indicates how to use the remaining arguments. It can
include zero or more zero-based position specifiers in curly braces. For instance, the text {1} says to insert the second
data argument at that position. Consider this line of code:

 result = String.Format(_
 "There are about {0} days in {1} years.", _
 365.25 * 3, 3, 17)

The first indexed specifier, {0}, inserts the first data argument, the calculated result of 365.25 * 3. The second indexed
formatting specifier, {1}, inserts the integer value 3 at that spot in the resulting string. The argument list also includes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

formatting specifier, {1}, inserts the integer value 3 at that spot in the resulting string. The argument list also includes
a third data element, 17, but because {2} does not appear in the format string, that argument is ignored.

You can use as many indexed formatting specifiers as you want in a single string, but you should always provide a
matching indexed argument in the method call following the string, and the first argument is always zero-based. You
can use the same argument more than once, you can use them in any order, and you can even skip some arguments.
The important thing to remember is to match carefully the index number in the brackets with the argument's position,
starting with zero.

When the index appears in the braces by itself, a default format is used. However, there are many formatting options
available to customize the formatting. In the previous sample code, the {0:N} formatted the number to contain commas
between every third digit, and {1:E} formatted the number using scientific notation. The Visual Studio online help
documentation for the Format() method lists the many formatting options in detail.

You might have noticed that the last formatting line in the example is quite different from the previous ones. If you
want to format a number into a string format without directly inserting it into a bigger string, you can use the many
formatting options of the ToString() method, a method available to every .NET object (although specially overloaded for
the numeric data types). In our example, the first number was formatted using "N5", which inserts commas and
formats the digits to five places after the decimal point. The second number was formatted using "G5", causing
"general" formatting of the number to five significant digits.

There are other formatting options for creating hexadecimal strings, formatting dates and times, formatting culture-
specific data such as currency values, and so on. Several of these formatting options are used throughout this book.
See the Visual Studio online documentation for specific predefined and custom format strings.

See Also

See the "String.Format" and "NumberFormatInfo Class" topics listed in the Visual Studio online help index. There are
many links to related information, so plan to explore the help content for a while.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.21. Trimming Sets of Characters from a String

Problem

You need to delete extraneous characters from each end of a string.

Solution

Use the String object's Trim() method, passing to it a list of all characters to be deleted.

Discussion

The following example deletes four letters from the head and tail ends of a string. The letters chosen are just for
demonstrating how the trim() method works; a real-world example of where this might be handy would be to remove
line numbers, colons, or other characters from the beginnings or ends of strings. As shown in Figure 5-23, the following
code causes the entire first word ("The") and the last character ("n") to be removed, or trimmed, from the string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim trimChars() As Char = {"T"c, "h"c, "e"c, "n"c}
 Dim result As String = quote.Trim(trimChars)
 MsgBox(result)

Figure 5-23. Trimming specific characters from the head and tail ends of a string

You do not need to supply the characters in any particular order; all supplied characters will be trimmed. Trimming
continues until the first and last characters of the string are something other than those supplied to the trim() method. If
you supply no arguments to trim(), all whitespace characters are trimmed instead.

If you want to trim certain characters from either the start or end of the string, but not both, use the trimStart() and
TRimEnd() methods, respectively. They accept the same character-array argument as the trim() method.

See Also

Recipes 5.14 and 5.16 discuss related techniques.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.22. Identifying and Validating Types of Data in a String

Problem

You want to check a string variable to see whether it has been assigned a value, or if it can be converted to a number,
date, or time. This check can prevent an exception, and it can free your code from having to use an exception as part of
its testing logic.

Solution

Sample code folder: Chapter 05\StringTypes

Visual Basic 2005 has three string functions that help solve this problem: IsNothing(), IsNumeric(), and IsDate(). Use these to
test a string's contents before attempting conversions.

Discussion

The following code demonstrates the use of these three functions with data set to Nothing:

 Dim theData As String = Nothing
 Dim result As New System.Text.StringBuilder

 ' ----- Format nothing.
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.AppendLine(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))
 result.AppendLine()

String variables are normally undefined, assigned the value of Nothing. We specifically assigned theData the value Nothing in
the above code, but if we had left it blank Visual Studio would have questioned our motives and marked the first use of
theData with a warning, as shown in Figure 5-24. As you can see, the unassigned string variable has squiggly lines under
it, indicating a problem; hovering the mouse pointer over it causes the displayed explanation to pop up. This is a
nonfatal warning, and the program will still run.

Figure 5-24. Visual Studio warns you if you attempt to use a string that has no
data assigned to it

As shown in the first three lines of output displayed in Figure 5-25 (below), in this case the IsNumeric() and IsDate()
functions verify that the string does not represent a valid number or date, but it does pass the IsNothing() test, as
expected.

Next, the string is assigned a value that represents a valid number:

 ' ----- Format a number in a string.
 theData = "-12.345"
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.AppendLine(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))
 result.AppendLine()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result.AppendLine()

When the three tests are repeated, they match expectations. As shown in the middle three lines of output in Figure 5-
25, the IsNumeric() test now returns TRue, and the IsDate() and IsNothing() tests return False.

Finally, the string is assigned a valid date, and the three tests are repeated for the last time:

 ' ----- Format a date in a string.
 theData = "July 17, 2007"
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.Append(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))

 MsgBox(result.ToString())

In this last case the IsDate() function returns true, and the other two tests return False, as shown in the last three lines of
output in Figure 5-25.

See Also

Recipes 5.24 and 5.25 show how to examine content for correct processing.

Figure 5-25. Results of testing a string's contents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.23. Converting Strings Between Encoding Systems

Problem

You need to convert string data to and from byte arrays using an encoding method matched to your data, environment,
or culture.

Solution

Sample code folder: Chapter 05\Encoding

Use System.Text.Encoding shared functions to convert between strings and byte arrays, using either UTF7, UTF8, Unicode,
or UTF32 encoding, as appropriate.

Discussion

The following code starts with a sample string and then converts it to four byte arrays, one for each type of encoding.
The length of each byte array will vary as a function of the encoding (to be explained in more detail later), so the Length
property of each array is formatted into a StringBuilder for display at the end of the code. The four byte arrays are then
converted back to Strings, using the same encoding in each case, and a quick check is made to verify that the resulting
strings match the original:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As New System.Text.StringBuilder

 ' ----- Convert a string to various formats.
 Dim bytesUTF7 As Byte() = _
 System.Text.Encoding.UTF7.GetBytes(quote)
 Dim bytesUTF8 As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 Dim bytesUnicode As Byte() = _
 System.Text.Encoding.Unicode.GetBytes(quote)
 Dim bytesUTF32 As Byte() = _
 System.Text.Encoding.UTF32.GetBytes(quote)

 ' ----- Show the converted results.
 result.Append("bytesUTF7.Length = ")
 result.AppendLine(bytesUTF7.Length.ToString())
 result.Append("bytesUTF8.Length = ")
 result.AppendLine(bytesUTF8.Length.ToString())
 result.Append("bytesUnicode.Length = ")
 result.AppendLine(bytesUnicode.Length.ToString())
 result.Append("bytesUTF32.Length = ")
 result.AppendLine(bytesUTF32.Length.ToString())

 ' ----- Convert everything back to standard strings.
 Dim fromUTF7 As String = _
 System.Text.Encoding.UTF7.GetString(bytesUTF7)
 Dim fromUTF8 As String = _
 System.Text.Encoding.UTF8.GetString(bytesUTF8)
 Dim fromUnicode As String = _
 System.Text.Encoding.Unicode.GetString(bytesUnicode)
 Dim fromUTF32 As String = _
 System.Text.Encoding.UTF32.GetString(bytesUTF32)

 ' ----- Check for conversion issues.
 If (fromUTF7 <> quote) Then _
 Throw New Exception("UTF7 Conversion Error")
 If (fromUTF8 <> quote) Then _
 Throw New Exception("UTF8 Conversion Error")
 If (fromUnicode <> quote) Then _
 Throw New Exception("Unicode Conversion Error")
 If (fromUTF32 <> quote) Then _
 Throw New Exception("UTF32 Conversion Error")

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

All strings in .NET are internally stored as two-byte Unicode characters. However, if each character of the string always
falls within a known range of characters, the string can be converted to a one-byte-per-character byte array.

UTF7 encoding converts each character of the string to a single byte with the assumption that only the lower seven bits
of each byte are used, leaving the highest-order bit as zero in all cases. This is true of ASCII characters with binary
values in the range 0to 127, which covers the normal range of English-language displayable and printable characters.

UTF8 is very similar to UTF7, but it also allows conversion of special characters in the byte value range 128 to 255. This
is the extended ASCII character set that is sometimes used for special purposes. UTF8 uses all eight bits of each byte to
define each character's value in the range 0 to 255.

Today's computer systems now invariably use the international standard Unicode character set, which requires two
bytes per character. Standard ASCII characters still fall within the same 0to 127 range in Unicode, so the second byte
of each Unicode character in this range is set to zero. Other languages and cultures have character sets with Unicode
integer values greater than 255, and Visual Basic strings handle them just fine.

UTF32 is not widely used, because it requires four bytes per character. However, even the two-byte Unicode characters
occasionally require multiple sequential characters to define the specialized characters defined in some languages.
UTF32 covers all possible characters in a simple four-bytes-per-character way, allowing internal processing
simplifications. Generally, most worldwide string data is stored on external media in the two-byte Unicode format. Only
occasionally is it converted to and processed as four-byte UTF32 bytes, and then only while in memory.

For most ASCII conversions, UTF8 is a good choice, requiring the same number of bytes as UTF7 but handling the full
range of character values from 0to 255. If squeezing bytes down to a minimum is not a mandate, Unicode is the safest
bet.

See Also

Recipe 5.11 shows how to store standard string data as byte values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.24. Determining a Character's Type

Problem

You want to determine if a character is a letter, a digit, whitespace, or any of several other types before processing it
further. This can avoid unexpected exceptions, or prevent having to use an exception on purpose to help determine the
type of a character.

Solution

Sample code folder: Chapter 05\CharType

Use one of the many type-testing shared methods of the Char object.

Discussion

The Char object includes several methods that let you determine if a character is part of a larger general category of
characters, such as the set of digits. The following code shows many of these in operation while it creates a handy
listing of the types of all characters in the ASCII range 0 to 127:

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim testChar As Char
 Dim testHex As String
 Dim soFar As Integer

 ' ----- Scan through the first half of the ASCII chart.
 For counter = 0 To 127
 ' ----- What character will we test this time?
 testChar = Chr(counter)
 testHex = "\x" & Hex(counter)

 If Char.IsLetter(testChar) Then _
 result.AppendLine(testHex & " IsLetter")
 If Char.IsControl(testChar) Then _
 result.AppendLine(testHex & " IsControl")

 If Char.IsDigit(testChar) Then _
 result.AppendLine(testHex & " IsDigit")
 If Char.IsLetterOrDigit(testChar) Then _
 result.AppendLine(testHex & " IsLetterOrDigit")
 If Char.IsLower(testChar) Then _
 result.AppendLine(testHex & " IsLower")
 If Char.IsNumber(testChar) Then _
 result.AppendLine(testHex & " IsNumber")
 If Char.IsPunctuation(testChar) Then _
 result.AppendLine(testHex & " IsPunctuation")
 If Char.IsSeparator(testChar) Then _
 result.AppendLine(testHex & " IsSeparator")
 If Char.IsSymbol(testChar) Then _
 result.AppendLine(testHex & " IsSymbol")
 If Char.IsUpper(testChar) Then _
 result.AppendLine(testHex & " IsUpper")
 If Char.IsWhiteSpace(testChar) Then _
 result.AppendLine(testHex & " IsWhiteSpace")

 ' ----- Display results in blocks of 16 characters.
 soFar += 1
 If ((soFar Mod 16) = 0) Then
 MsgBox(result.ToString())
 result.Length = 0
 End If
 Next counter

The message box displays the results for 16 characters at a time. Figure 5-26 shows the output displayed for the first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The message box displays the results for 16 characters at a time. Figure 5-26 shows the output displayed for the first
set of characters, and Figure 5-27 shows the results for characters with hexadecimal values in the range of some of the
ASCII digits and letters.

Figure 5-26. Characters with ASCII values 0 to 15 are mostly control characters

Figure 5-27. Characters in the range hexadecimal 30 to hexadecimal 3F are mostly
digits, letters, and numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that many characters fall into several categories. For example, the "0" (zero) character with hexadecimal value
30passes the test for IsDigit, IsLetterOrDigit, and IsNumber.

See Also

Recipe 5.22 includes examples of verifying logical data within strings, instead of the individual characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.25. Parsing Strings

Problem

You want to convert string data to several types of numeric or date/time variables in a consistent way.

Solution

Sample code folder: Chapter 05\ParseString

Use the Parse() method provided by all types of variables in Visual Basic 2005.

Discussion

The Parse() method is the counterpart to each object's ToString() method. That is, the string created by calling an object's
ToString() method will always be in a for-mat suitable for converting back to the same type of object using its Parse()
method. A few examples can help clarify this:

 Dim doubleParse As Double = Double.Parse("3.1416")
 Dim ushortParse As UShort = UShort.Parse("65533")
 Dim dateParse As Date = Date.Parse("December 25, 2007")

 MsgBox(String.Format(_
 "doubleParse: {0}{3}ushortParse: {1}{3}dateParse: {2}", _
 doubleParse, ushortParse, dateParse, vbNewLine))

As shown in Figure 5-28, the data items are stored in the variables as expected when they are parsed.

Figure 5-28. Converting string data to numeric and date/time formats

In many cases, you might want to first check the string to make sure it can be parsed to the desired type of variable
before making any attempt to do so. For example, use the IsDate() function to test a string to make sure it can be
converted successfully before calling a Date variable's Parse() method to parse the date from the string. If the string is not
convertible to the indicated data type, an exception will occur.

See Also

Recipe 5.22 discusses additional content-verification methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.26. Concatenating Strings

Problem

You want to concatenate strings quickly and efficiently.

Solution

Sample code folder: Chapter 05\Concatenate

Use the &= concatenation shortcut, or, even better, use a StringBuilder.

Discussion

Visual Basic 2005 offers a few tricks for working with strings more efficiently. The following code presents several
helpful techniques, from least to most efficient.

This approach simply concatenates two words and assigns the resulting string to a string variable:

 Dim quote As String
 quote = "The " & "important "

This is how additional string data was always concatenated to the end of a string in VB 6 and earlier versions of the
BASIC language:

 quote = quote & "thing "

Because .NET strings are immutable, this code copies the current contents of quote to a new location in memory, then
copies the short string "thing " to its tail end, and finally assigns the address of the resulting string to the quote variable,
marking the previous contents of quote for garbage collection. By the time you've repeat this type of command a few
times to concatenate more strings to the tail end of quote, a lot of bytes have gotten shuffled in memory.

This newer technique, available in Visual Basic 2005, provides an improved syntax, although timing tests seem to
indicate that a lot of string data is still being shuffled in memory:

 quote &= "is not to stop questioning. "
 quote &= "--Albert Einstein"

The StringBuilder is by far the better way to proceed when concatenating many strings end to end, and you'll find a lot of
examples of its use in this book. As shown here, you can run the Append() method on the results of another Append(),
which may or may not make it easier to read the code:

 Dim result As New _
 System.Text.StringBuilder("The important thing ")
 result.Append("is questioning. ")
 result.Append("--").Append("Albert ").Append("Einstein")

As explained in Recipe 5.1, the StringBuilder maintains an internal buffer of characters, not a true string, and the buffer
grows by doubling in size whenever room runs out during an Append() operation. String data is concatenated in place in
memory, which keeps the total clock cycles for concatenation way down compared to standard string techniques.

Just to round things out, these last few lines show some of the additional commands available when working with a
StringBuilder:

 result.Insert(23, "note to stop ")
 result.Replace("note", "not")
 result.Insert(0, quote & vbNewLine)

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

These lines complete the building of the string data displayed by the message box shown in Figure 5-29. The two
strings demonstrate that identical results are obtained even after we've manipulated the StringBuilder's contents.

Figure 5-29. The string built up using a StringBuilder

See Also

Recipe 5.1 and Recipe 5.27 discuss the StringBuilder class in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.27. Speeding Up String Manipulation

Problem

You want to see a timing-test-based example that shows just how much faster a StringBuilder can be than standard string
concatenation.

Solution

Sample code folder: Chapter 05\StringTime

Create a short routine to concatenate the string values of the numbers 1 to 10,000, first using direct concatenation to a
string variable and then using a StringBuilder. Use Date variables to calculate elapsed time for each loop in milliseconds,
and dis-play the results of each for comparison.

Discussion

Here's the code for doing the timing test. The two contestants are ready for the race. content is a conventional
immutable string, and result is the highly acclaimed StringBuilder challenger:

 Dim content As String = ""
 Dim result As New System.Text.StringBuilder

The supporting cast of characters is ready to rally to the cause. Here, counter is a loop counter, dateTime1 tHRough
dateTime3 are Date variables to hold instants in time, and loopCount provides the number of laps for the race:

 Dim counter As Integer
 Dim dateTime1 As Date
 Dim dateTime2 As Date
 Dim dateTime3 As Date
 Dim loopCount As Integer = 15000

The flag is waved to start the race, and the starting time is noted very accurately:

 Me.Cursor = Cursors.WaitCursor
 dateTime1 = Now

The first contestant runs all the loops, concatenating the string representations of the numbers for each lap into one big
string named content. The time of completion is carefully noted:

 For counter = 1 To loopCount
 content &= counter.ToString()
 Next counter
 dateTime2 = Now

The StringBuilder now runs the same laps, appending the same strings in its internal buffer. The time at completion is
accurately noted:

 For counter = 1 To loopCount
 result.Append(counter.ToString())
 Next counter
 dateTime3 = Now

The flag drops, signaling the crossing of the finish line for both contestants:

 Me.Cursor = Cursors.Default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.Cursor = Cursors.Default

In a moment, the results of the race appear:

 content = String.Format(_
 "First loop took {0:G4} ms, the second took {1:G4} ms.", _
 dateTime2.Subtract(dateTime1).TotalMilliseconds, _
 dateTime3.Subtract(dateTime2).TotalMilliseconds)
 MsgBox(content)

The results are shown in the message box displayed in Figure 5-30. Due to differences between systems, your results
may vary.

Figure 5-30. The StringBuilder is the clear winner of this race

To be fair, this race was highly contrived to help point out the difference in operational speed between string
concatenation and StringBuilder appending. If you create a loop in which the same strings are used each time, the timing
is much more equal. This is because Visual Basic handles immutable strings very intelligently, reusing existing strings
whenever possible and hence speeding up repetitive operations involving the same data. The test shown here creates a
unique string for each concatenation by converting the loop index number to a string, forcing a lot of extra string
creation and storage in memory during the loops.

When running this test yourself, you might need to adjust the value of loopCount for your system. If the race seems to
take too long, stop the program manually and adjust loopCount to a value a few thousand lower; if the race is too fast,
resulting in an apparent elapsed time of 0ms for the StringBuilder, bump up loopCount by a few thousand, and try again.

See Also

Recipe 5.1 and Recipe 5.26 provide additional discussion of strings and StringBuilder instances.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.28. Counting Occurrences of a Substring

Problem

You need to count occurrences of a specific word or substring in a string.

Solution

Sample code folder: Chapter 05\CountSubstring

There are three standard approaches to this problem:

Use the regular expression object (System.Text. RegularExpressions.Regex)to provide a count of the number of matches
on the string.

Use the Split() function to split the string using the specific substring as a split point, then use the length of the
resulting string array to determine the count.

Loop through the string using the IndexOf() method to find all occurrences of the substring.

Discussion

This recipe's sample code presents all three techniques. You can decide, based on your specific programming task,
which will work best for you. Here's the setup:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim count1 As Integer
 Dim count2 As Integer
 Dim count3 As Integer

With the first technique, the Regex.Matches() method returns a collection of matches on the searched-for string, and the
collection's Count property provides the number we want:

 count1 = Regex.Matches(quote, "(in)+").Count

The second technique splits the string using the searched-for string as the split point. The result of the split is a string
array, and its Length is one greater than the number of split points where each substring occurred:

 count2 = Split(quote, "in").Length - 1

The third technique involves a little more coding, but no string data is shuffled in memory during the search, resulting
in an efficient way to locate and count each occurrence of the searched-for string. The IndexOf() method searches for the
next occurrence of a string within another, optionally starting the search at an indexed location within the string:

 Dim content As String = "in"
 Dim position As Integer = -content.Length
 Do
 position = quote.IndexOf(content, position + content.Length)
 If (position < 0) Then Exit Do
 count3 += 1
 Loop

This lets the search proceed from occurrence to occurrence until IndexOf() runs out of matches and returns an index of1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This lets the search proceed from occurrence to occurrence until IndexOf() runs out of matches and returns an index of1.
count3 keeps count of the number of times the IndexOf() search is successful, providing a count of the occurrences.

The last line of the example code formats and displays the three counts, as shown in Figure 5-31:

 MsgBox(String.Format(_
 "{0}{3}{1}{3}{2}", count1, count2, count3, vbNewLine))

Figure 5-31. The substring "in" occurs four times in the sample string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.29. Padding a String for Exact Length and Alignment

Problem

You want to pad a string with spaces (or some other character) either on the head end, the tail end, or both ends, such
that the resulting string is n characters in total length.

Solution

Sample code folder: Chapter 05\PadString

Use the String. PadLeft() and String.PadRight() methods to pad the head and tail ends of the string, respectively, and use a
calculated combination of these two methods to pad the string on both ends.

Discussion

The PadLeft() and PadRight() methods take a count value that defines the target length of the string after sufficient spaces
are concatenated to it. An optional second parameter provides a character to use for the padding if you want something
other than spaces to be used. In the first block of code the default space characters are used for the padding:

 Dim content1 As String
 Dim content2 As String
 Dim content3 As String
 Dim content4 As String
 content1 = "Not padded"
 content2 = "PadLeft".PadLeft(50)
 content3 = "PadRight".PadRight(50)
 content4 = "PadCenter"
 content4 = content4.PadLeft((50 + _
 content4.Length) \ 2).PadRight(50)
 MsgBox(String.Format("{0}{4}{1}{4}{2}{4}{3}", _
 content1, content2, content3, content4, vbNewLine))

The PadCenter() calculation adds half of the required padding characters to the head end of the string, then pads out the
right end to the target length. The PadLeft() method is applied to the string first, and the PadRight() method is applied to
the result, all in a single line. Figure 5-32 shows the strings with the padding causing the text to align to the left, right,
and middle, depending on where the padding was applied.

Figure 5-32. Padding strings with spaces at the head, the tail, or both ends

Padding with spaces is often what you want to do in a real-world application, but for display purposes it isn't very
helpful. In Figure 5-32, for instance, you can't tell that "PadRight" has 50spaces at its end. Therefore, let's recode this
example, padding the strings with periods instead:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, padding the strings with periods instead:

 content1 = "Not padded"
 content2 = "PadLeft".PadLeft(50, "."c)
 content3 = "PadRight".PadRight(50, "."c)
 content4 = "PadCenter"
 content4 = content4.PadLeft((50 + content4.Length) \ 2, _
 "."c).PadRight(50, "."c)
 MsgBox(String.Format("{0}{4}{1}{4}{2}{4}{3}", _
 content1, content2, content3, content4, vbNewLine))

In this case, the same padding takes place, but with a period for the padding character. Figure 5-33 shows the result,
which is more meaningful than Figure 5-32.

Figure 5-33. The same padding as before, but using periods for padding instead of
spaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.30. Converting Tabs to Spaces

Problem

You need to convert a string's tab characters to spaces while preserving the string's spacing.

Solution

Sample code folder: Chapter 05\TabsToSpaces

Create a function to convert tabs to spaces in the defined way:

 Public Function TabsToSpaces(ByVal source As String, _
 ByVal tabSize As Integer) As String
 ' ----- Replace tabs with space characters.
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 For counter = 0 To source.Length - 1
 If (source.Chars(counter) = vbTab) Then
 Do

 result.Append(Space(1))
 Loop Until ((result.Length Mod
tabSize) = 0)
 Else
 result.Append(source.Chars(counter))
 End If
 Next counter
 Return result.ToString()
 End Function

Discussion

The trick to replacing the tabs is to insert just the right number of spaces to preserve the original alignment of the text.
Tab characters generally shift the next character to a position that is an exact multiple of the tab spacing. In Visual
Studio, this spacing constant is often 4, but in many text editors, and even in the Windows Forms TextBox control, the
standard tab spacing is 8. The sample function accepts an argument to set the tab-spacing constant to any value.

The function uses a StringBuilder to rebuild the original string, replacing tabs with enough spaces to maintain the
alignment. The Chars property of the string makes it easy to access and process each individual character from the
string, and the Mod() function simplifies the math checks required to determine the number of spaces to insert.

This code shows the TabsToSpaces() function in use:

 Dim tabs As String = _
 "This~is~~a~tabbed~~~string".Replace("~"c, vbTab)
 Dim spaces As String = TabsToSpaces(tabs, 8)
 Dim periods As String = spaces.Replace(" "c, "."c)

The first line builds a string comprised of words separated by multiple tab characters. The tilde (~) characters provide a
visual way to see where the tabs will go, and the Replace() method replaces each tilde with a tab.

The second statement calls the new function and places the returned string in spaces. This string contains no tab
characters, but it does contain many spaces between the words.

The periods string provides a visual way to see the spaces more clearly. The Replace() method in this case replaces each
space with a period.

Figure 5-34 shows these three strings displayed on a form containing three TextBox controls. Setting the Font property to
Courier New, a fixed-width font, more clearly shows the alignment of the characters in the strings. The tab-spacing
constant in these text boxes is 8, which is the value passed to TabsToSpaces(), correctly replacing the tabs and
maintaining the original alignment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maintaining the original alignment.

See Also

Recipe 5.16 also discusses replacing substrings.

Figure 5-34. The same string with tabs, spaces instead of tabs, and periods
instead of spaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.31. Reversing a String

Problem

You want to reverse, or mirror image, the order of the characters in a string.

Solution

Use the StrReverse() function.

Discussion

The StrReverse() function makes reversing a string simple:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim reversed As String = StrReverse(quote)
 MsgBox(reversed)

Figure 5-35 shows the reversed string as displayed in the message box.

Figure 5-35. The sample string reversed

Another way to reverse a string is to process the characters yourself. This sample code scans through the string in
reverse order and appends each found character to a new StringBuilder instance:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 Dim counter As Integer
 Dim result As New System.Text.StringBuilder(quote.Length)

 For counter = quote.Length - 1 To 0 Step -1
 result.Append(quote.Chars(counter))
 Next counter

 Dim reversed As String = result.ToString()
 MsgBox(reversed)

The overloaded constructor for the StringBuilder accepts an optional parameter defining the capacity the StringBuilder should
use for its internal character buffer. Since we know the reversed string will be the same length as the original, the
capacity can be set to exactly the amount needed. This prevents the StringBuilder from having to double its capacity when
it runs low on space while appending characters (see Recipe 5.1). Using the Chars property of the string to grab
characters and setting the initial capacity of the StringBuilder in this way ensures that the character bytes are transferred
in memory just once in a tight, efficient loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.32. Shuffling a String

Problem

You want to shuffle the order of the characters in a string quickly but thoroughly.

Solution

Sample code folder: Chapter 05\StringShuffle

The best technique is to loop through each character location once, swapping the character at that location with a
character at a random location anywhere in the string.

Discussion

The basic algorithm for shuffling a string, as presented here, is also good for shuffling arrays or any other ordered data.
This algorithm takes a finite amount of time to run, and the results are as random as the random number generator
used.

A walk through the code explains the process clearly. These lines declare the variables required and initialize the
random number generator to a unique sequence, using the system clock for the random number generator's seed:

 Dim counter As Integer
 Dim position As Integer
 Dim holdChar As Char
 Dim jumbleMethod As New Random
 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

To manipulate the individual characters of the string, it's best to convert the string to a character array:

 Dim chars() As Char = CType(quote, Char())

This allows for swapping the characters in memory without having to make multiple copies of immutable strings. You
can directly access a string's individual characters using the string's Chars property, but this property is read-only. In this
case, we need to store new characters into the string's locations during each swap.

The following loop is the core of the shuffling algorithm:

 For counter = 0 To chars.Length - 1
 position = jumbleMethod.Next Mod chars.Length
 holdChar = chars(counter)
 chars(counter) = chars(position)
 chars(position) = holdChar
 Next counter

Each character is sequentially processed by swapping it with another character located randomly at any position in the
string. This means that a character might even get swapped with itself occasionally, but that does not reduce the
randomness of the results. This loop guarantees that each character gets swapped at least once, but statistically
speaking each character gets swapped twice, on average.

The last two lines convert the character array back to a string and then display the result in a message box, as shown
in Figure 5-36:

 Dim result As String = New String(chars)
 MsgBox(result)

Figure 5-36. The shuffled string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-36. The shuffled string

The sample string will be shuffled into a unique random order every time the sample code is run.

See Also

Recipes 6.27 and 8.5 show additional uses of random numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.33. Using a Simple String Encryption

Problem

You want to encrypt a string using a key. The encrypted result should be a displayable and printable string of standard
ASCII characters.

Solution

Sample code folder: Chapter 05\EncryptString

The following short class defines a SimpleCrypt object containing shared functions for encrypting and decrypting a string.
In addition to the string to be encrypted or decrypted, an integer is passed to each function to serve as the key:

 Public Class SimpleCrypt
 Public Shared Function Encrypt(ByVal source As String, _
 ByVal theKey As Integer) As String
 ' ----- Encrypt a string.
 Dim counter As Integer
 Dim jumbleMethod As New Random(theKey)
 Dim keySet(source.Length - 1) As Byte
 Dim sourceBytes() As Byte = _
 System.Text.Encoding.UTF8.GetBytes(source)

 jumbleMethod.NextBytes(keySet)
 For counter = 0 To sourceBytes.Length - 1
 sourceBytes(counter) = _
 sourceBytes(counter) Xor keySet(counter)
 Next counter

 Return Convert.ToBase64String(sourceBytes)
 End Function

 Public Shared Function Decrypt(ByVal source As String, _
 ByVal theKey As Integer) As String
 ' ----- Decrypt a previously encrypted string.
 Dim counter As Integer
 Dim jumbleMethod As New Random(theKey)
 Dim sourceBytes() As Byte = _
 Convert.FromBase64String(source)
 Dim keySet(sourceBytes.Length - 1) As Byte

 jumbleMethod.NextBytes(keySet)
 For counter = 0 To sourceBytes.Length - 1
 sourceBytes(counter) = _
 sourceBytes(counter) Xor keySet(counter)
 Next counter

 Return System.Text.Encoding.UTF8.GetString(sourceBytes)
 End Function
 End Class

Discussion

The following code calls the shared functions of the SimpleCrypt class to encrypt a sample string using a key integer value
of 123456789, and then decrypts the results using the same key:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 Dim myKey As Integer = 123456789
 Dim encrypted As String = SimpleCrypt.Encrypt(quote, myKey)
 Dim decrypted As String = _
 SimpleCrypt.Decrypt(encrypted, myKey)
 MsgBox(quote & vbNewLine & encrypted & vbNewLine & decrypted)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(quote & vbNewLine & encrypted & vbNewLine & decrypted)

The encryption function first converts the string to a byte array using UTF8 encoding. Each byte is then Xor'd with a
predictable sequence of pseudorandom bytes seeded using the given key integer, and the resulting byte array is
converted back to a string. Since this encrypted string likely contains ASCII characters in the range of control and
nonprintable characters, the string is then converted to a slightly longer Base64 string comprised of displayable
characters.

The decryption function reverses the order of these same steps. First, the Base64 string is converted to a byte array,
and the same set of pseudorandom bytes is Xor'd with these bytes to recover the bytes of the original string. Figure 5-
37 shows the original string, the encrypted version of this string using a key value of 123456789, and the string that
results by decrypting this Base64 string using the same key. As expected, the original string is restored.

Figure 5-37. Encrypting and decrypting a string using a key integer

The Random object can return an array of pseudorandom bytes with any desired length. This lets the code generate the
required number of bytes used in the Xor process with only one call to the Random object.

The supplied key is any integer value from 0 to the maximum value for signed integers, which is 2,147,483,647. You
can use a negative integer, but the Random class will automatically take its absolute value as the seed.

With over two billion unique seeds, the average user won't be able to break this simple encryption easily. For quick,
simple, relatively secure encryption for typical users, this class can serve you well. However, in cryptographic circles
this level of encryption is considered dangerously poor, so be sure to check out Chapter 16 if you need to use
something more serious and well tested by the cryptographic community.

See Also

See Chapter 16 for more encryption topics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.34. Converting a String to Morse Code

Problem

You want to convert a text string to Morse code characters.

Solution

Sample code folder: Chapter 05\MorseCode

Use the IndexOf() string method to look up and cross-reference characters to string array entries representing each
Morse code character.

Discussion

The following code converts the string "Hello world!" to a string that displays the Morse code "dahs" and "dits" for each
character:

 Dim source As String = "Hello world!"
 Dim characters As String = _
 "~ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,:?'-/"""
 Dim morse() As String = { _
 "?", ".-", "-…", "-.-.", "-..", ".", "..-.", "--.", "….", _
 "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", _
 "--.-", ".-.", "…", "-", "..-", "…-", ".--", "-..-", _
 "-.--", "--..", "-----", ".----", "..---", "…--", _
 "….-", "…..", "-….", "--…", "---..", "----.", _
 ".-.-.-", "--..--", "---…", "..--..", ".----.", _
 "-….-", "-..-.", ".-..-."}

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim position As Integer

 For counter = 0 To source.Length - 1
 position = characters.IndexOf(Char.ToUpper(_
 source.Chars(counter)))
 If (position < 0) Then position = 0
 result.Append(source.Substring(counter, 1))
 result.Append(Space(5))
 result.AppendLine(morse(position))
 Next counter

 MsgBox(result.ToString())

For most people this code is not all that useful, but there are some interesting details to be learned from this example.
For instance, the second line assigns the standard set of characters covered by Morse code to a string named characters.
Notice that at the tail end of this string there are three quote characters in a row. The last one terminates the string, as
expected, and the pair just before the last one demonstrates how to enter a single-quote character into a string. By
doubling up the quote character, you tell the Visual Basic compiler to enter one double-quote character and not to
terminate the string.

At the head of the characters string is a tilde (~) character. This is not a Morse code character, but it provides a way to
catch all characters in the string to be converted that aren't found in the set of Morse code characters. For example, in
the test string "Hello world!" there's an exclamation point, which is not defined in the table of International Morse code
characters. When the IndexOf() method attempts to find this exclamation point in characters, a value of1 is returned. This
value is changed to zero, which indexes to the question-mark sequence in the Morse() string array. Figure 5-38 shows
how the sample string ends up with a question mark instead of the unavailable exclamation point.

Figure 5-38. The Morse code equivalent of the standard "Hello World!" string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-38. The Morse code equivalent of the standard "Hello World!" string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.35. Adding Strings to an Application's Resources

Problem

You need to store and edit strings in an application's resources. This makes it easy to internationalize the application by changing the
strings for each culture.

Solution

To edit the resource strings in the Visual Studio environment, open the project's properties page, and select the Resources tab on the left.
Edit the table of string entries, changing the Name, Value, and Comment fields as required.

In the application, refer to each string through the My.Resources object.

Discussion

In Visual Studio, it's very easy to maintain a table of strings in the application's resources. Figure 5-39 shows the project's properties page
with the Resources tab selected along the left side.

Figure 5-39. Editing resource strings in Visual Studio

The example shows two resource strings, one named Caption and the other named Text. As the following code shows, in the application
these two strings are referenced by name through the My.Resources object. This code then displays a message box using the two strings
from the resources, as shown in Figure 5-40:

 Dim stringText As String = My.Resources.Text
 Dim stringCaption As String = My.Resources.Caption
 MsgBox(stringText, , stringCaption)

Figure 5-40. The results of editing the message box's Caption and Text properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-40. The results of editing the message box's Caption and Text properties

Other types of resources can be added, such as images, sounds, and other files. Each of these resources is accessed in the application
through the My.Resources object.

See Also

See Chapter 10for an example of storing and using media files in your application's resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.36. Converting Any Data to a String

Problem

You have an instance of data and want to convert it to its default string representation.

Solution

Sample code folder: Chapter 05\UseToString

Use the ToString() method, which is included in all .NET objects, to return a general string for an object instance. To get
you started, the following code demonstrates the default ToString() method on several types of variables:

 Dim someInt As Integer = 123
 Dim someDouble As Double = Math.PI
 Dim someString As String = "Testing"
 Dim someDate As Date = #7/4/1776 9:10:11 AM#
 Dim someDecimal As Decimal = 1D / 3D
 Dim result As New System.Text.StringBuilder

 result.Append("someInt.ToString ")
 result.AppendLine(someInt.ToString())

 result.Append("someDouble.ToString ")
 result.AppendLine(someDouble.ToString())

 result.Append("someString.ToString ")
 result.AppendLine(someString.ToString())

 result.Append("someDate.ToString ")
 result.AppendLine(someDate.ToString())

 result.Append("someDecimal.ToString ")
 result.Append(someDecimal.ToString())

 MsgBox(result.ToString())

Discussion

Figure 5-41 shows the results displayed by the sample code. Default formatting is used for all these ToString() methods.

The ToString() method is often overloaded to support a variety of formatting options, depending on the type of variable.
This lets you convert doubles, for instance, to scientific or other formats. Check the Visual Studio online help resources
for the ToString() method for each type of variable to discover the formatting options available.

All objects sport a ToString() method because all objects inherit it from System.Object. An example used repeatedly
throughout this chapter is the StringBuilder class, which returns its internal character buffer converted to a string through
its ToString() method.

Figure 5-41. Results of converting several variable types by using the ToString()
method on each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you create your own classes, consider adding both a ToString() method and a corresponding Parse() method if the
object's state can be represented as a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.37. Using Regular Expressions to Extract All Numbers

Problem

You want to extract all numbers from a string that has extra whitespace, text, and other nonnumeric characters
interspersed throughout.

Solution

Sample code folder: Chapter 05\RegexExtractNum

Use a regular expression (Regex) object to identify and parse out a list of all numbers in the string.

Discussion

This is a very tricky problem if the exact format of the string is not known. Identifying exactly which sets of characters
are parts of numbers with accuracy in all cases can be difficult. Negative signs, scientific notation, and other
complications can arise. Fortunately, the regular expression object greatly simplifies the task. The fol-lowing code
demonstrates how it works:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim source As String = _
 "This 321.0 string -0.020 contains " & _
 "3.0E-17 several 1 2. 34 numbers"
 Dim result As String
 Dim parser As New _
 Regex("[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?")

 Dim sourceMatches As MatchCollection = _
 parser.
Matches(source)
 Dim counter As Integer

 result = "Count: " & _
 sourceMatches.Count.ToString() & vbNewLine
 For counter = 0 To sourceMatches.Count - 1
 result &= vbNewLine
 result &= sourceMatches(counter).Value.ToString()
 result &= Space(5)
 result &= CDbl(sourceMatches(counter).Value).ToString()
 Next counter
 MsgBox(result)

The string to be parsed is source, which contains a variety of integer and floating-point numbers, both positive and
negative, with words and other nonnumeric characters mixed in. A Regex object named parser is instantiated using a
specially crafted regular expression designed to locate all conventionally defined numbers. The Matches() method of the
Regex object is applied to the string, and a collection of Matches is returned. This collection's Count property provides a
tally of how many numbers were found in the string. Each item in the Matches collection has a Value property with a
ToString() method that converts the numeric value to a string.

Figure 5-42 shows the results of parsing the sample string, listing the numbers found using the regular expression. The
Matches value displays the string exactly as copied from the original string. That's the first number on lines 27 in the
message box. The second number shows the string converted to a Double and then back to a string. The reason for this
extra step is to verify that the match string does convert to a numeric value.

Figure 5-42. Parsing the sample string reveals all the numbers it contains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-42. Parsing the sample string reveals all the numbers it contains

The regular expression presented in this example is one of many that can be found on
multiple Internet web sites. The Internet provides a great resource for locating regular
expressions for any specific purposes.

See Also

Recipe 5.38 also discusses regular expression processing. The following web sites are just some of the many places on
the Internet that provide regular expression samples:

http://www.regular-expressions.info/examples.html
http://sitescooper.org/tao_regexps.html
http://en.wikipedia.org/wiki/Regular_expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38. Getting a Count of Regular Expression Matches

Problem

You want a quick count of the number of matches a regular expression finds in a string.

Solution

Sample code folder: Chapter 05\RegexCountMatch

Use the Count property of the Matches() method of the Regex object.

Discussion

The following example code shows how to use regular expressions to count words in a string, as defined by the pattern
\w+:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim parser As New Regex("\w+")
 Dim totalMatches As Integer = parser.Matches(quote).Count
 MsgBox(quote & vbNewLine & "Number words: " & _
 totalMatches.ToString)

This example returns a count of the number of matches, not a collection of matches. Figure 5-43 shows the results as
displayed by the message box.

Figure 5-43. Using the Regex object to count words in a string

This technique can be useful for many other types of regular expression searches, too. For example, the regular
expression shown in Recipe 5.37 can be used to quickly determine the number of numbers of all types in a string of any
size.

See Also

Recipes 5.13 and 5.37 discuss regular expression processing in additional detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.39. Getting the Nth Regular Expression Match

Problem

You want to get the nth match of a regular expression search within a string.

Solution

Sample code folder: Chapter 05\RegexMatchN

Use the Regex object to return a MatchCollection based on the regular expression. The nth match is accessed by indexing
item n1 in the collection.

Discussion

The following code finds all numbers in a sample string, returning all matches as a MatchCollection. In this example, the
regular expression accesses the third match in the zero-based collection as item number 2:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim source As String = "This 7. string -0.02 " & _
 "contains 003.141600 several 0.9 numbers"
 Dim parser As New Regex(_
 "[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?")
 Dim sourceMatches As MatchCollection = _
 parser.Matches(source)
 Dim result As Double = CDbl(sourceMatches(2).Value)
 MsgBox(source & vbNewLine & "The 3rd number: " & _
 result.ToString())

Figure 5-44 shows the third number found in the string.

Figure 5-44. Using a regular expression to find the nth match in a string

See Also

Recipe 5.37 discusses the specific regular expression pattern used in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.40. Compiling Regular Expressions for Speed

Problem

You want to compile a regular expression to maximize runtime speed.

Solution

Sample code folder: Chapter 05\RegexDLL

There are two steps to this solution, best described by working through an example. The first step is to run the code to create the
compiled DLL file, and the second is to use the new compiled regular expression in one or more applications.

Discussion

First, run the following code one time only to compile and create a DLL file containing a regular expression, in this case using a pattern
designed to find all numbers in a string:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim numPattern As String = _
 "[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?"
 Dim wordPattern As String = "\w+"
 Dim whichNamespace As String = "NumbersRegex"
 Dim isPublic As Boolean = True

 Dim compNumbers As New RegexCompilationInfo(numPattern, _
 RegexOptions.Compiled, "RgxNumbers", _
 whichNamespace, isPublic)
 Dim compWords As New RegexCompilationInfo(wordPattern, _
 RegexOptions.Compiled, "RgxWords", whichNamespace, _
 isPublic)
 Dim compAll() As RegexCompilationInfo = _
 {compNumbers, compWords}

 Dim whichAssembly As New _
 System.Reflection.AssemblyName("RgxNumbersWords")
 Regex.CompileToAssembly(compAll, whichAssembly)

This code creates a new file named RgxNumbersWords.dll that contains the compiled regular expression. The file is created in the same
folder in which the executable program is located.

To use the new DLL in an application, you need to add a reference to it. Right-click on References in the Solution Explorer, click the
Browse tab, find the DLL file in the folder where the application's EXE file is located, and select it to add the reference. Figure 5-45
shows the new reference in the Solution Explorer.

Figure 5-45. The DLL file named RgxNumbersWords added to the References list in the
Solution Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You also need to import the namespace defined in this DLL into your application. Either add an Imports command at the top of your source
code or, in the Project Properties window, select the References tab, and place a checkmark next to the name of the namespace, as
shown in Figure 5-46.

Figure 5-46. Importing a namespace via the Project Properties window

Once the new DLL is referenced and its object's namespace has been imported, you can use the compiled regular expression in an
application. The following code uses the new RgxNumbers regular expression to count the numbers in a string:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…
 Dim source As String = _
 "Making a Pi (3.1415926) is easy as One 1 Two 2 Three 3"
 Dim parser As New RgxNumbers
 Dim totalMatches As Integer = parser.Matches(source).Count

 MsgBox(source & vbNewLine & "Number count: " & _
 totalMatches.ToString())

Figure 5-47 shows the result of running this code to determine how many numbers are in the sample string.

Figure 5-47. Quickly counting numbers in a string using the compiled regular expression

See Also

Recipe 5.37 also discusses regular expression processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.41. Using Regular Expressions to Validate Data

Problem

You need to validate string data entered by a user to ensure it meets defined criteria.

Solution

Sample code folder: Chapter 05\RegexValidate

Use a regular expression to check the string to make sure it matches the type of data expected.

Discussion

The Internet is a good place to find a wide range of regular expressions to validate strings using specific rules, and this
recipe won't attempt to list them all. Instead, the following code, which validates a String as an email address,
demonstrates a specific example to show you the general technique involved:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim testString As String
 Dim emailPattern As String = _
 "^([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@" & _
 "([-0-9a-zA-Z]+[.])+[a-zA-Z]{2,6}$"

 testString = "johndoe@nowhere.com"
 MsgBox(testString & Space(3) & _
 Regex.
IsMatch(testString, emailPattern))

 testString = "john@doe@mybad.com"
 MsgBox(testString & Space(3) & _
 Regex.IsMatch(testString, emailPattern))

This regular expression checks a string to see if it is a valid email address. As shown in Figures 5-48 and 5-49, the first
string passes the test, but the second has a problem. In general, the IsMatch() method returns TRue if the string matches
the criteria defined in the regular expression and False if it fails the test.

Figure 5-48. A string that passes the regular expression test for valid email
addresses

Figure 5-49. A string that fails the regular expression test designed to validate it
as a legal email address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a legal email address

See Also

Recipe 5.22 also discusses data validation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.42. Using Regular Expressions to Count Characters, Words,
or Lines

Problem

You want to count the characters, words, and lines in a string.

Solution

Sample code folder: Chapter 05\RegexCountParts

Use separate regular expressions to count words, characters, and lines in a string of any length.

Discussion

The following code demonstrates three very short regular expressions that provide simple counts of characters, words,
and lines in a string of any length:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = _
 "The important thing" & vbNewLine & _
 "is not to stop questioning." & vbNewLine & _
 "--Albert Einstein" & vbNewLine
 Dim numBytes As Integer = quote.Length * 2
 Dim numChars As Integer = Regex.Matches(quote, ".").Count
 Dim numWords As Integer = Regex.Matches(quote, "\w+").Count
 Dim numLines As Integer = Regex.Matches(quote, ".+\n*").Count
 MsgBox(String.Format(_
 "{0}{5}bytes: {1}{5}Chars: {2}{5}Words: {3}{5}Lines: {4}", _
 quote, numBytes, numChars, numWords, numLines, vbNewLine))

The number of bytes in the string is also displayed, as shown in Figure 5-50, but the string's Length property provides
this count directly without having to resort to a regular expression.

Figure 5-50. Using simple regular expressions to count characters, words, or lines
in a string

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38 also discusses the results of regular expression processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.43. Converting a String to and from Base64

Problem

You want to convert a string to or from Base64 format for predictable transfer across a network.

Solution

Sample code folder: Chapter 05\Base64

To convert a string to Base64, first use System.Text.Encoding methods to convert the string to a byte array and then use
the Convert.ToBase64String() method to convert the byte array to a Base64 string.

To convert a Base64 string back to the original string, use Convert. FromBase64String() to convert the string to a byte array,
and then use the appropriate System.Text.Encoding method to convert the byte array to a string.

Discussion

The following code demonstrates these steps as it converts a sample string to Base64 and back again:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim quoteBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 Dim quote64 As String = Convert.ToBase64String(quoteBytes)
 Dim byteSet As Byte() = Convert.FromBase64String(quote64)
 Dim result As String = _
 System.Text.Encoding.UTF8.GetString(byteSet)
 MsgBox(quote & vbNewLine & quote64 & vbNewLine & result)

UTF8 encoding is used because the sample string's characters all fall within the range of standard ASCII characters. For
other character sets, it's best to use Unicode encoding, in which case you should change both occurrences of "UTF8" to
"Unicode" in the code sample. The byte array and the Base64 string will each be twice as large when using Unicode, but
this eliminates the possibility of any data loss during the conversions.

Figure 5-51 shows the results of the above conversions as displayed by the message box.

Figure 5-51. A sample string converted to Base64 and back again

See Also

Recipe 5.33 also shows how to convert string data into an alternative format that uses only printable characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.44. Splitting a String

Problem

You want to split a string using a multicharacter string rather than a single character as the split point, but the String
object's Split() method only splits using one or more individual characters.

Solution

Sample code folder: Chapter 05\SplitString

You can use the Visual Basic Split() function instead of the String.Split() method, or you can pass an array of strings to
String.Split().

Discussion

The following code shows the differences between using the Split() function and the String.Split() method:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim strArray1() As String = Split(quote, "ing")
 Dim strArray2() As String = quote.Split(CChar("ing"))
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 For counter = 0 To strArray1.Length - 1
 result.AppendLine(strArray1(counter))
 Next counter
 result.AppendLine(StrDup(30, "-"))

 For counter = 0 To strArray2.Length - 1
 result.AppendLine(strArray2(counter))
 Next counter
 MsgBox(result.ToString())

String array strArray1 is created by applying the Split() function to the sample string, splitting the string at all occurrences
of "ing". strArray2 uses the String.Split() method to do the same thing. However, even though the string "ing" is passed to
the String.Split() method to define the split points, only the first character of this string, the character "i," is used to make
the splits. The results of these two splits are quite different, as shown in the output displayed in the message box in
Figure 5-52.

Figure 5-52. Results of passing the Split() function and the Split() method a
multicharacter string as the split point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To confuse the issue even further, it is possible to use the String.Split() method to split a string at whole substring
boundaries, but only by passing an array of strings to the method to define the split points (not just a simple string)
and passing a required parameter defining split options. The following two lines of code demonstrate this technique,
returning the desired results. The first line uses the Visual Basic function, and the second line uses the string array
technique just described:

 Dim strArray1() As String = Split(quote, "ing")
 Dim strArray1() As String = _
 quote.Split(New String() {"ing"}, StringSplitOptions.None)

Both String() options are very powerful and useful, but you do need to use the correct one, passing appropriate
parameters.

See Also

Recipe 5.28 also discusses string parsing using Split().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.45. Creating a String of Space Characters

Problem

You want to create a string of n space characters.

Solution

Use the Space(N) function, which returns a string of n space characters.

Discussion

The following sample code actually presents three different ways to create a string of n spaces. In most cases the
Space() function works quite well to create the spaces, but it's informative to compare the three techniques:

 Dim lotsOfSpaces1 As String = New String(" "c, 500)
 Dim lotsOfSpaces2 As String = StrDup(500, " "c)
 Dim lotsOfSpaces3 As String = Space(500)
 Dim result As String = String.Format(_
 "Length of lotsOfSpaces1: {0}{3}" & _
 "Length of lotsOfSpaces2: {1}{3}" & _
 "Length of lotsOfSpaces3: {2}{3}", _
 lotsOfSpaces1.Length, _
 lotsOfSpaces2.Length, _
 lotsOfSpaces3.Length, vbNewLine)
 MsgBox(result)

The String constructor is overloaded to initialize strings as they are created in several ways. As shown in the first
statement above, you can create a new string comprised of n repetitions of any character (in this case, a space
character).

The StrDup() function is similar in operation in that it also returns a string comprised of n occurrences of a given
character. Both the String constructor and the StrDup() function are useful when the repeated character is something other
than a space.

Finally, the Space() function returns a string comprised of n space characters, without the option to use any other
character.

The rest of the code displays the lengths of the three strings of spaces to help verify that they were created as
indicated, as shown in Figure 5-53.

Figure 5-53. Three identical long strings of spaces created in three different ways

See Also

Recipe 5.2 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Numbers and Math
Introduction

Recipe 6.1. Using Compact Operator Notation

Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

Recipe 6.3. Using Unsigned Integers

Recipe 6.4. Swapping Two Integers Without Using a Third

Recipe 6.5. Using Single- and Double-Precision Variables

Recipe 6.6. Using Decimal Variables for Maximum Precision

Recipe 6.7. Converting Between Number Types

Recipe 6.8. Rounding Numbers Accurately

Recipe 6.9. Declaring Loop Counters Within Loops

Recipe 6.10. Converting Between Radians and Degrees

Recipe 6.11. Limiting Angles to a Range

Recipe 6.12. Creating Double-Precision Point Variables

Recipe 6.13. Converting Between Rectangular and Polar Coordinates

Recipe 6.14. Creating Three-Dimensional Variables

Recipe 6.15. Converting Between Rectangular, Spherical, and Cylindrical Coordinates

Recipe 6.16. Working with Complex Numbers

Recipe 6.17. Solving Right Triangles

Recipe 6.18. Solving Any Triangle

Recipe 6.19. Determining if a String Contains a Valid Number

Recipe 6.20. Converting Numbers to Integers

Recipe 6.21. Calculating π to Thousands of Digits

Recipe 6.22. Getting a Number's Prime Factors

Recipe 6.23. Using Recursion to Calculate Factorials

Recipe 6.24. Manipulating Bits with Bitwise Operators

Recipe 6.25. Storing and Retrieving Bits in a BitArray

Recipe 6.26. Enhancing the Random Number Generator

Recipe 6.27. Generating Random Integers in a Range

Recipe 6.28. Generating Random Real Numbers in a Range

Recipe 6.29. Generating Normal-Distribution Random Numbers

Recipe 6.30. Generating Exponential-Distribution Random Numbers

Recipe 6.31. Creating a Matrix

Recipe 6.32. Inverting a Matrix

Recipe 6.33. Calculating the Determinant of a Matrix

Recipe 6.34. Solving Simultaneous Equations

Recipe 6.35. Listing of the MatrixHelper Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic is now completely on a par with C# and other languages in its scientific, engineering, and financial number-
crunching capabilities. This chapter demonstrates how easy it is to develop very fast and powerful, yet easy-to-read
code for advanced number-crunching applications. Some of the recipes will appeal to almost all developers, such as
those demonstrating rounding, the new unsigned integers, and the new Decimal numbers that are suitable for the most
demanding financial calculations. Other recipes will appeal to the many scientist and engineer types searching for 21st
century updates for FORTRAN, programmable calculators, and Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.1. Using Compact Operator Notation

Problem

You want to write compact, efficient code using the latest syntax available for assignment operators.

Solution

Sample code folder: Chapter 06\CompactOperators

Visual Basic 2005 now lets you use the same compact assignment notation for some math operations that has been
used in the C and C# languages for many years.

There are several compact assignment operators, and they all work the same way. The variable to the left of the
operator is used both as a source value and as a destination for the results of the operation. The operators are listed in
Table 6-1.

Table 6-1. Compact assignment operators
Operator Description

^= Exponentiation

*= Multiplication

/= Division

\= Integer division

+= Addition

-= Subtraction

<<= Shift left

>>= Shift right

&= Comparison

Discussion

Consider the following program statement, which increments the variable count:

 count = count + 1

The variable count is repeated twice in this simple line of code, once to retrieve its value and once to assign the results
of adding 1 to the value. The new, more efficient compact assignment syntax uses the variable's name just once:

 count += 1

The compact assignment operator += causes the variable to be used both as the source of the value to be operated on
and as the destination for the result.

The following sample code demonstrates all of the operators listed in Table 6-1:

 Dim result As New System.Text.StringBuilder

 Dim testDouble As Double = Math.PI
 result.Append("Double ").AppendLine(testDouble)
 testDouble += Math.PI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 testDouble += Math.PI
 result.Append("+= ").AppendLine(testDouble)
 testDouble *= Math.PI
 result.Append("*= ").AppendLine(testDouble)
 testDouble -= Math.PI
 result.Append("-= ").AppendLine(testDouble)
 testDouble /= Math.PI
 result.Append("/= ").AppendLine(testDouble)
 testDouble ^= Math.PI
 result.Append("^= ").AppendLine(testDouble)
 result.AppendLine()

 Dim testInteger As Integer = 17
 result.Append("Integer ").AppendLine(testInteger)
 testInteger \= 2
 result.Append("\= 2 … ").AppendLine(testInteger)
 testInteger += 1
 result.Append("+= 1 … ").AppendLine(testInteger)
 testInteger <<= 1
 result.Append("<<= 1 … ").AppendLine(testInteger)
 testInteger >>= 3
 result.Append(">>= 3 … ").AppendLine(testInteger)
 result.AppendLine()

 Dim testString As String = "Abcdef"
 result.Append("String ").AppendLine(testString)
 testString &= "ghi"
 result.Append("&= ghi … ").AppendLine(testString)
 testString += "jkl"
 result.Append("+= jkl … ").AppendLine(testString)

 MsgBox(result.ToString())

Figure 6-1 shows the results displayed by this block of code. While many of the operators work on double-precision
variables, some work only on integers of various sizes, and the concatenation operator works only on strings.

Figure 6-1. The compact assignment operators in action

Although the += (addition) operator is overloaded to operate on either numerical variables or strings, your code will be
clearer if you use the addition operator only for mathematical operations. For string concatenation, use the &= operator
instead. This rule can also help you avoid hidden errors when working with numbers formatted as strings. For instance,
consider the following code, which updates an Integer value with numbers stored in strings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

consider the following code, which updates an Integer value with numbers stored in strings:

 Dim numberFromStrings As Integer
 numberFromStrings = "4"
 numberFromStrings += "3"
 MsgBox(numberFromStrings)

When you run this code, it displays "7" in the message box. This works because Visual Basic is "helping you out,"
automatically converting the strings to Integer values before performing the assignment or addition. If you replace the
+= operator in that code with the &= operator, the code behaves differently:

 Dim numberFromStrings As Integer
 numberFromStrings = "4"
 numberFromStrings &= "3"
 MsgBox(numberFromStrings)

This time, the message box displays "43," the concatenation of the two strings. Some of the documentation for the +=
and &= operators claims that the two are functionally equivalent when working with strings, but this example shows
that care should be exercised when using them in mixed string/number situations.

See Also

Search for "operator procedures" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

Problem

You want to use the right- sized integer variable for the job at hand.

Solution

Sample code folder: Chapter 06\UsingIntegers

Visual Basic 2005 now has signed and unsigned integer variable types that range in size from 8 bits to 64 bits (1 byte
to 8 bytes). Using the right size and type of integer can save memory, generate more efficient code, and provide
ranges of integer values suitable to a variety of needs.

Discussion

Visual Basic 2005 is the first version of Visual Basic to support signed byte values and unsigned integer values in a
variety of sizes. Here's a list of all the integer types now supported:

Byte

Eight-bit (1-byte) values ranging from 0 to 255. Equivalent to System.Byte.

SByte

A signed type that is 8 bits (1 byte) in size and holds values ranging from -128 to +127. Equivalent to
System.SByte.

Short

Sixteen-bit (2-byte) values ranging from -32,768 to +32,767. Equivalent to System.Int16.

UInt16

An unsigned type that is 16 bits (2 bytes) in size and holds values ranging from 0 to 65,535. Equivalent to
System.UInt16.

Integer

Thirty-two-bit (4-byte) values ranging from -2,147,483,648 to +2,147,483,647. Equivalent to System.Int32.

UInteger

An unsigned type that is 32 bits (4 bytes) in size and holds values ranging from 0 to 4,294,967,295. Equivalent
to System.UInt32.

Long

Sixty-four-bit (8-byte) values ranging from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 (-9
to +9 quintillion). Equivalent to System.Int64.

ULong

An unsigned type that is 64 bits (8 bytes) in size and holds values ranging from 0 to
18,446,744,073,709,551,615 (18 quintillion). Equivalent to System.UInt64.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18,446,744,073,709,551,615 (18 quintillion). Equivalent to System.UInt64.

The following code demonstrates each of these integer types by displaying the largest possible value for each:

 Dim result As New System.Text.StringBuilder()
 result.AppendLine("MaxValue…")
 result.AppendLine()

 Dim maxByte As Byte = Byte.MaxValue
 Dim maxSByte As SByte = SByte.MaxValue
 Dim maxShort As Short = Short.MaxValue
 Dim maxUShort As UShort = UShort.MaxValue
 Dim maxInteger As Integer = Integer.MaxValue
 Dim maxUInteger As UInteger = UInteger.MaxValue
 Dim maxLong As Long = Long.MaxValue
 Dim maxULong As ULong = ULong.MaxValue

 result.Append("Byte ").AppendLine(maxByte)
 result.Append("SByte ").AppendLine(maxSByte)
 result.Append("Short ").AppendLine(maxShort)
 result.Append("UShort = ").AppendLine(maxUShort)
 result.Append("Integer = ").AppendLine(maxInteger)
 result.Append("UInteger = ").AppendLine(maxUInteger)
 result.Append("Long = ").AppendLine(maxLong)
 result.Append("ULong = ").AppendLine(maxULong)

 MsgBox(result.ToString())

For all unsigned variable types, the minimum possible value is zero. For all signed types, to find the minimum value add
one to the maximum value, and change the sign. For example, the maximum value for signed bytes is 127, and the
minimum value is -128. As shown above, the MaxValue property of each integer type provides a straightforward way to
access the largest possible value. Similarly, you can get the smallest possible value by accessing each type's MinValue
property.

Figure 6-2 shows the maximum values for each type of integer, as displayed by the message box in the example code.

Figure 6-2. Maximum values for the various integer variable types

One other variable type is worth considering for extremely large integer values. Although not true integers, Decimal
variables can hold integer values up to 79,228,162,514,264,337,593,543,950,335 (79 octillion). The rule for
determining the minimum value for a Decimal-type variable is slightly different than for the true integer types: in this
case, just reverse the sign of the maximum value, don't add 1. The MinValue for Decimal variables is thus -
79,228,162,514,264,337,593,543,950,335.

Decimal values are signed 128-bit (16-byte) numbers, and they may have a decimal point. If you appropriately round off
or truncate values, the Decimal type can accurately hold extremely large integer values. However, even on 64-bit
machines, this data type can slow down calculations somewhat because the processor must perform calculations using
multiple steps to process each value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.3. Using Unsigned Integers

Problem

You want to work with nonnegative integers while minimizing the memory requirements of variables in your code.

Solution

Use the smallest unsigned integer variable types that will hold the desired range of nonnegative values.

Discussion

As mentioned in the previous recipe, the unsigned integer variable types provide many new options for working with
nonnegative integers in Visual Basic 2005. The following code provides a specific example to help clarify the concept:

 Dim testUShort As UShort
 Do Until (testUShort > CUShort(33000))
 testUShort += CUShort(1)
 Loop
 MsgBox("UShort result: " & testUShort.ToString())

The standard Visual Basic Short variable type holds signed integers in the range -32,768 to +32,767 and uses only two
bytes of memory. If the previous code used signed integers, an exception would be generated during the looping
because values up to 33,001 are not allowed. The unsigned testUShort integer stores values up to 65,535, so the
program runs successfully, and the variable still requires only two bytes of memory. Figure 6-3 shows a two-byte
unsigned variable displaying a number too big for a standard signed two-byte integer.

Figure 6-3. Unsigned integer variables can hold bigger numbers than signed
integers, in the same amount of memory

See Also

Search for "UInteger" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.4. Swapping Two Integers Without Using a Third

Problem

You want to swap the values of two integer variables without creating a third.

Solution

Sample code folder: Chapter 06\IntegerSwap

Use the exclusive-or bit manipulation function to do the trick.

Discussion

Nowadays efforts to save the space of a single variable in memory seem kind of silly, but this recipe nevertheless
demonstrates an interesting technique for swapping two numbers without creating a third variable. More importantly, it
demonstrates how bit-manipulation functions can be quite useful in Visual Basic 2005. Here's the sample code:

 Dim result As String
 Dim firstValue As Integer
 Dim secondValue As Integer

 ' ----- Set the initial test values.
 firstValue = 17
 secondValue = 123
 result = String.Format("Before swap: {0}, {1}", _
 firstValue, secondValue)
 result &= vbNewLine

 ' ----- Swap the values at the bit level.
 firstValue = firstValue Xor secondValue
 secondValue = firstValue Xor secondValue
 firstValue = firstValue Xor secondValue
 result &= String.Format("After swap: {0}, {1}", _
 firstValue, secondValue)

 MsgBox(result)

The above code loads values into integers firstValue and secondValue, then swaps their values by applying three successive
Xor operators on them. The Xor operator combines the two integers on a bit-by-bit basis, resulting in a 1 bit whenever
the original bits are different and a 0 when they are the same. Once these three Xor operations have been performed,
the original contents of the two integers will have migrated to the opposite locations in memory. Figure 6-4 shows the
results displayed by the sample code.

Figure 6-4. Swapping two integers using Xor

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Search for "Xor operator" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.5. Using Single- and Double-Precision Variables

Problem

You want to use floating-point numbers but aren't sure if you should use Singles or Doubles.

Solution

Sample code folder: Chapter 06\SingleDouble

Choose the most appropriate variable type based on the range and precision of numbers it can hold and on its memory
footprint.

Discussion

To help you understand the capabilities of Single and Double variables, the following sample code uses several useful
properties and functions to display information about them:

 Dim result As New System.Text.StringBuilder
 Dim maxSingle As Single = Single.MaxValue
 Dim maxDouble As Double = Double.MaxValue
 Dim sizeOfSingle As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxSingle.GetType)
 Dim sizeOfDouble As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxDouble.GetType)

 result.Append("Memory size of a Single (bytes): ")
 result.AppendLine(sizeOfSingle)
 result.Append("Maximum value of a Single: ")
 result.AppendLine(maxSingle)
 result.AppendLine()

 result.Append("Memory size of a Double (bytes): ")
 result.AppendLine(sizeOfDouble)
 result.Append("Maximum value of a Double: ")
 result.AppendLine(maxDouble)

 MsgBox(result.ToString())

The MaxValue constant provided by each type provides the largest possible value for variables of that type. The
Marshal.SizeOf() function returns the unmanaged size, in bytes, of any class, which in this case is the class returned by the
GetType() method of our Single and Double variables. Figure 6-5 shows the results.

If you're working with large arrays of numbers and memory issues are of concern, the Single type might be appropriate.
If you need greater precision, and using twice the memory per occurrence is not a problem, Doubles might work best.

Figure 6-5. Singles and Doubles require a different amount of memory and hold
different-sized numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many mathematical functions, such as those provided by the Math class, operate on Doubles only. Generally this is not a
problem, as conversion between Single and Double types in memory is efficient. On the other hand, the GDI+ Graphics
object operates on Single values, so it's best to work with these where possible when creating graphics. For example,
many of the graphics functions and methods accept PointF objects passed as parameters, and a PointF is comprised of a
pair of Single numbers, X and Y.

See Also

The "PointF" topic in Visual Studio Help describes how Singles are used for many graphics methods.

The "Math Class" subject lists many useful functions that operate on Doubles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.6. Using Decimal Variables for Maximum Precision

Problem

You want to manipulate numbers with many significant digits of accuracy.

Solution

Sample code folder: Chapter 06\SingleDouble

The Decimal number type holds numbers with up to 29 digits of accuracy and is well suited to tasks in which rounding
errors are to be kept to a minimum, as in financial calculations.

Discussion

For really big numbers where you want many digits of accuracy, the Decimal number type is ideal. Numbers of this type
are stored in 16 bytes (128 bits) of memory each, with up to 29 significant digits. These numbers can be positive or
negative, and a decimal point can be included anywhere within the number. The following code demonstrates Decimal
variables in action:

 Dim result As New System.Text.StringBuilder
 Dim maxDecimal As Decimal = Decimal.MaxValue
 Dim sizeOfDecimal As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxDecimal.GetType)

 result.Append("Memory size of a Decimal (bytes): ")
 result.AppendLine(sizeOfDecimal)
 result.Append("Maximum value of a Decimal: ")
 result.AppendLine(maxDecimal)
 result.Append("Divided by one million: ")
 result.AppendLine(maxDecimal / 1000000D)
 result.Append("1D / 3D: ")
 result.AppendLine(1D / 3D)

 MsgBox(result.ToString())

Figure 6-6 shows the display created by this code. The Marshal.SizeOf() function determines the number of bytes of
memory the Decimal variable uses, and the MaxValue constant gets the largest possible numerical value it can hold. To
demonstrate how the decimal point can be anywhere in the number, the maximum value is divided by one million. The
decimal point shifts six digits in from the right as a result. To demonstrate that the math operators are overloaded to
accurately take advantage of the Decimal's full precision, the quantity 1/3 is calculated and displayed in the last line of
the message box. An uppercase "D" is appended to the constants 1 and 3 in the code to tell the compiler that they are
Decimal values.

Figure 6-6. Using the Decimal number type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

See "Decimal data type" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.7. Converting Between Number Types

Problem

You want to explicitly convert numeric variables and calculation results between the various number types.

Solution

Sample code folder: Chapter 06\ConvertNumber

It's always a good idea to make sure your project's Option Explicit and Option Strict settings are on, but this often forces you
to apply explicit conversions when working with more than one type of numeric variable. The solution is to apply one of
the many standalone conversion functions provided by Visual Basic or to use one of the many methods of the Convert
object.

Discussion

The following code sample demonstrates a simple conversion of Double numeric values to Byte values, using both the
standalone CByte() function and the Convert.ToByte() method. Some people prefer to use the Convert object exclusively,
which may be easier to remember because all the conversion methods have names beginning with "To". Others prefer
the standalone conversion functions, because many of these have been around in previous versions of Visual Basic for
some time now. We look at both approaches here:

 Dim result As New System.Text.StringBuilder
 Dim b1 As Byte = CByte(3.1416) + CByte(314.16 / 2)
 Dim b2 As Byte = Convert.ToByte(3.1416) + _
 Convert.ToByte(314.16 / 2)

 result.AppendLine("Example conversions to Byte…")
 result.AppendLine()

 result.AppendLine("Dim b1 As Byte = CByte(3.1416) + " & _
 "CByte(314.16 / 2)")
 result.Append("b1 = ")
 result.AppendLine(b1.ToString)
 result.AppendLine()

 result.Append("Dim b2 As Byte = Convert.ToByte(3.1416) + ")
 result.AppendLine("Convert.ToByte(314.16 / 2)")
 result.Append("b2 = ")
 result.AppendLine(b2.ToString)
 result.AppendLine()

 result.AppendLine("Numeric Conversions…")
 result.AppendLine()
 result.AppendLine("CByte(expression)")
 result.AppendLine("CSByte(expression)")
 result.AppendLine("CShort(expression)")
 result.AppendLine("CUShort(expression)")
 result.AppendLine("CInt(expression)")
 result.AppendLine("CUInt(expression)")
 result.AppendLine("CLng(expression)")
 result.AppendLine("CULng(expression)")
 result.AppendLine("CSng(expression)")
 result.AppendLine("CDbl(expression)")
 result.AppendLine("CDec(expression)")

 MsgBox(result.ToString())

The Double value 314.16 will not convert to a Byte because it is out of range for byte values. Attempting this conversion
causes an exception. However, dividing this value by 2 results in a Double value that does convert. The point is that the
decimal digits don't cause a problem when converting to a Byte (they are simply rounded to the nearest byte value), but
the number must be in the range 0 to 255 to allow the conversion.

Figure 6-7 shows the results of the above demonstration code in action. A sample conversion is shown using both
techniques, and a list of the standalone conversion functions is displayed for easy review.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

techniques, and a list of the standalone conversion functions is displayed for easy review.

Figure 6-7. Different ways of converting between number types

The signed byte and unsigned integer data types are new with this latest version of Visual Basic, and so are the
functions to convert values to them.

See Also

See "conversion functions" in Visual Studio Help for more information on these functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.8. Rounding Numbers Accurately

Problem

You need to round off double-precision numbers in a standard, accurate way.

Solution

Sample code folder: Chapter 06\Rounding

Use the Math.Round() function to round numbers to the desired precision.

Discussion

The Math.Round() function is overloaded to accept several different sets of parameters. If you pass just a Double or Decimal
number to it, the number is rounded to the nearest whole number. By passing a second parameter, you control the
number of digits after the decimal point where the rounding is to occur. For example, the following code rounds off the
value of pi (π) using zero through five as the number of digits for the rounding:

 Dim outputFormat As String = _
 "Rounding value: {0} Results: {1}"
 Dim oneTry As String
 Dim result As New System.Text.StringBuilder
 Dim piRounded As Double
 Dim digits As Integer

 For digits = 0 To 5
 piRounded = Math.Round(Math.PI, digits)
 oneTry = String.Format(outputFormat, digits, piRounded)
 result.AppendLine(oneTry)
 Next digits

 MsgBox(result.ToString())

Figure 6-8 shows the results of these rounding actions.

Figure 6-8. Using the Math.Round() function to round numbers accurately

A third optional parameter lets you fine-tune the way a number is rounded when the number is exactly halfway
between two values at the point where the number is to be rounded. The choices are to have the number rounded to an
even digit, or away from zero. The default is to round to an even digit.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See "Math.Round" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.9. Declaring Loop Counters Within Loops

Problem

You want to create a variable to hold the loop counter in a For…Next loop, but you want the variable to exist only within
the body of the loop.

Solution

Declare the variable type directly using the optional syntax for doing this in the For… Next loop command.

Discussion

If you include As Type immediately after the variable name used in the For…Next statement, Visual Basic 2005 creates this
variable on the spot, and its scope is limited to the body of the For…Next loop. If you declare the variable elsewhere,
don't add the As Type clause in the loop statement; doing so triggers an exception.

This sample code creates nested For…Next loops, with the outer loop counter variable declared outside the loop and the
inner loop variable declared just for the body of the loop. Study the lines starting with For to see the difference:

 Dim formatString As String = "outerLoop: {0} innerLoop: {1}
 "Dim result As String = ""
 Dim outerLoop As Integer

 For outerLoop = 1 To 2
 For innerLoop As Integer = 1 To 2
 result &= String.Format(formatString, _
 outerLoop, innerLoop)
 result &= vbNewLine
 Next innerLoop
 Next outerLoop

 MsgBox(result)

These two loops are nearly the same. Their counter variable values are displayed each time through the inner loop, as
shown in Figure 6-9. The variable outerLoop can be referenced past the end of the sample lines of code, but referencing
innerLoop will causes an exception. innerLoop exists only within the For…Next loop where it is declared.

Figure 6-9. The results of our nested loops using two different counter declaration
methods

See Also

See "For…Next statements" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.10. Converting Between Radians and Degrees

Problem

You want a simple, consistent, easy-to-read, and easy-to-use way to convert angles between radians and degrees.

Solution

Define two constants, RadPerDeg and DegPerRad, and multiply by degrees or radians, respectively, to convert to the other
units.

Discussion

You can create standalone functions to perform these conversions, but these constants are straightforward definitions,
and your code will compile to inline conversions that are compact and fast. The following code defines the constants and
uses them to convert a few sample angular values. It's generally best to define your constants at the top of your
source-code files or in a global module, but here they are shown close to the code where they are used for easy
reference:

 Const RadPerDeg As Double = Math.PI / 180#
 Const DegPerRad As Double = 180# / Math.PI

 Dim radians As Double
 Dim degrees As Double

 radians = Math.PI / 4#
 degrees = radians * DegPerRad
 radians = degrees * RadPerDeg

 MsgBox("Radians: " & radians.ToString & _
 vbNewLine & "Degrees: " & degrees.ToString)

This code rather redundantly converts radians to degrees and then immediately converts degrees right back to radians.
You wouldn't want to do this normally, but it shows both conversions side by side for easy comparison.

Figure 6-10 shows the same angle (45 degrees, or π/4 radians) expressed in the calculated units after conversion using
the constants.

Figure 6-10. Using the RadPerDeg and DegPerRad constants to convert between
degrees and radians

Both constants are defined using a division calculation. The Visual Basic 2005 compiler converts this math statement to
a single constant by doing the division at compile time rather than at runtime, so there is no inefficiency in expressing
the constants this way. The value of π is defined as a constant in the Math object with full double-precision accuracy, so
the constants defined here are also accurate with Double values.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See "Derived Math Functions" in Visual Studio Help for additional derived functions, many of which assume radian units.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.11. Limiting Angles to a Range

Problem

You want to shift intermediate angular calculation results into a range such as 0° to 360°, -180° to 180°, 0 to 2π
radians, or π to π radians.

Solution

Sample code folder: Chapter 06\AngleRange

Create a function that handles all these range conversions efficiently.

Discussion

Some scientific calculations produce angular results that are beyond normal ranges, requiring adjustment to bring them
into the standard range of values. For example, in astronomical calculations a variety of polynomials are used to
compute highly accurate positions of the planets and stars, but the polynomials often return angles representing many
revolutions of the various orbs. You might say the angles are astronomical in size before they are adjusted into a
normalized range such as 0° to 360°. The following function handles these range adjustments efficiently, bringing the
values back down to earth:

 Public Function FixRange(ByVal origValue As Double, _
 ByVal rangeMin As Double, ByVal rangeMax As Double) _
 As Double
 ' ----- Adjust a value to within a specified range.
 ' Use the range size as the adjustment factor.
 Dim shiftedValue As Double
 Dim delta As Double

 shiftedValue = origValue - rangeMin
 delta = rangeMax - rangeMin
 Return (((shiftedValue
Mod delta) + delta) Mod delta) + _
 rangeMin
 End Function

The FixRange() function accepts an out-of-range angular value expressed in either degrees or radians (or any range-
limited system), followed by the minimum and maximum limits of the desired normalized range. All three parameters
must use the same measurement system, such as radians, for the results to make sense.

The function uses a double application of the Mod operator plus some additions and subtractions to bring the value into
the desired range. This calculation is more straightforward and efficient than adding or subtracting values in a loop until
the value is brought into range, which is the technique sometimes shown in astronomical calculation books.

The following code demonstrates the use of the Range() function on a variety of positive and negative angular values as
they are brought into a number of desired ranges:

 Dim result As New System.Text.StringBuilder
 Dim formatDegrees As String = _
 "Degrees: {0} Range: {1},{2} Value: {3}"
 Dim formatRadians As String = _
 "Radians: {0} Range: {1},{2} Value: {3}"
 Dim degrees As Double
 Dim radians As Double
 Dim ranged As Double

 ' ----- Degrees over the range.
 degrees = 367.75
 ranged = FixRange(degrees, 0, 360)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, 0, 360, ranged))

 ' ----- Degress under the range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Degress under the range.
 degrees = -97.5
 ranged = FixRange(degrees, 0, 360)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, 0, 360, ranged))

 ' ----- Degrees in range.
 degrees = -97.5
 ranged = FixRange(degrees, -180, 180)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, -180, 180, ranged))

 ' ----- Radians over the range.
 radians = Math.PI * 3.33
 ranged = FixRange(radians, -Math.PI, Math.PI)
 result.AppendLine(String.Format(formatRadians, _
 radians, -Math.PI, Math.PI, ranged))

 MsgBox(result.ToString())

Figure 6-11 shows the results produced by this sample code.

Figure 6-11. Using the Range() function to normalize angles in degrees or radians

See Also

Search for information on the Mod operator in Visual Studio Help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.12. Creating Double-Precision Point Variables

Problem

The PointF structure used in many graphics and other methods is defined to hold single-precision X and Y values, but you
need greater precision.

Solution

Sample code folder: Chapter 06\DoublePoint

Create your own Point2D class with double-precision X and Y values.

Discussion

The following simple class provides a blueprint for creating Point2D objects containing double-precision X and Y values:

 Public Class Point2D
 Public X As Double
 Public Y As Double

 Public Sub New(ByVal xPoint As Double, _
 ByVal yPoint As Double)
 Me.X = xPoint
 Me.Y = yPoint
 End Sub

 Public Overrides Function
Tostring() As String
 Return "{X=" & X & ",Y=" & Y & "}"
 End Function
 End Class

As shown in the sample class code, the ToString() function overrides the default ToString() and returns a string formatted in
a way that's similar to the PointF class in the .NET Framework.

The following code demonstrates the creation of both the PointF and new Point2D objects. Both types of objects have the
same "look and feel" in that they allow access directly to the X and Y values, they both can be populated with a pair of X,
Y values at the moment of creation, and they both return similar strings via their respective ToString() functions:

 Dim result As New System.Text.StringBuilder

 ' ----- Original PointF version.
 Dim singlePoint As New PointF(1 / 17, Math.PI)
 result.AppendLine("PointF: " & singlePoint.ToString()
 result.AppendLine("X: " & singlePoint.X)
 result.AppendLine()

 ' ----- New Point2D version.
 Dim doublePoint As New Point2D(1 / 17, Math.PI)
 result.AppendLine("Point2D: " & doublePoint.ToString())
 result.AppendLine("X: " & doublePoint.X)
 result.AppendLine()

 MsgBox(result.ToString())

Figure 6-12 shows the results displayed by the message box in this sample code.

Figure 6-12. Point2D objects have double the precision of PointF objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

See "Graphics" in Visual Studio Help for more information about the use of two-dimensional points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.13. Converting Between Rectangular and Polar Coordinates

Problem

You want to convert between two-dimensional coordinates expressed in either rectangular or polar notation.

Solution

Sample code folder: Chapter 06\ConvertPolar

Create two functions for the two conversions: ToPolar() and ToRectangular().

Discussion

The PointF structure provides a natural way to handle two-dimensional coordinates because each X, Y pair is handled as a
single unit. A straightforward way to handle conversions between coordinates expressed in either rectangular (X, Y) or
polar (radius, radians) notation is to simply pass and return PointF objects. This requires you, the programmer, to keep
track of the current notation of each PointF object, but this is generally easy to do. Here are the two functions for making
the conversions:

 Public Function ToPolar(ByVal sourcePoint As PointF) _
 As PointF
 ' ----- Convert
rectangular coordinates to polar.
 Dim magnitude As Single
 Dim radians As Single

 magnitude = CSng(Math.Sqrt(sourcePoint.X ^ 2 + _
 sourcePoint.Y ^ 2))
 radians = CSng(Math.Atan2(sourcePoint.Y, sourcePoint.X))
 Return New PointF(magnitude, radians)
 End Function

 Public Function ToRectangular(ByVal sourcePoint As PointF) _
 As PointF
 ' ----- Convert polar coordinates to rectangular.
 Dim X As Single
 Dim Y As Single

 X = CSng(sourcePoint.X * Math.Cos(sourcePoint.Y))
 Y = CSng(sourcePoint.X * Math.Sin(sourcePoint.Y))
 Return New PointF(X, Y)
 End Function

Both functions assume angles will be expressed in radians, which is consistent with the way angles are expressed in
Visual Basic. You can convert angles to and from degrees using the constants presented in Recipe 6.10.

The following block of code demonstrates the use of the ToPolar() and ToRectangular() functions:

 Dim result As New System.Text.StringBuilder
 Dim pointA As PointF
 Dim pointB As PointF
 Dim pointC As PointF

 pointA = New PointF(3, 4)
 pointB = ToPolar(pointA)
 pointC = ToRectangular(pointB)

 result.AppendLine("Rectangular: " & pointA.ToString())
 result.AppendLine("Polar: " & pointB.ToString())
 result.AppendLine("Rectangular: " & pointC.ToString())
 MsgBox(result.ToString())

The ToString() function presents the X and Y values of the PointF data using "X=" and "Y=" labels, which can be misleading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ToString() function presents the X and Y values of the PointF data using "X=" and "Y=" labels, which can be misleading
when the PointF is holding a coordinate in polar mode. Be sure to keep track of the state of the data as you work with it.

Figure 6-13 shows the formatted string results of the ToRectangular() and ToPolar() functions in action.

Figure 6-13. Rectangular and polar two-dimensional coordinate conversions using
PointF variables

See Also

Searching for " polar rectangular" on the Web will lead you to a variety of explanations and learning materials about
this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.14. Creating Three-Dimensional Variables

Problem

You want to work with three-dimensional coordinates as single entities.

Solution

Sample code folder: Chapter 06\ThreePoint

Create a Point3D class that works like the PointF class except that it contains a Z property in addition to X and Y.

Discussion

The following class definition is similar to the Point2D class presented in Recipe 6.12:

 Public Class Point3D
 Public X As Double
 Public Y As Double
 Public Z As Double

 Public Sub
New(ByVal xPoint As Double, _
 ByVal yPoint As Double, ByVal zPoint As Double)
 Me.X = xPoint
 Me.Y = yPoint
 Me.Z = zPoint
 End Sub

 Public Overrides Function Tostring() As String
 Return "{X=" & X & ",Y=" & Y & ",Z=" & Z & "}"
 End Function
 End Class

The most important modification is the addition of a public Z value for the third dimension. As presented here, the X, Y,
and Z properties are all Double precision, but you can easily redefine these to Single if that provides sufficient precision for
your calculations, and if you want to save memory when you create large arrays of this data type.

The following code demonstrates the use of some Point3D objects. Notice how the New() function lets you create a Point3D
variable with nonzero X, Y, and Z values:

 Dim result As New System.Text.StringBuilder
 Dim distance As Double
 Dim point1 As Point3D
 Dim point2 As Point3D
 Dim deltaX As Double

 Dim deltaY As Double
 Dim deltaZ As Double

 point1 = New Point3D(3, 4, 5)
 point2 = New Point3D(7, 2, 3)
 deltaX = point1.X - point2.X
 deltaY = point1.Y - point2.Y
 deltaZ = point1.Z - point2.Z
 distance = Math.Sqrt(deltaX ^ 2 + deltaY ^ 2 + deltaZ ^ 2)

 result.AppendLine("3D Point 1: " & point1.ToString())
 result.AppendLine("3D Point 2: " & point2.ToString())
 result.AppendLine("Distance: " & distance.ToString())

 MsgBox(result.ToString())

Figure 6-14 shows the results of calculating the distance in space between these two coordinates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-14 shows the results of calculating the distance in space between these two coordinates.

Figure 6-14. Manipulating three-dimensional coordinates with a Point3D class

See Also

Search for "basic 3D math" on the Web for a variety of explanations and further information about this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.15. Converting Between Rectangular, Spherical, and
Cylindrical Coordinates

Problem

You need to convert three-dimensional coordinates between rectangular, spherical, and cylindrical notation.

Solution

Sample code folder: Chapter 06\Convert3D

Create a set of six functions to convert Point3D variables to and from each coordinate notation.

Discussion

The following six functions convert from any one of the three types of three-dimensional coordinates to any of the
others. All these functions accept a Point3D argument and return a Point3D value. It is up to you to keep track of the
current type of coordinate notation in each Point3D variable. Note that in all cases the Point3D value passed in to any of
these functions is not altered; a new Point3D instance is returned instead. Here are the six functions:

 Public Function RectToCylinder(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert
rectangular 3D coordinates to
 ' cylindrical coordinates.
 Dim rho As Double
 Dim theta As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Y ^ 2)
 theta = Math.Atan2(pointA.Y, pointA.X)
 Return New Point3D(rho, theta, pointA.Z)
 End Function

 Public Function CylinderToRect(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert cylindrical coordinates to
 '
rectangular 3D coordinates.
 Dim x As Double
 Dim y As Double

 x = pointA.X * Math.Cos(pointA.Y)
 y = pointA.X * Math.Sin(pointA.Y)
 Return New Point3D(x, y, pointA.Z)
 End Function

 Public Function RectToSphere(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert rectangular 3D coordinates to
 '
spherical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim phi As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Y ^ 2 + _
 pointA.Z ^ 2)
 theta = Math.Atan2(pointA.Y, pointA.X)
 phi = Math.Acos(pointA.Z / Math.Sqrt(_
 pointA.X ^ 2 + pointA.Y ^ 2 + pointA.Z ^ 2))
 Return New Point3D(rho, theta, phi)
 End Function

 Public Function SphereToRect(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert spherical coordinates to
 ' rectangular 3D coordinates.
 Dim x As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim x As Double
 Dim y As Double
 Dim z As Double

 x = pointA.X * Math.Cos(pointA.Y) * Math.Sin(pointA.Z)
 y = pointA.X * Math.Sin(pointA.Y) * Math.Sin(pointA.Z)
 z = pointA.X * Math.Cos(pointA.Z)
 Return New Point3D(x, y, z)
 End Function

 Public Function CylinderToSphere(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert cylindrical
coordinates to
 '
spherical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim phi As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Z ^ 2)
 theta = pointA.Y
 phi = Math.Acos(pointA.Z / _
 Math.Sqrt(pointA.X ^ 2 + pointA.Z ^ 2))
 Return New Point3D(rho, theta, phi)
 End Function

 Public Function SphereToCylinder(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert spherical coordinates to
 ' cylindrical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim z As Double

 rho = pointA.X * Math.Sin(pointA.Z)
 theta = pointA.Y
 z = pointA.X * Math.Cos(pointA.Z)
 Return New Point3D(rho, theta, z)
 End Function

The following code creates several Point3D variables using names that indicate the types of coordinates they contain. For
example, pointCyl is a Point3D variable containing three-dimensional cylindrical coordinates. The various conversion
functions are used to populate the variables, and the results are shown in Figure 6-15:

 Dim result As New System.Text.StringBuilder
 Dim pointRec As New Point3D(3, 4, 5)
 Dim pointCyl As Point3D = RectToCylinder(pointRec)
 Dim pointSph As Point3D = RectToSphere(pointRec)
 Dim pointRecToCyl As Point3D = RectToCylinder(pointRec)
 Dim pointRecToSph As Point3D = RectToSphere(pointRec)
 Dim pointCylToRec As Point3D = CylinderToRect(pointCyl)
 Dim pointCylToSph As Point3D = CylinderToSphere(pointCyl)
 Dim pointSphToRec As Point3D = SphereToRect(pointSph)
 Dim pointSphToCyl As Point3D = SphereToCylinder(pointSph)

 result.AppendLine("Rec: " & pointRec.ToString())
 result.AppendLine("Cyl: " & pointCyl.ToString())
 result.AppendLine("Sph: " & pointSph.ToString())
 result.AppendLine()

 result.AppendLine("Rec to Cyl: " & pointRecToCyl.ToString())
 result.AppendLine("Rec to Sph: " & pointRecToSph.ToString())
 result.AppendLine("Cyl to Rec: " & pointCylToRec.ToString())
 result.AppendLine("Cyl to Sph: " & pointCylToSph.ToString())
 result.AppendLine("Sph to Rec: " & pointSphToRec.ToString())
 result.AppendLine("Sph to Cyl: " & pointSphToCyl.ToString())

 MsgBox(result.ToString())

Figure 6-15. Converting Point3D variables between three different types of spatial
coordinates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

coordinates

See Also

Search for " rectangular cylindrical spherical" on the Web for a variety of explanations and further information about
this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.16. Working with Complex Numbers

Problem

You want an easy way to calculate with complex numbers.

Solution

Sample code folder: Chapter 06\ComplexNumbers

Create a ComplexNumber structure. Overload the standard mathematical operators so that using complex number
variables is easy and natural.

Discussion

This recipe provides a great way to see how overloading standard operators can enhance the usability of your classes
and structures. In this case, we've created a ComplexNumber structure. Structures are similar to classes, except that they
exist as value types rather than reference types. This allows complex number instances to act the same as other simple
variables, such as standard numerical variables.

The following code defines the ComplexNumber number structure. Place this code in its own file named ComplexNumber.vb
for easy inclusion in any application that requires complex numbers:

 Structure ComplexNumber
 Public Real As Double
 Public Imaginary As Double

 Public Sub New(ByVal realPart As Double, _
 ByVal imaginaryPart As Double)
 Me.Real = realPart
 Me.Imaginary = imaginaryPart
 End Sub

 Public Sub New(ByVal sourceNumber As ComplexNumber)
 Me.Real = sourceNumber.Real
 Me.Imaginary = sourceNumber.Imaginary
 End Sub

 Public Overrides Function ToString() As String
 Return Real & "+" & Imaginary & "i"
 End Function

 Public Shared Operator +(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Add two
complex numbers together.
 Return New ComplexNumber(a.Real + b.Real, _
 a.Imaginary + b.Imaginary)
 End Operator

 Public Shared Operator -(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Subtract one complex number from another.
 Return New ComplexNumber(a.Real - b.Real, _
 a.Imaginary - b.Imaginary)
 End Operator

 Public Shared Operator *(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Multiply two complex numbers together.
 Return New ComplexNumber(a.Real * b.Real - _
 a.Imaginary * b.Imaginary, _
 a.Real * b.Imaginary + a.Imaginary * b.Real)
 End Operator

 Public Shared Operator /(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Divide one complex number by another.
 Return a * Reciprocal(b)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return a * Reciprocal(b)
 End Operator

 Public Shared Function Reciprocal(_
 ByVal a As ComplexNumber) As ComplexNumber
 ' ----- Calculate the reciprocal of a complex number;
 ' that is, the 1/x calculation.
 Dim divisor As Double

 ' ----- Check for divide-by-zero possibility.
 divisor = a.Real * a.Real + a.Imaginary * a.Imaginary
 If (divisor = 0.0#) Then Throw New DivideByZeroException

 ' ----- Perform the operation.
 Return New ComplexNumber(a.Real / divisor, _
 -a.Imaginary / divisor)
 End Function
 End Structure

The overloaded New() function lets you instantiate a ComplexNumber number using either a pair of numbers (the real and
imaginary parts) or another ComplexNumber number.

The following code demonstrates how complex numbers are created and how standard operators allow mathematical
operations such as addition and subtraction in a natural way. The overloaded + operator also impacts the +=
assignment operator. The last example in the code demonstrates this by adding complex number b to complex number
a using the new assignment-operator syntax:

 Dim result As New System.Text.StringBuilder
 Dim a As ComplexNumber
 Dim b As ComplexNumber
 Dim c As ComplexNumber

 a = New ComplexNumber(3, 4)
 b = New ComplexNumber(5, -2)
 c = a + b

 result.AppendLine("
Complex Numbers")
 result.AppendLine("a = " & a.ToString())
 result.AppendLine("b = " & b.ToString())

 ' ----- Addition.
 c = a + b
 result.AppendLine("a + b = " & c.ToString())

 ' ----- Subtraction.
 c = a - b
 result.AppendLine("a - b = " & c.ToString())

 ' ----- Multiplication.
 c = a * b
 result.AppendLine("a * b = " & c.ToString())

 ' ----- Division.
 c = a / b
 result.AppendLine("a / b = " & c.ToString())

 ' ----- Addition as assignment.
 a += b
 result.AppendLine("a += b … a = " & a.ToString())

 MsgBox(result.ToString())

The ToString() function is overridden in the ComplexNumber structure to format the real and imaginary parts. Figure 6-16
shows the output from the sample code.

Figure 6-16. Working with complex numbers in VB 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Search for " complex numbers" on the Web for more information on this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.17. Solving Right Triangles

Problem

You want to calculate all the remaining sides and angles of a right triangle given two known parts of the triangle.

Solution

Sample code folder: Chapter 06\RightTriangle

Create a RightTriangle class that calculates all parts of a right triangle given any two of its parts.

Discussion

The parts of a right triangle we are concerned with are the two sides A and B adjacent to the right angle, the
hypotenuse (the side opposite the right angle), and the two angles formed where the hypotenuse meets sides A and B.
If you know any two of these values, all the rest can be determined.

There are many ways to set up the RightTriangle class, and the technique chosen here is not the only reasonable approach
to the problem. We chose to use the initializing function New() to define the triangle by passing in nonzero numbers for
the known parts and a value of zero for the unknowns. The IntelliSense pop-up prompt makes it easy to remember
what parts of the triangle are passed in at each parameter position. It's as easy as filling in the blanks. The code for the
RightTriangle class is as follows:

 Public Class RightTriangle
 Private StoredSideA As Double
 Private StoredSideB As Double
 Private StoredHypotenuse As Double
 Private StoredAngleA As Double
 Private StoredAngleB As Double

 Public Sub New(ByVal hypotenuse As Double, _
 ByVal sideA As Double, ByVal sideB As Double, _
 ByVal angleA As Double, ByVal angleB As Double)
 Me.StoredHypotenuse = hypotenuse
 Me.StoredSideA = sideA
 Me.StoredSideB = sideB
 Me.StoredAngleA = angleA
 Me.StoredAngleB = angleB
 Me.Resolve()
 End Sub

 Public ReadOnly Property SideA() As Double
 Get
 Return StoredSideA
 End Get
 End Property

 Public ReadOnly Property SideB() As Double
 Get
 Return StoredSideB
 End Get
 End Property

 Public ReadOnly Property AngleA() As Double
 Get
 Return StoredAngleA
 End Get
 End Property

 Public ReadOnly Property AngleB() As Double
 Get
 Return StoredAngleB
 End Get
 End Property

 Public ReadOnly Property Hypotenuse() As Double
 Get
 Return StoredHypotenuse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return StoredHypotenuse
 End Get
 End Property

 Private Sub Resolve()
 ' ----- Figure out the missing (zero) parts of the
 ' triangle. Start with the angles.
 If (StoredAngleA = 0.0#) And _
 (StoredAngleB <> 0.0#) Then _
 StoredAngleA = Math.PI / 2 - StoredAngleB
 If (StoredAngleB = 0.0#) And _
 (StoredAngleA <> 0.0#) Then _
 StoredAngleB = Math.PI / 2 - StoredAngleA
 If (StoredAngleA <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideB = StoredHypotenuse * _
 Math.Cos(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideA = StoredHypotenuse * _
 Math.Cos(StoredAngleB)
 If (StoredAngleA <> 0.0#) And _
 (StoredSideA <> 0.0#) Then _
 StoredHypotenuse = StoredSideA / _
 Math.Sin(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = StoredSideB / _
 Math.Sin(StoredAngleB)
 If (StoredAngleA <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = StoredSideB / _
 Math.Cos(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredSideA <> 0.0#) Then _
 StoredHypotenuse = StoredSideA / _
 Math.Cos(StoredAngleB)

 ' ----- Now calculate the sides.
 If (StoredSideA <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = Math.Sqrt(StoredSideA ^ 2 + _
 StoredSideB ^ 2)
 If (StoredSideA <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideB = Math.Sqrt(StoredHypotenuse ^ 2 - _
 StoredSideA ^ 2)
 If (StoredSideB <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideA = Math.Sqrt(StoredHypotenuse ^ 2 - _
 StoredSideB ^ 2)
 If (StoredAngleA = 0.0#) Then StoredAngleA = _
 Math.Asin(StoredSideA / StoredHypotenuse)
 If (StoredAngleB = 0.0#) Then StoredAngleB = _
 Math.Asin(StoredSideB / StoredHypotenuse)
 End Sub

 Public Overrides Function Tostring() As String
 ' ----- Display all values of the triangle.
 Dim result As New System.Text.StringBuilder

 result.AppendLine("
Right Triangle:")
 result.AppendLine("Hypotenuse=" & _
 StoredHypotenuse.ToString)
 result.AppendLine("Side A=" & StoredSideA.ToString)
 result.AppendLine("Side B=" & StoredSideB.ToString)
 result.AppendLine("Angle A=" & StoredAngleA.ToString)
 result.Append("Angle B=" & StoredAngleB.ToString)
 Return result.ToString()
 End Function
 End Class

The core calculations of this class are performed in the private Resolve() function. There, the various triangle parts are
tested to see if they are nonzero, and the appropriate calculations are performed to start filling in the blanks for the
unknowns. Resolve() is called just once, at the moment when the RightTriangle object is instantiated. All the parts of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unknowns. Resolve() is called just once, at the moment when the RightTriangle object is instantiated. All the parts of the
right triangle are later returned as required via read-only properties.

Visual Basic internally always assumes angles to be in radians, even though degrees are the most commonly used units
for angles among the general population. It's tempting to use degrees in user-defined classes and procedures, but for
consistency this book will assume radians throughout.

The following sample code creates an instance of the RightTriangle object and uses it to calculate a typical right triangle.
In this example, the lengths of sides A and B are known. All other parts of the triangle are passed as zero when the
RightTriangle is instantiated:

 Dim testTriangle As RightTriangle
 Dim area As Double

 testTriangle = New RightTriangle(0, 3, 4, 0, 0)
 area = (testTriangle.SideA * testTriangle.SideB) / 2
 MsgBox(testTriangle.Tostring & vbNewLine & _
 "Area = " & area.ToString)

Figure 6-17 shows the results of calculating the missing parts of a right triangle with sides A and B of lengths 3 and 4.

Figure 6-17. Using the RightTriangle class to calculate unknown parts of a right
triangle

See Also

Search for "right triangle" on the Web for more information about this subject (see, for example,
http://mathworld.wolfram.com/RightTriangle.html).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.18. Solving Any Triangle

Problem

You want to solve any triangle given any three known parts. Examples might include the lengths of any two sides and the measure of the angle
between them, or the measures of two angles and the length of the side between them.

Solution

Sample code folder: Chapter 06\AnyTriangle

Create a triangle class to handle the details of calculating all the remaining parts of a triangle given any combination of three of its parts. Also
create a separate utility function to calculate any triangle's area given the lengths of its three sides.

Discussion

The triangle class, presented below, allows the remaining elements of any triangle to be calculated given the measures of any three of its sides
and angles. The only combination that won't work, of course, is when three angles are given, as these pin down the shape of a triangle but not
its size. Here is the code for the TRiangle class:

 Imports System.Math

 Public Class Triangle
 Private StoredSideA As Double
 Private StoredSideB As Double
 Private StoredSideC As Double
 Private StoredAngleA As Double
 Private StoredAngleB As Double
 Private StoredAngleC As Double

 ' ----- The GivenParts variable indicates which parts
 ' the user has already supplied. Uppercase letters
 ' (A, B, C) indicate sides; lowercase letters
 ' (a, b, c) are angles.
 Private GivenParts As String = ""

 Public Overrides Function ToString() As String
 ' ----- Show the details of the triangle.
 Return String.Format(_
 "SideA={0}, SideB={1}, SideC={2}, " & _
 "AngleA={3}, AngleB={4}, AngleC={5}", _
 StoredSideA, StoredSideB, StoredSideC, _
 StoredAngleA, StoredAngleB, StoredAngleC)
 End Function

 Public Property SideA() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideA Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_
 "Negative side length (A) not allowed.")
 CheckIt("A")
 StoredSideA = Value
 Resolve()
 End Set
 End Property

 Public Property SideB() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideB Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Throw New ArgumentOutOfRangeException(_
 "Negative side length (B) not allowed.")
 CheckIt("B")
 StoredSideB = Value
 Resolve()
 End Set
 End Property

 Public Property SideC() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideC Else NotYet()
 End Get
 Set(ByVal Value As Double)

 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_
 "Negative side length (C) not allowed.")
 CheckIt("C")
 StoredSideC = Value
 Resolve()
 End Set
 End Property

 Public Property AngleA() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleA Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (A) must range from 0 to PI.")
 CheckIt("a")
 StoredAngleA = Value
 Resolve()
 End Set
 End Property

 Public Property AngleB() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleB Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (B) must range from 0 to PI.")
 CheckIt("b")
 StoredAngleB = Value
 Resolve()
 End Set
 End Property

 Public Property AngleC() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleC Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (C) must range from 0 to PI.")
 CheckIt("c")
 StoredAngleC = Value
 Resolve()
 End Set
 End Property

 Private Sub CheckIt(ByVal whatToCheck As String)
 ' ----- Make sure it is OK to adjust a component.
 If (GivenParts.Length >= 3) Then Throw New Exception(_
 "Triangle is immutable once defined by three parts.")
 If (GivenParts.IndexOf(whatToCheck) >= 0) Then _
 Throw New Exception(_
 "Triangle component cannot be modified once set.")

 ' ---- Mark this part as modified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ---- Mark this part as modified.
 GivenParts &= whatToCheck
 End Sub

 Private Sub NotYet()
 ' ----- The user tried to access components before
 ' anything was calculated.
 Throw New Exception(_
 "Triangle has not yet been completely defined.")
 End Sub

 Private Sub Resolve()
 ' ----- Calculate the missing angles and sides of
 ' the triangle.
 Dim sinRatio As Double
 Dim inSort() As Char

 ' ----- Wait for the triangle to be completely defined.
 If (GivenParts.Length < 3) Then Return

 ' ----- Sort the known parts list.
 inSort = GivenParts.ToCharArray()
 Array.Sort(inSort)
 GivenParts = New String(inSort)

 ' ----- Time to resolve. In all cases, the goal is to
 ' get three known sides. Then, the ResolveABC()
 ' method can work on getting the missing angles.
 Select Case GivenParts
 Case "ABC"
 ResolveABC()
 Case "ABa"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredAngleB = Asin(StoredSideB * sinRatio)
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio

 Case "ABb"
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredAngleA = Asin(StoredSideA * sinRatio)
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "ABc"
 StoredSideC = Sqrt(StoredSideA ^ 2 + _
 StoredSideB ^ 2 - 2 * StoredSideA * _
 StoredSideB * Cos(StoredAngleC))
 Case "ACa"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredAngleC = Asin(StoredSideC * sinRatio)
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "ACb"
 StoredSideB = Sqrt(StoredSideA ^ 2 + _
 StoredSideC ^ 2 - 2 * StoredSideA * _
 StoredSideC * Cos(StoredAngleB))
 Case "ACc"
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredAngleA = Asin(StoredSideA * sinRatio)
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Aab"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideB = Sin(StoredAngleB) / sinRatio
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Aac"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideC = Sin(StoredAngleC) / sinRatio
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Abc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideB = Sin(StoredAngleB) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "BCa"
 StoredSideA = Sqrt(StoredSideB ^ 2 + _
 StoredSideC ^ 2 - 2 * StoredSideB * _
 StoredSideC * Cos(StoredAngleA))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 StoredSideC * Cos(StoredAngleA))
 Case "BCb"
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredAngleC = Asin(StoredSideC * sinRatio)
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 Case "BCc"
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredAngleB = Asin(StoredSideB * sinRatio)
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 Case "Bab"
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Bac"
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Bbc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Cab"
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Cac"
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Cbc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "abc"
 Throw New Exception("Cannot resolve " & _
 "triangle with only angles specified.")
 Case Else
 Throw New Exception(_
 "Undefined combination of triangle parts.")
 End Select
 ResolveABC()
 End Sub

 Private Sub ResolveABC()
 ' ----- All three sides are known. Calculate the angles.
 LengthCheck(StoredSideA, StoredSideB, StoredSideC)
 StoredAngleC = Acos((StoredSideA ^ 2 + _
 StoredSideB ^ 2 - StoredSideC ^ 2) / _
 (2 * StoredSideA * StoredSideB))
 StoredAngleB = Acos((StoredSideA ^ 2 + _
 StoredSideC ^ 2 - StoredSideB ^ 2) / _
 (2 * StoredSideA * StoredSideC))
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 End Sub

 Private Sub LengthCheck(ByVal A As Double, _
 ByVal B As Double, ByVal C As Double)
 ' ----- Make sure that one of the sides isn't
 ' too long for the other two.
 If (A >= B) AndAlso (A >= C) AndAlso _
 (A <= (B + C)) Then Return
 If (B >= A) AndAlso (B >= C) AndAlso _
 (B <= (A + C)) Then Return
 If (C >= A) AndAlso (C >= B) AndAlso _
 (C <= (A + B)) Then Return
 Throw New Exception(_
 "One side is too long for the others.")
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

Exceptions are thrown if the triangle "doesn't make sense." For example, if the sum of two sides is less than the length of the third, or if three
angles are given, the triangle is impossible, or at least the data is insufficient to completely define the triangle.

To find the area of any triangle, you could include a shared function within the TRiangle class, but for the sake of demonstration (and because it
can be useful in a wider variety of computational situations) we've chosen to create a triangleArea() function separate from the class. This makes it
easy to find the area of any triangle given the lengths of its three sides, whether or not you're solving triangles using the triangle

 Public Function TriangleArea(ByVal sideA As Double, _
 ByVal sideB As Double, _
 ByVal sideC As Double) As Double
 ' ----- Calculate the area of a triangle.
 Dim sumHalfSides As Double
 Dim deltaA As Double
 Dim deltaB As Double
 Dim deltaC As Double

 sumHalfSides = (sideA + sideB + sideC) / 2
 deltaA = sumHalfSides - sideA
 deltaB = sumHalfSides - sideB
 deltaC = sumHalfSides - sideC
 Return Math.Sqrt(sumHalfSides * deltaA * deltaB * deltaC)
 End Function

The following code demonstrates the use of the TRiangle class by solving for a triangle that has two sides of length 4 and 5, with a 75°; angle
between the two sides. The RadPerDeg constant (see Recipe 6.10) converts 75°to radians at compile time rather than at runtime (to be consistent
with all other angular measurements in Visual Basic 2005, radians are always assumed in all the procedures in this book that involve angles):

 Const RadPerDeg As Double = Math.PI / 180
 Dim testTriangle As New Triangle
 Dim area As Double

 ' ----- Build a triangle with sides of 4 and 5, and an
 ' angle between them of 75 degrees.
 testTriangle.SideA = 4
 testTriangle.SideB = 5
 testTriangle.AngleC = 75 * RadPerDeg

 ' ----- The triangle is already resolved. Calculate area.
 area = TriangleArea(testTriangle.SideA, _
 testTriangle.SideB, testTriangle.SideC)

 MsgBox(testTriangle.ToString & vbNewLine & _
 "Area = " & area.ToString)

A ToString() function is included in the TRiangle class to provide a default format for presenting the triangle's parts in a single string. The solved
triangle for our example is shown in Figure 6-18.

Figure 6-18. Solving a triangle with the Triangle class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.19. Determining if a String Contains a Valid Number

Problem

You want to verify that a user-entered string contains a valid number.

Solution

Use Visual Basic's IsNumeric() function to check the string.

Discussion

Visual Basic 2005 provides a function named IsNumeric() that checks the content of any string, returning a Boolean true if
the string contains a valid number representation and False if it doesn't:

 Dim result As New System.Text.StringBuilder
 Dim testString As String

 testString = "2.E3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "2.D3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "-123"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "-1 2 3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "$54.32"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 MsgBox(result.ToString())

Currency values are valid numbers, even with the currency symbol included. The IsNumeric() function expects a single
number in the string, so extra spaces, such as those shown in the next-to-last string in the example, cause IsNumeric() to
return False. If you want to determine how many valid numbers are in a string, and be able to grab them all, consider
using regular expressions instead.

Figure 6-19 shows the strings used in this example and the results returned by IsNumeric() for each.

Figure 6-19. Testing whether a string contains a valid number using IsNumeric()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.20. Converting Numbers to Integers

Problem

You want to convert numbers to integers, or perhaps truncate or round values to integer values, and you want to
understand the various ways to do this.

Solution

As always, use the best tool for the job. If you want to remove decimal parts of a number, consider using Int(), Floor(), or
the Round() function. But if you want to convert a numeric value to an Integer data type, use CInt() or Convert.ToInteger()
instead.

Discussion

The following code demonstrates differences between the CInt() and Int() functions. Once you gain a good understanding
of these two functions, you'll be well on your way to understanding similar functions such as Round(), Convert.ToInteger(),
and so on.

One important difference between CInt() and Int() is that Int() is overloaded to work with a wide variety of numeric data
types. For example, you can pass a Double, such as the value of π, to Int(), and it will return another Double value that no
longer has any post-decimal digits (i.e., it will round to a whole number). This is entirely different from converting a
number to an Integer. The Int() function works on numbers that are way out of the legal range for an Integer. Using CInt()
on similar numbers would throw an exception.

The two functions are demonstrated in the following code:

 Dim result As New System.Text.StringBuilder
 Dim number As Double

 ' ----- Positive decimal value.
 number = 3.14
 result.Append(number)
 result.Append(" CInt(): ")
 result.Append(CInt(number).ToString)
 result.Append(" Int(): ")
 result.AppendLine(Int(number).ToString)

 ' ----- Negative decimal value.
 number = -3.14
 result.Append(number)
 result.Append(" CInt(): ")
 result.Append(CInt(number).ToString)
 result.Append(" Int(): ")
 result.AppendLine(Int(number).ToString)

 ' ----- Number that won't fit in an Integer.
 number = 3000000000.0
 result.Append(number)
 result.Append(" CInt(): ")
 Try
 result.Append(CInt(number).ToString)
 Catch
 result.Append("(error)")
 End Try
 result.Append(" Int(): ")
 result.Append(Int(number).ToString)

 MsgBox(result.ToString())

There are some other functions in the Math object that provide similar functionality to Int(). For example, the Math.Floor()
and Math.Ceiling() functions also operate on numbers that might be out of the range of Integers. Floor() returns the largest
whole number less than or equal to a given number, and Ceiling() returns the smallest whole number that's greater than
or equal to a given number. See Figure 6-20.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-20. The CInt() function converts numbers to Integer data types, while
the Int() function returns whole numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.21. Calculating π to Thousands of Digits

Problem

You want to impress people by showing how quickly Visual Basic 2005 can calculate π to a thousand or more decimal places. While you're at it, you
might want to discover how to create multidigit mathematical functions using integer arrays of digits.

Solution

Sample code folder: Chapter 06\ CalculatePi

Create functions for basic mathematical operations (+, -, *, /) that operate on integer arrays of any reasonable size. Then demonstrate these functions
by calculating π to many digits using one of the standard π-calculation algorithms.

Discussion

This recipe includes a module called PiCalculator that contains the functions needed to perform multidigit math, along with one to calculate π to any
number of digits. The four main multidigit functions are named ArrayMult(), ArrayDivide(), ArrayAdd(), and ArraySub(). These are declared as
because they serve only as support routines to the FindPi() function, but you can change them to Public to experiment with them for other purposes.
Other supporting functions include ArrayZero(), which sets all "digits" in an array to zeros, and ArcTangent(), which calls the other functions to calculate the
arctangent of a multi-digit number.

The way the basic math functions work is similar to the way math is performed on paper by grade-schoolers: when two digits are added, any overflow
is added into the next pair of digits, and so on. Calculating π to 500 decimal places requires a huge number of these small repetitive calculations, but
that's what computers are really good at doing.

Here is the code to calculate π. It is based on the following calculation for π:

π/4 = (arctan 1/2)+ (arctan 1/3)

Each part of the algorithm is performed manually, including the arctangent calculation:

 Module PiCalculator
 Private NumberDigits As Integer

 Public Function FindPi(ByVal digits As Integer) As String
 ' ----- Calculate Pi to the specified number of digits,
 ' based on the formula:
 ' Pi/4 = arctan(1/2) + arctan(1/3)
 Dim result As New System.Text.StringBuilder("PI=3.")
 Dim digitIndex As Integer
 Dim divFactor As Integer

 ' ----- Build an array that will hold manual calculations.
 NumberDigits = digits + 2
 Dim targetValue(NumberDigits) As Integer
 Dim sourceValue(NumberDigits) As Integer

 ' ----
Perform the calculation.
 divFactor = 2
 ArcTangent(targetValue, sourceValue, divFactor)
 divFactor = 3
 ArcTangent(targetValue, sourceValue, divFactor)
 ArrayMult(targetValue, 4)

 ' ----- Return a string version of the calculation.
 For digitIndex = 1 To NumberDigits - 3
 result.Append(Chr(targetValue(digitIndex) + Asc("0"c)))
 Next digitIndex
 Return result.ToString
 End Function

 Private Sub ArrayMult(ByRef baseNumber() As Integer, _
 ByRef multiplier As Integer)
 ' ----- Multiply an array number by another number by hand.
 ' The product remains in the array number.
 Dim carry As Integer
 Dim position As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Multiple each base digit, from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the multiplication went past 9, carry the
 ' tens value to the next column.
 holdDigit = (baseNumber(position) * multiplier) + carry
 carry = holdDigit \ 10
 baseNumber(position) = holdDigit Mod 10
 Next position
 End Sub

Private Sub ArrayDivide(ByRef dividend() As Integer, ByRef divisor As Integer)
 ' ----- Divide an array number by another number by hand.
 ' The quotient remains in the array number.
 Dim borrow As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Process division for each digit.
 For position = 0 To NumberDigits
 ' ----- If the division can't happen directly, borrow from
 ' the previous position.
 holdDigit = dividend(position) + borrow * 10
 dividend(position) = holdDigit \ divisor
 borrow = holdDigit Mod divisor
 Next position
 End Sub

 Private Sub ArrayAdd(ByRef baseNumber() As Integer, ByRef addend() As Integer)
 ' ----- Add two array numbers together.
 ' The sum remains in the first array number.
 Dim carry As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Add each digit from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the sum goes beyond 9, carry the tens
 ' value to the next column.
 holdDigit = baseNumber(position) + addend(position) + carry
 carry = holdDigit \ 10
 baseNumber(position) = holdDigit Mod 10
 Next position
 End Sub

 Private Sub ArraySub(ByRef minuend() As Integer, ByRef subtrahend() As Integer)
 ' ----- Subtract one array number from another.
 ' The difference remains in the first array number.
 Dim borrow As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ---- Subtract the digits from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the subtraction would give a negative value
 ' for a column, we will have to borrow.
 holdDigit = minuend(position) - subtrahend(position) + 10
 borrow = holdDigit \ 10
 minuend(position) = holdDigit Mod 10
 If (borrow = 0) Then minuend(position - 1) -= 1
 Next position
 End Sub

 Private Function ArrayZero(ByRef baseNumber() As Integer) As Boolean
 ' ----- Report whether an array number is all zero.
 Dim position As Integer

 ' ----- Examine each digit.
 For position = 0 To NumberDigits
 If (baseNumber(position) <> 0) Then
 ' ----- The number is nonzero.
 Return False
 End If
 Next position

 ' ----- The number is zero.
 Return True
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

 Private Sub ArcTangent(ByRef targetValue() As Integer, _
 ByRef sourceValue() As Integer, _
 ByVal divFactor As Integer)
 ' ----- Calculate an arctangent of a fraction,
 ' 1/divFactor. This routine
performs a modified
 ' Maclaurin series to calculate the arctangent.
 ' The base formula is:
 ' arctan(x) = x - x^3/3 + x^5/5 -' x^7/7 + x^9/9 - …
 ' where -1 < x < 1 (1/divFactor in this case).
 Dim workingFactor As Integer
 Dim incremental As Integer

 ' ----- Figure out the "x" part, 1/divFactor.
 sourceValue(0) = 1
 incremental = 1
 workingFactor = divFactor
 ArrayDivide(sourceValue, workingFactor)

 ' ----- Add "x" to the total.
 ArrayAdd(targetValue, sourceValue)
 Do
 ' ----- Perform the "- (x^y)/y" part.
 ArrayMult(sourceValue, incremental)
 workingFactor = divFactor * divFactor
 ArrayDivide(sourceValue, workingFactor)
 incremental += 2
 workingFactor = incremental
 ArrayDivide(sourceValue, workingFactor)
 ArraySub(targetValue, sourceValue)

 ' ----- Perform the "+ (x^y)/y" part.
 ArrayMult(sourceValue, incremental)
 workingFactor = divFactor * divFactor
 ArrayDivide(sourceValue, workingFactor)
 incremental += 2
 workingFactor = incremental
 ArrayDivide(sourceValue, workingFactor)
 ArrayAdd(targetValue, sourceValue)
 Loop Until ArrayZero(sourceValue)
 End Sub
 End Module

To exercise these procedures, the following statement uses the FindPi() function to calculate π to 500 digits:

 MsgBox(FindPi(500))

You can change the 500 argument to obtain a different number of digits. However, even though the time required to calculate π to 500 or even 1,000
digits is fairly negligible, every time you double the count, the FindPi() function requires around four times as long to return the results. Try smaller
counts first, moving up to larger counts when you have a good feel for just how long the calculation will take on your computer.

Figure 6-21 shows the first 500 digits of π as formatted by the FindPi() function. If you prefer to format the digits differently, say in groups of 10 digits or
with occasional end-of-line characters, you might want to change FindPi() to return an array of digits. The calling code can then format the digits as
desired. The "digits" in the array have values in the range 0 to 9, and they need to be converted to ASCII digits by adding the ASCII equivalent of "0"
(zero) to their value before applying the Chr() conversion function.

Figure 6-21. Pi calculated to 500 decimal places

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

There are many places on the Web to see many digits of π and to learn of the different algorithms used for calculating π to even millions of decimal
places. See, for example, http://www.exploratorium.edu/pi/Pi10-6.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.22. Getting a Number's Prime Factors

Problem

You need to determine all prime factors of a given number, perhaps for demonstrating cryptographic algorithms or for
some other purpose.

Solution

Sample code folder: Chapter 06\PrimeFactor

Create a function called PrimeFactors() that analyzes any Long integer and returns a string listing all the number's prime
factors in a clear format.

Discussion

The algorithm used here is fairly straightforward, suitable for reasonably sized Long integers. The prime factors are
found by checking for even divisibility by numbers from 2 to the square root of the number being checked. Whenever a
factor is found, it is extracted, and the divisibility check is repeated. Tallies for the factors are converted to string
format during this process, and the string is returned when all the checks are completed:

 Private Function PrimeFactors(_
 ByVal numberToFactor As Long) As String
 ' ----- Calculate the prime factors of a starting number.
 Dim result As New System.Text.StringBuilder
 Dim testFactor As Long
 Dim workNumber As Long
 Dim factorCount As Long

 ' ----- Scan through all numbers up to
 ' Sqrt(numberToFactor).
 workNumber = numberToFactor
 testFactor = 1
 Do While (testFactor < Math.Sqrt(CType(workNumber, _
 Double)))
 testFactor += 1
 factorCount = 0
 Do While (workNumber / testFactor) = _
 (workNumber \ testFactor)
 ' ----- Found a factor.
 factorCount += 1
 workNumber \= testFactor
 Loop
 Select Case factorCount
 Case 1
 ' ----- Show a prime factor.
 result.AppendLine(testFactor)
 Case Is > 1
 ' ----- Show a prime factor as a power.
 result.Append(testFactor)
 result.Append("^")
 result.AppendLine(factorCount)
 End Select
 Loop

 ' ----- Include the final prime factor, if available.
 If (workNumber > 1) Then result.Append(workNumber)
 Return result.ToString
 End Function

Here's the code that drives the example, which finds and displays the prime factors for the number 7999848:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the code that drives the example, which finds and displays the prime factors for the number 7999848:

 Dim result As New System.Text.StringBuilder
 Dim number As Long = 7999848

 result.AppendLine("PrimeFactors(" & number & ")… ")
 result.AppendLine()
 result.Append(PrimeFactors(number))

 MsgBox(result.ToString())

Figure 6-22 shows the results of calculating that number's prime factors.

See Also

There are many good resources on the Web for learning about prime numbers and prime factors. See, for example,
http://primes.utm.edu/largest.html.

Figure 6-22. Using the PrimeFactors() function to find all the prime factors of a
number in one call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.23. Using Recursion to Calculate Factorials

Problem

You want to study a sample of Visual Basic's ability to define recursive functions, or you need a factorial function for
smaller integers.

Solution

Sample code folder: Chapter 06\Factorial

Create a Factorial() function that recursively calls itself.

Discussion

The code in this recipe does not represent the most efficient way to calculate factorials for larger integers. You'll want to
use a standard For…Next loop or similar process when working with larger numbers, simply because each recursive
function call uses up stack space and adds a little overhead. However, recursive functions can be quite useful in some
programming situations. A simple recursive function that calculates the factorial of a number is a great way to
understand recursion.

The factorial of a number N is the product of all numbers from 1 to N. For example, the factorial of 3 is calculated as 3 x
2 x 1, which results in a value of 6. The Factorial() function returns the value 1 if it is passed a value of zero; otherwise, it
returns the passed value times the factorial of the next smaller integer. Study the Select Case lines of code in the function
to see how this is accomplished:

 Public Function Factorial(ByVal number As Decimal) As Decimal
 Select Case number
 Case Is < 0
 Throw New Exception("Factorial: Bad argument")
 Case Is = 0
 Return 1
 Case Else
 Return number * Factorial(number - 1)
 End Select
 End Function

Calling the Factorial() function from inside its own code is what recursion is all about. All pending returns are literally
stacked up until the value of the passed number finally reaches zero, at which time the pending multiplications all
happen in a hurry. As a result of the way this recursion works, if you request the Factorial() of a large number, you run
the risk of running out of stack memory or of numeric over-flow. With Decimal variables, as shown in the previous code,
the largest value you can pass to the function without overflow is just 27. Of course, the factorial of 27 is a huge
number, and the answer is exact when using Decimal values. You might consider switching the algorithm to use Double
values to find approximations of even larger factorials.

The following lines demonstrate the Factorial() function by calculating and displaying the factorial of 7:

 Dim result As New System.Text.StringBuilder
 Dim number As Decimal = 7

 result.AppendLine("Factorial(" & number & ")… ")
 result.AppendLine()
 result.Append(Factorial(number))

 MsgBox(result.ToString())

Figure 6-23 shows the results of calculating the factorial of 7.

Figure 6-23. Calculating the factorial of a number with the Factorial() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-23. Calculating the factorial of a number with the Factorial() function

See Also

Search for "Factorial" on the Web to learn more about factorials (see, for example,
http://mathworld.wolfram.com/Factorial.html).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.24. Manipulating Bits with Bitwise Operators

Problem

You need to shift, mask, and perform other bitwise manipulations on integers.

Solution

Visual Basic 2005 has functions for all the major bit-manipulation techniques, and it's easy to combine these to perform
more complicated bitwise calculations as required.

Discussion

There are several operators that are most often thought of as Boolean operators, working with and returning true and
False (Boolean) values. However, these operators also accept and return integer values of various sizes, and this is
where they can be of value for bit manipulations. These bitwise operators include the following:

And

Bits are combined to 1 only if they are both 1.

Not

Bits are inverted, 0 to 1 and 1 to 0.

Xor

Bits are combined to 1 only if the two bits are not the same.

Or

Bits are combined to 1 if either bit is a 1.

<<

Bits are all shifted left a given number of bit positions.

>>

Bits are all shifted right a given number of bit positions.

The two bit-shift operators can be used as assignment operators. That is, the following two
lines of code provide identical results:

 a = a << 3
 a <<= 3

In both cases the bits in integer variable a are shifted to the left three positions. The And,
Or, Not, and Xor operators don't support assignment notation.

The following code demonstrates a sampling of these bit manipulations. You can change the program to experiment
with the various operators:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the various operators:

 Dim result As New System.Text.StringBuilder
 Dim number As Integer = 7

 result.Append(number)
 result.Append(" <<= 3 … ")
 number <<= 3
 result.AppendLine(number)
 result.Append(number)
 result.Append(" Xor 17 … ")
 number = number Xor 17
 result.AppendLine(number)

 MsgBox(result.ToString())

Figure 6-24 shows the output displayed by this sample code.

Figure 6-24. Bit manipulations with Visual Basic 2005

See Also

Search for "Logical and Bitwise Operators in Visual Basic" in Visual Studio Help to learn more about this topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.25. Storing and Retrieving Bits in a BitArray

Problem

You want to store and retrieve a lot of bits without wasting memory and without sacrificing speed of operation.

Solution

Sample code folder: Chapter 06\GetPrimes

Use a BitArray to store and access individual bits in memory efficiently.

Discussion

The BitArray object lets you access bits by indexed position, and all the details of decoding which bit position of which
byte the bit is stored in are taken care of transparently behind the scenes. A BitArray of 80 bits is actually stored in 10
bytes of memory.

To demonstrate using a BitArray, we've created a module named Eratosthenes.vb that contains code to find all prime
numbers between 2 and 8,000,000 very quickly. The 8 million bits are stored in 1 million bytes of memory, and the
individual bits are accessed using indexes in the range 0 to 8,000,000.

The Sieve of Eratosthenes (http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) works by first setting all bits to 1, or
TRue. The BitArray can be instantiated with a count and an optional second Boolean parameter that presets all bits to true
or False. In this case, true sets them all to 1. Starting with 2, each prime number, or bit that is set, clears all bits that are
exact multiples of that number. So, for instance, bit 2 is kept at TRue, but bits 4, 6, 8, and so on, are all set to False. This
marks all even numbers except for 2 as nonprime. Similarly, bit 3 is left TRue, and bits 6, 9, 12, 15, etc., are set to False
to mark all multiples of 3 as nonprime. This looping technique very quickly sets all bits in the BitArray that appear in
prime number positions to True and all other bits to False.

The Eratosthenes module contains the BitArray itself, a Sieve() method to set all the prime number bits as described
earlier, and a GetBit() function to retrieve the bit at any location, converting the bit's true or False Boolean value to a 1 or 0
integer value:

 Module Eratosthenes
 Private Const MaxNumber As Integer = 8000000
 Private PrimeStorage As New BitArray(MaxNumber, True)

 Public Sub Sieve()
 ' ----- Get all the prime numbers from 1 to MaxNumber.
 Dim index As Integer = 1
 Dim counter As Integer

 ' ----- Scan through all primes.
 Do While (index < (MaxNumber - 1))
 index += 1
 If (PrimeStorage(index) = True) Then
 ' ----- Found a prime. Set all of its multiples
 ' to non-prime.
 For counter = index * 2 To MaxNumber - 1 _
 Step index
 PrimeStorage(counter) = False
 Next counter
 End If
 Loop
 End Sub

 Public Function GetBit(ByVal index As Integer) As Integer
 ' ----- Retrieve the status of a single prime bit.
 If (PrimeStorage(index) = True) Then _
 Return 1 Else Return 0
 End Function
 End Module

The following block of code demonstrates the BitArray in action, displaying the prime numbers up to the size of the
BitArray. To prevent information overload, only the first and last few numbers in the desired range are formatted into a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BitArray. To prevent information overload, only the first and last few numbers in the desired range are formatted into a
string for display, as there are a lot of prime numbers between 0 and 8,000,000:

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim needBreak As Boolean = True
 result.AppendLine(_
 "Prime numbers using the ""Sieve of Eratosthenes""")

 ' ----- Generate the primes.
 Sieve()

 ' ----- Report each prime.
 For counter = 2 To 7999999
 If (GetBit(counter) = 1) Then
 If (counter < 50) Or (counter > 7999800) Then
 ' ----- Only show a limited number of primes.
 result.AppendLine(counter)
 ElseIf (needBreak = True) Then
 ' ----- Show that we are leaving something out.
 result.AppendLine("…")
 needBreak = False
 End If
 End If
 Next counter
 MsgBox(result.ToString())

Figure 6-25 shows the partial list of all the prime numbers as determined by the bits in the BitArray. On your system
there could be less than a second's delay during the computation and display of these prime numbers!

Figure 6-25. All the prime numbers between 0 and 8,000,000, calculated quickly
using a BitArray

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Search for "prime numbers" on the Web for more information. See also "Logical and Bitwise Operators in Visual Basic"
in the Visual Studio online help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.26. Enhancing the Random Number Generator

Problem

You want to greatly extend the cycle length of Visual Basic's pseudorandom number generator.

Solution

Sample code folder: Chapter 06\RepeatRandom

You can use the RNGCryptoServiceProvider class to generate cryptographically strong random numbers, or you can use the
technique presented here to greatly extend the cycle length of the standard pseudorandom number generator and
make it easier to use.

Discussion

The BetterRandom class presented here uses the standard Rnd() function and the Randomize() initialization method, but it
enhances them in several ways. Contrary to what some people claim, it is possible to initialize the random number
generator to a unique but repeatable sequence, but the technique is far from obvious. You have to call the Randomize()
method immediately after calling the Rnd() function, but only after passing Rnd() a negative numerical value. So, one
advantage of this BetterRandom class is the encapsulation of this technique into something that makes a lot more sense. If
you instantiate a BetterRandom object by passing any string to it, each unique string initializes the generator to a unique
but repeatable state. If you instantiate a BetterRandom object with no string, the system clock generates a unique
sequence for every system tick, which means it is always unique.

The cycle length of the generator is greatly enhanced by maintaining a table of pseudorandom Double numbers in the
normalized range 0 to 1. Rolling indexes are used to add table entries together along with the next value returned by
Rnd(), and the result is brought back into the range 0 to 1 using the Mod operator. The GetNextdouble() function forms the
core of this algorithm, as shown here:

 Public Function GetNextDouble() As Double
 ' ----- Return the next pseudorandom number as a Double.
 ' ----- Move to the next index positions.
 Index1 = (Index1 + 1) Mod TableSize
 Index2 = (Index2 + 1) Mod TableSize

 ' ----- Update the random numbers at those positions.
 RandomTable(Index1) += RandomTable(Index2) + Rnd()
 RandomTable(Index1) = RandomTable(Index1) Mod 1.0

 ' ----- Return the newest random table value.
 Return RandomTable(Index1)
 End Function

This table keeps the pseudorandom values well mixed while providing a nice flat distribution of the values with excellent
statistical results. When the Rnd() function cycles back around to its starting point, the table will be in a completely
different state, which means the cycle length of the values returned from this table will be some off-the-chart
astronomical value. It simply won't repeat in the amount of time there is in this universe to exercise the algorithm.

The table size is set to 32, but feel free to make the table larger or smaller as desired. A larger table will be slightly
slower to initialize, but subsequent pseudorandom numbers will be calculated and returned just as fast.

Another advantage of this class is that it can be used to return several types of pseudorandom numbers. The
GetNexTDouble() function, which is demonstrated in this recipe, returns a double-precision value between 0 and 1. The
next few recipes in this chapter will demonstrate how the BetterRandom class can be used to return several other types of
pseudorandom numbers. The code for the class is presented here in its entirety for easy review:

 Public Class BetterRandom
 Private Const TableSize As Integer = 32
 Private RandomTable(TableSize - 1) As Double
 Private Index1 As Integer
 Private Index2 As Integer

 Public Sub New()
 ' ----- Generate truly pseudorandom numbers.
 InitRandom(Now.Ticks.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InitRandom(Now.Ticks.ToString)
 End Sub

 Public Sub New(ByVal Key As String)
 ' ----- Generate a repeatable random sequence.
 InitRandom(Key)
 End Sub

 Private Sub InitRandom(ByVal repeatKey As String)
 ' ----- Prepare the random number generator.
 Dim stringIndex As Integer
 Dim workNumber As Double
 Dim counter As Integer

 ' ----- All sequences start with the same base sequence.
 Randomize(Rnd(-1))

 ' ----- Initialize the table using the key string.
 For counter = 0 To TableSize - 1
 stringIndex = counter Mod repeatKey.Length
 workNumber = Math.PI / _
 Asc(repeatKey.Substring(stringIndex, 1))
 RandomTable(counter) = (Rnd() + workNumber) Mod 1.0
 Next counter

 ' ----- Set the starting state for the table.
 Index1 = TableSize \ 2
 Index2 = TableSize \ 3

 ' ----- Cycle through a bunch of values to get a good
 ' starting mix.
 For counter = 0 To TableSize * 5
 GetNextDouble()
 Next counter

 ' ----- Reset the random sequence based on our
 ' preparations.
 Randomize(Rnd(-GetNextSingle()))
 End Sub

 Public Function GetNextDouble() As Double
 ' ----- Return the next pseudorandom number as
 ' a Double.

 ' ----- Move to the next index positions.
 Index1 = (Index1 + 1) Mod TableSize
 Index2 = (Index2 + 1) Mod TableSize

 ' ----- Update the random numbers at those positions.
 RandomTable(Index1) += RandomTable(Index2) + Rnd()
 RandomTable(Index1) = RandomTable(Index1) Mod 1.0

 ' ----- Return the newest random table value.
 Return RandomTable(Index1)
 End Function

 Public Function GetNextSingle() As Single
 ' ----- Return the next pseudorandom number as
 ' a Single.
 Return CSng(GetNextDouble())
 End Function

 Public Function GetNextInteger(ByVal minInt As Integer, _
 ByVal maxInt As Integer) As Integer
 ' ----- Return the next pseudorandom number within an
 ' Integer range.
 Return CInt(Int(GetNextDouble() * _
 (maxInt - minInt + 1.0) + minInt))
 End Function

 Public Function GetNextReal(ByVal minReal As Double, _
 ByVal maxReal As Double) As Double
 ' ----- Return the next pseudorandom number within a
 ' floating-point range.
 Return GetNextDouble() * (maxReal - minReal) + minReal
 End Function

 Public Function GetNextNormal(ByVal mean As Double, _
 ByVal stdDev As Double) As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal stdDev As Double) As Double
 ' ----- Return the next pseudorandom number adjusted
 ' to a normal distribution curve.
 Dim x As Double
 Dim y As Double
 Dim factor As Double
 Dim radiusSquared As Double

 Do
 x = GetNextReal(-1, 1)
 y = GetNextReal(-1, 1)
 radiusSquared = x * x + y * y
 Loop Until radiusSquared <= 1.0
 factor = Math.Sqrt(-2.0 * Math.Log(radiusSquared) / _
 radiusSquared)

 Return x * factor * stdDev + mean
 End Function

 Public Function GetNextExp(ByVal mean As Double) As Double
 ' ----- Return the next pseudorandom number adjusted
 ' for exponential distribution.
 Return -Math.Log(GetNextDouble) * mean
 End Function
 End Class

The following code demonstrates the BetterRandom class by generating two short sequences of pseudorandom Double
numbers in the range 0 to 1. The first sequence is generated uniquely each time by not passing a string during
initialization of the BetterRandom object. The second sequence uses the same string each time for initialization, and
therefore the sequence is always repeated:

 Dim result As New System.Text.StringBuilder
 Dim generator As BetterRandom

 result.AppendLine("Never the same sequence:")
 generator = New BetterRandom
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine()

 result.AppendLine("Always the same sequence:")
 generator = New BetterRandom(_
 "Every string creates a unique, repeatable sequence")

 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)

 MsgBox(result.ToString())

Figure 6-26 shows the never-and always-repeating sequences generated by this demonstration code.

Figure 6-26. Two pseudorandom sequences are generated: one that's always
unique and one that always repeats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Search Visual Studio Help for "Random Class" and "RNGCryptoServiceProvider Class" for information about other ways
to generate pseudorandom numbers in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.27. Generating Random Integers in a Range

Problem

You need to generate a sequence of pseudorandom integers with a flat distribution over a given range.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextInteger() function. Two parameters define the range limits for the
returned pseudorandom integer, as shown here:

 newRnd.GetNextInteger(minInt, maxInt)

The returned integer has a statistically flat distribution across the given range.

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 200 pseudorandom
integers in the range -10 to +10. The results are collected and then displayed for review. As a programming exercise,
you might consider changing this code to display the average and perhaps the standard deviation for these returned
values.

The generator object is created without passing a string to initialize the generator, so a unique sequence is created every
time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim minInt As Integer = -10
 Dim maxInt As Integer = 10
 Dim counter As Integer

 result.Append("Random integers in range ")
 result.AppendLine(minInt & " to " & maxInt)
 For counter = 1 To 200
 ' ----- Add one random number.
 result.Append(generator.GetNextInteger(-10, 10))
 If ((counter Mod 40) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(",")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-27 shows the results of generating the 200 pseudorandom integers.

Figure 6-27. Pseudorandom integers in the range -10 to +10 generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

Search Visual Studio Help for "Random Class" and "RNGCryptoServiceProvider Class" for information about other ways
to generate pseudorandom numbers in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.28. Generating Random Real Numbers in a Range

Problem

You need to generate a sequence of pseudorandom real numbers with a flat distribution over a given range.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextreal() function. Two parameters define the range limits for the
returned pseudorandom real values, and the returned value has a statistically flat distribution across the given range:

 GetNextReal(minReal, maxReal)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision real numbers in the range -10.0 to +10.0. The results are collected and then displayed for review. As
a programming exercise, you might consider changing this code to display the average and perhaps the standard
deviation for these returned values.

The generator object is created without passing a string to initialize the generator, so a unique sequence will be created
every time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim minReal As Integer = -10
 Dim maxReal As Integer = 10
 Dim counter As Integer

 result.Append("Random reals in range ")
 result.AppendLine(minReal & " to " & maxReal)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextReal(minReal, maxReal))
 If ((counter Mod 5) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-28 shows the results of generating the 20 pseudorandom double-precision real values.

Figure 6-28. Pseudorandom reals in the range -10.0 to +10.0 generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.29. Generating Normal-Distribution Random Numbers

Problem

You need to generate a sequence of pseudorandom numbers with a normal distribution, given the distribution's mean
and standard deviation.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextNormal() function. Two parameters passed to this function define
the mean and standard deviation for the distribution of the generated values:

 GetNextNormal(mean, stdDev)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision numbers with the desired normal distribution. As a programming exercise you might consider changing
this code to display the mean and standard deviation for the returned values, to compare the results with the goal.

The generator object is created without passing a string to initialize the generator, so a unique sequence will be created
every time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim mean As Double = 100
 Dim stdDev As Double = 10
 Dim counter As Integer

 result.Append("Normal distribution randoms with mean ")
 result.AppendLine(mean & " and standard deviation " & stdDev)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextNormal(mean, stdDev))
 If ((counter Mod 3) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-29 shows the results of generating the 20 pseudorandom double-precision normal-distribution numbers.

Figure 6-29. Pseudorandom normally distributed numbers generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.30. Generating Exponential-Distribution Random Numbers

Problem

You need to generate a sequence of pseudorandom numbers with an exponential distribution given the distribution's
mean.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextExp() function. One parameter passed to this function defines the
mean of the exponentially distributed return values:

 GetNextExp(mean)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision numbers with the desired exponential distribution. As a programming exercise you might consider
changing this code to display the mean of the returned values, to compare the results with the goal.

The generator object is created without passing a string to initialize the generator, so a unique sequence is created every
time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim mean As Double = 10
 Dim counter As Integer

 result.Append("Exponential distribution randoms with mean ")
 result.AppendLine(mean)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextExp(mean))
 If ((counter Mod 3) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-30 shows the results of generating the 20 pseudorandom double-precision exponential-distribution numbers.

Figure 6-30. Pseudorandom exponentially distributed numbers generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.31. Creating a Matrix

Problem

You want to declare a matrix, populate it with nonzero values, and perform several standard matrix calculations on it.

Solution

Sample code folder: Chapter 06\Matrix

This recipe demonstrates how to declare and populate a matrix in a clear, readable way. A module of matrix functions is
also included, although several of the functions it contains will be presented in follow-up recipes.

Discussion

Nested braces containing comma-separated numbers can be used to fill arrays of one or more dimensions. In the case
of a two-dimensional matrix, the braces can optionally be separated to show each row of numbers on its own line using
the underscore (_) line-continuation character. Feel free to use whatever layout details work for you, but the following
sample of a 3 x 3 matrix can provide a decent, visually appealing layout in your source code:

 Dim matrixA(,) As Double = { _
 {4, 5, 6}, _
 {7, 8, 9}, _
 {3, 2, 1}}
 MsgBox(MatrixHelper.MakeDisplayable(matrixA))

The last line of this code uses a function named MakeDisplayable() to return a string representation of a matrix suitable for
display, as shown in Figure 6-31. This function is one of several to be presented in the code module named MatrixHelper.

Figure 6-31. The custom output of the matrix

The MatrixHelper module contains several functions to work with matrices, and the recipes that follow will describe them
further. A complete listing of MatrixHelper.vb can be found at the end of this chapter.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.32. Inverting a Matrix

Problem

You want to invert a matrix.

Solution

Sample code folder: Chapter 06\Matrix

Use the MatrixHelper. Inverse() function presented here and expanded upon in the MatrixHelper module presented in Recipe
6.35.

Discussion

The inverse of a matrix is another identically sized matrix that, when multiplied with the original matrix, gives the
identity matrix. Only square matrices can be inverted. Matrix inversion is one of the basic matrix operations used for
scientific, engineering, and computer graphics work. (A full description of matrices and their operations is beyond the
scope of this book.)

Visual Basic 2005 is a good language for developing high-speed .NET Frameworkbased mathematical collections of
number-crunching routines. It allows you to create fast-running classes, structures, and modules containing related
functions or methods to meet many requirements. This recipe presents the code required to invert a matrix efficiently:

 Dim matrixA(,) As Double = { _
 {1, 3, 3}, _
 {2, 4, 3}, _
 {1, 3, 4}}
 Dim matrixB(,) As Double = MatrixHelper.Inverse(matrixA)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & _
 vbNewLine & vbNewLine & "Inverse: " & _
 vbNewLine & MatrixHelper.MakeDisplayable(matrixB))

The MatrixHelper module is listed in its entirety in Recipe 6.35; it includes the Inverse()
function and other functions called by Inverse().

Figure 6-32 shows the result of finding the inverse of a 3 x 3 matrix.

Figure 6-32. Finding the inverse of a square matrix with the MatrixHelper.Inverse(
) function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the MatrixHelper.Inverse() function in your own applications, add the MatrixHelper module to your project and call the
function from anywhere within your application.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.33. Calculating the Determinant of a Matrix

Problem

You need to calculate the determinant of a matrix.

Solution

Sample code folder: Chapter 06\Matrix

Add the MatrixHelper module to your application, and pass your matrix to the MatrixHelper.Determinant() function.

Discussion

The determinant of a matrix is a single number derived from a matrix. It helps determine if a matrix is invertible, and it
also comes into play when using matrices to solve simultaneous equations. (A full description of matrices and their
operations is beyond the scope of this book.)

The following sample code creates a square matrix of double-precision numbers and passes it to the
MatrixHelper.Determinant() function in the MatrixHelper module, which returns the determinant of the matrix:

 Dim matrixA(,) As Double = { _
 {1, 2, 3}, _
 {5, 4, 6}, _
 {9, 7, 8}}
 Dim determinant As Double = MatrixHelper.Determinant(matrixA)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & _
 vbNewLine & vbNewLine & "Determinant: " & _
 determinant.ToString)

The complete MatrixHelper module is listed in Recipe 6.35. The Determinant() function is listed here for easy reference:

 Public Function Determinant(ByVal sourceMatrix(,) _
 As Double) As Double
 ' ----- Calculate the determinant of a matrix.
 Dim result As Double
 Dim pivots As Integer
 Dim count As Integer

 ' ----- Only calculate the determinants of square matrices.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Determinant only " & _
 "calculated for square matrices.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)
 ' ----- Make a copy of the matrix so we can work
 ' inside of it.
 Dim workMatrix(rank, rank) As Double

Array.Copy(sourceMatrix, workMatrix, _
 sourceMatrix.Length)

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, count)

 ' ----- Get the product at each of the pivot points.
 result = 1
 For pivots = 0 To rank
 result *= workMatrix(rowPivots(pivots), _
 colPivots(pivots))
 Next pivots

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next pivots

 ' ----- Determine the sign of the result using
 ' LaPlace's formula.
 result = (-1) ^ count * result
 Return result
 End Function

A very useful technique for copying one array into another is shown in one of the program lines in the Determinant()
function. Consider the following line of code:

 Array.Copy(a, b, a.Length)

The Array class sports a shared Copy() method that provides a high-speed way to copy the binary data from one array
into another. There are several overloaded versions of this method, but as used here, all bytes in array a are copied
into array b, starting at the first byte location in each array. The transfer of these bytes from one location in memory to
another is highly efficient. You could loop through all of array a's indexed variable locations and copy them one at a
time into corresponding locations within array b, but the Array.Copy() method copies all the bytes with one function call
and no looping.

Figure 6-33 shows the calculated determinant of a 3 x 3 matrix.

Figure 6-33. Finding the determinant of a square matrix with the
MatrixHelper.Determinant() function

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.34. Solving Simultaneous Equations

Problem

You want to solve a set of n simultaneous equations containing n unknowns.

Solution

Sample code folder: Chapter 06\Matrix

Use the matrix operations presented in the MatrixHelper module to solve the equation.

Discussion

Matrices are useful in solving simultaneous equations. The solution is defined in Cramer's Rule, a theorem of linear
algebra named after mathematician Gabriel Cramer. (A full description of matrices and their operations is beyond the
scope of this book.)

The MatrixHelper module contains a special-purpose function that solves simultaneous equations by calling several matrix-
analysis functions. You pass a square matrix of size n containing the coefficients of the unknowns from the equations,
along with a one-dimensional array containing the equation constants. The MatrixHelper.SimultEq() function then returns a
one-dimensional array containing the solution values for the equation's unknowns. Here is the code listing for the
MatrixHelper.SimultEq() function:

 Public Function SimultEq(_
 ByVal sourceEquations(,) As Double, _
 ByVal sourceRHS() As Double) As Double()
 ' ----- Use matrices to solve simultaneous equations.
 Dim rowsAndCols As Integer

 ' ----- The matrix must be square and the array size
 ' must match.
 Dim rank As Integer = UBound(sourceEquations, 1)
 If (UBound(sourceEquations, 2) <> rank) Or _
 (UBound(sourceRHS, 1) <> rank) Then
 Throw New Exception(_
 "Size problem for simultaneous equations.")
 End If

 ' ----- Create some arrays for doing all of the work.
 Dim coefficientMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Make copies of the original matrices so we don't
 ' mess them up.
 Array.Copy(sourceEquations, coefficientMatrix, _
 sourceEquations.Length)
 Array.Copy(sourceRHS, rightHandSide, sourceRHS.Length)

 ' ----- Use LU decomposition to form a triangular matrix.
 coefficientMatrix = FormLU(coefficientMatrix, _
 rowPivots, colPivots, rowsAndCols)

 ' ----- Find the unique solution for the upper-triangle.
 BackSolve(coefficientMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)

 ' ----- Return the simultaneous equations result in
 ' an array.
 Return solutions
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, say you have a pile of 18 coins comprised of pennies, nickels, dimes, and quarters totaling $2.23. The
nickels and dimes total $.70, and the dimes and quarters total $2.00. The unknowns are the numbers of each of the
four types of coins. The given information provides all you need to solve a set of four equations with four unknowns:

P + N + D + Q + = 18
P + 5N + 10D + 25Q = 223
0P + 5N + 10D + 0Q= 70
0P + 0N + 10D + 25Q= 200

The following code sets up the 4 x 4 matrix of coefficients and the array of constants, then passes these two arrays to
MatrixHelper.SimultEq() to solve for the four unknowns:

 Dim matrixA(,) As Double = { _
 {1, 1, 1, 1}, _
 {1, 5, 10, 25}, _
 {0, 5, 10, 0}, _
 {0, 0, 10, 25}}
 Dim arrayB() As Double = {18, 223, 70, 200}
 Dim arrayC() As Double = _
 MatrixHelper.SimultEq(matrixA, arrayB)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & vbNewLine & _
 vbNewLine & MatrixHelper.MakeDisplayable(arrayB) & _
 vbNewLine & vbNewLine & _
 "Simultaneous Equations Solution:" & _
 vbNewLine & MatrixHelper.MakeDisplayable(arrayC))

As shown by the results displayed in Figure 6-34, there are three pennies, four nickels, five dimes, and six quarters in
the pile.

Figure 6-34. Solving a set of four equations with four unknowns

The MatrixHelper.SimultEq() function is listed in the MatrixHelper module code, presented in the next recipe.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.35. Listing of the MatrixHelper Class
Sample code folder: Chapter 06\Matrix

Following is the full code for the MatrixHelper class described in Recipes 6.31, 6.32, 6.33 through 6.34:

 Module MatrixHelper
 Public Function MakeDisplayable(_
 ByVal sourceMatrix(,) As Double) As String
 ' ----- Prepare a multi-line string that shows the
 ' contents of a matrix, a 2D array.
 Dim rows As Integer
 Dim cols As Integer
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim result As New System.Text.StringBuilder

 ' ----- Process all rows of the matrix, generating one
 ' output line per row.
 rows = UBound(sourceMatrix, 1) + 1
 cols = UBound(sourceMatrix, 2) + 1
 For eachRow = 0 To rows - 1
 ' ----- Process each column of the matrix on a
 ' single row, separating values by commas.
 If (eachRow > 0) Then result.AppendLine()
 For eachCol = 0 To cols - 1
 ' ----- Add a single matrix element to the output.
 If (eachCol > 0) Then result.Append(",")
 result.Append(sourceMatrix(eachRow, _
 eachCol).ToString)
 Next eachCol
 Next eachRow

 ' ----- Finished.
 Return result.ToString
 End Function

 Public Function MakeDisplayable(_
 ByVal sourceArray() As Double) As String
 ' ----- Present an array as multiple lines of output.
 Dim result As New System.Text.StringBuilder
 Dim scanValue As Double

 For Each scanValue In sourceArray
 result.AppendLine(scanValue.ToString)
 Next scanValue

 Return result.ToString
 End Function

 Public Function Inverse(_
 ByVal sourceMatrix(,) As Double) As Double(,)
 ' ----- Build a new matrix that is the mathematical
 ' inverse of the supplied matrix. Multiplying
 ' a matrix and its inverse together will give
 ' the identity matrix.
 Dim eachCol As Integer
 Dim eachRow As Integer
 Dim rowsAndCols As Integer

 ' ----- Determine the size of each dimension of the
 ' matrix. Only square matrices can be inverted.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Matrix must be square.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Clone a copy of the matrix (not just a
 ' new reference).
 Dim workMatrix(,) As Double = _
 CType(sourceMatrix.Clone, Double(,))
 ' ----- Variables used for backsolving.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Variables used for backsolving.
 Dim destMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, rowsAndCols)

 ' ----- Backsolve the triangular matrix to get the
 ' inverted value for each position in the
 ' final matrix.
 For eachCol = 0 To rank
 rightHandSide(eachCol) = 1
 BackSolve(workMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)
 For eachRow = 0 To rank
 destMatrix(eachRow, eachCol) = solutions(eachRow)
 rightHandSide(eachRow) = 0
 Next eachRow
 Next eachCol

 ' ----- Return the inverted matrix result.
 Return destMatrix
 End Function

 Public Function Determinant(ByVal sourceMatrix(,) _
 As Double) As Double
 ' ----- Calculate the determinant of a matrix.
 Dim result As Double
 Dim pivots As Integer
 Dim count As Integer

 ' ----- Only calculate the determinants of square
 ' matrices.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Determinant only " & _
 "calculated for square matrices.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Make a copy of the matrix so we can work
 ' inside of it.
 Dim workMatrix(rank, rank) As Double
 Array.Copy(sourceMatrix, workMatrix, _
 sourceMatrix.Length)

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, count)

 ' ----- Get the product at each of the pivot points.
 result = 1
 For pivots = 0 To rank
 result *= workMatrix(rowPivots(pivots), _
 colPivots(pivots))
 Next pivots

 ' ----- Determine the sign of the result using
 ' LaPlace's formula.
 result = (-1) ^ count * result
 Return result
 End Function

 Public Function SimultEq(_
 ByVal sourceEquations(,) As Double, _
 ByVal sourceRHS() As Double) As Double()
 ' ----- Use matrices to solve simultaneous equations.
 Dim rowsAndCols As Integer

 ' ----- The matrix must be square and the array size
 ' must match.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' must match.
 Dim rank As Integer = UBound(sourceEquations, 1)
 If (UBound(sourceEquations, 2) <> rank) Or _
 (UBound(sourceRHS, 1) <> rank) Then
 Throw New Exception(_
 "Size problem for simultaneous equations.")
 End If

 ' ----- Create some arrays for doing all of the work.
 Dim coefficientMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Make copies of the original matrices so we don't
 ' mess them up.
 Array.Copy(sourceEquations, coefficientMatrix, _
 sourceEquations.Length)
 Array.Copy(sourceRHS, rightHandSide, sourceRHS.Length)

 ' ----- Use LU decomposition to form a triangular matrix.
 coefficientMatrix = FormLU(coefficientMatrix, _
 rowPivots, colPivots, rowsAndCols)

 ' ----- Find the unique solution for the upper-triangle.
 BackSolve(coefficientMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)
 ' ----- Return the simultaneous equations result in
 ' an array.
 Return solutions
 End Function

 Private Function FormLU(ByVal sourceMatrix(,) As Double, _
 ByRef rowPivots() As Integer, _
 ByRef colPivots() As Integer, _
 ByRef rowsAndCols As Integer) As Double(,)
 ' ----- Perform an LU (lower and upper) decomposition
 ' of a matrix, a modified form of Gaussian
 ' elimination.
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim pivot As Integer
 Dim rowIndex As Integer
 Dim colIndex As Integer
 Dim bestRow As Integer
 Dim bestCol As Integer
 Dim rowToPivot As Integer
 Dim colToPivot As Integer
 Dim maxValue As Double
 Dim testValue As Double
 Dim oldMax As Double
 Const Deps As Double = 0.0000000000000001

 ' ----- Determine the size of the array.
 Dim rank As Integer = UBound(sourceMatrix, 1)
 Dim destMatrix(rank, rank) As Double
 Dim rowNorm(rank) As Double
 ReDim rowPivots(rank)
 ReDim colPivots(rank)

 ' ----- Make a copy of the array so we don't mess it up.
 Array.Copy(sourceMatrix, destMatrix, _
 sourceMatrix.Length)

 ' ----- Initialize row and column pivot arrays.
 For eachRow = 0 To rank
 rowPivots(eachRow) = eachRow
 colPivots(eachRow) = eachRow
 For eachCol = 0 To rank
 rowNorm(eachRow) += _
 Math.Abs(destMatrix(eachRow, eachCol))
 Next eachCol
 If (rowNorm(eachRow) = 0) Then
 Throw New Exception(_
 "Cannot invert a singular matrix.")
 End If
 Next eachRow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next eachRow

 ' ----- Use Gauss-Jordan elimination on the matrix rows.
 For pivot = 0 To rank - 1
 maxValue = 0
 For eachRow = pivot To rank
 rowIndex = rowPivots(eachRow)
 For eachCol = pivot To rank
 colIndex = colPivots(eachCol)
 testValue = Math.Abs(destMatrix(rowIndex, _
 colIndex)) / rowNorm(rowIndex)
 If (testValue > maxValue) Then
 maxValue = testValue
 bestRow = eachRow
 bestCol = eachCol
 End If
 Next eachCol
 Next eachRow

 ' ----- Detect a singular, or very nearly
 ' singular, matrix.
 If (maxValue = 0) Then
 Throw New Exception(_
 "Singular matrix used for LU.")
 ElseIf (pivot > 1) Then
 If (maxValue < (Deps * oldMax)) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 End If
 End If
 oldMax = maxValue

 ' ----- Swap row pivot values for the best row.
 If (rowPivots(pivot) <> rowPivots(bestRow)) Then
 rowsAndCols += 1
 Swap(rowPivots(pivot), rowPivots(bestRow))
 End If

 ' ----- Swap column pivot values for the best column.
 If (colPivots(pivot) <> colPivots(bestCol)) Then
 rowsAndCols += 1
 Swap(colPivots(pivot), colPivots(bestCol))
 End If

 ' ----- Work with the current pivot points.
 rowToPivot = rowPivots(pivot)
 colToPivot = colPivots(pivot)

 ' ----- Modify the remaining rows from the
 ' pivot points.
 For eachRow = (pivot + 1) To rank
 rowIndex = rowPivots(eachRow)
 destMatrix(rowIndex, colToPivot) = _
 -destMatrix(rowIndex, colToPivot) / _
 destMatrix(rowToPivot, colToPivot)
 For eachCol = (pivot + 1) To rank
 colIndex = colPivots(eachCol)
 destMatrix(rowIndex, colIndex) += _
 destMatrix(rowIndex, colToPivot) * _
 destMatrix(rowToPivot, colIndex)
 Next eachCol
 Next eachRow
 Next pivot

 ' ----- Detect a non-invertible matrix.
 If (destMatrix(rowPivots(rank), _
 colPivots(rank)) = 0) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 ElseIf (Math.Abs(destMatrix(rowPivots(rank), _
 colPivots(rank))) / rowNorm(rowPivots(rank))) < _
 (Deps * oldMax) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 End If

 ' ----- Success. Return the LU triangular matrix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Success. Return the LU triangular matrix.
 Return destMatrix
 End Function

 Private Sub Swap(ByRef firstValue As Integer, _
 ByRef secondValue As Integer)
 ' ----- Reverse the values of two reference integers.
 Dim holdValue As Integer
 holdValue = firstValue
 firstValue = secondValue
 secondValue = holdValue
 End Sub

 Private Sub BackSolve(ByVal sourceMatrix(,) As Double, _
 ByVal rightHandSide() As Double, _
 ByVal solutions() As Double, _
 ByRef rowPivots() As Integer, _
 ByRef colPivots() As Integer)
 ' ----- Solve an upper-right-triangle matrix.
 Dim pivot As Integer
 Dim rowToPivot As Integer
 Dim colToPivot As Integer
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Work through all pivot points. This section
 ' builds the "B" in the AX=B formula.
 For pivot = 0 To (rank - 1)
 colToPivot = colPivots(pivot)
 For eachRow = (pivot + 1) To rank
 rowToPivot = rowPivots(eachRow)
 rightHandSide(rowToPivot) += _
 sourceMatrix(rowToPivot, colToPivot) _
 * rightHandSide(rowPivots(pivot))
 Next eachRow
 Next pivot
 ' ----- Now solve for each X using the general formula
 ' x(i) = (b(i) - summation(a(i,j)x(j)))/a(i,i)
 For eachRow = rank To 0 Step -1
 colToPivot = colPivots(eachRow)
 rowToPivot = rowPivots(eachRow)
 solutions(colToPivot) = rightHandSide(rowToPivot)
 For eachCol = (eachRow + 1) To rank
 solutions(colToPivot) -= _
 sourceMatrix(rowToPivot, colPivots(eachCol)) _
 * solutions(colPivots(eachCol))
 Next eachCol
 solutions(colToPivot) /= sourceMatrix(rowToPivot, _
 colToPivot)
 Next eachRow
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Dates and Times

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The Date data type holds a compact representation of an exact moment in time, with 100-nanosecond resolution,
covering a 10,000-year span of dates starting with day 1 of year 1 AD. Visual Basic 2005 and the .NET Framework
provide many powerful functions for working with dates and times, but the syntax and conceptual changes can be
daunting, especially if you're updating your skills from VB 6. It can often be tricky to figure out how or what to use to
get the job done.

The good news is that once you get up to speed with all the changes, it's now easier than ever to work with dates and
times. Is a given year a leap year? How many days are there in a given month? What day of the year is a given date?
All of these questions, and many more, can now be answered with single function calls or single lines of code.

The recipes in this chapter provide solutions for many of the common date and time calculations that come up in day-
to-day development, and they should get you up to speed in "no time" (pun intended).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.1. Getting the System Date and Time

Problem

You want to know the current time and date.

Solution

Sample code folder: Chapter 07\SystemDateTime

Use Now, which returns the current moment of time from your system clock as a Date value.

Discussion

The Now property returns a Date, which you can store in a Date variable or process directly. There are many properties
and methods available to extract information from Dates. The following code demonstrates just a few of them, and the
rest of this chapter provides insight into many more:

 Dim rightNow As Date = Now
 Dim result As New
System.Text.StringBuilder

 result.AppendLine("""Now""…")
 result.AppendLine()
 result.Append("Date: ").AppendLine(rightNow.
ToShortDateString)
 result.Append("Time: ").AppendLine(rightNow.ToShortTimeString)
 result.Append("
Ticks: ").Append(rightNow.Ticks.ToString)

 MsgBox(result.ToString())

rightNow is a Date variable used here to grab and store a single value of Now. If Now were to be used repeatedly in the
remainder of this code, it's possible that its value could change in the process. In the code shown, this would not be a
problem, but if your application might be affected by having the value of Now suddenly change, you should consider
assigning its value to a Date variable just once, to freeze the moment in time for further processing.

This code uses a StringBuilder to piece together several bits of information extracted from rightNow. The properties
ToShortDateString and ToShortTimeString extract the date and time in a readable format. Figure 7-1 shows typical output
displayed by the message box at the end of the sample code.

Figure 7-1. Basic information about a frozen moment in time

Ticks is an interesting property of the Date data type. It represents the number of 100-nanosecond intervals of time
elapsed since midnight on January 1 of the year 1 AD. This is a value closely tied to how the date and time are stored
internally in a Date variable. The Ticks property is explained in further detail in Recipe 7.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB 6 Users' Update

VB 6 dates and times are stored in a different internal binary format than the one used in .NET. VB 6
users sometimes access the numerical values of Dates as double-precision numbers, providing a shortcut
for some specialized processing. .NET dates are stored as Long integers in an incompatible format. It's
best to rewrite your code to use the new Date values, but if you do have old date data that needs to be
converted to the new format, use the ToOADate() and FromOADate() functions provided specifically for this
purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.2. Accessing the System's Time Zone

Problem

You want to programmatically determine the time-zone offset for the local system's time and determine if daylight
savings time is currently in effect.

Solution

Sample code folder: Chapter 07 \SystemTimeZone

Use the TimeZone object, which provides properties and methods for determining the name of the current time zone, the
number of hours offset from Greenwich Mean Time (GMT), and whether daylight savings is currently in effect.

Discussion

The following code shows how the TimeZone information is accessed:

 Dim theZone As TimeZone = TimeZone.CurrentTimeZone
 Dim result As New System.Text.StringBuilder

 result.Append("DaylightName: ").AppendLine(_
 theZone.DaylightName)
 result.Append("StandardName: ").AppendLine(_
 theZone.StandardName)
 result.Append("IsDaylightSavingTime(
Now): ").AppendLine(_
 theZone.IsDaylightSavingTime(Now))
 result.Append("GetUtcOffset(Now): ").AppendLine(_
 theZone.GetUtcOffset(Now).ToString)
 result.Append("
System time is Local Time: ")
 result.AppendLine(Now.Kind = DateTimeKind.Local)
 result.Append("System time is Universal Coordinated Time: ")
 result.AppendLine(Now.Kind = DateTimeKind.Utc)
 result.Append("System time is Unspecified: ")
 result.AppendLine(Now.Kind = DateTimeKind.Unspecified)

 MsgBox(result.ToString())

The TimeZone variable theZone is assigned the current system's time-zone information in the first line of this code. The
rest of the lines extract information from this variable and prepare string versions for display by appending to the
StringBuilder. The theZone variable lets you determine the name of the time zone, the number of hours that time zone is
offset from GMT, and whether daylight savings is currently in effect.

The Kind property determines if a Date represents local time, Coordinated Universal Time (UTC), or is unspecified. This is
a property of a Date, not a TimeZone, but the information it provides is closely associated with the TimeZone information.

Figure 7-2 shows the TimeZone information displayed for a computer set to Central Standard Time during the summer.

Figure 7-2. Determining a system's time-zone information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.3. Using System Ticks

Problem

You want to get a simple, sequential number from the system clock for timing purposes, or perhaps you want to get a
guaranteed unique bit pattern for seeding a random number generator each time your application starts.

Solution

Sample code folder: Chapter 07\SystemTicks

Use the Now.Ticks property, which returns a long integer containing the number of 100-nanosecond intervals since
midnight of January 1 in the year 1 AD.

Discussion

The Ticks property is available on any Date variable, but it's most often used on the ever-changing Now property. Using
Now.Ticks means the value returned will always be a unique Long value for every tick of the system clock, providing a
good source for unique bit patterns.

Although Ticks appears to be accurate to the nearest 100 nanoseconds, it actually has much less resolution than
expected. The following code shows how to access the Ticks property and, more importantly, demonstrates how many
times the returned value of Ticks changes per second:

 Dim lastTicks As Long
 Dim numTicks As Long
 Dim endTime As
Date
 Dim results As String

 ' ----- Count the actual tick changes.
 endTime = Now.AddSeconds(1)
 Do
 If (Now.Ticks <> lastTicks) Then
 numTicks += 1
 lastTicks = Now.Ticks
 End If
 Loop Until (Now > endTime)

 ' ----- Display the results.
 results = "Now.Ticks: " & Now.Ticks.ToString & vbNewLine & _
 "Number of updates per second: " & numTicks.ToString
 MsgBox(results)

As shown in Figure 7-3, the value of the Ticks property changes only about 65 times per second. At the speed of today's
computers, a lot of instructions can be processed in 1/65 of a second, making Ticks a poor choice for high-resolution
timing.

Figure 7-3. Ticks represent short timing units, but they aren't updated very often

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ticks does have some good uses, but for timing that really is accurate to the nearest millisecond, consider using the new
Stopwatch object, described later in this chapter.

See Also

Compare the results of this recipe with those of Recipe 7.4, which provides a much greater level of accuracy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.4. Timing Application Activities

Problem

You want to time application events with greater accuracy than is provided by the Date type's Ticks property.

Solution

Sample code folder: Chapter 07\ Stopwatch

Use the System.Diagnostics.Stopwatch object to accurately determine elapsed time to the nearest millisecond.

Discussion

The new System.Diagnostics.Stopwatch object is easy and intuitive to use. Just like a real stopwatch, you start it when you
want and measure elapsed time as needed. The Start() method starts the timing, and the ElapsedMilliseconds property
returns the number of elapsed milliseconds. Similarly, there are Stop() and Reset() methods to stop and reset the
stopwatch, and these methods behave as you'd expect.

The following code demonstrates how to create an instance of the Stopwatch object and how to measure elapsed time
with it. But it also points out an advantage of using this object for fine-grained timing measurements rather than using
Ticks. The Do…Loop block of code runs for one second, tallying the number of times the value returned by the
ElapsedMilliseconds property changes to a new value:

 Dim lastMillis As Long
 Dim numMillis As Long
 Dim testWatch As New System.Diagnostics.Stopwatch
 Dim endTime As Date
 Dim results As String

 ' ----- Start the timer.
 endTime = Now.AddSeconds(1)
 testWatch.Start()
 Do
 ' ----- Keep track of each change of the stopwatch.
 If (testWatch.ElapsedMilliseconds <> lastMillis) Then
 numMillis += 1
 lastMillis = testWatch.ElapsedMilliseconds
 End If
 Loop Until (Now > endTime)

 ' ----- Display the results.
 results = "Elapsed milliseconds: " & _
 testWatch.ElapsedMilliseconds.ToString & vbNewLine & _
 "Number of updates per second: " & numMillis.ToString
 MsgBox(results)

As shown in Figure 7-4, the property returns a new number of elapsed milliseconds slightly over 1,000 times during the
second, a result to be expected when the loop timing is based on the system clock. Hence, the Stopwatch is accurate to
the nearest millisecond.

Figure 7-4. The Stopwatch object accurately maintains a timing resolution of one
millisecond

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Compare the results of this recipe with those of Recipe 7.3, which provides a lower level of accuracy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.5. Calculating Elapsed Time Using Ticks

Problem

You want a simple way to determine elapsed time when millisecond accuracy is not required.

Solution

Sample code folder: Chapter 07\ ElapsedTicks

Use the difference between system ticks returned by Now.Ticks and divide by 10 million to get elapsed decimal seconds.

Discussion

As shown in Recipe 7.1, Ticks returns the number of 100-nanosecond time intervals elapsed since midnight of January 1,
1 AD. Dividing Ticks by 10,000,000 converts the time units to seconds. The following code demonstrates this technique
by timing how long the user takes to click an OK button and then displaying the number of decimal seconds elapsed:

 Dim ticksBefore As Long
 Dim ticksAfter As Long
 Dim tickSeconds As Double

 ' ----- Time the user!
 ticksBefore = Now.Ticks

 MsgBox("Press OK to see elapsed seconds")
 ticksAfter = Now.Ticks

 tickSeconds = (ticksAfter - ticksBefore) / 10000000.0
 MsgBox("Elapsed seconds: " & tickSeconds.ToString())

Figure 7-5 shows the result.

Figure 7-5. Using Ticks to measure elapsed decimal seconds

This is a simple technique for getting decimal seconds for each moment in time, but the real workhorse for determining
spans of time is the TimeSpan object, which is demonstrated in Recipe 7.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.6. Calculating Elapsed Time with the Stopwatch

Problem

You want to measure elapsed time accurate to the nearest millisecond.

Solution

Sample code folder: Chapter 07\ElapsedStopwatch

Use the Stopwatch object, which is designed to measure elapsed milliseconds accurately.

Discussion

The new System.Diagnostics.Stopwatch object introduced with Visual Basic 2005 provides better-resolution timing than using
system ticks. The ElapsedMilliseconds property accurately returns elapsed time to the nearest millisecond, as demonstrated
in Recipe 7.4. This is ideal for timing blocks and loops of code to compare the efficiency of various algorithms or for
other high-resolution timing tasks. The following code times how long the user takes to click an OK button when
prompted:

 Dim testWatch As New System.Diagnostics.Stopwatch
 Dim results As String

 ' ----- Start counting.
 testWatch.Start()
 MsgBox("Press OK to see elapsed seconds")

 ' ----- Stop and record.
 results = String.Format(_
 "testWatch.Elapsed.Seconds: {0}{3}" & _
 "testWatch.Elapsed.TotalSeconds: {1}{3}" & _
 "testWatch.ElapsedMilliseconds / 1000: {2}", _
 testWatch.Elapsed.Seconds, _
 testWatch.Elapsed.TotalSeconds, _
 testWatch.ElapsedMilliseconds / 1000, vbNewLine)
 MsgBox(results)

The Elapsed property returns a TimeSpan object, which provides properties useful for extracting time durations. In this
example the whole number of seconds is returned by the TimeSpan's Elapsed.Seconds property, and a more exact decimal
number of seconds is returned by its Elapsed.TotalSeconds property. Figure 7-6 displays the results.

Figure 7-6. Using the Stopwatch object to accurately measure elapsed time

When using a Stopwatch, be sure to call its Start() method before attempting to access elapsed time from it. If Start() is not
called first, elapsed time is always returned as zero.

You can accumulate elapsed time in pieces by calling the Start() and Stop() methods repeatedly. The elapsed time freezes
when Stop() is called; the counting resumes when Start() is called. To clear the Stopwatch's count at any time, call the Reset()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when Stop() is called; the counting resumes when Start() is called. To clear the Stopwatch's count at any time, call the Reset()
method. These methods simulate the buttons on a real stopwatch, but do so much faster and more accurately than
punching buttons by hand!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.7. Extracting Year, Month, and Day Numbers from a Date
Value

Problem

You want to access the year, month, and day numbers from a Date.

Solution

Sample code folder: Chapter 07\DateParts

Use the Year, Month, and Day properties of the Date.

Discussion

These three properties provide a direct route to a Date's date information. Each returns an integer that can be used in
further computations. The following code demonstrates these properties in action:

 Dim rightNow As Date = Now
 Dim yearNow As Integer = rightNow.Year
 Dim monthNow As Integer = rightNow.Month
 Dim dayNow As Integer = rightNow.Day

 Dim results As String = String.Format(_
 "Year: {1}{0}Month: {2}{0}Day: {3}{0}", _
 vbNewLine, yearNow, monthNow, dayNow)
 MsgBox(results)

Figure 7-7 shows the system's current date numbers as displayed by the message box in this sample code.

Figure 7-7. Extracting year, month, and day numbers from a Date variable

These properties are read-only, so while they work well for extracting the date values, they are not appropriate for
assigning a new date to a Date variable. (As explained in Recipe 7.9, Date variables can be set to specific dates, and they
can be modified to new dates by adding amounts of time to them.)

See Also

Recipe 7.8 discusses how to access the hour, minute, and second numbers from a Date.

Assigning a specific date and/or time to a new Date variable is covered in Recipe 7.9, while Recipes 7.12 and 7.13
discuss assigning a new date to an existing Date variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.8. Extracting Hour, Minute, and Second Numbers from a Date
Value

Problem

You want to access the hours, minutes, or seconds from a Date.

Solution

Sample code folder: Chapter 07\TimeParts

Use the Hour, Minute, and Second properties of the Date instance.

Discussion

These properties are similar to the Year, Month, and Day properties of the Date object, but they extract and return the time
of the day parts of the Date rather than the date parts. Like the date parts, these time parts of the Date are read-only.
The following code shows how to access these properties:

 Dim rightNow As Date = Now
 Dim hourNow As Integer = rightNow.Hour
 Dim minuteNow As Integer = rightNow.Minute
 Dim secondNow As Integer = rightNow.Second
 Dim millisecondNow As Integer = rightNow.Millisecond

 Dim results As String = String.Format(_
 "Hour: {1}{0}Minute: {2}{0}Second: " & _
 "{3}{0}Millisecond: {4}", vbNewLine, _
 hourNow, minuteNow, secondNow, millisecondNow)
 MsgBox(results)

The Millisecond property also appears in this code. As of this writing, this property's resolution isn't all that great,
although it's possible that in the future the milliseconds value will become more accurate. If you need true millisecond
timing, use the Stopwatch object described in Recipe 7.6. Even so, the Millisecond property does provide greater accuracy
than just to the nearest second.

Figure 7-8 shows the results of the above sample code as displayed by the message box.

Figure 7-8. Extracting hour, minute, second, and millisecond numbers from a Date

See Also

Recipe 7.7 discusses how to extract the year, month, and day numbers from a Date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.9. Creating a Date or Time Value from Its Parts

Problem

You want to create a Date variable and assign it a specific date, a specific time of day, or both, but all you have are the
individual components, such as the year, month, and day.

Solution

Sample code folder: Chapter 07\SerialDate

Use one of the overloaded Date constructors to assign date and time numbers as the variable is created.

Discussion

You can hardcode a date and/or a time in your application by delimiting the text rep-resentation with a pair of number
sign (#) characters. Here's a line of code that assigns a hardcoded date of July 4, 1776 to a date variable named
theFourth:

 theFourth = #7/4/1776#

As shown, theFourth is assigned a time value of zero, which occurs during the first second of the day, just after midnight
as the date changes from the third to the fourth of July. The sample block of code that follows shows how to assign a
specific time in addition to a specific date. The first line sets the date variable thirdOfJuly to the last second of the day:

 Dim thirdOfJuly As Date = #7/3/1776 11:59:59 PM#
 Dim fourthOfJuly As New Date(1776, 7, 4)
 Dim inTheMorning As New Date(1776, 7, 4, 9, 45, 30)

 MsgBox(_
 "The 3rd and 4th of July, 1776…" & _
 vbNewLine & vbNewLine & _
 "#7/3/1776 11:59:59 PM# … " & _
 thirdOfJuly.ToString & vbNewLine & _
 "New Date(1776, 7, 4) … " & _
 fourthOfJuly.ToString & vbNewLine & _
 "New Date(1776, 7, 4, 9, 45, 30) … " & _
 inTheMorning.ToString)

The second and third lines of this example show how to assign a date and a date/time combination to a date variable in
a more dynamic way. Rather than a hardcoded date-and-time literal, integer variables containing Year, Month, Day, Hour,
Minute, and Second values can be passed to the Date constructor to assign a moment of time to the Date variable as it is
created. Figure 7-9 shows the results of these date and time assignments, as displayed by the message box at the end
of the sample code.

Figure 7-9. Different ways to assign specific dates and times to Date variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another approach to adjusting a Date variable's date and time is to add quantities of time to it. For example, a freshly
dimensioned but unassigned Date variable contains the default date and time of midnight, January 1, 1 AD. You could
add 1,775 years, 6 months, and 3 days to the Date variable to adjust it to July 4, 1776. The various date and time
addition methods are explained and demonstrated in Recipe 7.12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.10. Formatting Dates and Times

Problem

You want to format a date or time for output using some standard or custom format.

Solution

Sample code folder: Chapter 07\FormatDateTime

Use one of the single-letter format options, or set up a custom format to convert the date or time as desired.

Discussion

The following code displays most of the standard formats available for converting dates and times to strings, plus a
sampling of what the custom formatting options can do:

 Dim rightNow As Date = Now
 Dim result As New System.Text.StringBuilder
 result.AppendLine("""Now""…")
 result.AppendLine()

 ' ----- Use some of the built-in Date properties to
 ' format the date in predefined ways.
 result.Append("ToString: ").AppendLine(rightNow.ToString)
 result.Append("ToLongDateString: ")
 result.AppendLine(rightNow.ToLongDateString)
 result.Append("ToShortDateString: ")
 result.AppendLine(rightNow.ToShortDateString)
 result.Append("ToLongTimeString: ")
 result.AppendLine(rightNow.ToLongTimeString)
 result.Append("ToShortTimeString: ")
 result.AppendLine(rightNow.ToShortTimeString)
 result.Append("ToUniversalTime: ")
 result.AppendLine(rightNow.ToUniversalTime)
 result.AppendLine()

 ' ----- Use format specifiers to control the
date display.
 result.Append("d: ").AppendLine(rightNow.ToString("d"))
 result.Append("D: ").AppendLine(rightNow.ToString("D"))
 result.Append("t: ").AppendLine(rightNow.ToString("t"))
 result.Append("T: ").AppendLine(rightNow.ToString("T"))
 result.Append("f: ").AppendLine(rightNow.ToString("f"))
 result.Append("F: ").AppendLine(rightNow.ToString("F"))
 result.Append("g: ").AppendLine(rightNow.ToString("g"))
 result.Append("G: ").AppendLine(rightNow.ToString("G"))
 result.Append("M: ").AppendLine(rightNow.ToString("M"))
 result.Append("R: ").AppendLine(rightNow.ToString("R"))
 result.Append("s: ").AppendLine(rightNow.ToString("s"))
 result.Append("u: ").AppendLine(rightNow.ToString("u"))
 result.Append("U: ").AppendLine(rightNow.ToString("U"))
 result.Append("y: ").AppendLine(rightNow.ToString("y"))
 result.AppendLine().AppendLine()

 ' ----- Use custom format specifiers, which provide
 ' more flexibility than the single-letter formats.
 result.Append("dd: ").AppendLine(rightNow.ToString("dd"))
 result.Append("ddd: ").AppendLine(rightNow.ToString("ddd"))
 result.Append("dddd: ").AppendLine(rightNow.ToString("dddd"))
 result.Append("HH:mm:ss.fff z: ")
 result.AppendLine(rightNow.ToString("HH:mm:ss.fff z"))
 result.Append("yy/MM/dd g: ")
 result.AppendLine(rightNow.ToString("yy/MM/dd g"))

 MsgBox(result.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString)

The output of this code appears in Figure 7-10.

The first group of lines shows string conversions provided by specific members of the Date object. You'll probably find
these common formats sufficient for most purposes.

The second group of lines shows the single-letter predefined formats, which provide even more options. These letters
don't appear in the IntelliSense pop ups, so if you do a lot of formatting along these lines, you might want to make a
list for your own reference.

Custom date output is provided by strings of specifically defined characters that format parts of the Date appropriately. A
sampling is shown in this code, and the Visual Studio online help documents all available formats.

This recipe's sample code uses the Date's ToString() method exclusively to format the dates and times. However, there are
other objects that support the IFormattable interface, which provides very similar formatting capabilities. Specifically, the
String.Format() shared method provides similar formatting capabilities in its braces-defined format parameters.

Figure 7-10. A sampling of predefined and custom formats available for formatting
Date variables to strings

For example, here's one of the lines from the previous example code:

 result.Append("d: ").AppendLine(rightNow.ToString("d"))

This same line of output can also be formatted using String.Format():

 result.Append(String.Format(_
 "d: {0:d}{1}", rightNow, vbNewLine))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "d: {0:d}{1}", rightNow, vbNewLine))

In this case, the {0:d} format parameter provides the same formatting instruction as the d string parameter in the
ToString() method. These two lines demonstrate very different syntax, but they produce the same results.

See Also

For details on all predefined and custom format strings available in .NET, access the "formatting types" entry in the
Visual Studio online help documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.11. Parsing and Validating Dates and Times

Problem

You want to parse a string to convert it to a date or time, and you want to avoid using error trapping to detect
incorrectly formatted strings.

Solution

Sample code folder: Chapter 07\ParseDate

Use the IsDate() function to predetermine the validity of a string's representation of a date or time, and then use the
Date.Parse() method on the string to reliably convert it to a Date.

Discussion

The new TRy…Catch…End Try structured error trapping is a great tool for catching unexpected exceptions in applications,
but it's always best to make sure you have clean data before you use it in a way that could generate an error. For
example, it's best to use the IsDate() function to check a date's validity before trying to use it in your main code's logic;
this will turn up errors such as misspelled month names.

The following code uses IsDate() to validate a string and allow conversion to a date value only if the string passes the
test:

 Dim testDate As String
 Dim results As New System.Text.StringBuilder

 ' ----- Test an invalid date.
 testDate = "Febtember 43, 2007"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a time.
 testDate = "23:57:58"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a date.
 testDate = "December 7, 2007"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a standardized
date and time.
 testDate = "2007-07-04T23:59:59"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test another standardized UTC date and time.
 testDate = "2007-07-04T23:59:59Z"

 If (
IsDate(testDate) = True) Then _
 results.AppendLine(Date.
Parse(testDate).ToString)

 ' ----- Display the results.
 MsgBox(results.ToString())

As shown in Figure 7-11, the first string is a bad one, so it's not converted. The remaining four strings are correctly
parsed to Dates.

Figure 7-11. Dates parsed from a variety of string representations of dates and
times

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

times

It's safe to assume that any string that returns true when passed to IsDate() will not cause an exception when passed to a
Date's Parse() method.

The Visual Basic CDate() conversion function also changes a string date to its true Date
counterpart:

 Dim realDate As Date = CDate("January 1, 2007")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.12. Adding to Dates and Times

Problem

You want to manipulate a Date value by adding an amount of time to it.

Solution

Sample code folder: Chapter 07\AddTime

Use one of the Date functions, such as AddYears() or AddMinutes(), to add specific units of time to a Date's current value.

Discussion

There are seven "Add" functions used to add specific units of time to a Date:

AddYears()

AddMonths()

AddDays()

AddHours()

AddMinutes()

AddSeconds()

AddMilliseconds()

Each function adds a given amount of time to the Date. Confusion may arise because the parameters passed to some of
these functions must be integers, while others require double-precision floating-point numbers. You can add only
integer numbers of years, months, and hours, but you can add values with fractional parts to the days, minutes,
seconds, and milliseconds. This is usually not a problem, but be aware that the various functions do require different
types of parameters.

The following code demonstrates the "Add" functions by adding various amounts of time to the current date and time:

 Dim results As New System.Text.StringBuilder
 Dim rightNow As Date = Now

 ' ----- Show the current date and time.
 results.AppendLine("RightNow: " & rightNow.ToString)
 results.AppendLine()

 ' ----- Add date values.
 results.AppendLine("RightNow.AddYears(2): " & _
 rightNow.AddYears(2))
 results.AppendLine("RightNow.AddMonths(3): " & _
 rightNow.AddMonths(3))
 results.AppendLine("RightNow.AddDays(4): " & _
 rightNow.AddDays(4))

 ' ----- Add time values.
 results.AppendLine("RightNow.AddHours(5): " & _
 rightNow.AddHours(5))
 results.AppendLine("RightNow.AddMinutes(6): " & _
 rightNow.AddMinutes(6))
 results.AppendLine("RightNow.AddSeconds(7): " & _
 rightNow.AddSeconds(7))
 results.AppendLine("RightNow.AddMilliseconds(8000): " & _
 rightNow.AddMilliseconds(8000))

 ' ----- Display the results.
 MsgBox(results.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(results.ToString())

Figure 7-12 shows the date and time "right now," and the results of adding the various amounts of time to this value.

Adding a number of years or days accurately can be tricky because the addition can be defined in more than one way.
For example, if one month is added to August 31, 2005, you might expect a result of October 1, 2005 because there
are only 30 days in September. However, the result of adding one month to either August 30 or August 31 is
September 30.

Figure 7-12. Using the "Add" category of Date functions to add various amounts of
time to a Date

Similarly, adding one year to February 29, 2004 results in a date of February 28, 2005, instead of March 1, 2005. The
variable lengths of months and years are ignored when adding these units of time.

The hard-to-define lengths of years and months could explain why these units are added as integer parameters in the
functions described earlier. However, hours are well-defined, invariable units of time, yet AddHours() also requires an
integer parameter. Go figure (literally)!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.13. Subtracting from Dates and Times

Problem

You want to subtract some amount of time from a date or time.

Solution

Sample code folder: Chapter 07\SubtractTime

Use the various "Add" functions of the Date object, passing negative values to subtract amounts of time.

Discussion

The Date object does not provide any "Subtract" functions for subtracting specific units of time. You can instead simply
"add" negative amounts of time. The following code demonstrates how this works:

 Dim results As New System.Text.StringBuilder
 Dim rightNow As Date = Now

 results.AppendLine("RightNow: " & rightNow.ToString)
 results.AppendLine()

 results.AppendLine("One year ago: " & _
 rightNow.AddYears(-1).ToString)

 results.AppendLine("365.25 days ago: " & _
 rightNow.AddDays(-365.25).ToString)

 MsgBox(results.ToString())

Figure 7-13 shows the results of these negative time additions as displayed by the message box in the last line.

Figure 7-13. To subtract years, days, or other amounts of time, add negative
quantities

Each Date object does provide a Subtract() function, as discussed in Recipe 7.14. However, this function subtracts either
another Date value or a TimeSpan. It is possible to create a TimeSpan given an amount of time and its units, but simply
adding specific negative units of time is a very straightforward way to get the task accomplished.

See Also

Recipe 7.12 lists the various "Add" date methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.14. Determining the Number of Days Between Two Dates

Problem

You want to calculate the number of days between two dates.

Solution

Sample code folder: Chapter 07\DateDiff

Use the later date's Subtract() function to calculate a TimeSpan between the two dates, and then use the Days property of
the TimeSpan to get the elapsed number of days.

Discussion

A TimeSpan object is a representation of an elapsed amount of time. As shown in the following code, you can subtract
one date from another using its Subtract() method, which returns a TimeSpan. To access the units of time from the
TimeSpan, access its properties for each type of unit. For example, the following code determines the number of days a
person has been on the earth by subtracting his birth date from today's date. The Days property of the resulting TimeSpan
provides the desired information:

 Dim inputString As String
 Dim birthDay As Date
 Dim lifeTime As TimeSpan
 Dim lifeDays As Integer

 ' ----- Prompt the user for a date.
 Do
 inputString = InputBox("Enter the date of your birth")
 Loop Until IsDate(inputString) = True

 ' ----- Perform the amazing calculations.
 birthDay = Date.Parse(inputString)
 lifeTime = Now.Subtract(birthDay)
 lifeDays = lifeTime.Days
 MsgBox(String.Format(_
 "There are {0} days between {1:D} and {2:D}", _
 lifeDays, birthDay, Now))

Figure 7-14 shows the number of days since Albert Einstein was born (as of August 8, 2005).

Figure 7-14. Determining the difference between two dates

The five span-generating members are Days, Hours, Minutes, Seconds, and Milliseconds. These each return a whole integer
value stating the difference between the two dates or times. Five additional properties (TotalDays, TotalHours, TotalMinutes,
TotalSeconds, and TotalMilliseconds) return decimal values that are not rounded to the nearest interval.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.15. Determining the Day of the Week for a Date

Problem

You want to get a number or a string representing the day of the week for a given date.

Solution

Sample code folder: Chapter 07\ DayOfWeek

Use the Date's DayOfWeek property, which returns a number from 0 (Sunday) to 6 (Saturday) for the day of the week, or
use its ToString() method to return the week-day name. You can also use various string-formatting options of the
String.Format() method to return either the short or longer string name for the day of the week.

Discussion

If you want a number representation of the day of the week, the Date object's DayOfWeek property provides this directly.
By default it returns 0 for Sunday, 1 to 5 for the workdays Monday through Friday, and 6 for Saturday.

To get the name of the weekday, call the DayOfWeek's ToString() method:

 MsgBox(Today.DayOfWeek.ToString())

To get an abbreviated version of the weekday name, apply the "ddd" formatting as you convert the date to a string.
(Use "dddd" for the full weekday name.) The following lines of code demonstrate these techniques:

 Dim rightNow As Date = Now
 Dim weekDay As Integer = rightNow.DayOfWeek
 Dim weekDayShort As String = Format(rightNow, "ddd")
 Dim weekDayLong As String = String.Format("{0:dddd}", _
 rightNow)

 Dim results As String = String.Format(_
 "Today's day of the week: {0}, or {1}, or {2}", _
 weekDay, weekDayShort, weekDayLong)
 MsgBox(results)

Figure 7-15 shows the results as displayed by the message box in the last line of the example code.

Figure 7-15. Getting the day of the week either as a number from 0 to 6 or as a
short or longer string name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.16. Determining the Day of the Year for a Date

Problem

You want to calculate the day of the year for a date, a number in the range 1 to 366.

Solution

Use the Date object's DayOfYear property to get this number directly, with no calculations required.

Discussion

The following code shows how to determine a date's day of the year:

 Dim rightNow As Date = Now
 Dim yearDay As Integer = rightNow.DayOfYear

 Dim results As String = String.Format(_
 "Day of year for {0:D}: {1}", Now, yearDay)
 MsgBox(results)

Figure 7-16 shows the day of the year for a date, as displayed by the message box in the sample code.

Figure 7-16. Determining the day of year for a specific date with the Date object's
DayOfYear property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.17. Determining the Number of Days in a Month

Problem

You want to calculate the number of days in a given month.

Solution

Use the shared function DaysInMonth provided by the Date object. This function returns the number of days in a month,
given the month and year.

Discussion

Unlike the DayOfWeek and DayOfYear properties available on every Date variable, DaysInMonth is a shared function. Instead of
prefixing the call with a specific Date, use the generic Date object to access this function. The following code shows the
correct syntax as it gets the number of days in the current month:

 Dim daysInMonth As Integer = _
 Date.DaysInMonth(Now.Year, Now.Month)
 MsgBox(String.
Format(_
 "Number of days in the current month: {0}", daysInMonth))

Figure 7-17 shows the results as displayed by the message box.

Figure 7-17. Determining the number of days in a given month with the shared
function DaysInMonth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.18. Using Controls to Enter or Select a Date

Problem

You want to add controls to a form to let the user enter or select a date.

Solution

Sample code folder: Chapter 07\DateEntry

Use a text box for easy text entry, a DateTimePicker for a control more tailored to entering a date, or a MonthCalendar control
for a more graphical way to allow the user to select a date.

Discussion

The sample code in this recipe presents a form with all three controls, each of which has its uses, advantages, and
drawbacks. Experiment with them to determine which will work best for your goals.

Figure 7-18 shows the form during development, with the three date-entry controls and three associated Label controls.
As the following code listing shows, changes to the dates in each control are shown in the label control to its right.

Figure 7-18. Three different ways for a user to enter or select a date

The TextBox control is the simplest in the sense that no special property settings are required to define its behavior as a
field for entering dates. Instead, most of the work is done in its TextChanged event:

 Private Sub TextBox1_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TextBox1.TextChanged
 ' ----- Check and display only valid dates.
 If (IsDate(TextBox1.Text) = True) Then
 Label1.Text = Date.Parse(TextBox1.Text).ToShortDateString
 Else
 Label1.Text = ""
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

This event activates whenever any change is made to the TextBox's text. During date entry the incomplete string in this
text box will probably not represent a valid date, so the IsDate() function verifies the entered text before use. If it's not
yet a valid date, Label1 displays nothing, but as soon as the text becomes a valid date, the string is parsed, and the date
is reformatted for display in Label1.

The DateTimePicker control does have some properties you can use to control the interaction with the user. For example,
in this demonstration the control's ShowUpDown property has been set to true to show the little arrows at the end of the
field for incrementing and decrementing the displayed date. The control's Format property has also been set to Short to
display the date in a simplified format.

At runtime, the DateTimePicker control allows the user to highlight one of the three parts of the dateyear, month, or
dayand then use the up and down arrows to scroll through possible values for each. The control's ValueChanged event
activates as the user does so, and the current date is displayed in Label2. Here's the single line of code added to this
event to cause this action:

 Private Sub DateTimePicker1_ValueChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles DateTimePicker1.ValueChanged
 ' ----- Show the selected date.
 Label2.Text = DateTimePicker1.Value.ToShortDateString
 End Sub

The MonthCalendar control provides the user with an even more interactive and graphical way to select a date. When any
date on the displayed calendar is clicked, the control's DateChanged event fires, and the line of code in this event handler
causes Label3 to update with the currently selected date:

 Private Sub MonthCalendar1_DateChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.Windows.
Forms.DateRangeEventArgs) _
 Handles MonthCalendar1.DateChanged
 ' ---- Show the slected date.
 Label3.Text = _
 MonthCalendar1.SelectionStart.ToShortDateString
 End Sub

The TextBox control's text needs to be parsed to become a Date value, but the DateTimePicker and MonthCalendar controls' Value
and SelectionStart properties return Date values directly.

Figure 7-19 shows the form in action as a user is selecting a date using the MonthCalendar control.

Figure 7-19. The MonthCalendar control sports a variety of interactive features
when selecting a date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.19. Calculating the Phase of the Moon

Problem

You want to calculate the phase of the moon for a given date.

Solution

Sample code folder: Chapter 07\MoonPhase

Use Visual Basic 2005's Date and Math functions to apply a linear-fit equation to calculate the phase of the moon,
accurate to within half an hour.

Discussion

The linear curve fit equation presented here was researched and created only recently, using data from the Internet
that provided the date and time of all new moons over a period of several centuries. The results are surprisingly
accurate, and the equation is easy to use, especially with the helpful math and date functions available in Visual Basic.

Here's the MoonPhase() function resulting from the research:

 Public Function MoonPhase(ByVal dateUtc As Date) As Double
 ' ----- Determine the phase of the moon for any date.
 Dim days As Double = dateUtc.Subtract(#1/1/1600#).TotalDays
 Dim cycles As Double = days * 0.03386319 - 12.5
 Return
Math.IEEERemainder(cycles, 1.0) * 29.53059
 End Function

The date for determining the moon's phase is passed to this function as dateUtc, and it should be an exact date and time
value expressed in Coordinated Universal Time. A TimeSpan is calculated by subtracting from the date the literal date
constant for midnight, January 1, 1600. The TotalDays property of the resulting TimeSpan provides the total elapsed days,
complete with a decimal result for the fraction of the day. The decimal number of days is stored in the Double variable
named days.

The heart of this algorithm is in the second line of the function. The number of elapsed days since the start of 1600 is
multiplied by 0.03386319, and an offset of 12.5 days is subtracted from the result. This linear equation provides an
approximate number of full moons since 1600. The fractional part, which cycles through values from 0 to 1 between
successive new moons, is the part that's interesting. Rather than simply extracting the fractional part of cycles, the
Math.IEEERemainder() function returns a value ranging from-0.5 to +0.5, and this value is multiplied by the number of
mean days between full moons to get the number of days, plus or minus, to the closest full moon.

The following code reports the closest new moon using the MoonPhase() function:

 Dim phaseDay As Double
 Dim result As String

 ' ----- Determine the phase of the moon.
 phaseDay = MoonPhase(Now.ToUniversalTime)

 ' ----- Show the nearest new moon.
 result = "UTC is now: " & _
 Now.ToUniversalTime.ToString("u") & vbNewLine & vbNewLine
 If (phaseDay < 0) Then
 result &= "Approx days until new moon: " & _
 (-phaseDay).ToString("F1")
 Else
 result &= "Approx days since new moon: " & _
 phaseDay.ToString("F1")
 End If
 MsgBox(result)

This code converts the current local time to UTC using the ToUniversalTime() method before sending that time to the
moon-phase calculator. Figure 7-20 shows the sample code in use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

moon-phase calculator. Figure 7-20 shows the sample code in use.

Figure 7-20. The moon is waxing and it's about ¼ lit by the sun

After running a curve fit program to compute the equation used earlier, a second program was written to find the
maximum absolute error in time for all new moons in the range of years from 1600 to 2500. Surprisingly, the maximum
drift of the time of new moon was less than half an hour. This equation, even though it's a simple one, is good enough
to allow you to predict when you'll be able to fish, plant, and dance by the light of the moon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.20. Creating a Calendar

Problem

You want to display a full-year calendar on a reasonably sized form.

Solution

Use the MonthCalendar control, dock it to fill its parent form, and size the form large enough that all 12 months appear.

Discussion

The MonthCalendar control normally displays only one month at a time, with buttons and controls to toggle through
neighboring months and years as desired. However, if it's docked to the center of the form ("Fill") or other parent
control, it attempts to fill the area completely. Instead of displaying larger text, the control displays multiple months
either side by side or stacked vertically, depending on which way you stretch the form. Stretch the form a little, and
suddenly the one-month calendar changes to display two months. Keep going, and it will display three, four, or more
months in a rectangular array. At a form size of about 551 pixels wide by 615 pixels high, a full year of a dozen months
displays nicely in a three-across and four-high pattern. Figure 7-21 shows the form at this size.

Figure 7-21. A nice one-year calendar displayed with no code at all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.21. Checking for Leap Years

Problem

You want to check a year to see if it's a leap year.

Solution

Use the shared IsLeapYear() function provided by the Date object to test any year.

Discussion

The IsLeapYear() function returns true if the year passed to it is a leap year and False if it isn't. The following code provides
a working demonstration showing how to call this shared function to test the current year:

 Dim leapYear As Boolean = Date.IsLeapYear(Now.Year)
 MsgBox(String.Format(_
 "{0} is a leap year: {1}", Now.Year, leapYear))

Figure 7-22 shows the results as displayed by the message box.

Figure 7-22. The Date.IsLeapYear function reveals instantly that 2005 is not a leap
year

Because the IsLeapYear() function is a shared function, you must call it directly from the Date object, not from an instance
of a Date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.22. Dates and Times in ISO 8601 Formats

Problem

You want to format a date and time into a string using the ISO 8601 standard, with a "T" separating the date and time
parts and an optional "Z" at the end if Coordinated Universal Time is used.

Solution

Sample code folder: Chapter 07\ISO8601

Use the single-character "s" string-format parameter and concatenate a "Z" if Coordinated Universal Time is used.

Discussion

String formatting in .NET has much of the ISO 8601 standard built in. The "s" string-format parameter creates a date
and time string of the form "yyyy-mm-ddThh:mm:ss," and the "u" format parameter creates the same string minus the
"T" that separates the date and time parts and with a "Z" at the tail end to signify Coordinated Universal Time. The
standard is actually fairly relaxed about the "T" separator requirement, so these two string-formatting parameters cover
most bases. The first two lines of output in Figure 7-23 show the strings created using these formatting parameters.

Figure 7-23. Date and time strings that closely conform to the ISO 8601 standard

One scenario not covered is when you want to include both the "T" separator character and the "Z" at the tail end. As
shown previously, the "s" and "u" formatting parameters give you one or the other but not both. The other scenario not
covered is when you want to drop both the "T" and the "Z" from the string. Fortunately, it's easy to add this
functionality.

The following code was used to create the output shown in Figure 7-23:

 Dim rightNow As Date = Now.ToUniversalTime
 Dim format1 As String = rightNow.ToString("s")
 Dim format2 As String = rightNow.ToString("u")
 Dim format3 As String = rightNow.ToString("s") & "Z"
 Dim format4 As String = rightNow.ToString(_
 "u").Substring(0, 19)

 MsgBox(String.Format(_
 "s: {1}{0}u: {2}{0}T&Z: {3}{0}Neither: {4}", _
 vbNewLine, format1, format2, format3, format4))

To add both the "T" and the "Z" to the formatted string, use the "s" format and concatenate a "Z" to the tail of the
result. format3 in the code and the third line of the output demonstrate this technique.

To eliminate both the "T" and the "Z" from the ISO-formatted string, use the "u" format parameter to create a 20-
character string; then use Substring() to drop the "Z" from the tail end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Arrays and Collections
Introduction

Recipe 8.1. Filling an Array While Declaring It

Recipe 8.2. Sorting Array Elements

Recipe 8.3. Reversing an Array

Recipe 8.4. Inserting into an Array

Recipe 8.5. Shuffling an Array

Recipe 8.6. Swapping Two Array Values

Recipe 8.7. Resizing Arrays Without Losing Existing Values

Recipe 8.8. Quickly Copying Part of an Array into Another

Recipe 8.9. Writing a Comma-Separated-Values File from a String Array

Recipe 8.10. Reading a Comma-Separated-Values File into a String Array

Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional Array

Recipe 8.12. Converting Between Delimited Strings and Arrays

Recipe 8.13. Formatting an Array as a Single String

Recipe 8.14. Iterating Through Array Elements

Recipe 8.15. Passing Arrays to Methods

Recipe 8.16. Returning Arrays from Functions

Recipe 8.17. Creating a Collection

Recipe 8.18. Inserting an Item into a Collection

Recipe 8.19. Deleting a Collection Item

Recipe 8.20. Iterating Through a Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic 2005 makes it very easy to pass arrays and collections into and out of methods. This makes arrays,
collections, and similar objects very useful for efficiently grouping data. Additionally, there are some new and useful
methods for processing arrays that are easy to overlook if you're just moving up from Visual Basic 6.0. Several recipes
in this chapter focus on these methods. For example, arrays have a built-in Sort() method that will sort some or all of the
elements in the array, a feature that had to be coded by hand before .NET.

Generics are also new in Visual Basic 2005, providing a powerful new type-safe way to define collections and other
objects such as lists, stacks, and queues. Generics enable compile-time typing of objects without your having to write
separate classes for each type you want to support. This chapter demonstrates a simple generic collection. Other
chapters provide further examples of generics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.1. Filling an Array While Declaring It

Problem

You want to fill an array with starting values without having to explicitly assign each array element individually.

Solution

You can load an array in the Dim statement using empty parentheses after either the array's name or its type
designation, followed by braces listing the array elements to be assigned.

Discussion

The following line of code creates a one-dimensional array of integers with three elements (elements 0 through 2):

 Dim array1D() As Integer = {1, 2, 3}

A two-dimensional array is only slightly trickier to fill on the spot, requiring nested braces containing the array
elements. You can put the nested braces all on one line, or you can use the underscore line-continuation symbol to
format the data in a more readable layout, such as in the following example:

 Dim array2D(,) As Integer = { _
 {1, 2}, _
 {3, 4}}

For comparison, the following line of code creates exactly the same array:

 Dim array2D(,) As Integer = {{1, 2}, {3, 4}}

Arrays with three or more dimensions are declared in a similar way, with additional commas and curly braces included
as needed:

 Dim array3D(,,) As Integer = _
 {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}

For comparison, the following block of code creates exactly the same three-dimensional array and fills each element
with the same values, but does so using a more traditional method of assigning each individual element:

 Dim array3D(1, 1, 1) As Integer
 array3D(0, 0, 0) = 1
 array3D(0, 0, 1) = 2
 array3D(0, 1, 0) = 3
 array3D(0, 1, 1) = 4
 array3D(1, 0, 0) = 5
 array3D(1, 0, 1) = 6
 array3D(1, 1, 0) = 7
 array3D(1, 1, 1) = 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.2. Sorting Array Elements

Problem

You want to sort the elements of an array.

Solution

Sample code folder: Chapter 08\SortingArrays

Use the Sort() method of the Array class.

Discussion

The Array class has a shared Sort() method that works on arrays of any kind. There are several optional parameters that
let you customize the sorting algorithm for different types of objects, but for arrays of strings and numbers, the name
of the array is generally all you need to pass. The following example creates a string array containing the names of a
few types of fruit, then sorts them into alphabetical order and displays the sorted list of fruit names for review:

 Dim result As New System.Text.StringBuilder
 Dim arrayToSort() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the elements before sorting.
 result.AppendLine("Before sorting:")
 For Each fruit As String In arrayToSort
 result.AppendLine(fruit)
 Next fruit

 ' ----- Show the elements after sorting.
 result.AppendLine()
 result.AppendLine("After sorting:")
 Array.Sort(arrayToSort)
 For Each fruit As String In arrayToSort
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The StringBuilder is first filled with the names of the fruits in the unsorted order used to create the string array. The
Array.Sort() method is invoked to sort the fruits alphabetically, and the sorted fruits are then added to the StringBuilder to
demonstrate the sorted order. Figure 8-1 shows the array before and after the sort.

Figure 8-1. Sorting arrays using the shared Sort() method of the Array class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sorting intrinsic types is simple, but you can also sort custom classes based on any comparison criteria you specify. You
do this by implementing the IComparable interface on the custom class. The following class implements a simple
comparison interface that merges group and item values into a single string for comparison:

 Private Class CustomData
 Implements IComparable

 Public GroupName As String
 Public ItemName As String

 Public Sub New(ByVal theGroup As String, _
 ByVal theItem As String)
 GroupName = theGroup
 ItemName = theItem
 End Sub

 Public Overrides Function ToString() As String
 Return GroupName & ": " & ItemName
 End Function

 Public Function
CompareTo(ByVal obj As Object) As Integer _
 Implements System.IComparable.CompareTo
 ' ----- Compare two records.
 Dim compareValue As String

 ' ----- Since we're just going to compare the ToString
 ' value, no need to convert to CustomData.
 compareValue = obj.ToString()

 ' ----- Return the relative comparison value.
 Return String.Compare(Me.ToString(), compareValue)
 End Function
 End Class

The CompareTo() method returns a negative value if the object itself should come before another object supplied for
comparison, a positive value if the instance should come after, and zero if they are equal. The String object's comparer
was deferred to here, but you can use any complex calculations for comparison.

The following sample sorts an array of CustomData data elements:

 Dim result As New System.Text.StringBuilder
 Dim
arrayToSort() As CustomData = { _
 New CustomData("Fruit", "Orange"), _
 New CustomData("Vegetable", "Onion"), _
 New CustomData("Fruit", "Apple"), _
 New CustomData("Vegetable", "Carrot"), _
 New CustomData("Fruit", "Grape")}

 ' ----- Show the elements before sorting.
 result.AppendLine("Before sorting:")
 For Each food As CustomData In arrayToSort
 result.AppendLine(food.ToString())
 Next food

 ' ----- Show the elements after
sorting.
 result.AppendLine()
 result.AppendLine("After sorting:")
 Array.
Sort(arrayToSort)
 For Each food As CustomData In arrayToSort
 result.AppendLine(food.ToString())
 Next food

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2 shows the output from this code.

Figure 8-2. Sorting custom data using the IComparable interface

See Also

Recipe 8.3 shows how to reverse the elements of an array, and Recipe 8.5 shows how to randomly rearrange the
elements of an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.3. Reversing an Array

Problem

You want to reverse the order of the elements in an array. This might be useful, for instance, immediately after sorting
an array to change the sort order from ascending to descending.

Solution

Sample code folder: Chapter 08\ArrayReversal

The Array class provides a shared Reverse() method that reverses the order of its elements.

Discussion

The Array.Reverse() method reverses an array, whether its elements have been sorted first or not. The following code fills
a string array with a few fruit names, in no special order. The Array.Reverse() method then reverses the order of the
array's elements:

 Dim result As New System.Text.StringBuilder
 Dim arrayReverse() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the elements before reversal.
 result.AppendLine("Before reversing:")
 For Each fruit As String In arrayReverse
 result.AppendLine(fruit)
 Next fruit

 ' ----- Show the elements after reversal.
 result.AppendLine()
 result.AppendLine("After reversing:")
 Array.Reverse(arrayReverse)
 For Each fruit As String In arrayReverse
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The StringBuilder fills first with the strings from the original array, then with the reversed array's contents for comparison.
Figure 8-3 shows the results as displayed by the StringBuilder in the message box.

Figure 8-3. Reversing the contents of an array with the shared Array.Reverse()
method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 8.2 shows another method of arranging the elements of an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.4. Inserting into an Array

Problem

You need to insert a new value at an arbitrary location in the middle of an array.

Solution

Sample code folder: Chapter 08\ArrayInsertion

Unlike some of the collection classes in .NET, arrays do not include a method that lets you insert an element in the
middle of an array. Instead, you have to create a new array and copy the elements of the original array into it,
reserving space for the new element. The code in this recipe implements such a method.

Discussion

Because arrays can be created using any data type, we will require a generic method capable of handling any data:

 Public Sub InsertArrayElement(Of T) (_
 ByRef sourceArray() As T, _
 ByVal insertIndex As Integer, _
 ByVal newValue As T)
 ' ----- Insert a value in the middle of an array.
 Dim newPosition As Integer
 Dim counter As Integer

 ' ----- Get a valid positon, checking for boundaries.
 newPosition = insertIndex
 If (newPosition < 0) Then newPosition = 0
 If (newPosition > sourceArray.Length) Then _
 newPosition = sourceArray.Length

 ' ----- Make room in the array.
 Array.Resize(sourceArray, sourceArray.Length + 1)

 ' ----- Move the after-index items.
 For counter = sourceArray.Length - 2 To newPosition Step -1
 sourceArray(counter + 1) = sourceArray(counter)
 Next counter

 ' ----- Store the new element.
 sourceArray(newPosition) = newValue
 End Sub

The code stretches the initial array, making it one position larger. It then shifts some of the elements one position
higher to make room for the new element. Finally, it saves the new element at the desired position.

To use this method, pass it an array of any type, and also indicate the type used for the generic parameter.

You can insert the new value at position 0, just before the very first element, or at a position one greater than the
maximum current index of the array. Insert positions outside this range adjust themselves to fit the valid range.

The following example demonstrates calling the InsertArrayElement() method by first creating a string array of fruit names
and then inserting an element in the middle:

 Dim result As New System.Text.StringBuilder
 Dim arrayInsert() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the contents before insertion.
 result.AppendLine("Before insertion:")
 For Each fruit As String In arrayInsert

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each fruit As String In arrayInsert
 result.AppendLine(fruit)
 Next fruit

 ' ----- Insert more fruit.
 InsertArrayElement(Of String)(arrayInsert, 2, "Lemons")

 ' ----- Show the contents after insertion.
 result.AppendLine()
 result.AppendLine("After insertion:")
 For Each fruit As String In arrayInsert
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The string "Lemons" is inserted at position 2 (counting from zero) in the array. The results are shown in Figure 8-4.

Figure 8-4. Inserting values into an array

See Also

Recipe 8.7 also discusses adding elements to an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.5. Shuffling an Array

Problem

You want to randomize the order of the elements in an array efficiently.

Solution

Sample code folder: Chapter 08\ShuffleArray

Write a routine that randomly rearranges the elements of an array. The code in this recipe does this using an array of
any data type.

Discussion

The Shuffle() method presented here swaps each element of the array with a randomly selected element from elsewhere
in the array. Sometimes this may cause an element to be swapped with itself, but that doesn't make the results any
less random. By sequencing through all elements, the algorithm guarantees that each one will be swapped at least
once:

 Public Sub Shuffle(ByRef shuffleArray() As Object)
 ' ----- Reorder the elements of an array in a random order.
 Dim counter As Integer
 Dim newPosition As Integer
 Dim shuffleMethod As New Random
 Dim tempObject As Object

 For counter = 0 To shuffleArray.Length - 1
 ' ----- Determine the new position.
 newPosition = shuffleMethod.Next(0, _
 shuffleArray.Length - 1)

 ' ----- Reverse two elements.
 tempObject = shuffleArray(counter)
 shuffleArray(counter) = shuffleArray(newPosition)
 shuffleArray(newPosition) = tempObject
 Next counter
 End Sub

The following code creates a string array of fruit names, shuffles the array, and displays the array contents both before
and after the shuffling:

 Dim result As New System.Text.StringBuilder
 Dim arrayShuffle() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the pre-random results.
 result.AppendLine("Before shuffling:")
 For Each fruit As String In arrayShuffle
 result.AppendLine(fruit)
 Next fruit
 ' ----- Randomize.
 Shuffle(arrayShuffle)

 ' ----- Show the post-random results.
 result.AppendLine()
 result.AppendLine("After
shuffling:")
 For Each fruit As String In arrayShuffle
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

Figure 8-5 shows the results from running the sample code, listing the array's contents before and after the shuffling.
Your output may vary due to the random nature of the test.

Figure 8-5. Randomizing an array's elements with the Shuffle() method

See Also

Recipe 8.6 uses a portion of this recipe's code to generically reverse two array elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.6. Swapping Two Array Values

Problem

You want to swap the contents of any two elements in an array.

Solution

Sample code folder: Chapter 08\SwapArrayElements

Write a custom method that reverses the positions of two specific array elements. The code in this recipe implements a
Swap() method that does just that.

Discussion

The Swap() method accepts an array of any data type, plus the positions of two elements to swap. After doing some
boundary checking, it reverses the elements:

 Public Sub Swap(ByRef swapArray() As Object, _
 ByVal first As Integer, ByVal second As Integer)
 ' ----- Reverse two elements of an array.
 Dim tempObject As Object

 ' ----- Check for invalid positions.
 If (first < 0) Then Return
 If (first >= swapArray.Length) Then Return
 If (second < 0) Then Return
 If (second >= swapArray.Length) Then Return
 If (first = second) Then Return

 ' ----- Reverse two elements.
 tempObject = swapArray(first)
 swapArray(first) = swapArray(second)
 swapArray(second) = tempObject
 End Sub

Several lines of this code simply check to make sure the indexes into the array are valid. If they are out of range, no
swapping takes place.

The following code demonstrates the Swap() method by creating a string array of fruit names and swapping the contents
at the first and third indexes into the array. The ArrayHelper is instanced to accept string parameters, and the string array
is passed to its Swap() method:

 Dim result As New System.Text.StringBuilder
 Dim arraySwap() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the pre-swap data.
 result.AppendLine("Before swap:")
 For Each fruit As String In arraySwap
 result.AppendLine(fruit)
 Next fruit

 ' ----- Swap two elements.
 Swap(arraySwap, 1, 3)

 ' ----- Show the post-swap data.
 result.AppendLine()
 result.AppendLine("After swap:")
 For Each fruit As String In arraySwap
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

Figure 8-6 shows the array's contents before and after elements 1 and 3 are swapped. Notice that the array elements
start at zero, so the swap is between the second and fourth values in the array.

Figure 8-6. Swapping two array elements with the Swap() method

See Also

Recipe 8.5 shows how to randomly rearrange the contents of an entire array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.7. Resizing Arrays Without Losing Existing Values

Problem

You want to add an unknown number of elements to an array, resizing the array as needed, but you don't want to lose
any data in the process.

Solution

Sample code folder: Chapter 08\SwapArrayElements

Visual Basic 2005 provides the ReDim Preserve command to resize an array without losing any of the array's current
contents.

Discussion

Actually, you can lose some contents of an array using ReDim Preserve, but only if you are decreasing the array's size.
ReDim Preserve is most often used to grow an array, and it is ideal for adding new elements on the fly, without losing any
data already in the array.

For example, the following code creates an integer array and then loops to grow it one element at a time. A number is
stored in each new array element as the array grows:

 Dim result As New System.Text.StringBuilder
 Dim growingArray() As String = Nothing

 ' ----- Add elements to the array.
 For counter As Integer = 0 To 2
 ReDim Preserve growingArray(counter)
 growingArray(counter) = (counter + 1).ToString
 Next counter

 ' ----- Display the results.
 For Each workText As String In growingArray
 result.AppendLine(workText)
 Next workText
 MsgBox(result.ToString())

Figure 8-7 displays the simple integer array that was resized, one element at a time, to hold the three numbers shown.

Figure 8-7. Resizing an array on the fly with ReDim Preserve

One nice thing about ReDim Preserve is that it works with arrays that are empty or set to Nothing, as shown in the sample
code.

The Array object's Resize() method provides similar functionality.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.4 shows how to insert elements into the middle of an existing array, instead of just at the end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.8. Quickly Copying Part of an Array into Another

Problem

You want to copy elements of one array into another without having to move the items one at a time.

Solution

Sample code folder: Chapter 08\ CopyingArrays

Use the Array.Copy() method to copy a sequential subset of one array to another array of the same type. Or, if the entire
array is to be copied, use the array's Clone() method. Assign one array directly to another only if you want both variables
to reference the same contents in memory.

Discussion

This recipe explores several ways to copy elements from one array to another, and one way that appears to do a copy
but doesn't. It's important to know the difference between these various techniques. The following block of code
demonstrates all of them and displays the results in a message box:

 Dim result As New System.Text.StringBuilder

 Dim arrayA() As String = _
 {"One", "Two", "Three", "Four", "Five", "Six"}
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

 Dim arrayB() As String = _
 {"A", "B", "C", "D", "E", "E", "F", "G", "H"}
 result.AppendLine()
 result.Append("arrayB: ").AppendLine(Join(arrayB, ","))

 ' ----- Make a reference copy.
 Dim arrayC() As String = arrayA
 result.AppendLine()
 result.AppendLine("Dim arrayC() As String = arrayA")
 result.Append("arrayC: ").AppendLine(Join(arrayC, ","))

 arrayC(4) = "Was a five here"
 result.AppendLine()
 result.AppendLine("arrayC(4) = ""Was a five here""")
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

 ' ----- Make a full, unique copy of all elements.
 Dim arrayD() As String = arrayA.Clone
 result.AppendLine()
 result.AppendLine("Dim arrayD() As String = arrayA.Clone")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

 ' ----- Copy elements by position.
 Array.Copy(arrayB, 0, arrayD, 1, 3)
 result.AppendLine()
 result.AppendLine("Array.Copy(arrayB, 0, arrayD, 1, 3)")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

 MsgBox(result.ToString())

Let's break down this code into smaller chunks so we can take a closer look. The first three sections create two string
arrays, arrayA and arrayB, containing simple strings so we can follow the action later. The first line of the next section is
where it gets interesting:

 Dim arrayC() As String = arrayA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This appears to be an array copy command, but it isn't. The two array names both reference the same contents in
memory. In other words, the reference to the array is copied, not the array itself. The code in the next section
demonstrates this clearly:

 arrayC(4) = "Was a five here"
 result.AppendLine()
 result.AppendLine("arrayC(4) = ""Was a five here""")
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

The new string is assigned to arrayC(4), but when the contents of arrayA are formatted for display the new string appears
there, too. As Figure 8-8 shows, the new string appears as an element of both arrayA and arrayC.

Figure 8-8. Various ways to copy data between arrays

The next-to-last code section demonstrates the proper way to truly copy an entire array to another. The array's Clone()
method returns a clone, or identical duplicate, of the original array. The result is that the array's contents are copied to
a new place in memory. In the example code, the reference to the cloned copy of the array is assigned to arrayD:

 Dim arrayD() As String = arrayA.Clone
 result.AppendLine()
 result.AppendLine("Dim arrayD() As String = arrayA.Clone")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

Finally, the last code section demonstrates the use of the Array class's Copy() method to copy part of one array to
another. In this case both arrays must exist before the copy, and the indexes must point to real locations within the
arrays. There are several overloaded versions of the Copy() method. The version shown here lets you move array
elements starting at a given indexed position to any position in the destination array, and the number of elements to
copy limits how much data is copied:

 Array.Copy(arrayB, 0, arrayD, 1, 3)
 result.AppendLine()
 result.AppendLine("Array.Copy(arrayB, 0, arrayD, 1, 3)")
 result.Append("arrayD: ").AppendLine(
Join(arrayD, ","))

arrayB's contents, starting at index 0, are copied into arrayD, starting at index 1, and three items are copied. If you've
followed along carefully as these sections of code manipulate the contents of the arrays, you'll see that the result shown
in Figure 8-8 does verify this copy action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.9. Writing a Comma-Separated-Values File from a String
Array

Problem

You need to write data stored in an array to a comma-separated-values (CSV) file. This is often done to provide input
to Excel.

Solution

Sample code folder: Chapter 08\CreateCSVFiles

Use the String class's Join() method to concatenate array contents into strings, using a comma as the character to insert
at the join points. Then write the string or strings to a file using the WriteAllText() method provided by the
My.Computer.FileSystem object.

Discussion

In many cases you'll have several data items that you want to appear in each of several rows of a spreadsheet. This is
accomplished by separating each data item in each row with a comma, and separating the rows from each other using
newline characters. The following code demonstrates various ways to accomplish this. headings is a string array
containing three words. The Join() method concatenates this array into a single string with commas separating each
word. To simplify the example, several more similar comma-separated strings are concatenated to the string, each
separated with vbNewLine characters. The resulting string is written to a file named Test.csv in a single command using
the My.Computer.FileSystem.WriteAllText() method:

 Dim result As New System.Text.StringBuilder
 Dim headings() As String = {"Alpha", "Beta", "Gamma"}
 Dim workText As String = String.Join(",", headings)
 ' ----- Prepare the raw data.
 workText &= vbNewLine
 workText &= "1.1, 2.3, 4.5" & vbNewLine
 workText &= "4.2, 7.9, 3.1" & vbNewLine
 workText &= "3.5, 2.2, 9.8" & vbNewLine

 ' ----- Convert it to CSV and save it to a file.
 Dim filePath As
String = _
 My.Computer.FileSystem.CurrentDirectory & "\Test.csv"
 My.Computer.FileSystem.WriteAllText(filePath, workText, False)
 result.Append("File written: ")
 result.AppendLine(filePath)
 result.AppendLine()
 result.AppendLine("File contents:")
 result.Append(workText)

 MsgBox(result.ToString())

The remaining lines of example code display the new Test.csv file contents, as shown in Figure 8-9.

Figure 8-9. Writing CSV files from array data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 8.10 is the reverse of this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.10. Reading a Comma-Separated-Values File into a String
Array

Problem

You need to read a CSV file into an array.

Solution

Sample code folder: Chapter 08\ReadCSVFiles

Use the Split() function to parse the file's content to fill an array.

Discussion

Today's computers generally have a lot of memory, which often allows entire files to be read into a single string in one
operation. If you have an extremely large CSV file, you might want to read the file one line at a time. In either case,
the Split() function provides a great tool for parsing the comma-separated values so they can be copied into an array.

The following code reads the entire file created in the previous recipe into a single string, and then splits this string into
an array of strings, lineData, using the newline characters as the split point. Each line is then further split at the comma
character separating individual words. If the CSV file contains numbers, this is the point where each "word" of the text
from the file could be converted to Double, Integer, or whatever type is appropriate. In this example, however, the words
are simply reformatted for display and verification in a message box:

 Dim result As New System.Text.StringBuilder
 Dim wholeFile As String
 Dim lineData() As String
 Dim fieldData() As String

 ' ----- Read in the file.
 Dim filePath As String = _
 My.Computer.FileSystem.CurrentDirectory & "\Test.csv"
 wholeFile = My.Computer.FileSystem.ReadAllText(filePath)

 ' ----- Process each line.
 lineData = Split(wholeFile, vbNewLine)
 'OR: lineData = wholeFile.Split(New String() {vbNewLine}, _
 ' StringSplitOptions.None)
 For Each lineOfText As String In lineData
 ' ----- Process each field.
 fieldData = lineOfText.Split(",")
 For Each wordOfText As String In fieldData
 result.Append(wordOfText)
 result.Append(Space(1))
 Next wordOfText
 result.AppendLine()
 Next lineOfText

 MsgBox(result.ToString())

String objects have a Split() method, and Visual Basic 2005 also provides a Split() function. Notice the commented-out line
in the previous code. This line demonstrates how workText can be split using the string's Split() method instead of using
the Split() function, and it's useful to compare that line with the line just above it. In both cases linedata is filled with the
lines of the file, but the syntax is different for these two Split() variations. With the string Split() method, only individual
characters or an array of strings can be designated for the split point. In other words, you'll run into trouble if you try to
split the lines in the following way:

 lineData = workText.Split(vbNewLine, StringSplitOptions.None)

The special constant vbNewLine is actually two characters in length (carriage return and line feed), and the resulting
strings will all still contain one of these two characters. It took considerable time and effort to debug the rather strange
results when we first encountered this problem. To avoid it, pass an array of multicharacter strings to the string Split()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

results when we first encountered this problem. To avoid it, pass an array of multicharacter strings to the string Split()
method, as shown in the commented-out line in the code above, or use the Visual Basic 2005 Split() function, which has
a simpler syntax and does accept multicharacter strings for the split point. Figure 8-10 shows the result of running the
example code.

Figure 8-10. Parsing CSV files into arrays using Split()

See Also

Recipe 8.9 shows the reverse of this recipe.

Recipe 8.12 discusses the differences between the Split() function and the Split() method in more detail. Also, see Recipe
5.44 for more on the Split() function and method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional
Array

Problem

You want to store data in a two-dimensional array, but the number of items in each row varies. You don't want to
dimension the array for the longest row and waste a lot of space in the array.

Solution

Sample code folder: Chapter 08\MultivalueArray

Instead of creating a two-dimensional array, create an array of arrays, sometimes referred to as a multivalue array.

Discussion

A two-dimensional array is identified by its single pair of parentheses containing one comma separating the two
indexes. A multivalue array has two sets of parentheses, and the contents are stored as one-dimensional arrays stored
in the elements of another one-dimensional array. The following code demonstrates a multivalue array containing three
string arrays of varying lengths:

 Dim result As New System.Text.StringBuilder
 Dim multiValue(2)() As String
 Dim counter1 As Integer
 Dim counter2 As Integer

 ' ----- Build the multivalue array.
 multiValue(0) = New String() {"alpha", "beta", "gamma"}
 multiValue(1) = New String() _
 {"A", "B", "C", "D", "E", "F", "G", "H"}
 multiValue(2) = New String() {"Yes", "No"}

 ' ----- Format the array for display.
 For counter1 = 0 To multiValue.Length - 1
 For counter2 = 0 To multiValue(counter1).Length - 1
 result.Append(multiValue(counter1)(counter2))
 result.Append(Space(1))
 Next counter2
 result.AppendLine()
 Next counter1

 MsgBox(result.ToString())

Inside the nested For loops is a line where each string from the array of arrays is accessed to form the results displayed
in Figure 8-11. Two pairs of parentheses are used to index the specific string stored in the multivalue array:

 multiValue(counter1)(counter2)

Figure 8-11. Using multivalue arrays to store a variable number of items in each
row of a two-dimensional array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

row of a two-dimensional array

A true two-dimensional array element would be accessed with a pair of indexes within one set of parentheses, as in the
following:

 twoDimArray(counter1, counter2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.12. Converting Between Delimited Strings and Arrays

Problem

You have a string that contains data delimited by one or more characters, and you want to divide the parts into an
array. Or you want to reverse the process, moving array elements into a delimited string.

Solution

Sample code folder: Chapter 08\SplitAndJoin

The Split() and Join() functions provided as part of the Visual Basic 2005 language, and the similar Split() and Join() methods
of the string data type, provide a flexible and powerful way to manipulate string arrays.

Discussion

The Split() and Join() functions and methods are described in Chapter 5, which deals with strings, but here they are
presented in the context of how they add useful functionality when working with string arrays.

Split() operates on a single string and returns a string array comprised of pieces of the original string split apart at the
designated points. You can split the string at all occurrences of a given single character, at any occurrence of any single
character in an array of characters, at any occurrence of any multicharacter string in a string array, or at any
occurrence of a single multicharacter string. The overloaded versions of these methods provide considerable flexibility.

You do need to be careful when splitting a string at all occurrences of a single multi-character string. The string Split()
method accepts a single string as the split parameter, but it uses only the first character of the string to define where to
do the split. To use any multicharacter string for the split point, you must pass an array of strings instead of a single
string. The string array can have just one string in it, but it must be an array in order to work as expected. (The Visual
Basic 2005 Split() function doesn't have this limitation.)

To illustrate this, the following code splits a string at all occurrences of "en" and joins it again using Join(). The string to
insert at the join points is "EN". This effectively uppercases all occurrences of "en" in the string. The string array
splitArray() is the string array created by the split:

 Dim workText As String
 workText = _
 "This sentence will have all ""en"" characters uppercased."
 Dim splitArray() As String = {"en"}
 Dim workArray() As String = _
 workText.Split(splitArray, StringSplitOptions.None)
 workText = String.Join("EN", workArray)
 MsgBox(workText)

Figure 8-12 shows the result.

Figure 8-12. Using Split() and Join() to replace all occurrences of a substring

There is a better way to replace all occurrences of a substring with another one: use the
Replace() function. The following line of code has the same result as the previous code:

 workText = Replace(workText, "en", "EN")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 workText = Replace(workText, "en", "EN")

See Also

See Recipe 5.18 and Recipe 5.44 for more on the Split() and Join() functions and methods. Recipe 5.16 gives an example
of using the Replace() function to replace all occurrences of a given substring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.13. Formatting an Array as a Single String

Problem

You want to format the contents of an array into a string, but the ToString() method returns only a string description of
the array reference.

Solution

Sample code folder: Chapter 08 \PrintArrays

Build generic helper routines that format the contents of an array nicely.

Discussion

The ToString() method all objects inherit from System.Object is ideal in most cases; it gives you a quick and simple string
representation of any object's contents. However with arrays, the ToString() method returns a description of the array,
rather than a listing of its contents. This makes sense in that the array variable name contains a reference, not data,
but it makes it tricky to get a listing of the array's contents.

The following code demonstrates how to format the contents of both one-and two-dimensional arrays generically. The
two ToBracedString() functions accept an appropriately sized array and return a string with braces surrounding the array
elements. The braces, data items, and separating commas are formatted in the same way as required when initializing
an array in code. For example, output from this function for a two-dimensional array will have nested braces to indicate
the layout of the array's rows and columns.

Here are the ToBracedString() functions used to display one-and two-dimensional arrays:

 Public Function ToBracedString(Of T)(ByVal sourceArray() _
 As T) As String
 ' ----- Display the contents of a one-dimensional array.
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 result.Append("{")
 For counter = 0 To sourceArray.Length - 1
 result.Append(sourceArray(counter).ToString())
 If (counter < (sourceArray.Length - 1)) Then _
 result.Append(",")
 Next counter
 result.Append("}")

 Return result.ToString()
 End Function

 Public Function ToBracedString(Of T)(ByVal sourceArray(,) _
 As T) As String
 ' ----- Display the contents of a two-dimensional array.
 Dim result As New System.Text.StringBuilder
 Dim counter1 As Integer
 Dim counter2 As Integer
 Dim rank1Size As Integer = sourceArray.GetLength(0)
 Dim rank2Size As Integer = sourceArray.GetLength(1)

 result.Append("{")
 For counter1 = 0 To sourceArray.GetLength(0) - 1
 result.Append("{")
 For counter2 = 0 To rank2Size - 1
 result.Append(sourceArray(counter1, _
 counter2).ToString())
 If (counter2 < (rank2Size - 1)) Then _
 result.Append(",")
 Next counter2
 result.Append("}")
 If (counter1 < (rank1Size - 1)) Then result.Append(",")
 Next counter1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next counter1
 result.Append("}")

 Return result.ToString()
 End Function

In the following code, two arrays are created and initialized with sample data, and their contents, as returned by
ToBracedString(), are displayed for review:

 Dim result As New System.Text.StringBuilder
 Dim arrayA() As Integer = {1, 2, 3}
 Dim arrayB(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

 ' ----- Show the typical ToString results.
 result.AppendLine("arrayA.ToString… ")
 result.AppendLine(arrayA.ToString)
 result.AppendLine()

 ' ----- Format arrayA nicely.
 result.AppendLine("ToBracedString(arrayA)… ")
 result.AppendLine(ToBracedString(Of Integer)(arrayA))
 result.AppendLine()

 ' ----- Format arrayB nicely.
 result.AppendLine("ToBracedString(arrayB)… ")
 result.Append(ToBracedString(Of Integer)(arrayB))

 MsgBox(result.ToString())

Compare the braced initialization strings in the first few lines of the previous code with the output as shown in Figure 8-
13. The goal was to duplicate the same simple format.

Figure 8-13. Using the ToBracedString() functions to format the contents of an
array

See Also

Recipe 8.1 shows how to properly format new array content in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.14. Iterating Through Array Elements

Problem

You want to process all the elements of an array without the overhead of creating extra variables, and you'd like to
minimize the scope of all working variables.

Solution

Sample code folder: Chapter 08\ForEachLoops

Use the For Each looping construct to process each element of an array.

Discussion

The following code creates a simple string array of fruit names, then processes each string in the array inside a For Each
loop:

 Dim result As New System.Text.StringBuilder
 Dim fruitArray() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 For Each fruit As String In fruitArray
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The For Each line declares a temporary variable named fruit that exists only for the duration of the For Each loop. This ties
the variable name closely to the processing going on locally and frees up resources as soon as that processing is
completed. Also, there is no need to access the length of the array to control the looping because the loop implicitly
processes all elements, no matter what the array's size is. (The standard For loop syntax requires a separate counting
variable and access to the array's length.) Figure 8-14 shows the results displayed by the example code.

Figure 8-14. Processing arrays with For Each loops

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.15. Passing Arrays to Methods

Problem

You want to pass and return arrays to and from methods as easily as other simple variable types.

Solution

Sample code folder: Chapter 08\ArrayParameters

Unlike Visual Basic 6.0, in Visual Basic 2005 it's easy to pass and return any type of object, including arrays.

Discussion

The following code provides a fun example by passing a string array to a function that returns an even bigger string
array. The names of the four card suits are placed in a small string array. This array is passed to FillDeckOfCards(), which
creates and returns a string array containing the names of all the cards in a deck:

 Dim result As New System.Text.StringBuilder
 Dim suits() As String = {"Spades", "Hearts", "Diamonds", "Clubs"}
 Dim cardDeck() As String = FillDeckOfCards(suits)

 Shuffle(cardDeck)
 For counter As Integer = 0 To 6
 result.AppendLine(cardDeck(counter))
 Next counter

 MsgBox(result.ToString())

The Shuffle() method (designed in Recipe 8.5) shuffles the returned array, and the first seven cards in the array are
displayed for review, as shown in Figure 8-15. Of course, your results will vary based on the state of your random
number generator.

Figure 8-15. Passing and returning arrays

The FillDeckOfCards() function is passed a string array and returns one, too:

 Public Function FillDeckOfCards(ByVal suit As String()) As String()
 Dim deck(51) As String
 Dim cardNumber As Integer
 Dim suitNumber As Integer

 For counter As Integer = 0 To 51
 cardNumber = counter Mod 13
 suitNumber = counter \ 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 suitNumber = counter \ 13
 Select Case cardNumber
 Case 0
 deck(counter) = "Ace of "
 Case 10
 deck(counter) = "Jack of "
 Case 11
 deck(counter) = "Queen of "
 Case 12
 deck(counter) = "King of "
 Case Else
 deck(counter) = cardNumber.ToString & " of "
 End Select
 deck(counter) &= suit(suitNumber)
 Next counter
 Return deck
 End Function

You may pass and return objects in Visual Basic 2005, a process similar to using Variants in Visual Basic 6.0. But in
general, it is better to pass and return explicitly typed arrays, as in the example presented here. This prevents the
runtime overhead required for constantly converting variable types, and it helps the compiler determine at compile time
if you're attempting to pass incompatible data. In general, consider overloaded methods and generics as two ways to
enhance the flexibility of methods, while optimizing the compile- and runtime operations.

See Also

Recipe 8.16 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.16. Returning Arrays from Functions

Problem

You want to return an array from a function.

Solution

Sample code folder: Chapter 08\FunctionArrays

Declare the function to return an array of the desired type and do so in the function's Return statement.

Discussion

This recipe is very similar to Recipe 8.15, but the lesson is worth repeating: arrays of any type and size are easily
passed to and returned from methods. The following example demonstrates a function that returns an array of 16
hexadecimal characters. The array is joined into a string and displayed for review in a message box, as shown in Figure
8-16:

 Dim result As New System.Text.StringBuilder
 result.Append("Hexadecimal characters: ")
 result.Append(String.Join(",", HexadecimalCharacters()))
 MsgBox(result.ToString())

Figure 8-16. Returning an array of hexadecimal characters from a function

The HexadecimalCharacters() function includes a set of parentheses at the very end of the function declaration. This
indicates that the function will return a string array and not just an ordinary string. The Return statement near the end of
the function returns the string array hexChars():

 Public Function HexadecimalCharacters() As String()
 ' ----- Return the first 16 hex numbers as an array.
 Dim hexChars(15) As String

 For counter As Integer = 0 To 15
 hexChars(counter) = Hex(counter)
 Next counter
 Return hexChars
 End Function

See Also

Recipe 8.15 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.17. Creating a Collection

Problem

You want a simple example of a collection to demonstrate the basics of using the collection object.

Solution

Sample code folder: Chapter 08\ Collections

This recipe provides a simple example collection to use as a starting point for further explorations of the topic.

Discussion

Collections provide capabilities similar to those of arrays, but they have some advantages. A collection is inherently
more dynamic and allows the insertion and deletion of items, and it can be resized without loss of any current contents.
You can do these same tasks with arrays, but collections make the whole process much simpler and more
straightforward.

The following example creates a collection of strings. Each string(in this case they are all just simple words) is added to
the collection using the collection's Add() method. After all words are added to the collection, its entire contents are
retrieved for display and review, as shown in Figure 8-17:

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Build the collection.
 wordCollection.Add("This")
 wordCollection.Add("is")
 wordCollection.Add("a")
 wordCollection.Add("collection")
 wordCollection.Add("of")
 wordCollection.Add("words")

 ' ----- Display the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

Figure 8-17. A collection of strings

As with arrays, you can retrieve each item from the collection using an index, or you can use the For Each loop, as shown
in this example. Unlike with arrays, however, you can optionally pass a key string to the Add() method to provide a way
to retrieve items from a collection based on their keys.

You can store varying types of data in the same collection. This provides some flexibility, but in most cases you should
store only the same type of data in any single collection. Methods you write to process the collection's data will need to
handle whatever data type is stored in the collection, so keeping it consistent greatly simplifies the coding
requirements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requirements.

If data-type issues become a problem with your collections, consider using the new generic collections instead.

See Also

Recipes 8.18, 8.19, through 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.18. Inserting an Item into a Collection

Problem

You want to insert a new item in the middle of a collection, rather than just adding it to the end of the collection.

Solution

Sample code folder: Chapter 08\Collections

Use the Add() method, but include its optional parameters to control the insertion point.

Discussion

The Add() method by default appends items to the end of a collection, but optional parameters can modify this behavior.
Here's the general syntax of the Add() method:

 variable.Add(content, key, before, after)

All parameters other than content are optional, and you can't supply values for both before and after in the same
statement. before and after represent the element positions before or after which the new item should be inserted. In the
next code example, the word "slightly" is inserted after position 3 because the after parameter passed to the Add()
method is a 3. The word "longer" is then inserted into the collection before the fifth position, because the before
parameter of the Add() method is a 5:

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Start with a basic collection.
 wordCollection.Add("This")
 wordCollection.Add("is")
 wordCollection.Add("a")
 wordCollection.Add("collection")
 wordCollection.Add("of")
 wordCollection.Add("words")

 ' ----- Insert a word after item 3.
 wordCollection.Add("slightly", , , 3)

 ' ----- Insert a word before item 5.
 wordCollection.Add("longer", , 5)

 ' ----- Display the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

The results of these two "before and after" additions into the collection are shown in Figure 8-18.

Figure 8-18. Using a collection's Add() method to insert items at a given point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 8.17, 8.19, and 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.19. Deleting a Collection Item

Problem

You need to delete an item from a collection.

Solution

Sample code folder: Chapter 08\Collections

Use the collection's Remove() method, passing either the position of the item or its key string.

Discussion

The following example fills a collection with several words using "key strings," identifiers that provide an optional way to
specify each item. The item at index position 5 is then removed, followed by the item with key "six":

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Start with a basic collection.
 wordCollection.Add("This", "one")
 wordCollection.Add("is", "two")
 wordCollection.Add("a", "three")
 wordCollection.Add("collection", "four")
 wordCollection.Add("of", "five")
 wordCollection.Add("words", "six")

 ' ----- Remove an element by position.
 wordCollection.Remove(5)

 ' ----- Remove an element by key.
 wordCollection.Remove("six")

 ' ----- Dipslay the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

Once item number 5 is removed, the item at position 6 moves to position 5. This means that removing items 5 and 6
both by number wouldn't work; you would need to remove the item at position 5 twice in a row. This hints at the
usefulness of using key strings to uniquely identify each item, especially when items might be freely added to or
removed from the collection over time. Figure 8-19 shows the contents of the collection after the two items are
removed.

Figure 8-19. The Remove() method removes items from a collection by position or
by key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 8.17, 8.18, and 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.20. Iterating Through a Collection

Problem

You want to process all the items in a collection one at a time.

Solution

Sample code folder: Chapter 08\Collections

Use a For Each loop, or use the collection's Count property in a For…Next loop.

Discussion

The For Each loop is the recommended way to process items in a collection because you don't need an index variable,
you don't have to access the Count property of the collection, and each item in the collection is automatically retrieved
(i.e., you don't have to explicitly access each indexed item).

The following code shows both a For…Next loop and a For Each loop used to access the same collection. Each loop creates a
single line of the output display, showing the contents of each item in the collection:

 Dim result As New System.Text.StringBuilder
 Dim numberCollection As New Collection

 ' ----- Start with a basic collection.
 numberCollection.Add(14, "C")
 numberCollection.Add(25, "D")
 numberCollection.Add(36, "E")
 numberCollection.Add(47, "A")
 numberCollection.Add(58, "B")

 ' ----- Scan the collection with a loop counter.
 ' Collections are base-1, not base-0.
 For counter As Integer = 1 To numberCollection.Count
 result.Append(numberCollection(counter))
 result.Append(",")
 Next counter

 ' ----- Remove the ending comma.
 result.Length -= 1
 result.AppendLine()

 ' ----- Scan the collection by item.
 For Each number As Integer In numberCollection
 result.Append(number)
 result.Append(",")
 Next number

 ' ----- Remove the ending comma.
 result.Length -= 1
 result.AppendLine()

 ' ----- Retrieve items by key.
 result.Append(numberCollection("A")).Append(",")
 result.Append(numberCollection("B")).Append(",")
 result.Append(numberCollection("C")).Append(",")
 result.Append(numberCollection("D")).Append(",")
 result.Append(numberCollection("E"))

 ' ----- Display the results.
 MsgBox(result.ToString())

The third line of the output is the same collection accessed in the order of the item keys, instead of the default order,
which is based on the item positions in the collection. Figure 8-20 shows the collection's items as accessed in each of
these three ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these three ways.

Figure 8-20. Items in a collection can be accessed with For Next or For Each loops
or by the item keys

See Also

Recipes 8.17, 8.18, through 8.19 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Graphics

Introduction

Recipe 9.1. Creating Graphics Objects

Recipe 9.2. Drawing on Controls for Special Effects

Recipe 9.3. Letting the User Select a Color

Recipe 9.4. Working with Coordinate Systems (Pixels, Inches, Centimeters)

Recipe 9.5. Creating a Bitmap

Recipe 9.6. Setting a Background Color

Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

Recipe 9.9. Forcing a Form or Control to Redraw

Recipe 9.10. Using Transparency

Recipe 9.11. Scaling with Transforms

Recipe 9.12. Using an Outline Path

Recipe 9.13. Using Gradients for Smooth Color Changes

Recipe 9.14. Drawing Bezier Splines

Recipe 9.15. Drawing Cardinal Splines

Recipe 9.16. Limiting Display Updates to Specific Regions

Recipe 9.17. Drawing Text

Recipe 9.18. Rotating Text to Any Angle

Recipe 9.19. Mirroring Text on the Canvas

Recipe 9.20. Getting the Height and Width of a Graphic String

Recipe 9.21. Drawing Text with Outlines and Drop Shadows

Recipe 9.22. Calculating a Nice Axis

Recipe 9.23. Drawing a Simple Chart

Recipe 9.24. Creating Odd-Shaped Forms and Controls

Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

Recipe 9.26. Creating a Rubber-Band Rectangular Selection

Recipe 9.27. Animating with Transparency

Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The recipes in this chapter introduce the powerful, fast, and creative graphics capabilities of Visual Basic 2005. They
provide working examples of everything from drawing simple lines to creating charts and simple animations. If you're
coming from Visual Basic 6.0, you'll be especially pleased with the powerful new capabilities of the GDI+ graphics.
Several recipes will help you update your skills by substituting new functionality for the primitive graphics commands
provided by Visual Basic 6.0, such as Line, Circle, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.1. Creating Graphics Objects

Problem

You're just getting started with GDI+ graphics and want to know where to begin.

Solution

Sample code folder: Chapter 09\GDIObjects

Always start by defining and creating the fundamental graphics objects relied upon by all GDI+ graphics methods.
These include colors, pens, fonts, brushes, and of course the Graphics object itself, the drawing surface used by all
graphics drawing methods.

Discussion

The sample code in this recipe demonstrates the creation of several graphics-related objects, providing a good starting
point for studying some GDI+ fundamentals. We'll look at the code in sections.

The most common place to put drawing code is in the Paint event handler for the form or control on which you will draw:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

You can draw in other events or methods as well, but you'll run into fewer hassles if you paint when the system tells
you to, rather than forcing redrawing of surfaces based on other events.

The Paint event provides a couple of useful parameters to help with the painting. You can create your own Graphics
objecta technique handy in some situationsbut when drawing in a Paint event, simply use the Graphics object passed to
the event. You can reference the e.Graphics object by that nomenclature, or you can create a shorter reference to it (such
as, in this example, canvas):

 ' ----- Grab the graphics object for this form.
 Dim canvas As Graphics = e.Graphics

You typically use the Graphics object a lot in the Paint method, so keeping the reference easy to use can simplify your
coding.

Colors can be defined in several ways, some of which are demonstrated in the following group of program lines. You
can choose from a long list of enumerated colors with fanciful names like "cornsilk," or you can build your own color by
setting each of the red, green, and blue components of the color to a value from 0 to 255. There are also some named
system colors you can access to employ the standard colors selected by the user for the entire workstation. The
advantage of using these colors is that your graphics will take on the system-described colors, even if the user has
changed one of those colors from its default base. A fourth optional parameter (actually passed as the first argument to
Color.FromArgb())), called Alpha, controls the transparency of a color. As shown in the following code, a transparent shade
of green is created by setting its Alpha parameter to a middle-of-the-road value of 127:

 ' ----- Create some colors.
 Dim colorBackground As Color = Color.Cornsilk
 Dim colorRed As Color = Color.FromArgb(255, 0, 0)
 Dim colorTransparentGreen As Color = _
 Color.FromArgb(127, 0, 255, 0)
 Dim colorControlDark As Color = _
 SystemColors.ControlDark

A Pen is used as a parameter for many drawing methods. For example, lines, ellipses, rectangle edges, and polygon
edges are all drawn using a designated pen to define the lines used to construct them. A basic Pen object is comprised
of a color and an optional width. If not given, the width defaults to 1 unit, and you'll get what you expect if your scaling
mode is the default pixels. If a different scaling is used, the thickness of the pen's line will remain at 1 unit, but
depending on the scaling this can drastically affect the appearance of the lines you draw (see Recipe 9.8 for more on
this topic). The following code block defines pen1 with a width of 1 unit and pen2 with a width of 25:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this topic). The following code block defines pen1 with a width of 1 unit and pen2 with a width of 25:

 ' ----- Create some pens.
 Dim pen1 As New Pen(Color.Blue)
 Dim pen2 As New Pen(colorRed, 25)

Font objects are required whenever text is drawn on a graphics surface. There are several ways to define a new Font
object: you can specify its name and a few optional properties such as font size, or you can start with a given font and
make changes to it. Both of these techniques are used in the program lines shown here:

 ' ----- Create some fonts.
 Dim font1 As New Font("Arial", 24, _
 FontStyle.Bold Or FontStyle.Italic)
 Dim font2 As New Font(Me.Font, FontStyle.Regular)

Visual Basic 2005 doesn't have a plain old Print command, like the one that was available in the good old days of VB 6.
You'll need to become familiar with fonts, brushes, and GDI+ methods such as DrawString() to draw even the simplest
text content. The upside of this situation is that text can be drawn on any surface in the same way, whether it's a
printer page, a form, or the face of a button or other control.

When you draw shapes using lines, you pass the graphics method a pen. When you fill Graphics objects with color, such
as when drawing a solid-filled rectangle or ellipse, you pass a brush. Brushes can be solid-filled with a color, as shown
here, or they can be created using a repeating fill pattern or image:

 ' ----- Create some brushes.
 Dim brush1 As New SolidBrush(Color.DarkBlue)
 Dim brush2 As New SolidBrush(colorTransparentGreen)

The next lines use several methods of the Graphics object to render ellipses, rectangles, and a string:

 ' ----- Demonstrate a few sample graphics commands.
 canvas.Clear(colorBackground)
 canvas.DrawEllipse(pen2, 100, 50, 300, 200)
 canvas.FillEllipse(brush1, New Rectangle(_
 50, 150, 250, 200))
 canvas.FillRectangle(New SolidBrush(colorTransparentGreen), _
 120, 30, 150, 250)
 canvas.DrawString("Text is drawn using GDI+", _
 font1, brush1, 120, 70)

Figure 9-1 displays the results generated by this code. The biggest ring is a single-line outline of an ellipse, drawn using
the pen2 object defined above (it's actually a red pen with a width of 25 unitsin this case, the units are the default
pixels). The lower ellipse is solid-filled using a blue brush. Clipping takes place automatically, and although the blue
ellipse doesn't quite fit on the form's surface, this causes no problems. The rectangle uses the transparent green brush
defined earlier, allowing the red and blue ellipses to show through from underneath. Finally, the string of text can be
drawn at any location, using any font, any size, any color, and any rotation angle.

Figure 9-1. Creating GDI+ graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proper GDI+ etiquette requires that you properly dispose of all objects you create. Back in the old days before Windows
95, proper cleanup of graphics objects was essential, and the system could crash if it ran out of its few precious
graphics resources. Those fears are long gone, but GDI+ objects still consume system resources. The .NET garbage-
collection system will eventually dispose of all graphics objects, but it's best if you do it yourself immediately:

 ' ----- Clean up.
 brush2.Dispose()
 brush1.Dispose()
 font2.Dispose()
 font1.Dispose()
 pen2.Dispose()
 pen1.Dispose()
 canvas = Nothing
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.2. Drawing on Controls for Special Effects

Problem

You want to alter the appearance of a control by drawing on it in reaction to mouse or other events.

Solution

Sample code folder: Chapter 09\SpecialEffects

Add code to the control's Paint event handler, and if required, call the control's Refresh() method to trigger the Paint event.

Discussion

Any visible control has a Paint event that lets you patch in code to modify the control's appearance in any way you want.
The following code demonstrates this technique by completely changing the appearance and behavior of a standard
Button control. For the sample, we created a new Windows Forms application, then added a Panel control named Panel1
and two Button controls, Button1 and Button2. Button1 is left untouched for comparison, but Button2 changes as the mouse is
used with it. The button's background color is altered as the mouse moves over its face, and again when the mouse is
clicked. The ButtonBackColor variable holds the indicated color as set within the various mouse-event procedures, and it is
used in the button's Paint event to render its background color:

 Public Class Form1
 Private ButtonBackColor As Color = Color.LightGreen

These four events change the background color in response to the mouse cursor entering or leaving the face of the
button and to the mouse button being depressed and released when the cursor is over the button:

 Private Sub Button2_MouseEnter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.MouseEnter
 ' ----- Change the button to show the effect of the mouse.
 ButtonBackColor = Color.FromArgb(32, 192, 32)
 End Sub

 Private Sub Button2_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.MouseLeave
 ' ----- Return the button to normal mode.
 ButtonBackColor = Color.LightGreen
 End Sub

 Private Sub Button2_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Button2.MouseDown
 ' ----- The mouse is clicking the button. Show an effect.
 ButtonBackColor = Color.LightPink
 End Sub

 Private Sub Button2_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Button2.MouseUp
 ' ----- The mouse was released. Go back to normal.
 ButtonBackColor = Color.LightGreen
 Button2.Refresh()
 End Sub

The Refresh() method in the MouseUp event handler tells the control to redraw itself, triggering a Paint event. You would
expect the other three event handlers to each need a Refresh() call as well, but the Button control issues those calls on our
behalf during these events.

The following method repaints Button2's surface whenever Windows fires the Paint event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following method repaints Button2's surface whenever Windows fires the Paint event:

 Private Sub Button2_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Button2.Paint
 ' ----- Draw a fancy button surface.
 Dim counter As Integer
 Const numberOfLobes As Integer = 5

 ' ----- Get the graphics object for the button.
 Dim canvas As Graphics = e.Graphics

 ' ----- Set a new background color.
 canvas.
Clear(ButtonBackColor)

The button's Graphics object provides the surface for all graphics commands. The Clear() method optionally renders the
background in a given color. In this case, the variable ButtonBackColor tells the button what colors to set the background
to in response to the various mouse events:

 ' ----- Draw the atomic orbits in blue, two pixels wide.
 Dim atomPen As Pen = New Pen(Color.Blue, 2)

 ' ----- Specify the location and size of the electron orbits.
 Dim sizeFactor As Integer = Button2.ClientSize.Width \ 2
 Dim lobeLength As Integer = sizeFactor * 8 \ 10
 Dim lobeWidth As Integer = lobeLength \ 4

 ' ----- Shift center of orbits to center of button.
 canvas.TranslateTransform(sizeFactor, sizeFactor)

The following lines of code repeatedly draw an ellipse in blue, rotated around its center to create an "atom" effect:

 ' ----- Draw orbits rotated around center.
 For counter = 1 To numberOfLobes
 canvas.RotateTransform(360 / numberOfLobes)
 canvas.DrawEllipse(atomPen, -lobeLength, -lobeWidth, _
 lobeLength * 2, lobeWidth * 2)
 Next counter
 End Sub

We chose this graphic partly because it was just plain fun to create, but also to show how easy it is to draw some things
in Visual Basic 2005 that are cumbersome to draw in VB 6.

The following Paint event handler paints the panel with a background color and some text, as shown in Figure 9-2. This
same effect can be accomplished with a standard Label, but this provides another example of how the face of just about
any control can be graphically rendered as desired:

Figure 9-2. Buttons and other controls can be graphically redefined for unique or
special effects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Panel1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Panel1.Paint
 ' ----- Draw a nice title.
 Dim canvas As Graphics = e.Graphics
 canvas.Clear(Color.Azure)
 canvas.DrawString(_
 "
Drawing on Controls for Special Effects", _
 New Font("Arial", 14), Brushes.DarkBlue, 5, 5)
 End Sub

The next two methods, one for Button1 and the other for Button2, are nearly identical. They demonstrate that even though
Button2 now appears much different from the more standard Button1 (see Figure 9-2), both buttons behave the same and
can be used in a program in the same way:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox("Button1 clicked!", MsgBoxStyle.Exclamation, _
 "Painting on Controls")
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 MsgBox("Button2 clicked!", MsgBoxStyle.Exclamation, _
 "Painting on
Controls")
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.3. Letting the User Select a Color

Problem

You need the user to select a specific color for drawing.

Solution

Sample code folder: Chapter 09\UserColorSelect

For simple color-selection needs, use the ColorDialog control. This dialog, shown in Figure 9-3, lets the user select any of
the 16,777,216 24-bit colors available in Windows.

Figure 9-3. The color dialog, in "full open" mode

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A Label control named ColorName. Set its Text property to Not Selected.

A PictureBox control named ColorDisplay. Set its BorderStyle property to FixedSingle.

A Button control named ActChange. Set its Text property to Change….

A ColorDialog control named ColorSelector.

Add informational labels if desired. The form should look something like Figure 9-4.

Figure 9-4. The controls on the color selection sample form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-4. The controls on the color selection sample form

Now add the following source code to the form's code template:

 Private Sub ActChange_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActChange.Click
 ' ----- Prompt to change the color.
 ColorSelector.Color = ColorDisplay.BackColor
 If (ColorSelector.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- The user selected a color.
 ColorDisplay.BackColor = ColorSelector.Color
 If (ColorSelector.Color.IsNamedColor = True) Then
 ' ----- Windows has a name for this color.
 ColorName.Text = ColorSelector.Color.Name
 Else
 ColorName.Text = "R" & ColorSelector.Color.R & _
 " G" & ColorSelector.Color.G & _
 " B" & ColorSelector.Color.B
 End If
 End If
 End Sub

Run the program, and click the Change button to access the dialog. The form will show the selected color, and either the
name of the color (if known) or its red-green-blue (RGB) value.

The ColorDialog includes a few Boolean properties that let you control the availability of the "color mixer" portion of the
form (the right half). The dialog does not include features that let the user indicate transparency or the "alpha" level of
a color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.4. Working with Coordinate Systems (Pixels, Inches,
Centimeters)

Problem

You've been drawing on a graphics canvas (such as the surface of a form or control), and working with pixels. But your
program lets the user work in inches or centimeters, and you don't want to do all the conversions yourself.

Solution

Sample code folder: Chapter 09\MeasurementSystems

The Graphics object that you receive in a Paint event handler (or that you create else-where) provides a few different
ways to scale to different measurement systems. The easiest way is to set its PageUnit property to one of the predefined
GraphicsUnit enumeration values. The sample code in this recipe uses GraphicsUnit.Display (the default), .Inch, and .Millimeter.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named ShowPixels. Set its Text property to Pixel Sample.

A RadioButton control named ShowInches. Set its Text property to Inches Sample.

A RadioButton control named ShowCentimeters. Set its Text property to Centimeters Sample.

A Label control named Comment. Set its AutoSize property to False, and resize it so that it can hold a dozen or so
words.

A PictureBox control named SampleDisplay. Set its BorderStyle property to FixedSingle. Size it at about 250 x 250 pixels.

Your form should look something like Figure 9-5.

Now add the following source code to the form's class template:

 Private Sub ChangeSystem(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ShowPixels.CheckedChanged, _
 ShowInches.CheckedChanged, _
 ShowCentimeters.CheckedChanged
 ' ------ Update the example text.
 If (ShowPixels.Checked = True) Then
 Comment.Text = "50x50 rectangle at position " & _
 "(50, 50). Major ruler ticks are at 100 pixels."
 ElseIf (ShowInches.Checked = True) Then
 Comment.Text = "1x1 inch rectangle at position " & _
 "(1, 1). Major ruler ticks are inches."

Figure 9-5. The controls in the measurement systems sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else
 Comment.Text = "1x1 centimeter rectangle at " & _
 "position (1, 1). Major ruler ticks are centimeters."
 End If

 ' ----- Now update the display.
 SampleDisplay.Invalidate()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Show the pixel example by default.
 ShowPixels.Checked = True
 End Sub

 Private Sub SampleDisplay_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles SampleDisplay.Paint
 ' ----- Draw the surface based on the user's selection.
 Dim rectangleArea As Rectangle
 Dim thinPen As Pen
 Dim rulerWidth As Single
 Dim tickStep As Single
 Dim tickSize As Single
 Dim counter As Integer
 Dim bigTick As Single
 Const ticks As String = "1424142414241"

 ' ----- Clear any previous content.
 e.Graphics.Clear(Color.White)

 ' ----- Adjust to the right system.
 If (ShowPixels.Checked = True) Then
 ' ----- Draw a 50-by-50-pixel rectangle at (50,50).
 rectangleArea = New Rectangle(50, 50, 50, 50)
 rulerWidth = e.Graphics.DpiX / 5.0F
 bigTick = 100.0F
 ElseIf (ShowInches.Checked = True) Then
 ' ----- Scale for inches.
 e.Graphics.PageUnit = GraphicsUnit.Inch

 ' ----- Draw a 1" x 1" rectangle at (1,1).
 rectangleArea = New Rectangle(1, 1, 1, 1)
 rulerWidth = 0.2F
 bigTick = 1.0F
 Else
 ' ----- Scale for centimeters (actually, millimeters).
 e.Graphics.PageUnit = GraphicsUnit.Millimeter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.Graphics.PageUnit = GraphicsUnit.Millimeter

 ' ----- Draw a 1cm x 1cm rectangle at (1,1).
 ' Note: 0.2 inches is 1/5 of 25.4 millimeters.
 rectangleArea = New Rectangle(10, 10, 10, 10)
 rulerWidth = 25.4F / 5.0F
 bigTick = 10.0F
 End If

 ' ----- Create a single-pixel pen.
 thinPen = New Pen(Color.Black, 1 / e.Graphics.DpiX)

 ' ----- Draw a ruler area. The rulerWidth is 0.2 inches
 ' wide, no matter what the scale. Make a 3-inch
 ' ruler.
 e.Graphics.FillRectangle(Brushes.BlanchedAlmond, 0, 0, _
 rulerWidth, rulerWidth * 15)
 e.Graphics.FillRectangle(Brushes.BlanchedAlmond, 0, 0, _
 rulerWidth * 15, rulerWidth)
 e.Graphics.DrawLine(thinPen, rulerWidth, rulerWidth, _
 rulerWidth, rulerWidth * 15)
 e.Graphics.DrawLine(thinPen, rulerWidth, rulerWidth, _
 rulerWidth * 15, rulerWidth)

 ' ----- Draw the ruler tick marks. Include whole steps,
 ' half steps, and quarter steps.
 For counter = 1 To ticks.Length
 ' ----- Get the tick measurements. The "ticks" constant
 ' includes a set of "1", "2", and "4" values. "1"
 ' gives a full-size tick mark (for whole units),
 ' "2" gives a half-size tick mark, and "4" gives
 ' a 1/4-size tick mark.
 tickSize = CSng(Mid(ticks, counter, 1))
 tickStep = rulerWidth + ((bigTick / 4.0F) * (counter - 1))

 ' ----- Draw the horizontal ruler ticks.
 e.Graphics.DrawLine(thinPen, tickStep, 0, _
 tickStep, rulerWidth / tickSize)

 ' ----- Draw the vertical ruler ticks.
 e.Graphics.DrawLine(thinPen, 0, tickStep, _
 rulerWidth / tickSize, tickStep)
 Next counter

 ' ----- Adjust the (0,0) point to the corner of the ruler.
 e.Graphics.TranslateTransform(rulerWidth, rulerWidth)

 ' ----- Draw the rectangle.
 e.Graphics.DrawRectangle(thinPen, rectangleArea)

 ' ----- Put things back to normal.
 e.Graphics.PageUnit = GraphicsUnit.Display
 thinPen.Dispose()
 End Sub

Run the program, and click on each of the three radio buttons to see the results. Figure 9-6 shows the application using
centimeters.

Figure 9-6. Drawing using centimeters (millimeters) as the unit system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The focus of the application is on drawing the black rectangle:

 e.Graphics.DrawRectangle(thinPen, rectangleArea)

The rest of the code is there to make it easy to see the difference between the drawing systems.

The Graphics object defaults to the coordinate system of the display. On a monitor, each unit is a single pixel. When you
draw a 10 x 10 rectangle, you are drawing a rectangle 10 pixels high and 10 pixels wide. To draw a 10 x 10-inch
rectangle, you need to change the scaling system so that "1" represents an inch instead of a pixel.

The PageUnit property does just that. It supports a few common measurement systems, including Inches, Millimeters, and
even Points.

You can also create your own custom scaling factor in each direction (X and Y) by using the Graphics object's
ScaleTransform() method. This lets you set a scaling factor for both the horizontal (X) and vertical (Y) directions. To see
scaling in action, create a new Windows Forms application, and add the following source code to the form's code
template:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 e.Graphics.Clear(Color.White)
 e.Graphics.DrawRectangle(Pens.Black, 10, 10, 30, 30)
 e.Graphics.ScaleTransform(2, 2)
 e.Graphics.DrawRectangle(Pens.Black, 10, 10, 30, 30)
 End Sub

This code draws two 30 x 30 rectangles, one normal (i.e., 30 x 30 pixels), and one scaled by a factor of two in each
direction (resulting in a 60 x 60 square). Figure 9-7 shows the output of this code.

Figure 9-7. A normal and a scaled square

Everything about the second (larger) square is scaled by two: its size, its starting position (at (20,20) instead of
(10,10)), and even the thickness of its pen (it's twice as thick).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.5. Creating a Bitmap

Problem

You want to create off-screen bitmaps to store graphics in memory.

Solution

Sample code folder: Chapter 09\BitmapObject

Create Bitmap objects, and load images into them or draw directly on them.

Discussion

You can create a bitmap in memory, draw graphics onto a Graphics object created for the bitmap, and then draw the
bitmap to a form, panel, or other paintable surface. This can provide an increase in speed, and sequentially drawing
multiple bitmaps onto a visible surface gives you a simple but effective type of animation.

The code example in this recipe creates a bitmap based on the size of the form and the nature of the Graphics object for
the form. A new Graphics object is created based on the new bitmap, so graphics methods will apply to the bitmap. Much
of the rest of the code creates radial lines emanating from two points near the center of the bitmap. Finally, once the
bitmap graphics are complete, the bitmap is drawn to the form's Graphics object, which paints onto the face of the form:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw to the form indirectly through a bitmap.
 Dim x As Single
 Dim y As Single
 Dim xc As Single
 Dim yc As Single
 Dim angle As Single
 Dim radians As Single
 Dim workImage As Bitmap
 Dim canvas As Graphics

 ' ----- Create a bitmap that is the same size and
 ' format as the form surface.
 workImage = New Bitmap(Me.Size.Width, Me.Size.Height, _
 e.Graphics)

 ' ----- Create a canvas for the bitmap. Drawing on the
 ' canvas impacts the bitmap directly.
 canvas = Graphics.FromImage(workImage)

 ' ---- Draw a radial pattern.
 For angle = 0 To 360 Step 2
 radians = angle * Math.PI / 180
 x = 500 * Math.Cos(radians)
 y = 500 * Math.Sin(radians)
 yc = Me.ClientSize.Height / 2
 xc = Me.ClientSize.Width * 10 / 21
 canvas.DrawLine(Pens.Black, xc, yc, xc + x, yc + y)
 xc = Me.ClientSize.Width * 11 / 21
 canvas.DrawLine(Pens.Black, xc, yc, xc + x, yc + y)
 Next angle

 ' ----- Stamp the bitmap on the form surface.
 e.Graphics.DrawImage(workImage, 0, 0)
 End Sub

The key lines of code here are the ones that create the workImage and canvas objects. They create a bitmap compatible
with the form and a graphics surface for the bit-map. All drawing methods require a Graphics object to provide a drawing
surface. The last line uses the Graphics. DrawImage() method to draw the custom image onto the form, providing a way to
get the in-memory bitmap onto a visible surface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get the in-memory bitmap onto a visible surface.

Figure 9-8 shows the new bitmap's contents as drawn onto the face of the form.

Figure 9-8. Drawing an in-memory bitmap onto a form

As you resize this form, its Paint event fires repeatedly, and the bitmap is recreated on the fly. However, it doesn't
redraw the entire surface, because Windows tries to limit screen redraws to only those parts that it thinks have
changed. In this case, only the newly exposed areas of the form are redrawn. To circumvent this, add the following
code to the form:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Redraw the surface cleanly.
 Me.Invalidate()
 End Sub

Now the entire image is redrawn as the form size changes.

For the smoothest action be sure to set the form's DoubleBuffered property to true. The
combination of double buffering and drawing the lines in-memory on a bitmap creates
surprisingly smooth graphics updates as the form is resized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.6. Setting a Background Color

Problem

You want to customize a form's background color but don't want the controls on the form to look out of place.

Solution

Sample code folder: Chapter 09\BackgroundColor

No problem: most controls automatically take on the same background color as their container.

Discussion

The demonstration of this effect is simple. Add the following code to a button's Click event to change the background
color to some random selection. Place any controls of interest on the form to see how the changing background affects
them:

 Private Sub ActBackground_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActBackground.Click
 ' ----- Change the background to some random color.
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim surpriseColor As New Random

 redPart = surpriseColor.Next(0, 255)
 greenPart = surpriseColor.Next(0, 255)
 bluePart = surpriseColor.Next(0, 255)
 Me.BackColor = Color.FromArgb(redPart, _
 greenPart, bluePart)
 End Sub

As shown in Figure 9-9, the RadioButton, Label, and CheckBox controls all adjust automatically by taking on the same
background color as the containing form. The TextBox control's background remains white, by design. Place any other
controls you might be using on this form to see how they behave.

Figure 9-9. Many controls automatically take on the same background color as
their container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

Problem

You need to draw some basic shapes on a graphics surface. What choices are available?

Solution

Sample code folder: Chapter 09\ DrawingBasicShapes

The System.Drawing.Graphics object includes several methods that draw filled and unfilled shapes, including methods for lines,
rectangles, and ellipses. This recipe's code implements a simple drawing program using these basic shapes.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named DrawLine. Set its Text property to Line and its Checked property to true.

A RadioButton control named DrawRectangle. Set its Text property to Rectangle.

A RadioButton control named DrawEllipse. Set its Text property to Ellipse.

A ComboBox control named LineColor. Set its DropDownStyle property to DropDownList.

A ComboBox control named FillColor. Set its DropDownStyle property to DropDownList.

A PictureBox control named DrawingArea. Set its BackColor property to White (or 255, 255, 255) and its BorderStyle property to
Make it somewhat large.

Add informational labels if desired. The form should look like the one in Figure 9-10.

Figure 9-10. The controls on the shape drawing sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's code template:

 Private FirstPoint As Point = New Point(-1, -1)

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Fill in the list of colors.
 For Each colorName As String In New String() _
 {"Black", "Red", "Orange", "Yellow", "Green", _
 "Blue", "Indigo", "Violet", "White"}
 LineColor.Items.Add(colorName)
 FillColor.Items.Add(colorName)
 Next colorName
 LineColor.SelectedIndex = LineColor.Items.IndexOf("Black")
 FillColor.SelectedIndex = LineColor.Items.IndexOf("White")
 End Sub

 Private Sub DrawingArea_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles DrawingArea.MouseDown
 ' ----- Time to do some drawing.
 Dim useLine As Pen
 Dim useFill As Brush
 Dim canvas As Graphics
 Dim drawBounds As Rectangle

 ' ----- Is this the first or second click?
 If (FirstPoint.Equals(New Point(-1, -1))) Then
 ' ----- This is the first click. Record the location.
 FirstPoint = e.Location
 ' ----- Draw a marker at this point.
 DrawMarker(FirstPoint)
 Else
 ' ----- Get the two colors to use.
 useLine = New Pen(Color.FromName(LineColor.Text))
 useFill = New SolidBrush(Color.FromName(FillColor.Text))

 ' ----- Get the
drawing surface.
 canvas = DrawingArea.CreateGraphics()

 ' ----- Remove the first-point marker.
 DrawMarker(FirstPoint)

 ' ----- For
rectangles and
ellipses, get the
 ' bounding area.
 drawBounds = New Rectangle(_
 Math.Min(FirstPoint.X, e.Location.X), _
 Math.Min(FirstPoint.Y, e.Location.Y), _
 Math.Abs(FirstPoint.X - e.Location.X), _
 Math.Abs(FirstPoint.Y - e.Location.Y))

 ' ----- Time to draw.
 If (DrawLine.Checked = True) Then
 ' ----- Draw a line.
 canvas.DrawLine(useLine, FirstPoint, e.Location)
 ElseIf (DrawRectangle.Checked = True) Then
 ' ----- Draw a rectangle.
 canvas.FillRectangle(useFill, drawBounds)
 canvas.DrawRectangle(useLine, drawBounds)
 Else
 ' ----- Draw an ellipse.
 canvas.FillEllipse(useFill, drawBounds)
 canvas.DrawEllipse(useLine, drawBounds)
 End If

 ' ----- Clean up.
 canvas.Dispose()
 useFill.Dispose()
 useLine.Dispose()
 FirstPoint = New Point(-1, -1)
 End If
 End Sub

 Private Sub DrawMarker(ByVal centerPoint As Point)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub DrawMarker(ByVal centerPoint As Point)
 ' ----- Given a point, draw a small square at
 ' that location.
 Dim screenPoint As Point
 Dim fillArea As Rectangle

 ' ----- Determine the fill area.
 screenPoint = DrawingArea.PointToScreen(centerPoint)
 fillArea = New Rectangle(screenPoint.X - 2, _
 screenPoint.Y - 2, 5, 5)

 ' ----- Draw a red rectangle. Cyan is the RBG
 ' inverse of red.
 ControlPaint.FillReversibleRectangle(fillArea, Color.Cyan)
 End Sub

Run the program, and use the RadioButton and ComboBox controls to select the object style and colors. Click on the DrawingArea
controls twice to specify the two endpoints of each line, rectangle, or ellipse. Figure 9-11 shows the program in use.

Figure 9-11. Drawing basic shapes

Drawing shapes is so easy in .NET as to make it somewhat humdrum. Back in the early days of computer drawing, drawing a line
or circle required a basic understanding of the geometric equations needed to produce such shapes on a Cartesian coordinate
system. But no more! The Graphics object includes a set of methods designed to make drawing simple. Most of them are used
throughout the recipes in this chapter.

This recipe's code spends some time watching for the locations of mouse clicks on the drawing surface. Once it has these locations
and the user-selected colors, it draws the basic shapes in just a few quick statements:

 If (DrawLine.Checked = True) Then
 canvas.DrawLine(useLine, FirstPoint, e.Location)
 ElseIf (DrawRectangle.Checked = True) Then
 canvas.FillRectangle(useFill, drawBounds)
 canvas.DrawRectangle(useLine, drawBounds)
 Else
 canvas.FillEllipse(useFill, drawBounds)
 canvas.DrawEllipse(useLine, drawBounds)
 End If

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.26 discusses the FillReversibleRectangle() method used in this recipe's code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

Problem

You need to draw a one- pixel-wide line, but this becomes problematic when the graphics scaling mode is changed.

Solution

Sample code folder: Chapter 09\ PenWidth

Set the pen's width to -1. Although this approach is not formally documented in the GDI+ references, it does cause the
thinnest line possible to be drawn no matter what the scaling is set to.

Discussion

The Graphics object's PageUnit property allows you to set the scaling to standard units such as inches or millimeters. This
can be very handy for some types of graphics-drawing tasks, but it alters the way lines are drawn. The DrawLine()
method accepts a pen that defines the color and width of the drawn line. By default the pen's width is always set to 1
unit wide, and as long as the PageUnit is left at its default setting of Pixels, all is well: a 1-unit-wide line will be drawn as 1
pixel wide. However, when PageUnit is set to Inches, for example, a 1-unit-wide line is rendered as 1 inch wide, which is
likely not what you want at all.

To demonstrate this in action, and to show the workaround, this recipe's code first draws a line diagonally across the
form with a red pen set to a width of 1, then draws another line on the other diagonal using a green pen set to a width
of -1.

Create a new Windows Forms application, and place three RadioButton controls on the form, named UsePixels, UseMillimeters,
and UseInches. Set their Text properties appropriately. Then add the following code to the form's code template:

 Private Sub RadioButton_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles UsePixels.CheckedChanged, _
 UseMillimeters.CheckedChanged, _
 UseInches.CheckedChanged

 ' ----- Change the scaling system.
 Me.Refresh()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw contrasting
lines.
 Dim xCorner As Single
 Dim yCorner As Single
 Dim canvas As Graphics

 canvas = e.Graphics
 xCorner = Me.ClientSize.Width
 yCorner = Me.ClientSize.Height
 If (UseMillimeters.Checked = True) Then
 canvas.PageUnit = GraphicsUnit.Millimeter
 xCorner /= canvas.DpiX
 yCorner /= canvas.DpiY
 xCorner *= 25.4
 yCorner *= 25.4
 ElseIf (UseInches.Checked = True) Then
 canvas.PageUnit = GraphicsUnit.Inch
 xCorner /= canvas.DpiX
 yCorner /= canvas.DpiY
 Else
 canvas.PageUnit = GraphicsUnit.Pixel
 End If

 ' ----- Clear any previous lines.
 canvas.Clear(Me.BackColor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Draw a one-unit line.
 canvas.DrawLine(New Pen(Color.Red, 1), 0, 0, _
 xCorner, yCorner)

 ' ----- Draw a one-pixel line.
 canvas.DrawLine(New Pen(Color.Green, -1), xCorner, _
 0, 0, yCorner)
 End Sub

As this code shows, the graphics PageUnit property is set appropriately for these units, and the red line will show the
obvious difference in the line width. Figure 9-12 shows the results when the red line is drawn 1 inch wide (it's black and
white here, obviously, but imagine it's red). The green line is drawn 1 pixel wide, no matter which scaling mode is
selected.

In addition to the PageUnit mode, the ScaleTransform() method can customize the scaling of your graphics. This transform
affects all coordinates, and all pen widths too; a pen width of 1 draws a 1-unit-wide line at whatever scale is set. Again,
the workaround is to set the pen's width to 1 to get a consistent 1- pixel-wide line.

Figure 9-12. A one-inch-wide line and a one-pixel-wide line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.9. Forcing a Form or Control to Redraw

Problem

You want to activate the Paint event for a form or control to cause its graphics to refresh.

Solution

Sample code folder: Chapter 09\Invalidating

It's best to let the operating system handle exactly when any object should repaint itself. In Visual Basic 2005, this
means it's best to draw in an object's Paint event and not to worry about when to activate the painting. However, there
are times when you want to control when graphics are redrawn, such as for simple animations, when data values in the
program change, or when other events happen that affect the image. In these cases, you can call the Refresh() method
of the object to be refreshed, or you can call the Invalidate() method to do much the same thing. The operating system
handles the rest of the details.

Discussion

The demonstration code shown here draws a five-pointed star centered on the mouse cursor. As the mouse moves
around on the form, the star moves with it, which means each mouse-move event should trigger a form Paint event. You
accomplish this by invalidating the form with each move of the mouse. You can also use the Refresh() method.

Create a new Windows Forms application, and add the following code to the form's class template:

 ' ----- Keep track of the mouse position.
 Private MouseX As Integer
 Private MouseY As Integer

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Record the mouse position.
 MouseX = e.X
 MouseY = e.Y

 ' ----- Mark the form for redrawing.
 Me.Invalidate()

 ' ----- If you want to update the form quicker,
 ' call Refresh() instead of Invalidate().
 'Me.Refresh()
 End Sub

The form's Paint event grabs the form's Graphics object to provide the surface to draw on, then creates an array of points
defining the five points of the star, centered around the current position of the mouse:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

 ' ----- Refresh the form display.
 Dim canvas As Graphics = e.Graphics
 Dim starPoints(4) As Point
 Dim angle As Double
 Dim radians As Double
 Dim pointX As Double
 Dim pointY As Double
 Dim counter As Integer
 Const pointDistance As Double = 50
 Const angleStart As Integer = 198
 Const angleRotation As Integer = 144

 ' ----- Calculate each of the star's points.
 angle = angleStart
 For counter = 0 To 4
 angle += angleRotation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 angle += angleRotation
 radians = angle * Math.PI / 180
 pointX = Math.Cos(radians) * pointDistance + MouseX
 pointY = Math.Sin(radians) * pointDistance + MouseY
 starPoints(counter) = New Point(CInt(pointX), _
 CInt(pointY))
 Next counter

 ' ----- Draw the star. I've provided a few alternatives.
 canvas.FillPolygon(Brushes.DarkRed, starPoints, _
 Drawing2D.FillMode.Alternate)
 'canvas.FillPolygon(Brushes.DarkRed, starPoints, _
 '
Drawing2D.FillMode.Winding)
 'canvas.DrawPolygon(Pens.DarkRed, starPoints)
 End Sub

There are several ways to draw or solid-fill a polygon such as this five-pointed star. The last three statements in the
code let you experiment with three different techniques. The algorithm used to fill the center of a polygon can either
end up with alternating areas filled, or not. Figure 9-13 shows the results of filling using Drawing2D.FillMode.Alternate. The
Drawing2D.FillMode.Winding mode causes the star to be completely filled in, including the center area.

Figure 9-13. As the mouse moves the form is invalidated, causing the star to move
with the cursor

The Invalidate() method does not force an immediate refresh of the form. Instead, it puts in a request for a redraw the
next time the system is not too busy. Windows considers screen updates low-priority tasks, so if your system is busy
doing other things, the screen changes will be postponed. If you want the changes to occur immediately, follow the
Invalidate() method call with a call to the form's (or, if you are drawing on a control, the control's) Update() method:

 Me.Invalidate()
 Me.Update()

The Refresh() method combines both lines into one method call. So why would you call Invalidate() when the more powerful
Refresh() method is available? Invalidate() accepts arguments that let you narrow down the size of the area to redraw.
Redrawing the entire form can be a slow process, especially if you have to do it often. By passing a Rectangle or Region
object to Invalidate(), you can tell Windows, "Redraw only in this limited area."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.10. Using Transparency

Problem

You know that .NET includes cool new transparency and " alpha blending" features, and you'd like to try them out.

Solution

Windows Forms include a few different transparency features. The simplest are accessible through two properties of
each form: Opacity and TransparencyKey. Opacity ranges from 0% to 100% (actually, 0.0 for full transparency and 1.0 for full
opacity) and impacts the entire form. Figure 9-14 shows a form set at 50% opacity with this paragraph showing
through.

Figure 9-14. A see-through form with 50% opacity

The TRansparencyKey property lets you indicate one form color as the "invisibility" color. When used, anything on the form
that appears in the indicated color is rendered invisible. Figure 9-15 shows a form with its transparencyKey property set to
Control, the color normally used for the form's background. It appears over this paragraph's text.

Figure 9-15. A see-through form with surface invisibility

Discussion

A bug in the initial release of Visual Basic 2005 causes some images drawn on a form's surface or on one of its
contained controls to ignore the transparencyKey setting, even if that image contains the invisibility color. There is a
workaround that uses a third transparency feature of GDI+, the Bitmap object's MakeTransparent() method. The following
block of code loads an image from a file, sets the White color as transparent, and draws it on the invisible background
from Figure 9-15, producing the results in Figure 9-16:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim backImage As New Bitmap("c:\logo.bmp")
 backImage.MakeTransparent(Color.White)
 Me.BackgroundImage = backImage
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Figure 9-16. A transparent image on a transparent form

A fourth transparency feature involves partially invisible colors. Although the System.Drawing.Color structure includes
several predefined colors, you can create your own colors through that structure's FromArgb() method. One variation of
this method accepts four arguments: red, green, and blue components, and an "alpha" component that sets the
transparency of the color. That value ranges from 0 (fully transparent) to 255 (fully opaque). Another variation accepts
just an alpha component and a previously defined color:

 ' ----- Make a semi-transparent red color.
 Dim semiRed As Integer = New Color(128, Color.Red)

 ' ----- Here's another way to do the same thing.
 Dim semiRed As Integer = New Color(128, 255, 0, 0)

You can then use this color to create pens or brushes as you would with any other color.

Some older systems don't support all methods of transparency. If there is any chance your program will run on such
older systems, don't depend on transparency as the sole method of communicating something important to the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.11. Scaling with Transforms

Problem

You want to zoom the view of a drawing area so that the user has a wider or narrower view of the content.

Solution

Sample code folder: Chapter 09\ScalingTransform

Add a scaling transform to the drawing surface before outputting the text. The System.Drawing.Graphics object includes a ScaleTransform()
method that lets you scale the output automatically, with separate scales in the X and Y directions.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named DisplayText. Set its Multiline property to true and its ScrollBars property to Vertical. Size it so that you can
see multiple lines of user-entered text.

A trackBar control named DisplayScale. Set its Minimum property to 1 and its Maximum property to 5. The trackBar control appears in
the All Windows Forms section of the Toolbox by default.

A Button control named ActDisplay. Set its Text property to Display.

A PictureBox control named DrawingArea. Set its BackColor property to White and its BorderStyle property to Fixed3D.

Add informational labels if desired. The form should look like Figure 9-17.

Figure 9-17. The controls on the scaled content sample

Now add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's class template:

 Private Sub ActDisplay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActDisplay.Click
 ' ----- Force the text to redisplay.
 DrawingArea.Invalidate()
 End Sub

 Private Sub DrawingArea_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles DrawingArea.Paint
 ' ----- Refresh
the drawing area.
 Dim titleFont As Font
 Dim mainFont As Font
 Dim titleArea As Rectangle
 Dim textArea As Rectangle
 Dim titleFormat As StringFormat
 Const MainTitle As String = "Important Message"

 ' ----- Clear any existing content.
 e.Graphics.Clear(Color.White)

 ' ----- Build some fonts used for the display text.
 titleFont = New Font("Arial", 16, FontStyle.Bold)
 mainFont = New Font("Arial", 12, FontStyle.Regular)

 ' ----- Determine where the title and main text will go.
 titleArea = New Rectangle(0, 0, _
 DrawingArea.ClientRectangle.Width, titleFont.Height)
 textArea = New Rectangle(0, titleFont.Height * 1.4, _
 DrawingArea.ClientRectangle.Width, _
 DrawingArea.ClientRectangle.Height - _
 (titleFont.Height * 1.4))

 ' ----- Scale according to the user's request.
 e.Graphics.
ScaleTransform(DisplayScale.Value, _
 DisplayScale.Value)

 ' ----- Add a title to the content.
 titleFormat = New StringFormat()
 titleFormat.Alignment = StringAlignment.Center
 e.Graphics.DrawString(MainTitle, titleFont, _
 Brushes.Black, titleArea, titleFormat)
 titleFormat.Dispose()

 ' ----- Draw a nice dividing line.
 e.Graphics.DrawLine(Pens.Black, 20, _
 CInt(titleFont.Height * 1.2), _
 DrawingArea.ClientRectangle.Width - 20, _
 CInt(titleFont.Height * 1.2))

 ' ----- Draw the main text.
 e.Graphics.DrawString(DisplayText.Text, mainFont, _
 Brushes.Black, textArea)

 ' ----- Clean up.
 mainFont.Dispose()
 titleFont.Dispose()
 End Sub

Run the program, enter some text in the TextBox control, adjust the DisplayScale control value, and click the ActDisplay button.
drawing area zooms in on the content as you adjust the scale. Figure 9-18 shows content without scaling (DisplayScale.Value = 1
with a 2x scale (DisplayScale.Value = 2).

Figure 9-18. x and 2x scaling of content

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-18. x and 2x scaling of content

The ScaleTransform() method scales everything: text and shape sizes, pen thickness, X and Y positions, rectangular bounding boxes,
and so on. The previous sample code scaled the textArea bounding box used to limit the extent of the main text to the output display
area. When the content was scaled, though, the bounding box was also scaled, so that the content no longer fits the bounding box.
If you still want such bounding boxes to fit, you have to scale them by an inverse factor:

 textArea = New Rectangle(0, titleFont.Height * 1.4, _
 DrawingArea.ClientRectangle.Width / DisplayScale.Value, _
 DrawingArea.ClientRectangle.Height - _
 (titleFont.Height * 1.4))

Figure 9-19 shows the output from this revised block of code.

Figure 9-19. X scaling with boundary adjustments

See Also

Recipe 9.4 discusses scaling based on inches and centimeters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.12. Using an Outline Path

Problem

You want to create a complex graphics drawing path that can simplify graphics drawing commands and can be reused
repeatedly.

Solution

Sample code folder: Chapter 09\ GraphicsPath

The GraphicsPath object lets you create and store a complex sequence of graphics lines, rectangles, ellipses, and polygons
as a single object.

Discussion

The GraphicsPath is part of the Drawing2D namespace, so be sure to add the following Imports statement to the top of your
code:

 Imports System.Drawing.Drawing2D

In this recipe we'll use a GraphicsPath object to draw a checkerboard. The drawing takes place in the form's Paint event
handler:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

To begin, the graphics surface for the form is referenced, and a static GraphicsPath reference variable (thePath) is created.
The path is created the first time the event handler gets called and is used again on successive calls:

 ' ----- Draw a checkerboard.
 Dim across As Integer
 Dim down As Integer
 Dim canvas As Graphics = e.Graphics
 Static thePath As GraphicsPath

 ' ----- Draw the checkerboard the first time only.
 If (thePath Is Nothing) Then
 thePath = New GraphicsPath
 For across = 0 To 7
 For down = 0 To 7
 If (((across + down) Mod 2) = 1) Then
 thePath.AddRectangle(_
 New Rectangle(across, down, 1, 1))
 End If
 Next down
 Next across
 End If

The scaling needs to take place every time the Paint event is triggered because as the user changes the size of the form
(and the graphics surface), the checkerboard stretches to fit it:

 ' ----- Scale the form for the checkerboard.
 Dim scaleX As Single
 Dim scaleY As Single
 scaleX = CSng(Me.ClientSize.Width / 10)
 scaleY = CSng(Me.ClientSize.Height / 10)
 canvas.ScaleTransform(scaleX, scaleY)
 canvas.TranslateTransform(1, 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 canvas.TranslateTransform(1, 1)

Finally, the path is drawn using a blue brush, and its outline is drawn around the edges:

 ' ----- Draw and outline the checkerboard.
 canvas.FillPath(Brushes.Blue, thePath)
 canvas.DrawRectangle(New Pen(Color.Blue, -1), 0, 0, 8, 8)
 End Sub

The form's Resize event needs a command to cause the form to refresh as it is resized. This causes the checkerboard to
be redrawn on the fly as the form is stretched or shrunk:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize

 ' ----- Redraw the checkerboard.
 Me.Refresh()
 End Sub

For maximum smoothness of the action, be sure to set the form's DoubleBuffered property to true.

Figure 9-20 shows the checkerboard when the form has been resized to fairly square dimensions.

Figure 9-20. A checkerboard drawn using a single path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.13. Using Gradients for Smooth Color Changes

Problem

You want to fill a graphics area with colors that smoothly transition from one shade to another.

Solution

Sample code folder: Chapter 09\SmoothColor

Create a GraphicsPath object, use it to create and define a PathGradientBrush, set the various colors of the brush, and then
use the new gradient brush to fill a graphics area.

Discussion

The PathGradientBrush object enables a lot of creative color transitions in your graphics. The code in this recipe provides a
good starting point for further experimentation.

Some of these objects require referencing the Drawing2D namespace, so be sure to add the following Imports statement to
the top of your source code:

 Imports System.Drawing.Drawing2D

This example dynamically updates the gradient fill as you move the mouse over the face of the form. To do this, the
mouse position is recorded with each MouseMove event, and the form repaints itself by calling its Refresh() method:

 ' ----- Keep track of the mouse position.
 Private MouseX As Integer
 Private MouseY As Integer

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Record the mouse position.
 MouseX = e.X
 MouseY = e.Y

 ' ----- Cause a repaint of the form.
 Me.Refresh()
 End Sub

The form's Paint event handles the important details of the gradient color fill. Let's take this step by step.:

1. The Paint event is called with each move of the mouse:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

2. The graphics path can be any shape, even discontinuous rectangles, ellipses, and so on. In this case the path is
defined as the rectangle around the edge of the form's client area:

 ' ----- Create path around edge of form's client area.
 Dim thePath As New GraphicsPath
 thePath.AddRectangle(Me.ClientRectangle)

3. The PathGradientBrush is created using the predefined path. The object uses this geometric information internally
to determine smoothly transitioning colors for all pixel locations during drawing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to determine smoothly transitioning colors for all pixel locations during drawing:

 ' ----- Use the path to construct a gradient brush.
 Dim smoothBrush As PathGradientBrush = _
 New PathGradientBrush(thePath)

4. You can define one point in the center of the brush area to have a specific color. Here, set the point under the
mouse cursor to White. Colors will transition away from white based on distance from the mouse cursor to the
edges of the path:

 ' ----- Set the color at the mouse point.
 smoothBrush.CenterPoint = New PointF(MouseX, MouseY)
 smoothBrush.CenterColor = Color.White

5. One or more colors can be set along the path using the SurroundColors property of the PathGradientBrush object. Set
an array of four colors, so each corner of the form provides a standard color:

 ' ----- Set a color along the entire boundary of the path.
 Dim colorArray() As Color = _
 {Color.Red, Color.Green, Color.Blue, Color.Yellow}
 smoothBrush.SurroundColors = colorArray

6. The new PathGradientBrush is used to fill the rectangular area of the form, and all pixels on the form are set to a
smoothly transitioned shade depending on the geometry and settings made earlier in the code:

 ' ----- Fill form with gradient path.
 e.Graphics.FillRectangle(smoothBrush, Me.ClientRectangle)
 End Sub

7. To have the effect update smoothly, set the form's DoubleBuffered property to true. Figure 9-21 shows the form's
appearance as the mouse is moved around on it.

Figure 9-21. Color gradients open the door to many special color-shading effects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.14. Drawing Bezier Splines

Problem

You need to draw smooth curves between points, but you'd prefer not to delve into a lot of complex mathematical
calculations.

Solution

Sample code folder: Chapter 09\BezierSplines

The DrawBezier() graphics method draws a smooth curve between two points, using two other points as control pointsor
points that tug at the curve to change its shape as desired.

Discussion

Bezier splines are defined by two endpoints and two control points. (The mathematical theory behind Bezier splines is
beyond the scope of this book. For more information, check out the links in the "See Also" section at the end of this
recipe.)

The example program shown here lets you experiment interactively with the DrawBezier() graphics method. First, make
sure you import the Drawing2D namespace, as follows:

 Imports System.Drawing.Drawing2D

Up to four mouse-click points will be recorded in an array of points. Keep track of the points using a generic list:

 ' ----- Keeps track of the mouse positions.
 Dim BendPoints As New Generic.List(Of Point)

As the mouse is clicked and new points are added to the array, the form is told to refresh itself by calling its Refresh()
method:

 Private Sub Form1_MouseClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseClick
 ' ----- Record another mouse position.
 BendPoints.Add(New Point(e.X, e.Y))

 ' ----- Update the display.
 Me.Refresh()
 End Sub

The form's Paint event is where the important action takes place:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Get the form's drawing surface.
 Dim canvas As Graphics = e.Graphics

Each point is drawn as a small solid-filled ellipse (circle). When there are four points, they are passed to the DrawBezier()
method to draw the curve using a black pen. The first and fourth clicks are the endpoints. Clicking on the form a fifth
time erases all the points, and the curve starts over:

 Dim scanPoint As Point
 Const PointSize As Integer = 7

 ' ----- Draw available points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Draw available points.
 If (BendPoints.Count <= 4) Then
 For Each scanPoint In BendPoints
 canvas.FillEllipse(Brushes.Red, _
 scanPoint.X - PointSize, _
 scanPoint.Y - PointSize, _
 PointSize * 2, PointSize * 2)
 Next scanPoint
 End If

 ' ----- Draw the spline if all points are there.
 If (BendPoints.Count >= 4) Then
 canvas.DrawBezier(Pens.Black, BendPoints(0), _
 BendPoints(1), BendPoints(2), BendPoints(3))
 BendPoints.Clear()
 End If
 End Sub

Figure 9-22 shows the results after four points have been clicked.

Figure 9-22. Drawing a Bezier spline

See Also

See http://www.ibiblio.org/e-notes/Splines/Bezier.htm and http://mathforum.org/library/drmath/view/54434.html for
more information on Bezier splines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.15. Drawing Cardinal Splines

Problem

You need a curve that goes smoothly through two or more points.

Solution

Sample code folder: Chapter 09\CardinalSplines

A Cardinal spline plots a curve through two or more points. Unlike the Bezier spline, the Cardinal spline intersects every
point and does not use external control points.

Discussion

The mathematical description of the way the Cardinal spline works is beyond the scope of this book. For a more in-
depth discussion and explanation of the math involved, see the links in the "See Also" section at the end of this recipe.

The following code demonstrates the Cardinal spline by collecting points as they are clicked on the face of the form. A
list of the points is built up, and with each added point, the Cardinal spline is drawn anew. A button at the top of the
form lets you erase all the points to start over, and a TrackBar control lets you set the tension parameter for the spline.
The tension is a number ranging from 0 to 1 that is passed to the DrawCurve() method to determine the smoothness of
the curve as it passes through each point. The easiest way to understand the effect of this parameter is to slide the
trackBar and watch the curve change shape.

Here's the code that lets the form monitor for mouse clicks, builds the set of points, and refreshes the form to activate
its Paint event:

 ' ----- Keep track of the mouse positions.
 Private BendPoints As New Generic.List(Of Point)

 Private Sub Form1_MouseClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseClick
 ' ----- Add a mouse position.
 BendPoints.Add(New Point(e.X, e.Y))

 ' ----- Update the display.
 Me.Refresh()
 End Sub

The form's Paint event is where the drawing of the selected points and the spline connecting them takes place. The
event fires when the form is refreshed, which is caused by calling the Refresh() method when the mouse is clicked or the
trackbar is adjusted.

This code draws each plotted point in red as the user clicks it. Then, if there are two or more accumulated points, it
draws the Cardinal spline using the DrawCurve() method:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the spline points and line.
 Dim tension As Single
 Dim canvas As Graphics
 Dim scanPoint As Point
 Const PointSize As Integer = 7

 ' ----- Determine the tension.
 tension = TensionLevel.Value / TensionLevel.Maximum
 LabelTension.Text = "Tension: " & tension.ToString

 ' ----- Draw the points on the surface.
 canvas = e.Graphics
 For Each scanPoint In BendPoints
 canvas.FillEllipse(Brushes.Red, _
 scanPoint.X - PointSize, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 scanPoint.X - PointSize, _
 scanPoint.Y - PointSize, _
 PointSize * 2, PointSize * 2)
 Next scanPoint

 ' ----- Draw the Cardinal spline.
 If (BendPoints.Count > 1) Then
 canvas.DrawCurve(Pens.Black, _
 BendPoints.ToArray, tension)
 End If
 End Sub

When the trackbar's slider is adjusted, the form's Refresh() method is called to trigger a repaint:

 Private Sub TensionLevel_ValueChanged(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles TensionLevel.ValueChanged
 ' ----- Update the tension and display.
 Me.Refresh()
 End Sub

When the Reset button is clicked, the set of points is emptied, and the form is repainted to erase the points and the
curve:

 Private Sub ActReset_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActReset.Click

 ' ----- Clear all points.
 BendPoints.Clear()
 Me.Refresh()
 End Sub

Figure 9-23 shows a typical spline curve through six points with the tension set to 0.6. A lower tension results in sharp
angles at the bend points, while higher tension gives a smoother curve.

Figure 9-23. Cardinal splines travel through all given points

See Also

See http://www.ibiblio.org/e-notes/Splines/Cardinal.htm and http://en.wikipedia.org/wiki/Cardinal_spline for more
information on Cardinal splines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.16. Limiting Display Updates to Specific Regions

Problem

You want to clip your graphics using some complexly shaped area, without having to resort to difficult code to compute
intersections and other clipping details.

Solution

Sample code folder: Chapter 09\ClippingRegion

Create a Region object defined by a path, set the Graphics object's Clip property to this region, and draw any standard graphics on
the Graphics object surface. Clipping takes place using the path.

Discussion

A single path can range from a simple sequence of lines to an elaborate mix of connected or disconnected rectangles, ellipses,
or polygons. This means that a path can take on a complex outline, and it can involve a lot of independent parts. In the
example presented here a large number of tall, thin rectangles are added to a single path, and this path is then used to define
a Region object that clips the drawing of a string.

Several of the objects used in this example are in the Drawing2D namespace, so be sure to add the following Imports statement
to the top of your source code:

 Imports System.drawing.Drawing2D

The remaining code appears in the form's Paint event handler. The first thing the Paint handler does is access the form's
graphics surface, passed as a member of the PaintEventArgs instance (e). The area is cleared to solid white:

 Private Sub Form11_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw using a region to restrict output.
 Dim canvas As Graphics
 Dim fencePath As GraphicsPath
 Dim onePicket As Rectangle
 Dim counter As Integer
 Dim slottedRegion As Region

 ' ----- Clear the background.
 canvas = e.Graphics
 canvas.Clear(Color.White)

Next, a GraphicsPath object is created and filled with a lot of tall, thin rectangles, spaced apart somewhat like the pickets on a
picket fence. These rectangles don't touch each other, but they are all added to a single complex path object:

 ' ----- Create a picket fence path.
 fencePath = New GraphicsPath
 For counter = 0 To 200
 onePicket = New Rectangle(counter * 10, 0, 6, 500)
 fencePath.AddRectangle(onePicket)
 Next counter

The path just created is then used to define a new Region object:

 ' ----- Create a region from the path.
 slottedRegion = New Region(fencePath)

The path itself can't be used to define a clipping region, but a Region object can. Even regions defined by complexly shaped
paths provide rapid clipping on the graphics surface. To this end, we'll now assign the slottedRegion to the Graphics object's Clip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

paths provide rapid clipping on the graphics surface. To this end, we'll now assign the slottedRegion to the Graphics object's Clip
property:

 ' ----- Set clipping using the region.
 canvas.Clip = slottedRegion

You can apply any graphics drawing methods you want at this point, and everything drawn will be clipped as defined by the
Graphics object's Clip property. In this example we clear the entire surface to a new color (given a white-cyan-white-cyan picket
fence image), and then draw a string of text using a large font:

 ' ----- Draw some slotted
text.
 canvas.Clear(Color.Aqua)
 canvas.
DrawString("Picket Fence", _
 New Font("Times New Roman", 77), _
 Brushes.Blue, 20, 20)
 End Sub

Figure 9-24 shows how both graphics methods are clipped.

Figure 9-24. Regions can be used to clip graphics in very intricate ways

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.17. Drawing Text

Problem

You want to draw some nicely formatted text on the drawing surface.

Solution

Sample code folder: Chapter 09\DrawingText

The primary tool for drawing text is the Graphics.DrawString() method. To make adjustments to the text, you can alter the
font's properties, apply transformations to the canvas itself, or use a StringFormat object. This recipe's sample code uses
each of these methods to display a string of text.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named DisplayText. Set its Multiline property to true and its ScrollBars property to Vertical. Size it so
that you can see multiple lines of user-entered text.

A CheckBox control named UseBold. Set its Text property to Bold.

A CheckBox control named UseItalic. Set its Text property to Italic.

A CheckBox control named UseUnderline. Set its Text property to Underline.

A CheckBox control named UseStrikeout. Set its Text property Strikeout.

ACheckBox control named ShowBoundingBox. Set its Text property to Show Bounding Box.

AComboBox control named DisplayAlign. Set its DropDownStyle property to DropDownList.

A trackBar control named DisplayRotate. Set its Minimum property to 0, its Maximum property to 360, its TickFrequency
property to 15, its SmallChange property to 15, and its LargeChange property to 60. The trackBar control appears in the
All Windows Forms section of the Toolbox by default.

A Button control named ActDisplay. Set its Text property to Display.

A PictureBox control named DrawingArea. Set its BackColor property to White and its BorderStyle property to Fixed3D.

Add informational labels if desired. The form should look like Figure 9-25.

Figure 9-25. The controls on the text drawing sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-25.

Now add the following source code to the form's class template:

 Private Sub ActDisplay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActDisplay.Click
 ' ----- Force the
text to redisplay.
 DrawingArea.Invalidate()
 End Sub

 Private Sub DrawingArea_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles DrawingArea.Paint
 ' ----- Refresh the drawing area.
 Dim mainFont As Font
 Dim
textArea As Rectangle
 Dim textStyle As New FontStyle
 Dim textFormat As StringFormat
 Dim alignParts() As String

 ' ----- Clear any existing content.
 e.Graphics.Clear(Color.White)

 ' ----- Build the font used for the display text.
 textStyle = FontStyle.Regular
 If (UseBold.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Bold
 If (UseItalic.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Italic
 If (UseUnderline.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Underline
 If (UseStrikeout.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Strikeout
 mainFont = New Font("Arial", 12, textStyle)

 ' ----- Move the (0,0) origin to the center of the
 ' display.
 e.Graphics.TranslateTransform(_
 DrawingArea.ClientRectangle.Width / 2, _
 DrawingArea.ClientRectangle.Height / 2)

 ' ----- Determine where the main text will go. The Offset
 ' method repositions the rectangle's coordinates
 ' by the given X and Y values.
 textArea = New Rectangle(20, 20, _
 DrawingArea.ClientRectangle.Width - 40, _
 DrawingArea.ClientRectangle.Height - 40)
 textArea.Offset(_
 -CInt(DrawingArea.ClientRectangle.Width / 2), _
 -CInt(DrawingArea.ClientRectangle.Height / 2))

 ' ----- Prepare the alignment.
 textFormat = New StringFormat
 alignParts = Split(DisplayAlign.Text, ",")

 Select Case alignParts(0)
 Case "Left"

textFormat.Alignment = StringAlignment.Near
 Case "Center"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

textFormat.Alignment = StringAlignment.Center
 Case "Right"
 textFormat.Alignment = StringAlignment.Far
 End Select
 Select Case alignParts(1)
 Case "Top"
 textFormat.LineAlignment = StringAlignment.Near
 Case "Middle"
 textFormat.LineAlignment = StringAlignment.Center
 Case "Bottom"
 textFormat.LineAlignment = StringAlignment.Far
 End Select

 ' ----- Rotate the world if requested.
 If (DisplayRotate.Value <> 0) Then
 e.Graphics.RotateTransform(DisplayRotate.Value)
 End If

 ' ----- Draw the bounding box if requested.
 If (ShowBoundingBox.Checked = True) Then
 e.Graphics.DrawRectangle(Pens.Gray, textArea)
 End If

 ' ----- Draw the main text.
 e.Graphics.DrawString(DisplayText.Text, mainFont, _
 Brushes.Black, textArea, textFormat)

 ' ----- Clean up.
 mainFont.Dispose()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Build the list of alignments.
 DisplayAlign.Items.Add("Left,Top")
 DisplayAlign.Items.Add("Left,Middle")
 DisplayAlign.Items.Add("Left,Bottom")

 DisplayAlign.Items.Add("Center,Top")
 DisplayAlign.Items.Add("Center,Middle")
 DisplayAlign.Items.Add("Center,Bottom")

 DisplayAlign.Items.Add("Right,Top")
 DisplayAlign.Items.Add("Right,Middle")
 DisplayAlign.Items.Add("Right,Bottom")

 DisplayAlign.SelectedIndex = 0
 End Sub

To use the program, enter some text in the TextBox field, and adjust the other controls as desired to alter the text. Then
click the Display button to refresh the displayed text. Figure 9-26 shows some sample text displayed through the
program.

Figure 9-26. Rotated and embellished text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Graphics. DrawString() method is pretty simple to use: you pass it a text string, a position (or bounding rectangle), a
font, and a colored or patterned brush, and the text appears on the canvas. Except for how the position and boundaries
of the text are specified, there isn't that much flexibility in the method itself. However, there is flexibility in the values
passed to the method. Changes to the font or font styles, as demonstrated in this code, clearly have an impact on the
results. Similarly, you can create any type of solid, patterned, or image-based brush, and use it to draw the text itself.

Transformations made to the canvas also impact the text output. This recipe's code applies two transformations to the
canvas: it repositions the X-Y coordinate system origin from the upper-left corner of the canvas to the center, and it
rotates the canvas if requested by the user so that the text appears rotated. Recipe 9.18 discusses the reasons for
these two transformations in more detail.

The Drawing.StringFormat class, used in this sample to align the text within its bounding box, provides additional text-
drawing options. The StringFormat.FormatFlags property lets you set options that adjust how the text appears in its bounding
box. For instance, you can indicate whether the text should automatically wrap or not. The StringFormat.HotkeyPrefix
property lets you indicate which character should be used to draw shortcut-key underlines below specific letters of the
text, as is done using "&" in Label and other controls.

See Also

Many of the recipes in this chapter show text being formatted and output in a variety of formats and displays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.18. Rotating Text to Any Angle

Problem

You want to draw some text onto the output canvas and rotate it by a specific number of degrees.

Solution

Sample code folder: Chapter 09\DrawingText

The code for Recipe 9.17 includes features that let you rotate text in 15-degree increments. The code will not be repeated in full in this
recipe, but this recipe's discussion will expand on the text-rotation features in more detail.

Discussion

The sample code in Recipe 9.17 includes two transformations to the canvas. As mentioned in other recipes, transformations impact
every drawing command made to the canvas surface, preprocessing all drawing commands for size, position, and rotation before the
output appears on the canvas. The sample code performs two transformations: one that repositions the (0,0) origin (or center point)
from the upper-left corner of the canvas to the center of the canvas, and one that rotates the canvas by a user-specified amount. Here
is the relevant code:

 ' ----- Move the (0,0) origin to the center of the display.
 e.Graphics.TranslateTransform(_
 DrawingArea.ClientRectangle.Width / 2, _
 DrawingArea.ClientRectangle.Height / 2)

 ' ----- Rotate the world if requested.
 If (DisplayRotate.Value <> 0) Then
 e.Graphics.RotateTransform(DisplayRotate.Value)
 End If

Rotating text is a byproduct of canvas rotation; although the user sees the text rotate, your code acts as if the canvas itself is being
rotated under the drawing pens. This means that it is not the text that is rotated, but the world of the canvas, and this rotation occurs
around the (0,0) origin of the canvas.

In the sample code, the goal is to rotate the text so that the center of the text's bounding box stays in the center of the display. The
movement of the origin through the TranslateTransform() method call is required to properly rotate the text about its center point. If the
code had left the origin at the upper-left corner of the canvas, the rotation would have occurred around that point, and some rotation
angles would have moved the text right off the display. The left half of Figure 9-27 shows the out-put of text rotated at a 45-degree
angle according to the sample code: the text rotates about its own center because the origin of the canvas world was moved to that
same position. The right half of the figure shows what would have happened if the origin had remained at the upper-left corner of the
PictureBox control.

Figure 9-27. Rotating the text's bounding box when the origin has been moved to the center
of the canvas (left) and when it remains at the default upper-left corner (right)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the sample code allows rotations only in 15-degree increments, you can pass any valid degree value to the RotateTransform()
method.

See Also

Recipe 9.17 contains the code discussed in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.19. Mirroring Text on the Canvas

Problem

You want to mirror the text displayed on a graphics canvas.

Solution

Sample code folder: Chapter 09\MirrorText

Use a custom matrix transformation through the Graphics object's transform property. This recipe's sample code mirrors
text both vertically and horizontally.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named VerticalMirror Set its Text property to Vertical and its Checked property to true.

A RadioButton control named HorizontalMirror. Set its Text property to Horizontal.

A PictureBox control named MirroredText. Set its BorderStyle property to FixedSingle and its BackColor property to White.
Size it so that it can show a sentence or two of text in either direction.

Figure 9-28 shows the layout of the controls on this form.

Figure 9-28. The controls on the mirror text sample

Now add the following source code to Form1's class template:

 Private Const QuoteText As String = _
 "The best car safety device is a rear-view mirror " & _
 "with a cop in it. (Dudley Moore)"

 Private Sub VerticalMirror_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles VerticalMirror.CheckedChanged
 ' ----- Update the display. This event indirectly
 ' handles both radio buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' handles both radio buttons.
 MirroredText.Invalidate()
 End Sub

 Private Sub MirroredText_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MirroredText.Paint
 ' ----- Draw the text and its reverse.
 Dim drawingArea As Rectangle
 Dim saveState As Drawing2D.GraphicsState
 Dim mirrorMatrix As Drawing2D.Matrix

 ' ----- Clear the background.
 e.Graphics.Clear(Color.White)

 ' ----- Deterine the drawing area.
 If (VerticalMirror.Checked = True) Then
 ' ----- Put text on the left and right of the mirror.
 drawingArea = New Rectangle(5, 5, _
 (MirroredText.ClientRectangle.Width \ 2) - 10, _
 MirroredText.ClientRectangle.Height - 10)

 ' ----- Draw the mirror line.
 e.Graphics.DrawLine(Pens.Black, _
 MirroredText.ClientRectangle.Width \ 2, _
 5, MirroredText.ClientRectangle.Width \ 2, _
 MirroredText.ClientRectangle.Height - 10)
 Else
 ' ----- Put text on the top and bottom of the mirror.
 drawingArea = New Rectangle(5, 5, _
 MirroredText.ClientRectangle.Width - 10, _
 (MirroredText.ClientRectangle.Height \ 2) - 10)

 ' ----- Draw the mirror line.
 e.Graphics.DrawLine(Pens.Black, 5, _
 MirroredText.ClientRectangle.Height \ 2, _
 MirroredText.ClientRectangle.Width - 10, _
 MirroredText.ClientRectangle.Height \ 2)
 End If

 ' ----- Draw the text.
 e.Graphics.DrawString(QuoteText, MirroredText.Font, _
 Brushes.Black, drawingArea)

 ' ----- Mirror the display.
 saveState = e.Graphics.Save()
 If (VerticalMirror.Checked = True) Then
 mirrorMatrix = New Drawing2D.Matrix(-1, 0, 0, 1, _
 MirroredText.ClientRectangle.Width, 0)
 Else
 mirrorMatrix = New Drawing2D.Matrix(1, 0, 0, -1, _
 0, MirroredText.ClientRectangle.Height)
 End If
 e.Graphics.Transform = mirrorMatrix

 ' ----- Draw the text, this time, mirrored.
 e.Graphics.DrawString(QuoteText, MirroredText.Font, _
 Brushes.Black, drawingArea)

 ' ----- Undo the mirror.
 e.Graphics.Restore(saveState)
 End Sub

Run the program, and use the RadioButton controls to adjust the direction of the mirror. Figure 9-29 shows the mirror in
the vertical orientation.

Figure 9-29. Text reversed with a vertical mirror

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-29. Text reversed with a vertical mirror

The Graphics object includes methods that perform basic scaling (ScaleTransform())), repositioning (TranslateTransform()), and
rotating transformations (RotateTransform())). While these transformations all seem quite different from each other, they
all actually use the same method to accomplish the canvas-level adjustments. Each method sets up a matrix
transformation, a mathematical construct that maps points in one coordinate system to another through a basic set of
operations. In college-level math courses, this system generally appears under the topic of Linear Algebra.

In addition to the predefined transformations, you can define your own matrix calculation to transform the output in any
way you need. This recipe's sample code applies a custom matrix that reverses all coordinate system points in either
the horizontal or vertical direction. The intricacies of matrix transformations and cross products are beyond the scope of
this book. You can find some basic discussions of the math involved by searching for "matrix transformations" in the
Visual Studio online help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.20. Getting the Height and Width of a Graphic String

Problem

You want to know how many pixels a text string will require in both the horizontal and vertical directions.

Solution

Sample code folder: Chapter 09\MeasuringText

GDI+ includes several features that let you examine the width and height of a string. Graphics.MeasureString() is a general-
purpose text-measurement method that bases its measurements on a font you pass to it:

 Dim result As SizeF = _
 e.
Graphics.MeasureString("How big am I?", Me.Font, _
 Me.ClientRectangle.Width)
 MsgBox("Width = " & result.Width & vbCrLf & _
 "Height = " & result.Height)

On our system, using the default form font of Microsoft Sans Serif 8.25 Regular, the message box displays the following
response:

 Width = 75.71989Height = 13.8252

Discussion

Font measurement is tricky. Fonts are more than just the width and height of their letters. The height is a combination
of the core height, plus the height of ascenders (the part of the letter "d" that sticks up) and descenders (the part of
the letter "p" that sticks down). The width of a character string is impacted by kerning, the adjustment of two letters
that fit together better than others. To get a flavor of some of these measurements, consider the following code:

 Public Class Form1
 Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Show vertical font measures.
 Dim textArea As SizeF
 Dim linePen As Pen
 Dim largeFont As Font
 Dim fontRatio As Single
 Dim ascentSize As Single
 Dim descentSize As Single
 Dim emSize As Single
 Dim cellHeight As Single
 Dim internalLeading As Single
 Dim externalLeading As Single

 ' ----- Create the font to use for drawing.
 ' Using "AntiAlias" to enable text smoothing
 ' will result in more precise output.
 e.Graphics.TextRenderingHint = _
 Drawing.Text.TextRenderingHint.AntiAlias
 largeFont = New Font("Times New Roman", 96, _
 FontStyle.Regular)

 ' ----- Fonts are measured in design units. We need to
 ' convert to pixels to mix measurement systems.
 ' Determine the ratio between the display line
 ' height and the font design's line height.
 fontRatio = largeFont.Height / _
 largeFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Get the measurements.
 textArea = e.
Graphics.MeasureString("Ag", largeFont)

 ' ----- Offset everything for simplicity.
 e.Graphics.TranslateTransform(20, 20)

 ' ----- Draw the text.
 e.Graphics.DrawString("Ag", largeFont, _
 Brushes.Black, 0, 0)

 ' ----- Create a line-drawing pen.
 linePen = New Pen(Color.Gray, 1)
 linePen.DashStyle = Drawing2D.DashStyle.Dash

 ' ----- Calculate all of the various font measurements.
 ascentSize = largeFont.FontFamily.GetCellAscent(_
 FontStyle.Regular) * fontRatio
 descentSize = largeFont.FontFamily.GetCellDescent(_
 FontStyle.Regular) * fontRatio
 emSize = largeFont.FontFamily.GetEmHeight(_
 FontStyle.Regular) * fontRatio
 cellHeight = ascentSize + descentSize
 internalLeading = cellHeight - emSize
 externalLeading = _
 (largeFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) * fontRatio) - cellHeight

 ' ----- Draw the top and bottom lines.
 e.Graphics.DrawLine(linePen, 0, 0, textArea.Width, 0)
 e.Graphics.DrawLine(linePen, 0, textArea.Height, _
 textArea.Width, textArea.Height)

 ' ----- Draw the ascender and descender areas.
 e.Graphics.DrawLine(linePen, 0, _
 ascentSize, textArea.Width, ascentSize)
 e.Graphics.DrawLine(linePen, 0, _
 ascentSize + descentSize, textArea.Width, _
 ascentSize + descentSize)

 ' ----- Clean up.
 linePen.Dispose()
 largeFont.Dispose()
 e.Graphics.ResetTransform()
 End Sub
 End Class

We added this code to a form with a single PictureBox control. The results appear in Figure 9-30.

The four lines from top to bottom are as follows:

The top of the "line height" box

The baseline, based on the ascender height

Figure 9-30. Measuring elements of a font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bottom of the descender

The bottom of the "line height" box

The code also includes calculations for other measurements, although they are not used in the output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.21. Drawing Text with Outlines and Drop Shadows

Problem

You want to draw some text but display only its outline, and you want the text to have a drop shadow.

Solution

Sample code folder: Chapter 09\OutlineText

Use a GraphicsPath object to record the outside edge of a text string, and then use that outside edge, or path, to draw the
actual drop shadow and outline elements.

Discussion

Create a new Windows Forms application, and add a PictureBox control named PictureBox1 to the form. Set this control's
BackColor property to White and its BorderStyle property to FixedSingle. Give it a size of approximately 400,150. Now add the
following source code to the form's class template:

 Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Draw text using an outline.

 Dim outlinePath As New Drawing2D.GraphicsPath
 Dim useFont As Font

 ' ----- Make some output adjustments to get a better
 ' outline.
 e.Graphics.TextRenderingHint = _
 Drawing.Text.TextRenderingHint.AntiAlias
 e.Graphics.SmoothingMode = _
 Drawing2D.SmoothingMode.AntiAlias

 ' ----- Draw the text into a path.
 useFont = New Font("Times New Roman", _
 96, FontStyle.Regular)
 outlinePath.AddString("Outline", useFont.FontFamily, _
 FontStyle.Regular, 96, New Point(0, 0), _
 StringFormat.GenericTypographic)
 useFont.Dispose()

 ' ----- Replay the path to draw a drop shadow.
 e.Graphics.TranslateTransform(25, 25)
 e.Graphics.FillPath(Brushes.LightGray, outlinePath)

 ' ----- Replay the path to the surface.
 e.Graphics.TranslateTransform(-5, -5)
 e.Graphics.FillPath(Brushes.White, outlinePath)
 e.Graphics.DrawPath(Pens.Black, outlinePath)

 ' ----- Finished.
 outlinePath.Dispose()
 End Sub

Running this program displays the outline and drop shadow shown in Figure 9-31.

Figure 9-31. Text in an outline form, with a drop shadow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-31. Text in an outline form, with a drop shadow

While the Font class includes support for italic, bold, strikeout, and underline for-matting, it does not include features
that automatically enable outlining or drop shadows. However, you can enable these features yourself using a
GraphicsPath object. A graphics path is like a tape recording of a set of drawing commands that records the outline of the
drawn elements. You use the GraphicsPath's drawing methods to record the outlines of shapes and text strings in the
path. You can then later use this path like a macro that can be replayed on the graphics surface.

The GraphicsPath object's AddString() method adds the outer edge of all characters in the supplied text string to the path.
There are additional methods that let you include other shapes, such as AddLine(), AddRectangle(), and AddEllipse().

See Also

Recipe 9.17 includes some similar alignment and rotation features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.22. Calculating a Nice Axis

Problem

You want to create a chart with a "nice" axis; that is, one with reasonable scaling numbers for a given number of tick
marks and with a reasonably rounded increment for each tick value. These scale values should be chosen so the range
of data points spans most of the length of the axis.

Solution

Sample code folder: Chapter 09\NiceAxis

Use the NiceAxis() function presented here to calculate a reasonable axis given the minimum and maximum values of the
data and the number of ticks along the axis.

Discussion

This function was created to solve the tricky problem of determining a reasonable plotting axis for a range of numbers.
When manually determining a scale, it's easy to accidentally scrunch the data points too closely by choosing a scale
with larger than necessary values or a scale with awkward fractional values at each tick mark that make mental
interpolation of intermediate values nearly impossible.

This function solves these problems by automatically choosing reasonable values for a chart's axis. In many cases you
will want to call this function twice, once for the X-axis and once for the Y-axis.

Pass this function the minimum and maximum data values to be plotted, and the number of divisions or tick marks
along the axis. The calculations in the function iterate to find division steps that are reasonable and that still allow all
data points to fall within the range of the axis. Here's the code for the NiceAxis() function:

 Public Function NiceAxis(ByVal minimumValue As Double, _
 ByVal maximumValue As Double, _
 ByVal divisions As Double) As Double()
 ' ----- Determine reasonable tick marks along an axis.

 ' Returns an array of three values:
 ' 0) minimum tick value
 ' 1) maximum tick value
 ' 2) tick mark step size
 Dim axis(2) As Double
 Dim trialDivisionSize As Double
 Dim modFourCount As Double = 1
 Dim divisionSize As Double

 ' ----- Get the starting values.
 divisionSize = (maximumValue - minimumValue) / divisions
 trialDivisionSize = 10 ^ Int(Math.Log10(divisionSize))

 ' ----- Iterate until we arrive at reasonable values.
 Do While (maximumValue > (trialDivisionSize * _
 Int(minimumValue / trialDivisionSize) + _
 divisions * trialDivisionSize))
 modFourCount += 1
 If ((modFourCount Mod 4) > 0) Then
 trialDivisionSize = 8 * trialDivisionSize / 5
 End If
 trialDivisionSize = 5 * trialDivisionSize / 4
 Loop

 ' ----- Return the results.
 axis(0) = trialDivisionSize * _
 Int(minimumValue / trialDivisionSize)
 axis(1) = axis(0) + divisions * trialDivisionSize
 axis(2) = (axis(1) - axis(0)) / divisions
 Return axis
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function shows a good example of returning an array. In this case the array returns the minimum and maximum
values for the ends of the nice axis, and the step size for the numbers along the tick marks or divisions along the axis.

The following code provides a working example. NiceAxis() is called with minimum and maximum data values of 3.4 and
3.27, and 10 tick marks are requested along the scale of this axis. As shown in Figure 9-32, the function returns the
nearest whole-number values for each end of the axis (4 and 6) and a recommended whole step size of 1 for each tick
mark:

 Dim result As New System.Text.StringBuilder
 Dim axis() As Double = NiceAxis(-3.4, 3.27, 10)

 result.AppendLine("Minimum Value: -3.4")
 result.AppendLine("Maximum Value: 3.27")
 result.AppendLine("Divisions: 10")
 result.AppendLine()

 result.Append("Axis Minimum: ")
 result.AppendLine(axis(0).ToString)
 result.Append("Axis Maximum: ")

 result.AppendLine(axis(1).ToString)
 result.Append("Division Steps: ")
 result.AppendLine(axis(2).ToString)

 MsgBox(result.ToString())

Figure 9-32. The NiceAxis() function returns end points and the division step size
for a nicely scaled chart axis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.23. Drawing a Simple Chart

Problem

You want to create your own data charts, and you would like to have code for a sample chart as a starting point for
your own customizations.

Solution

Sample code folder: Chapter 09 \DrawingCharts

The simple chart presented in this recipe should provide plenty of creative ideas and useful techniques for designing
your own custom charts.

Discussion

The chart presented here provides a good starting point for drawing your own charts, but it shouldn't be used as
presented. For one thing, the data values are hard-coded into an array in the form's Paint event, and you'll likely want to
pass in your own data for plotting. The goal of this example is to present several graphics techniques in an easy-to-
follow way.

As in most of the graphics examples in this chapter, the drawing takes place in the form's Paint event. The graphics
drawing surface is referenced for easy use of its drawing methods:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

 ' ----- Draw a nice chart.
 Dim canvas As Graphics = e.Graphics

For demonstration purposes, an array of Y data point values is hardcoded in this routine, and the corresponding X
values are assumed to be evenly spaced 10 units apart in the range 0 to 100:

 ' ----- Create an array of data points to plot.
 Dim chartData() As Single = _
 {20, 33, 44, 25, 17, 24, 63, 75, 54, 33}

We'll use three pens: a red one, a black one, and a gray one. By setting each pen's widths to 1, we guarantee the
sketched lines to be one pixel wide even if the scaling changes, and in this example we do change the scaling to plot
the entire chart on the form no matter what size the window is stretched to:

 ' ----- Create some pens.
 Dim penRed As New Pen(Color.Red, -1)
 Dim penBlack As New Pen(Color.Black, -1)
 Dim penShadow As New Pen(Color.Gray, -1)

The next lines create the font and brush used to draw the axis numbers along the tick marks. The font size is relative to
the chart scaling, which means that as the chart window is resized, the numbers along the axis will grow and shrink
proportionately:

 ' ----- Prepare to add labels.
 Dim labelFont As New Font("Arial", 3, FontStyle.Regular)
 Dim labelBrush As New SolidBrush(Color.Blue)

Several variables are used during the scaling process and to plot the data points:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Several variables are used during the scaling process and to plot the data points:

 ' ----- Used to plot the various elements.
 Dim x1, y1 As Single 'Lower left corner
 Dim x2, y2 As Single 'Upper right corner
 Dim scaleX, scaleY As Single
 Dim xScan, yScan As Single
 Dim oneBar As RectangleF

The chart is drawn in a rectangle from 0 to 100 in both the X and Y directions. By scaling the graphics surface from 10
to 110, a margin is left for the axis labels. By default, the Y scaling of a graphics surface starts at the top-left corner
and increases as you move down in the area. A standard X-Y chart assumes an origin in the bot-tom-left corner, with
increasing values going up the graphics surface. This requires the Y scaling factor in the ScaleTransform() method to be a
negative value, which inverts the scale. Also, once inverted, the scale origin needs to be shifted, or trans-lated,
appropriately to relocate the origin to the bottom left of the graphics surface. This is accomplished using the Graphics
object's TranslateTransform() method:

 ' ----- Set the scaling.
 x1 = -10
 y1 = -10
 x2 = 110
 y2 = 110
 scaleX = Me.ClientSize.Width / (x2 - x1)
 scaleY = Me.ClientSize.Height / (y2 - y1)
 canvas.ScaleTransform(scaleX, -scaleY) '(inverted)
 canvas.TranslateTransform(-x1, -y2) '(inverted)

The chart's background color, outline, and gridlines are drawn in the following lines of code:

 ' ----- Color the background.
 canvas.Clear(Color.Cornsilk)

 ' ----- Draw chart outline rectangle.
 canvas.DrawRectangle(penBlack, New Rectangle(0, 0, 100, 100))

 ' ----- Draw the chart grid.
 For xScan = 10 To 90 Step 10
 canvas.DrawLine(penBlack, xScan, 0, xScan, 100)
 Next xScan
 For yScan = 10 To 90 Step 10
 canvas.DrawLine(penBlack, 0, yScan, 100, yScan)
 Next yScan

We'll use a 3D shadowed effect to draw the vertical data bars. First, draw each bar using a transparent shade of gray.
To create the transparent gray color, set the alpha component of the solid brush's color to 127. As you can see in
Figure 9-33, the gridlines show through the transparent "shadows" created by these rectangles.

Figure 9-33. A simple chart that can be used as a starting point for customizing
your own special-purpose charts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data bar rectangles (they're actually red) are then drawn on top of and slightly above and to the right of the
transparent gray bars. This results in a nice 3D shadowed effect:

 ' ----- Draw some shadowed bars.
 For xScan = 0 To 90 Step 10
 ' ----- Draw the shadow first.
 oneBar.X = xScan + 0.6
 oneBar.Y = 0
 oneBar.Width = 6
 oneBar.Height = chartData(xScan \ 10) - 2
 canvas.FillRectangle(New SolidBrush(Color.FromArgb(127, _
 Color.Gray)), oneBar)

 ' ----- Now draw the bars in front.
 oneBar.X = xScan + 2
 oneBar.Y = 0
 oneBar.Height = chartData(xScan \ 10)
 canvas.FillRectangle(New SolidBrush(Color.Red), oneBar)
 Next xScan

When drawing text, a complication arises if the scaling has been inverted: the text is drawn upside down! This might be
useful in some situations, but to get the labels correct on this chart, the Y scaling transform must be reinverted to
correctly plot the tick-mark numbers:

 ' ----- Need to un-invert the scaling so text labels are
 ' right-side-up.
 canvas.ResetTransform()
 canvas.ScaleTransform(ScaleX, ScaleY)
 canvas.TranslateTransform(-x1, -y1)

Each number along the X and Y axes is drawn using the Graphics object's DrawString() method. Parameters passed to this
method include the string to draw, the font for the text, the brush for the text's color, and the coordinates at which to
start drawing the string. These coordinates are not pixel locations, because the graphics have been scaled using
transforms. Instead, they are relative positions or units within the scaled world. This causes the text to be plotted in the
correct relative position, no matter what size the window is stretched to:

 ' ----- Label the Y-axis.
 For yScan = 0 To 100 Step 10
 canvas.DrawString(yScan.ToString, labelFont, labelBrush, _
 -2 * yScan.ToString.Length - 3, 97 - yScan)
 Next yScan

 ' ----- Label the X-axis.
 For xScan = 0 To 100 Step 10
 canvas.DrawString(xScan.ToString, labelFont, labelBrush, _
 xScan + 1.7 - 2 * xScan.ToString.Length, 103)
 Next xScan

The last step is to clean up all of the graphics objects we've created:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last step is to clean up all of the graphics objects we've created:

 ' ----- Clean up.
 labelFont.Dispose()
 labelBrush.Dispose()
 penRed.Dispose()
 penBlack.Dispose()
 penShadow.Dispose()
 canvas = Nothing
 End Sub

Figure 9-33 shows the chart drawn on the form as a result of the previous code. Set-ting the form's DoubleBuffered
property to true ensures that the chart is drawn smoothly and continuously as the form is resized when the following
code is included:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Refresh on resize.
 Me.Refresh()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.24. Creating Odd-Shaped Forms and Controls

Problem

You're tired of the plain rectangular forms and controls. You want to use irregular shapes for your form and the controls
included on it.

Solution

Sample code folder: Chapter 09\IrregularShapes

Use a GraphicsPath object to define the new drawing and clipping region for the form and controls. This recipe's code uses
an ellipse to define the boundaries of a form and a control.

Discussion

Create a new Windows Forms application, and add a Button control named ActClose. Set its Text property to Close, and put
the button somewhere in the middle of the form. Then add the following source code to the form's class template:

 Private Sub ActClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 ' ----- Close the form.
 Me.Close()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' ----- Change the shape of the form and button.
 Dim finalShape As Region
 Dim shapePath As Drawing2D.GraphicsPath

 ' ----- Reshape the form.
 shapePath = New Drawing2D.GraphicsPath()
 shapePath.AddEllipse(0, 0, Me.Width, Me.Height)
 finalShape = New Region(shapePath)
 Me.Region = finalShape
 shapePath.Dispose()

 ' ----- Reshape the button.
 shapePath = New Drawing2D.GraphicsPath()
 shapePath.AddEllipse(0, 0, ActClose.Width, ActClose.Height)
 finalShape = New Region(shapePath)
 ActClose.Region = finalShape
 shapePath.Dispose()
 End Sub

When you run the program, both the form and the button appear with elliptical shapes. Figure 9-34 shows the form in
use. We left the Visual Studio view of the source code in the background so that you can see the nonrectangular shape
of the form.

Figure 9-34. An irregularly shaped form and button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So what shapes can you use? If you can build it into a GraphicsPath object, you can use it to define the boundaries of your
form or control. Replacing the form or control's Region property results in a new clipping region for the form (the clipping
region is the area outside which the form is not drawn; it's not just hidden, it actually doesn't exist).

Since the new region indicates only which portions of the form are drawn or not, you'll find that any normal form or
control components that reside only partially within the clipping region will appear cut off. Unfortunately, the result can
be some-what ugly. For example, the elliptical button created by this recipe's sample code doesn't look very good
because portions of the original rectangular border still appear. You can also still see small portions of the form border.
In addition to providing a custom region, you may want to provide custom drawing code for the control or form in its
Paint event handler. For forms, setting the FormBorderStyle to None lets you supply your own form border.

Another way to change the shape of a form is by making a portion of the form invisible. This is done by setting a
specific form color to the invisible color using the form's transparencyKey property.

See Also

Recipe 9.10 shows how to use transparency to make a portion of a form invisible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

Problem

You want to provide the user with options for color selection: RGB (red-green-blue), HSB (hue-saturation-brightness,
also known as HSV for hue-saturation-value), and HSL (hue-saturation-luminosity).

Solution

Sample code folder: Chapter 09\RGBandHSV

The easiest way to provide user-based color selection is to use the ColorDialog control to prompt the user to choose a
color. This standard Windows dialog includes fields for RGB numeric entry and for HSL entry. Each of the HSL scales
ranges from 0 to 240 (239 for hue), and changes to those fields automatically update the displayed RBG values (see
Figure 9-35).

The ColorDialog control is described in Recipe 9.3.

In addition to the ColorDialog control, the new .NET System.Drawing.Color structure provides access to many predefined
colors, plus methods to specify and obtain color values. Three of its methods let you convert an instance's RBG value to
distinct HSB values:

The GetHue() method returns a value from 0 to 360 that indicates the hue of the Color object's current color.

The GetSaturation() method returns a value from 0.0 to 1.0 for the active color, in which 0.0 indicates the neutral
grayscale value, and 1.0 is the most saturated value.

The GetBrightness() method returns a value from 0.0 (black) to 1.0 (white).

Figure 9-35. Using the ColorDialog control with separate HSL and RBG fields

This recipe's sample code lets the user select a color using either the RBG method or the HSB (a.k.a. HSV) method.

Discussion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a new Windows Forms application, and add the following controls to Form1:

Three HScrollBar controls with the names ValueRed, ValueGreen, and ValueBlue. Set their Maximum properties to 255.

One HScrollBar control named ValueHue. Set its Maximum property to 360.

Two HScrollBar controls with the names ValueSaturation and ValueBrightness. Set their Maximum properties to 100.

A PictureBox control named ShowColor.

Six Label controls with the names NumberRed, NumberGreen, NumberBlue, NumberHue, NumberSaturation, and
NumberBrightness. Set their Text properties to 0.

Add descriptive labels if desired. The form should look like Figure 9-36.

Now add the following source code to the form's class template:

 Private Sub RBG_Scroll(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.ScrollEventArgs) _
 Handles ValueRed.Scroll, ValueGreen.Scroll, _
 ValueBlue.Scroll
 ' ----- Update the HSV values based on RBG.
 Dim
rgbColor As Color

Figure 9-36. The controls on the color model sample

 ' ----- The
color structure already has the formulas
 ' built in.

rgbColor = Color.FromArgb(0, ValueRed.Value, _
 ValueGreen.Value, ValueBlue.Value)
 ValueHue.Value = CInt(rgbColor.GetHue())
 ValueSaturation.Value = _
 CInt(rgbColor.GetSaturation() * 100.0F)
 ValueBrightness.Value = _
 CInt(rgbColor.GetBrightness() * 100.0F)

 ' ------ Refresh everything else.
 RefreshDisplay()
 End Sub

 Private Sub ValueHue_Scroll(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.ScrollEventArgs) _
 Handles ValueHue.Scroll, ValueSaturation.Scroll, _
 ValueBrightness.Scroll
 ' ----- Update the RBG values based on HSV.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Update the RBG values based on HSV.
 Dim useRed As Integer
 Dim useGreen As Integer
 Dim useBlue As Integer
 Dim useHue As Single
 Dim useSaturation As Single
 Dim useBrightness As Single
 Dim hueSector As Integer
 Dim factor As Single
 Dim target1 As Single
 Dim target2 As Single
 Dim target3 As Single

 ' ----- Convert to relative 0.0 to 1.0 values.
 useHue = CSng(ValueHue.Value)
 useSaturation = CSng(ValueSaturation.Value) / 100.0F
 useBrightness = CSng(ValueBrightness.Value) / 100.0F

 If (useSaturation = 0.0F) Then
 ' ----- Pure grayscale.
 useRed = CInt(useBrightness * 255)
 useGreen = useRed
 useBlue = useRed
 Else
 hueSector = CInt(useHue / 60.0F)
 factor = Math.Abs((useHue / 60.0F) - CSng(hueSector))
 target1 = useBrightness * (1 - useSaturation)
 target2 = useBrightness * (1 - (factor * useSaturation))
 target3 = useBrightness * (1 - ((1 - factor) * _
 useSaturation))

 Select Case hueSector
 Case 0, 6
 useRed = CInt(useBrightness * 255.0F)
 useGreen = CInt(target3 * 255.0F)
 useBlue = CInt(target1 * 255.0F)
 Case 1
 useRed = CInt(target2 * 255.0F)
 useGreen = CInt(useBrightness * 255.0F)
 useBlue = CInt(target1 * 255.0F)
 Case 2
 useRed = CInt(target1 * 255.0F)
 useGreen = CInt(useBrightness * 255.0F)
 useBlue = CInt(target3 * 255.0F)
 Case 3
 useRed = CInt(target1 * 255.0F)
 useGreen = CInt(target2 * 255.0F)
 useBlue = CInt(useBrightness * 255.0F)
 Case 4
 useRed = CInt(target3 * 255.0F)
 useGreen = CInt(target1 * 255.0F)
 useBlue = CInt(useBrightness * 255.0F)
 Case 5
 useRed = CInt(useBrightness * 255.0F)
 useGreen = CInt(target1 * 255.0F)
 useBlue = CInt(target2 * 255.0F)
 End Select
 End If

 ' ----- Update the
RGB values.
 ValueRed.Value = useRed
 ValueGreen.Value = useGreen
 ValueBlue.Value = useBlue

 ' ------ Refresh everything else.
 RefreshDisplay()
 End Sub

 Private Sub RefreshDisplay()
 ' ----- Update the numeric display.
 NumberRed.Text = CStr(ValueRed.Value)
 NumberGreen.Text = CStr(ValueGreen.Value)
 NumberBlue.Text = CStr(ValueBlue.Value)
 NumberHue.Text = CStr(ValueHue.Value)
 NumberSaturation.Text = _
 Format(CDec(ValueSaturation.Value) / 100@, "0.00")
 NumberBrightness.Text = _
 Format(CDec(ValueBrightness.Value) / 100@, "0.00")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Format(CDec(ValueBrightness.Value) / 100@, "0.00")

 ' ----- Update the
color sample.
 ShowColor.BackColor = Color.FromArgb(255, _
 ValueRed.Value, ValueGreen.Value, ValueBlue.Value)
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Set the initial color.
 RBG_Scroll(ValueRed, _
 New Windows.Forms.ScrollEventArgs(_
 ScrollEventType.EndScroll, 0))
 End Sub

Run the program, and use the six scrollbars to adjust the color selection.

The RGB model for describing colors numerically has become common for use in Microsoft Windows, but it is not always
the most convenient method for certain applications or for output to devices other than computer monitors. The
HSB/HSV system is more useful in selecting colors for computer-based artwork.

The System.Drawing.Color structure includes methods that let you extract the HSB components of an RGB color, but it
doesn't work in the other direction. Therefore, the sample code includes the calculation for HSB-to-RGB conversions.

See Also

A useful web site that discusses color models is EasyRGB, found at http://www.easyrgb.com.

See Recipe 9.3 for details on using the ColorDialog control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.26. Creating a Rubber-Band Rectangular Selection

Problem

You want to add " rubber-band selection" to your graphics, giving the user the ability to click and drag with the mouse
to select a rectangular region of an image.

Solution

Sample code folder: Chapter 09\RubberBand

Use the RubberBand class presented here to use one of three different-appearing rubber-band selection algorithms.

Discussion

You've probably seen rubber-band selection in action when cropping images or working with screen-grabbing programs,
paint programs, and so on. The RubberBand class presented here can be included in any project in which you want to let
the user select a rectangular area of an image in this way.

The complete code for the class is presented below. The RubberBandStyle enumeration and the public Style property work
together to let you set the RubberBand object's appearance while in operation. While the user drags the mouse, the
selected area is outlined with either a dashed-line rectangle (as in Figure 9-37, below), a solid line with inverted colors,
or a solid-filled box with inverted colors.

There are two overloaded constructors in this class, which let you instantiate a RubberBand object in three different ways.
(The plan was to have only one constructor with two optional arguments, but Visual Basic does not permit structure
objectsColor, in this caseto be optional.) You can set the RubberBand's Style and BackColor properties when you create the
object, or you can set these properties later. You do need to indicate the control on which the RubberBand is to operate,
so the painting on the screen can coordinate with the surface of the control. The Start(), Stretch(), and Finish() methods are
called from the program that creates the RubberBand object to update the rectangular selection. Once "rubberbanding" is
complete, the Rectangle property returns the results. These methods are demonstrated in the calling code presented
later.

Here's the code for the RubberBand class:

 Public Class RubberBand
 ' ----- The three types of rubber bands.
 Public Enum RubberBandStyle
 DashedLine
 ThickLine
 SolidBox
 End Enum

 ' ----- The current drawing state.
 Public Enum RubberBandState
 Inactive
 FirstTime
 Active
 End Enum

 ' ----- Class-level variables.
 Private BasePoint As Point
 Private ExtentPoint As Point
 Private CurrentState As RubberBandState
 Private BaseControl As Control
 Public Style As RubberBandStyle
 Public BackColor As Color
 Public Sub New(ByVal useControl As Control, _
 Optional ByVal useStyle As RubberBandStyle = _
 RubberBandStyle.DashedLine)
 ' ----- Constructor with one or two parameters.
 BaseControl = useControl
 Style = useStyle
 BackColor = Color.Black
 End Sub

 Public Sub New(ByVal useControl As Control, _
 ByVal useStyle As RubberBandStyle, _
 ByVal useColor As Color)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal useColor As Color)
 ' ----- Constructor with three parameters.
 BaseControl = useControl
 Style = useStyle
 BackColor = useColor
 End Sub

 Public ReadOnly Property Rectangle() As Rectangle
 Get
 ' ----- Return the bounds of the
rubber-band area.
 Dim result As Rectangle

 ' ----- Ensure the coordinates go left to
 ' right, top to bottom.
 result.X = IIf(BasePoint.X < ExtentPoint.X, _
 BasePoint.X, ExtentPoint.X)
 result.Y = IIf(BasePoint.Y < ExtentPoint.Y, _
 BasePoint.Y, ExtentPoint.Y)
 result.Width = Math.Abs(ExtentPoint.X - BasePoint.X)
 result.Height = Math.Abs(ExtentPoint.Y - BasePoint.Y)
 Return result
 End Get
 End Property

 Public Sub Start(ByVal x As Integer, ByVal y As Integer)
 ' ----- Start drawing the rubber band. The user must
 ' call Stretch() to actually draw the first
 ' band image.
 BasePoint.X = x
 BasePoint.Y = y
 ExtentPoint.X = x
 ExtentPoint.Y = y
 Normalize(BasePoint)
 CurrentState = RubberBandState.FirstTime
 End Sub

 Public Sub Stretch(ByVal x As Integer, ByVal y As Integer)
 ' ----- Change the size of the rubber band.
 Dim newPoint As Point

 ' ----- Prepare the new stretch point.
 newPoint.X = x
 newPoint.Y = y
 Normalize(newPoint)

 Select Case CurrentState
 Case RubberBandState.Inactive
 ' ----- Rubber band not in use.
 Return
 Case RubberBandState.FirstTime
 ' ----- Draw the initial rubber band.
 ExtentPoint = newPoint
 DrawTheRectangle()
 CurrentState = RubberBandState.Active
 Case RubberBandState.Active
 ' ----- Undraw the previous band, then
 ' draw the new one.
 DrawTheRectangle()
 ExtentPoint = newPoint
 DrawTheRectangle()
 End Select
 End Sub

 Public Sub Finish()
 ' ----- Stop drawing the rubber band.
 DrawTheRectangle()
 CurrentState = 0
 End Sub

 Private Sub Normalize(ByRef whichPoint As Point)
 ' ----- Don't let the rubber band go outside the view.
 If (whichPoint.X < 0) Then whichPoint.X = 0
 If (whichPoint.X >= BaseControl.ClientSize.Width) _
 Then whichPoint.X = BaseControl.ClientSize.Width - 1

 If (whichPoint.Y < 0) Then whichPoint.Y = 0
 If (whichPoint.Y >= BaseControl.ClientSize.Height) _
 Then whichPoint.Y = BaseControl.ClientSize.Height - 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Then whichPoint.Y = BaseControl.ClientSize.Height - 1
 End Sub

 Private Sub DrawTheRectangle()
 ' ----- Draw the rectangle on the control or
 ' form surface.
 Dim drawArea As Rectangle
 Dim screenStart, screenEnd As Point

 ' ----- Get the square that is the
rubber-band area.
 screenStart = BaseControl.PointToScreen(BasePoint)
 screenEnd = BaseControl.PointToScreen(ExtentPoint)
 drawArea.X = screenStart.X
 drawArea.Y = screenStart.Y
 drawArea.Width = (screenEnd.X - screenStart.X)
 drawArea.Height = (screenEnd.Y - screenStart.Y)

 ' ----- Draw using the user-selected style.
 Select Case Style
 Case RubberBandStyle.DashedLine
 ControlPaint.DrawReversibleFrame(_
 drawArea, Color.Black, FrameStyle.Dashed)
 Case RubberBandStyle.ThickLine
 ControlPaint.DrawReversibleFrame(_
 drawArea, Color.Black, FrameStyle.Thick)
 Case RubberBandStyle.SolidBox
 ControlPaint.FillReversibleRectangle(_
 drawArea, BackColor)
 End Select
 End Sub
 End Class

To demonstrate the RubberBand class, the following code creates an instance and calls its Start(), Stretch(), and Finish()
methods based on the user's mouse activities. When the mouse button is first depressed, the code calls the Start()
method. As the mouse is moved, the Stretch() method is called to continuously update the visible selection rectangle.
When the mouse button is released, the Finish() method completes the selection process. At this point, the read-only
Rectangle property returns a complete description of the selected area:

 Public Class Form1
 ' ----- Adust the second and third arguments to
 ' see different methods.
 Dim SelectionArea As RubberBand = New RubberBand(Me, _
 RubberBand.RubberBandStyle.DashedLine, Color.Gray)

 Private Sub Form1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown
 ' ----- Start
rubber-band tracking.
 SelectionArea.Start(e.X, e.Y)
 End Sub

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseMove
 ' ----- Update the rubber-band display area.
 SelectionArea.Stretch(e.X, e.Y)
 End Sub

 Private Sub Form1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseUp
 ' ----- Finished with the selection.
 SelectionArea.Finish()
 Me.Refresh()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint
 ' ----- Add some interest to the form surface.
 Dim canvas As Graphics = e.Graphics
 Dim polygonPoints() As Point = {New Point(300, 150), _
 New Point(200, 300), New Point(400, 300)}

 ' ----- Draw some shapes and text.
 canvas.FillEllipse(New SolidBrush(Color.Red), _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 canvas.FillEllipse(New SolidBrush(Color.Red), _
 10, 20, 200, 150)
 canvas.FillRectangle(New SolidBrush(Color.Blue), _
 100, 100, 250, 100)
 canvas.FillPolygon(New SolidBrush(Color.Green), _
 polygonPoints)
 canvas.DrawString(
SelectionArea.Rectangle.ToString, _
 New Font("Arial", 12), Brushes.Black, 0, 0)
 End Sub
 End Class

Figure 9-37 shows the results of running this demonstration code to select a rectangular area on the form. In this case
the mouse was dragged down and to the right to select the area, but the code compensates for dragging in any
direction and returns a proper rectangle.

Figure 9-37. The RubberBand class lets you select rectangular areas of any
graphics area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.27. Animating with Transparency

Problem

You want to add some simple animation to a form and make it interesting enough to catch the user's eye without being
overbearing or distracting.

Solution

Sample code folder: Chapter 09 \TransparentAnimation

One idea is to use a timer to redraw graphics whose transparency varies over time.

Discussion

There are many ways to add simple animation to your graphics, and adjusting the transparency is just one simple trick
that can add an interesting and creative effect to your images. This example also demonstrates how the alpha setting of
a color changes drawings through the full range of transparency, from completely invisible to completely opaque.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 10
(milliseconds) and its Enabled property to true. Also, set the form's DoubleBuffered property to TRue.

A good way to drive the animation action is by redrawing with each tick of a timer. Notice that the drawing commands
are not done in the timer's Tick event. Instead, you tell the form to refresh itself and add the graphics commands where
they really belongin the form's Paint event. Add the following code to the form's class template to have the timer trigger
screen updates:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Update the animated display.
 Me.Refresh()
 End Sub

The form's Paint event is called at the rate set by the Interval property of the timer. The 10-milliseconds setting provides a
fairly smooth and noticeable transparency transition. Use a larger number for slower, more subtle action.

The currentSetting variable increments or decrements each time through the Paint event handler, with the change amount
reversing direction when 0 or 255 is reached:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Display the next step in the animation.
 Static currentSetting As Integer = 0
 Static changeFactor As Integer = 1
 Dim transparentGreen As Color
 Dim canvas As Graphics = e.Graphics
 Dim trianglePoints() As Point = {New Point(180, 50), _
 New Point(30, 280), New Point(330, 280)}

 ' ----- Adjust the transparency factor.
 currentSetting += changeFactor
 If (currentSetting = 0) Or (currentSetting = 255) Then
 ' ----- Change direction.
 changeFactor = -changeFactor
 End If

The following line is the heart of this example; it shows how to create a color with a controllable degree of
transparency. You can pass just red, green, and blue values to Color.FromArgb() to create a solid shade, or you can add
the fourth parameter, called alpha, to control the color's transparency. The values of all four parameters range from 0 to
255. Anything drawn with the designated color will be drawn with the indicated amount of transparency:

 ' ---- Set the transparent green color.
 transparentGreen = Color.FromArgb(currentSetting, 0, 255, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transparentGreen = Color.FromArgb(currentSetting, 0, 255, 0)

These statements draw the solid geometric objects in the background, in preparation for drawing a transparent triangle
in front of them:

 ' ----- Draw some geometric figures.
 canvas.FillEllipse(New SolidBrush(Color.Red), _
 10, 20, 200, 150)
 canvas.FillRectangle(New SolidBrush(Color.Blue), _
 100, 100, 250, 100)

There is no GDI+ method to draw a triangle, per se. But a triangle is just a three-sided polygon, so it's easy to use the
DrawPolygon() or FillPolygon() methods to do the trick. In this case we fill a polygon (triangle) using a solid brush comprised
of our current shade of transparent green:

 ' ----- Draw a transparent green triangle in front.
 canvas.FillPolygon(New SolidBrush(transparentGreen), _
 trianglePoints)
 End Sub

Figure 9-38 shows the graphics with the triangle drawn using an intermediate transparency.

Figure 9-38. The triangle in the foreground fades from complete transparency to
complete opacity and back again

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

Problem

You used to use a lot of form-based drawing features in Visual Basic 6.0, but many of them seem to be missing from
the .NET versions of Visual Basic.

Solution

Sample code folder: Chapter 09\VB6Replacements

GDI+ is a full-featured drawing package that provides easier access to form-based drawing than Visual Basic 6.0 did.
Unfortunately, finding the replacements for some of VB 6's form-based drawing features takes a bit of work. This recipe
discusses some of the more significant replacements.

Discussion

Most of the replacement features involve GDI+ drawing, although you can simulate some older features using Label
controls. The features discussed in this section focus on those methods and controls that were used directly on a form.
In .NET, any of the drawing commands that you use on the form's surface can also be used on any control.

Any discussion that mentions "drawing on the form" refers to drawing through the form's Graphics object. Such drawing
is usually done in the form's Paint event handler, which provides you with a Graphics object:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw a
line.
 e.Graphics.DrawLine(…)
 End Sub

You can also create a Graphics object at any time in other event handlers and methods using the form's CreateGraphics()
method:

 Dim formCanvas As Graphics = Me.CreateGraphics()
 e.Graphics.DrawLine(…)

 ' ----- Properly dispose of the graphics canvas.
 formCanvas.Dispose()

Let's look at some of the specific replacements:

Line controls

There are two replacements for Visual Basic 6.0 Line controls. If your line is horizontal or vertical, you can use a
Label control with the BackColor property set to the line color you need. Adjust the width or height of the label as
needed to increase the thickness of the line. Be sure to clear the Text property and set the AutoSize property to
False.

If you need diagonal lines, you can draw them on the form surface in the form's Paint event using the DrawLine()
method.

Shape controls

There is no direct control replacement for the Visual Basic 6.0 Shape controls. Rectangular or elliptical shapes
can be drawn directly on the form using the DrawRectangle() and DrawEllipse() methods. The related FillRectangle() and
FillEllipse() methods draw filled shapes, with no edge lines.

There is no drawing command that can generate a rectangle with rounded corners. You must create it yourself
using DrawLine() and DrawArc() method calls. You can also build this shape as a GraphicsPath object. Here is a method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using DrawLine() and DrawArc() method calls. You can also build this shape as a GraphicsPath object. Here is a method
that draws a rounded rectangle directly on a graphics surface. The rounded corner has a radius of five pixels
(units, actually):

 Private Sub DrawRoundedRectangle(_
 ByVal sourceRectangle As Rectangle, _
 ByVal canvas As Graphics, ByVal usePen As Pen)
 ' ----- Draw a rounded rectangle.
 Dim saveState As Drawing2D.GraphicsState
 ' ----- Move the origin to the upper-left corner
 ' of the rectangle.
 saveState = canvas.Save()
 canvas.TranslateTransform(sourceRectangle.Left, _
 sourceRectangle.Top)

 With sourceRectangle
 ' ----- Draw the four edges, starting from the top
 ' and moving clockwise.
 canvas.DrawLine(usePen, 5, 0, .Width - 5, 0)
 canvas.DrawLine(usePen, .Width, 5, .Width, .Height - 5)
 canvas.DrawLine(usePen, .Width - 5, .Height, 5, .Height)
 canvas.DrawLine(usePen, 0, .Height - 5, 0, 5)

 ' ----- Draw the four corners, starting from the
 ' upper left and moving clockwise.
 canvas.DrawArc(usePen, 0, 0, 10, 10, 180, 90)
 canvas.DrawArc(usePen, .Width - 10, 0, 10, 10, 270, 90)
 canvas.DrawArc(usePen, .Width - 10, .Height - 10, _
 10, 10, 0, 90)
 canvas.DrawArc(usePen, 0, .Height - 10, 10, 10, 90, 90)
 End With

 ' ----- Restore the original
graphics canvas.
 canvas.Restore(saveState)
 End Sub

This code draws a 100-by-100-unit rounded rectangle at position (10,10) on the form's surface:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 DrawRoundedRectangle(New Rectangle(10, 10, 100, 100), _
 e.Graphics, Pens.Black)
 End Sub

Figure 9-39 shows the output from this code.

Figure 9-39. A manually rounded rectangle

Cls() method

To clear the entire graphics surface, use the Clear() method. You pass it the color used to clear the surface:

 e.Graphics.Clear(Color.White)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.Graphics.Clear(Color.White)

Scale() method

To change the coordinate system on the form's surface, use the Graphics object's ScaleTransform() method. You can
also supply a custom matrix transformation by assigning the Graphics object's transform property.

PSet() method

There is no method that can draw a single pixel on a graphics surface. You can simulate it using the DrawLine(),
DrawRectangle(), or FillRectangle() methods and providing very precise coordinates. Another way to draw a single
point is to create a single-point bitmap and draw the bitmap onto the canvas. The Bitmap class does have a
SetPixel method:

 ' ----- Draw a red pixel at (5,5).
 Dim tinyBitmap As New Bitmap(1, 1)
 tinyBitmap.SetPixel(0, 0, Color.Red)
 e.Graphics.DrawImageUnscaled(tinyBitmap, 5, 5)
 tinyBitmap.Dispose()

Point() method

While the Graphics object does not let you query the color of an individual pixel, you can do so with a Bitmap
object. This object's GetPixel() method returns a Color object for the specified pixel.

Line() method

Replaced by the DrawLine() method.

Circle() method

Replaced by the DrawEllipse() and FillEllipse() methods.

PaintPicture() method

Replaced by the DrawImage() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Multimedia
Introduction

Recipe 10.1. Playing an Audio File

Recipe 10.2. Displaying Image Files

Recipe 10.3. Playing a Video File

Recipe 10.4. Making Your Computer Beep

Recipe 10.5. Creating an Animation Using Multiple Images

Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

Recipe 10.7. Creating an Animation by Drawing at Runtime

Recipe 10.8. Creating Animated Sprites

Recipe 10.9. Resizing and Compressing JPEG Files

Recipe 10.10. Getting JPEG Extended Information

Recipe 10.11. Creating Thumbnails

Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

Recipe 10.13. Scrolling Images

Recipe 10.14. Merging Two or More Images

Recipe 10.15. Using Resource Images

Recipe 10.16. Capturing an Image of the Screen

Recipe 10.17. Getting Display Dimensions

Recipe 10.18. Speeding Up Image Processing

Recipe 10.19. Converting an Image to Grayscale

Recipe 10.20. Performing Edge Detection on an Image

Recipe 10.21. Full Listing of the LockImage Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The recipes in this chapter provide routines for playing sound files and for displaying video clips and photos. One recipe
even demonstrates the "new" functionality of Visual Basic 2005 that commands your computer's internal speaker to
emit a system-dependent beep. (That takes us back a few years!) More advanced recipes let you process the JPEG
photos from your digital camera. No longer is C++ coding required to manipulate images with respectable speed. Visual
Basic programmers now have access to a full set of powerful multimedia-processing features built right into .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.1. Playing an Audio File

Problem

You want to play a sound clip file, a system sound, or a music file such as an MP3.

Solution

Several different objects and system utilities are available to play sound clips or media files. In this recipe we'll
demonstrate the use of:

My.Computer.Audio.Play() and SoundPlayer to play audio clip files such as WAV files

My.Computer.Audio. PlaySystemSound() to play operating-system-assigned sounds

Process.Start() to activate Windows Media Player to play MP3 and other media files

Discussion

The code required to play an audio sample is actually quite short. In most cases, a single line of code is all it takes to
play a sound. Visual Basic 2005's new My namespace provides a lot of new easy-to-use functionality. The
My.Computer.Audio.Play() method is a good example. Simply pass this method the name of an audio file and the play mode
that controls how the sound is played:

 My.Computer.Audio.Play("sample.wav", _
 AudioPlayMode.WaitToComplete)

The AudioPlayMode.WaitToComplete option causes the program to wait for the sound to complete before proceeding. The two
other members of this enumeration are Background (plays a sound once in the background) and BackgroundLoop (loops the
sound repeatedly in the background). To stop a background looping sound, issue this command:

 My.Computer.Audio.Stop()

Another way to play sounds is with a SoundPlayer class instance. This works a lot like the My.Computer.Audio features
because those features depend on the SoundPlayer class:

 Dim player As New SoundPlayer("sample.wav")
 player.
Play()

The SoundPlayer object provides quite a few properties and methods to control the playing of sound files, and you should
check these out if you need special functionality in your application. For example, the Stop() and Play() methods allow you
to pause and restart the sound in the middle of the content.

Windows includes several user-configured sounds for various system-level events. For example, when validating user-
entered data, you can play the system-assigned sound for Exclamation in coordination with a custom visual message to
inform the user of some issue with the input data:

 My.Computer.Audio.PlaySystemSound(SystemSounds.Exclamation)

Some sound formats are beyond the basic capabilities of the My.Computer.Audio features. To play these sounds, you can
defer to the default applications designated to play sound files with specific extensions. The following lines of code start
whatever program is currently assigned to play MP3 files, passing it the name of the MP3 file to be played. Often this
will start the Windows Media Player, but the user may have some other program configured to play such files. The
Process.Start() method tells the operating system to play the file using its current settings:

 Dim soundProgram As Process = Process.Start("sample.mp3")
 soundProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 soundProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.2. Displaying Image Files

Problem

You want to display pictures, possibly selected by the user, in your Visual Basic 2005 application.

Solution

Sample code folder: Chapter 10\ShowJPG

The OpenFileDialog class provides a standard way to let the user select any file, such as a picture to be displayed, and the
PictureBox control gives you a great way to display pictures.

Discussion

It's easy to use an OpenFileDialog control on a form to let the user select a file from anywhere in the system. Create a new
Windows Forms application, add a PictureBox control to Form1 named SelectedPicture, and add a Button control named
ActLocate. Set the PictureBox's SizeMode property to StretchImage. Add the following code to the button's Click event handler:

 Private Sub ActLocate_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActLocate.Click
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 SelectedPicture.Load(locateFile.FileName)
 End If
 End Sub

Figure 10-1 shows the OpenFileDialog during a typical session in which the user is about to select a JPEG picture file.

If a JPEG file is selected, it is loaded into the form's PictureBox for display. It takes only one command to load the picture:

 SelectedPicture.Load(locateFile.FileName)

Figure 10-2 shows the picture as displayed in the PictureBox on the form.

Figure 10-1. Using the OpenFileDialog control to select a picture file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Displaying pictures on a form with a PictureBox control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.3. Playing a Video File

Problem

You want to play video clips from your Visual Basic 2005 application.

Solution

The Process.Start() method lets you automate the playing of video clips in a very reliable and standardized way. Figure 10-3 shows a
video run in Windows Media Player using this method.

Figure 10-3. You can launch Windows Media Player from your .NET app to play video clips

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The Process object lets you run an external application explicitly or implicitly: you can run an application and pass it a specific file to
open and run, or you can pass a file and let the operating system implicitly run the associated application based on the filename's
extension. This is a good way to play a video clipthe user's media player of choice is automatically launched to play the clip.

Another advantage of the Process object is its simplicity. The following two lines of code create an instance of the Process class, run a
shared method to load and start an AVI file, and wait for the media player to exit:

 Dim videoProgram As Process = Process.Start("sample.avi")
 videoProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.4. Making Your Computer Beep

Problem

You want to play a simple sound or sequence of tones based on frequency and duration using the built-in speaker on
your computer, rather than relying on the sound board or creating audio files specifically tailored for the purpose.

Solution

Sample code folder: Chapter 10\PlayTones

Visual Basic 2005 now provides a Console.Beep() method that plays a tone given frequency and duration parameters.

Discussion

You can use this command to create notification sounds from console applications, but you can also call this method
from any Windows application to create specialized effects.

The following PlayTones() subroutine plays a sequence of tones passed to it in the form of a Point array. This data structure
is ideal for the notes because each note is comprised of integer frequency and duration parameters (similar to the X and
Y values of each point):

 Public Sub PlayTones(ByVal toneArray() As Point)
 ' ----- Play a set of tones, one after another.
 Dim frequency As Integer
 Dim duration As Integer
 For Each tone As Point In toneArray
 frequency = tone.X
 duration = tone.Y
 Console.Beep(frequency, duration)
 Next tone
 End Sub

The following code creates a Point array to play a simple melody:

 Dim soundsAlien As Point() = { _
 New Point(932, 500), _
 New Point(1047, 500), _
 New Point(831, 500), _
 New Point(415, 500), _
 New Point(622, 900)}
 PlayTones(soundsAlien)

This may remind you of something each time you play it; something to do with mashed potatoes, perhaps…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.5. Creating an Animation Using Multiple Images

Problem

You want to add a simple animation to your application without resorting to complicated video techniques.

Solution

Sample code folder: Chapter 10\ ImageListAnim

There are several ways to create simple animations in your Visual Basic 2005 applications, and the next three recipes will show you three different
ways to do so. One straightforward and effective technique is to store bitmap images in an ImageList control, and then display them sequentially in a
PictureBox with each tick of a timer.

Discussion

An ImageList control holds multiple images in one spot in your application to use with other controls that require multiple images. For example, the
ListView, TreeView, Toolbar, and other controls all work hand in hand with an ImageList to display customized images on their surfaces. But you can use an
ImageList for other purposes, too, as this recipe shows.

The first step in creating an animation is to create or collect a sequence of images to be displayed. Figure 10-4 displays a collection of wind-tower
bitmaps with the turbine blades in rotated positions slightly shifted from one to the next.

Figure 10-4. A series of nearly identical images can be used to create a smooth-running animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the sample application for this recipe, an ImageList has been added to the main form, and its Images collection has been filled with the windmill
images (in a specific order). Figure 10-5 shows the image collection.

To display these images sequentially as an animation, add a PictureBox and a Timer control to the form:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw the next image on each tick.
 Static imageNumber As Integer
 imageNumber = (imageNumber + 1) Mod ImageList1.Images.Count
 PictureBox1.Image = ImageList1.Images(imageNumber)
 End Sub

The timer should be enabled, and its Interval property should be set to a number of milliseconds appropriate for the animation. In this case, 40
milliseconds worked well.

As soon as the form loads, the action starts. With each tick of the timer, the static variable imageNumber increments to point to the next image in the
ImageList control. The image is loaded, and the program continues until the Timer's next Tick event. Figure 10-6 shows one frame of the animation.

Figure 10-5. Adding images to an ImageList control

Figure 10-6. Displaying images sequentially in a PictureBox to create an animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-6. Displaying images sequentially in a PictureBox to create an animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

Problem

You want to add a simple animation to your application based on code-drawn bitmaps, but without resorting to
complicated video techniques.

Solution

Sample code folder: Chapter 10\BitmapAnim

This recipe shows how to create an array of bitmaps in memory, fill them with graphic drawings that vary slightly from
one to the next, and then display them in sequence to create an animation.

Discussion

This recipe is very similar to the previous one, except that in this case, the images are stored in an array of bitmaps
rather than in an ImageList control. The results are very similar.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 50 and its
Enabled property to true. Now add the following code to the form's code template:

 Private StarImages(23) As Bitmap

 Private Sub SpinningStar_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Rebuild the images needed for the animation.
 Dim xCenter As Integer
 Dim yCenter As Integer
 Dim radius As Double
 Dim canvas As Graphics
 Dim counter As Integer
 Dim angle As Double
 Dim x1 As Single
 Dim y1 As Single
 Dim x2 As Single
 Dim y2 As Single
 Const RadPerDeg As Double = Math.PI / 180#

 ' ----- Perform some basic calculations.
 xCenter = Me.ClientSize.Width \ 2
 yCenter = Me.ClientSize.Height \ 2
 radius = IIf(Me.ClientSize.Width < Me.ClientSize.Height, _
 Me.ClientSize.Width, Me.ClientSize.Height) * 0.4

 ' ----- Remove the previous images.
 Array.Clear(StarImages, 0, StarImages.Length)
 For counter = 0 To StarImages.Length - 1
 StarImages(counter) = New Bitmap(_
 Me.ClientSize.Width, Me.ClientSize.Height)
 canvas = Graphics.FromImage(StarImages(counter))
 For angle = 0 To 360 Step 72
 x1 = xCenter + radius * _
 Math.Cos(RadPerDeg * (angle + counter * 3))
 y1 = yCenter + radius * _
 Math.Sin(RadPerDeg * (angle + counter * 3))
 x2 = xCenter + radius * _
 Math.Cos(RadPerDeg * (angle + counter * 3 + 144))
 y2 = yCenter + radius * _
 Math.Sin(RadPerDeg * (angle + counter * 3 + 144))
 canvas.DrawLine(SystemPens.ControlText, _
 x1, y1, x2, y2)
 Next angle
 canvas.Dispose()
 Next counter
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The code runs every time its form is resized, including once when the form first appears. The 24 bitmap images are
recreated nearly instantly, keeping up with the changing form size. Each bitmap is of a five-pointed star, and each star
image is rotated slightly from the previous one in the array.

A timer animates the star bitmaps using the 50-millisecond interval set earlier. Add the following code in the timer's Tick
event handler to display the next bitmap in the sequence, looping back to the start when the end of the array is
reached. The last star is drawn in a position almost rotated to match the first, providing continuously smooth animation:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw one of the star array elements.
 Dim canvas As Graphics
 Static imageNumber As Integer

 On Error Resume Next

 imageNumber = (imageNumber + 1) Mod StarImages.Length
 Try
 canvas = Me.CreateGraphics()
 canvas.Clear(Me.BackColor)
 canvas.DrawImage(StarImages(imageNumber), 0, 0)
 canvas.Dispose()
 End Try
 End Sub

The DrawImage() method of the form's Graphics object copies each bitmap onto the form's surface. For maximum
smoothness, check that the form's DoubleBuffered property is set to true.

A couple of frames of the rotating star are shown in Figures 10-7 and 10-8. Try resizing the form while the animation is
running; you'll see that the star itself resizes as you resize the form.

Figure 10-7. Each star bitmap is drawn with a slightly different rotation angle

Figure 10-8. Multiple bitmaps stored in an array can provide a smooth animation
effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.7. Creating an Animation by Drawing at Runtime

Problem

You want to add a simple animation to your application without resorting to complicated video techniques.

Solution

Sample code folder: Chapter 10\DrawAnim

A very direct but often effective technique is to simply draw updated images on a graphics surface with each tick of a
timer, as shown in this recipe.

Discussion

The following code handles the Tick event for a timer on a form. It redraws the face of the form at each tick. The current
position and direction of a block are maintained in form-level variables. The timer's Tick event handler updates those
variables so the block drifts around the form and bounces off the walls; the form's Paint event handler is where the
actual drawing of the block takes place. At the end of the timer's Tick event handler is a Refresh() command that causes
the form to redraw itself. That fires the Paint event, which redraws the block.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 10 and its
Enabled property to true. Now add the following code to the form's code template:

 Private UseX As Integer
 Private UseY As Integer
 Private MoveX As Integer
 Private MoveY As Integer
 Private Const BlockSize As Integer = 50

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw the next step in the animation.
 UseX += MoveX
 UseY += MoveY

 ' ----- Make adjustments for edge detection.
 If (UseX <= 0) Then MoveX = 1
 If (UseX >= (Me.ClientSize.Width - BlockSize)) Then _
 MoveX = -1
 If (UseY <= 0) Then MoveY = 1
 If (UseY >= (Me.ClientSize.Height - BlockSize)) Then _
 MoveY = -1

 ' ----- Redraw the image.
 Me.Refresh()
 End Sub

Private Sub Bounce_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the block.
 e.Graphics.FillRectangle(Brushes.Red, UseX, UseY, _
 BlockSize, BlockSize)
 e.Graphics.DrawRectangle(New Pen(Color.Blue, 5), _
 UseX, UseY, BlockSize, BlockSize)
 End Sub

Two rectangles are drawn, one to create a red square and the other to draw a 5-pixel-wide border around the square.
The current values for form-level variables UseX and UseY are used for the position at which to draw the squares. Be sure
to set the form's DoubleBuffered property to true for the smoothest effect. Figure 10-9 shows the square block as it drifts
towards the walls of the form.

Figure 10-9. The sketched square bounces off the walls smoothly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-9. The sketched square bounces off the walls smoothly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.8. Creating Animated Sprites

Problem

You want to create sprites, small graphics objects that display in front of a background and can detect collisions with
other sprites.

Solution

Sample code folder: Chapter 10\ Sprites

The Sprite class presented here provides a very simple but useful starting point for creating sprites as complicated as you
desire.

Discussion

The Sprite class exposes public properties for its bitmap, position, and velocity; a method for drawing itself on a graphics
surface; and a function that determines if another sprite is currently in collision with this one. This rudimentary sprite
class provides a good start at understanding how sprites work. You can add new functionality to enhance your sprites
as desired.

This class doesn't define exactly what the sprite will look like or even its size. It provides a public Bitmap property, which
the calling program can fill with any desired image. Likewise, the location and velocity properties are very flexible and
can take on any signed integer values. The calling program is responsible for setting these properties and for
determining when they might change. The Draw() method uses the velocity values to update the position values, which
minimizes the overhead in the calling program each time the sprite is redrawn.

Create a new Windows Forms application. Add a new class to the project named Sprite.vb, and use the following code
for its definition:

 Public Class Sprite
 Public SpriteImage As Bitmap
 Public X As Integer
 Public Y As Integer
 Public VelocityX As Integer
 Public VelocityY As Integer

 Public Sub Draw(ByVal g As Graphics)
 ' ----- Update the location.
 X += VelocityX
 Y += VelocityY

 ' ----- Draw the sprite.
 g.DrawImage(SpriteImage, X, Y)
 End Sub

 Public Function Collision(ByVal targetSprite As Sprite) _
 As Boolean
 ' ----- See if two sprites overlap each other.
 On Error Resume Next

 Dim s1Left As Integer = X
 Dim s1Top As Integer = Y
 Dim s1Right As Integer = s1Left + SpriteImage.Width
 Dim s1Bottom As Integer = s1Top + SpriteImage.Height
 Dim s2Left As Integer = targetSprite.X
 Dim s2Top As Integer = targetSprite.Y
 Dim s2Right As Integer = s2Left + _
 targetSprite.SpriteImage.Width
 Dim s2Bottom As Integer = s2Top + _
 targetSprite.SpriteImage.Height

 ' ----- Compare the positions.
 If (s1Right < s2Left) Then Return False
 If (s1Bottom < s2Top) Then Return False
 If (s1Left > s2Right) Then Return False
 If (s1Top > s2Bottom) Then Return False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (s1Top > s2Bottom) Then Return False

 ' ----- No collision.
 Return True
 End Function
 End Class

There are a lot of ways you can enhance this Sprite class. For example, you can add code to the Draw() method to create
and maintain a bitmap image within the sprite object, perhaps creating a unique Sprite class for each type of sprite
image. The collision-detection code shown here simply looks for overlapping rectangular areas; that is, if any parts of
the bitmaps for the two sprites are touching, they are in collision. However, you might want to make the collision
detection more sophisticated. For example, the code added next uses sprites with transparent corners, yet these
transparent corners still count as collision areas. An enhanced version of collision detection might let the sprites overlap
in the transparent areas, "bouncing" only when the visible portions touch each other.

To demonstrate the Sprite class, the following code creates two instances, draws colored solid circles with transparent
backgrounds to define their bitmaps (that is, everything between the circle and the rectangular border is transparent),
and sets them in motion against a background comprised of stripes. This background lets you see clearly how the
transparent colors in the rectangular bitmaps make the sprites appear as solid circles only. These sprites and their
bitmaps are created just once, as the form loads.

Return to Form1, and set its DoubleBuffered property to TRue. Add a Timer named Timer1. Now add the following code to the
form's code template:

 Private MySprites(1) As Sprite

 Private Sub SpriteDemo_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Prepare the sprites.
 Dim canvas As Graphics

 ' ----- Create the first sprite.
 MySprites(0) = New Sprite
 MySprites(0).X = 37
 MySprites(0).Y = 37
 MySprites(0).VelocityX = 2
 MySprites(0).VelocityY = 1

MySprites(0).SpriteImage = New Bitmap(30, 30)
 canvas = Graphics.FromImage(
MySprites(0).SpriteImage)
 canvas.Clear(Color.FromArgb(0, 0, 0, 0))
 canvas.FillEllipse(Brushes.Red, 0, 0, 30, 30)
 canvas.Dispose()

 ' ----- Create the second sprite.
 MySprites(1) = New Sprite
 MySprites(1).X = 97
 MySprites(1).Y = 57
 MySprites(1).VelocityX = 1
 MySprites(1).VelocityY = -2
 MySprites(1).SpriteImage = New Bitmap(30, 30)
 canvas = Graphics.FromImage(MySprites(1).SpriteImage)
 canvas.Clear(Color.FromArgb(0, 0, 0, 0))
 canvas.FillEllipse(Brushes.Green, 0, 0, 30, 30)
 canvas.Dispose()

 ' ----- Start the action.
 Timer1.Interval = 10
 Timer1.Enabled = True
 End Sub

With each tick of the timer, the two sprites are each checked to see if they've come in contact with the walls of the
form. If so, their appropriate velocity properties are reversed to cause them to bounce back into the display area of the
form. A quick check is also made to see if the two sprites are in collision with each other. If they are, the velocity
properties for both sprites are reversed, causing them to bounce away from each other. This simple action provides a
starting point for creating more complex sprite interaction.

To see the animated sprites in action, add the following code to the form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see the animated sprites in action, add the following code to the form:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Trigger a redraw of the form.
 Me.Refresh()
 End Sub

 Private Sub SpriteDemo_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the sprites on a background.
 Dim counter As Integer

 ' ----- Redraw the striped background.
 For counter = 0 To Me.ClientSize.Width * 2 Step 20
 e.Graphics.DrawLine(New Pen(Color.LightBlue, 5), _
 counter, -5, counter - Me.ClientSize.Height - 10, _
 Me.ClientSize.Height + 5)
 Next counter

 ' ----- Draw the sprites.
 MySprites(0).Draw(e.Graphics)
 MySprites(1).Draw(e.Graphics)
 ' ----- See if the
sprites have hit each other.
 If
MySprites(0).Collision(MySprites(1)) Then
 MySprites(0).VelocityX = -MySprites(0).VelocityX
 MySprites(0).VelocityY = -MySprites(0).VelocityY
 MySprites(1).VelocityX = -MySprites(1).VelocityX
 MySprites(1).VelocityY = -MySprites(1).VelocityY
 End If

 ' ----- Move the sprites for the next update.
 For counter = 0 To 1
 If (MySprites(counter).X < 0) Then
 MySprites(counter).VelocityX = _
 Math.Abs(MySprites(counter).VelocityX)
 End If
 If (MySprites(counter).Y) < 0 Then
 MySprites(counter).VelocityY = _
 Math.Abs(MySprites(counter).VelocityY)
 End If
 If (MySprites(counter).X > _
 (Me.ClientSize.Width - 30)) Then
 MySprites(counter).VelocityX = _
 -Math.Abs(MySprites(counter).VelocityX)
 End If
 If (MySprites(counter).Y > _
 (Me.ClientSize.Height - 30)) Then
 MySprites(counter).VelocityY = _
 -Math.Abs(MySprites(counter).VelocityY)
 End If
 Next counter
 End Sub

Figure 10-10 shows the two sprites in action, just after bouncing away from each other. Notice that the bitmaps are
created outside each sprite object, so the colors are easily set to something unique. In fact, the bitmaps could easily be
made much more unique, with the sprites appearing in different sizes and shapes if desired.

Figure 10-10. These simple sprites drift over a background image, interacting with
each other and with the walls of the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.9. Resizing and Compressing JPEG Files

Problem

Your digital camera's pictures are great, but they're way too big to send attached to your family emails. You want to
shrink them to a manageable size, but you also want to control the compression so there's no compromise in the
resulting quality of the images.

Solution

Sample code folder: Chapter 10\CompressImages

The CompressJPEG class presented in this recipe wraps all the code required to compress JPEG pictures to any desired
absolute or relative size. It lets you set the compression factor so you get a good balance between file size and quality
in the resulting JPEG images.

Discussion

Before presenting the CompressJPEG class itself, let's see how it's called. The following code shows how a large picture
named Family.jpg is compressed to 25 percent of its starting size using a compression-factor setting of 70 percent. A
CompressJPEG object is created, and its SizePercent and QualityPercent properties are set to 25 and 70, respectively. The Load()
method loads the original JPEG image, and the Save() method then saves the compressed and resized image to a new
JPEG file:

 Dim imageConverter As New CompressJPEG
 imageConverter.SizePercent = 25
 imageConverter.QualityPercent = 70
 imageConverter.Load("Family.jpg")
 imageConverter.Save("SmallerFamily.jpg")

Both the SizePercent and QualityPercent properties affect the final number of bytes in the output file, and it's important to
understand the difference between these two settings. SizePercent refers to the physical dimensions of the image; that is,
how many pixels wide and high it will be after compression. JPEG compression is not a lossless compression technique,
and the QualityPercent setting controls how much of the original information content of the picture is retained. A low
setting results in graininess and blockiness in the image, whereas a high value for this setting retains the detail and
quality of the original image. Typically, a setting of around 75 to 85 provides good compression with little or no
noticeable loss of image quality. If you don't set the QualityPercent property, it defaults to a very reasonable value of 85. If
you don't set the SizePercent property, the output image retains the same dimensions as the original.

The following code is for the CompressJPEG class itself. In addition to the properties and methods described so far, there
are two more properties you might find handy: instead of setting SizePercent, which resizes the picture to a percentage of
its original size, you can set the Width or Height properties to define the compressed file's dimensions. If you set one of
these properties, the other is calculated to retain the proportions of the original image. Here's the code for the
CompressJPEG class:

 Imports System.Drawing.Imaging

 Public Class CompressJPEG
 Private SourceImage As Image
 Private UseQualityPercent As Double
 Private UseSizePercent As Double
 Private UseWidth As Integer
 Private UseHeight As Integer

 Public Sub Load(ByVal filePath As String)
 ' ----- Assign the user-specified file.
 SourceImage = Image.FromFile(filePath)
 End Sub

 Public Sub Save(ByVal outputFile As String)
 ' ----- Save the file, making adjustments as requested.
 Dim wide As Integer
 Dim tall As Integer
 Dim newImage As Bitmap
 Dim canvas As Graphics
 Dim codecs() As ImageCodecInfo
 Dim jpegCodec As ImageCodecInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim jpegCodec As ImageCodecInfo
 Dim scanCodec As ImageCodecInfo
 Dim qualityParam As EncoderParameters

 ' ----- Don't bother if there is no image.
 If IsNothing(SourceImage) = True Then Return

 ' ----- Use default values if needed.
 If UseQualityPercent = 0 Then UseQualityPercent = 85

 ' ----- Calculate the new dimensions.
 If (UseWidth <> 0) And (UseHeight = 0) Then
 ' ----- Proportional to the width.
 wide = UseWidth
 tall = CInt(UseWidth * _
 SourceImage.Height / SourceImage.Width)
 ElseIf (UseWidth = 0) And (UseHeight <> 0) Then
 ' ----- Proportional to the height.
 wide = CInt(UseHeight * _
 SourceImage.Width / SourceImage.Height)
 tall = UseHeight
 ElseIf (UseWidth <> 0) And (UseHeight <> 0) Then
 ' ----- User-specified size.
 wide = UseWidth
 tall = UseHeight
 ElseIf (UseSizePercent <> 0) Then
 ' ----- Percent scale.
 wide = CInt(SourceImage.Width * _
 UseSizePercent / 100)
 tall = CInt(SourceImage.Height * _
 UseSizePercent / 100)
 Else
 ' ----- Retain the size.
 wide = SourceImage.Width
 tall = SourceImage.Height
 End If

 ' ----- Redraw the image to the new size.
 newImage = New Bitmap(wide, tall)
 canvas = Graphics.FromImage(newImage)
 canvas.DrawImage(SourceImage, 0, 0, wide, tall)
 canvas.Dispose()

 ' ----- Locate the processor for JPEG images.
 codecs = ImageCodecInfo.GetImageEncoders
 jpegCodec = codecs(0)
 qualityParam = New EncoderParameters
 For Each scanCodec In codecs
 If (scanCodec.MimeType = "image/jpeg") Then
 ' ----- Found the one we're looking for.
 jpegCodec = scanCodec
 Exit For
 End If
 Next scanCodec

 ' ----- Prepare the quality reduction.
 qualityParam.Param(0) = New EncoderParameter(_
 Encoder.Quality, CInt(UseQualityPercent))

 ' ----- Adjust
and save the new image in one command.
 newImage.Save(
outputFile, jpegCodec, qualityParam)
 SourceImage = Nothing
 End Sub

 Public Property QualityPercent() As Double
 Get
 Return UseQualityPercent
 End Get
 Set(ByVal Value As Double)
 Select Case Value
 Case Is < 1
 UseQualityPercent = 1
 Case Is > 100
 UseQualityPercent = 100
 Case Else
 UseQualityPercent = Value
 End Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Select
 End Set
 End Property

 Public Property SizePercent() As Double
 Get
 Return UseSizePercent
 End Get
 Set(ByVal Value As Double)
 Select Case Value
 Case Is < 1
 UseSizePercent = 1
 Case Is > 400
 UseSizePercent = 400
 Case Else
 UseSizePercent = Value
 End Select
 End Set
 End Property

 Public Property Width() As Integer
 Get
 If (UseWidth > 0) Then
 Return UseWidth
 Else
 If (SourceImage.Width > 0) Then
 Return CInt(SourceImage.Width * _
 UseSizePercent / 100)
 End If
 End If
 End Get
 Set(ByVal Value As Integer)
 UseWidth = Value
 End Set
 End Property

 Public Property Height() As Integer
 Get
 Return UseHeight
 End Get
 Set(ByVal Value As Integer)
 UseHeight = Value
 End Set
 End Property
 End Class

Figure 10-11 shows an image after compression from the original, much larger file. This compressed file is less than 19
KB in size, reduced from an original of over 1.25 MB!

Figure 10-11. Compressed and reduced images can be made much smaller,
without noticeable loss of quality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.10. Getting JPEG Extended Information

Problem

You want to extract information from within the JPEG pictures your camera creates. You might want to do this, for
instance, to rename the pictures based on the date and time they were taken.

Solution

Sample code folder: Chapter 10\JPEGInfo

Use the GetPropertyItem() method of the Bitmap class to extract header information from a JPEG file.

Discussion

Each brand of camera seems to create and store different header information in the picture files it creates, so this
solution may or may not work for you. This recipe's code is generalized enough so that even though you might not have
documentation listing the properties by their access numbers, you can check this program's output to help determine
what information is available.

The GetJpgInformation() function listed here gets a list of all property IDs from the picture's bitmap, calls GetPropertyItem() for
each of these, and then formats the results into a string array as best it can, replacing some characters and zero bytes
as required to prevent string-handling problems:

 Public Shared Function GetJpgInformation(_
 ByVal whichFile As String) As String
 ' ----- Retrieve the properties of a JPEG file.
 Dim bytesPropertyID As Byte()
 Dim stringPropertyID As String
 Dim loadedImage As System.Drawing.Bitmap
 Dim propertyIDs() As Integer
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim scanProperty As Integer

 ' ----- Retrieve the image and its properties.
 loadedImage = New System.Drawing.Bitmap(whichFile)
 propertyIDs = loadedImage.PropertyIdList

 ' ----- Examine each property.
 For Each scanProperty In propertyIDs
 ' ----- Convert the property to a string format.
 bytesPropertyID = loadedImage.GetPropertyItem(_
 scanProperty).Value
 stringPropertyID = System.Text.Encoding.ASCII. _
 GetString(bytesPropertyID)

 ' ----- Only retain characters in the printable
 ' ASCII range.
 For counter = 0 To 255
 If counter < 32 Or counter > 127 Then
 If (stringPropertyID.IndexOf(Chr(counter)) _
 <> -1) Then
 stringPropertyID = Replace(stringPropertyID, _
 Chr(counter), "")
 End If
 End If
 Next counter

 ' ----- Display the property if it's reasonable.
 If (stringPropertyID.Length > 0) And _
 (stringPropertyID.Length < 70) Then
 result.Append(scanProperty.ToString)
 result.Append(": ")
 result.AppendLine(stringPropertyID)
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next scanProperty

 ' ----- Display the results.
 Return result.ToString
 End Function

 Public Shared Function GetString(_
 ByVal sourceBytes As Byte()) As String
 ' ----- Convert a byte array to a string, taking into
 ' account the terminating null character.
 Dim result As String

 result = System.Text.Encoding.ASCII.GetString(sourceBytes)
 If (result.EndsWith(vbNullChar) = True) Then _
 result = result.Substring(0, result.Length - 1)
 Return result
 End Function

Call the GetJpgInformation() function directly with the path to a valid JPEG file to view the properties of the file:

 MsgBox(ProcessJPEG.GetJpgInformation("sample.jpg"))

Figure 10-12 shows a sample of the output produced by this code.

Figure 10-12. The information stored in a JPEG file

As you can see from the output, not all data items are usable, or even recognizable as readable ASCII text. Your output
will probably vary depending on the camera or software used to create your image files. For your camera, you can use
the date and time stamps as shown to help rename your picture files for easy chronological storage and access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.11. Creating Thumbnails

Problem

You want to create good-quality thumbnail JPEG images from larger images. These smaller versions of larger pictures
are handy for web pages.

Solution

The CompressJPEG class presented in Recipe 10.9 provides an ideal solution for creating smaller thumbnail versions of
large JPEG pictures.

Discussion

Instead of setting the CompressJPEG object's SizePercent property to shrink the pictures to some unknown smaller size, set
the Height property to 100 to force the creation of compressed files exactly 100 pixels high. The width of each output
thumbnail picture will be automatically adjusted to retain the proportions of the original image. The default QualityPercent
value of 85 works just fine for these thumbnails:

 Dim imageThumb As New CompressJPEG

 imageThumb.Height = 100
 imageThumb.Load("sample.jpg")
 imageThumb.Save("sampleThumb.jpg")

The picture shown in Figure 10-13 is a 100-pixel-high copy of an original, and much larger, JPEG picture of a mountain
in the Grand Tetons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

Problem

You want to display a picture in a PictureBox on a form, but you aren't sure which size mode setting to use.

Figure 10-13. Thumbnails are easy to create at any chosen size and quality setting

Solution

Sample code folder: Chapter 10\StretchImage

The sample code in this recipe lets you interactively experiment with the display of a picture on a form to determine which size mode setting will work
best for your needs.

Discussion

The PictureBox control is ideal for displaying JPEG and other picture files. However, one of the property settings of the PictureBox
are displayed in a significant way, and having a clear means of visualizing how it affects the displayed images can help you plan your applications
better. The code presented here provides an easy way to see exactly how the SizeMode property works.

Create a new Windows Forms application. Add a PictureBox control to the form, and set its Dock property to Fill. This causes the
stretch to fill the client area of the form on which it resides. (The image displayed in the PictureBox won't necessarily stretch to fill the same areathat
depends on the SizeMode setting of the PictureBox.) Next, add the following code to the form's code template. The code toggles through the
settings each time you click on the PictureBox, letting you easily see and experiment with the various settings:

 Private Sub PictureBox1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PictureBox1.Click

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) Handles PictureBox1.Click
 ' ----- Toggle to the next size mode.
 Static displayState As PictureBoxSizeMode = 0

 ' ----- Move to the next state.
 If ([Enum].IsDefined(GetType(PictureBoxSizeMode), _
 CInt(displayState) + 1) = True) Then
 displayState += 1
 Else
 ' ----- Wrap to the first choice.
 displayState = 0
 End If

 ' ----- Update the display.
 PictureBox1.SizeMode = displayState
 Me.Text = "PictureBoxSizeMode." & displayState.ToString()
 End Sub

This code toggles through all available values of the PictureBoxSizeMode enumeration, the one used to set the size of a PictureBox
when starting the application, add the following code to the form's class:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 ' ----- Prompt for the initial file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 PictureBox1.Load(locateFile.FileName)
 Else
 ' ----- Exit the program.
 Me.Close()
 End If

 ' ----- Show the initial state.
 Me.Text = "PictureBoxSizeMode." & _
 PictureBox1.SizeMode.ToString()
 End Sub

Figures 10-14 and 10-18 show the display of a picture when SizeMode is set to StretchImage. This setting causes the image to distort horizontally and/or
vertically to fit the control, rather than retaining its original proportions.

Figure 10-14. The StretchImage setting distorts images to fit within the dimensions of a PictureBox

As you can see in Figure 10-15, with the Zoom setting, the picture retains its original proportionality. However, this can cause blank areas to appear
either on both sides of or above and below the image. The picture appears smaller than when it's stretched to fit the dimensions of the
least it's not distorted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

least it's not distorted.

Figure 10-15. The Zoom setting reduces an image's width or height to keep it within the PictureBox with
no distortion

In Figure 10-16, SizeMode is set to AutoSize, which means the PictureBox automatically resizes itself to show the entire picture at its full resolution. Because
the PictureBox is limited to the surface of the form, though, only the upper-left corner of the picture is seen here, and only by expanding the form to
great lengths will you begin to see the edge of the mountain in the bottom-right corner of the form. In this figure we only see blue sky and a little bit of
the mountain. You may also detect a small blurry bird image in the very corner.

Figure 10-17 shows the picture when SizeMode is set to CenterImage. The picture is once again shown full-scale, as when the mode was set to
in this case you see the very center of the large picture rather than its upper-left corner.

Figure 10-16. The AutoSize setting displays images at full size, even if they don't fit within the area
provided

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-17. CenterImage displays the center of the image in the center of the PictureBox at full size

Figure 10-18 show what happens after the demonstration program cycles through the settings.

Figure 10-18. The demonstration program cycles through the settings, returning to the original
StretchImage setting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each setting has its uses, and you should become familiar with the effects of each when displaying pictures or other graphics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.13. Scrolling Images

Problem

You want to display a picture with full resolution, but you want to let the user scroll around to see all parts of the picture.

Solution

Sample code folder: Chapter 10\ScrollImage

Store the picture in a PictureBox with its SizeMode property set to AutoSize, and place it on a form with its AutoScroll property set
to true.

Discussion

To see this demonstration in action, add a PictureBox to a form, set its SizeMode property to AutoSize, and set its Location property
to 0,0. Don't worry about its size; the AutoSize setting will take care of that. Change the form's AutoScroll property to true. Now
add the following code to the form's class, which loads a picture on startup:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 ' ----- Prompt for the initial file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 PictureBox1.Load(locateFile.FileName)
 Me.AutoScroll = True
 Else
 ' ----- Exit the program.
 Me.Close()
 End If
 End Sub

Run the program, and select a large picture. The scrollbars will automatically appear when needed, as shown in Figure 10-
19.

Figure 10-19. Implementing scrollbars to enable scrolling around large images

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.14. Merging Two or More Images

Problem

You want to blend two images together, with a variable strength for each, to create a ghost-like effect.

Solution

Sample code folder: Chapter 10\MergeImages

Use the GetPixel() method of the Bitmap class to process the pixels from matching locations in each of the original images,
and use the SetPixel() method to assign the resulting pixels to a third bitmap to create the merged image.

Discussion

This recipe processes the pixels from two identically sized images and creates a third. The action is slow enough that
intermediate results are displayed after each row of pixels is processed. To try it out, add the following code to the
form's class. The code loads two image files (in Form1_Load()) and does the actual processing (DoMergeImages()):

 Private SourceImages(1) As Bitmap

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Prepare the form.
 Dim counter As Integer
 Dim locateFile As New OpenFileDialog

 ' ----- Display the form immediately.
 Me.Show()

 ' ----- Prompt for each file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 For counter = 0 To 1
 ' ----- Prompt for the initial file.
 If (locateFile.ShowDialog() <> _
 Windows.Forms.DialogResult.OK) Then
 ' ----- End the program.
 Me.Close()
 Return
 End If

 ' ----- Load in the picture.
 SourceImages(counter) = New Bitmap(locateFile.FileName)
 Next counter

 ' ----- Start the processing.
 DoMergeImages()
 End Sub

 Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 ' ----- Exit the program. This is needed just in case the
 ' user closed the form in the middle of the merge.
 End
 End Sub

 Private Sub DoMergeImages()
 ' ----- Merge two images.
 Dim workBitmap As Bitmap
 Dim across As Integer
 Dim down As Integer
 Dim firstColor As Color
 Dim secondColor As Color
 Dim mixedColor As Color
 Dim redPart As Integer
 Dim greenPart As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim canvas As Graphics

 ' ----- Use one of the images as the base.
 workBitmap = SourceImages(0)
 canvas = Graphics.FromImage(workBitmap)

 ' ----- Process each row of the image.
 For down = 0 To SourceImages(0).Height - 1
 ' ----- Process each column of the image.
 For across = 0 To SourceImages(0).Width - 1
 Try
 ' ----- Get the colors of a specific pixel.
 firstColor = _
 SourceImages(0).GetPixel(across, down)
 secondColor = _
 SourceImages(1).GetPixel(across, down)
 Catch
 ' ----- If an error occurs, the images must have
 ' been mismatched in size.
 Continue For
 End Try

 ' ----- Build a blended color from the parts.
 redPart = (CInt(firstColor.R) + secondColor.R) \ 2
 greenPart = (CInt(firstColor.G) + secondColor.G) \ 2
 bluePart = (CInt(firstColor.B) + secondColor.B) \ 2
 mixedColor = Color.FromArgb(redPart, greenPart, _
 bluePart)
 ' ----- Update the image.
 workBitmap.SetPixel(across, down, mixedColor)
 Next across

 ' ----- Refresh the display so the user knows
 ' something is happening.
 MergedImage.Image = workBitmap
 Application.DoEvents()
 Next down
 canvas.Dispose()
 End Sub

Figure 10-20 shows the results of blending together images of a goose and the Grand Teton mountains. The code
blends the pixels equally by adding together the color values and dividing by two to find their averages. You could easily
modify this averaging to place more weight on the pixels from one image or the other. Another creative experiment
might be to average together only one or more of the color channels (red, green, or blue).

Figure 10-20. Blending two pictures for a ghostly effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.15. Using Resource Images

Problem

You want to manipulate images on your forms at runtime without having to load them from accompanying files shipped with your application.

Solution

Add the images to the application's resources, then load them into controls or process them as needed by accessing them directly from the
object.

Discussion

Adding pictures, icons, strings, or other items to your application's resources is very straightforward and easy to do in Visual Basic 2005. This recipe
shows the steps involved for adding images, but the process easily extends to other types of resources.

Resource items are maintained at design time by double-clicking My Project in the Solution Explorer list and selecting the Resources tab.
shows an example set of image resources as they appear in the Resources maintenance dialog.

Figure 10-21. Resource-maintenance tasks are carried out on the Resources tab of the Project
Properties window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new picture to the collection of images, click the Add Resources pull-down menu, open the New Image submenu, and select JPEG Image, as
shown in Figure 10-22.

Figure 10-22. Adding new images to your resources

At runtime, the images stored in your application's resources are referenced by name. For example, the following code loads either the Goose or the
Teton image into PictureBox1, based on the current state of the static Boolean variable showTheGoose:

 Private Sub ShowImage(ByVal useTheGoose As Boolean)
 ' ----- Goose or Teton: hard choice!
 If (useTheGoose = True) Then
 PictureBox1.Image = My.Resources.Goose
 Else
 PictureBox1.Image = My.Resources.Teton
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.16. Capturing an Image of the Screen

Problem

You want to capture a copy of the screen for processing in your Visual Basic 2005 application as a bitmap image,
without resorting to any external applications.

Solution

Sample code folder: Chapter 10 \CaptureScreen

Use the GetScreen() function in the ScreenGrab module presented in this recipe.

Discussion

There's no straightforward way to grab the contents of the screen using only functionality within the .NET Framework,
but it is easy to call the appropriate Windows API functions to get the job done. The ScreenGrab module shown here
wraps all the required function declarations and calls in an easy-to-use package.

Create a new Windows Forms application. Add a new module to the project named ScreenGrab.vb, and use the
following code for its definition:

 Module ScreenGrab
 Private Declare Function CreateDC _
 Lib "GDI32" Alias "CreateDCA" (_
 ByVal lpDriverName As String, _
 ByVal lpDeviceName As String, _
 ByVal lpOutput As String, _
 ByVal lpInitData As String _
) As IntPtr

 Private Declare Function CreateCompatibleDC _
 Lib "GDI32" (ByVal hDC As IntPtr) As IntPtr

 Private Declare Function CreateCompatibleBitmap _
 Lib "GDI32" (_
 ByVal hDC As IntPtr, _
 ByVal nWidth As Integer, _
 ByVal nHeight As Integer _
) As IntPtr

 Private Declare Function SelectObject _
 Lib "GDI32" (_
 ByVal hDC As IntPtr, _
 ByVal hObject As IntPtr _
) As IntPtr

 Private Declare Function BitBlt _
 Lib "GDI32" (_
 ByVal srchDC As IntPtr, _
 ByVal srcX As Integer, _
 ByVal srcY As Integer, _
 ByVal srcW As Integer, _
 ByVal srcH As Integer, _
 ByVal desthDC As IntPtr, _
 ByVal destX As Integer, _
 ByVal destY As Integer, _
 ByVal op As Integer _
) As Integer

 Private Declare Function DeleteDC _
 Lib "GDI32" (ByVal hDC As IntPtr) As Integer

 Private Declare Function DeleteObject _
 Lib "GDI32" (ByVal hObj As IntPtr) As Integer

 Const SRCCOPY As Integer = &HCC0020

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function GetScreen() As Bitmap
 ' ----- Take a picture of the screen.
 Dim screenHandle As IntPtr
 Dim canvasHandle As IntPtr
 Dim screenBitmap As IntPtr
 Dim previousObject As IntPtr
 Dim resultCode As Integer
 Dim screenShot As Bitmap

 ' ----- Get a reference to the display.
 screenHandle = CreateDC("DISPLAY", "", "", "")

 ' ----- Make a canvas that is just like the
 ' display's canvas.
 canvasHandle = CreateCompatibleDC(screenHandle)

 ' ----- Create a bitmap that will hold the screen image.
 screenBitmap = CreateCompatibleBitmap(screenHandle, _
 Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height)

 ' ----- Copy the screen image to the canvas/bitmap.
 previousObject = SelectObject(canvasHandle, _
 screenBitmap)
 resultCode = BitBlt(canvasHandle, 0, 0, _
 Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height, _
 screenHandle, 0, 0, SRCCOPY)
 screenBitmap = SelectObject(canvasHandle, _
 previousObject)

 ' ----- Finished with the canvases.
 resultCode = DeleteDC(screenHandle)
 resultCode = DeleteDC(canvasHandle)

 ' ----- Copy image to a .NET bitmap.
 screenShot = Image.FromHbitmap(screenBitmap)
 DeleteObject(screenBitmap)

 ' ----- Finished.
 Return screenShot
 End Function
 End Module

Now return to Form1, and add a Button control named ActCapture. Set its Text property to Capture Now. Next, add a CheckBox
control named IncludeThisForm, set its Checked property to true, and set its Text property to Include This Form. Finally, add a
PictureBox control named ScreenSummary, set its SizeMode property to StretchImage, and set its Size property to 200,150. Figure
10-23 shows the form and its controls.

Figure 10-23. The controls on the screen capture sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following code to Form1's class template:

 Private Sub ActCapture_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActCapture.Click
 ' ----- Copy the screen.
 ScreenSummary.Image = GetScreen()
 End Sub

 Private Sub IncludeThisForm_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles IncludeThisForm.CheckedChanged
 ' ----- Adjust the opacity as needed.
 If (IncludeThisForm.Checked = True) Then
 Me.Opacity = 1.0
 Else
 Me.Opacity = 0.99
 End If
 End Sub

It turns out that the standard method of copying the screen ignores semitransparent forms, so setting the form's
opacity to anything below 1.0 makes it invisible to the screen capture process.

Run the program, and click the ActCapture button. Figure 10-24 shows the form in use.

Figure 10-24. A capture of the entire screen with Visual Studio prominently
displayed

Details of the API functions included in the ScreenGrab module and their use are beyond the scope of this book, but there
are plenty of resources on the Internet if you want to find out how they work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.17. Getting Display Dimensions

Problem

You want to determine the dimensions of the user's screen at runtime, including both the entire screen and just the
working area that doesn't include the task bar. Also, you want to determine the number of monitors on the user's
system, the screen dimensions of each, and which screen is currently active.

Solution

Sample code folder: Chapter 10\ScreenInfo

Access this information from the Screen object, which includes an array of objects, one for each screen on the system.

Discussion

The following code extracts information from each Screen object returned by the Screen.AllScreens property, then formats
the various data items returned for easy review:

 Dim result As New System.Text.StringBuilder
 Dim scanScreen As Screen

 ' ----- Include some summary data.
 result.Append("Number of screens: ")
 result.AppendLine(Screen.AllScreens.Length.ToString)
 result.AppendLine()

 ' ----- Process each installed screen.
 For Each scanScreen In Screen.AllScreens
 result.AppendLine("Device Name: " & _
 GetTerminatedString(scanScreen.DeviceName))

 result.AppendLine("Bounds: " & _
 scanScreen.Bounds.ToString)

 result.AppendLine("Working Area: " & _
 scanScreen.WorkingArea.ToString)

 result.AppendLine("Is Primary: " & _
 scanScreen.Primary.ToString)

 result.AppendLine()
 Next scanScreen

 MsgBox(result.ToString())

The device name returned by the scanScreen.DeviceName property may include an old C-style terminating null character
(ASCII 0), so you must to add a custom function to extract just the part you need:

 Private Function GetTerminatedString(_
 ByVal sourceString As String) As String
 ' ----- Return all text of a string up to the first
 ' null character.
 Dim index As Integer

 index = sourceString.IndexOf(vbNullChar)
 If (index > -1) Then
 Return sourceString.Substring(0, index)
 Else
 Return sourceString
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As shown in Figure 10-25, the system used for testing this code had only one monitor, with a screen resolution of 1680
x 1050 pixels and a working area of 1680 x 990 pixels (the working area is slightly smaller because the task bar was
showing along the bottom edge of the screen).

Figure 10-25. The Screen.AllScreens array provides information about any
monitors on your system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.18. Speeding Up Image Processing

Problem

You want to implement some image-processing algorithms, and you want the operations to be reasonably fast.

Solution

Sample code folder: Chapter 10\LockImage

Use the InteropServices.Marshal.LockBits() method to prevent the operating system from moving the bitmap data around in
memory. This greatly speeds up the program's access to the pixel data. This recipe presents a LockImage class that
wraps the LockBits() functionality for easy use.

Discussion

The LockImage class presented in this recipe and the remaining recipes in this chapter contains several image-processing
methods. (The full LockImage class is listed in Recipe 10.21.) The goal is to provide enough examples to enable you to
design your own image-processing functionality.

The processing function demonstrated in this recipe is Mirror(), a method of the LockImage class that flips an image left and
right. To see how it works, create a form with a PictureBox on it that has its Dock property set to Fill and its SizeMode
property set to StretchImage. Load a picture into its Image property, and add the following code to its Click event:

 Private Sub PictureBox1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PictureBox1.Click
 ' ----- Mirror-image the bitmap.
 Dim mirrorIt As New LockImage
 mirrorIt.Image = PictureBox1.Image
 mirrorIt.Mirror()
 PictureBox1.Image = mirrorIt.Image
 End Sub

When you click on the picture, this procedure creates an instance of the LockImage class, copies the PictureBox's image to
it, calls the Mirror() method to process the image, and then copies the image back into the PictureBox. This is the pattern
for using any of the processing methods of the LockImage class.

Now let's look at the portions of the LockImage class that relate to the mirroring processs.

First, you must import the requisite namespaces. InteropServices.Marshal is required for its LockBits() method. The class
defines a few class-level variables:

 Imports System.Drawing.Imaging
 Imports System.Runtime.InteropServices.Marshal

 Public Class LockImage
 Private BaseImage As Bitmap
 Private BaseImageWidth As Integer
 Private BaseImageHeight As Integer
 Private TotalPixels As Integer
 Private ImageAddress As IntPtr
 Private ImageContent As BitmapData
 Private ImageBuffer() As Integer

The Image property stores or retrieves the bitmap image to be locked and processed:

 Public Property Image() As Bitmap
 ' ----- User access to the relevant image.
 Get
 Return BaseImage
 End Get
 Set(ByVal Value As Bitmap)
 Dim canvas As Graphics
 BaseImage = New Bitmap(Value.Width, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BaseImage = New Bitmap(Value.Width, _
 Value.Height, Value.PixelFormat)
 canvas = Graphics.FromImage(BaseImage)
 canvas.DrawImage(Value, 0, 0, _
 Value.Width, Value.Height)
 canvas.Dispose()
 End Set
 End Property

The LockTheImage() method provides the important core functionality of this class; with it, you can lock down the bits of
the bitmap and present the pixel data in an integer array for efficient processing. All pixel processing in the methods
you create, such as the Mirror() method presented later, will process in place the integer pixel data stored in ImageBuffer().

Each 32-bit integer in ImageBuffer() represents a single pixel. The most significant byte is alpha, the opacity value. The
next most significant byte is for red, then green, and the least significant byte is for blue. Each of these four values
ranges from 0 to 255. Two other variables of importance for your image-processing methods are BaseImageWidth and
BaseImageHeight. The ImageBuffer() array is one-dimensional, so these two values are required to determine the rectangular
layout of the pixels:

 Private Sub LockTheImage()
 ' ----- Lock the image in memory. How much room
 ' do we need?
 BaseImageWidth = BaseImage.Width
 BaseImageHeight = BaseImage.Height
 TotalPixels = BaseImageWidth * BaseImageHeight

 ' ----- Create a stable (locked) area in memory. It
 ' will store 32-bit color images.
 ReDim ImageBuffer(TotalPixels - 1)
 ImageContent = BaseImage.LockBits(_
 New Rectangle(0, 0, BaseImageWidth, _
 BaseImageHeight), ImageLockMode.ReadWrite, _
 PixelFormat.Format32bppRgb)
 ImageAddress = ImageContent.Scan0

 ' ----- Associate the buffer and the locked memory.
 Copy(ImageAddress, ImageBuffer, 0, TotalPixels)
 End Sub

The Mirror() method works by locating the first and last pixels of each row of the image, then swapping the pixels at
those locations. The next and previous pixels in the row are swapped next, and this continues until all pixels in the row
have been swapped. Here is the code for the Mirror() method:

 Public Sub Mirror()
 ' ----- Make a left-to-right mirror image.
 Dim pixelIndex1 As Integer
 Dim pixelIndex2 As Integer
 Dim holdPixel As Integer
 Dim down As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each row of the image.
 For down = 0 To BaseImageHeight - 1
 ' ----- Process each column,
up to halfway across.
 pixelIndex1 = down * BaseImageWidth
 pixelIndex2 = pixelIndex1 + BaseImageWidth - 1
 Do While pixelIndex1 < pixelIndex2
 ' ----- Swap two pixels.
 holdPixel = ImageBuffer(pixelIndex1)
 ImageBuffer(pixelIndex1) = _
 ImageBuffer(pixelIndex2)
 ImageBuffer(pixelIndex2) = holdPixel
 pixelIndex1 += 1
 pixelIndex2 -= 1
 Loop
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The UnlockTheImage() method restores the processed pixel data in ImageBuffer() to the bitmap, ready to be retrieved by the
code that uses the class:

 Private Sub UnlockTheImage()
 ' ----- Unlock the memory area.
 Copy(ImageBuffer, 0, ImageAddress, TotalPixels)
 Image.UnlockBits(ImageContent)
 ImageContent = Nothing
 ReDim ImageBuffer(0)
 End Sub

Figure 10-26 shows a sample picture just before being flipped; Figure 10-27 shows the picture immediately afterwards.

Figure 10-26. An image about to be flipped horizontally

See Also

Recipe 10.21 includes the full source code for the LockImage class.

Figure 10-27. The same image after the Mirror() method has worked its magic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.19. Converting an Image to Grayscale

Problem

You'd like to convert a picture from color to grayscale from within a Visual Basic 2005 application.

Solution

Sample code folder: Chapter 10\LockImage

Use the MakeGray() method of the LockImage class, described in Recipe 10.18.

Discussion

The MakeGray() method of the LockImage class (whose full source code is listed in Recipe 10.21) provides a working
example that processes the individual color bytes stored in the class's ImageBuffer() integer array.

Here's the code for the MakeGray() procedure:

 Public Sub MakeGray()
 ' ----- Make a grayscale version of the image.
 Dim pixelIndex As Integer
 Dim onePixel As Integer
 Dim alphaPart As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

All processing methods added to the LockImage class should call the private method LockTheImage() as the first step and
the corresponding UnlockTheImage() method as the last step.

The following two nested loops process all pixels in all rows of the image. pixelIndex walks the pixels across each row and
then down the image:

 ' ----- Process each pixel in the grid.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Locate the pixel's color.
 pixelIndex = down * BaseImageWidth + across

Each pixel is split up into its parts if the processing requires access to them. The Mirror() method processed the pixels as
whole units, but to compute grayscale values, you need to access the individual color components of each pixel:

 onePixel = ImageBuffer(pixelIndex)

 ' ----- Extract the color values.
 alphaPart = (onePixel >> 24) And &HFF
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF

The next lines convert the color information to grayscale using an algorithm that averages using the two maximum and
minimum values for red, green, and blue. There are other algorithms available for converting to grayscale, and you
might want to experiment with others to best meet your requirements. All three colors are assigned the same byte
value, which is what forces all pixels to become some shade of gray:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value, which is what forces all pixels to become some shade of gray:

 ' ----- Get the general color intensity.
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 onePixel = (maxColor + minColor) \ 2

 ' ----- Use a common intensity for all colors.
 bluePart = onePixel
 greenPart = onePixel
 redPart = onePixel

 ' ----- Set the pixel to the new color. Retain
 ' the original alpha channel.
 ImageBuffer(pixelIndex) = (alphaPart << 24) + _
 (redPart << 16) + (greenPart << 8) + bluePart
 Next across
 Next down

As a last step, it's important to call UnlockTheImage() when the processing of ImageBuffer() is complete:

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

In this example, 256 shades of gray are created. If you want to convert to 16 shades, or even just 2(black-and-white
monochrome), simply round off onePixel to the nearest shade values desired. For example, for two-level black-and-white
images all values of onePixel less than 128 are rounded to zero, and all other byte values are set to 255.

Figure 10-28 shows the results of converting the original color image to grayscale. Although the difference can be hard
to discern in the grayscale figures used in this book, it can easily be seen in Figure 10-29, where a two-level grayscale
(or monochrome black-and-white) conversion was used. This result was obtained by inserting the following lines to
adjust onePixel just before it is assigned to the red, blue, and green variables:

 If (onePixel < 128) Then
 onePixel = 0
 Else
 onePixel = 255
 End If

Figure 10-28. A color picture converted to grayscale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-29. The same image with a 2-level grayscale (black-and-white
monochrome) conversion performed instead of a 256-level conversion

See Also

Recipe 10.18 describes the LockImage class used in this recipe. Recipe 10.21 includes the full source code for the
LockImage class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.20. Performing Edge Detection on an Image

Problem

You want to perform edge detection on a picture.

Solution

Sample code folder: Chapter 10\LockImage

Use the EdgeDetect() method of the LockImage class, described in Recipe 10.18.

Discussion

Edge detection is a good example of the complex image-processing routines that can be created within the framework
of the LockImage class. The EdgeDetect() method processes the pixels in an image by converting them to grayscale and
then using a filter matrix to process neighboring pixels. The matrix processing detects rapid rates of change in the
pixels and assigns a darker shade of gray where pixels are changing the fastest. Figure 10-30 shows the edges of the
goose after this method has done its work.

Figure 10-30. Edge detection using the LockImage class's EdgeDetect() method

The EdgeDetect() method is a little more involved than the image-processing methods discussed in the previous two
recipes. Two 3 x 3 matrices, edgeX and edgeY, are created to process neighboring pixels for X and Y changes. This
processing requires that the pixels be accessed multiple times. It is easier to set up the algorithm by first converting all
pixels to shades of gray and storing them in a two-dimensional array. Even with these extra processing steps, the
algorithm runs very fast in the .NET Framework.

Here's the code for the EdgeDetect() procedure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the code for the EdgeDetect() procedure:

 Public Sub EdgeDetect()
 ' ----- Enhance the edges within the image.
 Dim onePixel As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer
 Dim pixArray(,) As Integer
 Dim target(,) As Integer
 Dim sumX As Integer
 Dim sumY As Integer
 Dim useSum As Integer
 Dim squareX As Integer
 Dim squareY As Integer

 ' ----- Define the Sobel Edge Detector gradient
 ' matrices.
 Dim edgeX(,) = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}
 Dim edgeY(,) = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}}

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Convert the 1D pixel array to 2D for ease
 ' of processing.
 ReDim pixArray(BaseImageHeight - 1, BaseImageWidth - 1)
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Convert each pixel to a grayscale value.
 onePixel = ImageBuffer(down * BaseImageWidth + _
 across)
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 pixArray(down, across) = (maxColor + minColor) \ 2
 Next across
 Next down

 ' ----- Results will be placed in a second pixel array.
 ReDim target(BaseImageHeight - 1, BaseImageWidth - 1)

 ' ----- Process for
edge detection.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Calculate the edge factor.
 sumX = 0
 sumY = 0
 If (down = 0) Or _
 (down = (BaseImageHeight - 1)) Then
 ' ----- Ignore true
edges.
 useSum = 0
 ElseIf (across = 0) Or _
 (across = (BaseImageWidth - 1)) Then
 ' ---- Ignore true edges.
 useSum = 0
 Else
 ' ----- Summarize a small square around
 ' the point.
 For squareX = -1 To 1
 For squareY = -1 To 1
 sumX += pixArray(down + squareY, _
 across + squareX) * _
 edgeX(squareX + 1, squareY + 1)
 sumY += pixArray(down + squareY, _
 across + squareX) * _
 edgeY(squareX + 1, squareY + 1)
 Next squareY
 Next squareX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Force the value into the 0 to 255 range.
 useSum = Math.Abs(sumX) + Math.Abs(sumY)
 If (useSum < 0) Then useSum = 0
 If (useSum > 255) Then useSum = 255
 useSum = 255 - useSum

 ' ----- Save it as a grayscale value in
 ' the pixel.
 target(down, across) = useSum + _
 (useSum << 8) + (useSum << 16)
 End If
 Next across
 Next down

 ' ----- Move results back into the locked pixels array.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ImageBuffer(down * BaseImageWidth + across) = _
 target(down, across)
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

See Also

Recipe 10.18 describes the LockImage class used in this recipe. Recipe 10.21 includes the full source code for the
LockImage class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.21. Full Listing of the LockImage Class
Sample code folder: Chapter 10\LockImage

This recipe contains the full code for the LockImage class described in Recipes 10.18, 10.19 through 10.20:

 Imports System.Drawing.Imaging
 Imports System.Runtime.InteropServices.Marshal

 Public Class LockImage
 Private BaseImage As Bitmap
 Private BaseImageWidth As Integer
 Private BaseImageHeight As Integer
 Private TotalPixels As Integer
 Private ImageAddress As IntPtr
 Private ImageContent As BitmapData
 Private ImageBuffer() As Integer

 Public Property Image() As Bitmap
 ' ----- User access to the relevant image.
 Get
 Return BaseImage
 End Get
 Set(ByVal Value As Bitmap)
 Dim canvas As Graphics
 BaseImage = New Bitmap(Value.Width, _
 Value.Height, Value.PixelFormat)
 canvas = Graphics.FromImage(BaseImage)
 canvas.DrawImage(Value, 0, 0, _
 Value.Width, Value.Height)
 canvas.Dispose()
 End Set
 End Property

 Private Sub LockTheImage()
 ' ----- Lock the image in memory. How much room
 ' do we need?
 BaseImageWidth = BaseImage.Width
 BaseImageHeight = BaseImage.Height
 TotalPixels = BaseImageWidth * BaseImageHeight

 ' ----- Create a stable (locked) area in memory. It
 ' will store 32-bit color images.
 ReDim ImageBuffer(TotalPixels - 1)
 ImageContent = BaseImage.LockBits(_
 New Rectangle(0, 0, BaseImageWidth, _
 BaseImageHeight), ImageLockMode.ReadWrite, _
 PixelFormat.Format32bppRgb)
 ImageAddress = ImageContent.Scan0

 ' ----- Associate the buffer and the locked memory.
 Copy(ImageAddress, ImageBuffer, 0, TotalPixels)
 End Sub

 Private Sub UnlockTheImage()
 ' ----- Unlock the memory area.
 Copy(ImageBuffer, 0, ImageAddress, TotalPixels)
 Image.UnlockBits(ImageContent)
 ImageContent = Nothing
 ReDim ImageBuffer(0)
 End Sub

 Public Sub MakeGray()
 ' ----- Make a grayscale version of the image.
 Dim pixelIndex As Integer
 Dim onePixel As Integer
 Dim alphaPart As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim down As Integer
 Dim across As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each pixel in the grid.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Locate the pixel's color.
 pixelIndex = down * BaseImageWidth + across
 onePixel = ImageBuffer(pixelIndex)

 ' ----- Extract the color values.
 alphaPart = (onePixel >> 24) And &HFF
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF

 ' ----- Get the general color intensity.
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 onePixel = (maxColor + minColor) \ 2

 ' ----- Use a common intensity for all colors.
 bluePart = onePixel
 greenPart = onePixel
 redPart = onePixel

 ' ----- Set the pixel to the new color. Retain
 ' the original alpha channel.
 ImageBuffer(pixelIndex) = (alphaPart << 24) + _
 (redPart << 16) + (greenPart << 8) + bluePart
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

 Public Sub Mirror()
 ' ----- Make a left-to-right mirror image.
 Dim pixelIndex1 As Integer
 Dim pixelIndex2 As Integer
 Dim holdPixel As Integer
 Dim down As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each row of the image.
 For down = 0 To BaseImageHeight - 1
 ' ----- Process each column, up to halfway across.
 pixelIndex1 = down * BaseImageWidth
 pixelIndex2 = pixelIndex1 + BaseImageWidth - 1
 Do While pixelIndex1 < pixelIndex2
 ' ----- Swap two pixels.
 holdPixel = ImageBuffer(pixelIndex1)
 ImageBuffer(pixelIndex1) = _
 ImageBuffer(pixelIndex2)
 ImageBuffer(pixelIndex2) = holdPixel
 pixelIndex1 += 1
 pixelIndex2 -= 1
 Loop
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

 Public Sub EdgeDetect()
 ' ----- Enhance the edges within the image.
 Dim onePixel As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer
 Dim pixArray(,) As Integer
 Dim target(,) As Integer
 Dim sumX As Integer
 Dim sumY As Integer
 Dim useSum As Integer
 Dim squareX As Integer
 Dim squareY As Integer

 ' ----- Define the Sobel Edge Detector gradient
 ' matrices.
 Dim edgeX(,) = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}
 Dim edgeY(,) = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}}

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Convert the 1D pixel array to 2D for ease
 ' of processing.
 ReDim pixArray(BaseImageHeight - 1, BaseImageWidth - 1)
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Convert each pixel to a grayscale value.
 onePixel = ImageBuffer(down * BaseImageWidth + _
 across)
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 pixArray(down, across) = (maxColor + minColor) \ 2
 Next across
 Next down

 ' ----- Results will be placed in a second pixel array.
 ReDim target(BaseImageHeight - 1, BaseImageWidth - 1)

 ' ----- Process for edge detection.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Calculate the edge factor.
 sumX = 0
 sumY = 0
 If (down = 0) Or _
 (down = (BaseImageHeight - 1)) Then
 ' ----- Ignore true edges.
 useSum = 0
 ElseIf (across = 0) Or _
 (across = (BaseImageWidth - 1)) Then
 ' ---- Ignore true edges.
 useSum = 0
 Else
 ' ----- Summarize a small square around
 ' the point.
 For squareX = -1 To 1
 For squareY = -1 To 1
 sumX += pixArray(down + squareY, _
 across + squareX) * _
 edgeX(squareX + 1, squareY + 1)
 sumY += pixArray(down + squareY, _
 across + squareX) * _
 edgeY(squareX + 1, squareY + 1)
 Next squareY
 Next squareX

 ' ----- Force the value into the 0 to 255 range.
 useSum = Math.Abs(sumX) + Math.Abs(sumY)
 If (useSum < 0) Then useSum = 0
 If (useSum > 255) Then useSum = 255
 useSum = 255 - useSum

 ' ----- Save it as a grayscale value in
 ' the pixel.
 target(down, across) = useSum + _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 target(down, across) = useSum + _
 (useSum << 8) + (useSum << 16)
 End If
 Next across
 Next down

 ' ----- Move results back into the locked pixels array.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ImageBuffer(down * BaseImageWidth + across) = _
 target(down, across)
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Printing

Introduction

Recipe 11.1. Enumerating Printers

Recipe 11.2. Sending "Raw" Data to a Printer

Recipe 11.3. Get Details About the Default Printer

Recipe 11.4. Creating a Print Preview

Recipe 11.5. Prompting for Printed Page Settings

Recipe 11.6. Drawing Text and Graphics to a Printer

Recipe 11.7. Determining the Print Destination

Recipe 11.8. Creating Graph Paper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
If there is one thing the typical business computer user needs more than anything else, it's reports. Any readers who
have worked in the IS or IT department of a large organization can quickly attest to that. And reports mean printing,
and printing means pain. At least, that's what I've always found. Certainly, there are many third-party reporting tools
available, such as the version of Crystal Reports included with Visual Studio. But these "banded" reports don't always
meet your needs. Sometimes you need to print out some text or graphics formatted in unique and custom ways.

Fortunately, the printing tools included with .NET are powerful, easy to use, anddare I say itfun. All of the text and
graphics tools you use to update the display with .NET's GDI+ library can be leveraged for printing purposes. The
printing commands aren't just similar to those used for screen updates; they're actually the same commands. (Chapter
9 includes many examples that use the graphics tools included with GDI+, so such examples won't be replicated in this
chapter.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.1. Enumerating Printers

Problem

You want to access a list of the printers available to the current Windows user.

Solution

The "printing" section of GDI+, the .NET drawing system, includes a list of the installed printers. Use the following code
to display the names of each:

 For Each printerName As String In _
 System.Drawing.Printing.PrinterSettings.InstalledPrinters
 MsgBox(printerName)
 Next printerName

Discussion

An early beta version of Visual Basic 2005 did include a My. Printers collection, but it was removed before the final
release. But that's okay, because .NET supplies printer information through other .NET classes. The System.Drawing.
Printing.PrinterSettings.InstalledPrinters collection (of strings) lists the printers attached to the local workstation.

If you need to get a list of all printers available on the local network and not just installed on the local workstation, you
can access the information through the Windows Management Instrumentation (WMI) features installed with .NET. By
default, the WMI library is not included in new .NET projects, so you must add a reference to the library yourself. In the
Project Properties window, select the References tab, and use the Add button to add a reference to
System.Management.dll to the project. Now use the following code to list all network printers:

 Dim printerQuery As Management.ManagementObjectSearcher
 Dim queryResults As Management.ManagementObjectCollection
 Dim onePrinter As Management.ManagementObject

 printerQuery = New Management.ManagementObjectSearcher(_
 "SELECT * FROM Win32_Printer")
 queryResults = printerQuery.Get()
 For Each onePrinter In queryResults
 MsgBox(onePrinter!Name)
 Next onePrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.2. Sending "Raw" Data to a Printer

Problem

You need to send unprocessed data directly to a printer or print spooler, without processing by a printer driver.

Solution

Sample code folder: Chapter 11\RawPrinterData

The .NET Framework does not include direct support for this type of "raw" printing, so create your own class that uses
various Win32 API calls.

Discussion

The .NET Framework does not include support for "raw" printing, the ability to send your own custom data directly to
the printer. Some printers, such as barcode and receipt printers, accept data with embedded "escape sequences" that
control the output on the printer. Many of these older printers do not include Windows drivers and can only be used in
raw mode.

To print to these printers from .NET, you must use a DLL commonly used in Visual Basic 6.0 development to send raw
data and perform other low-level operations on printers. The winspool.drv library includes several useful printer-specific
functions, including functions that let you open a channel to the printer directly and send raw data. Because this library
is not a .NET library, you have to coax .NET through the communication process using the various options to the
DllImport attribute that you attach to each library-call definition.

The following code references the relevant public functions in this library and uses them to connect to the printer and
send the requested data:

 Imports System.Runtime.InteropServices

 Public Class RawPrinter
 ' ----- Define the data type that supplies basic
 ' print job information to the spooler.
 <StructLayout(LayoutKind.Sequential, _
 CharSet:=CharSet.Unicode)> _
 Public Structure DOCINFO
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDocName As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pOutputFile As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDataType As String
 End Structure

 ' ----- Define interfaces to the functions supplied
 ' in the DLL.
 <DllImport("winspool.drv", EntryPoint:="OpenPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function OpenPrinter(_
 ByVal printerName As String, ByRef hPrinter As IntPtr, _
 ByVal printerDefaults As Integer) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="ClosePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function ClosePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="StartDocPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function StartDocPrinter(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Shared Function StartDocPrinter(_
 ByVal hPrinter As IntPtr, ByVal level As Integer, _
 ByRef documentInfo As DOCINFO) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="EndDocPrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function EndDocPrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="StartPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function StartPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="EndPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function EndPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="WritePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function WritePrinter(_
 ByVal hPrinter As IntPtr, ByVal buffer As IntPtr, _
 ByVal bufferLength As Integer, _
 ByRef bytesWritten As Integer) As Boolean
 End Function

 Public Shared Function PrintRaw(_
 ByVal printerName As String, _
 ByVal origString As String) As Boolean
 ' ----- Send a string of
raw data to
the printer.
 Dim hPrinter As IntPtr
 Dim spoolData As New DOCINFO
 Dim dataToSend As IntPtr
 Dim dataSize As Integer
 Dim bytesWritten As Integer

 ' ----- The internal format of a .NET String is just
 ' different enough from what the printer expects
 ' that there will be a problem if we send it
 ' directly. Convert it to ANSI format before
 ' sending.
 dataSize = origString.Length()
 dataToSend = Marshal.StringToCoTaskMemAnsi(origString)

 ' ----- Prepare information for the spooler.
 spoolData.pDocName = "My Visual Basic .NET RAW Document"
 spoolData.pDataType = "RAW"

 Try
 ' ----- Open a channel to
the printer or spooler.
 Call OpenPrinter(printerName, hPrinter, 0)

 ' ----- Start a new document and Section 1.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Start a new document and Section 1.1.
 Call StartDocPrinter(hPrinter, 1, spoolData)
 Call StartPagePrinter(hPrinter)

 ' ----- Send the data to the printer.
 Call WritePrinter(hPrinter, dataToSend, _
 dataSize, bytesWritten)

 ' ----- Close everything that we opened.
 EndPagePrinter(hPrinter)
 EndDocPrinter(hPrinter)
 ClosePrinter(hPrinter)
 Catch ex As Exception
 MsgBox("Error occurred: " & ex.ToString)
 Finally
 ' ----- Get rid of the special ANSI version.
 Marshal.FreeCoTaskMem(dataToSend)
 End Try
 End Function
 End Class

This class includes all shared members, so just call them directly without creating an instance. Use the PrintRaw method
by passing it a printer name and raw data to send:

 RawPrinter.PrintRaw("MyPrinter", _
 "Hello, this is a test." & vbCrLf)

You can use this to send data to network printers by supplying a printer path in the format \\SystemName\PrinterName.

See Also

The code in this recipe is based on a Microsoft-supplied Knowledge Base article. On the MSDN web site
(http://msdn.microsoft.com), access article number 322090 for additional details on using the winspool.drv file from
.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.3. Get Details About the Default Printer

Problem

You need to know some of the settings for the default printer installed on the local workstation, such as its name and
page size.

Solution

Create a PrintDocument object, and use it to access the details for the default printer:

 Dim justChecking As New System.Drawing.Printing.PrintDocument
 MsgBox(justChecking.PrinterSettings.PrinterName)

Discussion

In .NET, printer settings exist in the context of a document to print. The PrintDocument object includes a PrinterSettings
member that fully describes the printer target of the document. When you create a new print document, .NET fills in the
settings for the default printer on the local workstation. If you want to examine the settings for another installed
printer, modify the PrinterSettings.PrinterName property to indicate the desired printer:

 With justChecking.PrinterSettings
 .PrinterName = "AnotherPrinter"
 If (.IsValid = True) Then
 ' ----- Look at the other settings.
 End If
 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.4. Creating a Print Preview

Problem

You want to present a preview of a printed document to the user.

Solution

Sample code folder: Chapter 11\PrintPreview

Use the PrintPreviewDialog class to show the print preview through a form that includes some basic presentation features.

Discussion

The following code displays a basic text string on a print preview document:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents SampleDoc As Printing.PrintDocument

 Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Initiate a print preview.
 Dim previewMode As New PrintPreviewDialog

 ' ----- Create the document to preview.
 SampleDoc = New Printing.PrintDocument

 ' ----- Show the preview.
 previewMode.Document = SampleDoc
 previewMode.ShowDialog()
 End Sub

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Generate a fun one-page document.
 e.Graphics.DrawString("Preview is Fun!", _
 New Font("Ariel", 48, FontStyle.Regular), _
 Brushes.Black, 0, 0)
 e.HasMorePages = False
 End Sub
 End Class

Running this sample code (by clicking on a button named Button1) results in the print preview window shown in Figure
11-1.

Figure 11-1. Print preview in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Framework includes a generalized printing system that allows you to use the same code for both the
previewing and the actual printing. All printing is done to a generic graphics surface within a PrintDocument object. .NET
uses this surface to print to your printer's paper and to the artificial paper in the print preview form.

The PrintPreviewDialog class also comes in a Windows Formsbased control variation (see Figure 11-2). You can add this
control and a related PrintDocument control to your form and generate the print preview that way, but it works just the
same. You assign the PrintDocument control to the PrintPreviewDialog's Document property, and then respond to the
PrintDocument's PrintPage event. It's the exact same code that appears in this recipe's solution; only the declarations of the
PrintPreviewDialog and PrintDocument objects have moved from your source code to the form's surface.

Figure 11-2. The control version of the PrintPreviewDialog class

.NET includes two classes that let you preview your own printed documents. The easiest to use is the PrintPreviewDialog
class, as demonstrated in this recipe. It defines a complete form, and it includes some useful controls in the form of a
tool-bar. But it's a one-size-fits-all solution. Altering the toolbar to include your own set of custom features isn't really
an option.

The alternative uses the PrintPreviewControl class, or, more commonly, its equivalent Windows Forms control. By adding
this control to an existing form along with any other toolbar-type controls you wish, you can provide an enhanced print
preview experience custom-designed for your application.

See Also

Recipe 11.6 provides additional examples of using the PrintDocument class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.5. Prompting for Printed Page Settings

Problem

You want the user to indicate some basic paper-related settings for a printed document.

Solution

Use the PageSetupDialog class to prompt the user for these basic settings. The following code displays the Page Setup
dialog for a basic print document:

 Dim pageSetup As New PageSetupDialog
 pageSetup.Document = New Printing.PrintDocument
 pageSetup.
ShowDialog()

Discussion

The PageSetupDialog's ShowDialog() method presents the user with the basic Page Setup dialog shown in Figure 11-3. Its
initial settings are based on the default printer, or the printer you have specified as the active printer.

The PageSetupDialog class encapsulates a complete form that lets the user set the page size, margins, source, and
orientation for an upcoming print job. Normally, you prompt for these settings for a specific document by setting the
Document property to a valid PrintDocument object. However, you can also call this form generically by setting its
PrinterSettings and PageSettings properties to valid PrinterSettings and PageSettings objects, and setting the printer name to your
intended target (if different from the default):

Figure 11-3. The Page Setup dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim pageSetup As New Forms.PageSetupDialog
 pageSetup.PageSettings = New Printing.PageSettings
 pageSetup.
PrinterSettings = New Printing.PrinterSettings

 pageSetup.PrinterSettings.PrinterName = "\\MySystem\MyPrinter"
 pageSetup.ShowDialog()

Once set, you can assign these PrinterSettings and PageSettings objects to the matching properties in your PrintDocument
object:

 ' ----- Assumes a Printing.PrintDocument object named
 ' targetDocument.
 targetDocument.PrinterSettings = pageSetup.PrinterSettings
 targetDocument.DefaultPageSettings = pageSetup.PageSettings

The PageSetupDialog class also comes in a Windows Formsbased control variation (see Figure 11-4). You can add this
control and a related PrintDocument control to your form and display the page settings that way, but it works just the
same. You assign the PrintDocument control to the PageSetupDialog's Document property, and then call the PageSetupDialog's
ShowDialog() method. It's the exact same code that appears in this recipe's solution; only the declarations of the
PageSetupDialog and PrintDocument objects have moved from your source code to the form's surface.

Figure 11-4. The control version of the PageSetupDialog class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.6. Drawing Text and Graphics to a Printer

Problem

You're ready to print. How do you do it?

Solution

Sample code folder: Chapter 11\TextAndGraphics

Respond to the various events of the PrintDocument object, especially the PrintPage event.

Discussion

The following code sends a two-page document to the default printer when the Button1 button is clicked. Each page
includes some simple text and graphics:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents SampleDoc As Printing.PrintDocument
 Private PageNumber As Integer

 Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 SampleDoc = New Printing.PrintDocument
 SampleDoc.Print()
 End Sub

 Private Sub SampleDoc_BeginPrint(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintEventArgs) _
 Handles SampleDoc.BeginPrint
 ' ----- Start the page counting.
 PageNumber = 0
 End Sub

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Keep track of the current page.
 PageNumber += 1
 If (PageNumber >= 2) Then e.HasMorePages = False Else _
 e.HasMorePages = True

 ' ----- Let's use inches, a nice easy measurement system.
 e.Graphics.PageUnit = GraphicsUnit.Inch

 ' ----- Print some text and rectangles.
 e.Graphics.DrawString("This is page " & PageNumber & _
 ".", New Font("Ariel", 48, FontStyle.Regular), _
 Brushes.Black, 2, 2)
 e.Graphics.DrawRectangle(New Pen(Color.Blue, 0.005), _
 3.0!, 3.0!, 3.0!, 0.5!)
 e.Graphics.DrawRectangle(New Pen(Color.Red, 0.005), _
 3.25!, 3.25!, 3.0!, 0.5!)
 End Sub
 End Class

This sample prints two pages similar to the pages in Figure 11-5.

Figure 11-5. Output from the PrintPage event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-5. Output from the PrintPage event

Make sure that you include the WithEvents keyword in your PrintDocument variable's declaration, or you won't be able to
attach an event handler with the Handles keyword.

All printing for a document occurs in the PrintDocument object's PrintPage event. This event includes an e.Graphics property
that exposes a full GDI+ graphics drawing surface for a single document page. Use any of the GDI+ drawing methods
(such as DrawString(), FillPie(), or DrawImage()) or display transformation features (such as translateTransform()) that you need to
organize and print your page.

It's up to you to determine which pages should be included in the print document, and even which page numbers to
use. The PrintDocument object does not know which pages should be included, so you need to do those calculations
yourself, as was done in this recipe with the PageNumber class member. The PrintDocument. PrinterSettings object's PrintRange,
FromPage, and ToPage properties indicate the user-selected pages to include in the output.

Printing will continue until you tell it to stop. The PrintPage event's e.HasMorePages property controls everything. Set it to
true if there are more pages to print after the current page or to False when you are printing the last page.

Besides the PrintPage event, the PrintDocument object includes a few other useful events:

BeginPrint

This event fires before the first triggering of the PrintPage event. You can initialize any settings that apply to the
entire print process here.

EndPrint

This closing event gives you a chance to free any resources you acquired during the print process. This event
always occurs, even if the user aborted the printing early or if an error occurred.

QueryPageSettings

This event allows you to modify the page settings on a page-by-page basis. For instance, you could have all
even pages appear in Portrait orientation while all odd pages print using Landscape orientation.

See Also

Chapter 9 includes examples of GDI+ features you can use on the graphics surface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.7. Determining the Print Destination

Problem

You want to slightly alter the output to the print surface when the user is printing to either the preview window or the
actual printer.

Solution

Access the PrintDocument object's PrintController.IsPreview property during printing to determine if you are in preview mode or
not.

Discussion

The following code prints a "preview only" message at the top of each page when printing in preview mode:

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Print a "preview only" message.
 If (SampleDoc.PrintController.IsPreview = True) Then _
 e.Graphics.DrawString("This is a preview only.", _
 New Font("Ariel", 12, FontStyle.Regular), _
 Brushes.Red, 0, 0)

 ' ----- Add other printing code here.
 End Sub

.NET includes two different ways to determine the print-preview status of the current PrintDocument object. The
PrintDocument.PrintController.IsPreview property is a simple Boolean value that can be read at any time during the printing
process.

During printing, you can also access the e.PrintAction property in the PrintDocument object's QueryPageSettings event to
determine the printer-output target. This property uses the three possible values of the System.Drawing.Printing.PrintAction
enumeration:

PrintToFile

The print document's output is going to a disk-based file.

PrintToPreview

The print document's output is going to a preview window using the PrintPreviewDialog or PrintPreviewControl classes.

PrintToPrinter

The print document's output is going to a physical printer based on the user's printing choices.

The following code checks the PrintAction flag for a PrintDocument object named SampleDoc and takes action based on its
value:

 Private Sub SampleDoc_QueryPageSettings(_
 ByVal sender As Object, ByVal e As _
 System.Drawing.Printing.QueryPageSettingsEventArgs) _
 Handles SampleDoc.QueryPageSettings
 If (e.PrintAction = PrintAction.PrintToPreview) Then
 ' ----- Take preview-specific action here.
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

This property is available only from the QueryPageSettings event. If you want to access its value during the PrintPage event,
you will have to save it in a class-level or global variable during the QueryPageSettings event.

The initial release of Version 2.0 of the .NET Framework (part of Visual Studio 2005)
included a bug that caused the e.PrintAction flag to indicate the wrong value. Specifically, it
never indicates PrintAction.PrintToPreview when in preview mode. Hopefully, by the time you
read this recipe, a service pack or update that resolves this issue will be available for the
.NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.8. Creating Graph Paper

Problem

You've run out of graph paper, but you need a sheet of it right now. You'd like to brush up on your .NET printing skills
at the same time.

Solution

Sample code folder: Chapter 11\GraphPaper

Build a simple application that prints some graph paper for you, using the printing features presented throughout this
chapter and various GDI+ methods.

Discussion

Create a new Windows Forms project, and add the following controls to the form:

A RadioButton control named UseInches. Set its Text property to &Inches and its Checked property to true.

A RadioButton control named UseCentimeters. Set its Text property to &Centimeters.

A TextBox control named LinesPerUnit.

A TextBox control named UnitsWide.

A TextBox control named UnitsHigh.

A Button control named ShowPreview. Set its Text property to Preview.

A Button control named SendToPrinter. Set its Text property to Print.

Add informational labels if desired. The form should look something like the one in Figure 11-6.

Figure 11-6. User interface for the Graph Paper application

Add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following source code to the form's class template:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents GraphPaper As Printing.PrintDocument

 Private Sub ShowPreview_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _

Handles ShowPreview.Click
 ' ----- Preview the
graph paper.
 Dim previewMode As New PrintPreviewDialog

 GraphPaper = New Printing.PrintDocument
 previewMode.Document = GraphPaper
 previewMode.ShowDialog()
 GraphPaper = Nothing
 End Sub

 Private Sub SendToPrinter_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles SendToPrinter.Click
 ' ----- Preview the
graph paper.
 Dim pageSetup As New PageSetupDialog

 GraphPaper = New Printing.PrintDocument
 pageSetup.Document = GraphPaper
 If (pageSetup.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then _
 GraphPaper.Print()
 GraphPaper = Nothing
 End Sub

 Private Sub GraphPaper_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _
 Handles GraphPaper.PrintPage
 ' ----- Printing of the graph paper occurs here.
 Dim unitLines As Single = CSng(LinesPerUnit.Text)
 Dim totalWidth As Single = CSng(UnitsWide.Text)
 Dim totalHeight As Single = CSng(UnitsHigh.Text)
 Dim x1, y1, x2, y2 As Single
 Dim fineBlackPen As New Pen(Color.Black, 0.00001)
 Dim eachLine As Integer
 Dim factor As Single

 ' ----- Set the units.
 If (UseInches.Checked = True) Then
 e.Graphics.PageUnit = GraphicsUnit.Inch
 factor = 1.0!
 Else
 e.Graphics.PageUnit = GraphicsUnit.Millimeter
 factor = 10.0!
 End If

 ' ----- Draw the vertical lines.
 For eachLine = 0 To CInt(totalWidth * unitLines)
 x1 = factor + (eachLine * factor) / unitLines
 y1 = factor
 x2 = x1
 y2 = y1 + (totalHeight * factor)
 If ((eachLine Mod unitLines) = 0) Then
 ' ----- Each unit marker is thicker.
 fineBlackPen.Width = 0.01 * factor
 Else
 fineBlackPen.Width = 0.000001 * factor
 End If
 e.Graphics.DrawLine(fineBlackPen, x1, y1, x2, y2)
 Next eachLine

 ' ----- Draw the horizontal lines.
 For eachLine = 0 To CInt(totalHeight * unitLines)
 x1 = factor
 y1 = factor + (eachLine * factor) / unitLines
 x2 = x1 + (totalWidth * factor)
 y2 = y1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 y2 = y1
 If ((eachLine Mod unitLines) = 0) Then
 ' ----- Each unit marker is thicker.
 fineBlackPen.Width = 0.01 * factor
 Else
 fineBlackPen.Width = 0.000001 * factor
 End If
 e.Graphics.DrawLine(fineBlackPen, x1, y1, x2, y2)
 Next eachLine

 ' ----- Limit output to a single page.
 e.HasMorePages = False
 End Sub
 End Class

This program builds on the recipes presented throughout this chapter. It creates distinct PrintDocument (with WithEvents
specified), PrintPreviewDialog, and PageSetupDialog classes, and it responds to the print document's PrintPage event to perform
the actual printing.

The code simply loops through the specified number of vertical and horizontal lines destined for the output based on the
user's input, and draws lines at each interval position. The e.Graphics.PageUnit property lets the code easily process both
English and metric measurement systems, although the lack of a basic centimeter unit requires the code to combine the
millimeter unit with a scaling factor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Files and File Systems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
One of the core features of any operating system is how it interacts with a file system. MS-DOS, the predecessor of
Microsoft Windows, even alludes to this importance in its name: the "D" in "MS-DOS" stands for "Disk." With this stress
on file systems and files, it's only natural that the .NET Framework includes significant support for manipulating
directories, files, and the contents of files.

The recipes in this chapter introduce many of the file-management and -manipulation features found in .NET and Visual
Basic. For the Visual Basic programmer, much of the focus is on the My.Computer.FileSystem object, which provides a virtual
cornucopia of file-management features.

The Windows file system includes support for security and access limitations, imposed either by the administrator or by
standard users. Even if a recipe in this chapter says, "You can do such and such," it may not be true for users who have
had file-system limits placed on them or their programs. This is especially true of Click-Once-deployed applications,
which can be run in a type of "sandbox" that places harsh limits on file access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.1. Enumerating Drives

Problem

You need access to the list of drives available on the local workstation.

Solution

Sample code folder: Chapter 12\EnumerateDrives

Use the My.Computer.FileSystem.Drives collection to enumerate through the logical drives.

Discussion

If you have a form (Form1) with a ListBox control (ListBox1), the following code adds the name of each available drive to
the list when the form first opens:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 For Each oneDrive As IO.
DriveInfo In _
 My.Computer.
FileSystem.Drives
 ListBox1.Items.Add(oneDrive)
 Next oneDrive
 End Sub

That code adds complete objects of type System.IO.DriveInfo to the list. If you only want to add the drive names, use this
code instead:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 For Each oneDrive As IO.DriveInfo In _
 My.Computer.FileSystem.Drives
 ListBox1.Items.Add(oneDrive.Name)
 Next oneDrive
 End Sub

Each added item appears as X:\, where X is replaced by the drive letter. Figure 12-1 shows the output of this code on a
computer with just a "C" drive.

Figure 12-1. The list of drives on a typical one-drive workstation

The My.Computer.FileSystem.Drives collection provides access to details about each local or network drive attached to the
workstation. Since it is a collection that exposes the IEnumerable interface, you can use it in a For Each statement,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workstation. Since it is a collection that exposes the IEnumerable interface, you can use it in a For Each statement,
accessing each drive object in the collection.

The System.IO.DriveInfo object includes the following useful properties:

AvailableFreeSpace

Returns the number of free bytes available to the current user on the drive. If the administrator has instituted
disk quotas on the drive, this amount may be considerably less than the total available space on the drive.

DriveFormat

Returns a string indicating the file-system type. Common file systems available in Windows include NTFS, FAT,
FAT32, and CDFS.

DriveType

Indicates the type of drive through the System.IO.DriveType enumeration. The most common drive types include
Fixed, Removable, and CDRom.

IsReady

Returns a Boolean that indicates whether the drive is ready for use. Typically, this flag is accessed on CD drives
to determine whether a CD is in the drive and ready to use.

Name

Gets the name of a drive, in X:\ format.

RootDirectory

Returns a System.IO.DirectoryInfo object that refers to the top-most directory of the drive. This property will not be
valid if the DriveType property is set to NoRootDirectory.

TotalFreeSpace

Returns the number of free bytes available on the drive. Unlike the AvailableFreeSpace property, this property is not
limited by any administrator defined quotas.

TotalSize

Returns the total number of used and unused bytes on the drive. This property is not limited by any
administrator-defined quotas.

VolumeLabel

Indicates the volume label currently assigned to the drive. If the drive supports it, you can modify the volume
label by assigning a new String value to this property. Some drives impose length limits on the volume label.

See Also

Recipe 12.8 shows how to iterate directories within a drive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.2. Determining if a Directory Exists

Problem

The user has supplied a directory, and you want to confirm that it is valid before accessing it.

Solution

Sample code folder: Chapter 12\DirectoryExists

Use the My.Computer. FileSystem.DirectoryExists() method to determine whether a directory exists or not. Pass the method a
String containing the directory path to check for validity.

Discussion

To try out this feature, create a new Windows Forms application, and add a TextBox control named TextBox1 and a Button
control named Button1 to the form. Now add the following code to the form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Test for a valid directory.
 If (My.Computer.FileSystem.DirectoryExists(_
 TextBox1.Text)) Then
 MsgBox("The directory already exists.")
 Else
 MsgBox("The directory does not exist, " & _
 "or is part of an invalid path.")
 End If
 End Sub

Figure 12-2 shows this form in use.

Figure 12-2. Testing a directory to see if it exists

The DirectoryExists() method checks for the actual presence of a directory, not just for a valid directory-name format. It
works with three types of drive paths:

Absolute paths referenced from a drive letter, as in C:\WINDOWS.

Absolute paths referenced through UNC syntax, as in \\system\share\directory.

Relative paths referenced from the current directory as understood by the running application, as in
..\AnotherDirectory. You can start the path with the current directory (.) or parent directory (..) indicators, or
with the name of a directory assumed to be found in the current directory. Use the My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the name of a directory assumed to be found in the current directory. Use the My.Computer.
FileSystem.CurrentDirectory property to determine or modify the current directory location.

URL-based directory paths, using the "file://" prefix, cannot be used with this method or with most of the features in
My.Computer.FileSystem. Security restrictions in effect for the current user may prevent access to certain portions of a file
system.

See Also

Recipe 12.10 shows how to determine if a file exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.3. Creating a New Directory

Problem

You need to create a new directory to store user or application data.

Solution

Sample code folder: Chapter 12\NewDirectory

Use the My.Computer.FileSystem. CreateDirectory() method to create the new directory. Pass the method a String containing the
directory path to create.

Discussion

To try out this feature, create a new Windows Forms application, and add a TextBox control named TextBox1 and a Button
control named Button1 to the form. Now add the following code to the form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- The user must supply a directory.
 If (Trim(TextBox1.Text) = "") Then
 MsgBox("Please supply a directory.")
 TextBox1.Focus()
 Exit Sub
 End If

 ' ----- Create the directory requested by the user.
 If (My.Computer.FileSystem.DirectoryExists(_
 TextBox1.Text)) Then
 MsgBox("The directory already exists.")
 Else
 Try
 My.Computer.FileSystem.CreateDirectory(TextBox1.Text)
 MsgBox("Directory created successfully.")
 Catch ex As Exception
 MsgBox("The directory could not be created due " & _
 "to the following error:" & _
 vbCrLf & vbCrLf & ex.Message)
 End Try
 End If
 End Sub

The CreateDirectory() method accepts either absolute or relative paths in drive-letter or UNC format, but not URL-based
"file://" paths. If the directory cannot be created, CreateDirectory() generates an exception.

A variation of this method exists through the System.IO.Directory.CreateDirectory() function. This function returns a
System.IO.DirectoryInfo object for the newly created directory object. It also includes a second overload that accepts
security settings for the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.4. Copying Directories

Problem

You need to copy the contents of an existing directory to a new location, leaving the original directory intact.

Solution

Use the My.Computer.FileSystem.CopyDirectory() method to copy the contents of a directory from one place to another.

Discussion

The basic syntax of the CopyDirectory() method is:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The destDirectory argument is also an absolute or relative path,
although it may not appear hierarchically within the source directory. For example:

 My.Computer.FileSystem.CopyDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

The duplication of the source directory is complete, creating copies of all subordinate files and directories to any depth.

If the destination directory does not exist, CopyDirectory() creates it, including any nonexistent path components between
the specified root and the final directory. If the destination directory is already present, any existing files at the
destination remain intact, and new files are copied in amongst them, resulting in a merged destination directory. If one
of the files to be copied already exists at the destination, CopyDirectory() generates an exception. If you want it to
overwrite any matching files at the destination silently, use the optional third argumentthe overwrite argumentpassing a
value of true:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory, True)

A variation of CopyDirectory() uses a different set of arguments to control the display of on-screen prompts and status
notifications during the copy:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory, _

showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the directory copy to indicate the current status as each file is
copied. (The dialog might not appear for copies that involve a small amount of content.) Any errors that occur
present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the copy takes. This is the default method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

how long the copy takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

The on-screen status display during a copy operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling CopyDirectory() will not receive any notification that
the copy was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the directory copy status dialog when ThrowException is used, the
CopyDirectory() method generates a System.IOException exception, which can be caught by the initiating code. This is
the default method.

See Also

See Recipe 12.19 for details on copying individual files instead of whole directories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.5. Moving Directories

Problem

You need to move a directory from one location to another.

Solution

Use the My.Computer.FileSystem.MoveDirectory() method to relocate an existing directory from one place to another.

Discussion

The basic syntax of the MoveDirectory() method is:

 My.Computer.FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The destDirectory argument is also an absolute or relative path,
although it may not appear hierarchically within the source directory. For example:

 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

If the destination directory does not exist, MoveDirectory() creates it, including any nonexistent path components between
the specified root and the final directory.

If all but the final directory component of the source and destination directories are the same, MoveDirectory() acts like a
simple directory rename operation. The My.Computer.FileSystem.RenameDirectory() method may provide a clearer method of
renaming directories within the same parent directory.

The movement of the source directory is complete, moving all subordinate files and directories to any depth. Also, you
can move a directory between different logical disk drives.

The MoveDirectory() method creates the target directory if it does not yet exist. If the destination directory is already
present, any existing files at the destination remain intact, and new files are moved in amongst them, resulting in a
merged destination directory. If one of the files to be moved already exists at the destination, MoveDirectory() generates
an exception. If you want it to overwrite any matching files at the destination silently, use the optional third
argumentthe overwrite argumentpassing a value of TRue:

 My.Computer.FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory, True)

A variation of MoveDirectory() uses a different set of arguments to control the display of on-screen prompts and status
notifications during the directory move:

 My.Computer.
FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory, _

showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UIOption.AllDialogs

An animated progress dialog appears during the directory move to indicate the current status as each file is
moved. (The dialog might not appear for moves that involve a small amount of content.) Any errors that occur
present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the move takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

The on-screen status display during a move operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling MoveDirectory() will not receive any notification that
the move was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the directory move status dialog when ThrowException is used, the
MoveDirectory() method generates a System.IOException exception, which can be caught by the initiating code. This is
the default method.

See Also

Recipe 12.4 shows how to copy an existing directory instead of moving it. To rename a directory without moving it to
another parent directory, see Recipe 12.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.6. Renaming Directories

Problem

You need to rename a directory, but it's not really a directory move because the renamed directory will stay in the
same parent directory.

Solution

Use the My.Computer. FileSystem.RenameDirectory() method to change the name of an existing directory.

Discussion

The basic syntax of the RenameDirectory() method is:

 My.Computer.FileSystem.RenameDirectory(_
 sourceDirectory, newName)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The newName argument includes only the new name of the final
directory component; you cannot supply an absolute or relative path for this argument. The following statement is
valid:

 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "PlayFiles")

This statement is not:

 ' ----- This statement will fail.
 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

If a directory already exists with the new name, RenameDirectory() generates an exception, even if that target directory is
empty.

Visual Basic includes an intrinsic function, Rename(), which can also rename directories. Its syntax is slightly different
because its second argument accepts either a new non-path name or any valid path:

 ' ----- Both of these statements will work.
 Rename("C:\WorkFiles", "PlayFiles")
 Rename("C:\WorkFiles", "C:\PlayFiles")

The Rename() function also moves a directory to another existing directory tree if requested:

 Rename("C:\Temp\Important\LogFiles\OldLogs", _
 "C:\Temp\Archive\LogFiles")

Generally, the features exposed through the My namespace enhance features already found elsewhere. However, this is
one of those times when the older feature provides a more flexible interface. Still, for consistency in new code, you will
probably want to use RenameDirectory().

See Also

To move a directory to a different parent directory, see Recipe 12.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.7. Parsing File and Directory Paths

Problem

You need to extract a directory name from a full path to a file or get just the filename portion, and you don't want to
mess with all of those backslashes.

Solution

Use the path-parsing methods found in the My.Computer. FileSystem object: CombinePath(), GetName(), and GetParentPath().

Discussion

As a programmer, you spend a lot of time manipulating string data. The .NET Framework has taken on itself some of
the burden involved in specific types of string management. XML is a good example: you can use the XML objects
included in .NET instead of stringing together the various components yourself. .NET provides similar convenience
features for path-string manipulation.

The My namespace includes three methods designed to help you manage path strings. None of them compares the
supplied paths to existing files or directories on the local or network file system; they are purely string-manipulation
methods. Here are the methods:

My.Computer.FileSystem.CombinePath()

The CombinePath() method accepts an absolute path and a relative path to attach to the end of the absolute path.
It returns the combined path with the relative part attached to the end of the absolute part, with any necessary
"\" characters added where needed. The relative part may be a directory name or a filename. For example:

 Dim newPath As String = _
 My.Computer.FileSystem.CombinePath(_
 "C:\temp", "WorkFiles\TodaysWork.txt")
 MsgBox(newPath)
 ' Displays: "C:\temp\WorkFiles\TodaysWork.txt"

If you provide a relative path for the first "absolute" argument, CombinePath() first modifies the argument so that
it indicates a directory within the current directory as understood by the application. For instance, if the current
directory is C:\temp, the statement:

 MsgBox(My.Computer.FileSystem.CombinePath(_
 "part1", "part2")

displays C:\temp\part1\part2.

My.Computer.FileSystem.GetName()

This method extracts the final component of a supplied path and returns it:

 ' ----- Displays: part2
 MsgBox(My.Computer.FileSystem.GetName(_
 "C:\temp\part1\part2"))

You can supply absolute or relative paths to the GetName() function. The result of the function is always the final
path component of whatever string you send.

My.Computer.FileSystem.GetParentPath()

The GetParentPath() method returns everything except the final component of a supplied path. That is, it returns
the directory that contains the final path component. If there is a trailing backslash, it is removed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the directory that contains the final path component. If there is a trailing backslash, it is removed:

 ' ----- Displays: C:\temp\part1
 MsgBox(My.Computer.FileSystem.GetParentPath(_
 "C:\temp\part1\part2"))

You can supply absolute or relative paths to the GetParentPath() function. The result of the function is always the
parent-path component of whatever string you send. If you provide a string that contains only a single relative
component (such as "MyDirectory" or ".."), this function returns a zero-length string.

Although these three methods deal exclusively with strings and not with actual paths, they do perform some minimal
text analysis to ensure you process valid paths. If you attempt to use Unix-style forward slashes ("/") in your paths
instead of the Windows-style backslash ("\"), these methods convert all "/" characters to "\" before generating results.
Also, these methods raise an exception if you supply a URI-based file path (as in file://system/directory/file).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.8. Searching Iteratively Through Directories and
Subdirectories

Problem

You need to recursively traverse a directory tree and identify all subdirectory names.

Solution

Sample code folder: Chapter 12\IterateDirectories

Recursively call the My.Computer.FileSystem. GetDirectories() method to scan each subdirectory and its contents in order.

Discussion

This recipe's sample code fills in a TReeView control with all subdirectories and directory descendants of a specified base
path.

In a new Windows Forms project, add a TextBox control named StartPath, a Button control named ActTraverse, and a TReeView
control named PathTree to Form1. You can add labels and provide meaningful captions if you wish, as is done in Figure 12-
3.

Figure 12-3. Controls for the directory traversal sample

Now add the following source code to the form's class template:

 Private Sub ActTraverse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActTraverse.Click
 ' ----- Make sure the supplied path is valid.
 If (My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (My.Computer.
FileSystem.DirectoryExists(_
 StartPath.Text) = False) Then
 MsgBox("Please supply a valid directory path.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid Path")
 Exit Sub
 End If

 ' ----- Clear any previous tree.
 PathTree.Nodes.Clear()

 ' ----- Call the scanning routine, a recursive routine.
 BuildDirectoryTree(Nothing, StartPath.Text)
 End Sub

 Private Sub BuildDirectoryTree(ByVal fromNode As TreeNode, _
 ByVal basePath As String)
 ' ----- Attach all of the subdirectories found in
 ' basePath to the supplied node. If fromNode is
 ' Nothing, create root entries.
 Dim newDirectory As TreeNode
 Dim justTheSubdirectory As String

 ' ----- Retrieve all directories in this path.
 For Each oneDirectory As String In _
 My.Computer.
FileSystem.GetDirectories(basePath)
 ' ----- Extract just the final directory name.
 justTheSubdirectory = My.Computer.FileSystem.GetName(_
 oneDirectory)

 If (fromNode Is Nothing) Then
 ' ----- Add a top-level subdirectory.
 newDirectory = PathTree.Nodes.Add(_
 justTheSubdirectory)
 Else
 ' ----- Add a subordinate node.
 newDirectory = fromNode.Nodes.Add(_
 justTheSubdirectory)
 End If

 ' ----- Recurse into the subdirectory.
 BuildDirectoryTree(newDirectory, My.Computer.FileSystem. _
 CombinePath(basePath, justTheSubdirectory))
 Next oneDirectory
 End Sub

To use the program, type a valid directory path into the StartPath field, then click ActTraverse to build the subdirectory tree
structure. Figure 12-4 shows this program traversing the Visual Studio installation directory.

Figure 12-4. Iteration of a directory ("Common7" expanded after traversal)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code uses several of the path-manipulation features found in the My.Computer.FileSystem object, including the
GetDirectories() method, which returns a list of subdirectory path strings within the supplied parent directory.

Because you cannot know in advance how deep the nesting is for subdirectories, you can't hardcode a specific limit into
the routine. By using a recursive functiona function that calls itselfyou can effectively nest to any depth required.
BuildDirectoryTree() adds a list of subdirectories in a base parent directory to the TReeView control. When it encounters a
directory, it first adds it to the treeView control and then calls itself, using the just-added subdirectory as the new base
path. That call adds all sub-subdirectories to the just-added subdirectory node. Each of those sub-subdirectories, in
turn, calls BuildDirectoryTree() yet again to attach its own nested directories. And on it goes, until BuildDirectoryTree() reaches
a directory with no child directories. At that point, the innermost call to BuildDirectoryTree() exits, returning to the previous
call. As each level runs out of subdirectories, control is returned up the call stack until the code returns to the initial
ActTraverse_Click event handler.

See Also

For information on parsing file and directory paths, see Recipe 12.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.9. Finding Directories and Files Using Wildcards

Problem

You need to generate a list of all files and subdirectories in a specific parent directory that have names matching a
designated pattern.

Solution

Sample code folder: Chapter 12\UsingWildcards

Use the wildcard features of the My.Computer.FileSystem. GetFiles() and My. Computer.FileSystem.GetDirectories() methods to retrieve
the matching file and directory names.

Discussion

This recipe's sample code fills in a ListBox control with all matching directories and files of a specified base path, based on
a pattern.

Begin a new Windows Forms project, and add two TextBox controls named StartPath and PathPattern, a Button control named
ActMatch, and a ListBox control named MatchResults to Form1. You can add labels and provide meaningful captions if you wish,
as is done in Figure 12-5.

Figure 12-5. Controls for the name-matching sample

Now add the following source code to the form's class template:

 Private Sub ActMatch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActMatch.Click
 ' ----- Make sure the supplied path is valid.
 If (My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (My.Computer.
FileSystem.DirectoryExists(_
 StartPath.Text) = False) Then
 MsgBox("Please supply a valid directory path.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid Path")
 Exit Sub
 End If

 ' ----- Clear any previous items.
 MatchResults.Items.Clear()

 ' ----- First, add in the subdirectories.
 For Each oneItem As String In _
 My.Computer.FileSystem.GetDirectories(_
 StartPath.Text, _
 FileIO.SearchOption.SearchTopLevelOnly, _
 PathPattern.Text)
 MatchResults.Items.Add("[" & _
 My.Computer.FileSystem.GetName(oneItem) & "]")
 Next oneItem

 ' ----- Second, add in the files.
 For Each oneItem As String In _
 My.Computer.FileSystem.GetFiles(StartPath.Text, _
 FileIO.SearchOption.SearchTopLevelOnly, _
 PathPattern.Text)
 MatchResults.Items.Add(_

 My.Computer.FileSystem.GetName(oneItem))
 Next oneItem
 End Sub

To use the program, type a valid directory path into the StartPath field, type a pattern (such as "*.txt") in the PathPattern
field, and then click ActMatch to build the list of matching file and directory names. Figure 12-6 shows this form in use,
listing files matching the "*.log" pattern.

Figure 12-6. Displaying files matching a wildcard pattern

The My.Computer.FileSystem.GetFiles() and parallel Getdirectories() methods normally return a list of all files or directories in a
specified parent path:

 ' ----- Return all files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, both methods allow you to pass one or more "wildcard" pattern strings to limit the return list to just those
items that match the pattern(s):

 ' ----- Return all "LOG" files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows", _
 FileIO.SearchOption.SearchTopLevelOnly, _
 "*.LOG")

The syntax is identical for Getdirectories(), but it returns a list of matching directories instead of files. The second argument
indicates the depth to search for name matches. FileIO.SearchOption.SearchTopLevelOnly returns only matches found directly
within the specified parent path. To include all subdirectories, use the FileIO.SearchOption.SearchAllSubDirectories value instead.

The third wildcard argument accepts any string that includes zero or more wildcard characters. The "*" wildcard
matches zero or more characters at the position where it appears. The " ?" wildcard matches exactly one character at
the position where it appears.

If you need to simultaneously match more than one pattern and return all files (or directories) that match any of the
patterns, include each pattern as a separate argument:

 ' ----- Return all "LOG" and "TXT"
files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows", _
 FileIO.SearchOption.SearchTopLevelOnly, _
 "*.LOG", "*.TXT")

See Also

Recipe 12.8 looks at how to recursively traverse a directory tree and identify all subdirectory names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.10. Determining If a File Exists

Problem

You have a file path supplied by the user, but you need to verify that it is valid before using it.

Solution

Use the My.Computer.FileSystem. FileExists() method to determine whether a path string is a valid file or not:

 If (My.Computer.FileSystem.FileExists(_
 userSuppliedPath) = True) Then
 MsgBox("Invalid file specified.")
 Else
 ' ----- Process file here.
 End If

Discussion

If you wish to validate a directory instead of a file, use the equivalent DirectoryExists() method:

 If (My.Computer.FileSystem.DirectoryExists(_
 userSuppliedPath) = True) Then
 MsgBox("Invalid directory specified.")
 Else
 ' ----- Process directory here.
 End If

See Also

Several of the recipes in this chapter use FileExists() before attempting access to a user-specified path.

Recipe 12.2 discusses the DirectoryExists() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.11. Getting and Setting File Attributes

Problem

You want to view and modify some of the file-level attributes for a specific file.

Solution

Sample code folder: Chapter 12\FileAttributes

Use the Attributes property of a file's System.IO.FileInfo object to interact with the attributes defined for that file. You can get
a FileInfo object for a specific file through the My.Computer. FileSystem. GetFileInfo() method.

Discussion

This recipe's sample code lets you view and update the Read Only and Hidden attributes for any specific file.

Begin a new Windows Forms project, and add a TextBox control named FilePath, two Button controls named ActGet and ActSet,
and two CheckBox controls named FileReadOnly and FileHidden to Form1. You can add labels and provide meaningful captions if
you wish, as is done in Figure 12-7.

Figure 12-7. Controls for the attribute management sample

Set the Enabled properties of the FileReadOnly, FileHidden, and ActSet controls to False. Now add the following source code to
the form's class template:

 Private Sub ActGet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGet.Click
 ' ----- Locate the file and its attributes.
 If (My.Computer.
FileSystem.FileExists(FilePath.Text) _
 = False) Then
 MsgBox("Please supply a valid file.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Exit Sub
 End If

 ' ----- Get the file's attributes.
 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(FilePath.Text)
 FileReadOnly.Checked = fileDetail.IsReadOnly
 FileHidden.Checked = CBool(fileDetail.Attributes _
 And IO.FileAttributes.Hidden)
 FileReadOnly.Enabled = True
 FileHidden.Enabled = True
 ActSet.Enabled = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ActSet.Enabled = True
 End Sub

 Private Sub ActSet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActSet.Click
 ' ----- Modify the settings of the active file.
 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(FilePath.Text)

 ' ----- Set the read-only flag the easy way.
 fileDetail.IsReadOnly = FileReadOnly.Checked

 ' ----- Set the hidden flag.
 If (FileHidden.Checked = True) Then
 fileDetail.Attributes = fileDetail.Attributes _
 Or IO.FileAttributes.Hidden
 Else
 fileDetail.Attributes = fileDetail.Attributes _
 And Not IO.FileAttributes.Hidden
 End If

 ' ----- Finished.
 MsgBox("Attributes updated.", MsgBoxStyle.OkOnly _
 Or MsgBoxStyle.Information, "Attributes")
 End Sub

 Private Sub FilePath_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FilePath.TextChanged
 ' ----- Clear the previous file's attributes.
 If (ActSet.Enabled = True) Then
 ActSet.Enabled = False
 FileReadOnly.Enabled = False
 FileHidden.Enabled = False
 FileReadOnly.Checked = False
 FileHidden.Checked = False
 End If
 End Sub

To use the program, type a valid directory path into the FilePath field, and click the ActGet button. The FileReadOnly and
FileHidden fields will update to show the cur-rent attributes for the specified file. Modify these two fields as needed, and
then click the ActSet button to modify the file attributes.

The System.IO.FileInfo object abstracts access to all information about a file. Once you have the path to the file, use the
following statement to retrieve the FileInfo object:

 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(theFilePath)

The FileInfo object exposes an Attributes property that acts as a bit field for the System.IO.FileAttributes enumeration. (Bit fields
use the bitwise operators, including And, Or, and Not, to store multiple enumeration values in a single integer variable.)
The FileAttributes enumeration includes several members, but here are the four most commonly used when working with
files and directories:

FileAttributes.Archive

FileAttributes.Directory

FileAttributes.Hidden

FileAttributes.ReadOnly

This chapter's sample code examines the bits of the FileInfo.Attributes property to determine whether the file is hidden or
not:

 FileHidden.Checked = CBool(fileDetail.Attributes _
 And IO.FileAttributes.Hidden)

Since the FileInfo object also exposes a simple IsReadOnly property, the code uses that to set the Read Only flag, although

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since the FileInfo object also exposes a simple IsReadOnly property, the code uses that to set the Read Only flag, although
it could have examined the Attributes property for the FileAttributes.ReadOnly bit instead.

Later, those same IsReadOnly and Attributes properties are set with updated values to modify the attributes assigned to the
actual file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.12. Accessing Special User and Windows Directories

Problem

You would like to access some of the Windows-defined special directories, such as My Documents, but you're not sure
where they are.

Solution

Fortunately, you don't have to know where they really are. You need to access only the members of the My.Computer.
FileSystem. SpecialDirectories object.

Discussion

Microsoft Windows uses several " special" directories to store user and system files. The locations of these directories
are generally consistent across workstations of a certain platform (such as Windows XP), but users and administrators
can alter some of the paths, and some of the paths differ between operating system releases. (Windows Vista will make
several location changes to these paths.)

The My.Computer.FileSystem.SpecialDirectories object includes these member properties. Directory components appearing in
angle brackets, such as <user>, should be substituted by the relevant values, such as the username in the case of
<user>. The properties listed in the SpecialDirectories object include:

AllUsersApplicationData

The shared application data-storage directory used by all authorized users who log in to the workstation. In
Windows XP, this directory is typically found at C:\Documents and Settings\All Users\Application Data.

CurrentUserApplicationData

The data-storage directory assigned to a specific authorized user and to the currently running .NET application
on the workstation. This directory is considered part of the active user's "roaming" profile. In Windows XP, this
directory is typically found at C:\Documents and Settings\<user>\Application Data\<company>\<application>\
<version>.

Desktop

The full path to the current authorized user's Desktop directory, which defines the items appearing on the
Windows desktop. In Windows XP, this directory is typically found at C:\Documents and Settings\
<user>\Desktop.

MyDocuments

The My Documents directory, used for general file storage by the current authorized user. In Windows XP, this
directory is typically found at C:\Documents and Settings\<user>\My Documents.

MyMusic

The My Music directory, used to store standard and digital-rights-protected audio data files for the current
authorized user. In Windows XP, this directory is typically found at C:\Documents and Settings\<user>\My
Documents\My Music.

MyPictures

The My Pictures directory, used to store digital images and video content for the current authorized user. In
Windows XP, this directory is typically found at C:\Documents and Settings\<user>\My Documents\My Pictures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProgramFiles

The default software product installation directory used by all authorized users on the workstation. In Windows
XP, this directory is typically found at C:\Program Files.

Programs

The Programs directory for the current authorized user's Start menu. In Windows XP, this directory is typically
found at C:\Documents and Settings\<user>\Start Menu\Programs.

Temp

The temporary directory used by the current authorized user to store short-lived caching and logging data files.
In Windows XP, this directory is typically found at C:\Documents and Settings\<user>\Local Settings\Temp.

There are several special Windows directoriesdirectories defined both for the current user and for shared use among all
usersthat do not have equivalent properties listed in the SpecialDirectories object. The System.Environment object provides
access to some of these special directories not made available through the My.Computer.FileSystem.SpecialDirectories object.
For instance, to access the System directory on the local workstation (defined on my workstation as
C:\WINDOWS\System32), use the following property:

 System.Environment.SystemDirectory

You can access other special directory locations with the System.Environment.GetFolderPath() method, passing it one of the
System.Environment. SpecialFolder enumeration values:

 ' ----- Display the user's "Favorites" directory.
 MsgBox(System.Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites))

The System.Environment.SpecialFolder enumeration includes the members listed below. We have listed the typical location for
each member as found on a Windows XP Professional workstation. Directory components appearing in angle brackets,
such as <user>, should be substituted by the relevant values, such as the username in the case of <user>.

SpecialFolder.ApplicationData

A directory containing roaming application data for the current user.

C:\Documents and Settings\<user>\Application Data

SpecialFolder.CommonApplicationData

A directory containing shared application data for all users on the local workstation.

C:\Documents and Settings\All Users\Application Data

SpecialFolder.CommonProgramFiles

A directory containing shared files used by multiple installed applications.

C:\Program Files\Common Files

SpecialFolder.Cookies

A directory containing Internet-based cookies for the current user.

C:\Documents and Settings\<user>\Cookies

SpecialFolder.Desktop

The logical location of the Desktop directory, which is often the same as the physical location, but not always.

C:\Documents and Settings\<user>\Desktop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\Documents and Settings\<user>\Desktop

SpecialFolder.DesktopDirectory

The physical location of the Desktop directory, which is often the same as the logical location, but not always.

C:\Documents and Settings\<user>\Desktop

SpecialFolder.Favorites

A directory containing shortcuts to the user's favorite Internet-based and local items.

C:\Documents and Settings\<user>\Favorites

SpecialFolder.History

A directory containing a set of web-site shortcuts for recently visited locations.

C:\Documents and Settings\<user>\Local Settings\History

SpecialFolder.InternetCache

A directory containing content recently accessed over the Internet.

C:\Documents and Settings\<user>\Local Settings\Temporary Internet Files

SpecialFolder.LocalApplicationData

A directory containing nonroaming application data for the current user.

C:\Documents and Settings\<user>\Local Settings\Application Data

SpecialFolder.MyComputer

The directory representing the "My Computer" feature on the Windows desktop. On most systems this returns a
null or empty string because My Computer is an artificial view, not a true directory.

SpecialFolder.MyDocuments

The My Documents directory for the current user.

C:\Documents and Settings\<user>\My Documents

SpecialFolder.MyMusic

The audio media directory for the current user.

C:\Documents and Settings\<user>\My Documents\My Music

SpecialFolder.MyPictures

The image and video media directory for the current user.

C:\Documents and Settings\<user>\My Documents\My Pictures

SpecialFolder.Personal

The personal document directory for the current user. This is typically the My Documents directory.

C:\Documents and Settings\<user>\My Documents

SpecialFolder.ProgramFiles

The shared installation directory for applications on the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The shared installation directory for applications on the local workstation.

C:\Program Files

SpecialFolder.Programs

The current user's "Programs" area within the Start menu.

C:\Documents and Settings\<user>\Start Menu\Programs

SpecialFolder.Recent

A directory of shortcuts to files recently used by the current user.

C:\Documents and Settings\<user>\Recent

SpecialFolder.SendTo

A directory of "Send To" target shortcuts for the current user.

C:\Documents and Settings\<user>\SendTo

SpecialFolder.StartMenu

The top-level Start menu directory for the current user.

C:\Documents and Settings\<user>\Start Menu

SpecialFolder.Startup

The current user's "Startup" area within the Start menu.

C:\Documents and Settings\<user>\Start Menu\Programs\Startup

SpecialFolder.System

The System directory that stores the primary Windows system components.

C:\WINDOWS\System32

SpecialFolder.Templates

A directory of new-file templates used when creating new files through Windows Explorer. This is not the same
as the directory used to store Microsoft Word templates or other similar application-specific templates.

C:\Documents and Settings\<user>\Templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.13. Determining the Space on a Drive

Problem

You want to report the amount of space available on a drive, including total and remaining space.

Solution

Sample code folder: Chapter 12\DriveSpace

The My namespace provides access to objects representing the logical drives available on the local workstation.
My.Computer. FileSystem.Drives exposes a collection of all logical drives, with each drive stored as a System.IO. DriveInfo object.
To retrieve a specific drive by name, use the My.Computer.FileSystem. GetDriveInfo() method, and pass it the name of a logical
drive, such as C:\. The returned DriveInfo object includes properties that report the amount of space on the drive.

Discussion

Create an application that reports the amount of total and free space for any logical drive. Start a new Windows Forms
application, and add a ComboBox control named LogicalDrive and three labels for the space totals (FreeSpace, QuotaSpace, and
TotalSpace). Set the DropDownStyle property of LogicalDrive to DropDownList, and set the Text properties of the three labels to
N/A. You can add some additional field labels if you want, resulting in a form like the one in Figure 12-8.

Figure 12-8. Controls for the drive space sample

Add the following source code to the form's class template:

 Private Const NotADrive As String = "<Not Selected>"

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Fill in the list of logical drives.
 LogicalDrive.Items.Add(NotADrive)
 LogicalDrive.SelectedIndex = 0
 For Each oneDrive As IO.DriveInfo In _
 My.Computer.
FileSystem.Drives
 LogicalDrive.Items.Add(oneDrive.Name)
 Next oneDrive
 End Sub

 Private Sub LogicalDrive_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles LogicalDrive.SelectedIndexChanged
 ' ----- Fill in the drive details.
 If (LogicalDrive.Text = NotADrive) Then
 ' ----- <Not Selected>
 FreeSpace.Text = "N/A"
 QuotaSpace.Text = "N/A"
 TotalSpace.Text = "N/A"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TotalSpace.Text = "N/A"
 Else
 ' ----- A logical drive is selected.
 Dim oneDrive As IO.DriveInfo = _
 My.Computer.FileSystem.GetDriveInfo(_
 LogicalDrive.Text)
 FreeSpace.Text = Format(oneDrive.TotalFreeSpace, _
 "#,##0") & " bytes"
 QuotaSpace.Text = Format(oneDrive.AvailableFreeSpace, _
 "#,##0") & " bytes"
 TotalSpace.Text = Format(oneDrive.TotalSize, _
 "#,##0") & " bytes"
 End If
 End Sub

To use the program, select a valid logical drive from the LogicalDrive drop-down list, and take careful note of the exact
byte counts displayed. Figure 12-9 shows this form in use.

Figure 12-9. Displaying the total and free space on a local hard drive

The DriveInfo object includes three properties that deal with space on a drive:

AvailableFreeSpace

The amount of free space, in bytes, available to the current user on the logical drive, expressed as a Long value.
The system administrator can impose disk-space quotas for each authorized user on each drive. This property
returns only the amount of free space remaining in the current user's quota. It excludes any additional disk
space that falls outside the user's quota.

TotalFreeSpace

The amount of total free space, in bytes, on the logical drive, expressed as a Long value. This property ignores
all disk quotas and returns the full free space on the drive.

TotalSize

The total space, in bytes, on the logical drive, whether used or not, expressed as a Long value. This property
ignores all disk quotas and returns the full space on the drive.

See Also

Recipe 12.1 discusses how to list all the drives on the local system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.14. Browsing for a Directory

Problem

The user needs to specify a directory on the file system in which files should be stored or accessed, and you want it to
be done graphically, not just through a textentry field.

Solution

Sample code folder: Chapter 12\DirectoryLocator

Use a FolderBrowserDialog control to display the standard Windows directory-browsing tool.

Discussion

Create a new Windows Forms application, and add a TextBox control named TargetDirectory, a Button control named
LookForDirectory, and a FolderBrowserDialog control named DirectoryBrowser. (You'll find the FolderBrowserDialog control in the
Dialogs area of the Visual Studio Toolbox.) Change the Text property of the button to Browse…. Adding an informative
label gives you the form in Figure 12-10.

Add the following source code to the form's class template:

 Private Sub LookForDirectory_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles LookForDirectory.Click
 ' ----- Locate a directory graphically.
 DirectoryBrowser.Description = _

Figure 12-10. Controls for the directory-browsing sample

 "Which directory do you want to use?"
 If (DirectoryBrowser.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 TargetDirectory.Text = DirectoryBrowser.SelectedPath
 End If
 End Sub

To use the program, click on the Browse button, and use the resulting dialog (shown in Figure 12-11) to select a
directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-11. The standard directory browser dialog

The FolderBrowserDialog class represents one of several system-supplied dialogs made available to your Visual Basic
applications. Other related dialogs let you browse for files (OpenFileDialog and SaveFileDialog), select fonts (FontDialog), and
choose colors (ColorDialog). There are also several printer-specific dialogs. (See Chapter 11 for related recipes.)

Despite their different purposes, all the dialog controls are used in a similar way:

1. Add the dialog control to your form, or create an instance of it as a variable.

2. Set any relevant properties, as is done with the Description property in this recipe.

3. Display the dialog to the user with the ShowDialog() method.

4. If the user makes a selection and clicks the OK button, the dialog returns System.Windows.Forms.DialogResult.OK. If
the user cancels, the dialog returns System.Windows.Forms.DialogResult.Cancel.

5. Examine the properties of the control for user-modified settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.15. Getting File Information

Problem

You need to access a lot of information about a file, such as its size, its last modification time, and its attributes.

Solution

Sample code folder: Chapter 12\FileInformation

Use the My.Computer. FileSystem. GetFileInfo() method to retrieve many basic details about a specific file.

Discussion

The following method displays the size, relevant dates, and attributes of a file path:

 Public Sub ShowFileDetails(ByVal filePath As String)
 ' ----- Given a file path, show some of its details.
 Dim fileDetail As IO.FileInfo

 ' ----- First, make sure the file exists.
 If (My.Computer.FileSystem.FileExists(filePath) _
 = False) Then

 MsgBox("The file '" & filePath & "' does not exist.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Exit Sub
 End If

 ' ----- Retrieve the file details.
 fileDetail = My.Computer.FileSystem.GetFileInfo(filePath)

 ' ----- Show some information.
 MsgBox("Details for '" & filePath & "':" & _
 vbCrLf & vbCrLf & _
 "Attributes: " &
fileDetail.Attributes.ToString() & _
 vbCrLf & _
 "Created: " & fileDetail.CreationTime & vbCrLf & _
 "Accessed: " & fileDetail.LastAccessTime & vbCrLf & _
 "Modified: " & fileDetail.LastWriteTime & vbCrLf & _
 "Size: " & fileDetail.Length & " byte(s)", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Information, _
 "File Details")
 End Sub

Figure 12-12 shows some typical output for this block of code.

Figure 12-12. File attributes for the Notepad.exe program file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The System.IO. FileInfo object exposes properties that document various features of a file. It also includes methods that let
you create, modify, and delete the file, and open the file to examine its contents. Features such as these are discussed
in other recipes found throughout this chapter.

A similar detail-laden object exists for directories. Once you have a directory path, use the My.Computer.
FileSystem.GetDirectoryInfo() method, which returns an object of type System.IO.DirectoryInfo.

Some of the properties of the FileInfo object, such as the modification (last write) time, appear in the Details view of the
Windows File Explorer. One part of that view that isn't directly available through FileInfo is the Type column. This displays
a short name for the type of file based on its extension; for example, the .bmp extension equates to a file type of
"Bitmap Image." To get this type name, you need to access values in the system registry. The sample code in this
discussion uses the registry features found in the My namespace without much explanation. For additional information
on using these registry features, see Recipe 14.20.

The registry consists of several "hives," one of which is HKEY_CLASSES_ROOT. This hive contains a key for each file
extension recognized by Microsoft Windows. The "default value" for that key refers to another key in the same hive, and
the default value for that second key will finally give us the name we seek.

The following function extracts the file-type name from the registry. The argument passed must be the valid name of an
existing file:

 Public Function GetFileTypeName(_
 ByVal filepath As String) As String
 ' ----- Given a file path, obtain its file type.
 Dim fileDetail As IO.FileInfo
 Dim oneKey As Microsoft.Win32.RegistryKey
 Dim valueText As String

 ' ----- First, make sure the file exists.
 If (My.Computer.
FileSystem.FileExists(filepath) _
 = False) Then
 MsgBox("The file '" & filepath & "' does not exist.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Return ""
 End If

 ' ----- Retrieve the file details.
 fileDetail = My.Computer.FileSystem.GetFileInfo(filepath)
 If (fileDetail.Extension Is Nothing) Then Return ""
 If (fileDetail.Extension = "") Then Return ""

 ' ----- Access the extension's entry in the registry.
 oneKey = My.Computer.Registry.ClassesRoot.OpenSubKey(_
 fileDetail.Extension)
 valueText = oneKey.GetValue("")
 oneKey.Close()
 If (valueText Is Nothing) Then Return ""
 If (valueText = "") Then Return ""

 ' ----- Access the extension type's entry in the registry.
 oneKey = My.Computer.Registry.ClassesRoot.OpenSubKey(_
 valueText)
 valueText = oneKey.GetValue("")
 oneKey.Close()
 If (valueText Is Nothing) Then valueText = ""
 Return valueText
 End Function

See Also

Recipe 12.10 shows how to determine if a specified file exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.16. Using File-Access Methods

Problem

It seems that there are a million ways to open and edit a file using Visual Basic, and you are unsure of the differences.

Solution

How you edit a file depends on how you first open it. Visual Basic 2005 has some traditional file-editing features that
are variations of what it had back in Version 1.0 of the language, and you can use some of the file-editing features
provided with the .NET Framework (such as streams). Also, many objects provide options to immediately "serialize"
their content to a file in an XML or similar format. This recipe documents some of the common file-editing choices
available to you in Visual Basic. It does not provide full source code using each possible option. Instead, it provides an
overview of the options available to you.

Discussion

Visual Basic supports two primary methods of file access:handle-based and streambased.

Handle-based file access

Visual Basic traditionally supports a handle-based method of file management. Each file opened for input or output has
a generated numeric ID that is always used to reference that file. The Visual Basic FreeFile() method generates this
numeric handle, and the handle is assigned before a file is ever accessed. To open an existing file, you first obtain an ID
and then open the file:

 Dim fileHandle As Integer =
FreeFile()
 FileOpen(fileHandle, "C:\DataFile.dat", OpenMode.Input, _
 OpenAccess.Read, OpenShare.Shared)

There are several other functions in Visual Basic that deal with file manipulation, and all of them use the file handle
returned from FreeFile(). You must continue to use the handle for all interactions with the opened file until you specifically
close the file.

Care must be taken when using FreeFile(). Until you actually use a file handle to open a file, it is considered unused, and
FreeFile() will keep returning it again and again because it knows it to be unused. Consider the following code:

 Dim fileHandleIn As Integer = FreeFile()
 Dim fileHandleOut As Integer = FreeFile()
 FileOpen(fileHandleIn, inputFilePath, OpenMode.Input)
 FileOpen(fileHandleOut, outputFilePath, OpenMode.Output)

The problem with this code is that fileHandleIn and fileHandleOut probably contain the same numeric handle. That handle
number will get used by the first FileOpen() call, leaving the second one to fail. The following code should be used
instead:

 Dim fileHandleIn As Integer = FreeFile()
 FileOpen(fileHandleIn, inputFilePath, OpenMode.Input)
 Dim fileHandleOut As Integer = FreeFile()
 FileOpen(fileHandleOut, outputFilePath, OpenMode.Output)

Handle-based files are opened in one of three modes:

Sequential

Sequential files are typically text files, and you add data to or retrieve data from these files in the form of text
strings and whole text lines. The FileOpen() statement includes three variations of this mode through the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strings and whole text lines. The FileOpen() statement includes three variations of this mode through the
OpenMode.Input, OpenMode. Output, and OpenMode.Append arguments, all of which are fairly self-describing. To open a
file so that you can append additional data, use this statement:

 FileOpen(fileHandle, fileName, OpenMode.Append)

If the file that you open for Output or Append does not yet exist, FileOpen() creates it for you, assuming that the
supplied path is valid.

Additional variations of the FileOpen() method include additional arguments beyond the three shown above. A
fourth argument to FileOpen(), the OpenAccess argument, indicates your read/write interaction with the file. A fifth
argument, OpenShare, declares whether and how you will block other users from the file while you are using it.

Once the file is open, you have a few choices as to the format of the data you will place in the file. Most of the
reading and writing features for sequential files appear in pairs. The Write() and WriteLine() methods send
formatted data to the output in a way that is very easy to read back in later. Each value is specifically prepared
for output. For instance, date values are surrounded with # characters, and use a consistent format. When you
are ready to read such data, the Input() method correctly "unformats" the formatted data created using Write()
and WriteLine().

For more free-form management of data, use the Print() and PrintLine() functions to output character data. Later,
you can use the InputString() or LineInput() functions to retrieve sections of a line or entire text lines.

If you need to line up data columns when outputting data with Print() and PrintLine(), you can use the FileWidth(),
SPC(), and TAB() features that Visual Basic includes to help manage such formatted output.

Binary

Binary files generally store raw binary data, such as image bitmaps, and interaction with these files often occurs
through individual bytes or blocks of bytes. The OpenMode.Binary mode marks an open file as binary.

Binary data is generally written using the FilePut() and FilePutObject() methods and later read back in using the
FileGet() and FileGetObject() methods. There is no concept of "lines" in a binary file; data is written out in chunks,
with nothing to delimit the chunks unless you specifically output a delimiter.

Random

Random file access involves records and structures. Positioning within random files is generally done via record
number, not by byte or character position. The OpenMode.Random mode marks an open file as random. When
using random files, you can add a sixth argument to the FileOpen() method that indicates the common length of
every record.

As with binary files, random files use the FilePut() and FilePutObject() methods for output and the FileGet() and
FileGetObject() methods for input. Each object or structure written out to the file is considered to be a unit
consistent with the specified record length (if used). When you later read the contents of a random file back in,
you must use the same record length to ensure a match between the output and input data boundaries.

Random files allow specific records or sections of the file to be locked and unlocked using the Lock() and Unlock()
methods. You can determine your current position in the file (by record number) using the Loc() function.

There are a few functions that work with all file modes. The FileClose() and Reset() methods let you close a single file and
all open files, respectively. The EOF() function indicates whether you have reached the end of a file that you are
scanning, although it isn't always reliable with random files. Finally, the Seek() function and Seek() method (two features
with the same name) let you determine and move the current position marker within an open file.

Stream-based file access

While Visual Basic continues to support handle-based file access for reasons of compatibility, streams are the preferred
file access method in .NET. Streams are defined through the System.IO.Stream class and through several derived classes
that enhance that base class (such as providing a stream focused on network data).

Streams provide three basic operations: Read() (and its variations), Write() (with variations), and Seek(). Not all streams
support these basic features. You can use the CanRead(), CanWrite(), and CanSeek() methods to determine their availability.

Streams are useful because they let you manage a file at a granular level, through the individual bytes. However, it
isn't always convenient to constantly convert non-Byte data back and forth to Bytes. To make file reads and writes easier,
the System.IO namespace also includes stream readers and stream writers as separate classes. These distinct classes get
wrapped around a stream and provide start-to-finish reading or writing of a stream's content. The StreamReader class
wraps a Stream object, providing simplified reading of the stream's content. For instance, the ReadLine() method returns the
next line in the stream as a string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

next line in the stream as a string:

 Dim oneLine As String
 Dim scanFile As New IO.StreamReader("c:\data.txt")
 Do While Not scanFile.EndOfStream
 oneLine = scanFile.ReadLine()
 ' ----- Process the line contents here.
 Loop
 scanFile.Close()

The StreamWriter class provides the opposite features, allowing you to write strings and other basic data types to a
stream.

Related stream readers and writers include the StringReader and StringWriter pair (identical to the StreamReader and
StreamWriter classes, but using a String as the underlying storage content instead of a Stream) and the BinaryReader and
BinaryWriter classes, which provide a simplified method of reading and writing binary and core data-type content.

Some of the objects and features in the My.Computer. FileSystem object provide access to file streams. My.Computer.
FileSystem.OpenTextFileReader() opens a StreamReader based on an existing file path. You can also create a new file stream
using the System.IO.File.Create() method or other similar methods.

The My namespace includes a TextFieldParser object that provides simplified access to files with columnar data in either
delimited columns (such as tab-delimited fields) or fixed-width fields.

For those objects that support serialization of their content to XML files, the basic transport between the object and the
destination file is the Stream. Streams also appear when data needs to pass through some sort of conversion on its way to
another destination. The cryptography features in the System.Security.Cryptography namespace frequently use streams
during encryption and hashing operations.

See Also

Other recipes in this chapter provide specific examples using the file-processing features available to Visual Basic. Most
of the recipes focus on stream-based file access because that is the preferred file-interaction method in .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.17. Reading and Writing Files as Strings

Problem

You have a rather large string that you need to be able to put into a file and get back later without too much hassle.

Solution

Sample code folder: Chapter 12\SimpleEditor

Use the My.Computer.FileSystem. WriteAllText() and related ReadAllText() methods to quickly get text data into and out of a file.

Discussion

This recipe's sample code creates a simple Notepad-like text editor. Create a new Windows Forms application, and add
two TextBox controls named FilePath and Editor and two Button controls named ActOpen and ActSave to the form. Set the Editor
control's Multiline property to TRue and its ScrollBars property to Both. Add some informational labels, and arrange the
controls to look like Figure 12-13.

Figure 12-13. Controls for the text editor sample

Add the following source code to the form's class template:

 Private Sub ActOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActOpen.Click
 ' ----- Open an existing file and load its text.
 Try
 Editor.Text = My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Editor.Text = My.Computer.
FileSystem.ReadAllText(FilePath.Text)
 Catch ex As Exception
 MsgBox("Could not open the file due to the " & _
 "following error:" & vbCrLf & vbCrLf & ex.Message)
 End Try
 End Sub

 Private Sub ActSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActSave.Click
 ' ----- Save the edited data.
 If (My.Computer.FileSystem.FileExists(FilePath.Text) = _
 True) Then
 If (MsgBox("File exists. Overwrite?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Overwrite") <> MsgBoxResult.Yes) Then Exit Sub
 End If

 ' ----- Save the data.
 Try
 My.Computer.FileSystem.WriteAllText(FilePath.Text, _
 Editor.Text, False)
 Catch ex As Exception
 MsgBox("Could not save the file due to the " & _
 "following error:" & vbCrLf & vbCrLf & ex.Message)
 End Try
 End Sub

To use the program, type in a file path, and click the Open button. Make changes in the Editor field, and then click the
Save button to store those changes in the file.

The My.Computer. FileSystem.ReadAllBytes() and WriteAllBytes() methods provide parallel features for byte arrays.

See Also

Recipe 12.18 discusses the processing of binary files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.18. Reading and Writing Binary Files

Problem

You need to read or write binary content in a file.

Solution

If you have a block of bytes that you want to push out to a file quickly, use the My.Computer.FileSystem.WriteAllBytes()
method:

 Dim fileData() As Byte
 ' ----- Fill in the array with relevant data, and then…
 My.Computer.FileSystem.WriteAllBytes(_
 outputFilePath, fileData, False)

The third argument indicates whether the new data should be appended to the end of any existing file data. If you set it
to False, any existing data is replaced by the new data.

To get the binary data back into a Byte array from a file, use the related ReadAllBytes() method:

 Dim fileData() As Byte = _
 My.Computer.FileSystem.ReadAllBytes(inputFilePath)

Discussion

If you need to do more than just read and write the file en masse with a Byte array, consider using the BinaryReader and
BinaryWriter classes. These classes wrap a basic Stream object (such as a FileStream), providing convenient methods to read
and write content.

The BinaryWriter object provides a single massively overridden Write() method that lets you save most of the core Visual
Basic data-type values to a stream. This code opens/creates a file and writes out some basic values:

 Dim value1 As Integer = 5
 Dim value2 As Boolean = True
 Dim value3 As Char = "A"c
 Dim outStream As New IO.
FileStream(_
 "c:\data.dat", IO.FileMode.OpenOrCreate)
 Dim outFile As New IO.BinaryWriter(outStream)

 outFile.Write(value1)
 outFile.Write(value2)
 outFile.Write(value3)
 outFile.Close()
 outStream.Close()

Read back this data using a BinaryReader:

 Dim value1 As Integer
 Dim value2 As Boolean
 Dim value3 As Char
 Dim inStream As New IO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim inStream As New IO.
FileStream(_
 "c:\data.dat", IO.FileMode.Open, IO.FileAccess.Read)
 Dim inFile As New IO.BinaryReader(inStream)

 value1 = inFile.ReadInt32()
 value2 = inFile.ReadBoolean()
 value3 = inFile.ReadChar()
 inFile.Close()
 inStream.Close()

If you need an even higher level of control, the FileStream object (as derived from the Stream class) also exposes ReadByte()
and WriteByte() methods (and other related methods) that let you read and write individual bytes at any position in the
file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.19. Copying or Moving a File

Problem

You need to copy or move an existing file from one location to another.

Solution

Use the My.Computer.FileSystem. MoveFile() method to move a file from its current location to another place in the file system.
Use the related CopyFile() method to copy the file instead of moving it. The basic syntax is:

 ' ---- To move the file.
 My.Computer.FileSystem.MoveFile(_
 sourceFile, destFile[, overwriteFlag])

 ' ---- To copy the file.
 My.Computer.FileSystem.CopyFile(_
 sourceFile, destFile[, overwriteFlag])

Because destFile is a filename and not a directory name, you can effectively rename the file at the same time you move
or copy it. When moving the file, you can keep the file in the same directory and just give it a new name, although
using the RenameFile() method would be clearer. The optional overwriteFlag is a Boolean that indicates whether any existing
file at the target should be replaced silently by the source file. It defaults to False.

Discussion

A variation of both MoveFile() and CopyFile() uses a different set of arguments to control the display of on-screen prompts
and status notifications during the move or copy:

 ' ----- MoveFile() syntax.
 My.Computer.
FileSystem.MoveFile(_
 sourceFile, destFile, _
 showUI [, onUserCancel])

 ' ----- CopyFile() syntax.
 My.Computer.FileSystem.CopyFile(_
 sourceFile, destFile, _
 showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the file move or copy to indicate the current status during that
operation. (The dialog might not appear for moves or copies that involve a small amount of content.) Any errors
that occur present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the move or copy takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UICancelOption.DoNothing

The on-screen status display during a move or copy operation includes a Cancel button. If the user clicks the
Cancel button when the DoNothing option is in effect, the code calling MoveFile() or CopyFile() will not receive any
notification that the move or copy was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the status dialog when ThrowException is used, the MoveFile() or CopyFile()
method generates a System.IOException exception, which can be caught by the initiating code. This is the default
method.

See Also

Recipes 12.4 and 12.5 show you how to move and copy whole directories instead of just files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.20. Sending a File to the Recycle Bin

Problem

You need to delete a file or, even better, send it to the Recycle Bin.

Solution

The My.Computer. FileSystem. DeleteFile() method allows you to either permanently delete a file or send it to the Recycle Bin.
The basic syntax is:

 My.Computer.FileSystem.DeleteFile(filePath _
 [, showUI [, recycle [, onUserCancel]]])

To send the file to the Recycle Bin, the recycle option needs to be set appropriately:

 My.Computer.FileSystem.DeleteFile(filePath, _
 UIOption.OnlyErrorDialogs, _
 RecycleOption.SendToRecycleBin)

Discussion

The first DeleteFile() argument accepts a single file to be deleted, and you can include up to three additional optional
arguments: showUI (which impacts user presentation during the deletion), recycle (which indicates whether or not to use
the Recycle Bin), and onUserCancel (which sets what happens when the user aborts the deletion).

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the file deletion to indicate the current status during that
operation. (The dialog might not appear for deletes that involve a small amount of content.) Any errors that
occur present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the delete takes. This is the default method.

The recycle argument accepts one of the following Microsoft.VisualBasic.FileIO.RecycleOption enumeration values:

RecycleOption.DeletePermanently

The file is immediately and permanently removed from the disk.

RecycleOption.SendToRecycleBin

Instead of deleting the file, DeleteFile() moves the file to the Recycle Bin pseudodirectory.

If you include the onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption enumeration
values:

UICancelOption.DoNothing

The on-screen status display during a delete operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling DeleteFile() will not receive any notification that the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

button when the DoNothing option is in effect, the code calling DeleteFile() will not receive any notification that the
deletion was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the status dialog when ThrowException is used, the DeleteFile() method
generates a System.IOException exception, which can be caught by the initiating code. This is the default method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.21. Creating a Temporary File

Problem

You need to quickly store some data in a file, but the data will just be around for a little while.

Solution

Create a temporary file in the user's "official" temporary file area with the My.Computer. FileSystem.GetTempFileName() method:

 Dim workFile As String = _
 My.Computer.FileSystem.
GetTempFileName()

The filename returned represents a brand-new file created by the method that is zero bytes in size. When you are
ready to use it, open it with one of the stream-based or file handle-based file-management methods, and make any
additions or changes as needed. When you are finished, simply delete the file.

Discussion

The temporary file is added to the user's default temporary file area and always has a .tmp extension. The filename is
guaranteed to be unique and will not conflict with other temporary filenames stored in that same directory. The typical
location for a logged-in Windows user is:

 C:\Documents and Settings\<user>\Local Settings\Temp\

See Also

Recipe 12.16 discusses the editing of files using either stream-based or file handle-based methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.22. Calculating a Checksum for a File

Problem

You want to ensure that the contents of a file have not changed, perhaps after transmitting that file over the Internet.

Solution

Sample code folder: Chapter 12\GenerateChecksum

Generate a checksum for the file. A checksum is a short value or string that is built using the contents of the file.
Calculating a checksum on identical content will yield identical results, but different input produces different and varying
checksums. A good checksum-generating algorithm is very sensitive to even the smallest change in the source data (a
file, in this case).

Discussion

Create a new Windows Forms application, and add two TextBox controls named FileToCheck and HexChecksum and a Button
control named GenerateChecksum to the form. Set the HexChecksum.ReadOnly property to TRue. Add some informational labels
and arrange the controls to look like Figure 12-14.

Figure 12-14. Controls for the file checksum sample

Add the following source code to the form's class template. We've also included some needed Imports statements:

 Imports System.Text
 Imports System.Security.Cryptography
 Public Class Form1
 Private Sub GenerateChecksum_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles GenerateChecksum.Click
 ' ----- The hash value is ready, but I like things in
 ' plain text when possible. Let's convert it to a
 ' long hex string.
 Dim checksum As Byte()
 Dim counter As Integer
 Dim result As String

 ' ----- Generate the checksum for the file.
 Try
 checksum = GenerateFileChecksum(FileToCheck.Text)
 Catch ex As Exception
 MsgBox("An error occurred while trying to " & _
 "calculate the checksum:" & _
 vbCrLf & vbCrLf & ex.Message)
 Exit Sub
 End Try

 ' ----- Prepare the checksum for display.
 If (checksum Is Nothing) Then
 result = "No checksum result."
 Else
 ' ----- Convert the checksum into something readable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Convert the checksum into something readable.
 result = ""
 For counter = 0 To checksum.Length - 1
 result &= String.Format("{0:X2}", _
 checksum(counter))
 Next counter
 End If

 ' ----- Show the result to the user.
 HexChecksum.Text = result
 End Sub

 Public Function GenerateFileChecksum(_
 ByVal filePath As String) As Byte()
 ' ----- Use the HMACSHA1 hashing function to generate
 ' a checksum for a file.
 Dim hashingFunction As HMACSHA1
 Dim hasingBase() As Byte
 Dim hashValue() As Byte
 Dim inStream As IO.Stream

 ' ----- Make sure the file exists.
 If (My.Computer.
FileSystem.FileExists(filePath) _
 = False) Then
 Throw New IO.FileNotFoundException
 Return Nothing
 End If

 ' ----- Prepare the
hashing key. You have to use
 ' the same hashing key every time, or you
 ' will get different results.
 hasingBase = (New UnicodeEncoding).GetBytes("Cookbook")

 ' ----- Create the hashing component using the Managed
 ' SHA-1 function.
 hashingFunction = New HMACSHA1(hasingBase, True)

 ' ----- Open the file as a stream.
 inStream = New IO.
FileStream(filePath, _
 IO.FileMode.Open, IO.FileAccess.Read)

 ' ----- Calculate the checksum value.
 hashValue = hashingFunction.ComputeHash(inStream)

 ' ----- Finished with the file.
 inStream.Close()

 ' ----- Return the checksum as a byte array.
 Return hashValue
 End Function
 End Class

To use the program, type in a file path, and click the Generate button. The resulting 40-hex-digit checksum will appear
in the HexChecksum field. Figure 12-15 shows the results of a checksum calculation.

Figure 12-15. A checksum generated for an executable file

Checksums are especially useful when you want to know if two files, or two sets of data, contain identical content. They
are typically generated using a hashing algorithm, a processing method that takes some original content and generates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are typically generated using a hashing algorithm, a processing method that takes some original content and generates
a summary value representing the full content. Hashing algorithms process the input data in blocks. As a hash is
calculated for each block, the next block is brought in and applied to or overlaid on the existing hash. This constant
merging of the data makes the algorithms very sensitive to any changes in the source content.

The .NET Framework includes several hashing algorithms and encryption features in the System.Security.Cryptography
namespace. This recipe's code uses the HMACSHA1 class (Hash-based Message Authentication Code, or HMAC, via the
SHA-1 hash function) in that namespace to generate the hash. Hash functions such as the SHA-1 function were
developed by private organizations and government security agencies to help protect sensitive content. Several similar
hash functions and related encryption algorithms are included in System.Security.Cryptography for your use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.23. Comparing Two Files for Equality

Problem

You have two files that should contain identical content, and you want to make sure that they do.

Solution

Sample code folder: Chapter 12\CompareFiles

Call the GenerateFileChecksum() routine developed in Recipe 12.22 for each of the files, and compare the checksum.

Discussion

The following code uses the GenerateFileChecksum() method on two distinct files and compares the resulting checksums:

 Public Function AreFilesIdentical(_
 ByVal file1 As String, ByVal file2 As String) _
 As Boolean
 ' ----- Return True if two files are identical.
 Dim checksum1 As Byte()
 Dim checksum2 As Byte()
 Dim counter As Integer

 On Error GoTo ErrorHandler

 ' ------ Calculate the checksums.
 checksum1 = GenerateFileChecksum(file1)
 checksum2 = GenerateFileChecksum(file2)

 ' ----- See if the results are equal.
 For counter = 0 To UBound(checksum1)
 If (checksum1(counter) <> checksum2(counter)) _
 Then Return False
 Next counter

 ' ----- The checksums are equal.
 Return True

 ErrorHandler:
 ' ----- If anything went wrong, assume the
 ' files are unequal.
 Return False
 End Function

See Also

See Recipe 12.22 for the code needed to complete this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.24. Locking a File During Access

Problem

You need to update the content of a file, and you don't want anyone else messing with it while you're in there.

Solution

The System.IO. FileStream object can be used to open a file with various levels of file sharing and locking. When opening a
file stream, use the appropriate locking flag to keep other users or processes from accessing the file while you have it
open.

Discussion

The System.IO. FileStream constructor includes several arguments that indicate how the file should be opened. One of the
basic overloads for this constructor uses a file-sharing flag as its fourth argument:

 Dim newStream As New IO.Stream(path As String, _
 mode As IO.FileMode, access As IO.FileAccess, _
 share As IO.FileShare)

The share argument accepts one of the following System.IO.FileShare enumeration values:

FileShare.None

The file cannot be opened by any other process, or even by other open requests within this same process.

FileShare.Read

Other processes can open the file for reading only, not for modification.

FileShare.ReadWrite

Other processes can open the file for both reading and writing. This is the default setting if you exclude the
FileShare option from the opening of the stream.

FileShare.Write

Other processes can open the file for writing or appending, but they cannot read from it until this process closes
the file.

Although the FileShare enumeration indicates whether other processes can open a file while your process is using it, it
does not control the authorization of access to this file. The other process must still have security rights to access the
file in order to open it, even if you specify FileShare.ReadWrite.

When opening files in random mode using the Visual Basic FileOpen() method (see Recipe 12.16), you can lock specific
records within the opened file using the Lock() method:

 ' ----- Open the file. Each record is 50 bytes.
 Dim fileID As Integer = FreeFile()
 FileOpen(fileID, pathToFile, OpenMode.Random, _
 OpenAccess.ReadWrite, OpenShare.LockWrite, 50)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OpenAccess.ReadWrite, OpenShare.LockWrite, 50)

 …

 ' ----- Lock record number five.
 Lock(fileID, 5)

 …

 ' ----- Make the needed changes, then unlock the record.
 Unlock(fileID, 5)

 …

 ' ----- Finished with the file.
 FileClose(fileID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.25. Reading from a File at a Specific Position

Problem

You need to access content at a specific byte position in a file.

Solution

Use the Seek() method of a stream to relocate the current position of the stream:

 Dim oneByte As Byte
 Dim fileData As New IO.
FileStream(filePath, _
 IO.FileMode.Open, IO.FileAccess.Read)
 ' ----- Jump to byte 1000 and read what's there.
 fileData.Seek(1000, IO.SeekOrigin.Begin)
 oneByte = fileData.ReadByte()

Discussion

The Seek() method lets you quickly adjust your position in the file. The second argument specifies how the movement is
to occur using one of the System.IO.SeekOrigin enumeration values:

SeekOrigin.Begin

The offset indicates a forward position from the beginning of the file. The first byte in the file is position 1.

SeekOrigin.Current

The offset indicates a position relative to the current position in the file. Positive offsets move forward; negative
offsets move backward.

SeekOrigin.End

The offset indicates a position relative to the end of the file. Positive offsets move forward beyond the end of
the file; negative offsets move backward from the end of the file.

If you position the current position past the end of the file, the next data you write to the file will fill in all the unwritten
space between the current end of the file and your new data. If you attempt to read past the end of the file, an
exception occurs. You cannot set the current position to a place before the beginning byte of a file.

To determine the current byte position, access the stream's Position property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.26. Reading and Writing Objects in a File

Problem

You've designed a custom class. You want to store instances of that class in a file and load them back into instances
later, but you don't want the object to open a stream and do all of the necessary reads and writes by itself.

Solution

Sample code folder: Chapter 12\ReadWriteObjects

Add serialization to your class by implementing the ISerializable interface. Serialization is the process of preparing an
object's data for transport over a stream (or similar system), and later rebuilding the object from the previously
transported content.

Discussion

There are three primary steps needed to make a class serializable:

1. Mark the class with the Serializable attribute, and mark it as implementing the ISerializable interface.

2. Implement the ISerializable. GetObjectData() method.

3. Add a custom constructor that uses the same argument signature as ISerializable.GetObjectData().

The following code implements a simple employee class. Serialization support is highlighted:

 Imports System.Runtime.Serialization

 ' ----- Mark the entire class with the
 ' SerializableAttribute attribute.
 <Serializable()> _
 Public Class Employee
 ' ----- Mark the class as using ISerializable.
 Implements ISerializable

 ' ----- Define the basic members
and properties.
 Public FullName As String
 Public HireDate As Date
 Private CurrentSalary As Decimal
 Public Property Salary() As Decimal
 Get
 Return CurrentSalary
 End Get
 Set(ByVal value As Decimal)
 If (value >= 0) Then CurrentSalary = value
 End Set
 End Property

 Public Sub New()
 ' ----- Default constructor. This class should
 ' probably have something more interesting
 ' or data-preparing, but it's just a
 ' serialization sample, so no problem.
 End Sub

 Public Sub New(ByVal info As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub New(ByVal info As
SerializationInfo, _
 ByVal context As StreamingContext)
 ' ----- Rebuild a previously serialized object by
 ' getting the individual member components
 ' from the serialization store.
 FullName = info.GetString("FullName")
 HireDate = info.GetDateTime("HireDate")
 CurrentSalary = info.GetDecimal("Salary")
 End Sub

 Public Sub GetObjectData(_
 ByVal info As SerializationInfo, _
 ByVal context As StreamingContext) _
 Implements ISerializable.GetObjectData
 ' ----- Serialize the object by adding all the class
 ' members to the serialization store as
 ' name-value pairs.
 info.AddValue("FullName", FullName)
 info.AddValue("HireDate", HireDate)
 info.AddValue("Salary", CurrentSalary)
 End Sub
 End Class

The SerializationInfo object used in both the serialization and deserialization code includes overloads and parallel methods
for all the core Visual Basic data types.

Once you've prepared your class for serialization, you can include it in a stream using one of the formatters included
with the serialization system. The BinaryFormatter class streams out a serializable class in a binary form. The class, located
in the System.Runtime.Serialization.Formatters.Binary namespace, connects the serializable object to an open stream. The
following code serializes and deserializes an Employee object (as defined in this recipe) to a standard file stream:

 Imports System.Runtime.Serialization

 Public Class Form1
 Private Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 SaveToFile()
 GetFromFile()
 End Sub

 Private Sub SaveToFile()
 ' ----- Serialize an employee object to a file.
 Dim newEmp As New Employee
 Dim outFile As IO.
FileStream
 Dim formatter As New Formatters.Binary.BinaryFormatter

 ' ----- Build a simple employee record.
 newEmp.FullName = "John Doe"
 newEmp.HireDate = #11/7/2005#
 newEmp.Salary = 10000@

 ' ----- Open the data file for storage.
 outFile = New IO.
FileStream("c:\EmpData.dat", _
 IO.FileMode.Create)

 ' ----- Send the employee to the stream through
 ' a binary serialization formatter.
 formatter = New Formatters.Binary.BinaryFormatter
 formatter.Serialize(outFile, newEmp)

 ' ----- Finished.
 outFile.Close()
 End Sub

 Sub GetFromFile()
 ' ----- Build an employee record from storage.
 Dim oldEmp As Employee = Nothing
 Dim inFile As IO.FileStream
 Dim formatter As Formatters.Binary.BinaryFormatter

 ' ----- Open the file with the stored employee.
 inFile = New IO.FileStream("c:\EmpData.dat", _
 IO.FileMode.Open)

 ' ----- Deserialize the employee through the binary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Deserialize the employee through the binary
 ' serialization formatter.
 formatter = New Formatters.Binary.BinaryFormatter
 oldEmp = CType(formatter.Deserialize(inFile), Employee)
 inFile.Close()

 ' ----- Prove that the data came back intact.
 MsgBox("Name: " & oldEmp.FullName & vbCrLf & _
 "Hire: " & oldEmp.HireDate.ToString() & vbCrLf & _
 "Salaray: " & oldEmp.Salary.ToString())
 End Sub
 End Class

The .NET Framework also includes support for nonbinary serialization through distinct XML and SOAP serialization
systems. The System.Xml.Serialization.XmlSerializer class provides much of this functionality, although its use differs
considerably from the binary formatting presented in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.27. Creating a Comma-Separated-Values File

Problem

You need to output data for use in Excel, without automating Excel directly.

Solution

Sample code folder: Chapter 12\GenerateCSV

Create a CSV file, which is simply a text file with commas separating tabular values. The file will have a .csv file
extension, which is a format already recognized by Excel.

Discussion

Visual Basic 2005 provides some new, enhanced, easy-to-use shared methods in the My namespace that simplify file
reading and writing, among many other things. The sample code presented here uses My.Application.Info.DirectoryPath to get
the full path to where the application's EXE file is located and then uses the My.Computer. FileSystem. OpenTextFileWriter()
method to create a StreamWriter to write the CSV file at this location:

 ' ----- Create the new output file.
 Dim csvFile As String = My.Application.Info.DirectoryPath & _
 "\Test.csv"
 Dim outFile As IO.StreamWriter = _
 My.Computer.
FileSystem.OpenTextFileWriter(csvFile, False)

 ' ----- Build the output, including a header row.
 outFile.WriteLine("Column 1, Column 2, Column 3")
 outFile.WriteLine("1.23, 4.56, 7.89")
 outFile.WriteLine("3.21, 6.54, 9.87")
 outFile.Close()

 ' ----- Display the contents as a message.
 MsgBox(My.Computer.FileSystem.ReadAllText(csvFile))

 ' ----- Display the contents in Excel (if installed).
 Process.Start(csvFile)

The StreamWriter object's Write() and WriteLine() methods output lines of text to the file. The Write() method does not
automatically append a newline with each call, but the WriteLine() does, so that's what is used in this code.

The StreamWriter's Close() method flushes all lines of text to the file and closes the StreamWriter object. However, when
reading a file into a string, you can open, read, and close the file all in one command, as demonstrated by the call to
My.Computer.FilesSystem.ReadAllText() in the previous sample code. Using this method to load and display the new file results
in Figure 12-16.

Figure 12-16. The contents of the CSV file loaded into a single string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last line uses Process.Start() to tell the operating system to load the CSV file, using whatever application is registered
to process files with a .csv extension. If you have Excel installed, this line of code should open the tabular data in a new
work-sheet, as shown in Figure 12-17.

Figure 12-17. The Process.Start() method loads and displays the new CSV file in
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Although Visual Basic 2005 is a flexible programming language that can be used to write a variety of applications, most
developers use it to craft database-centric business programs. Interacting with a database is an essential part of Visual
Basic development. Fortunately, Visual Basic includes ADO.NET, the primary database-interaction tool for the .NET
Framework. ADO.NET is a "disconnected" system; it connects to SQL Server, Oracle, and other databases, but only long
enough to transfer the data it needs to manage things in local memory. Older systems, such as ADO and DAO, either
allowed both connected and disconnected sessions, or were fully connected. While the new fully disconnected method
used in ADO.NET is a change from these older systems, it's turned out to be quite powerful and flexible. ADO.NET also
includes new features not available in earlier database-interaction technologies.

The recipes in this chapter often use the System.Data namespace. Each recipe assumes that any source file containing
database-specific code also includes the following statement:

 Imports System.Data

Although ADO.NET supports multiple database platforms, all the source code in this chapter targets the SQL Server
database. The concepts are the same for all providers, although some class names vary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.1. Connecting to a Data Provider

Problem

You are writing an application that interacts with a database, and you need to connect to it to run some queries.

Solution

Use a Connection object and a "connection string" to establish the connection you will use for queries and updates.

Discussion

The following set of statements establishes a connection to a SQL Server Express database named MyDatabase running on
the system named MySystem, using the active Microsoft Windows login account for its security access:

 Dim theDatabase As System.Data.SqlClient.SqlConnection
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"

 theDatabase = New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()
 ' ---- Perform database processing here, then…
 theDatabase.Close()
 theDatabase.Dispose()

ADO.NET includes several different database libraries. The most generic library, found in the System.Data namespace,
defines the core classes used to manage database sets in memory. There are distinct classes for tables, columns, and
rows of data; classes that let you establish relationships between the tables; and classes that let you bundle tables and
relationships in one large "data set." You will probably use these classes quite a bit in your code, but they know nothing
of database connections or how to communicate with any external data source (other than specially formatted XML
files).

To connect to a database, you must use one of the providers included in ADO.NET. Each provider connects to a specific
database or data-communication standard. Four providers ship with .NET, each appearing in a specific namespace, as
shown in Table 13-1.

Table 13-1. Providers included with .NET
Provider Namespace Comments

SQL
Server System.Data.SqlClient

Visual Studio 2005 includes various editions of SQL Server 2005, which you can
access through ADO.NET. This provider also communicates with older versions of
SQL Server, back through Version 7.0.

Oracle System.Data.OracleClient

This is the Microsoft-supplied Oracle provider, and it requires at least Oracle 8.1.7.
You must license and install the Oracle Client tools, available directly from Oracle.
Oracle also supplies its own ADO.NET provider, which appears through the
Oracle.DataAccess namespace. You must contact Oracle directly to acquire that provider.

OLE DB System.Data.OleDb
This OLE DB provider connects to OLE DB data sources, but it is guaranteed to work
only with SQL Server, Oracle, and Jet 4.0 data sources. You can try it with other
sources, but you may receive incomplete or inadequate results.

ODBC System.Data.Odbc

This provider is used with ODBC data sources. As with OLE DB, this provider will
work with many ODBC data sources, but it may not work with all known sources. If
an OLE DB or native provider is available, you should use that instead of the ODBC
alternative.

To connect a provider to a data source, you create a connection object using a valid connection string and then use the
Open() method to establish the connection. ADO.NET connection strings are similar to those used in OLE DB and ADO,
and building them can be tricky. Connection strings are semicolon-delimited sets of connection parameters, with each
entry taking the form parameter=value. The choice of parameters and values varies by connection type and desired

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entry taking the form parameter=value. The choice of parameters and values varies by connection type and desired
features. The connection string used here includes three parameters (DataSource, InitialCatalog, and Integrated Security):

 Data Source=MySystem\SQLEXPRESS;Initial Catalog=MyDatabase;
 Integrated Security=true

Setting Integrated Security to true tells SQL Server to use the current Windows user's authentication information to connect
to the database. If your database uses SQL Server's built-in authentication system, you can use the following
connection string (for user "sa" and password "abc"):

 Data Source=MySystem\SQLEXPRESS;Initial Catalog=MyDatabase;
 User ID=sa;Password=abc

Each provider includes a " connection string builder class" (it's found at System.Data.SqlClient. SqlConnectionStringBuilder for the
SQL Server provider), and although you can use it, it is simply a string-concatenation tool that attaches the semicolon-
delimited parts you provide. You still need to know what each of the parameters and values should be.

The documentation installed with Visual Studio includes an article named "Working with Connection Strings" that
includes common parameter names and values. If you look in the online help index for "connection strings [ADO.NET],"
the "Working with Connection Strings" article is one of the results. For Oracle connection strings using Oracle's own
provider, consult your Oracle documentation or their web site.

Once you have a valid connection string, use it as an argument to the connection object's constructor:

 Dim theDatabase As System.Data.SqlClient.SqlConnection
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 theDatabase = New SqlClient.SqlConnection(connectionString)

Establish the connection by using the Open() method:

 theDatabase.Open()

You don't need to close the connection until you are truly finished interacting with the database. When you use the
Open() method, ADO.NET opens the connection only long enough to verify the connection. It then closes the connection,
waiting for you to issue a SQL statement before it opens the connection again.

When you are really ready to close the connection, use the Close() method:

 theDatabase.Close()

See Also

Although it's not an official Microsoft resource, the http://www.connectionstrings.com web site provides many useful
examples of ADO.NET connection strings. The site is a little out of date, but it's still the best place we've found so far to
locate details on all the various connection-string parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.2. Issuing SQL Commands

Problem

Now that you've established a connection to a database through a provider, you're ready to issue SQL commands. But
how?

Solution

Use a Command object to issue SQL commands directly to your database through the provider connection.

Discussion

The following code updates a SQL Server table named Table1, changing every Column2 field to 25 whenever Column1 has a
value of 0:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "UPDATE Table1 SET Column2 = 25 WHERE Column1 = 0", _
 theDatabase)
 sqlStatement.ExecuteNonQuery()

 ' ----- Clean up.
 theDatabase.Close()
 theDatabase.Dispose()

Just like connections, command objects are provider-specific. When using the SQL Server provider, the
System.Data.SqlClient. SqlCommand class wraps a SQL statement string and prepares it for use by the database. You must
supply a valid SQL statement that is recognizable by the database.

The SQL statement you provide to the command can include the standard Data Manipulation Language (DML) SQL
statements (SELECT, INSERT, UPDATE, DELETE), or any of the platform-specific Data Definition Language (DDL) statements
(such as CREATE TABLE). Do not include a terminating semicolon in the statement.

Instead of including the SQL statement and connection object in the command's constructor, you can assign these
values to the command object's CommandText and Connection properties, respectively.

The command object includes several methods that send the command to the database for processing:

ExecuteReader()

Issues a command, and returns the data results in the form of a DataReader object. See Recipe 13.3 for additional
information on data readers.

ExecuteNonQuery()

Issues a command, expecting no results. This method is generally used for INSERT, UPDATE, and DELETE
commands.

ExecuteScalar()

Issues a command, expecting a single row and column of data in response. The data is returned as a generic
System.Object instance, which you can convert to the appropriate data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Object instance, which you can convert to the appropriate data type.

ExecuteXmlReader()

Issues a command, and returns the data results as an XmlReader object.

There are also asynchronous versions of these methods (except for ExecuteScalar()).

See Also

Other recipes in this chapter use additional features of command objects. For instance, Recipe 13.5 uses a command
object to access a stored procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.3. Retrieving Results from a Database Query

Problem

You've issued INSERT, UPDATE, and DELETE statements through a command object, but you need to retrieve some data
with a SELECT statement.

Solution

Use a DataReader object to quickly review the results of a SELECT statement.

Discussion

The following code retrieves a set of records from Table1:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for the reader.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1 WHERE Column2 = 25", _
 theDatabase)
 Dim dataResults As SqlClient.SqlDataReader = _
 sqlStatement.ExecuteReader()

 ' ----- Clean up.
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Assuming that the query returned records, the dataResults object now makes those records available, one at a time. The
Read() method retrieves each successive record from the database:

 Do While dataResults.Read()
 MsgBox("Column1 = " & CStr(dataResults!Column1))
 Loop
 dataResults.Close()

Read() returns False when there are no more records available.

To check for the presence of any records before using the Read() method, use the HasRows property:

 If (dataResults.HasRows = False) Then MsgBox("No data.")

Data readers provide basic and direct access to result sets. They are no-frills objects, but they are quick and simple to
use. Their basic and essential features form the basis of other, more complex data-gathering actions in ADO.NET. When
you retrieve table results and store them in a DataSet object (described in Recipe 13.7), the DataSet indirectly uses a data
reader to transfer the records from the database into the data set.

Records returned by a data reader can be accessed by name or position. For example, if you retrieve data with the
columns Column1, Column2, and Column3 (in that order), you can use any of the following statements to access Column2:

 dataResults!Column2
 dataResults("Column2")
 dataResults(1) ' Zero-based array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fields returned by the reader are stored as System.Object values. You must convert them to their proper data types
manually, using the available conversion functions.

Data readers are "forward-only" objects; once you have retrieved a record using Read(), you cannot return to it without
reissuing the SQL command to create a new data reader.

While data readers are most often used to process SELECT statements and stored procedures, there are other
statements that return data results. SQL Server 2005 includes a new OUTPUT clause in INSERT statements that you can
use to retrieve one or more data fields from the newly inserted record. It's common to create a database table with an
automatically generated numeric primary key. After inserting a new record into such a table, you have to use a
separate SELECT statement to retrieve the new primary key value. The OUTPUT clause lets you retrieve the new primary
key value directly from the INSERT statement:

 INSERT INTO Table1 (Column2, Column3)
 OUTPUT INSERTED.Column1
 VALUES (10, 20)

Sending this INSERT statement to the database using the ExecuteReader() method returns a single record with a single field
containing the value of the new Column1 field. You can also use the ExecuteScalar() method because only a single value is
returned:

 Dim sqlStatement As New SqlClient.SqlCommand(_
 "INSERT INTO Table1 (Column2, Column3) " & _
 "OUTPUT INSERTED.Column1 VALUES (10, 20)", _
 theDatabase)
 Dim newID As Integer = CInt(sqlStatement.ExecuteScalar())
 sqlStatement = Nothing

See Also

Recipe 13.7 discusses how to simply replace the new data values in the SQL statement without having to build the SQL
statement from scratch each time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.4. Using SQL Parameters

Problem

You need to insert a lot of records into a table, and you would like to simply replace the new data values in the SQL
statement without having to build the SQL statement from scratch each time.

Solution

Attach one or more Parameter objects to the Command object.

Discussion

The following SQL Server example inserts new records into Table1, setting the Column2 column to a distinct value for each
inserted record:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Build the generic command text.
 Dim theCommand As New SqlClient.SqlCommand()
 theCommand.CommandText = _
 "INSERT INTO Table1 (Column1) VALUES (@NewValue)"
 theCommand.Connection = theDatabase

 ' ----- Add the first record.
 theCommand.Parameters.AddWithValue("NewValue", "Blue")
 theCommand.ExecuteNonQuery()

 ' ----- Add the second record.
 theCommand.Parameters("NewValue").Value = "Red"
 theCommand.ExecuteNonQuery()

 ' ----- Finished.
 theCommand = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Parameters are often used to interact with stored procedures, but you can use them in other, more basic SQL
statements to substitute for placeholders included in the SQL statement text. In SQL Server, placeholders begin with an
at sign (@) followed by a parameter identifier. These identifiers match the names used when creating SqlParameter
objects. These parameters are attached to the SqlCommand object containing the generic SQL text.

Once you've created the command object, adding parameters is simple. The easiest method employs the Parameters
collection's AddWithValue() method to add the named parameters. This method accepts a parameter name and a value as
any System.Object instance:

 theCommand.Parameters.AddWithValue("NewValue", "Blue")

Once the parameter is in place, you can modify it in later statement reprocessing, accessing it by name:

 theCommand.Parameters("NewValue").Value = "Red"

The exact syntax used to identify parameter placeholders in the SQL statement text may vary between providers.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.5 uses parameters to interact with stored procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.5. Using Stored Procedures

Problem

You need to use a stored procedure in your database, and you're not sure how to specify values for its input and output
parameters.

Solution

Use the command object's Parameters collection to set and retrieve stored procedure argument values.

Discussion

Here's a simple SQL Server stored procedure that does nothing more than retrieve a field from a table given its ID
value:

 CREATE PROCEDURE GetRecordName
 @PriKey int,
 @NameResult varchar(50) OUT
 AS
 BEGIN
 -- Given an ID value, return the RecordName field.
 SET @NameResult =
 (SELECT RecordName FROM Table1 WHERE ID = @PriKey);
 END

To use this stored procedure, create a command object that calls it, and add separate input and output parameters:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Build the basic command.
 Dim theCommand As New SqlClient.SqlCommand()
 theCommand.CommandType = CommandType.StoredProcedure
 theCommand.Connection = theDatabase
 theCommand.CommandText = "GetRecordName"

 ' ----- Add the input parameter. In this case,
 ' use a test value of 25.
 theCommand.Parameters.AddWithValue("@PriKey", 25)

 ' ----- Add the output parameter.
 Dim outParam As SqlClient.SqlParameter = _
 theCommand.Parameters.Add(_
 "@NameResult", SqlDbType.VarChar, 50)
 outParam.Direction = ParameterDirection.Output

 ' ----- Run the stored procedure.
 theCommand.ExecuteNonQuery()

 ' ----- The parameter has been updated for us.
 MsgBox(outParam.Value)

 ' ----- Clean up.
 theCommand = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stored procedures come in a variety of styles. The most basic stored procedure simply returns a set of records, just like
a SELECT statement does. Other stored procedures return their results either as return values or as output parameters.
ADO.NET supports all these various kinds of stored procedures.

Stored procedures are called using a standard command object, but instead of supplying a SQL statement for the
command text, you supply only the name of the stored procedure. Any input and output parameters are added through
the command object's Parameters collection. The names given to the parameters in each Parameter object match those
included in the stored procedure definition.

Basic input parameters can be added simply with the AddWithValue() method:

 theCommand.Parameters.AddWithValue("@PriKey", 25)

Output parameters require a little more configuration:

 Dim outParam As SqlClient.SqlParameter = _
 theCommand.Parameters.Add(_
 "@NameResult", SqlDbType.VarChar, 50)
 outParam.Direction = ParameterDirection.Output

The Direction property indicates how this parameter is used by the stored procedure. It can be set to one of the following
enumerated values:

ParameterDirection.Input

ParameterDirection.Output

ParameterDirection.InputOutput

ParameterDirection.ReturnValue

Once the parameters have been added, execute the stored procedure as you would any other command object:

 theCommand.ExecuteNonQuery()

If the stored procedure returns a set of records, use ExecuteReader() instead of ExecuteNonQuery() to access those records.

Once processed, ADO.NET automatically updates any output Parameter objects for you. Access the Value properties of
these objects to retrieve the stored procedure results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.6. Using Transactions

Problem

You need to issue multiple database updates in the context of a single, atomic transaction.

Solution

Use an ADO.NET transaction to envelop the various SQL statements that need to be processed as a unit.

Discussion

The following block of code connects to a database via ADO.NET and makes several database updates within a single
transaction:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Create a command object that will hold each
 ' processed SQL statement.
 Dim sqlStatement As New SqlClient.SqlCommand
 sqlStatement.Connection = theDatabase

 ' ----- Start the transaction.
 Dim theTransaction As System.Data.SqlClient.SqlTransaction
 theTransaction = theDatabase.BeginTransaction()
 sqlStatement.Transaction = theTransaction

 ' ----- Issue the first statement.
 sqlStatement.CommandText = _
 "UPDATE Table1 SET Column2 = 25 WHERE Column1 = 0"
 sqlStatement.ExecuteNonQuery()

 ' ----- Issue the second statement.
 sqlStatement.CommandText = _
 "UPDATE Table1 SET Column2 = 50 WHERE Column1 = 1"
 sqlStatement.ExecuteNonQuery()

 ' ----- Finish the transaction.
 theTransaction.
Commit()

 ' ----- Clean up.
 theTransaction = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Transactions allow multiple SQL statements to exhibit all-or-nothing behavior. The ADO.NET transaction object is
provider-specific and communicates with the target database to manage the atomic nature of the multi-statement
transaction.

The SqlTransaction object establishes a transaction for a set of statements in SQL Server. Instead of creating the object
directly, use the connection's BeginTransaction() method to create it. This establishes the new transaction at the database
level:

 Dim theTransaction As System.Data.SqlClient.SqlTransaction
 theTransaction = theDatabase.BeginTransaction()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All commands issued while the transaction is in effect need to include the transaction object. Assign the object to each
command's transaction property:

 sqlStatement.Transaction = theTransaction

When you have issued all the commands needed for this transaction, use the transaction object's Commit() method to
permanently write all updates to the database:

 theTransaction.Commit()

If for any reason you need to cancel the changes in the middle of the transaction, use the Rollback() method instead:

 theTransaction.Rollback()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.7. Storing the Results of a Query in Memory

Problem

While a data reader is fast and convenient, you would like to keep the retrieved data around for a while, even when you
are disconnected from the database or other data source.

Solution

Use the data reader to bring the results into a data set. The DataSet object represents one or more in-memory database
tables, each with its records stored in a separate DataTable object.

Discussion

The following code loads all records from the Table1 table into a DataSet object, creating a DataTable object named Table1
within that data set:

 ' ----- Connect to the database.
 Dim
connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and
command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create the data set and fill it with the results
 ' of the
query.
 Dim disconnectedSet As New Data.DataSet
 theAdapter.Fill(disconnectedSet, "Table1")

 ' ----- Clean up.
 theAdapter = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Data sets are like miniature in-memory relational databases, complete with tables, relationships, sorting, filters, field
data types, and so on. They are a lot more complex than DataReader objects, but their disconnected nature and broader
feature set make them useful for the longer-term caching and manipulation of data.

Each data set includes one or more DataTable objects. When you move data from an external data source to a DataSet,
there are several objects that make up the connection between the source and the target:

A Connection object establishes a communication transport between the application and the data source.

Command objects encapsulate individual SQL statements used to retrieve or update data in the database. Each
command may include zero or more Parameter objects that facilitate stored procedure and generic command
processing. All Connection processing occurs via Command objects.

A DataReader provides basic and fast data retrieval from a database via a Command object query.

A DataAdapter builds the individual SQL commands used to retrieve and update data in the database. Working in
conjunction with a CommandBuilder object, it crafts SELECT, INSERT, UPDATE, and DELETE commands that allow a DataSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conjunction with a CommandBuilder object, it crafts SELECT, INSERT, UPDATE, and DELETE commands that allow a DataSet
to interact with a provider database, even though it doesn't know that provider's syntax rules. The DataAdapter
works with a DataReader when retrieving results with a SELECT statement.

The DataSet object contains the records of table and query data retrieved from the data source. These results are
stored in one or more DataTable objects.

The DataTable object contains the actual data for a single source table, whether it's a true table or a pseudotable
based on a query.

Data tables are built from distinct DataRow and DataColumn objects that, when used together, provide access to
individual records and fields.

These represent just the most basic objects used in database/DataSet interactions. You can add even more objects and
complexity through DataRelation and Constraint objects.

Once data has been copied from a database into a DataSet, you can manipulate it just as though it was still part of an
organized data source. For the data retrieved from the Table1 table in our imaginary database, you can access the first
record's Column1 value using code similar to the following. There are a few different ways to do this, including this
statement:

 disconnectedSet.Tables!Table1.Rows(0)!Column1

or the more verbose:

 disconnectedSet.Tables("Table1").Rows(0).Item("Column1")

The Rows member of each table is a standard collection, so you can scan it using ordinary collection features in Visual
Basic:

 For Each oneRow As DataRow In disconnectedSet.Tables!Table1.Rows
 MsgBox(oneRow!Column1)
 Next oneRow

Data sets are great for keeping cached data in memory for ongoing use. But you can also update the fields stored in a
data set, and later send those changes back to the database in a batch. You must use a data adapter to help process
the individual INSERT, UPDATE, and DELETE statements required to modify the source database. While you can write each
command yourself, you can also have a CommandBuilder object generate them for you based on the initial SELECT
statement. The following code modifies this recipe's solution to include updates to the database (we've highlighted the
new statements, and to save some space, we left off the database connection and cleanup code):

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create a command builder that will auto-generate
 ' the various UPDATE statements.
 Dim theBuilder As New SqlClient.SqlCommandBuilder(theAdapter)

 ' ----- Create the data set and fill it with the results
 ' of the
query.
 Dim disconnectedSet As New Data.DataSet
 theAdapter.Fill(disconnectedSet, "Table1")

 ' ---- Modify some data.
 disconnectedSet.Tables!Table1.Rows(0)!Column1 = 50

 ' ----- Return the updates to the database.
 theAdapter.Update(disconnectedSet, "Table1")

If you don't want the "convenience" of the full DataSet object, you can retrieve your results into an individual DataTable
object, which has a little less overhead. DataSet objects use DataTable objects anyway to store the records, so there's no
reason you can't use them yourself. The following code modifies this recipe's original solution to use a DataTable object
instead of a full DataSet object (we've highlighted the lines that are different from the DataSet-specific code):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instead of a full DataSet object (we've highlighted the lines that are different from the DataSet-specific code):

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create and fill the data table with the results
 ' of the query.
 Dim singleTable As New Data.DataTable
 theAdapter.Fill(singleTable)

 ' ----- Clean up.
 theAdapter = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

See Also

Recipe 13.8 demonstrates how to set up manual DataTable objects that don't interact with database tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.8. Creating In-Memory Data Tables Manually

Problem

You want to manage some data in a database-table-like fashion, but the source data is not coming from a database, or
from anything that looks like a table.

Solution

Build a DataTable manually, and fill in all the table details and data yourself.

Discussion

The following code builds a simple table of state information and adds two records:

 Dim stateTable As DataTable = New DataTable("UnitedStates")

 ' ----- Use the abbreviation as the primary key.
 Dim priKeyCol(0) As Data.DataColumn
 priKeyCol(0) = stateTable.Columns.Add("ShortName", GetType(String))
 stateTable.PrimaryKey = priKeyCol

 ' ----- Add other data columns.
 stateTable.Columns.Add("FullName", GetType(String))
 stateTable.Columns.Add("Admission", GetType(Date))
 stateTable.Columns.Add("Population", GetType(Long))

 ' ----- Add a record.
 Dim stateInfo As Data.DataRow = stateTable.NewRow()
 stateInfo!ShortName = "WA"
 stateInfo!FullName = "Washington"
 stateInfo!Admission = #11/11/1889#
 stateInfo!Population = 5894121
 stateTable.Rows.Add(stateInfo)

 ' ----- Add another record.
 stateInfo = stateTable.NewRow()
 stateInfo!ShortName = "MT"
 stateInfo!FullName = "Montana"
 stateInfo!Admission = #11/8/1889#
 stateInfo!Population = 902195
 stateTable.Rows.Add(stateInfo)

 ' ----- Prove that the data arrived.
 MsgBox(stateTable.Rows.Count) ' Displays "2"
 MsgBox(stateTable.Rows(0)!FullName) ' Displays "Washington"

ADO.NET defines the basic structures for tables, columns (fields), and rows (records), and it's pretty easy to use them
to build your own tables by hand. To create a table, simply create a DataTable object:

 Dim stateTable As DataTable = New DataTable("UnitedStates")

The table isn't of much use yet because it doesn't have any column definitions, but they are simple to add as well.
Columns, at their most basic structure, are composed of a name and a data type. While the columns in your database
may be limited to just a few basic data types, ADO.NET table columns can be defined using any data type or class that
you can build in .NET. You could even store an entire DataSet object in a column of a DataTable record, although that
would be a little strange. To add a column, use the table's Columns.Add() method:

 stateTable.Columns.Add("FullName", GetType(String))

To add a record, use the table's NewRow() method, which generates a DataRow object. You could create a new DataRow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a record, use the table's NewRow() method, which generates a DataRow object. You could create a new DataRow
from scratch, but it wouldn't have any of the column definitions already added to the DataTable. Using NewRow() takes care
of setting up that structure for you. Once you've updated each record field, add it to the table using the table's
Rows.Add() method:

 stateTable.Rows.Add(stateInfo)

Once your records are in your table, you can manipulate them just like you would in a real database table. For instance,
you can sort the records based on one of the fields using the Select() method:

 ' ----- Process an array of states sorted by name.
 For Each stateInfo In stateTable.Select("", "FullName")
 MsgBox(stateInfo!FullName)
 Next stateInfo

If you want to go all the way and add your table to a DataSet object, use code similar to the following:

 Dim fullDataSet As New Data.DataSet
 fullDataSet.Tables.Add(stateTable)

See Also

Recipe 13.7 shows you how to use DataTable objects in conjunction with a database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.9. Writing In-Memory Data Tables to an XML File

Problem

You have some data in a DataSet object, and you would like to export it to an XML file for later reimportation.

Solution

Use the DataSet's WriteXML() method to send the DataSet content to the file in a common XML format.

Discussion

Recipe 13.8 builds a DataTable object with two state-specific records. The following code adds that table to a DataSet
object and writes its records to an XML file:

 Dim fullDataSet As New Data.DataSet
 fullDataSet.Tables.Add(stateTable)
 fullDataSet.WriteXml("C:\StateInfo.xml")

These statements generate the following XML content:

 <?xml version="1.0" standalone="yes"?>
 <NewDataSet>
 <UnitedStates>
 <ShortName>WA</ShortName>
 <FullName>Washington</FullName>
 <Admission>1889-11-11T00:00:00-08:00</Admission>
 <Population>5894121</Population>
 </UnitedStates>
 <UnitedStates>
 <ShortName>MT</ShortName>
 <FullName>Montana</FullName>
 <Admission>1889-11-08T00:00:00-08:00</Admission>
 <Population>902195</Population>
 </UnitedStates>
 </NewDataSet>

You can also output the XML directly from the DataTable object without using a DataSet object:

 stateTable.WriteXML("C:\StateInfo.xml")

ADO.NET was designed with an understanding of data from an XML perspective. Publicly, it exposes this awareness
through several XML-specific methods, including the WriteXML() method. The schema generated with this XML database is
crafted for efficient processing by ADO.NET. When you later import the exported data from the XML file to a DataSet or
DataTable object, ADO.NET will complain if the data doesn't match a format it understands.

To access the schema that matches the exported data, use the related WriteXMLSchema() method:

 stateTable.WriteXMLSchema"C:\StateSchema.xml")

See Also

Recipe 13.10 shows you how to bring the exported data back into a DataSet object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.10. Reading an XML File into In-Memory Data Tables

Problem

You previously exported a DataSet to an XML file, and now you need to get it back.

Solution

Use the DataSet object's ReadXML() method to restore data from a previously generated XML export.

Discussion

Recipe 13.9 exports some XML and a related schema for a table with state-specific information. To read it back into a
DataSet object, use the following code:

 Dim stateSet As New Data.DataSet
 stateSet.ReadXmlSchema("c:\StateSchema.xml")
 stateSet.ReadXml("c:\StateInfo.xml")

You do not need to import a previously saved schema into a DataSet before retrieving the related data, but it helps.
Without the schema, either you will have to recraft the column definitions in each DataTable object yourself, or you will
have to refer to each data column by numeric position and without strong data typing. Reloading a previously saved
schema takes care of a lot of the redesigning work for you. If your program will use a consistent schema regularly, you
can save it internally in your application source code or in an application resource. You can also import schema and data
files directly into a DataTable object, forgoing the larger DataSet object:

 Dim stateTable As New Data.DataTable
 stateTable.ReadXmlSchema("c:\StateSchema.xml")
 stateTable.ReadXml("c:\StateInfo.xml")

Once you have imported the data, you can use that data just as if you had handcrafted it using ADO.NET objects or
imported it from a standard database:

 ' ----- Process each imported state record.
 For Each stateInfo As Data.DataRow In stateTable.Rows()
 MsgBox(stateInfo!FullName)
 Next stateInfo

See Also

Recipe 13.9 demonstrates exporting DataSet or DataTable content to an XML file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Special Programming Techniques
Introduction

Recipe 14.1. Preventing Multiple Instances of a Running Application

Recipe 14.2. Creating a Simple User Control

Recipe 14.3. Describing User Control Properties

Recipe 14.4. Starting Other Applications by EXE, Document, or URL

Recipe 14.5. Waiting for Applications to Finish

Recipe 14.6. List All Running Processes

Recipe 14.7. Terminating a Running Process

Recipe 14.8. Pausing Execution of a Program

Recipe 14.9. Control Applications by Simulating Keystrokes

Recipe 14.10. Watching for File and Directory Changes

Recipe 14.11. Creating an Icon in the System Tray

Recipe 14.12. Accessing the Clipboard

Recipe 14.13. Adding Tooltips to Controls

Recipe 14.14. Dragging and Dropping Files to a ListBox

Recipe 14.15. Dragging and Dropping Between ListBox Controls

Recipe 14.16. Disposing of Objects Appropriately

Recipe 14.17. Fine-Tuning Garbage Collection

Recipe 14.18. Moving the (Mouse) Cursor

Recipe 14.19. Intercepting All Key Presses on a Form

Recipe 14.20. Accessing the Registry

Recipe 14.21. Running Procedures in Threads

Recipe 14.22. Reading XML into a TreeView

Recipe 14.23. Creating an XML Document

Recipe 14.24. Validating an XML Document

Recipe 14.25. Using Generic Collections

Recipe 14.26. Creating a Screensaver

Recipe 14.27. Localizing the Controls on a Form

Recipe 14.28. Adding Pop-up Help to Controls

Recipe 14.29. Maintaining User-Specific Settings Between Uses of an Application

Recipe 14.30. Verifying a Credit Card Number

Recipe 14.31. Capturing a Console Application's Output

Recipe 14.32. Reading an Assembly's Details

Recipe 14.33. Performing Serial I/O

Recipe 14.34. Rebooting the System

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The "A" in BASICthe predecessor of Visual Basicstands for "all-purpose." As an heir of that original programming
language, Visual Basic has maintained the standard of being an all-purpose language, a language that is generic enough
to handle a vast set of different programming needs. That has never been truer than with Visual Basic 2005.

The recipes included in this chapter cover a wide range of topics, from basic application management to credit card
verification. The key is that you can do all these varied tasks quite easily in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.1. Preventing Multiple Instances of a Running Application

Problem

You don't want the active user to run more than one copy of an application at any one time.

Solution

Sample code folder: Chapter 14\SingleInstanceOnly

Capture attempts to start up secondary instances of an application through an application-wide event handler. This event
handler, new to Visual Basic 2005 and available only to Windows Forms applications using the Application Framework, triggers
in the primary instance whenever the user tries to start a secondary instance.

Discussion

Create a new Windows Forms application in Visual Studio. The Application Framework is enabled by default; you can confirm
this by checking the "Enable application framework" field on the Application tab of the Project Properties window, shown in
Figure 14-1.

Figure 14-1. Make sure the "Enable application framework" field is checked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even with the Application Framework enabled, by default the application allows multiple instances to start at once. To prevent
this, select the "Make single instance application" field on this same Project Properties panel (Figure 14-1 still shows it as
unchecked).

The event to handle is typically called MyApplication_StartupNextInstance, and it appears by default in the project's
ApplicationEvents.vb file. Since you already have the Application panel of the Project Properties window open, you can access
this file quickly by clicking on the View Application Events button. The source code appears, with the start of a partial
My.MyApplication class:

 Namespace My
 Partial Friend Class MyApplication

 End Class
 End Namespace

To add the event handler, select "(MyApplication Events)" from the Class Name drop-down list, which appears just above and
to the left of the source code editor window. Then select "StartupNextInstance" from the Method Name drop-down list that is
above and to the right of the code editor. The template for the event handler appears in the MyApplication class:

 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance

 End Sub

To complete the program, add the following code to this template:

 MsgBox("You cannot start a second instance " & _
 "of this program.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation)
 e.BringToForeground = True

Even if you limit your application to a single instance, it may be important to capture any command-line arguments supplied
with the secondary instance. For example, Microsoft Word works like a single-instance application. It allows you to start up the
application, supplying a document to edit as a command-line argument. If you run this command in Microsoft Word:

 winword.exe C:\Chapter14.doc

the Chapter14.doc file appears as a new document, but running in the context of the already active single allowable instance of
Microsoft Word.

In Visual Basic, you can access command-line arguments through the Command() function or through the
My.Application.CommandLineArgs collection. However, these methods are valid only for the primary instance. If you examine
Command() in the MyApplication_StartupNextInstance event handler, you will only see the arguments for the initial instance.

Fortunately, the e argument of the MyApplication_StartupNextInstance handler includes a CommandLine property, which communicates
the command-line arguments for the subsequent instance as a String. Use this property as you would the return value of the
standard Command() function. Once the event handler ends, you won't have access to the second instance's command line, so
make sure you examine or save it, if needed, while in the handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.2. Creating a Simple User Control

Problem

You would like to create your own Windows Forms control by building it up from other existing controls.

Solution

Sample code folder: Chapter 14\UserControl

Create a user control, a custom user-interface control built from a drawing surface in which any other existing controls
can appear.

Discussion

Visual Basic allows you to build two types of controls: user controls and custom controls. User controls act somewhat like
borderless forms on which you can "draw" other existing controls. Custom controls provide no default user interface; you
must manage all custom control drawing yourself through source code. This recipe will focus on the user control,
designing a simple control that displays the current time.

Create a new Windows Forms application. For now, we'll just ignore the Form1 form included in the project. To add a new
user control to the project, select the Project Add User Control menu command. Accept the default UserControl1.vb
name, and then click the Add button on the Add New Item form. A blank user control appears, as shown in Figure 14-2.

Figure 14-2. A new user control surface

Our simple user control will include two constituent controls: a label to display the time, and a timer that will trigger once
a second to update the time. First, resize the user control down to a reasonable size. We used a Size property of 96, 24.
Add a Label control named Label1, and set the following properties:

Set AutoSize to False.

Set Location to 0, 0.

Set Size to 96, 24.

Set Text to 12:00am.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set TextAlign to MiddleCenter.

Add a Timer control named Timer1, and set the following properties:

Set Enabled to true.

Set Interval to 1000, which sets it to trigger once every second.

Switch to the source code for the user control through the View Code menu command, and add the following source
code:

 Public Class UserControl1
 Public Event TimeChanged(ByVal sender As UserControl1, _
 ByVal e As System.EventArgs)

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Update every second.
 Dim newTime As String

 If (Me.DesignMode = False) Then
 newTime = Format(Now, "h:mmtt").ToLower()
 If (newTime <> Label1.Text) Then
 Label1.Text = newTime
 RaiseEvent TimeChanged(Me, New System.EventArgs)
 End If
 End If
 End Sub

 Private Sub UserControl1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Always reset the time when first started.
 If (Me.DesignMode = False) Then
 Label1.Text = Format(Now, "h:mmtt").ToLower()
 RaiseEvent TimeChanged(Me, New System.EventArgs)
 End If
 End Sub
 End Class

That's the whole control. It's just about ready to add to the Form1 surface, but you first have to build the project to allow
Visual Studio to create an instance of the control. Build it using the Build Build WindowsApplication1 menu
command.

Switch over to the Form Designer for Form1. If you open the Toolbox, you will see the user control UserControl1 in the
magically added WindowsApplication1 Components section, as shown in Figure 14-3. (The section name will vary if you
gave your project a different name.)

Figure 14-3. The new UserControl1 control in the Toolbox

Double-click the user control in the Toolbox to add it to the form surface. It should display the "12:00am" message we
added to the control's label. However, if you run the application, the running form will display the correct time.

Our user control included a public event named TimeChanged:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our user control included a public event named TimeChanged:

 Public Event TimeChanged(ByVal sender As UserControl1, _
 ByVal e As System.EventArgs)

You can respond to this event from Form1. Open the source code for Form1, and add the following event handler:

 Private Sub UserControl11_TimeChanged(_
 ByVal sender As UserControl1, _
 ByVal e As System.EventArgs) _
 Handles UserControl11.TimeChanged
 MsgBox("Changed!")
 End Sub

Now, when you run the program, a "Changed!" message appears at startup (via the code for the user control's
UserControl1_Load event handler), and also every time the minute changes (via the user control's Timer1_Tick event handler).

Visual Basic 2005 lets you easily design a new user control using mixtures of existing controls. You can also draw on the
user control's surface through its Paint event handler, but you don't have to. (If you wish to update the surface via Paint,
and not through subordinate controls, use a custom control instead of a user control.)

All child controls added to the surface of the user control are "owned" by the user control, not by (in this example) Form1.
This means that your control can monitor any normal control events for its child controls, but the form using your user
control will not know about those events. In this recipe, the user control exposes a Click event that Form1 can monitor. An
event fires any time the user clicks on the user control surface. However, because we covered the surface with a label,
clicks will never reach the user control surface, and the form will never be informed of such click events. If you want
clicks on the label to transfer to the user control, you must manage that yourself. Adding this code to the user control's
source code will do the trick:

 Public Shadows Event Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Private Sub Label1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Label1.Click
 RaiseEvent Click(Me, e)
 End Sub

 Private Sub UserControl1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Click
 RaiseEvent Click(Me, e)
 End Sub

Because the UserControl class (from which our UserControl1 class derives) already exposes a Click event, you have to cover it
up by declaring a new Click event. The Shadows keyword covers up the event in the base. Now add Click event handlers to
capture clicks on both the Label and UserControl surfaces, and pass them on to those who add UserControl1 to their forms. Look
carefully at the UserControl1_Click event handler just above. Make sure that it handles MyBase.Click, and not Me.Click. If you use
Me.Click, a click on the control surface will repeatedly call itself until you run out of stack space.

After adding this code, resize the label a little smaller so that the user can click on the user control surface. Return to the
source code for Form1, and add this code to its class template:

 Private Sub UserControl11_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles UserControl11.Click
 MsgBox("Clicked!")
 End Sub

Now run the program. You will see the "Clicked!" message whether you click on the label or the user control surface.

If you are building a user control for use elsewhere in the same project, any child controls you include on the surface of
your user control will, by default, be accessible to the entire application. For instance, in this recipe's code, you can
access the caption for the user control's label from the code for Form1. Go back to that UserControl11_TimeChanged event
handler you added to Form1. On a new line, type the following:

 UserControl1.L

As you type the letter L, you will see Label1 appear in the IntelliSense pop up. If you don't want this to happen, return to
the user control designer, select Label1, and change its Modifers property to Private instead of Friend.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.3. Describing User Control Properties

Problem

You've added an extra property to your user control, and although it appears in the Properties panel when the control is
added to a form, no description appears for that property.

Solution

Sample code folder: Chapter 14\UserControlProperties

Add a < DescriptionAttribute> attribute to the property, and use it to supply any descriptive text you want as metadata
attached to the property.

Discussion

Create a new Windows Forms project, and add a new user control to the project through the Project Add User
Control menu command. (See Recipe 14.2 for details on designing new user controls.) Name the new control
SimpleControl.vb. For this sample, it's not necessary to add any child controls, but you should change the user control's
BackColor property to ButtonShadow, just so you will recognize the control when it's added to Form1 later.

Access the source code for the user control and add the following code to the class:

 Private hiddenData As String

 Public Property ExtraData() As String
 Get
 Return hiddenData
 End Get
 Set(ByVal value As String)
 hiddenData = value
 End Set
 End Property

This code adds a simple property, ExtraData, to the control, storing the actual value in the private hiddenData member. The
control is complete; build it using the Build Build WindowsApplication1 menu command.

Return to the form designer for Form1. Locate the new SimpleControl control in the Toolbox and add it to the form. If you
look in the Properties panel, you will see the ExTRaData property, but it won't have any description (see Figure 14-4).

To add the description, return to the source code for the user control. Add the following line to the top of the
SimpleControl.vb source-code file:

 Imports System.ComponentModel

Figure 14-4. The ExtraData property, with no description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just before the Public Property ExtraData line in the SimpleControl class, add this new code line:

 <DescriptionAttribute(_
 "Extra details related to this control.")> _

so that the start of the property looks like this:

 <DescriptionAttribute(_
 "Extra details related to this control.")> _
 Public Property ExtraData() As String

Rebuild the project, return to Form1, and select the user control you added to the form earlier. When selected, the
ExTRaData property should now include a description, as shown in Figure 14-5.

Figure 14-5. The ExtraData property with its new description

The System.ComponentModel namespace exposes several attributes that, when used, enhance the elements included in the
Properties panel. One of these attributes, <DescriptionAttribute>, identifies the text that appears in the description portion
of the Properties panel when the matching property is selected. This attribute is stored as metadata attached to the
SimpleControl.ExtraData property, and it is referenced by the control that implements the Properties panel.

See Also

Recipe 14.2 discusses the implementation of user controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.4. Starting Other Applications by EXE, Document, or URL

Problem

You need to start up a separate application, based on either the path to the executable program file, a document with a
registered file extension, or a valid URL for a web page or other resource.

Solution

Use the System.Diagnostics.Process.Start() method to initiate applications external to your own application.

Discussion

The Start() method returns an object of type System.Diagnostics.Process that encapsulates the newly started application.
Process.Start() works with three types of targets:

If you know the path to the executable (EXE) file, you can specify it using the first argument to Process.Start(). If
you don't supply a full path, Windows will search through the path defined for the current user for the program.
Any additional command-line arguments appear in the second argument:

 ' ----- Start up a new Notepad window.
 Process.Start("C:\Windows\Notepad.exe")

 ' ----- Excluding the path and extension works.
 Process.Start("Notepad")

 ' ----- Open a specific file through Notepad.
 Process.Start("Notepad.exe", "C:\DataFile.txt")

You can start an application associated with a registered file extension by specifying a file with that extension as
the argument:

 ' ----- Open Notepad with a specific file.
 Process.Start("C:\DataFile.txt")

The file must already exist and must have a valid registered file extension, or an exception will occur.

You can specify any URL, including a web page or email address (in a mailto:// URL). Any of the accepted URL
prefixes, such as http://, mailto://, or file://, can be included in the URL:

 ' ----- Open a specific web page in the default browser.
 Process.Start("http://www.microsoft.com")

The arguments passed to Process.Start() are similar to those you would enter in the Windows Start Run menu
command prompt, or in the Windows Command Prompt using the Start command.

The Process object returned by Process.Start() includes several properties and methods that let you monitor and control
(somewhat) the new process. To force the new process to exit, use the Process object's Kill() method.

Visual Basic also includes another command from its pre-.NET days that starts up external applications. The Shell()
function accepts two arguments: the command and the window style. The command is the executable filename of the
program to run, with any command-line arguments included. The second argument uses the members of the
Microsoft.VisualBasic.AppWinStyle enumeration to indicate whether the new program's main window should start as
maximized, minimized, or normal, and whether it should immediately receive the input focus. Here are the choices:

AppWinStyle.Hide

AppWinStyle.MaximizedFocus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWinStyle.MinimizedFocus

AppWinStyle.MinimizedNoFocus

AppWinStyle.NormalFocus

AppWinStyle.NormalNoFocus

For example, to start up Notepad with a specific file open, use this command:

 Shell("Notepad.exe C:\DataFile.txt", _
 AppWinStyle.NormalFocus)

You can use only executable programs with Shell(). It does not accept URLs or files with registered extensions.

See Also

Recipe 14.5 shows how to wait for the newly started process to complete before continuing with the main program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.5. Waiting for Applications to Finish

Problem

You need to start up a separate application. Once it starts, you need to wait until that program completes. Your
application can then continue on with its own processing.

Solution

Use the System.Diagnostics. Process.Start() method to initiate the program and return an instance of System.Diagnostics.Process.
Now call that object's WaitForExit() method.

Recipe 14.4 discusses how to use the Start() method, so we won't repeat all that detail here. The following code starts up
Notepad and waits for it to exit before continuing:

 Dim notepadProcess = Process.Start("Notepad.exe")
 notepadProcess.
WaitForExit()
 MsgBox("Welcome back!")

Discussion

The WaitForExit() method accepts an optional millisecond count as its only argument. When used, WaitForExit() waits up to
the number of milliseconds specified and then continues with the program, even if the external process is still running.

Another Process class method, WaitForInputIdle(), waits until the external process has reached a state where it is waiting for
user input before continuing. It also accepts an optional millisecond count.

As discussed in Recipe 14.4, you can also use the Visual Basic Shell() function to start applications. This function includes
two optional arguments (the third and fourth arguments) that control how long the current program should wait for the
external process. The third argument, wait, accepts a Boolean value that, when set to true, causes the current program to
wait until the external program completes. The fourth argument, timeout, indicates the maximum time, in milliseconds,
that the program should wait for the external program to complete before continuing. Its default value is -1, which
causes Shell() to wait forever.

The following statement starts up Notepad and waits up to 10 seconds for it to complete:

 Shell("Notepad.exe", AppWinStyle.NormalFocus, True, 10000)

See Also

Recipe 14.4 discusses the Shell() function and the Process.Start() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.6. List All Running Processes

Problem

You need to display a list of the processes that are currently running on the local workstation.

Solution

Sample code folder: Chapter 14\RunningProcesses

Use the System.Diagnostics.Process class to access a collection of objects representing all currently running processes.

Discussion

This recipe's sample code displays any process with a window title in a listbox. Create a new Windows Forms
application, and add a ListBox control named ListBox1 to Form1. Then add the following event handler to Form1's code:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Show all top-level processes.
 For Each oneProcess As Process In Process.GetProcesses()
 If (oneProcess.MainWindowTitle <> "") Then
 ListBox1.Items.Add("Program: " & _
 oneProcess.MainWindowTitle)
 Else
 ListBox1.Items.Add("Process: " & _
 oneProcess.ProcessName)
 End If
 Next oneProcess
 End Sub

Run the program to display the list of processes. It should generally match the list of processes and applications you
see in the Windows Task Manager, although the form itself ("Form1") will probably not appear, since it wasn't yet
visible when ListBox1 was populated. Figure 14-6 shows the running program with the listbox populated.

The System.Diagnostics.Process class includes a shared member named GetProcesses() that returns a collection of Process
objects, each representing a running process. There are many more processes than just those with window titles; all
running Windows services also appear in this collection.

The Process object includes many properties and methods that let you manage each process. However, your level of
authorization as configured by the system administrator may prevent you from modifying or even viewing process
details.

Figure 14-6. Listing all processes running on a system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.7. Terminating a Running Process

Problem

You need to stop a running process immediately.

Solution

Sample code folder: Chapter 14\ProcessTerminate

Use the Process object's Kill() method to stop the running process.

Discussion

This recipe's code creates a simple program that lets you stop any running application, similar to using the End Task
button on the Windows Task Manager. Create a new Windows Forms application, and add to the form a ListBox control
named ProcessList and a Button control named KillProcess. Change the Button control's Text property to Kill, and set the ListBox
control's Sorted property to TRue. Now open the source code for the form, and replace the default empty class template
with the following code:

 Public Class Form1
 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Display all top-level windows.
 For Each oneProcess As Process In _

Process.GetProcesses()
 If (oneProcess.MainWindowTitle <> "") Then
 ProcessList.Items.Add(New SmallProcess(_
 oneProcess.MainWindowTitle, oneProcess.Id))
 End If
 Next oneProcess
 End Sub

 Private Sub KillProcess_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles KillProcess.Click
 ' ----- Kill the selected process.
 Dim oneProcess As Process
 Dim selectedProcess As SmallProcess

 On Error Resume Next

 If (ProcessList.SelectedIndex = -1) Then Exit Sub
 selectedProcess = CType(ProcessList.SelectedItem, _
 SmallProcess)

 ' ----- Confirm with the user.
 If (MsgBox("Really kill '" & _
 selectedProcess.ToString() & "'?", _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo) <> _
 MsgBoxResult.Yes) Then Exit Sub

 ' ----- Locate and kill the process.
 oneProcess = Process.GetProcessById(selectedProcess.ID)
 oneProcess.Kill()

 ' ----- Remove the process from the list.
 ProcessList.Items.Remove(ProcessList.SelectedItem)
 End Sub
 End Class

 Public Class SmallProcess
 ' ----- A small class that makes it easier to
 ' track processes in the on-screen list.
 Public WindowTitle As String
 Public ID As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub New(ByVal processTitle As String, _
 ByVal processID As Integer)
 WindowTitle = processTitle
 ID = processID
 End Sub

 Public Overrides Function ToString() As String
 Return WindowTitle
 End Function
 End Class

To kill a process, run this program, select a process from the list, and click the Kill button. Be careful: it will stop the
indicated program.

By providing the Process.Kill() method, .NET endows your application with a lot of power. However, the system
administrator may establish limits on the user running your program that will prevent access to or modification of
process state.

This recipe's code includes a secondary class, SmallProcess, that helps keep track of items in the ListBox control. The Items
collection of a ListBox control can hold any type of object, but how to display its own text is up to the object. You can
store an entire Process object in the list, but the output from Process.ToString() is not as user-friendly. By storing just the
parts you need in a separate class instance that includes its own ToString() method, you can get the results you need,
both in terms of display and of access to the process IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.8. Pausing Execution of a Program

Problem

You want to postpone all activities on the current process thread.

Solution

Sample code folder: Chapter 14\PauseExecution

Put the thread to sleep using the System.Threading.Thread.Sleep() method. This method accepts an amount of time to "sleep,"
in milliseconds.

Discussion

Create a new Windows Forms application, and add a Button control named Button1. Now add the following code to the
form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Threading.Thread.Sleep(3000)
 MsgBox("Good Morning")
 End Sub

When you run the program and click on Button1, the "Good Morning" message appears after a three-second pause.

If your program includes only a single thread (the default behavior), putting the thread to sleep puts the entire
application to sleep.

If you pass zero (0) to the Sleep() method, the thread pauses temporarily to allow other busy threads to perform some
processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.9. Control Applications by Simulating Keystrokes

Problem

You need another application to perform some tasks while your application is running, but it doesn't expose any type of
control interface, whether ActiveX or .NET.

Solution

Sample code folder: Chapter 14\UsingSendKeys

Use the My.Computer.Keyboard.SendKeys() method to simulate the user controlling the other application from the keyboard.

Discussion

The following method uses SendKeys() to control the built-in Windows Paint program, using it to convert an existing image
to black and white:

 Public Sub MakeBitmapBW(ByVal sourceFile As String, _
 ByVal destFile As String)
 ' ----- Use the Paint program built into Windows to
 ' convert an existing bitmap file from color to
 ' black and white.
 Dim paintProcess As Process

 On Error Resume Next

 ' ----- Remove the existing output file.
 Kill(destFile)

 ' ----- Start Paint using the original file.
 paintProcess = Process.Start("mspaint.exe", sourceFile)
 appactivate(paintProcess.Id)

 ' ----- Wait a bit for the file to open.
 System.Threading.Thread.Sleep(2000)

 ' ----- Convert the image to black and white. First,
 ' display the Attributes form using Control-E.
 My.Computer.Keyboard.SendKeys("^e", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Alt-B sets the "Black and White" field.
 My.Computer.Keyboard.SendKeys("%b", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Use Enter to accept the change. A confirmation
 ' window will appear. Use Enter for that window
 ' as well.
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(500)
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Save the file using the File->Save As… feature.
 My.Computer.Keyboard.SendKeys("%fa", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Add the filename to the Save As window.
 ' Hopefully, the name has no special characters.
 My.Computer.Keyboard.SendKeys(destFile, True)
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(1000)

 ' ----- Exit the
application.
 My.Computer.Keyboard.SendKeys("%{F4}", True)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

To use this method, pass it the full path to an existing bitmap file and a path to the desired output location.

The SendKeys() method inserts specific keyboard commands into the global keyboard input stream. Those commands
appear as if the user had actually typed them from the keyboard. The first argument to SendKeys() is a string containing
each character to be inserted into the input stream. The second argument, a Boolean, indicates whether SendKeys() should
wait until the active window acknowledges acceptance of the input.

Normally, each character you include in the character string is sent to the active window, one by one. However, some
keys, such as the function keys (F1, F2, etc.) and the arrow keys, don't have single-character equivalents. Instead,
there are special sequences you can use for these keys, most enclosed in curly braces. Some normal characters that
have special meaning to SendKeys() must also appear in curly braces. Table 14-1 lists the text to include in the character
string when you wish to use one of these special keyboard keys.

Table 14-1. Special SendKeys() key sequences
To include this key… …use this text

Backspace {BACKSPACE} or {BS} or {BKSP}

Break {BREAK}

Caps lock {CAPSLOCK}

Caret (^) {^}

Clear {CLEAR}

Close brace (}) {}}

Close bracket (]) {]}

Close parenthesis ()) {)}

Delete {DELETE} or {DEL}

Down arrow {DOWN}

End {END}

Enter ~

Escape {ESCAPE} or {ESC}

F1 through F16 {F1} through {F16}

Help {HELP}

Home {HOME}

Insert {INSERT} or {INS}

Keypad add {ADD}

Keypad divide {DIVIDE}

Keypad enter {ENTER}

Keypad multiply {MULTIPLY}

Keypad subtract {SUBTRACT}

Left arrow {LEFT}

Num lock {NUMLOCK}

Open brace ({) {{}

Open bracket ([) {[}

Open parenthesis (() {(}

Page down {PGDN}

Page up {PGUP}

Percent sign (%) {%}

Plus (+) {+}

Print screen {PRTSC}

Return {RETURN}

Right arrow {RIGHT}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right arrow

Scroll lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up arrow {UP}

For example, if you want to send the number 25, a tab character, and then the number 50 to the input stream, send
the following sequence:

 25{TAB}50

You can also simulate the simultaneous use of the Shift, Control, or Alt keys in combination with other keys. Special
prefix characters represent these three special modification keys:

For Shift, use + (the plus sign).

For Control, use ^ (the caret).

For Alt, use % (the percent sign).

So, to send the Control-C character, use:

 ^c

If you want several characters to be used with one of these three modifiers, surround those keys with parentheses, and
put the modifier just before that set. For instance, to send "hello" with the Shift key held down, use:

 +(hello)

The key string provides a shortcut to transmit the same key multiple times, too. To use it, enclose the character to
repeat and a count within curly braces. Separate the character and the count with a space. The following text sends 10
question marks:

 {? 10}

There are some caveats when using SendKeys(). Just because you include characters in the input stream doesn't mean
that they will arrive at the program you target. Remember, the user still has access to the real keyboard, and to the
mouse. The user could start pressing keys and clicking around the display right in the middle of your SendKeys() action,
and you would have no control over the destination or sequence of the streaming input.

Similarly, even if you use True for the second argument to have your program wait until the keys are processed, there
is no guarantee that the impact of those keys on the destination will complete before the wait is complete. A target
program may acknowledge receipt of an input character and start to process it, but it could take several seconds (or
longer) for it to complete the associated action. Meanwhile, your call to SendKeys() has exited, and your code is
continuing on its way, possibly starting another call to SendKeys().

If you can control the other application through more direct means, such as through an exposed library or interface,
that is preferred. Avoid having an application control itself with SendKeys().

Besides the SendKeys() command within the My namespace, Visual Basic includes a SendKeys class in the System.Windows.Forms
namespace. This class includes shared Send() and SendWait() methods. Each accepts a string that is identical to the one
used with the SendKeys() method. Except for slight differences in syntax and location in the .NET hierarchy, there is no
essential difference between the My version and the Forms version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.10. Watching for File and Directory Changes

Problem

You need to monitor a directory, watching for any files that are added, removed, or changed.

Solution

Sample code folder: Chapter 14\FileWatcher

Use a FileSystemWatcher object and its events notify you of any changes in a specific directory or to specific files.
System.IO.FileSystemWatcher includes many properties that let you adjust the types of files or changes to monitor. It also
includes distinct events for most types of changes.

Discussion

The code in this recipe implements a simple test program that watches for any change in a selected directory. Create a
new Windows Forms application, and add the following controls to Form1:

A TextBox control named WatchDirectory.

A TextBox control named WatchFilter.

A CheckBox control named IncludeSubdirectories. Change its Text property to Include Subdirectories.

A CheckedListBox control named WatchFor.

A Button control named StartStop. Change its Text property to Start.

A ListBox control named DirectoryEvents.

Add additional labels, if desired, and arrange the form to look like the one in Figure 14-7.

Open the source-code file for the form, and add the following code to the Form1 class template:

 Public WithEvents WatchForChanges As IO.FileSystemWatcher

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Add the types of actions. The Enum class's
 ' GetNames method returns a collection of the
 ' enumeration type's members as strings. Since
 ' "Enum" is a keyword in Visual Basic, the
 ' "Enum" class must be escaped with brackets.
 For Each scanFilters As String In [Enum].GetNames(_
 GetType(IO.NotifyFilters))
 WatchFor.Items.Add(scanFilters)

Figure 14-7. Controls for the directory watcher sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next scanFilters
 End Sub

 Private Sub StartStop_Click(ByVal sender As System.
Object, _
 ByVal e As System.EventArgs) Handles StartStop.Click
 ' ----- Start or stop watching a directory.
 Dim monitorEvents As Integer = 0

 If (StartStop.Text = "Start") Then
 ' ----- Check for valid settings.
 If (My.Computer.FileSystem.DirectoryExists(_
 WatchDirectory.Text) = False) Then
 MsgBox("Please specify a valid directory.")
 Exit Sub
 End If
 If (WatchFor.SelectedItems.Count = 0) Then
 MsgBox("Please specify the events to watch for.")
 Exit Sub
 End If

 ' ----- Build the events setting. The Enum class's
 ' Parse() method converts a string back to its
 ' Integer enumeration value, in this case,
 ' from the IO.NotifyFilters enumeration.

For Each scanEvents As String In WatchFor.CheckedItems
 monitorEvents = monitorEvents Or _
 CInt([Enum].Parse(GetType(IO.NotifyFilters), _
 scanEvents))
 Next scanEvents

 ' ----- Start the watching process.
 DirectoryEvents.Items.Clear()
 WatchForChanges = New IO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WatchForChanges = New IO.
FileSystemWatcher
 WatchForChanges.SynchronizingObject = Me
 WatchForChanges.Path = WatchDirectory.Text
 WatchForChanges.Filter = WatchFilter.Text
 WatchForChanges.NotifyFilter = monitorEvents
 WatchForChanges.IncludeSubdirectories = IncludeSubdirectories.Checked
 WatchForChanges.EnableRaisingEvents = True
 StartStop.Text = "Stop"
 Else
 ' ----- End the watching process.
 WatchForChanges.EnableRaisingEvents = False
 WatchForChanges.Dispose()
 WatchForChanges = Nothing
 StartStop.Text = "Start"
 End If
 End Sub

 Private Sub WatchForChanges_Changed(ByVal sender As Object, _
 ByVal e As System.IO.
FileSystemEventArgs) _
 Handles WatchForChanges.Changed
 DirectoryEvents.Items.Add("Changed: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Created(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles WatchForChanges.Created
 DirectoryEvents.Items.Add("Created: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Deleted(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles WatchForChanges.Deleted
 DirectoryEvents.Items.Add("Deleted: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Renamed(ByVal sender As Object, _
 ByVal e As System.IO.RenamedEventArgs) _
 Handles WatchForChanges.Renamed
 DirectoryEvents.Items.Add("Renamed: " & e.OldName & _
 " to " & e.Name)
 End Sub

To use the program, enter a valid directory in the WatchDirectory field, optionally enter a filename or wildcard in the
WatchFilter field, and select one or more entries in the WatchFor list. Now click the StartStop button, and begin making
changes in the target directory.

The FileSystemWatcher class monitors activity in a specific directory and raises events based on changes in that directory.
The class often reports any change immediately. This means that if you create a new file in the directory and take
several minutes to fill it with data before closing it, FileSystemWatcher will report the creation of the file at the start of its
life, not when it was closed. This can lead to interaction issues in your program. When you receive notification of a new
file in a monitored directory, you should confirm that the complete file has been written out before processing it.

The FileSystemWatcher class uses a shared memory buffer for part of its processing. This buffer is limited in size, so if you
experience a lot of changes in a directory, the buffer may "overflow, " and you will lose notifications. The object
includes an Error event that will let you know when this happens. Also, you can adjust the InternalBufferSize property to
allocate more buffer space.

The Toolbox displayed for a Windows Forms form in Visual Studio includes a FileSystemWatcher control. This control is the
same as the class included in this recipe's sample code. If you choose to declare the object through code instead of as a
control, make sure you set its SynchronizingObject property to the active form (as is done in the sample code) to prevent
intrathread errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.11. Creating an Icon in the System Tray

Problem

You wish to use a System Tray icon to regularly notify the user of the status of your application.

Solution

Sample code folder: Chapter 14\SystemTrayIcon

Add a NotifyIcon control to your application's form. It includes properties that simplify displaying a System Tray icon and
its related notification "balloon.". Once you've added the control to your form, assign an icon (.ico) file or image to its
Icon property, and ensure that its Visible property is set to true. That's it. If you want to enable a tooltip for the icon, set
the Text property as needed.

Discussion

The NotifyIcon control also includes support for simple notification balloons. Use the BalloonTipIcon, BalloonTipText, and
BalloonTipTitle properties to set the icon, main text, and title of the balloon, respectively.

Create a new Windows Forms application. Add a Button control named Button1 to the form, and set its Text property to
Show Warning. Then add a NotifyIcon control named NotifyIcon1 to the form. Set the following properties on that control:

Set BalloonTipIcon to Warning.

Set BalloonTipText to Your system is in need of repair.

Set BalloonTipTitle to Repair Warning.

Set the Icon property to any valid .ico icon file. (See below for a source for icon files.)

Now add the following source code to Form1's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Show the balloon for 3 seconds by default.
 NotifyIcon1.ShowBalloonTip(3000)
 End Sub

Run the program, and click on the Show Warning button to view the notice bubble, as shown in Figure 14-8.

Figure 14-8. A notification icon with a warning balloon

The NotifyIcon control includes many events that can detect various types of clicks or double-clicks on the icon or its
balloon.

If you need a notification icon for your application, you can try one of the many icons included with Visual Studio.
Depending on how you installed the product, you may find a compressed folder named VS2005ImageLibrary.zip in the
Common7\ VS2005ImageLibrary folder of the main product install folder (usually at c:\Program Files\Microsoft Visual
Studio 8). This archive includes an icons folder with many professionally designed icons in it. You can include them

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Studio 8). This archive includes an icons folder with many professionally designed icons in it. You can include them
freely in applications for your personal use, but be sure to read the Visual Studio license agreement if you plan to use
these icons in your commercial applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.12. Accessing the Clipboard

Problem

You want to store data on the clipboard or retrieve data already found on the clipboard.

Solution

Use the My.Computer. Clipboard object to get and set data on the clipboard. This object includes four types of methods:

Contains… methods that indicate whether data of a particular type can be found right now on the clipboard

Get… methods that retrieve data already found on the clipboard in a specific data format

Set… methods that allow you to place data onto the clipboard in one or more predefined or custom formats

A Clear() method that removes all data from the clipboard

Each Contains…, Get…, and Set… method sets focuses on six types of data:

Text

Images

Sound files

Sets of files

Custom data

Custom data in multiple formats

To retrieve plain text data found on the clipboard, use the following statement:

 Dim fromClipboard As String = _

My.Computer.Clipboard.GetText()

Use the Clear() method to remove all data from the clipboard:

 My.Computer.Clipboard.Clear()

Discussion

The My.Computer.Clipboard object includes six distinct Get… methods that let you retrieve the contents of the system
clipboard, each one based on a different type of data:

GetAudioStream()

Retrieves audio content from the clipboard as a System.IO.Stream object. Any .NET features that support such
streams can use the returned data. The following block of code plays a sound file retrieved from the clipboard:

 My.Computer.Audio.Play(_
 My.Computer.Clipboard.GetAudioStream(), _
 AudioPlayMode.Background)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetFileDropList()

Retrieves a list of file paths as a String collection. This collection is created by any application that stores
compatible file lists on the clipboard. For instance, if you copy files in Windows Explorer, those files (but not
their contents) appear on the clipboard as a File Drop List. Use this code to retrieve that list:

 Dim allFiles As System.Collections.Specialized. _
 StringCollection = _
 My.Computer.
Clipboard.GetFileDropList()
 Dim oneFile As String

 For Each oneFile In allFiles
 ' ----- Process each file here.
 Next oneFile

GetImage()

Retrieves any image data stored on the clipboard as a System.Drawing.Image object.

GetText()

Retrieves text from the clipboard. GetText() includes an optional parameter that lets you specify the specific type
of text to retrieve, using the values of the System.Windows.Forms.TextDataFormat enumeration. Their names equate to
the type of text retrieved:

TexTDataFormat.CommaSeparatedValue

TextdataFormat.Html

TextdataFormat.Rtf

TextdataFormat.UnicodeText

If you don't include the text type argument, GetText() retrieves the text in the most basic text format available
on the clipboard.

GetData()

Retrieves data in a custom format from the clipboard. All data stored on the clipboard includes a format name.
You must pass a format name to the Getdata() argument to retrieve data of that type. For example:

 Dim roundaboutText = _
 CStr(My.Computer.Clipboard.GetData("Text"))

The data is returned as a System.Object, and it must be converted to its final data type manually.

GetDataObject()

The clipboard can store data in multiple formats at once. GetdataObject() returns the complete set of all stored
data formats, using an interface defined through System.Windows.Forms.IDataObject. Once retrieved, you can query
the names of each format using this interface's GetFormats() method, check for a specific format using
GeTDataPresent(), and retrieve specific data as a System.Object using GeTData(). The following code displays the
names of each format included on the clipboard:

 MsgBox(Join(My.Computer.Clipboard.GetDataObject(). _
 GetFormats(True), ", "))

Before attempting to retrieve data in a specific format from the clipboard, it is a good idea to confirm that such data
exists. (If the specified data type does not exist, the Get… methods return the value Nothing.) The My.Computer. Clipboard
object includes several such confirmation methods that parallel the Get… methods listed above, each of which returns a
Boolean value indicating whether or not the specified data is available:

 Clipboard.ContainsAudio()

Clipboard.ContainsData(formatName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard.ContainsFileDropList()

Clipboard.ContainsImage()

Clipboard.ContainsText(formatType)

Since the system clipboard is a resource shared among all running programs, and since the user can modify the
clipboard through another program at any time, it is possible that one of these Contains… methods will return true for a
particular format, but the related Get… method, even when used immediately, will return nothing.

A group of Set… methods let you store data back to the clipboard in a variety of formats:

SetAudio()

Stores audio data on the clipboard. The lone argument to this method must be either a Byte array or a Stream
containing audio data.

SetFileDropList()

Stores a list of files on the clipboard. You must pass a collection of strings using the
System.Collections.Specialized.StringCollection to this method. For example:

 Dim filesToInclude As New System.Collections. _
 Specialized.StringCollection
 filesToInclude.Add("c:\datafile.txt")
 filesToInclude.Add("c:\temp\workfile.txt")
 My.Computer.Clipboard.SetFileDropList(filesToInclude)

SetImage()

Stores an image on the clipboard. Pass this method an argument of type System.Drawing.Image.

SetText()

Stores text in a specific format on the clipboard. The first argument is a String containing the text to add. An
optional second argument uses the TexTDataFormat enumeration discussed in the earlier GetText() entry.

SetData()

Stores any type of custom data on the clipboard, based on a format name you provide:

 My.Computer.Clipboard.SetData("MyCustomFormat", dataObject)

SetDataObject()

Lets you append multiple formats at once to the clipboard. You must pass this method an instance of
System.Windows.Forms.DataObject, populated with data you provide. This object includes each of the Set… methods
used for the clipboard itself, including SetText() and SetData():

Dim toClipboard As New System.Windows.Forms.DataObject
 toClipboard.SetData("MyCustomFormat", dataObject)
 toClipboard.SetText(dataObject.ToString())
 My.Computer.Clipboard.SetDataObject(toClipboard)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.13. Adding Tooltips to Controls

Problem

You want a tooltip to appear when the user hovers the cursor (mouse) over a control.

Solution

Use the ToolTip control, included in the Windows Forms Toolbox, on your form. Figure 14-9 shows the ToolTip control in the Toolbox and applied to the
form.

Figure 14-9. The ToolTip control added to a form

Discussion

When applied to a form, the ToolTip control enhances all displayable on-form controls, adding a new pseudoproperty to the properties collection
each control. If you add a ToolTip control named ToolTip1 to the form, each visible control includes a new "ToolTip on ToolTip1" property. For a specific
control, fill this pseudoproperty with the text to display in the tooltip. Figure 14-10 shows a tooltip in use on a running form.

Figure 14-10. A tooltip in use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-10. A tooltip in use

Normally, adding a single ToolTip control to a form is sufficient for all your tooltip display needs. While each control communicates its own tooltip
display text through the added ToolTip pseudoproperty, the ToolTip control itself manages how that text gets displayed, through its own property
settings. For instance, the IsBalloon property, when set to true, displays the tooltip in a balloon display instead of a plain square (see

Figure 14-11. A balloon-shaped tooltip

You can also take full control of the drawing of the tooltip by setting its OwnerDraw property to TRue and responding to the control's
Chapter 9 for examples of drawing to a custom graphics surface.

See Also

Recipe 14.11 shows how to add tooltips to notification icons in the System Tray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.14. Dragging and Dropping Files to a ListBox

Problem

You want a ListBox control to accept file paths dragged to it from Windows Explorer.

Solution

Sample code folder: Chapter 14\DragDropFiles

Use the control's DragEnter and DragDrop events to watch for dropped file lists and process them when dropped.

Discussion

Create a new Windows Forms application, and add a ListBox control named ListBox1 to Form1. Set this control's AllowDrop
property to TRue. Now add the following code to the form's source code:

 Private Sub ListBox1_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragEnter
 ' ----- Allow the dropping of file lists.
 If (e.Data.GetDataPresent(DataFormats.FileDrop) = _
 True) Then
 e.Effect = DragDropEffects.Copy
 End If
 End Sub

 Private Sub ListBox1_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragDrop
 ' ----- Process each dropped file.
 For Each oneFile As String In _
 e.Data.GetData(DataFormats.FileDrop)
 ListBox1.Items.Add(oneFile)
 Next oneFile
 End Sub

To test the program, run it, and then drag one or more files from Windows Explorer (or any other program that
supports the dragging of files). Figure 14-12 shows the result of a multifile drag operation.

Accepting dragged files in a control is a two-step process:

1. Inform the sender of your acceptance criteria through the DragEnter event handler.

2. Accept the files through the DragDrop event handler.

In this recipe's code, the DragEnter event examines the data being dragged into the ListBox to determine if it will accept
the content. In this case, it looks for a "file drop list" (identified by DataFormats.FileDrop). If it finds one, it tells the sender
that it will accept the files through a Copy operation, setting the e.Effect property. By default, e.Effect is set to
DragDropEffects.None, which indicates that the content is not acceptable.

Figure 14-12. Three dragged files accepted by a ListBox control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the DragDrop event, the dragged content exposed through e.Data is accessed, and its "file drop list" content is extracted
as a string array, which is then transferred to the ListBox control.

If you are familiar with the clipboard operations exposed through the My.Computer.Clipboard object, you will recognize the
use of the "file drop list" also available through the clipboard.

See Also

Recipe 14.15 shows you how to perform inter-ListBox drag-and-drop operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.15. Dragging and Dropping Between ListBox Controls

Problem

You have two ListBox controls on a form, and you want the user to be able to drag and drop items between the lists.

Solution

Sample code folder: Chapter 14\DragDropLists

Use code similar to that found in Recipe 14.14 in conjunction with the ListBox control's DoDragDrop() method to enable
dragging and dropping between ListBoxes.

Discussion

Create a new Windows Forms application, and add two ListBox controls named ListBox1 and ListBox2 to the form. In both
controls, set the AllowDrop property to TRue, and set the SelectionMode property to MultiExtended. In the properties for ListBox1,
select the Items property, and click the "…" button in its data value area. In the String Collection Editor window that
appears, enter multiple lines of text, separating them by pressing the Enter key. (We entered the words "One" through
"Six.") Figure 14-13 shows this process in action.

Figure 14-13. Using the ListBox's String Collection Editor

Close the String Collection Editor; you should have a form that looks like Figure 14-14.

Figure 14-14. Two listboxes with draggable items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-14. Two listboxes with draggable items

Now add the following code to the form:

 Private
dragBounds As Rectangle
 Private dragMethod As String

 Private Sub ListBox1_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragEnter
 ' ----- Yes, we accept the items.
 If (e.Data.GetDataPresent(ListBox2.SelectedItems. _
 GetType()) = True) Then _
 e.Effect = DragDropEffects.Move
 End Sub

 Private Sub ListBox1_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragDrop
 ' ----- Accept the dropped items.
 For Each oneItem As Object In _
 e.Data.GetData(ListBox2.SelectedItems.GetType())
 ListBox1.Items.Add(oneItem)
 Next oneItem
 End Sub

 Private Sub ListBox1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseDown, ListBox2.MouseDown
 ' ----- Prepare the draggable content.
 If (CType(sender, ListBox).SelectedItems.Count = 0) _
 Then Return

 ' ----- Don't start the drag yet. Wait until we move a
 ' certain amount.
 dragBounds = New Rectangle(New Point(e.X - _
 (SystemInformation.DragSize.Width / 2), _
 e.Y - (SystemInformation.DragSize.Height / 2)), _
 SystemInformation.DragSize)
 If (sender Is ListBox1) Then
 dragMethod = "1to2"
 Else
 dragMethod = "2to1"
 End If
 End Sub

 Private Sub ListBox1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseMove
 ' ----- Ignore if not dragging from ListBox1.
 If (dragMethod <> "1to2") Then Return

 ' ----- Have we left the drag boundary?
 If (dragBounds.Contains(e.X, e.Y) = False) Then
 ' ----- Start the drag-and-drop operation.
 If (ListBox1.DoDragDrop(ListBox1.SelectedItems, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DragDropEffects.Move) = _
 DragDropEffects.Move) Then
 ' ----- Successful move. Remove the items from
 ' this list.
 Do While ListBox1.SelectedItems.Count > 0
 ListBox1.Items.Remove(ListBox1.SelectedItems(0))
 Loop
 End If
 dragMethod = ""
 End If
 End Sub

 Private Sub ListBox1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseUp, ListBox2.MouseUp
 ' ----- End of drag-and-drop.
 dragMethod = ""
 End Sub

 Private Sub ListBox2_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox2.DragEnter
 ' ----- Yes, we accept the items.
 If (e.Data.GetDataPresent(ListBox1.SelectedItems. _
 GetType()) = True) Then _
 e.Effect = DragDropEffects.Move
 End Sub

 Private Sub ListBox2_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox2.DragDrop
 ' ----- Accept the dropped items.
 For Each oneItem As Object In _
 e.Data.GetData(ListBox1.SelectedItems.GetType())
 ListBox2.Items.Add(oneItem)
 Next oneItem
 End Sub

 Private Sub ListBox2_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox2.MouseMove
 ' ----- Ignore if not dragging from ListBox2.
 If (dragMethod <> "2to1") Then Return

 ' ----- Have we left the drag boundary?
 If (dragBounds.Contains(e.X, e.Y) = False) Then
 ' ----- Start the drag-and-drop operation.
 If (ListBox2.DoDragDrop(ListBox2.SelectedItems, _
 DragDropEffects.Move) = _
 DragDropEffects.Move) Then
 ' ----- Successful move. Remove the items from
 ' this list.
 Do While ListBox2.SelectedItems.Count > 0
 ListBox2.Items.Remove(ListBox2.SelectedItems(0))
 Loop
 End If

dragMethod = ""
 End If
 End Sub

If you look closely at this code, you will find that much of it is replicated. To support two-way dragging, all code that
applies to ListBox1 appears again for ListBox2.

Run this program, and then drag items from one listBox to the other. You can also multiselect and move multiple items
at once.

Many controls support the DoDragDrop() method. It accepts data content to send and a set of allowed send methods:

 If (SomeControl.DoDragDrop(dataContent, _
 DragDropEffects.Move) = DragDropEffects.Move) Then
 ' ----- Successful move.
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calling this function is easy, and it can be done at any time. Most of the code in this sample deals with determining
what content can be sent and when.

The DragDropEffects enumeration, used for the second DoDragDrop() argument, indicates which operations the supplier of
the data is permitting with the supplied content. Its Move, Copy, and Link enumeration members can be joined with a
bitwise Or to indicate multiple allowed features:

 ' ----- Allow copy and move.
 Select Case SomeControl.DoDragDrop(dataContent, _
 DragDropEffects.Move Or DragDropEffect.Copy)
 Case DragDropEffects.None
 ' ----- The target did not accept the content.
 Case DragDropEffects.Copy
 ' ----- The target copied the content.
 Case DragDropEffects.Move
 ' ----- The target moved the content.
 End Select

See Also

Recipe 14.14 shows you how to accept dragged-and-dropped files in a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.16. Disposing of Objects Appropriately

Problem

You've created an object that allocates its own resources, and you're ready to get rid of it. What's the correct method?

Solution

Visual Basic provides three primary methods for getting rid of objects that implement the IDisposable interface:

Call the object's Dispose() method, exposed by the IDisposable interface and implemented by the object's type. This
is the most direct method of freeing resources. The object should not be used once Dispose() has been called.

Use Visual Basic's Using statement. This block statement automatically calls the object's Dispose() method on your
behalf when the block ends, or execution jumps out of the block for any reason.

Many of the GDI+ drawing objects implement IDisposable and should be disposed of properly when no longer in
use. The Pen object is one such class. The following code uses the Using statement to declare and properly
dispose of a Pen object:

 Using workPen As New Pen(Color.Red)
 ' ----- Add drawing code here using that red pen.
 End Using
 ' ----- workPen has been released and is unavailable.

Let the object go out of scope, or set it to Nothing. This practice is usually undesirable because the garbage-
collection process, and not you, will control when the additional resources get released.

Discussion

The constructor for a class may allocate shared resources that need to be properly released as quickly as possible when
no longer needed. Some classes implement their own custom method for doing this, such as including a "release all
resources" method. You must examine and follow the documented standards for such objects.

Fortunately, most objects that hold such external or shared resources implement the System.IDisposable interface. This
interface exposes a standard Dispose() method that your code or other standardized generic components can call to free
important resources. You can add IDisposable to your own classes, as follows:

 Class SomeClass
 Implements IDisposable

 Protected Overridable Sub
Dispose() _
 Implements IDisposable.Dispose
 ' ----- Add cleanup code here.
 End Sub
 End Class

For classes that do not allocate shared or external resources, or where holding on to such resources for a long time will
not degrade application or system performance, the standard Finalize() deconstructor may be used to free held resources.
For such classes, no special processing is needed to destroy the object. Simply wait for the object to be released on its
own, or set it to Nothing.

If you implement IDisposable on a custom class, you should also override the Finalize() method to ensure that resources are
freed even if the user of the class forgets to call Dispose():

 Protected Overrides Sub Finalize()
 ' ----- Add cleanup guarantee here.
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.17. Fine-Tuning Garbage Collection

Problem

The .NET garbage-collection process is something of a mystery, a black box that has a mind of its own. Does a
programmer have any control over the disposal process?

Solution

The System.GC object exposes several methods that let you "help" the garbage-collection process, either for a specific
object or for the entire garbage system.

When you finish using an object by setting it to Nothing or by letting it otherwise become unused (go out of scope), it is
added to the garbage-collection system for eventual finalization and disposal. Finalization occurs when the object's
Finalize() method is called. Disposal occurs when the memory allocated to the object is finally reclaimed and made
available for use by other managed (or even unmanaged) uses.

Garbage collection occurs in waves, or generations. When an object first enters the system, it appears in Generation 0
(zero). If, after a while, the object has not yet been finalized or disposed of, it is moved to the next generation,
Generation 1. Not all platforms support this system of aging. Use the System.GC.MaxGeneration property to determine the
generation of the longest-lived object. This property always returns zero on platforms that do not use aging.

Discussion

You can use the following members of System.GC to help manage the garbage-collection system in memory-critical
applications:

AddMemoryPressure() and RemoveMemoryPressure()

The garbage-collection system concerns itself only with managed memorymemory allocated through .NET
features. Unmanaged memory does not go through the collection process. However, the collection process does
take the amount of available memory, both managed and unmanaged, into account when determining how
quickly to free resources. The AddMemoryPressure() method accepts a byte count argument and tells the garbage
collector, "Act as if this amount of unmanaged memory has actually been allocated." Depending on the size of
the pressure, the collection process will behave differently due to the perceived changes in available memory.

You must later reverse the pressure allocation with the RemoveMemoryPressure() method, using the same byte
count supplied with the original pressure request. You can have multiple pressure requests active at once.

Collect()

This method forces the immediate collection (finalization and disposal) of garbage. By default, this method
collects garbage in all generations. You can also pass it a generation number, and it will collect garbage only
between Generation 0 and the generation number of the argument.

CollectionCount()

This method returns a count of the number of times garbage has been collected for a specific generation
number. The generation number is passed as an argument.

GetGeneration()

If you have access to a reference object that has already entered the garbagecollection system, passing it as an
argument to GetGeneration() returns the generation number in which that object appears.

GetTotalMemory()

This method returns an estimate of the total allocated managed memory. It accepts a Boolean argument that, if
true, allows garbage collection to occur before the estimate is calculated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

true, allows garbage collection to occur before the estimate is calculated.

KeepAlive()

Normally, when an object goes out of scope, you don't care when the garbagecollection process destroys it.
However, if you allocate some managed memory that you will share with or pass to an external or unmanaged
process (such as an ActiveX DLL function), and that process will use the memory beyond your local use of it,
the garbage collector should delay processing of the object until it is truly no longer in use. The KeepAlive()
method helps you force such a delay.

To use KeepAlive(), you pass it a reference to the object to retain, and you call this method when you no longer
wish to retain it. That is, the call to KeepAlive() says, "Keep the object alive, but only until this point; after this
call, it can go to garbage collection." For this reason, calls to GC.KeepAlive() generally appear near the end of a
method or block of code.

SuppressFinalize() and ReRegisterForFinalize()

Passing an object reference to SuppressFinalize() tells the garbage collector, "Don't call this object's Finalize()
method before disposing of the object." This method is most commonly used with objects that implement the
System.IDisposable interface. If you clean up all allocated resources during the call to Dispose(), such that there is
nothing more for the Finalize() method to do, adding a call to SuppressFinalize() disables the unneeded call to Finalize(
).

Visual Studio normally adds some template code to your class when you declare it using Implements IDisposable.
This template code includes a call to SuppressFinalize(). You may or may not wish to retain this call, depending on
your needs.

If you use the SuppressFinalize() method but later find that you need to reenable the finalization process for an
object, call the ReRegisterForFinalize() method.

WaitForPendingFinalizers()

This method suspends execution of the application until all relevant objects in the garbage collector have had
their Finalize() methods called.

Most of these methods are designed for applications with advanced memory-allocation and processing needs. In most
ordinary applications, only the KeepAlive() and SuppressFinalize() methods will find common use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.18. Moving the (Mouse) Cursor

Problem

You want to reposition the cursor (that is, the mouse pointer) programatically.

Solution

Sample code folder: Chapter 14\MoveMouse

Modify the Position property of the System.Windows.Forms. Cursor object with a new System.Drawing.Point containing the new
location.

Discussion

Create a new Windows Forms project, and add two Button controls named Button1 and Button2. Now add the following code
to the form's class:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Windows.Forms.Cursor.Position = New Point(_
 Me.PointToScreen(Button2.Location).X + _
 Button2.Width / 2, _
 Me.PointToScreen(Button2.Location).Y + _
 Button2.Height / 2)
 End Sub

When you run the program and click on Button1, the cursor centers itself over Button2.

All controls on a form use the client coordinate system for their positions. Each control's X and Y locations are based on
the upper-left corner of the form's client area, the rectangle that is just inside of the form's border. The cursor,
however, is a screen-wide resource, and it uses the coordinates for the entire screen, with its X and Y positions offset
from the upper-left corner of the screen. To move the cursor based on a screen position, you must translate between
the two coordinate systems.

The form includes two methods to perform this translation: PointToScreen(), which converts a client rectangle location to a
matching screen location, and PointToClient(), which translates in the opposite direction. Actually, every control on the
form also includes these two methods. However, all points translated using a control's translation methods are based on
the upper-left corner of the control (that is, on its client area), and not on the upper-left corner of the form's client
rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.19. Intercepting All Key Presses on a Form

Problem

You have a form that needs to watch for certain keys and process them before any control on the form recognizes
those keys.

Solution

Sample code folder: Chapter 14\InterceptKeys

Use the form's KeyPreview property to control access to the form's KeyDown, KeyUp, and KeyPress events.

Discussion

Create a new Windows Forms application, and add a single TextBox control named TextBox1. Set the form's KeyPreview
property to TRue. Now add the following code to the form's class:

 Private Sub Form1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 If (e.KeyCode = Keys.F5) Then MessageBox.Show("Form: F5")
 e.Handled = True
 End Sub

 Private Sub TextBox1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles TextBox1.KeyDown
 If (e.KeyCode = Keys.F5) Then MessageBox.Show("Text: F5")
 End Sub

Run the program, and press the F5 key when the input focus is in the text box. You should receive only the "Form: F5"
message.

Modify the program by commenting out the e.Handled = True line in the form's KeyDown event handler, and then run the
program again. This time, you will receive both messages when you press F5.

Modify the program once again, setting the form's KeyPreview property to False. When you run the program and press F5,
only the "Text: F5" message will appear.

Normally, a form ignores all keyboard input whenever a control on that form has the input focus. But you can alter that
behavior by setting the KeyPreview property to TRue. Once set, the program sends all keyboard input first to the form's
key-focused event handlers, and after that it sends those same key events to the active control. Stopping processing at
the form level is accomplished by setting the e.Handled property to true in any of the form-level keyboard event handlers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.20. Accessing the Registry

Problem

You wish to read or write keys and values in one of the registry hives.

Solution

Sample code folder: Chapter 14\RegistryAccess

Use the My.Computer.Registry object and its members to access and update portions of the registry.

Discussion

This recipe's source code implements a read-only (and highly simplified) version of the Windows RegEdit application.
Create a new Windows Forms application, and add the following controls to Form1:

A treeView control named RegistryTree.

A ListBox control named RegistryValues.

A TextBox control named ValueData. Set its Multiline property to true, its ScrollBars property to Vertical, and its ReadOnly
property to TRue.

Add some informational labels if desired, and arrange the controls so the form looks like Figure 14-15.

Now add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Load the root objects.
 Dim rootNode As TreeNode
 Dim childNode As TreeNode

 rootNode = RegistryTree.Nodes.Add("My Computer")

Figure 14-15. The form and controls for the registry viewer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 childNode = rootNode.Nodes.Add("HKEY_CLASSES_ROOT")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_CURRENT_USER")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_LOCAL_MACHINE")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_USERS")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_CURRENT_CONFIG")
 childNode.Nodes.Add("")

 rootNode.Expand()
 End Sub

 Private Function BuildRegistryPath(_
 ByVal fromNode As TreeNode) As String
 ' ----- Traverse a tree backward, building the node path.
 If (fromNode.Parent Is Nothing) Then
 ' ----- This is the root node.
 Return "\"
 Else
 ' ----- This is an intermediate node.
 Return BuildRegistryPath(fromNode.Parent) & _
 "\" & fromNode.Text
 End If
 End Function

 Private Function GetHiveFromName(ByVal hiveName As String) _
 As Microsoft.Win32.
RegistryKey
 ' ----- Given the name of a hive, return its key.
 Select Case hiveName
 Case "HKEY_CLASSES_ROOT"
 Return My.Computer.Registry.ClassesRoot
 Case "HKEY_CURRENT_USER"
 Return My.Computer.Registry.CurrentUser
 Case "HKEY_LOCAL_MACHINE"
 Return My.Computer.Registry.LocalMachine
 Case "HKEY_USERS"
 Return My.Computer.Registry.Users
 Case "HKEY_CURRENT_CONFIG"
 Return My.Computer.Registry.CurrentConfig
 Case Else
 Return Nothing
 End Select
 End Function

 Private Function GetKeyFromNode(ByVal whichNode As TreeNode) _
 As Microsoft.Win32.RegistryKey
 ' ----- The user is just about to expand a node. If it
 ' includes a blank node, retrieve the actual
 ' child nodes from the registry.
 Dim registryPath As String
 Dim hiveName As String
 Dim registryKey As Microsoft.Win32.RegistryKey

 ' ----- Access this part of the registry.
 registryPath = BuildRegistryPath(whichNode).Substring(2)
 If (registryPath.Contains("\") = True) Then
 ' ----- Extract the hive and path parts.
 hiveName = registryPath.Substring(0, _
 registryPath.IndexOf("\"c))
 registryPath = registryPath.Substring(_
 hiveName.Length + 1)
 Else
 ' ----- The active node is a hive.
 hiveName = registryPath
 registryPath = ""

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 registryPath = ""
 End If

 ' ----- Obtain the right hive.
 registryKey = GetHiveFromName(hiveName)
 If (registryKey Is Nothing) Then Return Nothing

 ' ----- Obtain the right subkey, if needed.
 If (registryPath <> "") Then _
 registryKey = registryKey.OpenSubKey(registryPath)

 ' ----- This is the right key.
 Return registryKey
 End Function

 Private Sub
RegistryTree_AfterSelect(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms.TreeViewEventArgs) _
 Handles RegistryTree.AfterSelect
 ' ----- Display the values associated with a node.
 Dim registryKey As Microsoft.Win32.RegistryKey

 ' ----- Clear any existing data.
 RegistryValues.Items.Clear()
 ValueData.Clear()

 ' ----- Ignore if this is the root node.
 If (e.Node.Parent Is Nothing) Then Return

 ' ----- Get the registry key associated with this
 ' tree node.
 registryKey = GetKeyFromNode(e.Node)

 ' ----- There is always a default value.
 RegistryValues.Items.Add("(Default)")

 ' ----- Get all of the values of this key, and add them
 ' to the list.
 Me.Cursor = Cursors.WaitCursor
 Try
 For Each oneValue As String In _
 registryKey.GetValueNames()
 RegistryValues.Items.Add(oneValue)
 Next oneValue
 Finally
 Me.Cursor = Cursors.Arrow
 End Try

 registryKey.Close()
 End Sub

 Private Sub RegistryTree_BeforeExpand(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms.TreeViewCancelEventArgs) _
 Handles RegistryTree.BeforeExpand
 ' ----- The user is just about to expand a node. If it
 ' includes a blank node, retrieve the actual
 ' child nodes from the registry.
 Dim registryKey As Microsoft.Win32.RegistryKey
 Dim keyNode As TreeNode

 ' ----- Ignore if this node was already expanded.
 If (e.Node.FirstNode.Text <> "") Then Return
 e.Node.Nodes.Remove(e.Node.FirstNode)

 ' ----- Get the registry key associated with this tree node.
 registryKey = GetKeyFromNode(e.Node)

 ' ----- Get all of the child keys of this key, and add them
 ' to the tree.
 Me.Cursor = Cursors.WaitCursor
 Try
 For Each oneKey As String In _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registryKey.GetSubKeyNames()
 keyNode = e.Node.Nodes.Add(oneKey)
 keyNode.Nodes.Add("")
 Next oneKey
 Finally
 Me.Cursor = Cursors.Arrow
 End Try

 registryKey.Close()
 End Sub

 Private Sub RegistryValues_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles RegistryValues.SelectedIndexChanged
 ' ----- Display the data associated with the selected list item.
 Dim registryKey As Microsoft.Win32.RegistryKey
 Dim actualValue As Object
 Dim valueName As String

 ' ----- Clear any existing data.
 ValueData.Clear()

 ' ----- Ignore if nothing is active.
 If (RegistryValues.SelectedIndex = _
 ListBox.NoMatches) Then Return

 ' ----- Ignore if this is the root node.
 If (RegistryTree.SelectedNode.Parent Is Nothing) _
 Then Return

 ' ----- Get the registry key associated with this
 ' tree node.
 registryKey = GetKeyFromNode(RegistryTree.SelectedNode)

 ' ----- Determine the value to retrieve.
 valueName = RegistryValues.Text
 If (valueName = "(Default)") Then valueName = ""

 ' ----- Display the value.
 actualValue = registryKey.GetValue(valueName)
 If (actualValue IsNot Nothing) Then _
 ValueData.Text = actualValue.ToString()

 registryKey.Close()
 End Sub

To use the program, expand and select registry keys in the RegistryTree control, and select values in the RegistryValues
control. The RegistryTree_BeforeExpand event handler loads only those branches that have been expanded, so the program
doesn't have to load the entire registry at once. The program could be greatly enhanced to properly display nonstring
and nonnumeric data, and to manage security-and access-related errors.

The system registry is grouped into hives, although most of the hives are simply shortcuts to specific portions of the
master HKEY_CLASSES_ROOT hive. The My.Computer.Registry object provides access to these hives through the following
members, each of which is an instance of Microsoft.Win32. RegistryKey:

ClassesRoot provides access to the HKEY_CLASSES_ROOT hive.

CurrentConfig provides access to the HKEY_CURRENT_CONFIG hive.

CurrentUser provides access to the HKEY_CURRENT_USER hive.

DynData provides access to the HKEY_DYNAMIC_DATA hive.

LocalMachine provides access to the HKEY_LOCAL_MACHINE hive.

PerformanceData provides access to the HKEY_PERFORMANCE_DATA hive.

Users provides access to the HKEY_USERS hive.

The RegistryKey class for each hive includes features that let you access the subordinate keys and values associated with
that hive or key. Fortunately, any subordinate key you access can also appear as a RegistryKey instance, making it easy
to traverse the registry from any hive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to traverse the registry from any hive.

This recipe's code uses the RegistryKey. OpenSubKey() method to access specific keys below a hive root. For instance, to
access the key \\HKEY_CURRENT_USER\Software\Microsoft, you would make the following function call:

 Dim microsoftKey As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentUser.OpenSubKey(_
 "Software\Microsoft")

Each key includes zero or more values, including a default value (which is actually named default). To retrieve a value for
a key, use the key's GetValue() method, a feature also used in the sample code. The registry can store data in a variety of
formats, so use the related GetValueKind() method to determine the type of data stored. To access the default value for a
key, use an empty string for the value name.

To add or update a value for a key, use the RegistryKey.SetValue() method.

For both reads and writes of key and value data, the system administrator may impose
access limits on certain areas of the registry. Attempting to read or write an inaccessible
portion of the registry generates an exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.21. Running Procedures in Threads

Problem

You would like to perform some involved background data processing but keep the user interface for your application
responsive to user interaction.

Solution

Sample code folder: Chapter 14\UsingThreads

Use a BackgroundWorker control (or class) to manage the interaction between the main process and a worker thread.

Discussion

This recipe's sample code starts a background worker thread that does some work, reporting its progress back to the
main thread on a regular basis. The main thread has the option to cancel the worker thread. Create a new Windows
Forms application, and add the following controls to Form1:

A Button control named StartWork. Change its Text property to Start.

A Button control named StopWork. Change its Text property to Stop, and set its Enabled property to False.

A Label control named WorkStatus. Change its Text property to Not started.

A ProgressBar control named WorkProgress.

A BackgroundWorker control named BackgroundActivity. Change both the WorkerReportsProgress and WorkerSupportsCancellation
properties to true.

Arrange the controls nicely so they look like Figure 14-16.

Figure 14-16. Controls for the background activity sample

Add the following Imports statement at the top of the source-code file for Form1:

 Imports System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the Form1 class:

 Private Sub BackgroundActivity_DoWork(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.DoWorkEventArgs) _
 Handles BackgroundActivity.DoWork
 ' ----- The background work starts here.
 Dim theBackground As BackgroundWorker

 ' ----- Call the background thread.
 theBackground = CType(sender, BackgroundWorker)
 TheBusyWork(theBackground)

 ' ----- Check for a cancellation.
 If (theBackground.CancellationPending = True) Then _
 e.Cancel = True
 End Sub

 Private Sub BackgroundActivity_ProgressChanged(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.ProgressChangedEventArgs) _
 Handles BackgroundActivity.ProgressChanged
 ' ----- The background task updated its progress.
 WorkProgress.Value = e.ProgressPercentage
 End Sub

 Private Sub BackgroundActivity_RunWorkerCompleted(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles BackgroundActivity.RunWorkerCompleted
 ' ----- Finished.
 If (e.Cancelled = True) Then
 WorkStatus.Text = "Cancelled."
 Else
 WorkStatus.Text = "Complete."
 End If
 WorkProgress.Visible = False
 WorkProgress.Value = 0
 StopWork.Enabled = False
 StartWork.Enabled = True
 End Sub

 Private Sub TheBusyWork(ByVal workerLink As BackgroundWorker)
 ' ----- Perform some work.
 For counter As Integer = 1 To 10
 ' ----- See if we should jump out now.
 If (workerLink.CancellationPending = True) Then _
 Exit For

 ' ----- Take a nap for 2 seconds.
 Threading.Thread.Sleep(2000)
 ' ----- Inform the primary thread that we've
 ' made significant progress.
 workerLink.ReportProgress(counter * 10)
 Next counter
 End Sub

 Private Sub StartWork_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles StartWork.Click
 ' ----- Start the background process.
 StartWork.Enabled = False
 StopWork.Enabled = True
 WorkStatus.Text = "Progress…"
 WorkProgress.Value = 0
 WorkProgress.Visible = True
 BackgroundActivity.
RunWorkerAsync()
 End Sub

 Private Sub StopWork_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles StopWork.Click
 ' ----- Tell the worker thread to stop.
 BackgroundActivity.CancelAsync()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Run the program, and click on the Start button. The progress will update as the background worker proceeds through
its activity loop. You can interrupt the back-ground worker by clicking on the Stop button, although it won't actually
stop until the end of the current two-second sleep.

Processes running in Windows have the option of dividing their work among separate threads of execution within those
processes. By default, Visual Basic processes include only a single thread: the process itself. However, you can start
one or more background worker threads to perform some activity apart from the flow of the primary application.

The .NET Framework includes threading support through the System.Threading namespace, and specifically through the
Thread class in that namespace. While using the THRead class is relatively simple, you have to develop or enhance the
class if you want standardized interactions to occur between your primary and worker threads.

The BackgroundWorker control, part of the System.ComponentModel namespace, implements a lot of these interaction features
for you. To use the control, simply add it to your form. You can also use it as a class by declaring it using the WithEvents
keyword:

 Private WithEvents BackgroundActivity _
 As System.ComponentModel.BackgroundWorker

When you are ready to initiate the background work, call the BackgroundWorker's RunWorkerAsync() method. This triggers the
DoWork event. In this event handler, call the method that will perform the background work. The sample code passes the
BackgroundWorker instance to the worker method. You don't have to pass this information, but it makes it easier to
communicate back to the primary thread if you do.

For example, if you want the worker thread to report its progress, set the control's WorkerReportsProgress property to true,
then monitor the control's ProgressChanged event. Calls to the control's ReportProgress() method by the work trigger this
event in the primary thread.

This communication works both ways. Setting the control's WorkerSupportsCancellation property to TRue allows the primary
thread to request a cancellation of the work by calling the CancelAsync() method. This sets the control's CancellationPending
property, as viewed by the worker thread.

Threads make background processing easy, but interactions between threads can be problematic. The issue is that if
two threads wish to update the same object instance, there is no guarantee that they will update them in a specific
order. Consider a class with three members. Updating these three members occurs over multiple statements:

 Private SomeInstance As SomeClass
 Private Sub UpdateInstance(ByVal scalar As Integer)
 SomeInstance.Member1 = 10 * scalar
 SomeInstance.Member2 = 20 * scalar
 SomeInstance.Member3 = 30 * scalar
 End Sub

But what happens when two different threads call the UpdateInstance() method at the same time (assuming that they are
sharing the SomeInstance variable)? Because of the way that threading works, it's possible that the calls could get
interleaved in ways that corrupt the data. Suppose thread #1 calls UpdateInstance(2) and thread #2 calls UpdateInstance(3).
It's possible the statements within UpdateInstance() could be called in this order:

 SomeInstance.Member1 = 10 * 2 ' From Thread #1
 SomeInstance.Member1 = 10 * 3 ' From Thread #2
 SomeInstance.Member2 = 20 * 3 ' From Thread #2
 SomeInstance.Member2 = 20 * 2 ' From Thread #1
 SomeInstance.Member3 = 30 * 2 ' From Thread #1
 SomeInstance.Member3 = 30 * 3 ' From Thread #2

After this code, Member1 and Member3 is set based on the call from thread #2, but Member2 retains the value from thread
#1.

To prevent this from happening, Visual Basic includes a SyncLock statement that acts as a gatekeeper around a block of
code. (The .NET Framework also includes other classes and features that perform a similar service.) Using SyncLock to fix
the UpdateInstance() problem, you must create a common object and use it as a locking mechanism:

 Private SomeInstance As SomeClass
 Private LockObject As New Object
 Private Sub UpdateInstance(ByVal scalar As Integer)
 SyncLock LockObject
 SomeInstance.Member1 = 10 * scalar
 SomeInstance.Member2 = 20 * scalar
 SomeInstance.Member3 = 30 * scalar
 End SyncLock
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

As each thread enters UpdateInstance(), SyncLock TRies to exclusively lock the LockObject instance. Only when this is
successful does the thread proceed through the block of code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.22. Reading XML into a TreeView

Problem

You have some XML content in a file. You want to display it using a TReeView control, so that you can expand specific
branches.

Solution

Sample code folder: Chapter 14\XMLTreeView

There are many ways to go about this task, but one of the most straightforward is to load the content into an
XmlDocument object, then traverse this object's attributes and nodes. This recipe's code loads an XML file into a TReeView
control.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named XMLFile.

A Button control named LoadFile. Set its Text property to Load.

A TReeView control named XMLTree.

Add informational labels if desired, and arrange the controls so that Form1 looks like the form in Figure 14-17.

Figure 14-17. Controls on the XML-to-TreeView sample

Now add the following source code to Form1's class template:

 Private Sub LoadFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles LoadFile.Click
 ' ----- Load an
XML file into the form's TreeView control.
 Dim fileContent As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim fileContent As
Xml.XmlDocument

 ' ----- Make sure the file exists.
 If (My.Computer.FileSystem.FileExists(XMLFile.Text) = _
 False) Then
 MsgBox("Please supply a valid file name.")
 Return
 End If

 ' ----- Load the XML content into an XMLDocument object.
 Try
 fileContent = New Xml.XmlDocument
 fileContent.Load(XMLFile.Text)
 Catch ex As Exception
 MsgBox("The XML file could not be loaded due to " & _
 "the following error:" & vbCrLf & vbCrLf & _
 ex.Message)
 fileContent = Nothing
 Return
 End Try

 ' ----- Remove any existing content in the TreeView.
 XMLTree.Nodes.Clear()

 ' ----- Call a recursive method that will scan down
 ' all branches of the XML file.
 For Each oneNode As Xml.XmlNode In fileContent.ChildNodes
 AddNodeToTree(oneNode, Nothing)
 Next oneNode
 End Sub

 Private Sub AddNodeToTree(ByVal oneNode As Xml.XmlNode, _
 ByVal fromNode As TreeNode)
 ' ----- Add a node and all of its subordinate items.
 Dim baseNode As TreeNode

 ' ----- Ignore plain text nodes, as they are picked up
 ' by the inner-text code below.
 If (oneNode.NodeType = Xml.XmlNodeType.Text) Then Return

 ' ----- Treat the "<?xml…" node specially.
 If (oneNode.NodeType = Xml.XmlNodeType.XmlDeclaration) _
 And (fromNode Is Nothing) Then
 baseNode = XMLTree.Nodes.Add(_
 oneNode.OuterXml.ToString())
 Return
 End If

 ' ----- Add the node itself.
 If (fromNode Is Nothing) Then
 baseNode =
XMLTree.Nodes.Add(oneNode.Name)
 Else
 baseNode = fromNode.Nodes.Add(oneNode.Name)
 End If

 ' ----- Add the attributes.
 If (oneNode.Attributes IsNot Nothing) Then
 For Each oneAttr As
Xml.XmlAttribute In _
 oneNode.Attributes
 baseNode.Nodes.Add("Attribute: " & oneAttr.Name & _
 " = """ & oneAttr.Value & """")
 Next oneAttr
 End If

 ' ----- Add content if available.
 If (oneNode.InnerText <> "") Then
 baseNode.Nodes.Add("Content: " & oneNode.InnerText)
 End If

 ' ----- Add the child nodes.
 If (oneNode.ChildNodes IsNot Nothing) Then
 For Each subNode As Xml.XmlNode In oneNode.ChildNodes
 AddNodeToTree(subNode, baseNode)
 Next subNode
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

To run the program, type a valid XML filename in the XMLFile field, and then click the Load button. The XML content
appears in the treeView control, with branches collapsed. This program was run using this recipe's .vbproj file for the
input (it's an XML file). Figure 14-18 shows the results.

Figure 14-18. XML displayed as a TreeView

The TreeView control is designed to present hierarchical data, which is precisely what you find in XML content. The
System.Xml.XmlDocument object represents the content of XML data by parsing the raw XML text and building distinct
Xml.XmlNode objects for each element and branch point within the content. Both XmlDocument and XmlNode include a
ChildNodes collection that provides access to the XML tags found immediately within the current tag. These objects also
include an Attributes collection that lists the name and value of each tag attribute.

See Also

Recipes 14.23 and 14.24 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.23. Creating an XML Document

Problem

You need to build an XML file that contains important configuration or processing data, and you aren't excited about
doing all the string concatenation yourself.

Solution

Sample code folder: Chapter 14\GenerateXMLContent

Use the XML document creation tools in the System.XML namespace to generate the XML. This namespace includes a few
different ways of building XML content. One of the simplest methods is to fill in a System.Xml.XmlDocument object by
building it with distinct System.Xml.XmlElement objects.

Discussion

This recipe's sample code builds a simple program that outputs a list of email recipients in XML format. It groups
recipients by the desired email format, either HTML or plain text. Here is a sample of the generated XML content:

 <?xml version="1.0"?>
 <emailData>
 <emailRecipients mailType="HTML">
 <recipient>
 <name>John Smith</name>
 <address>jsmith@fakeemail.com</address>
 </recipient>
 <recipient>
 <name>Jane Jones</name>
 <address>jane.jones@dontmailme.com</address>
 </recipient>
 </emailRecipients>
 <emailRecipients mailType="Text">
 <recipient>
 <name>Brenda Wong</name>
 <address>puppyfriend@ilikedogs.net</address>
 </recipient>
 </emailRecipients>
 </emailData>

Create a new Windows Forms application, and add the following controls to Form1:

A ComboBox control named EmailType. Set its DropDownStyle property to DropDownList.

A TextBox control named RecipientName.

A TextBox control named RecipientAddress.

A ListBox control named AllRecipients.

A Button control named AddEmail. Set its Text property to Add.

A Button control named DeleteEmail. Set its Text property to Delete.

A TextBox control named XMLFile.

A Button control named SaveFile. Set its Text property to Save.

Add informational labels if desired, and arrange the controls so that Form1 looks like the form in Figure 14-19.

Figure 14-19. Controls for the XML-generation sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-19. Controls for the XML-generation sample

Now add the following source code to Form1's class template:

 Public Class RecipientData
 ' ----- A simple class to hold the basics of an address.
 Public EmailType As String
 Public EmailName As String
 Public EmailAddress As String

 Public Sub New(ByVal newType As String, _
 ByVal newName As String, ByVal newAddress As String)
 ' ----- Constructor to build the new record.
 EmailType = newType
 EmailName = newName
 EmailAddress = newAddress
 End Sub

 Public Overrides Function ToString() As String
 ' ----- Display a nicely formatted address.
 Return EmailName & " <" & EmailAddress & ">"
 End Function
 End Class

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Add the types of email content.
 EmailType.Items.Add("HTML")
 EmailType.Items.Add("Text")
 EmailType.SelectedIndex = 0
 End Sub

 Private Sub DeleteEmail_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles DeleteEmail.Click
 ' ----- Remove the selected email address.
 If (AllRecipients.SelectedIndex <> ListBox.NoMatches) Then _
 AllRecipients.Items.Remove(AllRecipients.SelectedItem)
 End Sub

 Private Sub AddEmail_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles AddEmail.Click
 ' ----- Add an email recipient. Check for missing data.
 If (RecipientName.Text.Trim = "") Then
 MsgBox("Please supply a recipient name.")
 Return
 End If
 If (RecipientAddress.Text.Trim = "") Then
 MsgBox("Please supply a recipient address.")
 Return
 End If

 ' ----- Add this recipient to the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AllRecipients.Items.Add(New RecipientData(_
 EmailType.Text, RecipientName.Text, _
 RecipientAddress.Text))

 ' ----- Get ready for a new entry.
 RecipientName.Clear()
 RecipientAddress.Clear()
 RecipientName.Focus()
 End Sub

 Private Sub SaveFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SaveFile.Click
 ' ----- Save the
XML content.
 Dim emailSet As Xml.XmlDocument
 Dim emailDeclare As
Xml.XmlDeclaration
 Dim emailRoot As Xml.XmlElement
 Dim emailGroup As Xml.XmlElement
 Dim emailRecipient As Xml.XmlElement
 Dim emailDetail As Xml.XmlElement
 Dim counter As Integer
 Dim useType As String
 Dim scanEmail As Object
 Dim oneEmail As RecipientData

 ' ----- Check for missing data.
 If (AllRecipients.Items.Count = 0) Then
 MsgBox("Please enter at least one recipient.")
 Return
 End If
 If (XMLFile.Text.Trim = "") Then
 MsgBox("Please specify the output file.")
 Return
 End If

 ' ----- Warn if the file exists.
 If (My.Computer.FileSystem.FileExists(XMLFile.Text)) Then
 If (MsgBox("The file exists. Overwrite?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question) <> _
 MsgBoxResult.Yes) Then Return
 Try
 Kill(XMLFile.Text)
 Catch ex As Exception
 MsgBox("Could not replace the file. " & ex.Message)
 Return
 End Try
 End If

 ' ----- Start the XML document with an XML declaration.
 emailSet = New Xml.XmlDocument
 emailDeclare = emailSet.CreateXmlDeclaration("1.0", _
 Nothing, String.Empty)
 emailSet.InsertBefore(emailDeclare, _
 emailSet.DocumentElement)

 ' ----- Add in the root <emailData> element.
 emailRoot = emailSet.CreateElement("emailData")
 emailSet.InsertAfter(emailRoot, emailDeclare)

 ' ----- Scan through the recipients, once for each type.
 For counter = 0 To EmailType.Items.Count - 1
 ' ----- Prepare for this pass.
 useType = EmailType.Items(counter)
 emailGroup = Nothing

 For Each scanEmail In AllRecipients.Items
 oneEmail = CType(scanEmail, RecipientData)
 If (oneEmail.EmailType = useType) Then
 ' ----- Found a recipient in this group.
 ' Add the group if needed.
 If (emailGroup Is Nothing) Then
 emailGroup = emailSet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emailGroup = emailSet.
CreateElement(_
 "emailRecipients")
 emailGroup.SetAttribute("mailType", useType)
 emailRoot.AppendChild(emailGroup)
 End If

 ' ----- Build the new output entry.
 emailRecipient = emailSet.CreateElement(_
 "recipient")
 emailGroup.AppendChild(emailRecipient)

 emailDetail = emailSet.CreateElement("name")
 emailDetail.InnerText = oneEmail.EmailName
 emailRecipient.AppendChild(emailDetail)

 emailDetail = emailSet.CreateElement("address")
 emailDetail.InnerText = oneEmail.EmailAddress
 emailRecipient.AppendChild(emailDetail)
 End If
 Next scanEmail
 Next counter

 ' ----- Write out the
XML content.
 Try
 emailSet.Save(XMLFile.Text)
 MsgBox("XML content saved.")
 Catch ex As Exception
 MsgBox("Could not write the XML content. " & _
 ex.Message)
 End Try
 End Sub

To use the program, select an email type (HTML or Text) from the Type drop-down list, enter in a recipient name and
email address in the two text fields next to the drop-down, and then click the Add button to add the recipient to the list.
Repeat as needed. When you have added enough recipients, supply an output filename in the XML File field, and then
click the Save button.

Most of this recipe's sample code lets you build the list of email recipients in a ListBox control. The embedded RecipientData
class helps organize the content stored in each ListBox item.

The real XML work happens in the Click event handler for the SaveFile button. After performing some quick verification,
the method creates a new XmlDocument to store the new XML content. For each node in the output, it then creates
XmlElement objects using the XmlDocument.CreateElement() method. This method generates a generic XML element,
representing a standard XML tag. It adds attributes to the element via the XmlElement.SetAttribute() method. These
completed elements are then inserted into the existing XmlDocument structure relative to other existing nodes.

The various uses of the InsertBefore(), InsertAfter(), and AppendChild() methods in the sample code show how you can position
elements as you need them.

Besides CreateElement(), XmlDocument includes other Create… methods that generate a variety of XML-specific content
entities. For example, the CreateXmlDeclaration() method is used in the sample code to generate the <?xml version="1.0"?> tag
at the start of the document:

 emailDeclare = emailSet.CreateXmlDeclaration("1.0", _
 Nothing, String.Empty)

Once elements have been added to the XmlDocument, you can traverse them using any of the supported XML tools, such
as XPath.

See Also

Recipes 14.22 and 14.24 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.24. Validating an XML Document

Problem

You have an XML document that is supposed to adhere to a specific schema. How can you be sure the document is
valid?

Solution

There are a variety of XML validation methods, including DTD and both internal and external Schema definitions. If you
are going to read the XML content into a System.Xml.XmlDocument object, you can verify it as it is read using any of these
validation methods. Normally, an XmlReader reads any valid XML into an XmlDocument object without validation. However,
you can indicate the type of validation to perform by setting the various properties of an XmlReaderSettings object and
using it when creating the XmlReader. Here is the basic code used to process XML with custom settings:

 ' ----- XML file contained in 'xmlFileName' variable.
 Dim readContent As Xml.XmlReader
 Dim xmlContent As Xml.XmlDocument
 Dim customSettings As New Xml.XmlReaderSettings
 ' ----- Modify customSettings properties here, then…
 readContent = Xml.XmlReader.Create(xmlFileName, customSettings)
 xmlContent = New Xml.XmlDocument
 xmlContent.Load(readContent)

The code you add in the "Modify customSettings" area of the code depends on the type of verification or processing you
wish to do. Include the following statements to validate the XML using a known external schema (.xsd) file:

 customSettings.ValidationType = Xml.ValidationType.Schema
 customSettings.Schemas.Add("urn:my-schema", "MySchema.xsd")

Discussion

The XmlReaderSettings class includes features that control the processing of XML content during import, including the
handling of whitespace and embedded comments. It also determines how to handle validation through its ValidationType
property. In Visual Basic 2005, the allowed settings include None (for no validation, the default), DTD (for included DTD
content), and Schema (for XSD processing, either internal or external).

Care must be taken when performing DTD validation because malformed DTD entries can cause processing issues.
Because of this, DTD processing is disabled by default. To enable it, you must alter two settings:

 customSettings.ValidationType = Xml.ValidationType.DTD
 customSettings.ProhibitDtd = False

If your XML content includes an XSD schema within the XML content (i.e., an inline schema), you must enable
processing support:

 customSettings.ValidationType = Xml.ValidationType.Schema
 customSettings.ValidationFlags = _
 customSettings.ValidationFlags Or _
 Xml.Schema.XmlSchemaValidationFlags.ProcessInlineSchema

When you validate XML, any content that deviates from the schema raises exceptions (System.Xml.XmlException) that
emanate from the call to XmlDocument.Load(). You can also capture problems through a ValidationEventHandler event, exposed
by the XmlReaderSettings class.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipes 14.22 and 14.23 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.25. Using Generic Collections

Problem

You need to store some objects in a collection, but you want to ensure that the collection allows only objects of a
specific type.

Solution

Use one of the generic collections made available in .NET. They are called "generic" because they are data-typed
generically, allowing you to replace nonspecific data-type placeholders with your own specific data types. ("Specifics"
might have been a better name.) All generic collection classes appear in the System.Collections.Generic namespace.

As an example, the following code creates a stack (represented by the System.Collections.Generic.Stack class) that stores only
Date objects. It then adds items to the stack:

 Dim dateStack As _
 New System.Collections.Generic.Stack(Of Date)
 dateStack.Push(Today)
 dateStack.Push(DateAdd("d", 28, Today))

Discussion

The System.Collections.Generic namespace includes several useful generic collections for your use:

Dictionary(Of TKey, TValue)

This class implements a basic lookup system, with value objects made available through unique keys. You can
indicate the data types of both the key and the value at declaration; they can be different. This class stores
items in the dictionary through the related KeyValuePair(Of TKey, TValue) class.

LinkedList(Of T)

This class implements a doubly linked list, with immediate access to the first and last items in the list. Each list
itemimplemented through the related LinkedListNode(Of T) classincludes a Previous and Next link to make traversal
possible.

List(Of T)

This class implements a simple list of objects, providing access to items by index number. It includes methods
to add, insert, and remove objects. It also includes many methods that locate items already in the list.

Queue(Of T)

This class represents a generic queue of objects, a "First In, First Out" (FIFO) construct. Items are added to the
queue through the Enqueue() method and later retrieved and removed from the queue with the Dequeue()
method. The Peek() method retrieves the oldest object from the queue but does not remove it.

SortedDictionary(Of TKey, TValue)

This class implements a basic lookup system, with value objects made available through unique keys. It also
keeps the records sorted using a binary search tree. You can indicate the data types of both the key and the
value at declaration; they can be different. If the TKey data type implements the IComparer interface, that type's
comparison rules are used for the sort. This class stores items in the dictionary through the related
KeyValuePair(Of TKey, TValue) class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SortedList(Of TKey, TValue)

This class implements an ordered list. Items in the list are sorted by key as they are added. It is identical to the
SortedDictionary(Of TKey, TValue) class, but it is optimized for fast insertion of previously sorted data. If the TKey data
type implements the IComparer interface, that type's comparison rules are used for the sort. This class stores
items in the dictionary through the related KeyValuePair(Of TKey, TValue) class.

Stack(Of T)

This class represents a generic stack of objects, a "Last In, First Out" (LIFO) construct. Items are added to the
stack through the Push() method and later retrieved and removed from the stack with the Pop() method. The
Peek() method retrieves the top-most object from the stack, but does not remove it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.26. Creating a Screensaver

Problem

You have some down time between projects at work, and you want to implement a simple screensaver in Visual Basic.

Solution

Sample code folder: Chapter 14\SimpleScreenSaver

Use this recipe's sample code as an example of how to develop a screensaver using .NET. The code creates a simple
screensaver that displays either the time or the date and time together in the center of the display.

Discussion

Create a new Windows Forms project, and name it SimpleScreenSaver. Change the name of the main form from Form1.vb
to ScreenSaver.vb. Open that form, and set the following properties:

Set Text to Simple Screen Saver.

Set FormBorderStyle to None.

Set TopMost to true.

Set WindowState to Maximized.

This form will serve as the screensaver view. Maximizing it and setting it as the top-most form forces it to consume the
entire display.

Add a Label control named CurrentTime to the form's surface, and set these properties:

Set AutoSize to False.

Set Size to 240, 120.

Set Font.Size to 28.

Set TextAlign to MiddleCenter.

Next, add a Timer control named ClockTimer to the form. Set its Interval property to 1000(which means 1000 milliseconds),
and set its Enabled property to TRue. The form should be somewhat bland and have the general look of Figure 14-20.

Figure 14-20. The design of the screensaver form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following code to the form's code template:

 Private LastMousePosition As New Point(-1, -1)

 Private Sub ClockTimer_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ClockTimer.Tick
 ' ----- Show the time.
 RefreshClock()
 End Sub

 Private Sub RefreshClock()
 ' ----- Update the display when it changes.
 If (IncludeDateFlag() = True) Then
 CurrentTime.Text = Now.ToLongDateString & vbCrLf & _
 Now.ToLongTimeString
 Else
 CurrentTime.Text = Now.ToLongTimeString
 End If
 End Sub

 Private Sub ScreenSaver_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' ----- Restore the mouse pointer.
 Windows.Forms.Cursor.Show()
 End Sub

 Private Sub ScreenSaver_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 ' ----- Pressing any key stops the program.
 Me.Close()
 End Sub

 Private Sub
ScreenSaver_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Hide the mouse cursor.
 Windows.Forms.Cursor.Hide()
 RefreshClock()
 End Sub

 Private Sub ScreenSaver_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseDown
 ' ----- Clicking stops the program.
 Me.Close()
 End Sub

 Private Sub ScreenSaver_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Moving the mouse stops the program.
 If (LastMousePosition <> New Point(-1, -1)) Then
 ' ----- See if the mouse moved since last time.
 If (LastMousePosition <> New Point(e.X, e.Y)) Then
 Me.Close()
 End If
 End If

 ' ----- Record the current point.
 LastMousePosition = New Point(e.X, e.Y)
 End Sub

 Private Sub ScreenSaver_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Center the label on the form.
 CurrentTime.Location = New Point(0, (Me.Height - _
 CurrentTime.Height) / 2)
 CurrentTime.Size = New Size(Me.Width, CurrentTime.Height)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Add a new module to the project through the Project Add Module menu command, and name the module file
General.vb. Add the following two methods to this module's source code:

 Public Sub Main()
 ' ----- The screen saver starts here.
 Dim startOption As String = ""

 ' ----- Check the command-line arguments. There are
 ' three that we will look for:
 ' /s = Start the screen saver
 ' /c = Configure the screen saver (default)
 ' /p = Show a preview (not implemented here)
 If (My.Application.CommandLineArgs.Count > 0) Then _
 startOption = My.Application.CommandLineArgs(0). _
 ToUpper()
 If (startOption = "") Then startOption = "/C"
 If (startOption.Substring(0, 2) = "/C") Then
 Config.ShowDialog()
 Return
 ElseIf (startOption.Substring(0, 2) <> "/S") Then
 ' ----- Ignore all options besides "startup."
 Return
 End If

 ' ----- Start the
screen saver.
 ScreenSaver.ShowDialog()
 End Sub

 Public Function IncludeDateFlag() As Boolean
 ' ----- Get the current configuration value.
 Dim configKey As Microsoft.Win32.RegistryKey
 Dim theValue As Object

 IncludeDateFlag = False
 Try
 ' ----- Load the setting from the registry.
 configKey = My.Computer.Registry.CurrentUser. _
 OpenSubKey("Software\MyCompany\SimpleScreenSaver")
 If (configKey IsNot Nothing) Then
 theValue = configKey.GetValue("IncludeDate")
 If (theValue IsNot Nothing) Then _
 IncludeDateFlag = CBool(theValue)
 configKey.Close()
 End If
 Catch ex As Exception
 ' ----- Don't show any error.
 Finally
 configKey = Nothing
 End Try
 End Function

Finally, add a form that lets the user indicate whether to include the date on the screensaver display. Add the form
through the Project Add Windows Form menu command, and name the form file Config.vb. Set the following form
properties:

Set FormBorderStyle to FixedDialog.

Set Text to Configure Screen Saver.

Set ControlBox to False.

Set StartPosition to CenterScreen.

Add a CheckBox control to the form named IncludeDate, and set its Text property to Include Date in Screen Saver Display. Also add
two Button controls named ActOK and ActCancel, and set their Text properties to OK and Cancel, respectively.

Select the form again, and set its AcceptButton property to ActOK and its CancelButton property to ActCancel. The form should
look like Figure 14-21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-21. The screensaver configuration form

That's it for the main display and code design, but we still need to make a few changes to the project itself to prepare it
for screensaver use. Open the Project Properties window. On the Application panel, set "Startup object" to Sub Main,
and clear (uncheck) the "Enable application framework" field.

Build the project through the Build Build SimpleScreenSaver menu command. In Windows Explorer, locate the
executable file. It will appear in the bin\Release directory within the project source-code directory. Rename the
SimpleScreenSaver.exe file to SimpleScreenSaver.scr. Then, copy that file into your system's Windows\System32
directory (the exact location will vary by system). The screensaver is ready to use. Open up the Display Properties
within your system's Control panel. On the Screen Saver tab, select SimpleScreenSaver from the Screen Saver drop-
down list (Figure 14-22).

Figure 14-22. The installed screensaver, ready to use

Clicking on the Settings button lets you configure the screensaver through the custom Config.vb form. The Preview
button runs the screensaver immediately.

Screensavers are regular Windows applications, but they reside only in the Windows\System32 directory, and their file
extension is .scr instead of .exe. What the user experiences as a screensaver is simply a maximized borderless form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extension is .scr instead of .exe. What the user experiences as a screensaver is simply a maximized borderless form.
You can add any controls you want to the form, and you can display any graphics or images you require to make the
screen saver interesting.

Screensaver programs perform three distinct functions: main display, preview display, and configuration. (The sample
program does not implement the preview display functionality.) The functionality you present depends on the
command-line options supplied to the application:

The /S command-line option tells the program to start the screensaver and continue until the user types a key
or uses the mouse. (Actually, there is no firm rule about when to stop the screensaver. These are the traditional
methods, but you can require the user to click a button on your main form if you wish.)

The /C command-line option displays any configuration forms used to alter the behavior of the screensaver. In
the sample application, the Config.vb form lets the user adjust a single Boolean value, which is stored in a
registry value.

The /P command-line option updates the minipreview display window in the Control Panel Display Properties
applet. The second command-line argument is an integer that indicates the Win32 window handle for the
preview portion of the applet. Your program can display a preview version of the screensaver in this area if
desired. Updating this area is beyond the scope of this recipe.

The recipe's Sub Main routine examines the command-line arguments and takes the appropriate action. In the absence of
any command-line arguments, the screensaver should assume the /C argument.

This recipe's code implements a very simple screensaver that displays either the time or the combined date and time,
updating the display once per second through a Timer control. It determines whether to display the date portion through
a setting in the registry, located at:

 \\HKEY_CURRENT_USER\Software\MyCompany\SimpleScreenSaver\IncludeDate

The screensaver runs until it detects a key press (through the Form.KeyPress event), a mouse click (Form.MouseDown), or a
mouse movement (Form.MouseMove). It turns out that each form receives a MouseMove message right when the form first
opens, whether the mouse is moving or not. Therefore, the code includes some special code to ensure that the first
MouseMove event call does not exit the screensaver.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.27. Localizing the Controls on a Form

Problem

You want to make your application available to speakers of other languages.

Solution

Sample code folder: Chapter 14\MultiLanguage

Use the features built right into Visual Studio to assist you with the localization process. Windows applications have long supported multiple languages
through inter-changeable language-specific resource files. When managing the display language for the fields on your application forms, you can have
Visual Studio generate the resource files for you automatically.

Discussion

Create a new Windows Forms application, and add two Label controls to Form1, named Label1 and Label2. Set Label1's Text property to
set Label2's Text property to Good day!. Arrange the controls as shown in Figure 14-23.

Figure 14-23. The English-language interface

The English-language version of the application is ready to compile and use. (Actually, the default-language version is ready to use, and the default
language happens to be English.) To enable support for multiple languages on this form, set its Localizable property to TRue.

To enable French-language support, change the form's Language property to French. You will see the form blink briefly. Select
property to Bon jour!, as shown in Figure 14-24.

Figure 14-24. The French-language interface

To test both language versions, change the language either to the default language or to French when the program first starts. On the Application tab
of the Project Properties window, click the View Application Events button to access the ApplicationEvents.vb file. Add the following code to the
MyApplication class in this file:

 Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 ' ----- Prompt to change the culture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Prompt to change the culture.
 Dim newCulture As String

 newCulture = InputBox("Enter new culture string.")
 If (newCulture <> "") Then
 Threading.Thread.CurrentThread.CurrentUICulture = _
 New Globalization.CultureInfo(newCulture)
 End If
 End Sub

Run the program. When prompted for a culture, leave the prompt empty to default to English, or enter fr to use French. Then, enjoy the results.

To see what's really going on, build the program through the Build BuildWindowsApplication1 menu command. Then locate the folder with the
generated application (the bin\Release directory within the project's source-code directory). You will find a subdirectory named
"satellite assembly" containing the language-specific resources.

In addition to building language-specific resources when you design your program, you can add them after release by using the
included with Visual Studio. On our system, the link to this program is found in Start [All] Programs Microsoft .NET Framework SDK v2.0

 Tools Windows Resource Localization Editor (see Figure 14-25). You must have set the form's Localizable property to

Figure 14-25. The winres.exe localization tool

To use the tool, open the Form1.resx resource file associated with the localized form, select each element whose Text property needs to be localized in
turn, and enter in the new language-specific settings. When saving the file, you are prompted for an output language. The tool generates a separate
language-specific resource file. We chose to create a Japanese-specific resource file; the tool generated Form1.ja.resx.

To generate the new resource's satellite assembly, recompile the application. If this is not an option, you can generate the file manually. This is a
two-step process, and it must be done on the command line. Open the Visual Studiospecific command line using the Start
Microsoft Visual Studio 2005 Visual Studio Tools Visual Studio 2005 Command Prompt menu command. Change to the source-code
directory that contains the new .resx resource file:

 cd sourcedirectory

Compile the .resx file into a .resources file, using the resgen.exe application included with Visual Studio:

 resgen.exe Form1.ja.resx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 resgen.exe Form1.ja.resx

The directory now contains a Form1.ja.resources file. Compile it to a satellite assembly using the al.exe (Assembly Linker) program. Enter the
command on a single line, not on four lines as shown here:

 al /t:lib /embed:Form1.ja.resources,
 MultiLanguage.Form1.ja.resources /culture:ja
 /out:MultiLanguage.resources.dll
 /template:bin\Release\MultiLanguage.exe

Now move the new MultiLanguage.resources.dll file to a culture-specific folder within the release directory. You may wish to move the file into a
bin\Release\ja folder you create within the project directory. On deployment, the file should be installed in a ja folder within the release directory.

When you run the program again and enter ja for the culture, you'll see the form in Figure 14-26.

Figure 14-26. The Japanese-language interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.28. Adding Pop-up Help to Controls

Problem

Dialog boxes in Windows applications support pop-up help on controls. On such forms, clicking the question-mark
button in the upper-right corner of the form and then clicking on a form control displays a tooltip-like message
describing the use of the control. (See Figure 14-27 for an example.) You want to add a similar feature to controls on
your form.

Figure 14-27. Pop-up help for a control

Solution

Sample code folder: Chapter 14\PopupHelp

Include a HelpProvider control on your form, and use it to enable the pop-up help.

Discussion

Create a new Windows Forms application, and add a Button control to the form. We'll add pop-up help to this button.
Next, add a HelpProvider control to the form, which you'll find in the Components part of the Windows Forms Toolbox. This
control (HelpProvider1) appears in the off-form area of the designer.

Change the form's HelpButton property to TRue. The button won't appear yet because it only appears when the Minimize
and Maximize buttons are hidden. Set both the MinimizeButton and MaximizeButton properties to False to make the help button
appear. You'll see the standard Windows question-mark button.

To set the help message for the Button control, select it on the form. One of the control's properties is HelpString on
HelpProvider1, which appears indirectly through the HelpProvider1 control. Add some text to this property.

To view the pop-up help, run the program, click on the question-mark button, and then click on the Button control. The
pop-up help will appear until you click some-where else.

The HelpProvider control also supports more standard online help methods. It can display help through a web page that
appears when the user presses the F1 key from anywhere on the form. It can also display online help through a
compiled HTML Help 1.x (.chm) file.

To enable web-page-based help, add a HelpProvider control to your form, and change its HelpNamespace property to any
valid web page.

To display help through HTML Help files, set the HelpProvider control's HelpNamespace property to the help-file path. Change
the form's HelpKeyword on HelpProvider1 property (the name may vary based on the name you gave to the help provider
control) to the name of the page within the compiled file as defined by your HTML Help editing tool. An example may be
html/EditorPage.htm. Also change the form's HelpNavigator on HelpProvider1 property to Topic.

The HelpNavigator on HelpProvider1 property includes other methods with which you can access compiled help pages. For
instance, the TableOfContents and Index values, when used, bring up the Table of Contents page and the Index page for the
online help, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.29. Maintaining User-Specific Settings Between Uses of an
Application

Problem

The user of your application is allowed to configure certain aspects of the application to suit her preferences. You would
like to save these per-user settings so that the application uses them the next time it is run.

Solution

Sample code folder: Chapter 14\UserSettings

Use the My.Settings feature of Visual Basic to enable user-and application-specific settings.

Discussion

This recipe's sample code remembers the position of the form on the screen from one use to the next, and it also
displays the name of the last user, which it retains in local settings.

Create a new Windows Forms application. Add a Button control named ActPrefs, and set its Text property to Preferences…
Then add a Label control named UserName, and set its Text property to Your name is not set. and its UseMnemonic property to
False. Adjust the form to look like Figure 14-28.

Figure 14-28. Controls on the user preferences sample

Open the Project Properties window, and select the Settings tab. This panel presents a grid of user-specific and
application-specific settings. By filling in the grid, you automatically add settings that you can use in your application to
retain user-preferred changes. Add two settings rows to this grid:

Add a setting named PrefsUserName, and leave its Type as String.

Add a setting named MainFormLocation, and select System.Drawing.Point for its Type.

Leave the Scope for both settings as User, and don't provide any Value column data. Close the Project Properties window
and return to the form.

Add the following source code to the form's code template:

 Private Sub ActPrefs_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPrefs.Click
 ' ----- Prompt the user to change his/her preferred name.
 Dim newName As String

 newName = InputBox("Enter your name.")
 If (newName.Trim() <> "") Then
 ' ----- Save the user's preferences.
 My.Settings.PrefsUserName = newName.Trim
 UserName.Text = "Your name is " & newName.Trim & "."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UserName.Text = "Your name is " & newName.Trim & "."
 End If
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Display the user-defined name, if available.
 If (My.Settings.PrefsUserName <> "") Then
 UserName.Text = "Your name is " & _
 My.Settings.PrefsUserName & "."
 End If
 End Sub

Return to the Form Designer, and select the form. Expand the form's (ApplicationSettings) property, and change the Location
subproperty to MainFormLocation.

If Location does not appear as a subproperty, select the (PropertyBinding) subproperty and click
its "…" button. On the Application Settings form that appears, locate Location in the list, and
set its second column to MainFormLocation. Finally, click OK.

Run the program to test it. Each time you exit and restart the program, it remembers where you moved the form on
the display. If you click the Preferences button and enter your name when prompted, it also remembers this setting the
next time the program runs.

The My.Settings object is new in Visual Basic 2005. It provides a standard way to manage user-and application-specific
settings. Each time the program exits, it saves any settings changes to an XML file, and it reads in that same file the
next time the program runs. The exact location of this file varies, but its default location in Windows XP is:

 C:\Documents and Setting\<username>\Local Settings\
 Application Data\<projectname>\<specialhash>\
 <version>\user.config

Application-specific settings, although not used in this sample program, are stored in an app.config file in the folder that
contains your application assembly. Application-specific settings cannot be modified through the running application;
you can only change them by changing the app.config file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.30. Verifying a Credit Card Number

Problem

You are writing an application that includes credit card processing and verification functionality. While the third-party
credit card host will let you know when you have passed an invalid card number, you would like to catch invalid card
numbers immediately when users enter them.

Solution

Sample code folder: Chapter 14\LuhnAlgorithm

Use the Luhn Algorithm to determine if a credit card number is valid or not. The Luhn Algorithm (or Luhn Formula) was
invented by Hans Peter Luhn of IBM in the 1960s as a method of verifying account numbers of varying lengths. It is
also called a "modulus 10" formula because it uses the modulus 10 formula (x Mod 10 in Visual Basic) to confirm the
number.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named CreditCard.

A Button control named ActVerify. Set its Text property to Verify.

Now add the following source code to the form's code template:

 Private Sub ActVerify_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActVerify.Click
 ' ----- Check for a valid credit card number.
 Dim useCard As String = ""
 Dim oneDigit As String
 Dim counter As Integer

 ' ----- Create a string with just the digits of the card,
 ' just in case the user entered spaces or dashes
 ' between digit blocks.
 For counter = 1 To Len(CreditCard.Text)
 oneDigit = Mid(CreditCard.Text, counter, 1)
 If (IsNumeric(oneDigit) = True) Then _
 useCard &= oneDigit
 Next counter
 If (useCard.Length = 0) Then
 MsgBox("Invalid card number.")
 ElseIf (VerifyCreditCard(useCard) = False) Then
 MsgBox("Invalid card number.")
 Else
 MsgBox("Card verified.")
 End If
 End Sub

 Private Function VerifyCreditCard(ByVal cardNumber _
 As String) As Boolean
 ' ----- Given a card number, make sure it is valid.
 ' This method uses the Luhn algorithm to verify
 ' the number. This routine assumes that cardNumber
 ' contains only digits.
 Dim counter As Integer
 Dim digitTotal As Integer
 Dim holdValue As Integer
 Dim checkDigit As Integer
 Dim calcDigit As Integer
 Dim useCard As String

 ' ----- Perform some initial checks.
 useCard = Trim(cardNumber)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 useCard = Trim(cardNumber)
 If (IsNumeric(useCard) = False) Then Return False

 ' ----- Separate out the last digit, the check digit.
 ' For cards with an odd number of digits,
 ' prepend with a zero.

 If ((Len(useCard) Mod 2) <> 0) Then _
 useCard = "0" & useCard
 checkDigit = useCard.Substring(Len(useCard) - 1, 1)
 useCard = useCard.Substring(0, Len(useCard) - 1)

 ' ----- Process each digit.
 digitTotal = 0
 For counter = 1 To Len(useCard)
 If ((counter Mod 2) = 1) Then
 ' ----- This is an odd digit position.
 ' Double the number.
 holdValue = CInt(Mid(useCard, counter, 1)) * 2
 If (holdValue > 9) Then
 ' ----- Process digits (16 becomes 1+6).
 digitTotal += (holdValue \ 10) + _
 (holdValue - 10)
 Else
 digitTotal += holdValue
 End If
 Else
 ' ----- This is an even digit position.
 ' Simply add it.
 digitTotal += CInt(Mid(useCard, counter, 1))
 End If
 Next counter

 ' ----- Calculate the 10's complement of both values.
 calcDigit = 10 - (digitTotal Mod 10)
 If (calcDigit = 10) Then calcDigit = 0
 If (checkDigit = calcDigit) Then Return True Else _
 Return False
 End Function

Run the program, enter a credit card number, and click the Verify button to see if the card number is valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.31. Capturing a Console Application's Output

Problem

You want to capture and process the output of a console application in your program.

Solution

Sample code folder: Chapter 14\RedirectConsoleOutput

Use the StartInfo portion of a Process object to redirect the output of a console application into your code. The redirected
output appears as a standard StreamReader object.

Discussion

This recipe's sample code captures the network data generated by the ipconfig command-line tool and displays it in a
ListBox control.

Create a new Windows Forms application, and add three controls:

A ListBox control named OutputData.

A CheckBox control named IncludeAll. Change its Text property to Use the '/ all' flag to get all details.

A Button control named ActProcess. Set its Text property to Process.

The controls should appear as in Figure 14-29.

Figure 14-29. The controls for the redirected console output sample

Next, add the following code to the form's class template:

 Private Sub ActIPConfig_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActIPConfig.Click
 ' ----- Load the output of ipconfig.exe into a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Load the output of ipconfig.exe into a ListBox.
 Dim ipConfig As Process
 Dim oneLine As String
 Dim lineParts() As String

 ' ----- Remove any existing items.
 OutputData.Items.Clear()

 ' ----- Build and run the command.
 ipConfig = New Process()
 ipConfig.StartInfo.FileName = "ipconfig.exe"
 If (IncludeAll.Checked = True) Then _
 ipConfig.StartInfo.Arguments = "/all"
 ipConfig.StartInfo.UseShellExecute = False
 ipConfig.StartInfo.RedirectStandardOutput = True
 ipConfig.StartInfo.CreateNoWindow = True
 ipConfig.Start()

 ' ----- Process each input line.
 Do While Not ipConfig.StandardOutput.EndOfStream
 ' ----- Ignore blank lines.
 oneLine = ipConfig.StandardOutput.ReadLine()
 If (Trim(oneLine) = "") Then Continue Do

 ' ----- Headings have no initial whitespace.
 If (oneLine = oneLine.TrimStart) Or _
 (InStr(oneLine, ":") = 0) Then
 ' ----- A heading line or informational line.
 OutputData.Items.Add(oneLine.Trim)
 Else
 ' ----- A detail line. The format is:
 ' Title … : Data
 lineParts = oneLine.Trim.Split(":"c)
 lineParts(0) = Replace(lineParts(0), ". ", "")
 lineParts(1) = lineParts(1).Trim
 OutputData.Items.Add(vbTab & lineParts(0) & _
 ":" & lineParts(1))
 End If
 Loop
 ipConfig.WaitForExit()
 ipConfig.Dispose()
 End Sub

Run the program, alter the IncludeAll field as desired, and click the ActProcess button. The ListBox control will be filled with
the data output by the command-line ipconfig.exe program. Figure 14-30 shows some sample output for this program.

Figure 14-30. Output from a console application, redirected to a ListBox

Some command-line programs, such as dir.exe, aren't really programs at all, but rather commands embedded within

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some command-line programs, such as dir.exe, aren't really programs at all, but rather commands embedded within
the command processor. For these programs, you need to use cmd.exe for the process filename and pass the actual
command as an argument of the /c option:

 ipConfig.StartInfo.FileName = "cmd.exe"
 ipConfig.StartInfo.Arguments = "/c dir c:\temp"

Unfortunately, you cannot prevent the command window from momentarily appearing when using cmd.exe as the
process program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.32. Reading an Assembly's Details

Problem

You're curious about the contents of an assembly, and it's not because you want to find out its secrets.

Solution

Sample code folder: Chapter 14\AssemblyManifest

Use the classes of the System.Reflection namespace to access the contents of any assembly.

Discussion

This recipe's sample code displays some basic information contained within an assembly. Create a new Windows Forms
application, and add the following controls to Form1:

A TextBox control named AssemblyLocation.

A Button control named ReadAssembly. Set its Text property to Show.

A TextBox control named AssemblyDetail. Set its Multiline property to true and its ScrollBars property to Both. Also set its
WordWrap property to False. Size this control to fill much of the form, as it will display a lot of content.

The form should look like the one in Figure 14-31.

Now, add the following code to the form's code template:

 Private Sub ReadAssembly_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ReadAssembly.Click
 ' ----- Given an assembly, display details from its
 ' manifest.
 Dim useAssembly As System.Reflection.Assembly
 Dim displayContent As New System.Text.StringBuilder

Figure 14-31. The controls on the show assembly details sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Load this assembly.
 If (My.Computer.FileSystem.FileExists(_
 AssemblyLocation.Text) = False) Then
 MsgBox("Please supply a valid assembly file name " & _
 "with a valid path.")
 Return
 End If
 Try
 useAssembly = Reflection.Assembly.LoadFile(_
 AssemblyLocation.Text)
 Catch ex As System.Exception
 MsgBox("Could not access the assembly: " & ex.Message)
 Return
 End Try

 ' ----- Clear the existing content.
 AssemblyDetail.Clear()

 ' ----- Show its full complex name.
 displayContent.AppendLine("Full Name: " & _
 useAssembly.FullName)

 ' ----- List all of the resources.
 displayContent.AppendLine()
 displayContent.AppendLine("Resources")
 For Each oneName As String In _
 useAssembly.GetManifestResourceNames()
 displayContent.AppendLine(" - " & oneName)
 Next oneName

 ' ----- List all of the exported types.
 displayContent.AppendLine()
 displayContent.AppendLine("Exported Types")
 For Each oneType As System.Type In _

useAssembly.GetExportedTypes()
 displayContent.AppendLine(" - " & oneType.Name)
 Next oneType

 ' ----- Process each module, and each type within
 ' the module.
 displayContent.AppendLine()
 displayContent.AppendLine("Modules")
 For Each oneModule As Reflection.Module In _
 useAssembly.GetLoadedModules()
 displayContent.AppendLine(" - " & oneModule.Name)
 For Each oneType As System.Type In oneModule.GetTypes()
 ' ----- These types will be the primary
 ' classes/forms in the assembly.
 displayContent.AppendLine(" Type: " & _
 oneType.Name)

 ' ----- Show the fields included in each type.
 For Each oneField As Reflection.FieldInfo In _
 oneType.GetFields()
 displayContent.AppendLine(" Field: " & _
 oneField.ToString())
 Next oneField

 ' ----- Show the methods included in each type.
 For Each oneMethod As Reflection.MethodInfo In _
 oneType.GetMethods()
 displayContent.AppendLine(" Method: " & _
 oneMethod.ToString())
 Next oneMethod
 Next oneType
 Next oneModule

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next oneModule

 ' ----- Display the results.
 AssemblyDetail.Text = displayContent.ToString()
 End Sub

To use the program, type a valid assembly file path into the AssemblyLocation field, and then click the Show button. The
AssemblyDetail text box will be filled with details from the specified assembly. For Windows Forms assemblies, you will be
amazed at the amount of content contained in even the simplest program. Figure 14-32 shows this program used on
itself.

Figure 14-32. The assembly details for an application assembly

The .NET Framework includes a system called reflection that lets you examine every aspect of an assembly, if you have
the proper security rights. You can view the basic assembly details, such as the version number and copyright name.
You can also examine all classes, class methods, method parameters, and even the Intermediate Language (IL) code
within a method. It's all available through the System.Reflection namespace.

The code shown here uses only a small portion of the available reflection features. The Reflection.Module class, for
example, has many properties and methods that fully describe a module, which is typically an EXE or DLL file.

This sample code does not take into account nested types. Any class can include
subordinate class definitions. To access these from a System.Type instance, use that
instance's GetNestedTypes() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.33. Performing Serial I/O

Problem

You need to communicate with a device connected to one of the serial ports on the user's workstation.

Solution

Sample code folder: Chapter 14\SerialIO

Use the My.Computer.Ports.OpenSerialPort() method to create a bidirectional System.IO.Ports.SerialPort instance.

Discussion

The following method generically sends data out to the COM1 serial port:

 Public Sub OutToCOM1(ByVal serialData As String, _
 ByVal useLineTermination As Boolean)
 ' ----- Open COM1 and send the supplied data.
 Dim com1Port As IO.Ports.SerialPort = Nothing

 Try
 ' ----- Access the port.
 com1Port = My.Computer.Ports.OpenSerialPort("COM1")

 ' ----- Write the data.
 If (useLineTermination = True) Then
 com1Port.WriteLine(serialData)
 Else
 com1Port.Write(serialData)
 End If

 ' ----- Finished with the port.
 com1Port.Close()
 Catch ex As Exception
 MsgBox("Error writing data to serial port: " & _
 ex.Message)
 Finally
 If (com1Port IsNot Nothing) Then com1Port.Dispose()
 com1Port = Nothing
 End Try
 End Sub

The opened serial port is bidirectional, so you can also read pending content:

For a single byte, use com1Port.ReadByte().

For multiple bytes, use com1Port.Read().

For a single character as an Integer, use com1Port.ReadChar().

For a complete text line, use com1Port.ReadLine().

For all pending characters, use com1Port.Existing().

When opening the serial port, different constructors allow you to specify the various handshaking options, including
baud rate and stop bits. To access the list of available serial ports, use the My.Computer.Ports.SerialPortNames collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.34. Rebooting the System

Problem

You want to programmatically restart the user's workstation.

Solution

Sample code folder: Chapter 14\ShutdownWindows

With all of the convenience features included in .NET, you would think that there would be a ShutdownWindows() method in
some convenient class. But alas, there is nothing like that. To shut down Windows, you must depend on some of the
Win32 DLL features. This recipe's sample code lets you exit Windows in one of four ways:

By locking the workstation (although this is not really exiting Windows)

By logging the current user out of Windows

By rebooting the system

By shutting down the system

Discussion

Create a new Windows Forms application. Add four Button controls to Form1, named ActLockWorkstation, ActLogoff, ActReboot,
and ActShutdown. Change their Text properties to Lock Workstation, Log off, Reboot, and Shut down, respectively. Then add the
following code to the form's code template:

 Private Sub ActLockWorkstation_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActLockWorkstation.Click
 GetOutOfWindows.ExitViaLockWorkstation()
 End Sub

 Private Sub ActLogoff_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActLogoff.Click
 GetOutOfWindows.ExitViaLogoff()
 End Sub

 Private Sub ActReboot_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActReboot.Click
 GetOutOfWindows.ExitViaReboot()
 End Sub

 Private Sub ActShutdown_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActShutdown.Click
 GetOutOfWindows.ExitViaShutdown()
 End Sub

Add a new class to your project using the Project Add Class menu command, giving its file the name
GetOutOfWindows.vb. Use this code for the class body:

 Public Class GetOutOfWindows
 ' ----- Windows constants used in shutdown permissions.
 Const SE_PRIVILEGE_ENABLED As Integer = &H2
 Const TOKEN_QUERY As Integer = &H8
 Const TOKEN_ADJUST_PRIVILEGES As Integer = &H20
 Const SE_SHUTDOWN_NAME As String = "SeShutdownPrivilege"

 ' ----- Shutdown method flags.
 Private Enum ShutdownMethods As Integer
 Logoff = 0
 Shutdown = 1
 Reboot = 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Reboot = 6
 End Enum

 <Runtime.InteropServices.StructLayout(_
 Runtime.InteropServices.LayoutKind.Sequential, Pack:=1)> _
 Private Structure TokenPrivileges
 Public PrivilegeCount As Integer
 Public Luid As Long
 Public Attributes As Integer
 End Structure

 ' ----- External features needed to exit Windows.
 Private Declare Ansi Function AdjustTokenPrivileges _
 Lib "advapi32.dll" _
 (ByVal tokenHandle As IntPtr, _
 ByVal disableAllPrivileges As Boolean, _
 ByRef newState As TokenPrivileges, _
 ByVal bufferLength As Integer, _
 ByVal previousState As IntPtr, _
 ByVal returnLength As IntPtr) As Boolean

 Private Declare Ansi Function ExitWindowsEx _
 Lib "user32.dll" _
 (ByVal flags As Integer, _
 ByVal reason As Integer) As Boolean

 Private Declare Ansi Function GetCurrentProcess _
 Lib "kernel32.dll" () As IntPtr

 Private Declare Ansi Sub LockWorkStation _
 Lib "user32.dll" ()

 Private Declare Ansi Function LookupPrivilegeValueA _
 Lib "advapi32.dll" _
 (ByVal
systemName As String, _
 ByVal privilegeName As String, _
 ByRef lookupID As Long) As Boolean

 Private Declare Ansi Function OpenProcessToken _
 Lib "advapi32.dll" _
 (ByVal processHandle As IntPtr, _
 ByVal desiredAccess As Integer, _
 ByRef tokenHandle As IntPtr) As Boolean

 Private Shared Sub PerformExit(_
 ByVal usingMethod As Integer)
 ' ----- Log off, reboot, or shut down the
system.
 Dim shutdownPrivileges As TokenPrivileges
 Dim processHandle As IntPtr
 Dim tokenHandle As IntPtr = IntPtr.Zero

 ' ----- Give ourselves the privilege of shutting
 ' down the system. First, obtain the token.
 processHandle = GetCurrentProcess()
 OpenProcessToken(processHandle, _
 TOKEN_ADJUST_PRIVILEGES Or TOKEN_QUERY, tokenHandle)

 ' ----- Adjust the token to enable shutdown permissions.
 shutdownPrivileges.PrivilegeCount = 1
 shutdownPrivileges.Luid = 0
 shutdownPrivileges.Attributes = SE_PRIVILEGE_ENABLED
 LookupPrivilegeValueA(Nothing, SE_SHUTDOWN_NAME, _
 shutdownPrivileges.Luid)
 AdjustTokenPrivileges(tokenHandle, False, _
 shutdownPrivileges, 0, IntPtr.Zero, IntPtr.Zero)

 ' ----- Now shut down the system.
 ExitWindowsEx(usingMethod, 0)
 End Sub

 Public Shared Sub ExitViaLockWorkstation()
 ' ----- Lock the workstation.
 LockWorkStation()
 End Sub

 Public Shared Sub ExitViaLogoff()
 ' ----- Log off the current user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Log off the current user.
 PerformExit(ShutdownMethods.Logoff)
 End Sub

 Public Shared Sub ExitViaReboot()
 ' ----- Reboot the system.
 PerformExit(ShutdownMethods.Reboot)
 End Sub

 Public Shared Sub ExitViaShutdown()
 ' ----- Shut down the system.
 PerformExit(ShutdownMethods.Shutdown)
 End Sub
 End Class

Run the program, and click one of the buttons on the form to take the related shutdown action. But be warned: this
program will shut down Windows if you choose anything other than "Lock Workstation." Make sure you save your work
before running this program.

Most of this code gets into the heart of the Windows system, and how it really works is beyond the scope of this book
(and beyond general human comprehension). But here's the gist of it: before you can shut down Windows, you have to
give yourself permission to do so. It must be a safety feature, because if you can give yourself permission, it's really
not a matter of security.

Still, if your application runs in a security-limited context imposed by the user or the system administrator, the attempt
to shut down the system may fail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic has included error handling since its initial release through the On Error statement. Although often derided by
developers, this mechanism did effectively catch and process all errors when used properly. Visual Basic 2005 still
includes this error-handling methodology, but it also includes structured error handling, new with .NET. This chapter
considers this new error-processing system, comprised of the TRy…Catch…Finally statement and System.Exception-derived
error objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.1. Catching an Exception

Problem

Although you've been a Visual Basic 6.0 developer for years, and you've already used On Error statements in your Visual
Basic 2005 code, you want to try out the structured error-handling statements you've heard so much about.

Solution

Use the TRy…Catch…Finally block statement to locally monitor and handle errors. The statement has three sections:

Try

The code you need to monitor for errors appears in this first section.

Catch

When an error occurs, processing jumps immediately from the TRy section to a matching Catch block (We'll
define "matching" shortly). Any remaining unprocessed statements in the TRy block are ignored. You can have
any number of Catch entries in your error-handling block.

Finally

Any code you include in this optional section runs whether an exception occurs or not. It's a useful place to put
any cleanup code related to resources you allocated in the try section.

Here's the syntax of the TRy…Catch…Finally statement:

 Try
 ' ----- Error-prone code here.
 Catch ex As
System.Exception
 ' ----- Error-processing code here. Multiple
 ' Catch blocks can be included.
 Finally
 ' ----- Cleanup code here (optional).
 End Try

Discussion

Although Visual Basic 2005 still supports the On Error statement and related error-handling logic found way back in Visual
Basic 1.0, it also includes a new "structured" error-handling system that more closely parallels the object-oriented
nature of .NET. In this system, exceptions (errors) exist as objects, inherited from the System.Exception class. When an
error occurs in your code, .NET wraps it up in a System.Exception object (or one of its more specific derived classes) and
triggers it in your code. The try…Catch statement watches for any such exceptions and jumps to a Catch block when an
exception occurs.

System.Exception represents the most general type of exception; because all exception objects derive from it, it catches all
error types. In this statement:

 Try
 ' ----- Error-prone code here.
 Catch ex As System.Exception
 ' ----- Error-processing code here.
 End Try

any type of error that occurs in the try block, no matter what it is, falls into the Catch block, since that block catches
every type of error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

every type of error.

.NET also defines more specific exceptions. For example, the System.OutOfMemoryException error occurs when any operation
lacks sufficient memory to execute properly:

 Try
 ' ----- Error-prone code here.
 Catch ex As System.OutOfMemoryException
 ' ----- Handle memory errors here.
 Catch ex As System.Exception
 ' ----- Handle all other errors here.
 End Try

Each Catch block handles only the error types specified in its As clause. In the above block of code, the first Catch block
handles OutOfMemoryException errors. Any other error that occurs in the try block skips over that first Catch entry and jumps
into the second, more general Catch block. This is what is meant by a "matching" Catch block, as mentioned earlier in this
recipe. Exceptions seek the first matching Catch clause, based on an exact class match or a derived match relationship.

When an error occurs, the generated exception is compared to each Catch block's As clause for a match, in order from
top to bottom. Therefore, you should place the most restrictive error type first, saving System.Exception for the last Catch
block. If no error occurs, all Catch blocks are ignored.

Within a Catch block, the ex variable (included just after the Catch keyword) provides access to the actual exception
object. Use its members as you would the members of any other object. A description of the exception appears as
ex.Message. You can name the variable anything you want; the name ex has become common in technical documentation,
but you are free to change it or even vary it between the different Catch clauses.

If included, the Finally block is always processed, no matter what. It is processed after the relevant TRy and Catch blocks
complete. Even if you issue an Exit Sub or similar statement from within a try or Catch block, the Finally section is still
processed. All TRy statements must include at least one Catch or Finally block.

There are some restrictions on TRy…Catch statements. In general, you cannot use GoTo statements to jump into or out of
any of the blocks. There is an Exit Try statement that lets you jump out early, but it can't be used in the Finally block.

If an error occurs in a routine but no error handling is in effect (i.e., the code is out-side of a try statement, and no On
Error statements appear in the procedure), the error "bubbles up" to the calling procedure, looking for another active
error handler to deal with the exception. If no error handlers are available to deal with the error, a message is
displayed to the user, and the application exits.

See Also

Recipe 15.3 discusses a global exception handler that Catches any exceptions not dealt with in local procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.2. Throwing an Exception

Problem

An invalid condition has occurred in your custom class code, and you want to generate an exception to inform the
calling code of the problem.

Solution

Use the Throw statement to send an exception to the next available error handler. THRow takes an instance of a
System.Exception (or derived) object as its only argument:

 Throw New System.Exception("A great big error occurred.")

You can also prepare your exception object in advance and then use its variable in the Throw statement:

 Dim errorDetail As New System.ArgumentOutOfRangeException(_
 "Year", "The 'Year' must be at least 1995.")
 Throw errorDetail

Discussion

When .NET detects an error in your program, it also uses the Throw statement to send errors to your code. When you
use the THRow statement, your generated errors look just like those issued by the Framework.

You can generate an error at any time using the Throw statement, even within a try block. The related Catch handler will
process the error as if some other system-defined process had generated the error.

Visual Basic also includes an Err.Raise method that generates errors, as was done using pre-.NET versions of Visual Basic.
It focuses on error numbers rather than on object-based exceptions. Although .NET will wrap errors issued through
Err.Raise in an Exception object, you should use this method only for backward compatibility. Use the Throw statement
instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.3. Catching Unhandled Exceptions

Problem

Although you make judicious use of TRy…Catch and On Error statements in your code, it's possible that some exceptions
will sneak through your structured and unstructured error-handling barriers. You want to keep these errors from
crashing the program.

Solution

Sample code folder: Chapter 15\ UnhandledException

Handle the application-level UnhandledException event to capture any errors not dealt with elsewhere in your code. This
global error handler is part of the Windows Forms Application Framework. In the Project Properties window's Application
panel, make sure that "Enable application framework" is selected, and then click on the View Application Events button
on that same panel. Visual Studio opens the ApplicationEvents.vb source file, which looks like this:

 Namespace My
 Partial Friend Class MyApplication

 End Class
 End Namespace

The global error handler will appear in this MyApplication class. Select "(MyApplication Events)" from the Class Name list
above and to the left of the code editor window, and then select "UnhandledException" from the Method Name list just
to the right of that. Visual Studio will add a template for the UnhandledException event handler:

 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As Microsoft. _
 VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 End Sub

Code added to this event handler will run whenever an unhandled error or exception occurs somewhere in your
application. Once you have dealt with the error, you can either exit the application immediately (in a more controlled
manner than just letting the program crash) or return to a basic waiting-for-input-from-the-user state. Use the e
argument's ExitApplication property to indicate which choice you want to make. Setting this property to TRue, as shown
here, will terminate the program:

 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As Microsoft. _
 VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MsgBox("An unhandled error occurred. That's bad.")
 e.ExitApplication = True
 End Sub

This code is never called when your application runs in the debugger.

Discussion

The solution listed above is valid only for Windows Forms applications that use the Application Framework. If you
choose to disable the Application Framework, or you are writing a nonWindows Forms application, you must manually
establish a global error handler for each thread of your application. We'll look at the first case here.

Create a new Windows Forms application, and clear the "Enable application frame-work" field in the Project Properties
window. Open up the source code window for the Form1 form, and replace the basically empty content with the following
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code:

 Public Class Form1
 Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 ' ----- Cause a fake unhandled error.
 Throw New System.Exception()
 End Sub

 Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 ' ----- Disable the monitor before exiting.
 RemoveGlobalErrorMonitor()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Enable error monitoring.
 AddGlobalErrorMonitor()
 End Sub
 End Class

 Module Module1
 Public Sub AddGlobalErrorMonitor()
 ' ----- Enable global error monitoring on this thread.

AddHandler Application.ThreadException, _
 AddressOf GlobalErrorMonitor
 End Sub

 Public Sub RemoveGlobalErrorMonitor()
 ' ----- Disable global error monitoring on this thread.
 RemoveHandler Application.ThreadException, _
 AddressOf GlobalErrorMonitor
 End Sub

 Public Sub GlobalErrorMonitor(ByVal sender As Object, _
 ByVal e As System.Threading.ThreadExceptionEventArgs)
 ' ----- An unhandled global error occurred in the thread.
 MsgBox("A global error was caught.")
 End Sub
 End Module

This code uses the AddHandler statement to connect the thread's Application. ThreadException event to a custom event handler,
GlobalErrorMonitor(). It's added immediately when the (main) form is first loaded, and it remains until the form closes.
Remember that this code will not work properly within Visual Studio. You must build the application and run it directly
before your global exception handler can be used.

When writing console applications, monitor the System.appdomain.CurrentDomain. UnhandledException event instead of
Application.ThreadException:

 AddHandler System.appdomain.CurrentDomain. _
 UnhandledException, AddressOf GlobalErrorMonitor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.4. Displaying Exception Information

Problem

An error has occurred, and you want to inform the user in a friendly manner.

Solution

The captured exception object includes all the details concerning the error, with some parts ready for user-friendly
presentation. The simplest presentation option uses the exception's ToString() method to generate information about the
error.

The following code generates the error message in Figure 15-1 when run within Visual Studio:

 Try
 Throw New System.Exception()
 Catch ex As System.Exception
 MsgBox(ex.ToString())
 End Try

Figure 15-1. A basic error message

Discussion

If you encounter an exception in a block of code where you know errors are likely, you can sometimes compensate for the
error through alternate logic without ever informing the user of the problem. In those cases where you cannot continue
normally because of the error, your program can inform the user of the situation.

Beyond the basic ToString() output, you can handcraft the details of the exception into a form that better communicates the
problem to the user. The System.Exception object includes the following useful properties:

Data

Some errors use the collection exposed by this property to store additional details related to the error. The type of
data stored depends on the code that generated the error. It is most often used in custom exceptions.

InnerException

If this exception is a byproduct of another, earlier exception, this property exposes that previous exception.

Message

This property provides a short yet friendly description of the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This property provides a short yet friendly description of the exception.

Source

This property specifies the name of the application, class, or process ID that generated the error.

StackTrace

This text property provides a semihuman-readable listing of the stack tracethe set of called methods that led up to
the method generating the error. This stack trace may include internal procedures from the .NET Framework, and its
overall length may shock the user.

TargetSite

This property exposes a MethodBase object that fully describes the procedure in which the exception occurred. The
properties of this object may or may not be useful in every case, especially when an application has been
obfuscated.

Other exception objects further derived from System.Exception may include additional properties with more detailed information.
By concatenating the various properties of the captured exception object, you should be able to effectively communicate the
problem to the user or store the details in an error log for later analysis.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.5. Creating New Exception Types

Problem

None of the exception objects supplied with .NET really meets the needs of the error you need to generate.

Solution

Build your own exception object by deriving a new class from System.Exception or another class already derived from it.

Discussion

The following class extends the standard Exception object by adding a place for a SQL statement used in a database
query:

 Public Class ExceptionWithSQL
 Inherits System.Exception

 Public SQLStatement As String

 Public Sub New(ByVal message As String, _
 ByVal sqlText As String, _
 ByVal innerException As System.Exception)
 ' ----- Store the details of this exception.
 MyBase.New(message, innerException)
 SQLStatement = sqlText
 End Sub
 End Class

Many business applications that interact with a database use a central procedure to process SQL statements in a
consistent manner. While this procedure may have its own error handler, the calling code also wants to know when an
error occurred with the SQL statement that it provided. The following ProcessSQL method represents just such a common
procedure. If an error occurs in the supplied SQL statement, it uses the ExceptionWithSQL class to communicate the
problem:

 Public Sub ProcessSQL(ByVal sqlText As String)
 Try
 ' ----- Add ADO.NET-specific code here.
 Catch ex As System.Exception
 ' ----- Convert this to a SQL error.
 Throw New WindowsApplication1.ExceptionWithSQL(_
 "A SQL error occurred.", sqlText, ex)
 ' ----- The calling procedure will receive the
 ' modified error.
 End Try
 End Sub

Since the calling code may issue several different SQL statements within a common try block, having the errant SQL
statement in the exception object provides the additional information a programmer may need to locate the problem:

 Dim sqlText As String
 Try
 sqlText = "DELETE FROM Table1 WHERE RecordType = 5"
 ProcessSQL(sqlText)
 sqlText = "DELETE FROM Table2 WHERE RecordType = 5"
 ProcessSQL(sqlText)
 Catch ex As WindowsApplication1.ExceptionWithSQL
 MsgBox("The following SQL statement caused an error:" & _
 vbCrLf & ex.SQLStatement)
 End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also create a new ExceptionWithSQL object for any reason on your own and THRow it, even if no underlying
database error occurred. With custom errors, the choice of when to use them is yours.

Before .NET, errors in Visual Basic were identified solely by a number, many defined for common use by Microsoft
Windows. For instance, error number 7 represents the "Out-of-memory" error condition.

In .NET, all errors are defined by specific classes derived from System.Exception. For example, out-of-memory errors are
thrown as instances of System.OutOfMemoryException. You can derive your own exceptions for use in your application code.
You will often derive such custom errors directly from System.Exception, but if another derived exception class contains
features you don't want to rewrite from scratch, you can derive from that class instead.

The various .NET exceptions derived from System.Exception can also be used directly. For instance, you can throw a
System.DivideByZeroException even if you don't actually perform an invalid division, but your code has a zero-value
denominator ready to use:

 Public Function CheckAndDivide(ByVal numerator As Decimal, _
 ByVal denominator As Decimal) As Decimal
 ' ----- Divide numbers, but check for divide-by-zero first.
 If (denominator = 0@) Then
 Throw New System.DivideByZeroException()
 Else
 Return numerator / denominator
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.6. Ignoring Exceptions in a Block of Code

Problem

You have a block of code that might generate errors, but you don't really care. You want the code to continue on with
or without errors and to provide no error report to the user.

Solution

To ignore errors, use the On Error Resume Next statement, or use a TRy statement with an empty Catch block.

Discussion

In Visual Basic, the traditional way to ignore errors in a section of code is to use the On Error Resume Next statement. The
following code shows both ignored and pro-cessed error-handler sections:

 Public Sub DoSomething()
 On Error Resume Next
 ' ----- Error handling is now disabled. You can do
 ' dangerous things and no errors will occur. The
 ' "Err" object will still be filled in with
 ' error content when an error does occur, so you
 ' can check that if you are concerned.

 On Error GoTo ErrorHandler
 ' ----- Error handling has been turned back on. All
 ' errors will jump down to the labeled section.
 Exit Sub

 ErrorHandler:
 ' ----- Do something with the error here, then…
 Resume Next
 End Sub

If you want to ignore errors but prefer using the structured exception-handling features, add a TRy block with an empty
Catch block:

 Public Sub DoSomething()
 Try
 ' ----- As expected, any error that occurs here will
 ' jump to the Catch block.
 Catch
 ' ----- If you don't include any error-handling code
 ' here, the error is just ignored.
 End Try

 ' ----- Errors that occur out here will not be caught by
 ' the Try block, but you knew that already.
 End Sub

There is a small difference between these two blocks of code. When using the On Error Resume Next statement, any error
on a statement causes the code to continue with the next statement. In the TRy…Catch example, any error that occurs in
the TRy block causes the code to continue with the Catch block, and then with the code that follows the entire try…End Try
section. This means that if you have multiple statements in the try block and an error occurs on the first of those
statements, the remaining statements in the try block are skipped completely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Cryptography and Compression
Introduction

Recipe 16.1. Generating a Hash

Recipe 16.2. Encrypting and Decrypting a String

Recipe 16.3. Encrypting and Decrypting a File

Recipe 16.4. Prompting for a Username and Password

Recipe 16.5. Handling Passwords Securely

Recipe 16.6. Compressing and Decompressing a String

Recipe 16.7. Compressing and Decompressing a File

Recipe 16.8. Generating Cryptographically Secure Random Numbers

Recipe 16.9. Complete Listing of the Crypto.vb Module

Recipe 16.10. Complete Listing of the Compress.vb Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
In today's world, security is an increasingly important part of development requirements. Visual Basic 2005 and the
.NET Framework provide advanced and well-established encryption libraries. This chapter provides recipes for some of
the basic tasks you may need to become more familiar with, such as encrypting data files, handling passwords securely,
and so on. Closely related to encryption is the science of compression, so some of these recipes also cover this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.1. Generating a Hash

Problem

You want to hash a string to create a unique, repeatable identifier. This can be used to determine if a string has been
altered in any way, to identify a password without revealing the actual password, and to convert a string of any length
to a unique fixed-length key for cryptographic algorithms.

Solution

Sample code folder: Chapter 16\Cryptography

Use the .NET Framework's cryptographic services to generate an industry-standard hash of your data.

Discussion

A hash is like a one-way encryption. There's no way to recover an original string given its hash value. In fact, it's
technically possible for more than one string to return the exact same hash value, although the odds are against this
ever happening in the time allotted for the unfolding of the universe. The MD5 hash used in this recipe returns a 16-
byte value, and a quick calculation shows there are over 3 x 1038 unique combinations of 16 bytes. If you were to
check through all the possible hash patterns at the rate of a million combinations each second, you'd still be quite busy
after a few trillion centuries.

The advantage of the MD5 hash is that changing the given string in the minutest way results in a completely different
and unique hash value. If you hash a string and get the hash value expected for that string, you can feel very confident
that the string has not been altered in any way. A password, for example, can be checked against the original password
by comparing the hashes for the original password and the new one. If the hashes match, the passwords match, and
you don't even have to know what the passwords are.

The following function isolates the code to generate a hash for a string. This function is part of a module named Crypto
that's presented in its entirety in Recipe 16.9:

 Public Function GetHash(ByVal plainText As String) As String
 ' ----- Generate a hash. Return an empty string
 ' if there are any problems.
 Dim plainBytes As Byte()
 Dim hashEngine As MD5CryptoServiceProvider
 Dim hashBytes As Byte()
 Dim hashText As String

 Try
 ' ----- Convert the plain text to a byte array.
 plainBytes = Encoding.UTF8.GetBytes(plainText)

 ' ----- Select one of the hash engines.
 hashEngine = New MD5CryptoServiceProvider

 ' ----- Get the hash of the plain text bytes.
 hashBytes = hashEngine.ComputeHash(plainBytes)

 ' ----- Convert the hash bytes to a hexadecimal string.
 hashText = Replace(BitConverter.ToString(hashBytes), "-", "")
 Return hashText
 Catch
 Return ""
 End Try
 End Function

There are several cryptography service providers in the .NET Framework, including SHA1, Triple DES, Rijndael, and
others. The MD5 hashing algorithm is a good standard one to use, but you can change the above code to use a different
algorithm if desired.

For convenience, this function returns the 16-byte hash converted to a 32-byte hexa-decimal character string. This
simplifies tasks such as storing the hash in the registry instead of a password, and it provides a useful way to convert
any key string to a 32-byte key for the Rijndael cipher, a technique used in other recipes in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any key string to a 32-byte key for the Rijndael cipher, a technique used in other recipes in this chapter.

The following code demonstrates the GetHash() function by hashing a string and displaying the result, shown in Figure
16-1:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = _
 "The important thing is not to stop questioning. " & _
 "--Albert Einstein"
 Dim hash As String = GetHash(workText)
 result.Append("Plain text: ")
 result.AppendLine(workText)
 result.Append("Hash value: ")
 result.Append(hash)
 MsgBox(result.ToString())

Figure 16-1. Generating an MD5 hash of a string

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.2. Encrypting and Decrypting a String

Problem

You want to encrypt and later decrypt a string using a private key.

Solution

Sample code folder: Chapter 16\Cryptography

Use the StringEncrypt() and StringDecrypt() functions, presented in this recipe, which wrap calls to a cryptography services provider in the .NET
Framework.

Discussion

The StringEncrypt() function processes a plain-text string using a key string and returns a Base64 (MIME) string. This string can be deciphered only
by passing it back to the StringDecrypt() function, along with the same key string. The returned Base64 string is comprised of viewable and
printable ASCII characters and is suitable for printing, emailing, and storing in standard text files. We'll look at the StringEncrypt()

 Public Function StringEncrypt(ByVal plainText As String, _
 ByVal keyText As String) As String
 ' ----- Encrypt some text. Return an empty string
 ' if there are any problems.
 Try
 ' ----- Remove any possible null characters.
 Dim workText As String = plainText.Replace(vbNullChar, "")

 ' ----- Convert plain text to byte array.
 Dim workBytes() As Byte = Encoding.UTF8.GetBytes(plainText)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Write(workBytes, 0, workBytes.Length)
 cryptoStream.FlushFinalBlock()

 ' ----- Convert binary data to a viewable string.
 Dim encrypted As String = _
 Convert.ToBase64String(memoryStream.ToArray)

 ' ----- Close the streams.
 memoryStream.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Return the encrypted string result.
 Return encrypted
 Catch
 Return ""
 End Try
 End Function

The RijndaelManaged object was chosen for the encryption algorithm, but you may substitute any of the other encryption engines provided in the
.NET Framework, such as Triple DES. The Rijndael algorithm was chosen because it is one of the latest and strongest algorithms around. Also
known as the Advanced Encryption Algorithm (AES), it survived intense scrutiny by experts in the industry to become the algorithm the
government selected to replace the older Data Encryption Standard (DES) algorithm. It's standard, and it's good.

The StringDecrypt() function is similar to StringEncrypt(), except that the encrypted Base64 string is passed to it along with the same key string as
used before, and the original plain-text result is returned:

 Public Function StringDecrypt(ByVal encrypted As String, _
 ByVal keyText As String) As String
 ' ----- Decrypt a previously encrypted string. The key
 ' must match the one used to encrypt the string.
 ' Return an empty string on error.
 Try
 ' ----- Convert encrypted string to a byte array.
 Dim workBytes() As Byte = _
 Convert.FromBase64String(encrypted)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Decrypted bytes will be stored in
 ' a temporary array.
 Dim tempBytes(workBytes.Length - 1) As Byte

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(workBytes)

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Read)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Read(tempBytes, 0, tempBytes.Length)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Convert the decrypted bytes to a string.
 Dim plainText As String = _
 Encoding.UTF8.GetString(tempBytes)

 ' ----- Return the decrypted string result.
 Return plainText.Replace(vbNullChar, "")
 Catch
 Return ""
 End Try
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the same initialization vector is used in both functions. This is the actual "secret key" you use to encrypt the content. You can use
other sets of bytes to initialize the IV() array, but both the StringEncrypt() and StringDecrypt() functions should use exactly the same values.

The Rijndael encryption object expects an array of 32bytes as the key. The GetHash() function presented in Recipe 16.1 makes it easy to convert
any key string to a 32-byte key suitable for the encryption. The values of the key bytes in this case vary only over a range of 16 unique values
each, but there still are more than 3 x 1038 possible key combinations. Generally, any unique key string always generates a unique 32-byte hash
value as a key, and a brute-force attack based on checking all possible keys generated by GetHash() is, based on today's technology, out of the
question.

The following code demonstrates calling the StringEncrypt() and StringDecrypt() functions:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = _
 "The important thing is not to stop questioning. " & _
 "--Albert Einstein"
 Dim keyString As String = "This string is the key"
 Dim encrypted As String = StringEncrypt(workText, keyString)
 Dim decrypted As String = StringDecrypt(encrypted, keyString)
 result.Append("Plain Text: ")
 result.AppendLine(workText)
 result.AppendLine()
 result.Append("Encrypted: ")
 result.AppendLine(encrypted)
 result.AppendLine()
 result.Append("Decrypted: ")
 result.Append(decrypted)
 MsgBox(result.ToString())

The original plain-text string is encrypted and then decrypted using the same key string. The results of each step are displayed in

Figure 16-2. Encrypting a string with the AES algorithm

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.3. Encrypting and Decrypting a File

Problem

You want an easy-to-use function that encrypts and decrypts any file.

Solution

Sample code folder: Chapter 16\Cryptography

Use the FileEncrypt() and FileDecrypt() functions presented in this recipe.

Discussion

You can theoretically load an entire file into a string and call the StringEncrypt() and StringDecrypt() functions presented in
Recipe 16.2 to process all its contents in one shot, but there may be problems with this approach. For one thing, larger
files require a lot of memory during processing. It's better to process chunks of files a piece at a time until the whole
file is processed. In the FileEncrypt() and FileDecrypt() functions presented here, a buffer of 4,096 bytes processes the
streams of data in smaller, manageable chunks. Here are the two functions showing how this buffer is used:

 Public Sub FileEncrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)
 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal destinationFile As String, _
 ByVal keyText As String)

 ' ----- Create file streams.
 Dim sourceStream As New
FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New
FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by
CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

These two functions are similar to the StringEncrypt() and StringDecrypt() functions, except for a couple of important features.
Instead of the memory stream being used to process the strings, the file contents are processed through file streams.
The cryptoStream object is hooked into the file stream to process the bytes as they flow through the streams.

The other difference is the use of a byte-array buffer that holds 4,096 bytes. Chunks of 4,096 bytes are read from the
input file, processed by the streams in the process, and then written to the output file. This allows processing of very
large files a piece at a time.

The following code demonstrates these two functions by first creating a plain-text file, then encrypting it to a second
file, and finally decrypting the result to a third file, always using the same key:

 Dim result As New System.Text.StringBuilder
 Dim file1Text As String = _
 "This is sample content for a text file" & vbNewLine & _
 "to be encrypted and decrypted. File1 and" & vbNewLine & _
 "File3 should show this plain text. File2" & vbNewLine & _
 "is encrypted and will be indecipherable."
 Dim file2Text As String
 Dim file3Text As String
 Dim file1 As String = Application.StartupPath & "\File1.txt"
 Dim file2 As String = Application.StartupPath & "\File2.ezz"
 Dim file3 As String = Application.StartupPath & "\File3.txt"

 ' ----- Create the encrypted
and decrypted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and decrypted
files.
 My.Computer.
FileSystem.WriteAllText(file1, file1Text, False)
 FileEncrypt(file1, file2, "key")
 FileDecrypt(file2, file3, "key")

 ' ----- Display the results.
 file2Text = My.Computer.FileSystem.ReadAllText(file2)
 file3Text = My.Computer.FileSystem.ReadAllText(file3)
 result.AppendLine("File1:")
 result.AppendLine(file1Text)
 result.AppendLine()
 result.AppendLine("File3:")
 result.AppendLine(file3Text)
 result.AppendLine()
 result.AppendLine("File2:")
 result.Append(file2Text)
 MsgBox(result.ToString())

The original file and the decrypted file are displayed first in the message box, as shown in Figure 16-3, and the
encrypted file (File2) is displayed last. The encrypted file consists of binary data unsuitable for normal display, resulting
in a truncated list of strange characters.

Figure 16-3. Original, encrypted, and decrypted versions of a file

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.4. Prompting for a Username and Password

Problem

You need to add a password dialog to an application to prevent unauthorized access to the rest of the program.

Solution

Sample code folder: Chapter 16\LoginTest

Use the standard LoginForm dialog provided by Visual Basic 2005.

Discussion

In Visual Studio 2005, you can add new items to your project, selecting from a variety of predefined forms and other
objects. If you select the Project Add Windows Form menu command, one of the form choices you can add is a
LoginForm. This form is all set up with User Name and Password text boxes, along with two buttons and a nice graphic.
You can modify this dialog to suit your own requirements, perhaps replacing the graphic image with something more
appropriate for your business.

The Password text box displays only asterisks as the user enters his password. All TextBox controls have a PasswordChar
property, which is normally left blank. Enter an asterisk (or any other character) in this property, and the TextBox
displays only the given character. The TextBox.Text property still returns whatever text the user has entered; it's just
displayed as all asterisks to mask it from prying eyes.

The following code block shows how hashed values of the User Name and Password text entries can be compared
against known hashed values. This code requires the GetHash() function defined in Recipe 16.1:

 Dim result As String

 ' ----- Store only the hashed values, not the plain text.
 Dim hashUserName As String = GetHash("AlbertE")
 Dim hashPassword As String = GetHash("E=MC2")

 LoginForm1.ShowDialog()

 ' ----- Hash the input values.
 Dim hashUserInput As String = _
 GetHash(LoginForm1.UsernameTextBox.Text)
 Dim hashPassInput As String = _
 GetHash(LoginForm1.PasswordTextBox.Text)

 ' ----- Test the inputs.
 If (hashUserName = hashUserInput) AndAlso _
 (hashPassword = hashPassInput) Then
 result = "Yes, you passed the password test!"
 Else
 result = "I'm sorry, please try again."
 End If
 MsgBox(result)

Normally, it's best not to put the user's name and password directly in the code, as shown here, but for demonstration
purposes, it works well. In the next recipe we'll store the hashed password in the registry, where the actual password
can't be discovered.

Figure 16-4 shows the LoginForm in action, after the user has entered a username and password, but just before the OK
button is clicked or the Enter key pressed.

Figure 16-4. Visual Basic 2005's customizable standard LoginForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-4. Visual Basic 2005's customizable standard LoginForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.5. Handling Passwords Securely

Problem

You want to test an entered password against a value stored somewhere, but you don't want anyone to be able to look
through the system or through your program to discover what that password is.

Solution

Sample code folder: Chapter 16\SecurePassword

Store the hash of the password in the system registry, and test any user-entered password by comparing its hash
against the registry entry.

Discussion

The following demonstration code includes a method that lets you record a username and password (hashed) in the
system registry, and another method that compares a newly entered username and password with the previously
stored value. This code requires the GetHash() function defined in Recipe 16.1:

 Public Sub StoreUserAndPassword(ByVal userName As String, _
 ByVal passwordText As String)
 ' ----- Save the encrypted password in the registry.
 Dim hashPassword As String = GetHash(passwordText)

 My.Computer.Registry.SetValue _
 ("HKEY_CURRENT_USER\Software\
PasswordsTest", _
 userName, hashPassword)
 End Sub

 Public Function CheckPassword(ByVal userName As String, _
 ByVal passwordText As String) As Boolean
 ' ----- See if the username and password passed to
 ' this function match entries in the registry.
 Dim hashPassword As String = GetHash(passwordText)

 ' ----- Retrieve any stored value.
 Dim hashPassRead As String = _
 Convert.ToString(My.Computer.Registry.GetValue(_

"HKEY_CURRENT_USER\Software\PasswordsTest", _
 userName, Nothing))

 ' ----- Compare the passwords.
 If (hashPassRead = Nothing) Then
 ' ----- Invalid username.
 Return False
 ElseIf (hashPassRead = hashPassword) Then
 ' ----- Good username and password.
 Return True
 Else
 ' ----- Good username, bad password.
 Return False
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.6. Compressing and Decompressing a String

Problem

You want to compress and later decompress a string to save memory or file space.

Solution

Sample code folder: Chapter 16\ Compression

Use Gzip stream compression and decompression, new in Version 2.0 of the .NET Framework.

Discussion

The System.IO.Compression namespace contains the GZipStream class, which can compress or decompress bytes as they
move through the stream. The compression algorithm is similar to the standard ZIP compression found in many
programs, providing decent lossless compression at a high speed.

This compression works best on longer strings. In the following sample code, the contents of the workText string are
repeated several times in order to build a redundant string resulting in a lot of compression.

The compression and decompression calls are wrapped in the functions StringCompress() and BytesDecompress(), contained in
a module named Compress.vb.

The compression function accepts a string and returns a byte array, and the decompression function accepts a byte
array and returns a string. The compressed byte array contains just about any and all possible byte values, and keeping
this data in the form of a byte array prevents subtle problems from arising when you attempt to convert the array
directly to a string:

 Public Function StringCompress(_
 ByVal originalText As String) As Byte()
 ' ----- Generate a compressed version of a string.
 ' First, convert the string to a byte array.
 Dim workBytes() As Byte = _
 Encoding.UTF8.GetBytes(originalText)

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Use the newly created memory stream for the
 ' compressed data.
 Dim zipStream As New GZipStream(memoryStream, _
 CompressionMode.Compress, True)
 zipStream.Write(workBytes, 0, workBytes.Length)
 zipStream.Flush()

 ' ----- Close the compression stream.
 zipStream.Close()

 ' ----- Return the compressed bytes.
 Return memoryStream.ToArray
 End Function

 Public Function BytesDecompress(_
 ByVal compressed() As Byte) As String
 ' ----- Uncompress a previously compressed string.
 ' Extract the length for the decompressed string.
 Dim lastFour(3) As Byte
 Array.Copy(compressed, compressed.Length - 4, _
 lastFour, 0, 4)
 Dim bufferLength As Integer = _
 BitConverter.ToInt32(lastFour, 0)

 ' ----- Create an uncompressed bytes buffer.
 Dim buffer(bufferLength - 1) As Byte

 ' ----- Bytes will flow through a memory stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(compressed)

 ' ----- Create the decompression stream.
 Dim decompressedStream As New GZipStream(_
 memoryStream, CompressionMode.Decompress, True)

 ' ----- Read and decompress the data into the buffer.
 decompressedStream.Read(buffer, 0, bufferLength)

 ' ----- Convert the bytes to a string.
 Return Encoding.UTF8.GetString(buffer)
 End Function

The following code demonstrates these functions by building a moderately long redundant string, passing it to
CompressString(), then passing the compressed byte array back to BytesDecompress() to recover the original string:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = ""
 For counter As Integer = 1 To 9
 workText &= "This redundant string will be compressed" & _
 vbNewLine
 Next counter
 Dim compressed() As Byte = StringCompress(workText)
 Dim uncompressed As String = BytesDecompress(compressed)
 result.AppendLine(workText)
 result.Append("Original size: ")
 result.AppendLine(workText.Length)
 result.AppendLine()
 result.Append("Compressed size: ")
 result.AppendLine(compressed.Length)
 result.AppendLine()
 result.AppendLine(uncompressed)
 result.AppendLine()
 result.Append("Uncompressed size: ")
 result.Append(uncompressed.Length)
 MsgBox(result.ToString())

Figure 16-5 displays the original string and its length, followed by the length of the compressed byte array, and finally
the resulting decompressed string and its length. Longer strings with redundancies, such as this one, compress better
than shorter ones.

See Also

Recipe 16.9 includes the full source code for the Compress module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.7. Compressing and Decompressing a File

Problem

You want to compress and decompress file data.

Solution

Sample code folder: Chapter 16\Compression

Use Gzip stream compression and decompression, new in Version 2.0 of the .NET Framework.

Figure 16-5. Compressing and decompressing a string

Discussion

Because the GZipStream class works on streams, it's easy to point it to file streams as data is read to or written from files.
This lets the compression and decompression algorithms intercept the bytes as they move through the file streams.

The FileCompress() and FileDecompress() functions are found in the same Compress.vb module that contains the string
compression and decompression functions presented in Recipe 16.6. These functions are similar in that they intercept
streams to process bytes as they move through them. One important difference is the use of a 4,096-byte buffer to
process the file-stream data in chunks, rather than loading the entire file contents into memory. This allows even the
largest files to be efficiently processed a piece at a time.

Here are the two file compression and decompression functions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here are the two file compression and decompression functions:

 Public Sub FileCompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Decompress a previously compressed string.
 ' First, create the input file stream.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)

 ' ----- Create the output file stream.
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed by a compression
 ' stream.
 Dim compressedStream As New GZipStream(_
 destinationStream, CompressionMode.Compress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 compressedStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 compressedStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Compress the entire contents of a file, and
 ' store the result in a new file. First, get
 ' the files as streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed through a
 ' decompression stream.
 Dim decompressedStream As New GZipStream(_
 sourceStream, CompressionMode.Decompress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = decompressedStream.Read(buffer, _
 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 destinationStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 decompressedStream.Close()
 destinationStream.Close()
 End Sub

The entire Compress.vb module is listed in Recipe 16.10.

The following code demonstrates file compression and decompression by first filling a file with many repetitions of the
same lines of text. Doubling the size of the file several times causes the number of bytes stored in File1 to grow to
almost 88K.

FileCompress() is called to compress File1 into File2. Because of the highly redundant nature of the data in this example, the
original 88K bytes of data compress down to less than 1K, as stored in File2. Finally, FileDecompress() is called to
decompress File2 into File3. This file ends up being exactly the same size and containing exactly the same data as File1,
verifying the compression and decompression action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

verifying the compression and decompression action:

 Dim result As New System.Text.StringBuilder
 Dim file1Text As String = _
 "This is sample content for a text file to" & vbNewLine & _
 "be compressed and decompressed. File1 and" & vbNewLine & _
 "File3 should show this plain text. File2" & vbNewLine & _
 "is compressed and will be indecipherable." & vbNewLine
 For counter As Integer = 1 To 9
 file1Text &= file1Text
 Next counter
 Dim file2Text As String
 Dim file3Text As String
 Dim file1 As String = Application.StartupPath & "\File1.txt"
 Dim file2 As String = Application.StartupPath & "\File2.gzz"
 Dim file3 As String = Application.StartupPath & "\File3.txt"

 ' ----- Compress and decompress the content files.
 My.Computer.FileSystem.WriteAllText(file1, file1Text, False)
 FileCompress(file1, file2)
 FileDecompress(file2, file3)

 ' ----- Display the results.
 file2Text = My.Computer.FileSystem.ReadAllText(file2)
 file3Text = My.Computer.FileSystem.ReadAllText(file3)
 result.Append("File1 length (original): ")
 result.AppendLine(file1Text.Length)
 result.Append("File2 length (compressed): ")
 result.AppendLine(file2Text.Length)
 result.Append("File3 length (decompressed): ")
 result.AppendLine(file3Text.Length)
 MsgBox(result.ToString())

Figure 16-6 displays the size in bytes of each of the three files after the functions are called.

See Also

Recipe 16.10 includes the full source code for the Compress module.

Figure 16-6. Compressing and decompressing a file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.8. Generating Cryptographically Secure Random Numbers

Problem

You want to generate reliably unpredictable pseudorandom bytes.

Solution

Sample code folder: Chapter 16\RandomNumbers

Use the RNGCryptoServiceProvider class provided in the System.Security.Cryptography namespace to generate random numbers
that are guaranteed to be unpredictable and highly resistant to any pattern analysis.

Discussion

Some random number generators, such as those found in Visual Basic 6.0 and earlier versions of BASIC, were not
really that good. They generally were fine for most statistical analysis purposes, but their cycle lengths were
comparatively short, and certain types of high-powered random number tests showed them to have subtle patterns in
the bits comprising their sequences of bytes. The RNGCryptoServiceProvider class provides a random number generator
that's been carefully studied by professional cryptographers and passes all the standard tests for randomness with
flying colors. There's no realistic way to analyze or predict the next byte in a sequence generated by this class.

The following code demonstrates the RNGCryptoServiceProvider class by using an instance of it to generate a million random
bytes. The mean of these bytes is calculated, as is the time it takes to generate the bytes:

 Dim result As New System.Text.StringBuilder
 Const ProcessSize As Integer = 1000000

 ' ----- Generate the random content.
 Dim randomEngine As New RNGCryptoServiceProvider()
 Dim randomBytes(ProcessSize) As Byte

 Dim timeStart As Date = Now
 randomEngine.GetBytes(randomBytes)

 ' ----- Calculate the mean of all values.
 Dim mean As Double
 For counter As Integer = 1 To ProcessSize
 mean += randomBytes(counter)
 Next counter
 mean /= ProcessSize

 ' ----- How long did this take?
 Dim timeElapsed As Double = _
 Now.Subtract(timeStart).TotalSeconds

 ' ----- Display the results.
 result.AppendLine(String.Format(_
 "Generated and found mean of {0} random bytes", _
 ProcessSize))
 result.AppendLine(String.Format("in {0} seconds", _
 timeElapsed))
 result.Append("Mean: " & mean)
 MsgBox(result.ToString())

The results for a sample run appear in Figure 16-7. You can call the GetBytes() method to fill any size byte array you pass
to it with that many random bytes. The previous code generates the million bytes using only one call to the GetBytes()
method. The loop processes the individual byes to calculate the mean.

Figure 16-7. Cryptographically secure random bytes generated by the
RNGCryptoServiceProvider class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RNGCryptoServiceProvider class

Because the random bytes have equal probabilities for all values from 0 to 255, the average value should theoretically
be very near 127.5. With a million random bytes generated by this sample code, the mean falls very close to this
theoretical value almost every time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.9. Complete Listing of the Crypto.vb Module
Sample code folder: Chapter 16\Cryptography

This recipe contains the full code for the Crypto module described in Recipes 16.1, 16.2 through 16.3:

 Imports System.IO
 Imports System.Text
 Imports System.Security.Cryptography

 Module Crypto
 Public Function GetHash(ByVal plainText As String) As String
 ' ----- Generate a hash. Return an empty string
 ' if there are any problems.
 Dim plainBytes As Byte()
 Dim hashEngine As MD5CryptoServiceProvider
 Dim hashBytes As Byte()
 Dim hashText As String

 Try
 ' ----- Convert the plain text to a byte array.
 plainBytes = Encoding.UTF8.GetBytes(plainText)

 ' ----- Select one of the hash engines.
 hashEngine = New MD5CryptoServiceProvider

 ' ----- Get the hash of the plain text bytes.
 hashBytes = hashEngine.ComputeHash(plainBytes)

 ' ----- Convert the hash bytes to a hexadecimal string.
 hashText = Replace(BitConverter.ToString(hashBytes), "-", "")
 Return hashText
 Catch
 Return ""
 End Try
 End Function

 Public Function StringEncrypt(ByVal plainText As String, _
 ByVal keyText As String) As String
 ' ----- Encrypt some text. Return an empty string
 ' if there are any problems.
 Try
 ' ----- Remove any possible null characters.
 Dim workText As String = plainText.Replace(vbNullChar, "")

 ' ----- Convert plain text to byte array.
 Dim workBytes() As Byte = Encoding.UTF8.GetBytes(plainText)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Create the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Write(workBytes, 0, workBytes.Length)
 cryptoStream.FlushFinalBlock()

 ' ----- Convert binary data to a viewable string.
 Dim encrypted As String = _
 Convert.ToBase64String(memoryStream.ToArray)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Return the encrypted string result.
 Return encrypted
 Catch
 Return ""
 End Try
 End Function

 Public Function StringDecrypt(ByVal encrypted As String, _
 ByVal keyText As String) As String
 ' ----- Decrypt a previously encrypted string. The key
 ' must match the one used to encrypt the string.
 ' Return an empty string on error.
 Try
 ' ----- Convert encrypted string to a byte array.
 Dim workBytes() As Byte = _
 Convert.FromBase64String(encrypted)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Decrypted bytes will be stored in
 ' a temporary array.
 Dim tempBytes(workBytes.Length - 1) As Byte

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(workBytes)

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Read)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Read(tempBytes, 0, tempBytes.Length)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Convert the decrypted bytes to a string.
 Dim plainText As String = _
 Encoding.UTF8.GetString(tempBytes)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Encoding.UTF8.GetString(tempBytes)

 ' ----- Return the decrypted string result.
 Return plainText.Replace(vbNullChar, "")
 Catch
 Return ""
 End Try
 End Function

 Public Sub FileEncrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)
 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)

 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by
CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.10. Complete Listing of the Compress.vb Module
Sample code folder: Chapter 16\Compression

This recipe contains the full code for the Compress module described in Recipes 16.6 and 16.7:

 Imports System
 Imports System.Text
 Imports System.IO
 Imports System.IO.Compression

 Module Compress
 Public Function StringCompress(_
 ByVal originalText As String) As Byte()
 ' ----- Generate a compressed version of a string.
 ' First, convert the string to a byte array.
 Dim workBytes() As Byte = _
 Encoding.UTF8.GetBytes(originalText)

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Use the newly created memory stream for the
 ' compressed data.
 Dim zipStream As New GZipStream(memoryStream, _
 CompressionMode.Compress, True)
 zipStream.Write(workBytes, 0, workBytes.Length)
 zipStream.Flush()

 ' ----- Close the compression stream.
 zipStream.Close()

 ' ----- Return the compressed bytes.
 Return memoryStream.ToArray
 End Function

 Public Function BytesDecompress(_
 ByVal compressed() As Byte) As String
 ' ----- Uncompress a previously compressed string.
 ' Extract the length for the decompressed string.
 Dim lastFour(3) As Byte
 Array.Copy(compressed, compressed.Length - 4, _
 lastFour, 0, 4)
 Dim bufferLength As Integer = _
 BitConverter.ToInt32(lastFour, 0)

 ' ----- Create an uncompressed bytes buffer.
 Dim buffer(bufferLength - 1) As Byte

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(compressed)

 ' ----- Create the decompression stream.
 Dim decompressedStream As New GZipStream(_
 memoryStream, CompressionMode.Decompress, True)

 ' ----- Read and decompress the data into the buffer.
 decompressedStream.Read(buffer, 0, bufferLength)

 ' ----- Convert the bytes to a string.
 Return Encoding.UTF8.GetString(buffer)
 End Function

 Public Sub FileCompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Decompress a previously compressed string.
 ' First, create the input file stream.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)

 ' ----- Create the output file stream.
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed by a compression
 ' stream.
 Dim compressedStream As New GZipStream(_
 destinationStream, CompressionMode.Compress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 compressedStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 compressedStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Compress the entire contents of a file, and
 ' store it in a new file. First, get the files
 ' as streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed through a
 ' decompression stream.
 Dim decompressedStream As New GZipStream(_
 sourceStream, CompressionMode.Decompress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = decompressedStream.Read(buffer, _
 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 destinationStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 decompressedStream.Close()
 destinationStream.Close()
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. Web Development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Programming for the Web is a vast subject worthy of a whole series of books. While we obviously can't cover everything
here, this chapter presents a few web-related recipes for Visual Basic that let you add some useful features to your
applications. They will give you some idea of the power of web functionality combined with desktop applications. For a
comprehensive collection of Visual Basic web recipes, see ASP.NET 2.0 Cookbook by Michael A. Kittel and Geoff T.
LeBlond (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.1. Displaying Web Pages on a Form

Problem

You want to display a web page on your form, possibly built from custom HTML content.

Solution

Sample code folder: Chapter 17\CustomWebContent

Sample code folder: Chapter 17\ WebBrowser

Use the WebBrowser control. It encapsulates the core Microsoft Internet Explorer engine, and it integrates easily into your
Windows Forms applications.

Discussion

This recipe's sample code implements a simple web browser. Create a new Windows Forms application, and add the
following controls to Form1:

A Panel control named WebToolbar. Set its Dock property to Top and its Size.Height property to about 40.

A WebBrowser control named WebContent. Set its Dock property to Fill. It should only fill below the Panel control. If it
doesn't, right-click on the Panel control and select "Send to Back" from the shortcut menu.

A Button control named ActBack. This control should appear on the surface of the Panel control. Set its Text property
to &Back.

A Button control named ActHome. This control should appear on the surface of the Panel control. Set its Text property
to &Home.

A TextBox control named WebAddress. This control should appear on the surface of the Panel control. Set its Anchor
property to Top, Left, Right.

A Button control named ActGo. This control should appear on the surface of the Panel control. Set its Text property to
&Go and its Anchor property to Top, Right.

Arrange the controls as presented in Figure 17-1.

Figure 17-1. Controls for the web browser sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's class template:

 Private Sub ActBack_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActBack.Click
 ' ----- Move to the previous web page.
 If (WebContent.CanGoBack() = True) Then _
 WebContent.GoBack()
 End Sub

 Private Sub ActHome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActHome.Click
 ' ----- Move to the main web page.
 WebContent.GoHome()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Start from the home page.
 ActHome.PerformClick()
 End Sub

 Private Sub ActGo_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActGo.Click
 ' ----- Move to the requested page.
 If (Trim(
WebAddress.Text) <> "") Then _

WebContent.Navigate(WebAddress.Text)
 End Sub

The previous dozen lines of code are all you need to provide your users with a full Internet browsing experience (albeit
without all of the fancy features). Run the program, and use it like a typical web browser.

You are not limited to Internet-based HTML content in the browser. You can supply your own generated-on-the-fly
content as well, by setting the control's DocumentText property to a string containing the HTML content. We added the
following code to a new Form1 that contained only a WebBrowser control:

 WebBrowser1.DocumentText = "<html><body>" & _
 "<h1>Important</h1><p>This is web content." & _
 "</p></body></html>"

Figure 17-2 shows the output.

Figure 17-2. Custom HTML content in a WebBrowser control

Interacting with web-browser links is somewhat indirect. There is no LinkClicked event that occurs when a user clicks on a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interacting with web-browser links is somewhat indirect. There is no LinkClicked event that occurs when a user clicks on a
link. However, there is a Navigating event that is pretty close. You can monitor this event to provide support for your own
internal link events. Decorate your custom HTML with a fake URL address, such as internal://EditCustomer?ID=25 to
trigger the editing of the customer with ID number 25. To test this, create a new Windows Forms application, and add a
WebBrowser control named WebBrowser1. Next, add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add some custom content.
 WebBrowser1.DocumentText = "<html><body>" & _
 "<h1>Select an Airport</h1>" & _
 "<p>" & _
 "Los Angeles</p>" & _
 "<p>" & _
 "New York</p>" & _
 "<p>" & _
 "Seattle</p>" & _
 "</body></html>"
 End Sub

 Private Sub
WebBrowser1_Navigating(ByVal sender As Object, _
 ByVal e As System.Windows.Forms. _

WebBrowserNavigatingEventArgs) _
 Handles WebBrowser1.Navigating
 ' ----- Which link was clicked?
 Dim queryEntries() As String
 Dim oneEntry() As String
 Dim airportCode As String = "Invalid Code"
 Dim scanQuery As String

 ' ----- Look for internal://airport?… links.
 If (e.Url.Scheme = "internal") Then
 If (e.Url.Host = "airport") Then
 If (e.Url.Query.Length > 0) Then
 ' ----- Found an airport link. Get the
 ' airport code. The query starts with
 ' "?". Skip it.
 queryEntries = _
 Split(e.Url.Query.Substring(1), "&")
 For Each scanQuery In queryEntries
 oneEntry = Split(scanQuery, "=")
 If (UCase(oneEntry(0)) = "CODE") Then
 ' ----- Found the airport code.
 airportCode = UCase(oneEntry(1))
 Exit For
 End If
 Next scanQuery
 End If

 ' ----- Show the code.
 MsgBox(airportCode)
 e.Cancel = True
 End If
 End If
 End Sub

Clicking on one of the links gives results similar to Figure 17-3.

Several of the WebBrowser control's properties can be used to limit the allowed actions of the user. For instance, setting
the AllowNavigation, WebBrowserShortcutsEnabled, and IsWebBrowserContextMenuEnabled properties to False can effectively shut down
all user interaction with the Internet, providing a portal for static web content display only.

Figure 17-3. An internally processed link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-3. An internally processed link

See Also

Recipe 17.12 shows how to add a clickable hyperlink to a Windows form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.2. Accessing Content Within an HTML Document

Problem

You need to extract some information from within a web page.

Solution

Sample code folder: Chapter 17\UseHTMLDOM

While you could use standard string-manipulation techniques to scan through a web page, it's a lot of work. If the HTML
content you need to parse has a consistent format with identifiable tags and elements, you can use Microsoft's Managed
HTML Document Object Model (DOM) to traverse the HTML content as a set of objects.

Discussion

This recipe builds on the code developed in Recipe 17.1. Create a new Windows Forms project following the instructions
in that recipe. Now add the following additional code to the form's code template:

 Private Sub WebContent_DocumentCompleted(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms. _
 WebBrowserDocumentCompletedEventArgs) _
 Handles
WebContent.DocumentCompleted
 ' ----- Extract the title and display it.
 MsgBox(WebContent.Document.Title)
 End Sub

Run the program, and as you browse from page to page, the title of each page will appear in a message box.

The Managed HTML DOM, made available through the WebBrowser control's Document property, provides object-based
access to all elements of an HTML page, including links (via the Links property), cookies associated with the page (via
the Cookies string-array property), and the body content (via the Body property). You can search for specific elements by
ID using the GetElementByID() method.

Specific use of the Managed HTML DOM is beyond the scope of this book. Use the MSDN documentation supplied with
Visual Studio to obtain information about the HtmlElement class and other classes used within the DOM.

See Also

Recipe 17.1 includes most of the code used in this recipe. Recipe 17.3 uses the HTML DOM to access links within a web
page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.3. Getting All Links from a Web Page

Problem

You want to build a list of the hyperlinks included in a specific web page.

Solution

Sample code folder: Chapter 17\ListWebLinks

Use the Managed HTML DOM to traverse the list of web page links as objects.

Discussion

This recipe's sample code builds a list of links from a web page. Create a new Windows Forms application, and add the
following controls to Form1:

A TextBox control named WebAddress.

A Button control named ActGo. Set its Text property to Go.

A WebBrowser control named WebContent.

A ListBox control named WebLinks.

Add informational labels if desired, and arrange the controls to look like Figure 17-4.

Figure 17-4. Controls for the listing web links sample

Next add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next add the following source code to the form's class template:

 Private Class LinkDetail
 Public LinkURL As String
 Public LinkText As String

 Public Overrides Function ToString() As String
 Return LinkText
 End Function
 End Class

 Private Sub ActGo_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGo.Click
 ' ----- Jump to a new web page.
 If (Trim(WebAddress.Text) <> "") Then
 WebLinks.Items.Clear()
 WebContent.Navigate(WebAddress.Text)
 End If
 End Sub

 Private Sub WebContent_DocumentCompleted(_
 ByVal sender As Object, ByVal e As
 System.Windows.Forms. _
 WebBrowserDocumentCompletedEventArgs) _
 Handles WebContent.DocumentCompleted
 ' ----- Build the list of links.
 Dim oneLink As HtmlElement
 Dim newLink As LinkDetail

 ' ----- Scan through all the links.
 For Each oneLink In WebContent.Document.Links

 ' ----- Buld a new link entry.
 newLink = New LinkDetail
 If (oneLink.InnerText = "") Then
 newLink.LinkText = "[Image or Unknown]"
 Else
 newLink.LinkText = oneLink.InnerText
 End If
 newLink.LinkURL = oneLink.GetAttribute("href")

 ' ----- Add the link to the list.

WebLinks.Items.Add(newLink)
 Next oneLink
 End Sub

 Private Sub WebLinks_DoubleClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles WebLinks.DoubleClick
 ' ----- Show the detail of a web link.
 Dim linkContent As LinkDetail

 If (WebLinks.SelectedIndex = -1) Then Return
 linkContent = CType(WebLinks.SelectedItem, LinkDetail)
 MsgBox("Display = " & linkContent.LinkText & vbCrLf & _
 "URL = " & linkContent.LinkURL)
 End Sub

Run the program, enter an address in the TextBox control, and click the Go button. The web page appears, as does the
list of its links. Double-click a link to display its target URL, as shown in Figure 17-5.

Figure 17-5. Displaying the URL for a parsed web link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 17.2 discusses the general use of the Managed HTML Document Object Model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.4. Get the Local Computer's IP Address

Problem

You want to determine the IP address of the computer on which your program is running.

Solution

Sample code folder: Chapter 17\LocalIPAddresses

Use the features in the System.Net. Dns namespace to obtain the IP address(es) for the local host. A single workstation
may have multiple IP addresses; this generally occurs when multiple networking cards are installed and active on that
workstation.

Discussion

It may not be possible to determine the single IP address for your computer, because a computer may have multiple
addresses. What .NET can give you is a list of all current IP addresses for the workstation, and its host name as well.

The following code displays the local host name and all related IP addresses for that host. It uses the System.Net.Dns
namespace, which includes features for managing IP addresses and related hosts:

 Dim hostAddresses() As Net.IPAddress
 Dim ipList As String = ""
 Dim oneAddress As Net.IPAddress

 hostAddresses = Net.Dns.
GetHostAddresses(_
 Net.Dns.GetHostName())
 For Each oneAddress In hostAddresses
 ipList &= vbCrLf & oneAddress.ToString()
 Next oneAddress
 MsgBox("The IP address(es) for host '" & _
 Net.Dns.GetHostName() & "' are:" & vbCrLf & ipList)

On our system, this code displayed the message box in Figure 17-6.

The GetHostAddresses() method returns IP addresses as they are understood by the local host. These addresses may differ
from the IP address of that same workstation as viewed from the Internet. A router that implements Network Address
Translation (NAT) can mask the actual (local) IP address of a system.

Figure 17-6. Displaying the local host's IP address

See Also

Recipe 17.5 discusses determining IP addresses for systems other than the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.5. Resolving a Host Name or IP Address for Another
Computer

Problem

You need to determine the host name for another computer from its IP address, or vice versa.

Solution

Sample code folder: Chapter 17\ResolveHostOrIP

The System.Net. Dns namespace includes methods that let you resolve an IP address to its matching host name or obtain
an IP address for a host name.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named IPAddress.

A Button control named FromIpToHost. Set its Text property to Show Host Name.

A TextBox control named HostName.

A Button control named FromHostToIp. Set its Text property to Show IP Address.

Add informational labels if desired. The form should look like the one in Figure 17-7.

Figure 17-7. Controls for the IP and host name resolution sample

Now add the following source code to the form's code template:

 Private Sub FromIpToHost_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FromIpToHost.Click
 ' ----- Convert from IP address to host name.
 If (Trim(IPAddress.Text) <> "") Then _
 MsgBox("Host Name" & vbCrLf & vbCrLf & _
 Net.Dns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Net.Dns.
GetHostEntry(IPAddress.Text).HostName)
 End Sub

 Private Sub FromHostToIp_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FromHostToIp.Click
 ' ----- Convert from host name to IP address.
 Dim hostEntry As Net.IPHostEntry
 Dim scanAddress As Net.IPAddress
 Dim hostAddresses As String = ""

 If (Trim(HostName.Text) <> "") Then
 hostEntry = Net.Dns.GetHostEntry(HostName.Text)
 For Each scanAddress In hostEntry.AddressList
 hostAddresses &= vbCrLf & scanAddress.ToString()
 Next scanAddress
 If (hostAddresses = "") Then _
 hostAddresses = vbCrLf & "None."

 MsgBox("
IP Addresses" & vbCrLf & hostAddresses)
 End If
 End Sub

To use the program, enter an IP address in the IP Address field or a host name in the Host Name field, and click the
applicable button to view the resolved name or address.

A bug in some versions of Windows XP prevents the GetHostEntry() method from working correctly. Specifically, if you
supply an IP address of a remote system (out-side of your local network) to the method, the returned
IPHostEntry.HostName property returns the IP address itself instead of the host name. This bug may be resolved in a
Windows XP service pack or hotfix; it is resolved in Windows Vista.

See Also

Recipe 17.4 discusses finding the IP address(es) for the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.6. Pinging an IP Address

Problem

You want to perform a "ping" operation on a remote system.

Solution

Use the My.Computer.Network.Ping() method. The general syntax is:

My.Computer.Network.Ping(targetSystem[, timeout])

targetSystem is a string IP address, a host name, or a System.Uri instance. The optional timeout argument is supplied in
milliseconds and defaults to 500. This method returns true if the ping is successful, or False on failure or no response.

Discussion

If you receive a ping response from the remote system, it naturally means that the remote system is accessible.
However, if you receive no response, this does not mean the remote system is inaccessible. It may have disabled
responses to ping requests or a firewall or router between your system, and the remote system may have blocked the
request or response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.7. Using FTP to Download Files

Problem

You want to add the ability to download a file from a File Transfer Protocol (FTP) server at the click of a button (or at
any other point in your application) with completely automatic action.

Solution

Sample code folder: Chapter 17\FTPDownload

Use the System.Net. FtpWebRequest class to drive the FTP protocol from within your application.

Discussion

The FtpWebRequest class provides a straightforward way to programmatically download files from FTP servers. This works
fine either for anonymous FTP, as shown in this recipe's code, or when using a specific user ID and password.

The following code demonstrates downloading a file from an anonymous FTP server on the Internet. Create a new
Windows Forms application, and add a Button control named Button1. Then add the following code to the form's class
template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim sourceFile As String

 ' ----- Prompt the user for an FTP path.
 sourceFile = InputBox(_
 "Specify a URL for an FTP file to download.")
 If (sourceFile = "") Then Return

 ' ----- Initiate the download.
 DownloadViaFTP(sourceFile, "anonymous", "anony@mous.com")
 End Sub

The event handler calls the DownloadViaFTP() method. That method starts by collecting the information it needs,
calculating the target output file. sourceFile is the full path to the file to download, located in a folder on a server
specifically set up for FTP access. destinationFile is the full path (including the filename) where you want the file to be
downloaded, using the same filename as the source file. userName and password are strings containing the credential
information to access the FTP server. For anonymous FTP, use "anonymous" for the username. It's customary to use
your email address as the password. Here's the method declaration:

 Private Sub DownloadViaFTP(ByVal sourceFile As String)
 ByVal userName As String, ByVal password As String)
 ' ----- Download the specified file via FTP and save
 ' it in the application's directory.
 Dim readBuffer(4095) As Byte
 Dim count As Integer

Dim requestFile As System.Net.FtpWebRequest
 Dim responseFTP As System.Net.FtpWebResponse
 Dim responseStream As IO.Stream
 Dim outFile As IO.FileStream
 Dim destinationFile As String

 ' ----- Get the output location.
 destinationFile = My.Computer.FileSystem.CombinePath(_
 My.Application.Info.DirectoryPath, _
 My.Computer.FileSystem.GetName(sourceFile))

The variable requestFile is the instance of the FtpWebRequest that we'll use to drive the FTP protocol. Various properties of
requestFile, such as Credentials and Method, provide the control required to define the FTP action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requestFile, such as Credentials and Method, provide the control required to define the FTP action:

 ' ----- Connect to the file on the FTP site.
 requestFile = CType(System.Net.FtpWebRequest.Create(_
 sourceFile), System.Net.FtpWebRequest)
 requestFile.Credentials = New _
 System.Net.NetworkCredential(userName, password)
 requestFile.KeepAlive = False
 requestFile.UseBinary = True
 requestFile.Method = _
 System.Net.WebRequestMethods.Ftp.DownloadFile

The actual flow of the byes comprising the file to be downloaded is handled by the FtpWebResponse object, which provides
a Stream to move the bytes:

 ' ----- Open a transmission channel for the file content.
 responseFTP = CType(requestFile.GetResponse, _
 System.Net.FtpWebResponse)
 responseStream = responseFTP.GetResponseStream
 outFile = New IO.FileStream(destinationFile, _
 IO.FileMode.Create)

The stream of bytes is read into a buffer in chunks of up to 4,096 bytes, and from there it's written to the local file:

 ' ----- Save the content to the output file block by block.
 Do
 count = responseStream.Read(readBuffer, 0, _
 readBuffer.Length)
 outFile.Write(readBuffer, 0, count)
 Loop Until count = 0

Housekeeping wraps up the process:

 ' ----- Clean up.
 responseStream.Close()
 outFile.Flush()
 outFile.Close()
 responseFTP.Close()

 MsgBox("File downloaded!" & vbNewLine & sourceFile)
 End Sub

By this time, the file has been completely downloaded. To verify that the operation was a success, look in the
application folder (wherever the executable file for this program resides) to confirm that the file has been created there.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.8. Calling a Web Service

Problem

You want to access an XML Web Service across the Internet.

Solution

Sample code folder: Chapter 17\WebReference

Add a Web Reference to your project, and use the My.WebServices object to access the service.

Discussion

An XML Web Service is a function located on the Internet that your application can call. But unlike internal functions, calls to
Services communicate via standard HTTP and plain text. They use defined standards, such as SOAP and WSDL, which are beyond the
scope of this book.

There are a lot of XML Web Services available on the Internet, some free and some for a fee. For demonstration purposes, the following
sample code calls Microsoft's TerraServer engine (http://terraserver.microsoft.com) to get a place name for any latitude and longitude
around the world.

To call an XML Web Service, you must first add a Web Reference to your project. Create a new Windows Forms project, and select the
Project Add Web Reference menu command. When prompted for a service path URL in the Add Web Reference dialog, enter
http://terraserver.microsoft.com/TerraService.asmx to access the Terra-Server Web Service. Then click the Add Reference button.
17-8 shows how the Add Web Reference dialog helps you to explore the functionality provided by a service.

Figure 17-8. The Add Web Reference dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To demonstrate one of the functions provided by this service, this recipe's code calls the ConvertPlaceToLonLatPt() function to do just what it
says: convert a place name to a latitude and longitude location. You can also convert in the other direction, using the service's
ConvertLonLatPtToNearestPlace() function.

Add two Button controls to your form named ActToPlace and ActToLatLon, and set their Text properties to Locate. Also add five TextBox
named CityName, StateName, CountryName, Latitude, and Longitude. Add some informational labels if desired. The form should look something like
Figure 17-9.

Figure 17-9. Controls for the XML Web Services sample

Now, add the following code to the form's class template:

 Private Sub ActToLatLon_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActToLatLon.Click
 ' ----- Locate the latitude and longitude for a place.
 Dim usePlace As com.microsoft.terraserver.Place
 Dim foundLocation As com.microsoft.terraserver.LonLatPt

 ' ----- Prepare the location details for use.
 usePlace = New com.microsoft.terraserver.Place
 usePlace.City = CityName.Text
 usePlace.State = StateName.Text
 usePlace.Country = CountryName.Text

 ' ----- Call the service with the user-supplied values.
 Me.Cursor = Cursors.WaitCursor
 foundLocation = _
 My.WebServices.TerraService.ConvertPlaceToLonLatPt(_
 usePlace)
 Me.Cursor = Cursors.Default

 ' ----- Inform the user.
 MsgBox("That place is located at:" & vbCrLf & vbCrLf & _
 "Latitude: " & foundLocation.Lat.ToString & vbCrLf & _
 "Longitude: " & foundLocation.Lon.ToString)
 End Sub

 Private Sub ActToPlace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActToPlace.Click
 ' ----- Locate the place for a latitude and longitude.
 Dim useLatLon As com.microsoft.terraserver.LonLatPt
 Dim foundPlace As String

 ' ----- Prepare the location details for use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Prepare the location details for use.
 useLatLon = New com.microsoft.terraserver.LonLatPt
 useLatLon.Lat = CDbl(Latitude.Text)
 useLatLon.Lon = CDbl(Longitude.Text)

 ' ----- Call the service with the user-supplied values.
 Me.Cursor = Cursors.WaitCursor
 foundPlace = My.
WebServices.TerraService. _
 ConvertLonLatPtToNearestPlace(useLatLon)
 Me.Cursor = Cursors.Default

 ' ----- Inform the user.
 MsgBox("That location is at or near:" & vbCrLf & _
 vbCrLf & vbTab & foundPlace)
 End Sub

Figure 17-10 shows the form in action. After entering the latitude and longitude for one of our favorite (and certainly one of the most
memorably named) airports, a click of the button reveals the server's place name for this location as the airport at Deadhorse, Alaska.

Figure 17-10. Converting latitude and longitude into a place name

This example shows how easy it is to use an Internet-based XML Web Service as if it were a function local to your application's source
code. XML is used to make these services hardware-and software-independent, which means this same service can be called from a
variety of programming languages using just about any computer and any operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.9. Sending Email Using SMTP

Problem

You want to send an email automatically from your application without using an external application such as Outlook.

Solution

Sample code folder: Chapter 17\SendEmail

Use the System.Net. Mail.SmtpClient class in the .NET Framework, supplying the server name and details specific to the
email.

Discussion

The System.Net.Mail.SmtpClient class encapsulates an email submission. All you need to do is fill in its properties and call the
Send() method, and your mail is delivered to the target recipient.

To send email, you must have authorized access to an SMTP server.

Create a new Windows Forms application, and add five TextBox controls named ServerHost, FromEmail, ToEmail, SubjectText, and
BodyText. Set the BodyText control's Multiline property to true. Also add a Button control named ActSend, and set its Text
property to Send. Add informational labels if desired. Your form should look something like Figure 17-11.

Figure 17-11. Controls for the email-sending sample

Now add the following code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following code to the form's class template:

 Imports System.Net.Mail

 Public Class Form1
 Private Sub ActSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActSend.Click
 ' ----- Send the requested email.
 Dim
emailSender As SmtpClient
 Dim theMessage As MailMessage

 ' ----- Connect to the server. A second optional
 ' argument lets you alter the port number from
 ' the default.
 emailSender = New System.Net.Mail.SmtpClient(_
 ServerHost.Text)

 ' ----- Build the content details.
 theMessage = New MailMessage
 theMessage.From = New MailAddress(FromEmail.Text)
 theMessage.To.Add(ToEmail.Text)
 theMessage.Subject = SubjectText.Text
 theMessage.Body = BodyText.Text

 ' ----- Fill in the details and send.
 emailSender.Send(theMessage)
 End Sub
 End Class

The MailMessage object includes properties that let you add attachments and specify the properties of the email message.
Its To property is a collection that lets you add an unlimited number of email recipients. It also includes parallel CC and
Bcc collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.10. Getting POP3 Emails

Problem

You want to access emails from an application, perhaps just to get a quick count of available emails or to get the
complete contents.

Solution

Sample code folder: Chapter 17\Pop3Email

Use the TcpClient class in the System.Net. Sockets namespace. The Pop3 class presented here wraps this class with supporting
code to make it easier to access your emails.

Discussion

The following class code creates Pop3 objects to simplify accessing emails from a standard POP3 server. Note that some
servers require SSL or other authentication, in which case this code will need modification. For standard POP3 servers,
it works well as presented.

Create a new Windows Forms application, add a new class named Pop3.vb, and use this code for its definition:

 Public Class Pop3
 ' ----- The default TCP/IP port number for POP3 is 110.
 Public Port As Integer = 110
 Public Messages As Integer = 0

 Private Const CommandFailure As String = "-ERR"

 Private Pop3Server As TcpClient
 Private CommandSender As NetworkStream
 Private ContentReceiver As StreamReader

 Public Sub Connect(ByVal serverName As String, _
 ByVal userName As String, ByVal password As String)
 ' ----- Initiate the connection to a POP3 server.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String
 Dim parts() As String

 ' ----- Connect to the POP3 server.
 Try
 Pop3Server = New TcpClient(serverName, Port)
 CommandSender = Pop3Server.GetStream()
 ContentReceiver = New StreamReader(CommandSender)
 Catch
 Throw
 End Try

 If (userName <> "") Then
 ' ----- Authenticate with the user ID.
 commandData = "USER " & userName & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Invalid user name.")
 End If

 ' ----- Send the authenticating password.
 commandData = "PASS " & password & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Invalid password.")
 End If
 End If

 ' ----- Logged in. On some servers, the PASS command
 ' is not enough to push the server into a
 ' transaction state. Send a STAT command twice.
 commandData = "STAT" + vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()

 ' ----- Get a count of the messages.
 commandData = "STAT" + vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception(_
 "Could not retrieve message count.")
 End If

 ' ----- The response includes two integers: a count
 ' and a size, separated by a space. Skip over
 ' the "+OK" part also.
 parts = Split(responseString, " ")
 Messages = Val(parts(1))
 End Sub

 Public Sub Disconnect()
 ' ----- Disconnect from the
POP3 server.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String

 ' ----- Tell the server we're through.
 commandData = "QUIT" & vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()

 ' ----- End the connection.
 ContentReceiver.Close()
 CommandSender.Close()

Pop3Server.Close()
 End Sub

 Function GetMessage(ByVal whichMessage As Integer) _
 As String
 ' ----- Retrieve a single email message.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String
 Dim theMessage As New System.Text.StringBuilder
 Dim oneLine As String

 ' ----- Check for an invalid message.
 If (whichMessage < 1) Or (whichMessage > Messages) Then
 Throw New ArgumentOutOfRangeException(whichMessage, _
 "Messages are numbered from 1 to the number " & _
 "identified by the Messages property.")
 End If

 Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Try
 ' ----- Request the message.
 commandData = "RETR " & whichMessage & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Message retrieval failed.")
 End If

 ' ----- The message is all data until a line with
 ' a single dot (.) appears.
 Do While (ContentReceiver.EndOfStream = False)
 oneLine = ContentReceiver.ReadLine()
 If (oneLine = ".") Then Exit Do
 theMessage.AppendLine(oneLine)
 Loop
 Catch ex As InvalidOperationException
 MsgBox("Message retrieval failed: " & ex.Message)
 End Try

 ' ----- Return the constructed message.
 Return theMessage.ToString()
 End Function
 End Class

Return to Form1, and add three TextBox controls named ServerName, UserName, and UserPassword. Set the UserPassword control's
PasswordChar field to the asterisk character (*). Add a ListBox control named MessageList and two Button controls named ActGet
and ActView. Set the Button controls' Text properties to Get Messages and View Message, respectively. Add informational labels if
desired. The form should look like the one in Figure 17-12.

Figure 17-12. Controls for the POP3 sample

Now add the following code to Form1's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following code to Form1's class template:

 Private POP3Connection As Pop3 = Nothing

 Private Sub ActGet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGet.Click
 ' ----- Initiate a POP3 connection.
 Dim counter As Integer

 ' ----- First, disconnect any previous connection.
 If (POP3Connection IsNot Nothing) Then
 Try
 POP3Connection.Disconnect()
 Catch ex As Exception
 ' ----- Ignore.
 End Try
 End If
 POP3Connection = Nothing

 ' ----- Clear any previous messages.
 MessageList.Items.Clear()

 ' ----- Try the new connection.
 Try

POP3Connection = New Pop3
 POP3Connection.Connect(ServerName.Text, _
 UserName.Text, UserPassword.Text)
 Catch ex As Exception
 MsgBox("Connection failure: " & ex.Message)
 POP3Connection = Nothing
 Return
 End Try

 ' ----- How many messages?
 If (POP3Connection.Messages = 0) Then
 MsgBox("No messages found.")
 POP3Connection.Disconnect()
 POP3Connection = Nothing
 Return
 End If

 ' ----- Show each message.
 For counter = 1 To POP3Connection.Messages
 MessageList.Items.Add("Message Number " & counter)
 Next counter
 End Sub

 Private Sub ActView_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActView.Click
 ' ----- Show a message.
 Dim whichMessage As Integer
 Dim parts As String()
 Dim content As String

 ' ----- Which message? Each item has the format:
 ' Message Number x
 If (MessageList.SelectedIndex = -1) Then Return
 parts = Split(CStr(MessageList.SelectedItem), " ")
 whichMessage = CInt(Val(parts(2)))

 ' ----- Get the content.
 content = POP3Connection.GetMessage(whichMessage)

 ' ----- Show the content.
 MsgBox(content)
 End Sub

 Private Sub MessageList_DoubleClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MessageList.DoubleClick
 ' ----- Same as the View button.
 ActView.PerformClick()
 End Sub

 Private Sub Form1_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' ----- Disconnect before leaving.
 On Error Resume Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Resume Next

 If (
POP3Connection IsNot Nothing) Then
 POP3Connection.Disconnect()
 POP3Connection = Nothing
 End If
 End Sub

When you successfully connect to a POP3 server through the ActGet button, it displays a simple list of each message
stored on the server. It's not as good as a real email program such as Microsoft Outlook because it hasn't yet read even
the sender name or subject text, but it does add one entry for each available message. Clicking on the ActView button
retrieves the content for one email message from the server through the Pop3 class's GetMessage() method. The
connection to the email server is closed when the form closes.

Figure 17-13 shows the content from a test email retrieved from a POP3 server. This rather short sample email arrives
with considerable overhead in the header details. The message body is near the end, and it shows the email was sent
using HTML content.

Figure 17-13. An email retrieved from a POP3 server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.11. Sending a Message to Another Computer

Problem

You want to send a pop-up message to one or more users on your network, something they'll see right away without
requiring any special third-party applications to be running on their computers.

Solution

Sample code folder: Chapter 17\SendMessage

Use Windows's Net.exe program to send instant messages to named computers on your network.

Discussion

The general syntax of the Net.exe command, when used to send instant messages, is of the form:

 Net.exe Send ComputerName Message

You'll need to know the name of the computer to which you wish to send the message, or you may use "*" as the
computer name to send a message to all computers on your network in one shot. If you specify a domain name as the
target address, the message is delivered to all computers belonging to that domain.

You can use this command from a Command Prompt window, or you can use a Visual Basic 2005 application as a
wrapper for the command. Create a new Windows Forms application, and add two TextBox controls named TargetComputer
and MessageText. Also add a Button control named ActSend, and set its Text property to Send. Add informational labels if
desired. The form should look something like Figure 17-14.

Figure 17-14. Controls for the message-sending sample

Now add the following code to the form's class template:

 ' ----- Send a message to another computer.
 Process.Start("net.exe", _
 "send " & TargetComputer.Text & _
 " """ & MessageText.Text & """")

The message you send appears in a message box on the other computer, similar to Figure 17-15.

Figure 17-15. A message received by the other computer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-15. A message received by the other computer

Both the sending and the receiving computer(s) must have the Messenger service running, or the message won't be
sent. To enable this service under Windows XP, try the following steps:

1. Click Start Control Panel, and open the Administrative Tools panel.

2. Within the Administrative Tools panel, open Services.

3. Locate Messenger, and double-click its icon to open the Messenger Properties window.

4. Set the Startup Type to Automatic, and click the Start button.

5. Click the OK button, and close all open Control Panel windows.

This starts the Messenger service and causes it to restart each time Windows starts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.12. Adding Hyperlinks to a (Desktop) Form

Problem

You want to add a standard hypertext link to text on a Windows form, without resorting to HTML or other browser
technology.

Solution

Use the LinkLabel control.

Discussion

The LinkLabel control is similar to a standard Label control, except that it has additional properties and events that provide
the behavior expected of a hypertext link as displayed in a browser window. For example, the color of the link before
being clicked the first time is determined by the LinkLabel's LinkColor property, and its color after it has been clicked is
determined by its VisitedLinkColor property. The defaults for these colors work very well, and the results are much like
what you expect after using a browser for any length of time.

The LinkLabel holds text of any reasonable length, and you can set all or just a part of the text as the active, clickable
part by setting its LinkArea property. The Start and Length numbers in the LinkArea determine exactly which group of
contiguous characters in the label are colored as an active link. Clicks on the LinkLabel within the LinkArea activate its
LinkClicked event, whereas clicks anywhere else on the LinkLabel activate the usual Click event.

The code you put in the LinkClicked event is what really makes this control behave like a link should. The following code,
for example, sets the LinkArea's LinkVisited property to true, which causes its VisitedLinkColor to show. It also creates a true
link to an Internet URL, in this case opening a web site in the default browser:

 Private Sub LinkLabel1_LinkClicked(_
 ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms. _
 LinkLabelLinkClickedEventArgs) _
 Handles LinkLabel1.LinkClicked
 ' ----- Open that important web site.
 LinkLabel1.LinkVisited = True
 System.Diagnostics.Process.Start(_
 "http://www.oreilly.com/")
 End Sub

Figure 17-16 shows a small dialog window that displays a single LinkLabel control. The LinkArea is set to the last part of the
LinkLabel's text, and the previous code is activated when this area is clicked. Your default browser will then display very
interesting O'Reilly Media pages for your enjoyment.

Figure 17-16. Using a LinkLabel to include a hyperlink on your form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Authors
Tim Patrick is a software architect and developer with over 20 years of experience in designing and building custom
solutions. His very first computer program was written in BASIC. While he has used other programming languages over
the years, today he spends most of his time using a descendant of that same BASIC language: Visual Basic 2005. He is
a Microsoft Certified Solution Developer (MCSD). Tim's recent books include The Visual Basic .NET Style Guide (Pearson
Education) and the third edition of O'Reilly's Visual Basic 2005 in a Nutshell. He has also published many magazine
articles on topics related to Visual Basic development.

John Clark Craig has programmed in just about every version of the BASIC language available. He has authored over
a dozen books on Visual Basic and other programming topics praised for their utility and ease of use. During his career
as a software engineer, John has worked on several fascinating astronomical, energy, and environmental projects,
including several of the world's largest solar energy and wind-power production facilities. His current projects combine
the power of Visual Basic Express with microcontroller-based robotics inventions, bringing the power of Visual Basic to
an exciting new field of applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon
The animal on the cover of Visual Basic 2005 Cookbook is a bream. "Bream" is the name given to a variety of salt and
freshwater fish included in the genera Abramis. They are generally tall, narrow fish, between 1433 inches and 213
pounds. There are many species of bream, including the Abramis ballerus, or blue bream.

Another type of bream, the carp bream (Abramis brama), can be found in northern Europe, from France to the Caspian
Sea. They are silvery green with a white belly, and they live in slow-moving or still freshwater. Carp bream spawn
between April and June, when the females lay from 100,000 to 300,000 eggs, which hatch after 3 to 12 days. The fish
mature in three to four years.

Bream are bottom-feeders, consuming plankton, plants, insects, worms, snails, slugs, and bivalves such as clams,
scallops, and oysters. They are considered a popular sport fish, and can be caught year round with a fishing rod using
bait such as maggots and chopped worms.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC Garamond. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

(hash)
& (ampersand)
&= concatenation shortcut
* (asterisk) 2nd
<< and > > (bit-shift operators)
? (question mark) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

About boxes
Add New Item dialog 2nd
 template choices
Add() method 2nd
AddHandler statement
AddMemoryPressure() method
ADO.NET
 connection strings
 providers
 supported stored procedures
AES (Advanced Encryption Algorithm)
alpha blending
And operator
angular calculations 2nd
animation
 drawing at runtime 2nd
 from multiple bitmaps
 from multiple images
 sprites 2nd 3rd 4th 5th
 with transparency 2nd 3rd
Append() method
application configuration file template
application-wide event handlers
Application.Run() method
applications
 basic building blocks
 classes 2nd 3rd
 command line 2nd 3rd
 testing
 control via simulated keystrokes 2nd
 pausing execution
 processes
 running environment
 running of multiple instances
 running processes
 separate applications
 startup form
 strings
 structures 2nd 3rd
 structures and other objects
 timing of application activities
 user-specific settings
 Visual Basic-specific template choices 2nd 3rd 4th 5th
 waiting for applications to finish
Array.Copy() method
arrays
 converting between delimited strings and arrays
 copying part of an array to another 2nd 3rd
 CSV files 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CSV files 2nd
 filling during declaration
 functions
 iterating through elements of
 methods 2nd
 ReDim Preserve command
 resizing without losing values 2nd
 reversing oder of elements
 shuffling 2nd
 single strings 2nd
 sorting elements 2nd 3rd 4th
 values
As Type clause
ASP.NET button event handler
 Enter key activation
ASP.NET Web Forms applications 2nd 3rd 4th 5th 6th
 Convert button event handler
 ListItem Collection Editor
 new web site creation
 source code
 Toolbox
assembly details 2nd 3rd 4th
AssemblyInfo.vb file
audio
 audio files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background colors
BackgroundWorker control
.bas file extension
Base64 conversions from strings
BeginTransaction() method
bezier splines 2nd
binary data
binary files
BinaryFormatter class
BinaryReader and BinaryWriter classes
BitArray object
BitConverter object
bitmap file template
bitmaps 2nd
bitwise operators 2nd 3rd
.bmp file extension
Boolean operators
Byte integer type
byte position access of files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Capacity property
cardinal splines
case conversion on strings
case sensitive string comparisons
CByte() function
Char object
character tallies in strings
character types
charts 2nd
checksums 2nd 3rd
CInt() function
class diagram template
class instances 2nd 3rd
classes 2nd 3rd 4th
 overloaded methods
 splitting across files
ClassesRoot field
Clear() method
Click event 2nd
clipboard 2nd 3rd 4th 5th
Clipboard object 2nd 3rd 4th
Clone() method
code file template
code modules 2nd 3rd
 access keywords
code snippets 2nd 3rd 4th 5th 6th 7th
 .snippet files
 Code Snippet Editor
 Code Snippets Manager
 new snippets 2nd 3rd 4th
 prewritten 2nd
 sharing
 XML code
Collect() method
CollectionCount() method
collections
 Count property
 creating
 generic collections
 items 2nd
 iterating through
color 2nd 3rd 4th
color gradients
color images
ColorDialog control 2nd 3rd 4th 5th
colors
 background
COM Class template
CombinePath() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CombinePath() method
Command objects
Command() function 2nd
Commit() method
compact operator notation 2nd 3rd 4th
 compact assignment operators
Compare() method 2nd
CompareTo() method
complex numbers 2nd 3rd 4th
compressing JPEG images
 using for thumbnails
compression and decompression
 of files
 of strings
 sample code
Connection object 2nd
connection string builder class
connection strings
console application output
Console applications 2nd 3rd 4th
 default code blocks
 module naming and project properties
 output
 text and graphics
Console.Beep() method
constructors
ControlChars.NewLine property
controls
Convert.ToByte() method
Convert.ToInteger() method
coordinates 2nd 3rd 4th
Copy() method
CopyDirectory() method
 showUI argument
CopyFile() method
count variable
Cramer's Rule
CreateDirectory() method
CreateElement() method
credit card verification
cryptography
 crypto module 2nd 3rd 4th 5th
 files 2nd 3rd 4th
 secure random numbers
 strings
 with keys
CryptoStream object
Crystal Reports template
CSV (comma-separated-values) files
 string arrays 2nd
CType() function
CurrentConfig field
CurrentUser field
cursor
cursor file template
custom constructors
custom control template
custom controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data
Data Definition Language (DDL)
Data Encryption Standard (DES)
Data Manipulation Language (DML)
data set template
DataAdapter object
databases 2nd
 ADO.NET
 Command objects
 methods
 connecting to data providers 2nd 3rd 4th
 connection strings
 in-memory data tables 2nd
 query results 2nd 3rd 4th
 Read() method
 SQL commands
 stored procedures
DataReader object 2nd
DataRow object
DataSet object 2nd
DataTable object 2nd 3rd
date and time 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th
25th 26th 27th 28th 29th 30th
 application activities
 Data object
 date and time values
 adding to 2nd 3rd
 creating from parts
 determining the day of week for
 extracting hour
 extracting year
 subtracting from
 Date data type
 Date object
 Add functions
 Kind property
 days between two dates
 days in a month
 form controls for date entry or selection 2nd 3rd
 formatting 2nd 3rd
 ISO 8601 formats
 leap year checks
 moon phases
 parsing and validation
 ticks
DateTimePicker control
DayOfWeek property
DayOfYear property
DaysInMonth function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DaysInMonth function 2nd
Decimal variables
decimal variables
default constructors
degrees
DeleteFile() method
DES (Data Encryption Standard)
DescriptionAttribute attribute
destructors 2nd
Dialog forms
Dim statement 2nd
directories
 browsing
 copying
 creating
 monitoring for changes 2nd 3rd 4th
 moving
 parsing file and directory paths
 renaming
 special user and Windows directories 2nd 3rd 4th 5th
 URL-based directory paths and My.Computer.Filesystem objects
DirectoryExists() method
display dimensions
display updates
disposal
Dispose() method 2nd
DllImport attribute
DoDragDrop() method 2nd
DoNotExpandEnvironmentNames flag
Dotfuscator Community Edition
Double numeric value
double precision point variables
double precision variables
DrawBezier() graphics method
DrawCurve() method
DrawImage() method
Drawing.StringFormat class
Drawing2D.FillMode.Winding mode
DrawLine() method
DrawString() method 2nd 3rd
DriveInfo object
 properties
drives
 available space
 drive paths
 enumerating
DynData field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ElapsedMilliseconds property
ellipses 2nd
email
emails 2nd
Enable application framework field
end-of-line characters
Enum statement
enumerations
 string and numeric values
Environ() function
environment variables
Environment.NewLine property
Err.Raise method
exceptions 2nd 3rd 4th 5th 6th 7th
 catching
 unhandled exceptions
 exception information
 ignoring in a block of code
 new types
 throwing
exclusive-or bit manipulation
ExecuteReader() method
ExecuteScalar() method
Explorer forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

factorials
file checksums
file compression 2nd 3rd 4th
FileExists() method
FileInfo object
files and file systems 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd
24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th
48th 49th 50th 51st
 attributes
 available disk drive space
 binary files
 CSV files
 file information 2nd 3rd
 file-access methods 2nd 3rd 4th 5th
 files 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 security
 stream-based file access
FileSystemWatcher object 2nd 3rd 4th
finalization
Finalize() method
floating-point variables
Floor() function
FolderBrowserDialog class
FolderBrowserDialog control
Font objects
For Each loops 2nd
For…Next loops
forms
 properties
 surface and controls
 tab order, setting
FreeFile() method
Friend keyword
FTP (File Transfer Protocol) file downloads
FtpWebRequest class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage collection 2nd
GDI+ graphics and methods
GDI+ library printing commands
generator object
generics 2nd
GetBit() function
GetDirectories() method 2nd
GetDriveInfo() method
GetEnvironmentVariable() method
GetFileInfo() method 2nd
GetFiles() method
GetGeneration() method
GetHostAddresses() method
GetHostEntry() method
GetName() method
GetObjectData() method
GetParentPath() method
GetPixel() method
GetPropertyItem() method
GetScreen() function
GetTempFileName() method
GetTotalMemory() method
GetValue() method 2nd
gradients in color
graph paper 2nd
graphics
 bezier splines
 charts
 color schemas (RGB 2nd 3rd 4th
 colors
 controls 2nd 3rd 4th
 coordinate systems (pixels 2nd 3rd 4th
 drawing lines 2nd 3rd 4th 5th
 enabling color selection by users
 forms or controls 2nd 3rd 4th
 Graphics object
 graphics strings 2nd 3rd 4th
 line controls
 odd-shaped forms and controls
 pixel-wide lines 2nd
 rubber-band selection
 scaling with tranforms 2nd 3rd
 shape controls
 text 2nd 3rd 4th 5th 6th
 rotating
 with outlines and drop shadows
 transparency
 animation
 VB 6.0 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VB 6.0 2nd 3rd
 zooming the drawing area 2nd 3rd 4th
Graphics object
 creating 2nd
 drawing methods
 Transform property
Graphics.DrawString() method
Graphics.MeasureString() method
GraphicsPath object
 PathGradientBrush
grayscale image conversions from color
Gzip stream compression and decompression
GZipStream class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handle-based files
hash generation
HelpProvider controls
hexadecimal strings
Hidden file attributes
hives
host name of remote computers
HSB (HSV) and HSL color schemes 2nd 3rd
HTML content
HTML mode
HTML page template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

I/O
icon file template
IDisposable interface 2nd
ImageList controls
images
 displaying while stretching and sizing 2nd
 edge detection on 2nd 3rd 4th
 files
 grayscale
 merging
 scrolling
 speeding up processing 2nd
 using in application resources
IndexOf() method
Inheritance Picker dialog
inherited form template
inherited user control template
Insert() method 2nd
installer class template
instances
integer types 2nd 3rd 4th
 conversion of numbers to
 swapping integers
Integrated Security
interface template
InteropServices.Marshal.LockBits() method
Invalidate() method 2nd
inverse of a matrix
IP addresses
 of local computers
IPHostEntry.HostName property
IsAttached flag
IsDate() function
ISerializable interface
ISerializable.GetObjectData() method
IsLeapYear() function
IsMatch() method
IsNothing()
IsNumeric() function
ISO 8601 date and time format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Join() method 2nd 3rd
JPEG files
 extended information
 resizing and compressing 2nd 3rd
 thumbnail files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

KeepAlive() method
key press interception
KeyPreview property
keys
Kill() method 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LCase() and UCase() methods
leap years
lines 2nd
LinkLabel control
ListBox controls
 drag and drop addition of files to
 drag and drop between controls 2nd 3rd 4th 5th
ListItem Collection Editor
LocalMachine field
LockBits() method
LockImage class
locking files
Login forms
LoginForm dialog
Long integer type
loop counters
Luhn Algorithm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Main() method
Make single instance application field
Managed HTML Document Object Model (DOM) 2nd
managed memory
MatchCollection object
Matches() method
Math.IEEERemainder() function
Math.Round() function
matrices
 calculating determinants of
 matrix transformations
MD5 hash
.mdf file extension
MDI (Multi Document Interface) parent forms
method overloading
Microsoft XML snippet schema
Mod operator
module template
modulus 10 formula
MonthCalendar control
Morse code
mouse
MoveDirectory() method
 ShowUI argument
MoveFile() method
MS-DOS
multimedia
 JPEG files
 thumbnails
 user's screen dimensions
multivalue arrays
My namespace 2nd 3rd
My.Application.CommandLineArgs collection
My.Computer.Audio class
 Play() method
 PlaySystemSound() method
My.Computer.Clipboard object
My.Computer.FileSystem class
 Drives collection
My.Computer.Keyboard.SendKeys() method
My.Computer.Network.Ping() method
My.Computer.Ports.OpenSerialPort() method
My.Computer.Registry object
My.Settings object
My.WebServices object
MyApplication_StartupNextInstance event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Namespace statement
namespaces
 .NET library (DLL) namespaces
nested braces
.NET Framework
 cryptography services
 garbage collection
 hashing and encryption algorithms
 method overloading
 reflection
 System.Exception objects
 threading support
 types
New keyword
New Project Dialog
New() method 2nd
NewRow() method
nice axes 2nd 3rd
Not operator
NotifyIcon control
Now property 2nd 3rd
Now.Ticks property
number sign character (#)
number types
 conversions
numbers 2nd
numerical and math operations
 bits 2nd 3rd
 complex numbers 2nd 3rd 4th
 conversions between radians and degrees
 factorials
 integers
 matrices 2nd
 number to integer conversions
 number type conversions 2nd
 pi 2nd 3rd
 prime factors
 rectangular 2nd
 rectangular and polar coordinates 2nd
 signed and unsigned variable types 2nd 3rd
 simultaneous equations
 single and double precision variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

obfuscating an application 2nd 3rd
object disposal
object instances
ODBC
OLE DB
On Error Resume Next statement
Opacity property
OpenFileDialog class
OpenSubKey() method
OpenTextFileWriter() method
operator overloading 2nd 3rd 4th
Option Explicit and Option Strict settings
Optional keyword
Or operator
Oracle
outline paths
overloading
 of methods
 overloadable operators 2nd 3rd
 overriding
Overloads keyword 2nd
overriding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

p (pi) 2nd 3rd 4th 5th
PadCenter() method
PadLeft() and PadRight() methods
PageSetupDialog class
PageUnit property
Paint event handler 2nd
Paint events
Parse() method 2nd 3rd
partial class
Partial keyword
password security
passwords and usernames
PATH environment variable
PathGradientBrush object
Pen
Pen objects
PerformanceData field
pi 2nd 3rd
PictureBox control
 image display while stretching and sizing 2nd 3rd 4th 5th
 SizeMode setting
pinging an IP address
PointF structure 2nd
PointToClient() method
PointToScreen() method
polar coordinates 2nd 3rd
POP3 emails 2nd 3rd 4th 5th 6th 7th
prime factors
Print command
PrintDocument object 2nd
 PrintController.IsPreview property
printers and printing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 bypassing the printer driver 2nd 3rd 4th
 default printer details
 enumerating printers
 graph paper 2nd
 installed printers
 print destination
 print previews
 prompting users for page settings
 raw data 2nd 3rd 4th
 text and graphics
PrintPage event
PrintPreviewDialog class 2nd 3rd
Private keyword
procedures
Process.Start() method 2nd 3rd 4th
processes 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programming techniques
 adding tooltips to controls
 application completion
 application control via simulated keystrokes 2nd 3rd
 applications 2nd
 assembly detail
 clipboard 2nd 3rd 4th 5th
 cursor (mouse)
 file and directory changes 2nd 3rd
 garbage disposal
 generic collections
 key presses
 ListBox controls
 program execution
 rebooting
 registry 2nd 3rd 4th 5th 6th
 threads 2nd 3rd
 user control properties
 Windows Forms controls
 localization 2nd
 pop-up controls
 XML 2nd 3rd 4th
projects
 creating
Properties window
Public keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QueryPageSettings event
question mark (?)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

radians
RadioButtonList controls
random number generation
 exponential-distribution random numbers
 normal-distribution random numbers
 random integers
 random real numbers
 Visual Basic's pseudorandom number generator 2nd
Random object
Randomize() method
Read Only file attributes
ReadAllText() method
rebooting
rectangles 2nd
rectangular 2nd 3rd
rectangular coordinates 2nd 3rd
recursion
ReDim Preserve statement
reference types
Refresh() method 2nd
refreshing graphics 2nd
Regex object
Regex.Matches() method
Region object
registry 2nd 3rd 4th
 accessing
 password hashes
Registry object
RegistryKey class
RegistryKey objects and members
RegistryKey.SetValue() method
regular expression object
regular expressions
 compiling for speed
 counting characters
 counting matches of
 data validation using
 extracting numbers from strings
 matches
 matching the Nth regular expression
Remove() method 2nd
RemoveMemoryPressure() method
Rename() function
RenameDirectory() method
Replace() method 2nd 3rd
 tabs
Report template
ReRegisterForFinalize() method
Resize() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resize() method
resource images
resources file template
.resx file extension
RGB color scheme 2nd 3rd 4th 5th
right triangles 2nd 3rd 4th
RijndaelManaged object
Rnd() function
Rollback() method
RotateTransform() method 2nd
Round() function
rounding numbers
.rpt file extension
rubber-band selection 2nd 3rd 4th 5th 6th
RunWorkerAsync() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SByte integer type
ScaleTransform() method 2nd 3rd 4th 5th
screen captures 2nd 3rd 4th 5th
screen dimensions
Screen object
screen savers 2nd 3rd 4th 5th 6th
 command-line options
searching
 iterating through directories and subdirectories
 wildcards in file and directory searches
security
 passwords
Seek() method
Send() method
SendKeys() method 2nd 3rd
 key sequences
serial I/O
serialization
SerializationInfo object
SetPixel() method
.settings file template
SetValue() method
Shared keyword
Shell() function
Short integer type
ShowDialog() method
shuffling algorithm for string shuffling
Sieve of Eratosthenes
signed variable types
 size 2nd
simultaneous equations
single precision variables
SMTP
snippet picker
Solution Explorer
Sort() method 2nd 3rd 4th 5th
SoundPlayer class
Space() function
SpecialDirectories object
SpecialFolder enumeration values and members
spherical 2nd 3rd 4th
Splash Screen forms
Split() function 2nd 3rd 4th 5th
sprites 2nd 3rd 4th 5th
SQL commands
SQL database template
SQL parameters
SQL Server
SqlCommand class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SqlCommand class
SqlTransaction object
standard operators 2nd 3rd 4th
Start() method
startup code
StartupNextInstance
Stopwatch object 2nd
stored procedures
StrConv() function
StrDup() function
streams
StreamWriter object
String() function
 VB 6 version
String.Split() method 2nd
StringBuilder object 2nd 3rd
 buffer
 concatenation using
 methods
 string manipulation
StringFormat object
strings
 application resources
 arrays 2nd 3rd
 Base64
 binary data
 byte arrays
 case
 character arrays
 characters
 characters or strings
 Chars() property
 comparison incorporating case sensitivity
 comparison without case sensitivity
 compression and decompression
 concatenating
 creating of N identical characters
 creating through N repetitions of a string
 data
 data type identification and validation
 double spacing
 encoding systems
 encrypting with a key
 encryption and decryption 2nd 3rd 4th
 files
 Morse code
 numbers
 obfuscating
 padding for length and alignment
 parsing
 reversing
 sets of characters
 shuffling
 space character strings of N quantity
 speeding up manipulation
 splitting
 substrings 2nd
 tabs
 valid numbers in
 whitespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 whitespace
 words in
strong data typing in weakly typed collections 2nd 3rd
StrReverse() function
structures 2nd 3rd
 passing and returning
Substring() method
Subtract() method 2nd
SuppressFinalize() method
surface
SyncLock statements
system date and time 2nd 3rd
system information 2nd 3rd 4th
system reboots 2nd 3rd
system registry
system ticks
system time zone
System Tray icons
System.Collections.Generic namespace
System.Data namespace
System.Data.SqlClient class
 SqlConnectionStringBuilder
System.Diagnostics class
 Debugger.IsAttached flag
 Process class
System.Drawing class
 Color structure
 Printing.PrinterSettings.InstalledPrinters collection
System.Environment.SpecialFolder enumeration values and members
System.Exception class
System.GC object
System.GC.MaxGeneration property
System.IO class
 Compression namespace GZipStream class
 DriveInfo object
 FileInfo object
 Attributes property
 FileStream object
System.Net class
 Dns namespace 2nd
 Mail.SmtpClient class
 Sockets namespace
System.Reflection namespace
System.Security.Cryptography namespace
System.Text class
 Encoding functions
 Encoding object
 RegularExpressions.Regex object
System.Threading.Thread.Sleep() method
System.Windows.Forms class
 Cursor object
 SystemInformation object
System.Xml.XmlDocument object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

TcpClient class
temperature conversion application
 Console version 2nd 3rd 4th
 Windows Forms version 2nd 3rd 4th 5th 6th
temporary files
terminating running processes
text 2nd 3rd 4th 5th 6th
 mirroring on the canvas
 outlines and drop shadows
 rotating
text file template
TextBox control
TextChanged event
threads 2nd 3rd
three-dimensional variables
Throw statement
thumbnails
Ticks property 2nd
TimeChanged public event
TimeSpan object 2nd
TimeZone object
Toolbox
ToolTip control
tooltips
ToShortDateString andToShortTimeString properties
ToString() method 2nd 3rd 4th 5th 6th 7th 8th
 displaying exception information using
 Triangle class
ToUniversalTime() method
ToUpper() and ToLower() methods
TrackBar control
transactional component template
transactions
TranslateTransform() method 2nd
transparency
 animation
TransparencyKey property
TreeView control
triangles
Trim()
Try…Catch…Finally block statement
two-dimensional arrays versus multivalue arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UInt16 integer type
UInteger integer type
ULong integer type
UnhandledException event handler
Unicode encoding conversions
unmanaged memory
unsigned integers
unsigned variable types
 size 2nd
user controls 2nd 3rd 4th 5th
Users field
Using statement
UTF7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validation of numbers in strings
value types
values
vbNewLine constant 2nd
version numbers
 automatic updating
video files
Visual Basic 2005
 compiler
Visual Basic 6.0
 obsolete graphics features 2nd 3rd
 string insertion
Visual Studio 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WaitForExit() method
WaitForInputIdle() method
WaitForPendingFinalizers() method
Web custom control template
web development 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 email
 FTP downloads
 host name or IP address resolution for remote computers
 hyperlinks
 IP addresses
 links
 local computer IP address
 web pages 2nd 3rd 4th 5th
 XML Web Services
WebBrowser control
whitespace
wildcards
Windows file system security
Windows Forms
 basic forms
 controls
 drawing on controls 2nd 3rd 4th 5th
 localizing controls
 form properties
 host names or IP addresses of remote computers
 links
 project creation
 Properties Window
 Solution Explorer
 startup form
 tab order
 text 2nd
 Toolbox
Windows Management Instrumentation (WMI)
Windows service template
winres.exe application
winspool.drv library
WMI (Windows Management Instrumentation)
words
WriteAllBytes() method
WriteAllText() method 2nd
WriteXML() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML 2nd 3rd 4th
XML documents 2nd 3rd 4th 5th 6th
 validating
XML file template
XML Schema template
XML Web Service
XmlDocument.CreateElement() method
XmlReaderSettings class
Xor operators
.xsd file extension
XSLT file template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

About boxes
Add New Item dialog 2nd
 template choices
Add() method 2nd
AddHandler statement
AddMemoryPressure() method
ADO.NET
 connection strings
 providers
 supported stored procedures
AES (Advanced Encryption Algorithm)
alpha blending
And operator
angular calculations 2nd
animation
 drawing at runtime 2nd
 from multiple bitmaps
 from multiple images
 sprites 2nd 3rd 4th 5th
 with transparency 2nd 3rd
Append() method
application configuration file template
application-wide event handlers
Application.Run() method
applications
 basic building blocks
 classes 2nd 3rd
 command line 2nd 3rd
 testing
 control via simulated keystrokes 2nd
 pausing execution
 processes
 running environment
 running of multiple instances
 running processes
 separate applications
 startup form
 strings
 structures 2nd 3rd
 structures and other objects
 timing of application activities
 user-specific settings
 Visual Basic-specific template choices 2nd 3rd 4th 5th
 waiting for applications to finish
Array.Copy() method
arrays
 converting between delimited strings and arrays
 copying part of an array to another 2nd 3rd
 CSV files 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CSV files 2nd
 filling during declaration
 functions
 iterating through elements of
 methods 2nd
 ReDim Preserve command
 resizing without losing values 2nd
 reversing oder of elements
 shuffling 2nd
 single strings 2nd
 sorting elements 2nd 3rd 4th
 values
As Type clause
ASP.NET button event handler
 Enter key activation
ASP.NET Web Forms applications 2nd 3rd 4th 5th 6th
 Convert button event handler
 ListItem Collection Editor
 new web site creation
 source code
 Toolbox
assembly details 2nd 3rd 4th
AssemblyInfo.vb file
audio
 audio files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background colors
BackgroundWorker control
.bas file extension
Base64 conversions from strings
BeginTransaction() method
bezier splines 2nd
binary data
binary files
BinaryFormatter class
BinaryReader and BinaryWriter classes
BitArray object
BitConverter object
bitmap file template
bitmaps 2nd
bitwise operators 2nd 3rd
.bmp file extension
Boolean operators
Byte integer type
byte position access of files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Capacity property
cardinal splines
case conversion on strings
case sensitive string comparisons
CByte() function
Char object
character tallies in strings
character types
charts 2nd
checksums 2nd 3rd
CInt() function
class diagram template
class instances 2nd 3rd
classes 2nd 3rd 4th
 overloaded methods
 splitting across files
ClassesRoot field
Clear() method
Click event 2nd
clipboard 2nd 3rd 4th 5th
Clipboard object 2nd 3rd 4th
Clone() method
code file template
code modules 2nd 3rd
 access keywords
code snippets 2nd 3rd 4th 5th 6th 7th
 .snippet files
 Code Snippet Editor
 Code Snippets Manager
 new snippets 2nd 3rd 4th
 prewritten 2nd
 sharing
 XML code
Collect() method
CollectionCount() method
collections
 Count property
 creating
 generic collections
 items 2nd
 iterating through
color 2nd 3rd 4th
color gradients
color images
ColorDialog control 2nd 3rd 4th 5th
colors
 background
COM Class template
CombinePath() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CombinePath() method
Command objects
Command() function 2nd
Commit() method
compact operator notation 2nd 3rd 4th
 compact assignment operators
Compare() method 2nd
CompareTo() method
complex numbers 2nd 3rd 4th
compressing JPEG images
 using for thumbnails
compression and decompression
 of files
 of strings
 sample code
Connection object 2nd
connection string builder class
connection strings
console application output
Console applications 2nd 3rd 4th
 default code blocks
 module naming and project properties
 output
 text and graphics
Console.Beep() method
constructors
ControlChars.NewLine property
controls
Convert.ToByte() method
Convert.ToInteger() method
coordinates 2nd 3rd 4th
Copy() method
CopyDirectory() method
 showUI argument
CopyFile() method
count variable
Cramer's Rule
CreateDirectory() method
CreateElement() method
credit card verification
cryptography
 crypto module 2nd 3rd 4th 5th
 files 2nd 3rd 4th
 secure random numbers
 strings
 with keys
CryptoStream object
Crystal Reports template
CSV (comma-separated-values) files
 string arrays 2nd
CType() function
CurrentConfig field
CurrentUser field
cursor
cursor file template
custom constructors
custom control template
custom controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon
The animal on the cover of Visual Basic 2005 Cookbook is a bream. "Bream" is the name given to a variety of salt and
freshwater fish included in the genera Abramis. They are generally tall, narrow fish, between 1433 inches and 213
pounds. There are many species of bream, including the Abramis ballerus, or blue bream.

Another type of bream, the carp bream (Abramis brama), can be found in northern Europe, from France to the Caspian
Sea. They are silvery green with a white belly, and they live in slow-moving or still freshwater. Carp bream spawn
between April and June, when the females lay from 100,000 to 300,000 eggs, which hatch after 3 to 12 days. The fish
mature in three to four years.

Bream are bottom-feeders, consuming plankton, plants, insects, worms, snails, slugs, and bivalves such as clams,
scallops, and oysters. They are considered a popular sport fish, and can be caught year round with a fishing rod using
bait such as maggots and chopped worms.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC Garamond. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data
Data Definition Language (DDL)
Data Encryption Standard (DES)
Data Manipulation Language (DML)
data set template
DataAdapter object
databases 2nd
 ADO.NET
 Command objects
 methods
 connecting to data providers 2nd 3rd 4th
 connection strings
 in-memory data tables 2nd
 query results 2nd 3rd 4th
 Read() method
 SQL commands
 stored procedures
DataReader object 2nd
DataRow object
DataSet object 2nd
DataTable object 2nd 3rd
date and time 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th
25th 26th 27th 28th 29th 30th
 application activities
 Data object
 date and time values
 adding to 2nd 3rd
 creating from parts
 determining the day of week for
 extracting hour
 extracting year
 subtracting from
 Date data type
 Date object
 Add functions
 Kind property
 days between two dates
 days in a month
 form controls for date entry or selection 2nd 3rd
 formatting 2nd 3rd
 ISO 8601 formats
 leap year checks
 moon phases
 parsing and validation
 ticks
DateTimePicker control
DayOfWeek property
DayOfYear property
DaysInMonth function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DaysInMonth function 2nd
Decimal variables
decimal variables
default constructors
degrees
DeleteFile() method
DES (Data Encryption Standard)
DescriptionAttribute attribute
destructors 2nd
Dialog forms
Dim statement 2nd
directories
 browsing
 copying
 creating
 monitoring for changes 2nd 3rd 4th
 moving
 parsing file and directory paths
 renaming
 special user and Windows directories 2nd 3rd 4th 5th
 URL-based directory paths and My.Computer.Filesystem objects
DirectoryExists() method
display dimensions
display updates
disposal
Dispose() method 2nd
DllImport attribute
DoDragDrop() method 2nd
DoNotExpandEnvironmentNames flag
Dotfuscator Community Edition
Double numeric value
double precision point variables
double precision variables
DrawBezier() graphics method
DrawCurve() method
DrawImage() method
Drawing.StringFormat class
Drawing2D.FillMode.Winding mode
DrawLine() method
DrawString() method 2nd 3rd
DriveInfo object
 properties
drives
 available space
 drive paths
 enumerating
DynData field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

In loving memory of Jeanie Craig (19502005).

Jeanie… Thank you for sharing your life, your spirit, and your love. Our dreams go
on, and our love is eternal.

John Craig

To my parents, Don and Darla, who both know how to cook.

Tim Patrick

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ElapsedMilliseconds property
ellipses 2nd
email
emails 2nd
Enable application framework field
end-of-line characters
Enum statement
enumerations
 string and numeric values
Environ() function
environment variables
Environment.NewLine property
Err.Raise method
exceptions 2nd 3rd 4th 5th 6th 7th
 catching
 unhandled exceptions
 exception information
 ignoring in a block of code
 new types
 throwing
exclusive-or bit manipulation
ExecuteReader() method
ExecuteScalar() method
Explorer forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

factorials
file checksums
file compression 2nd 3rd 4th
FileExists() method
FileInfo object
files and file systems 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd
24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th
48th 49th 50th 51st
 attributes
 available disk drive space
 binary files
 CSV files
 file information 2nd 3rd
 file-access methods 2nd 3rd 4th 5th
 files 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 security
 stream-based file access
FileSystemWatcher object 2nd 3rd 4th
finalization
Finalize() method
floating-point variables
Floor() function
FolderBrowserDialog class
FolderBrowserDialog control
Font objects
For Each loops 2nd
For…Next loops
forms
 properties
 surface and controls
 tab order, setting
FreeFile() method
Friend keyword
FTP (File Transfer Protocol) file downloads
FtpWebRequest class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage collection 2nd
GDI+ graphics and methods
GDI+ library printing commands
generator object
generics 2nd
GetBit() function
GetDirectories() method 2nd
GetDriveInfo() method
GetEnvironmentVariable() method
GetFileInfo() method 2nd
GetFiles() method
GetGeneration() method
GetHostAddresses() method
GetHostEntry() method
GetName() method
GetObjectData() method
GetParentPath() method
GetPixel() method
GetPropertyItem() method
GetScreen() function
GetTempFileName() method
GetTotalMemory() method
GetValue() method 2nd
gradients in color
graph paper 2nd
graphics
 bezier splines
 charts
 color schemas (RGB 2nd 3rd 4th
 colors
 controls 2nd 3rd 4th
 coordinate systems (pixels 2nd 3rd 4th
 drawing lines 2nd 3rd 4th 5th
 enabling color selection by users
 forms or controls 2nd 3rd 4th
 Graphics object
 graphics strings 2nd 3rd 4th
 line controls
 odd-shaped forms and controls
 pixel-wide lines 2nd
 rubber-band selection
 scaling with tranforms 2nd 3rd
 shape controls
 text 2nd 3rd 4th 5th 6th
 rotating
 with outlines and drop shadows
 transparency
 animation
 VB 6.0 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VB 6.0 2nd 3rd
 zooming the drawing area 2nd 3rd 4th
Graphics object
 creating 2nd
 drawing methods
 Transform property
Graphics.DrawString() method
Graphics.MeasureString() method
GraphicsPath object
 PathGradientBrush
grayscale image conversions from color
Gzip stream compression and decompression
GZipStream class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handle-based files
hash generation
HelpProvider controls
hexadecimal strings
Hidden file attributes
hives
host name of remote computers
HSB (HSV) and HSL color schemes 2nd 3rd
HTML content
HTML mode
HTML page template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

I/O
icon file template
IDisposable interface 2nd
ImageList controls
images
 displaying while stretching and sizing 2nd
 edge detection on 2nd 3rd 4th
 files
 grayscale
 merging
 scrolling
 speeding up processing 2nd
 using in application resources
IndexOf() method
Inheritance Picker dialog
inherited form template
inherited user control template
Insert() method 2nd
installer class template
instances
integer types 2nd 3rd 4th
 conversion of numbers to
 swapping integers
Integrated Security
interface template
InteropServices.Marshal.LockBits() method
Invalidate() method 2nd
inverse of a matrix
IP addresses
 of local computers
IPHostEntry.HostName property
IsAttached flag
IsDate() function
ISerializable interface
ISerializable.GetObjectData() method
IsLeapYear() function
IsMatch() method
IsNothing()
IsNumeric() function
ISO 8601 date and time format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Join() method 2nd 3rd
JPEG files
 extended information
 resizing and compressing 2nd 3rd
 thumbnail files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

KeepAlive() method
key press interception
KeyPreview property
keys
Kill() method 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LCase() and UCase() methods
leap years
lines 2nd
LinkLabel control
ListBox controls
 drag and drop addition of files to
 drag and drop between controls 2nd 3rd 4th 5th
ListItem Collection Editor
LocalMachine field
LockBits() method
LockImage class
locking files
Login forms
LoginForm dialog
Long integer type
loop counters
Luhn Algorithm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Main() method
Make single instance application field
Managed HTML Document Object Model (DOM) 2nd
managed memory
MatchCollection object
Matches() method
Math.IEEERemainder() function
Math.Round() function
matrices
 calculating determinants of
 matrix transformations
MD5 hash
.mdf file extension
MDI (Multi Document Interface) parent forms
method overloading
Microsoft XML snippet schema
Mod operator
module template
modulus 10 formula
MonthCalendar control
Morse code
mouse
MoveDirectory() method
 ShowUI argument
MoveFile() method
MS-DOS
multimedia
 JPEG files
 thumbnails
 user's screen dimensions
multivalue arrays
My namespace 2nd 3rd
My.Application.CommandLineArgs collection
My.Computer.Audio class
 Play() method
 PlaySystemSound() method
My.Computer.Clipboard object
My.Computer.FileSystem class
 Drives collection
My.Computer.Keyboard.SendKeys() method
My.Computer.Network.Ping() method
My.Computer.Ports.OpenSerialPort() method
My.Computer.Registry object
My.Settings object
My.WebServices object
MyApplication_StartupNextInstance event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic 2005 Cookbook
By John Clark Craig, Tim Patrick
...
Publisher: O'Reilly
Pub Date: September 2006
Print ISBN-10: 0-596-10177-5
Print ISBN-13: 978-0-59-610177-0
Pages: 740

Table of Contents | Index

This book will help you solve more than 300 of the most common and not-so-common tasks that working Visual Basic
2005 programmers face every day. If you're a seasoned .NET developer, beginning Visual Basic programmer, or a
developer seeking a simple and clear migration path from VB6 to Visual Basic 2005, the Visual Basic 2005 Cookbook
delivers a practical collection of problem-solving recipes for a broad range of Visual Basic programming tasks.

The concise solutions and examples in the Visual Basic 2005 Cookbook range from simple tasks to the more complex,
organized by the types of problems you need to solve. Nearly every recipe contains a complete, documented code
sample showing you how to solve the specific problem, as well as a discussion of how the underlying technology
works and that outlines alternatives, limitations, and other considerations. As with all O'Reilly Cookbooks, each recipe
helps you quickly understand a problem, learn how to solve it, and anticipate potential tradeoffs or ramifications.

Useful features of the book include:

Over 300 recipes written in the familiar O'Reilly Problem-Solution-Discussion format

Hundreds of code snippets, examples, and complete solutions available for download

VB6 updates to alert VB6 programmers to code-breaking changes in Visual Basic 2005

Recipes that target Visual Basic 2005 features not included in previous releases

Code examples covering everyday data manipulation techniques and language fundamentals

Advanced projects focusing on multimedia and mathematical transformations using linear algebraic methods

Specialized topics covering files and file systems, printing, and databases

In addition, you'll find chapters on cryptography and compression, graphics, and special programming techniques.
Whether you're a beginner or an expert, the Visual Basic 2005 Cookbook is sure to save you time, serving up the
code you need, when you need it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Namespace statement
namespaces
 .NET library (DLL) namespaces
nested braces
.NET Framework
 cryptography services
 garbage collection
 hashing and encryption algorithms
 method overloading
 reflection
 System.Exception objects
 threading support
 types
New keyword
New Project Dialog
New() method 2nd
NewRow() method
nice axes 2nd 3rd
Not operator
NotifyIcon control
Now property 2nd 3rd
Now.Ticks property
number sign character (#)
number types
 conversions
numbers 2nd
numerical and math operations
 bits 2nd 3rd
 complex numbers 2nd 3rd 4th
 conversions between radians and degrees
 factorials
 integers
 matrices 2nd
 number to integer conversions
 number type conversions 2nd
 pi 2nd 3rd
 prime factors
 rectangular 2nd
 rectangular and polar coordinates 2nd
 signed and unsigned variable types 2nd 3rd
 simultaneous equations
 single and double precision variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

obfuscating an application 2nd 3rd
object disposal
object instances
ODBC
OLE DB
On Error Resume Next statement
Opacity property
OpenFileDialog class
OpenSubKey() method
OpenTextFileWriter() method
operator overloading 2nd 3rd 4th
Option Explicit and Option Strict settings
Optional keyword
Or operator
Oracle
outline paths
overloading
 of methods
 overloadable operators 2nd 3rd
 overriding
Overloads keyword 2nd
overriding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

p (pi) 2nd 3rd 4th 5th
PadCenter() method
PadLeft() and PadRight() methods
PageSetupDialog class
PageUnit property
Paint event handler 2nd
Paint events
Parse() method 2nd 3rd
partial class
Partial keyword
password security
passwords and usernames
PATH environment variable
PathGradientBrush object
Pen
Pen objects
PerformanceData field
pi 2nd 3rd
PictureBox control
 image display while stretching and sizing 2nd 3rd 4th 5th
 SizeMode setting
pinging an IP address
PointF structure 2nd
PointToClient() method
PointToScreen() method
polar coordinates 2nd 3rd
POP3 emails 2nd 3rd 4th 5th 6th 7th
prime factors
Print command
PrintDocument object 2nd
 PrintController.IsPreview property
printers and printing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 bypassing the printer driver 2nd 3rd 4th
 default printer details
 enumerating printers
 graph paper 2nd
 installed printers
 print destination
 print previews
 prompting users for page settings
 raw data 2nd 3rd 4th
 text and graphics
PrintPage event
PrintPreviewDialog class 2nd 3rd
Private keyword
procedures
Process.Start() method 2nd 3rd 4th
processes 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programming techniques
 adding tooltips to controls
 application completion
 application control via simulated keystrokes 2nd 3rd
 applications 2nd
 assembly detail
 clipboard 2nd 3rd 4th 5th
 cursor (mouse)
 file and directory changes 2nd 3rd
 garbage disposal
 generic collections
 key presses
 ListBox controls
 program execution
 rebooting
 registry 2nd 3rd 4th 5th 6th
 threads 2nd 3rd
 user control properties
 Windows Forms controls
 localization 2nd
 pop-up controls
 XML 2nd 3rd 4th
projects
 creating
Properties window
Public keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QueryPageSettings event
question mark (?)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

radians
RadioButtonList controls
random number generation
 exponential-distribution random numbers
 normal-distribution random numbers
 random integers
 random real numbers
 Visual Basic's pseudorandom number generator 2nd
Random object
Randomize() method
Read Only file attributes
ReadAllText() method
rebooting
rectangles 2nd
rectangular 2nd 3rd
rectangular coordinates 2nd 3rd
recursion
ReDim Preserve statement
reference types
Refresh() method 2nd
refreshing graphics 2nd
Regex object
Regex.Matches() method
Region object
registry 2nd 3rd 4th
 accessing
 password hashes
Registry object
RegistryKey class
RegistryKey objects and members
RegistryKey.SetValue() method
regular expression object
regular expressions
 compiling for speed
 counting characters
 counting matches of
 data validation using
 extracting numbers from strings
 matches
 matching the Nth regular expression
Remove() method 2nd
RemoveMemoryPressure() method
Rename() function
RenameDirectory() method
Replace() method 2nd 3rd
 tabs
Report template
ReRegisterForFinalize() method
Resize() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resize() method
resource images
resources file template
.resx file extension
RGB color scheme 2nd 3rd 4th 5th
right triangles 2nd 3rd 4th
RijndaelManaged object
Rnd() function
Rollback() method
RotateTransform() method 2nd
Round() function
rounding numbers
.rpt file extension
rubber-band selection 2nd 3rd 4th 5th 6th
RunWorkerAsync() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SByte integer type
ScaleTransform() method 2nd 3rd 4th 5th
screen captures 2nd 3rd 4th 5th
screen dimensions
Screen object
screen savers 2nd 3rd 4th 5th 6th
 command-line options
searching
 iterating through directories and subdirectories
 wildcards in file and directory searches
security
 passwords
Seek() method
Send() method
SendKeys() method 2nd 3rd
 key sequences
serial I/O
serialization
SerializationInfo object
SetPixel() method
.settings file template
SetValue() method
Shared keyword
Shell() function
Short integer type
ShowDialog() method
shuffling algorithm for string shuffling
Sieve of Eratosthenes
signed variable types
 size 2nd
simultaneous equations
single precision variables
SMTP
snippet picker
Solution Explorer
Sort() method 2nd 3rd 4th 5th
SoundPlayer class
Space() function
SpecialDirectories object
SpecialFolder enumeration values and members
spherical 2nd 3rd 4th
Splash Screen forms
Split() function 2nd 3rd 4th 5th
sprites 2nd 3rd 4th 5th
SQL commands
SQL database template
SQL parameters
SQL Server
SqlCommand class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SqlCommand class
SqlTransaction object
standard operators 2nd 3rd 4th
Start() method
startup code
StartupNextInstance
Stopwatch object 2nd
stored procedures
StrConv() function
StrDup() function
streams
StreamWriter object
String() function
 VB 6 version
String.Split() method 2nd
StringBuilder object 2nd 3rd
 buffer
 concatenation using
 methods
 string manipulation
StringFormat object
strings
 application resources
 arrays 2nd 3rd
 Base64
 binary data
 byte arrays
 case
 character arrays
 characters
 characters or strings
 Chars() property
 comparison incorporating case sensitivity
 comparison without case sensitivity
 compression and decompression
 concatenating
 creating of N identical characters
 creating through N repetitions of a string
 data
 data type identification and validation
 double spacing
 encoding systems
 encrypting with a key
 encryption and decryption 2nd 3rd 4th
 files
 Morse code
 numbers
 obfuscating
 padding for length and alignment
 parsing
 reversing
 sets of characters
 shuffling
 space character strings of N quantity
 speeding up manipulation
 splitting
 substrings 2nd
 tabs
 valid numbers in
 whitespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 whitespace
 words in
strong data typing in weakly typed collections 2nd 3rd
StrReverse() function
structures 2nd 3rd
 passing and returning
Substring() method
Subtract() method 2nd
SuppressFinalize() method
surface
SyncLock statements
system date and time 2nd 3rd
system information 2nd 3rd 4th
system reboots 2nd 3rd
system registry
system ticks
system time zone
System Tray icons
System.Collections.Generic namespace
System.Data namespace
System.Data.SqlClient class
 SqlConnectionStringBuilder
System.Diagnostics class
 Debugger.IsAttached flag
 Process class
System.Drawing class
 Color structure
 Printing.PrinterSettings.InstalledPrinters collection
System.Environment.SpecialFolder enumeration values and members
System.Exception class
System.GC object
System.GC.MaxGeneration property
System.IO class
 Compression namespace GZipStream class
 DriveInfo object
 FileInfo object
 Attributes property
 FileStream object
System.Net class
 Dns namespace 2nd
 Mail.SmtpClient class
 Sockets namespace
System.Reflection namespace
System.Security.Cryptography namespace
System.Text class
 Encoding functions
 Encoding object
 RegularExpressions.Regex object
System.Threading.Thread.Sleep() method
System.Windows.Forms class
 Cursor object
 SystemInformation object
System.Xml.XmlDocument object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

(hash)
& (ampersand)
&= concatenation shortcut
* (asterisk) 2nd
<< and > > (bit-shift operators)
? (question mark) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

TcpClient class
temperature conversion application
 Console version 2nd 3rd 4th
 Windows Forms version 2nd 3rd 4th 5th 6th
temporary files
terminating running processes
text 2nd 3rd 4th 5th 6th
 mirroring on the canvas
 outlines and drop shadows
 rotating
text file template
TextBox control
TextChanged event
threads 2nd 3rd
three-dimensional variables
Throw statement
thumbnails
Ticks property 2nd
TimeChanged public event
TimeSpan object 2nd
TimeZone object
Toolbox
ToolTip control
tooltips
ToShortDateString andToShortTimeString properties
ToString() method 2nd 3rd 4th 5th 6th 7th 8th
 displaying exception information using
 Triangle class
ToUniversalTime() method
ToUpper() and ToLower() methods
TrackBar control
transactional component template
transactions
TranslateTransform() method 2nd
transparency
 animation
TransparencyKey property
TreeView control
triangles
Trim()
Try…Catch…Finally block statement
two-dimensional arrays versus multivalue arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic 2005 Cookbook
By John Clark Craig, Tim Patrick
...
Publisher: O'Reilly
Pub Date: September 2006
Print ISBN-10: 0-596-10177-5
Print ISBN-13: 978-0-59-610177-0
Pages: 740

Table of Contents | Index

 Copyright

 Dedication

 Preface

 Chapter 1. Visual Basic Programming

 Introduction

 Recipe 1.1. Creating a Windows Forms Application

 Recipe 1.2. Creating a Console Application

 Recipe 1.3. Creating an ASP.NET Web Forms Application

 Chapter 2. The Development Environment

 Introduction

 Recipe 2.1. Discovering and Using a Code Snippet

 Recipe 2.2. Creating a New Snippet

 Recipe 2.3. Sharing Snippets

 Recipe 2.4. Adding Snippet Files to Visual Studio

 Recipe 2.5. Getting an Application's Version Number

 Recipe 2.6. Letting Visual Studio Automatically Update an Application's Version Number

 Recipe 2.7. Setting the Startup Form for an Application

 Recipe 2.8. Setting the Startup to a Sub Main Procedure

 Recipe 2.9. Getting an Application's Command Line

 Recipe 2.10. Testing an Application's Command Line

 Recipe 2.11. Obfuscating an Application

 Recipe 2.12. Determining if an Application Is Running in the Visual Studio Environment

 Recipe 2.13. Accessing Environment Variables

 Recipe 2.14. Accessing the Registry

 Recipe 2.15. Getting System Information

 Recipe 2.16. Getting the User's Name

 Chapter 3. Application Organization

 Introduction

 Recipe 3.1. Creating a Code Module

 Recipe 3.2. Creating a Class

 Recipe 3.3. Creating a Structure

 Recipe 3.4. Creating Other Item Types

 Recipe 3.5. Creating Object Instances

 Recipe 3.6. Initializing a Class Instance with Data

 Recipe 3.7. Releasing an Instance's Resources

 Recipe 3.8. Using Namespaces

 Recipe 3.9. Splitting a Class Across Multiple Files

 Recipe 3.10. Creating a Form Based on Another Form

 Recipe 3.11. Passing and Returning Structures and Other Objects

 Recipe 3.12. Creating and Using an Enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 3.13. Converting Between Numeric and String Enumeration Values

 Recipe 3.14. Creating a Method That Accepts Different Sets of Arguments

 Recipe 3.15. Using Standard Operators for Nonstandard Purposes

 Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly Typed Collection

 Chapter 4. Forms, Controls, and Other Useful Objects

 Introduction

 Recipe 4.1. Creating and Adding Controls at Runtime

 Recipe 4.2. Iterating Through All Controls on a Form

 Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

 Recipe 4.4. Working with Timers

 Recipe 4.5. Determining If a Control Can Take the Focus

 Recipe 4.6. Programmatically Clicking a Button

 Recipe 4.7. Drawing a Control

 Recipe 4.8. Making a Form the Top-Most Form

 Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

 Recipe 4.10. Remembering a Form's Position Between Uses

 Recipe 4.11. Attaching a Control to the Edge of a Form

 Recipe 4.12. Moving or Resizing Controls as a Form Resizes

 Recipe 4.13. Limiting the Sizing of a Form

 Recipe 4.14. Centering a Form

 Recipe 4.15. Creating and Moving a Borderless Form

 Recipe 4.16. Creating a Fading Form

 Recipe 4.17. Creating a Nonrectangular Form

 Recipe 4.18. Changing Menus at Runtime

 Recipe 4.19. Creating Shortcut Menus

 Chapter 5. Strings

 Introduction

 Recipe 5.1. Using a StringBuilder

 Recipe 5.2. Creating a String of N Identical Characters

 Recipe 5.3. Creating a String by Repeating a String N Times

 Recipe 5.4. Obfuscating a String

 Recipe 5.5. Converting Binary Data to a Hexadecimal String

 Recipe 5.6. Extracting Substrings from Larger Strings

 Recipe 5.7. Converting a String's Case

 Recipe 5.8. Comparing Strings with Case Sensitivity

 Recipe 5.9. Comparing Strings Without Case Sensitivity

 Recipe 5.10. Converting Strings to and from Character Arrays

 Recipe 5.11. Converting Strings to and from Byte Arrays

 Recipe 5.12. Tallying Characters

 Recipe 5.13. Counting Words

 Recipe 5.14. Removing Extra Whitespace

 Recipe 5.15. Using the Correct End-of-Line Characters

 Recipe 5.16. Replacing Substrings

 Recipe 5.17. Inserting a Character or String

 Recipe 5.18. Inserting a Line

 Recipe 5.19. Double-Spacing a String

 Recipe 5.20. Formatting Numbers into Strings

 Recipe 5.21. Trimming Sets of Characters from a String

 Recipe 5.22. Identifying and Validating Types of Data in a String

 Recipe 5.23. Converting Strings Between Encoding Systems

 Recipe 5.24. Determining a Character's Type

 Recipe 5.25. Parsing Strings

 Recipe 5.26. Concatenating Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 5.26. Concatenating Strings

 Recipe 5.27. Speeding Up String Manipulation

 Recipe 5.28. Counting Occurrences of a Substring

 Recipe 5.29. Padding a String for Exact Length and Alignment

 Recipe 5.30. Converting Tabs to Spaces

 Recipe 5.31. Reversing a String

 Recipe 5.32. Shuffling a String

 Recipe 5.33. Using a Simple String Encryption

 Recipe 5.34. Converting a String to Morse Code

 Recipe 5.35. Adding Strings to an Application's Resources

 Recipe 5.36. Converting Any Data to a String

 Recipe 5.37. Using Regular Expressions to Extract All Numbers

 Recipe 5.38. Getting a Count of Regular Expression Matches

 Recipe 5.39. Getting the Nth Regular Expression Match

 Recipe 5.40. Compiling Regular Expressions for Speed

 Recipe 5.41. Using Regular Expressions to Validate Data

 Recipe 5.42. Using Regular Expressions to Count Characters, Words, or Lines

 Recipe 5.43. Converting a String to and from Base64

 Recipe 5.44. Splitting a String

 Recipe 5.45. Creating a String of Space Characters

 Chapter 6. Numbers and Math

 Introduction

 Recipe 6.1. Using Compact Operator Notation

 Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

 Recipe 6.3. Using Unsigned Integers

 Recipe 6.4. Swapping Two Integers Without Using a Third

 Recipe 6.5. Using Single- and Double-Precision Variables

 Recipe 6.6. Using Decimal Variables for Maximum Precision

 Recipe 6.7. Converting Between Number Types

 Recipe 6.8. Rounding Numbers Accurately

 Recipe 6.9. Declaring Loop Counters Within Loops

 Recipe 6.10. Converting Between Radians and Degrees

 Recipe 6.11. Limiting Angles to a Range

 Recipe 6.12. Creating Double-Precision Point Variables

 Recipe 6.13. Converting Between Rectangular and Polar Coordinates

 Recipe 6.14. Creating Three-Dimensional Variables

 Recipe 6.15. Converting Between Rectangular, Spherical, and Cylindrical Coordinates

 Recipe 6.16. Working with Complex Numbers

 Recipe 6.17. Solving Right Triangles

 Recipe 6.18. Solving Any Triangle

 Recipe 6.19. Determining if a String Contains a Valid Number

 Recipe 6.20. Converting Numbers to Integers

 Recipe 6.21. Calculating π to Thousands of Digits

 Recipe 6.22. Getting a Number's Prime Factors

 Recipe 6.23. Using Recursion to Calculate Factorials

 Recipe 6.24. Manipulating Bits with Bitwise Operators

 Recipe 6.25. Storing and Retrieving Bits in a BitArray

 Recipe 6.26. Enhancing the Random Number Generator

 Recipe 6.27. Generating Random Integers in a Range

 Recipe 6.28. Generating Random Real Numbers in a Range

 Recipe 6.29. Generating Normal-Distribution Random Numbers

 Recipe 6.30. Generating Exponential-Distribution Random Numbers

 Recipe 6.31. Creating a Matrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 6.32. Inverting a Matrix

 Recipe 6.33. Calculating the Determinant of a Matrix

 Recipe 6.34. Solving Simultaneous Equations

 Recipe 6.35. Listing of the MatrixHelper Class

 Chapter 7. Dates and Times

 Introduction

 Recipe 7.1. Getting the System Date and Time

 Recipe 7.2. Accessing the System's Time Zone

 Recipe 7.3. Using System Ticks

 Recipe 7.4. Timing Application Activities

 Recipe 7.5. Calculating Elapsed Time Using Ticks

 Recipe 7.6. Calculating Elapsed Time with the Stopwatch

 Recipe 7.7. Extracting Year, Month, and Day Numbers from a Date Value

 Recipe 7.8. Extracting Hour, Minute, and Second Numbers from a Date Value

 Recipe 7.9. Creating a Date or Time Value from Its Parts

 Recipe 7.10. Formatting Dates and Times

 Recipe 7.11. Parsing and Validating Dates and Times

 Recipe 7.12. Adding to Dates and Times

 Recipe 7.13. Subtracting from Dates and Times

 Recipe 7.14. Determining the Number of Days Between Two Dates

 Recipe 7.15. Determining the Day of the Week for a Date

 Recipe 7.16. Determining the Day of the Year for a Date

 Recipe 7.17. Determining the Number of Days in a Month

 Recipe 7.18. Using Controls to Enter or Select a Date

 Recipe 7.19. Calculating the Phase of the Moon

 Recipe 7.20. Creating a Calendar

 Recipe 7.21. Checking for Leap Years

 Recipe 7.22. Dates and Times in ISO 8601 Formats

 Chapter 8. Arrays and Collections

 Introduction

 Recipe 8.1. Filling an Array While Declaring It

 Recipe 8.2. Sorting Array Elements

 Recipe 8.3. Reversing an Array

 Recipe 8.4. Inserting into an Array

 Recipe 8.5. Shuffling an Array

 Recipe 8.6. Swapping Two Array Values

 Recipe 8.7. Resizing Arrays Without Losing Existing Values

 Recipe 8.8. Quickly Copying Part of an Array into Another

 Recipe 8.9. Writing a Comma-Separated-Values File from a String Array

 Recipe 8.10. Reading a Comma-Separated-Values File into a String Array

 Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional Array

 Recipe 8.12. Converting Between Delimited Strings and Arrays

 Recipe 8.13. Formatting an Array as a Single String

 Recipe 8.14. Iterating Through Array Elements

 Recipe 8.15. Passing Arrays to Methods

 Recipe 8.16. Returning Arrays from Functions

 Recipe 8.17. Creating a Collection

 Recipe 8.18. Inserting an Item into a Collection

 Recipe 8.19. Deleting a Collection Item

 Recipe 8.20. Iterating Through a Collection

 Chapter 9. Graphics

 Introduction

 Recipe 9.1. Creating Graphics Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 9.1. Creating Graphics Objects

 Recipe 9.2. Drawing on Controls for Special Effects

 Recipe 9.3. Letting the User Select a Color

 Recipe 9.4. Working with Coordinate Systems (Pixels, Inches, Centimeters)

 Recipe 9.5. Creating a Bitmap

 Recipe 9.6. Setting a Background Color

 Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

 Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

 Recipe 9.9. Forcing a Form or Control to Redraw

 Recipe 9.10. Using Transparency

 Recipe 9.11. Scaling with Transforms

 Recipe 9.12. Using an Outline Path

 Recipe 9.13. Using Gradients for Smooth Color Changes

 Recipe 9.14. Drawing Bezier Splines

 Recipe 9.15. Drawing Cardinal Splines

 Recipe 9.16. Limiting Display Updates to Specific Regions

 Recipe 9.17. Drawing Text

 Recipe 9.18. Rotating Text to Any Angle

 Recipe 9.19. Mirroring Text on the Canvas

 Recipe 9.20. Getting the Height and Width of a Graphic String

 Recipe 9.21. Drawing Text with Outlines and Drop Shadows

 Recipe 9.22. Calculating a Nice Axis

 Recipe 9.23. Drawing a Simple Chart

 Recipe 9.24. Creating Odd-Shaped Forms and Controls

 Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

 Recipe 9.26. Creating a Rubber-Band Rectangular Selection

 Recipe 9.27. Animating with Transparency

 Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

 Chapter 10. Multimedia

 Introduction

 Recipe 10.1. Playing an Audio File

 Recipe 10.2. Displaying Image Files

 Recipe 10.3. Playing a Video File

 Recipe 10.4. Making Your Computer Beep

 Recipe 10.5. Creating an Animation Using Multiple Images

 Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

 Recipe 10.7. Creating an Animation by Drawing at Runtime

 Recipe 10.8. Creating Animated Sprites

 Recipe 10.9. Resizing and Compressing JPEG Files

 Recipe 10.10. Getting JPEG Extended Information

 Recipe 10.11. Creating Thumbnails

 Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

 Recipe 10.13. Scrolling Images

 Recipe 10.14. Merging Two or More Images

 Recipe 10.15. Using Resource Images

 Recipe 10.16. Capturing an Image of the Screen

 Recipe 10.17. Getting Display Dimensions

 Recipe 10.18. Speeding Up Image Processing

 Recipe 10.19. Converting an Image to Grayscale

 Recipe 10.20. Performing Edge Detection on an Image

 Recipe 10.21. Full Listing of the LockImage Class

 Chapter 11. Printing

 Introduction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 11.1. Enumerating Printers

 Recipe 11.2. Sending "Raw" Data to a Printer

 Recipe 11.3. Get Details About the Default Printer

 Recipe 11.4. Creating a Print Preview

 Recipe 11.5. Prompting for Printed Page Settings

 Recipe 11.6. Drawing Text and Graphics to a Printer

 Recipe 11.7. Determining the Print Destination

 Recipe 11.8. Creating Graph Paper

 Chapter 12. Files and File Systems

 Introduction

 Recipe 12.1. Enumerating Drives

 Recipe 12.2. Determining if a Directory Exists

 Recipe 12.3. Creating a New Directory

 Recipe 12.4. Copying Directories

 Recipe 12.5. Moving Directories

 Recipe 12.6. Renaming Directories

 Recipe 12.7. Parsing File and Directory Paths

 Recipe 12.8. Searching Iteratively Through Directories and Subdirectories

 Recipe 12.9. Finding Directories and Files Using Wildcards

 Recipe 12.10. Determining If a File Exists

 Recipe 12.11. Getting and Setting File Attributes

 Recipe 12.12. Accessing Special User and Windows Directories

 Recipe 12.13. Determining the Space on a Drive

 Recipe 12.14. Browsing for a Directory

 Recipe 12.15. Getting File Information

 Recipe 12.16. Using File-Access Methods

 Recipe 12.17. Reading and Writing Files as Strings

 Recipe 12.18. Reading and Writing Binary Files

 Recipe 12.19. Copying or Moving a File

 Recipe 12.20. Sending a File to the Recycle Bin

 Recipe 12.21. Creating a Temporary File

 Recipe 12.22. Calculating a Checksum for a File

 Recipe 12.23. Comparing Two Files for Equality

 Recipe 12.24. Locking a File During Access

 Recipe 12.25. Reading from a File at a Specific Position

 Recipe 12.26. Reading and Writing Objects in a File

 Recipe 12.27. Creating a Comma-Separated-Values File

 Chapter 13. Databases

 Introduction

 Recipe 13.1. Connecting to a Data Provider

 Recipe 13.2. Issuing SQL Commands

 Recipe 13.3. Retrieving Results from a Database Query

 Recipe 13.4. Using SQL Parameters

 Recipe 13.5. Using Stored Procedures

 Recipe 13.6. Using Transactions

 Recipe 13.7. Storing the Results of a Query in Memory

 Recipe 13.8. Creating In-Memory Data Tables Manually

 Recipe 13.9. Writing In-Memory Data Tables to an XML File

 Recipe 13.10. Reading an XML File into In-Memory Data Tables

 Chapter 14. Special Programming Techniques

 Introduction

 Recipe 14.1. Preventing Multiple Instances of a Running Application

 Recipe 14.2. Creating a Simple User Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Recipe 14.2. Creating a Simple User Control

 Recipe 14.3. Describing User Control Properties

 Recipe 14.4. Starting Other Applications by EXE, Document, or URL

 Recipe 14.5. Waiting for Applications to Finish

 Recipe 14.6. List All Running Processes

 Recipe 14.7. Terminating a Running Process

 Recipe 14.8. Pausing Execution of a Program

 Recipe 14.9. Control Applications by Simulating Keystrokes

 Recipe 14.10. Watching for File and Directory Changes

 Recipe 14.11. Creating an Icon in the System Tray

 Recipe 14.12. Accessing the Clipboard

 Recipe 14.13. Adding Tooltips to Controls

 Recipe 14.14. Dragging and Dropping Files to a ListBox

 Recipe 14.15. Dragging and Dropping Between ListBox Controls

 Recipe 14.16. Disposing of Objects Appropriately

 Recipe 14.17. Fine-Tuning Garbage Collection

 Recipe 14.18. Moving the (Mouse) Cursor

 Recipe 14.19. Intercepting All Key Presses on a Form

 Recipe 14.20. Accessing the Registry

 Recipe 14.21. Running Procedures in Threads

 Recipe 14.22. Reading XML into a TreeView

 Recipe 14.23. Creating an XML Document

 Recipe 14.24. Validating an XML Document

 Recipe 14.25. Using Generic Collections

 Recipe 14.26. Creating a Screensaver

 Recipe 14.27. Localizing the Controls on a Form

 Recipe 14.28. Adding Pop-up Help to Controls

 Recipe 14.29. Maintaining User-Specific Settings Between Uses of an Application

 Recipe 14.30. Verifying a Credit Card Number

 Recipe 14.31. Capturing a Console Application's Output

 Recipe 14.32. Reading an Assembly's Details

 Recipe 14.33. Performing Serial I/O

 Recipe 14.34. Rebooting the System

 Chapter 15. Exceptions

 Introduction

 Recipe 15.1. Catching an Exception

 Recipe 15.2. Throwing an Exception

 Recipe 15.3. Catching Unhandled Exceptions

 Recipe 15.4. Displaying Exception Information

 Recipe 15.5. Creating New Exception Types

 Recipe 15.6. Ignoring Exceptions in a Block of Code

 Chapter 16. Cryptography and Compression

 Introduction

 Recipe 16.1. Generating a Hash

 Recipe 16.2. Encrypting and Decrypting a String

 Recipe 16.3. Encrypting and Decrypting a File

 Recipe 16.4. Prompting for a Username and Password

 Recipe 16.5. Handling Passwords Securely

 Recipe 16.6. Compressing and Decompressing a String

 Recipe 16.7. Compressing and Decompressing a File

 Recipe 16.8. Generating Cryptographically Secure Random Numbers

 Recipe 16.9. Complete Listing of the Crypto.vb Module

 Recipe 16.10. Complete Listing of the Compress.vb Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 17. Web Development

 Introduction

 Recipe 17.1. Displaying Web Pages on a Form

 Recipe 17.2. Accessing Content Within an HTML Document

 Recipe 17.3. Getting All Links from a Web Page

 Recipe 17.4. Get the Local Computer's IP Address

 Recipe 17.5. Resolving a Host Name or IP Address for Another Computer

 Recipe 17.6. Pinging an IP Address

 Recipe 17.7. Using FTP to Download Files

 Recipe 17.8. Calling a Web Service

 Recipe 17.9. Sending Email Using SMTP

 Recipe 17.10. Getting POP3 Emails

 Recipe 17.11. Sending a Message to Another Computer

 Recipe 17.12. Adding Hyperlinks to a (Desktop) Form

 About the Authors

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UInt16 integer type
UInteger integer type
ULong integer type
UnhandledException event handler
Unicode encoding conversions
unmanaged memory
unsigned integers
unsigned variable types
 size 2nd
user controls 2nd 3rd 4th 5th
Users field
Using statement
UTF7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validation of numbers in strings
value types
values
vbNewLine constant 2nd
version numbers
 automatic updating
video files
Visual Basic 2005
 compiler
Visual Basic 6.0
 obsolete graphics features 2nd 3rd
 string insertion
Visual Studio 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Authors
Tim Patrick is a software architect and developer with over 20 years of experience in designing and building custom
solutions. His very first computer program was written in BASIC. While he has used other programming languages over
the years, today he spends most of his time using a descendant of that same BASIC language: Visual Basic 2005. He is
a Microsoft Certified Solution Developer (MCSD). Tim's recent books include The Visual Basic .NET Style Guide (Pearson
Education) and the third edition of O'Reilly's Visual Basic 2005 in a Nutshell. He has also published many magazine
articles on topics related to Visual Basic development.

John Clark Craig has programmed in just about every version of the BASIC language available. He has authored over
a dozen books on Visual Basic and other programming topics praised for their utility and ease of use. During his career
as a software engineer, John has worked on several fascinating astronomical, energy, and environmental projects,
including several of the world's largest solar energy and wind-power production facilities. His current projects combine
the power of Visual Basic Express with microcontroller-based robotics inventions, bringing the power of Visual Basic to
an exciting new field of applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
When Visual Basic 1.0 was introduced in the early 1990s, it greatly simplified Windows application development. Visual
Basic 2005continues the tradition by providing a programmer-friendly environment in which you can write powerful
desktop, web-based, and mobile applications quickly and easily.

In this introductory chapter you'll see just how easy it is to write a variety of applications by developing a simple
application in three Visual Basicsupported flavors: a desktop application (" Windows Forms"), a console application, and
a web-based application ("Web Forms" via ASP.NET).

The three recipes in this chapter are meant to be read as a set. The first recipe, which focuses on Windows Forms,
includes additional background information concerning the logic of the application developed in all three recipes. Be
sure to read this recipe first.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.1. Creating a Windows Forms Application

Problem

You want to develop a Windows Forms application that converts between the Fahrenheit, Celsius, and kelvin temperature systems.

Solution

Sample code folder: Chapter 01\Forms Version

Create a Windows Forms application, and add the appropriate controls and logic.

Discussion

Start Visual Studio 2005, and then create a new project. The Start Page includes a link to do this, or you can use the File
Project menu command. The New Project dialog appears, as shown in Figure 1-1.

Figure 1-1. Visual Studio's New Project dialog

Each template listed in this dialog starts with the most basic and empty Visual Basic project and adds just enough source code and
configuration settings to get you started on the selected application type. You could choose the Blank Solution template and work your
way up to the functionality provided through the Windows Application template, but that's more than we need to accomplish right
now.

Select Visual Basic (or the Windows entry under Visual Basic) in the "Project types" field and Windows Application in the Templates
field, enter the name of your project in the Name field (let's call ours "FormConvertTemp"), and click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

field, enter the name of your project in the Name field (let's call ours "FormConvertTemp"), and click the OK button.

As Visual Studio works behind the scenes to configure the initial project features, let's take a few minutes to review some high school
science. The three temperature systems in this programFahrenheit, Celsius, and kelvinare often used to measure heat in the various
scientific disciplines:

In the Celsius (or Centigrade) scale, water freezes at 0°C and reaches its boiling point at 100°C. This makes it a pretty simple
measurement system, at least where water is concerned. Celsius is used as the common temperature measurement system in
most countries.

The Fahrenheit system uses the environment of its founder, Gabriel Fahrenheit, as its basis for measurement. 0°F, at the
lower end of the 0-to-100 scale, is rumored to be the coldest temperature that Fahrenheit measured near his home one
winter. The 100°F mark is based on his own body temperature. This system, used in America and a few other locations, is
especially convenient if you are a German scientist with a slight fever.

The kelvin system uses the same scale size as the Celsius system, but places 0K at absolute zero, the theoretical temperature
at which all super-quantum molecular activity ceases. 0K is equivalent to-273.15°C, and all other temperatures on the kelvin
scale are converted to Celsius through a simple adjustment of that same 273.15°value. Kelvin is one of the seven base SI
(Système International d'Unités) units of measure and is used in scientific work.

The ability to convert between the different systems is important, not only for international relations, but also for health considerations
("Mom, I'm too sick to go to school today; I have a temperature of 310.15K!").

By now, Visual Studio should have completed its work and presented you with the initial project form (Figure 1-2).

Figure 1-2. Your project's initial form

The form you see represents the initial main form of your application. It is part of a project, a collection of files usually tied to a single
target, such as an application, a dynamic-link library, or some other output. In Windows Forms projects, the target is an executable
file (with an EXE file extension) that contains a compiled .NET application. All of the files in your project are listed in the Solution
Explorer, one of the standard tool windows in Visual Studio (Figure 1-3).

The top edge of the Solution Explorer includes a set of toolbar buttons that help you "explore the solution." The most interesting of
these buttons is the second from left, the Show All Files button. Clicking this button toggles the view of files included in your project.
Most of the files included in your application are hidden from view by default. Visual Studio does an amazing amount of work behind
the scenes, and most of this work is stored in hidden project files. Most of these files contain code automatically generated by Visual
Studio as you design your program. A few of these files, such as ApplicationEvents.vb, do contain code that you can update manually,
but most of your development time will focus on the files that are always displayed.

Figure 1-3. The Visual Studio Solution Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. The Visual Studio Solution Explorer

The main area of the form is its design surface, on which you place (or "draw") controls. The Toolbox (Figure 1-4) contains the
controls that you can add to your form; it's just one of the many "tool windows" available within Visual Studio. If it's not already
displayed, open the Toolbox now through the View Toolbox menu command.

Figure 1-4. Partial view of the Visual Studio Toolbox

The selection of controls included in the Toolbox varies based on the active project and window. Beyond the default controls, several
third parties offer enhanced controls for use in your projects. Once installed, these controls also appear in the Toolbox.

Each form or control has a default configuration, as determined by the developer of the control. You can alter this configuration by
changing the active form's or control's properties through the Properties window (Figure 1-5). If it is not already in view, display the
Properties window with the View Properties Window menu command.

Figure 1-5. Partial view of the Properties window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The properties for the active item are pretty easy to adjust: select the form or control you want to modify, select a property in the
Properties window based on the property name in the left column, and use the mouse or keyboard to modify its value in the right
column. Some properties can be expanded into distinct sub-properties using the plus sign (+) to the left of the property name. And
while most properties accept simple text values, others have mouse-friendly drop-down editors.

Before adding controls to our form, let's configure the properties of the form itself. Using the Properties window, set the form's
properties as shown in Table 1-1. This table lists only those properties that deviate from their default settings.

Table 1-1. Application form property changes
Property name New setting

(Name) ConvertForm

FormBorderStyle FixedSingle

MaximizeBox False

MinimizeBox False

StartPosition CenterScreen

Text Convert Temperatures

Now let's add the controls to the form. This project will use seven controls:

Three RadioButton controls to select the source temperature system

Three TextBox controls for entering and displaying temperatures

One Button control to initiate the conversion

Use the Toolbox to select and add controls to the form. Add a control either by double-clicking on the control in the Toolbox or by
selecting the control in the Toolbox and then "drawing" it on the surface of the form using the mouse. Go ahead and add the three
RadioButton controls, three TextBox controls, and one Button control, and arrange them so that your form resembles Figure 1-6
also want to resize the form to visually fit the contained controls.

Figure 1-6. Project form with included controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some of the properties in these controls also need to be adjusted. Use the values in Table 1-2 to guide you through the property
updates.

Table 1-2. Custom property settings for each control
Control Property name New setting

RadioButton1 (Name) SourceFahrenheit

 Checked true

 Text &Fahrenheit

RadioButton2 (Name) SourceCelsius

 Text &Celsius

RadioButton3 (Name) SourceKelvin

 Text &kelvin

TextBox1 (Name) ValueFahrenheit

TextBox2 (Name) ValueCelsius

TextBox3 (Name) ValueKelvin

Button (Name) ConvertTemperature

 Text Convert

The "&" character added to some of the properties sets the keyboard shortcut for that control so that the user can activate it with the
Alt+key keyboard sequence.

There are two more tasks to perform on the form itself before we start writing code, both destined to make the form easier to use.
The first is to allow the Enter or Return key to act like a click on the ConvertTemperature button. This is done by setting one of the
form's properties: AcceptButton. Setting this property to the name of a valid controlin this case, the ConvertTemperature button
controlenables this keyboard action. Go ahead and set the form's AcceptButton property now.

The second user-friendly update involves setting the " tab order" of the controls on the form. The Tab key allows the user to move
from one form control to another, but the movement may look somewhat random to the user unless you specifically declare the order.
To set the tab order, first make sure that the formand not one of its contained controlsis the active object in the designer window.
Then select the View Tab Order menu command. A small number appears next to each control. To readjust the tab order, click
the controls in the order you want them to appear (Figure 1-7). You can also set the tab order by altering the TabIndex property of each
control, but the mouse method is generally quicker.

Figure 1-7. Project form with tab order set for each control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you are finished, select the View Tab Order menu command once more (or press the Escape key) to return to standard
editing.

Now it's time to program! All of the code for this application will appear in the ConvertTemperature button's Click event procedure, which
you can access by double-clicking on the ConvertTemperature button itself. Visual Studio switches to a code editor with the following event
procedure template ready to use:

 Public Class ConvertForm
 Private Sub ConvertTemperature_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ConvertTemperature.Click

 End Sub
 End Class

Add the following code to the Click event procedure body. It determines the source temperature type, checks for valid input, and then
performs the conversion:

 ' ----- Convert between Fahrenheit, Celsius, and kelvin.
 On Error Resume Next

 If (SourceFahrenheit.Checked = True) Then
 ' ----- Convert from Fahrenheit to other types.
 If (IsNumeric(ValueFahrenheit.Text) = True) Then
 ' ----- F->C, F->K.
 ValueCelsius.Text = _
 (Val(ValueFahrenheit.Text) - 32) / 1.8
 ValueKelvin.Text = _
 ((Val(ValueFahrenheit.Text) - 32) / 1.8) + 273.15
 Else
 ' ----- Invalid data.
 ValueCelsius.Text = "Error"
 ValueKelvin.Text = "Error"
 End If
 ElseIf (SourceCelsius.Checked = True) Then
 ' ----- Convert from Celsius to other types.
 If (IsNumeric(ValueCelsius.Text) = True) Then
 ' ----- C->F, C->K.
 ValueFahrenheit.Text = _
 (Val(ValueCelsius.Text) * 1.8) + 32
 ValueKelvin.Text = Val(ValueCelsius.Text) + 273.15
 Else
 ' ----- Invalid data.
 ValueFahrenheit.Text = "Error"
 ValueKelvin.Text = "Error"
 End If
 Else
 ' ----- Convert from kelvin to other types.
 If (IsNumeric(ValueKelvin.Text) = True) Then
 ' ----- K->F, K->C.
 ValueFahrenheit.Text = _
 ((Val(ValueKelvin.Text) - 273.15) * 1.8) + 32
 ValueCelsius.Text = Val(ValueKelvin.Text) - 273.15
 Else
 ' ----- Invalid data.
 ValueFahrenheit.Text = "Error"
 ValueCelsius.Text = "Error"
 End If
 End If

The program is now ready to use in all weather conditions.

Although this program is pure .NET through and through, the only .NET code we witnessed was through the event handler. The call to
the ConvertTemperature_ Click event happens indirectly in the code; there is no line of source code, at least in your code, that makes a
direct call to the event handler.

When the user clicks on the ConvertTemperature button, the low-level device driver for the mouse inserts mouse-down and mouse-up
events into the global Windows input-processing queue. The device driver doesn't know anything about the various windows displayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

events into the global Windows input-processing queue. The device driver doesn't know anything about the various windows displayed
on-screen or about .NET; it reports only that a mouse event occurred at a specific X and Y position on the screen. The Windows
operating system uses this location to determine which window or control was clicked. Once that's determined, it sends relevant
messages to the message queue of the application that owns the clicked window. The application notifies the clicked control that the
user has, in fact, clicked that control. Finally, the code within the .NET control issues a RaiseEvent statement, which triggers a call to the
ConvertTemperature_Click event handler.

That's a lot of steps between your finger and the event handler. Fortunately, you don't have to handle all of those steps yourself. The
relevant logic already exists in Windows and in .NET; you just have to write the event handler and connect it to the specific event
through the handler's Handles keyword (which Visual Basic 2005generates for you):

 Private Sub ConvertTemperature_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ConvertTemperature.Click

The rest of the code in the application is composed of standard logic and calculations that you might find in code from any
programming language: If conditional statements, assignment statements, and expression processing with operators such as the
multiplication operator (*).

See Also

The other recipes in this chapter demonstrate how to implement the same program, using different types of interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.2. Creating a Console Application

Problem

You want to develop a Console application that converts between the Fahrenheit, Celsius, and kelvin temperature
systems.

Solution

Sample code folder: Chapter 01\ Console Version

Create a Windows Console application, and add logic to perform all the calculations based on the user's input. First,
read through Recipe 1.1 for background information on using Visual Studio and on converting between the various
temperature systems.

Discussion

Start Visual Studio 2005, and then use the File New Project menu command to create a new project. Select the
Windows project type, and then select the Console Application template. Click OK to create the new project. Since a
console application doesn't have a special user interface, Visual Studio simply displays the default code block for the
new project:

Module Module1
 Sub Main()

 End Sub
 End Module

There are a few different ways to rename the module. If you only want to change the name in the code, just replace
the word "Module1" with something like "Convert-Temperature":

 Module ConvertTemperature

Unfortunately, this requires you to make a change to the project's properties. Before the change, Visual Studio planned
to start the program from the Sub Main routine in the Module1 module. But since you changed the name, there is no longer
a Module1 for Visual Studio to use.

To modify the properties, select the Project ConsoleApplication1 Properties menu command, or double-click on the
My Project item in the Solution Explorer panel. When the Project Properties window appears, the Application tab in that
window should already be active. To change the starting code for the program, select "ConvertTemperature" from the
"Startup object" field. Then close the Project Properties window, and return to the code.

If you want to avoid all of this unpleasantness, rename the module's filename instead of its name in the code. To do
this, right-click the Module1.vb file in the Solution Explorer, choose the Rename command from the shortcut menu that
appears, and give it a new name such as ConvertTemperature.vb. (Don't forget the .vb extension.) Visual Studio will
change the module name as well and fix up all the other loose connections.

All of the conversion code will go in the Sub Main routine:

 Module ConvertTemperature
 Sub Main()
 ' ----- The program starts here.
 Dim userInput As String
 Dim sourceType As String

 On Error Resume Next

 ' ----- Display general instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Console.WriteLine("Instructions:" & vbCrLf & _
 "To convert temperature, enter a starting " & _
 "temperature, followed" & vbCrLf & _
 "by one of the following letters:" & vbCrLf & _
 " F = Fahrenheit" & vbCrLf & _
 " C = Celsius" & vbCrLf & _
 " K = kelvin" & vbCrLf & _
 "Enter a blank line to exit." & vbCrLf)

 ' ----- The program continues until the user
 ' enters a blank line.
 Do While True
 ' ----- Prompt the user.

Console.WriteLine("Enter a source temperature.")
 Console.Write("> ")
 userInput = Console.ReadLine()

 ' ----- A blank line exits the application.
 If (Trim(userInput) = "") Then Exit Do

 ' ----- Determine the source type.
 userInput = UCase(userInput)
 If (InStr(userInput, "F") > 0) Then
 ' ----- Start with Fahrenheit.
 sourceType = "F"
 userInput = Replace(userInput, "F", "")
 ElseIf (InStr(userInput, "C") > 0) Then
 ' ----- Start with Celsius.
 sourceType = "C"
 userInput = Replace(userInput, "C", "")
 ElseIf (InStr(userInput, "K") > 0) Then
 ' ----- Start with kelvin.
 sourceType = "K"
 userInput = Replace(userInput, "K", "")
 Else
 ' ----- Invalid entry.
 Console.WriteLine("Invalid input: " & _
 userInput & vbCrLf)
 Continue Do
 End If

 ' ----- Check for a valid temperature.
 userInput = Trim(userInput)
 If (IsNumeric(userInput) = False) Then

Console.WriteLine("Invalid number: " & _
 userInput & vbCrLf)
 Continue Do
 End If

 ' ----- Time to convert.
 If (sourceType = "F") Then
 ' ----- Convert from Fahrenheit to other types.

Console.WriteLine(" Fahrenheit: " & userInput)
 Console.WriteLine(" Celsius: " & _
 (Val(userInput) - 32) / 1.8)
 Console.WriteLine(" kelvin: " & _
 ((Val(userInput) - 32) / 1.8) + 273.15)
 ElseIf (sourceType = "C") Then
 ' ----- Convert from Celsius to other types.
 Console.WriteLine(" Fahrenheit: " & _
 (Val(userInput) * 1.8) + 32)
 Console.WriteLine(" Celsius: " & userInput)
 Console.WriteLine(" kelvin: " & _
 Val(userInput) + 273.15)
 Else
 ' ----- Convert from kelvin to other types.
 Console.WriteLine(" Fahrenheit: " & _
 ((Val(userInput) - 273.15) * 1.8) + 32)
 Console.WriteLine(" Celsius: " & _
 Val(userInput) - 273.15)
 Console.WriteLine(" kelvin: " & userInput)
 End If
 Loop
 End
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Module

Running the program opens up a command window. You will immediately be prompted to enter a source temperature.
The program continues to convert values until it detects a blank line for input. Here is a typical short session:

 Instructions:
 To convert temperature, enter a starting temperature, followed
 by one of the following letters:
 F = Fahrenheit
 C = Celsius
 K = kelvin
 Enter a blank line to exit.

 Enter a source temperature.
 > 37c
 Fahrenheit: 98.6
 Celsius: 37
 kelvin: 310.15
 Enter a source temperature.
 >

Console applications bring back memories of those pre-Windows days when the 80-by-24-character console display was
the primary user interface mechanism on the IBM PC platform. Text input and output, and maybe some simple
character-based graphics and color, were all the visual glitz that a programmer could use.

Console applications in .NET use that same basic text-presentation system as their primary interface, but they also
include the full power of the .NET libraries. For the actual user interaction, the Console object takes center stage. It
includes features that let you display text on the console (Write(), WriteLine()), retrieve user input (Read(), ReadKey(),
ReadLine()), and manipulate the console window in other useful ways.

The temperature conversion program uses the Console object and some basic temperature formulas within its core
processing loop. First, it gets a line of input from the user and stores it as a string:

 userInput = Console.ReadLine()

The input must be a valid number, plus the letter F, C, or K. The letter can appear anywhere in the number: 37C is the
same as C37 is the same as 3C7. Once the program has extracted the numeric temperature and its source system, it
performs the conversion; it then outputs the results using the Console.WriteLine() method.

See Also

The recipes in this chapter should be read together to gain a full understanding of general .NET application development
concepts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 1.3. Creating an ASP.NET Web Forms Application

Problem

You want to develop a Web Forms application in ASP.NET that converts between the Fahrenheit, Celsius, and kelvin temperature
systems.

Solution

Sample code folder: Chapter 01\Web Version

Create a new Web Forms application, and use ASP.NET development tools and coding methods to craft your application. First, read
through Recipe 1.1 for background information on using Visual Studio and on converting between the various temperature systems.

Discussion

Start Visual Studio 2005, and then create a new web site (not a "New Project"). You can use either the Create Web Site link on the
Start Page or the File New Web Site menu command. The New Web Site dialog appears, as shown in Figure 1-8.

Figure 1-8. Visual Studio's New Web Site dialog

Make sure that ASP.NET Web Site is selected in the list of templates, choose File System for the location type, enter the new directory
name (or just use the default, although we're going to use "WebConvertTemp" as the final directory component), naturally select
Visual Basic as the programming language, and then click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic as the programming language, and then click the OK button.

Visual Studio does a little work and then presents you with a blank page. This is a web page document on which you will place your
various web display elements. By default, it acts like a word processing document, in which added elements flow left to right, top to
bottom. You can opt to place elements at specific locations, but we'll stick with the default placement mode for this program.

If it's not already in view, display the Toolbox through the View Toolbox menu command. No doubt you've already seen the
Toolbox used in Windows Forms applications. The tools displayed now are similar, although they are for specific use by ASP.NET
applications only.

As with Windows Forms applications, Visual Studio presents the user interface to you, secretly writing the code behind the scenes. The
generated code in Windows Forms is all Visual Basic code; you can write an entire Windows Forms application in Notepad using only
Visual Basic statements. ASP.NET applications use Visual Basic for core logic and "code behind" event handlers, but the user interface
is defined through an HTML/XML mix. You can modify this HTML yourself (click on the Source button at the bottom of the web page
window to see the HTML generated so far) and have the changes reflected in the user interface.

For this project, let's take things easy and simply use the Toolbox to add display elements. Make sure you are in Design view (instead
of HTML Markup/Source view). Type the following text into the web page document, and then press Enter:

 Convert Temperature

Add the following usage text below this, and press Enter again:

 Select the source temperature system, enter the value,
 and then click the Convert button.

The text is somewhat plain, so let's do a little formatting. Highlight the word "Convert" in the usage text, and press the Control-B key
combination to make the text bold, just as you would in most word processors.

I think the title line would also look better as a heading. Switch into HTML mode by clicking on the Source button at the bottom of the
page or selecting the View Markup menu command. You should see the following HTML code, or something pretty close to it:

 <%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" >
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 Convert Temperature

 Select the source temperature system, enter the value,
 and then click the Convert
 button.

 </div>
 </form>
 </body>
 </html>

If you've written HTML in the past, this should mostly look familiar. Modify the "Convert Temperature" line to include <h1>
level #1) tags around the text, removing the
 tag:

 <h1>Convert Temperature</h1>

Return to the user interface designer by clicking on the Design button at the bottom of the page or using the View Designer
menu command.

Next, we need to add a selector for the three different temperature systems. To add an instance of the RadioButtonList control to the end
of the web page, click at the bottom of the web page and then double-click on the RadioButtonList item in the Toolbox. A default single-
item list appears. This list includes a "task pane," as shown in Figure 1-9 (Visual Studio includes such "smart tags" and task panes for
many user interface elements). Click on the Edit Items link in this pop up.

Figure 1-9. Convenient features for user interface elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-9. Convenient features for user interface elements

Use the ListItem Collection Editor that appears to add each temperature system. Table 1-3 contains the data you need to enter your
selections. When you are done, close the ListItem Collection Editor window.

Table 1-3. Radio button list items
Member Text Value

0 Fahrenheit F

1 Celsius C

2 kelvin K

Since we'll be interacting with this radio button list in code, we need to give it a meaningful name. In the Properties window, set the
(ID) property to "SourceType."

Back in the web page designer, start a new line with the text "From Temperature:" and follow it with a TextBox control from the
Toolbox. Name the control (that is, set its (ID) field to) "SourceValue."

On yet another line, add a Button control, name it "ConvertNow," and set its Text property to "Convert." A click on this button is
destined to generate the converted temperatures.

That's it for the data-entry portion, though we still need a place to display the results. We'll use a simple table presentation. First, set
off the results visibly by adding a Horizontal Rule control. This is actually a standard HTML element, so you'll find it in the HTML section of
the Toolbox. After that, add a title that reads "Temperature Results" (add the <h1> tags if you wish).

Now add a table through the Layout Insert Table menu command. When the Insert Table form (Figure 1-10) prompts you for a
table size, specify three rows and two columns, and then click OK. When the table appears, enter the names of the three temperature
systems in the left-most cells: Fahrenheit, Celsius, and kelvin.

Figure 1-10. Inserting a new table on a web page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET table cells can include names, and we will use such names to update the right-most cells with converted temperature data.
As you click in each right-column cell, the Properties window displays the details for each related <td> element. Update the (
property of each cell to use the following cell names, from top to bottom: "ResultFahrenheit," "ResultCelsius," and "ResultKelvin."

Let's make one final change to the presentation. In Visual Studio's Properties window, select DOCUMENT from the list of objects at the
top of the panel. Modify the Title property, which currently contains "Untitled Page," to read "Convert Temperature" instead. This is the
title that appears in the browser's titlebar when running the application.

That's it for the user interface design. You should now have a web-page display similar to Figure 1-11.

Figure 1-11. A beautiful ASP.NET Web Forms application

Let's move on to the source code. Visual Studio has generated all of the HTML markup on our behalf, but we need to supply the
temperature conversion logic. Click on the View Code button in the Solution Explorer, or select the View Code menu command.
Although it's not much, Visual Studio wrote a little bit of this code, too:

 Partial Class _Default
 Inherits System.Web.UI.Page

 End Class

The only code we need to add is the event handler for the Convert button that performs the actual conversion. Add this code to the
project. You can double-click on the Convert button in the designer to have Visual Studio add the event handler template:

 Protected Sub ConvertNow_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ConvertNow.Click
 ' ----- The conversion occurs here.
 Dim origValue As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim origValue As Double

 If (IsNumeric(SourceValue.Text) = True) Then
 ' ----- The user supplied a number. Convert it.
 origValue = CDbl(SourceValue.Text)
 If (SourceType.SelectedValue = "F") Then
 ' ----- From Fahrenheit.
 ResultFahrenheit.Text = CStr(origValue)
 ResultCelsius.Text = CStr((origValue - 32) / 1.8)
 ResultKelvin.Text = CStr(((origValue - 32) / 1.8) + _
 273.15)
 ElseIf (SourceType.SelectedValue = "C") Then
 ' ----- From Celsius.
 ResultFahrenheit.Text = CStr((origValue * 1.8) + 32)
 ResultCelsius.Text = CStr(origValue)
 ResultKelvin.Text = CStr(origValue + 273.15)
 Else
 ' ----- From kelvin.
 ResultFahrenheit.Text = CStr(((origValue - 273.15) * _
 1.8) + 32)
 ResultCelsius.Text = CStr(origValue - 273.15)
 ResultKelvin.Text = CStr(origValue)
 End If
 Else
 ' ----- Unknown source value.
 ResultFahrenheit.Text = "???"
 ResultCelsius.Text = "???"
 ResultKelvin.Text = "???"
 End If
 End Sub

If you've already read the other recipes in this chapter, this code should look some-what familiar. It simply applies the standard
temperature-conversion formulas to the source number based on the type of source temperature selected, then puts the results in the
output display fields.

When you run this recipe, it properly converts temperatures but only when you click on the Convert
button directly. If you're like us, you want to reduce the number of keystrokes and mouse clicks you
need to use in any program. The program doesn't convert properly if you simply hit the Enter key from
the source temperature field, SourceValue. ASP.NET has a way to change this behavior. Add this event
handler to your application to enable conversion via the Enter key (or add the RegisterHiddenField()
statement to your Page_Load event if you already have that handler).

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ClientScript.RegisterHiddenField("_ _EVENTTARGET", _
 "ConvertNow")
 End Sub

It's hard to read, but there are two underscore characters before "EVENTTARGET."

The code you use to develop ASP.NET applications is not exactly the same as the code you use for desktop applications, but it's close.
Event handlers in ASP.NET look like event handlers in Windows Forms applications, although the timing of the events is a little
different. Functions that exist for calculation purposes only and that have no direct interaction with the user or the user interface may
be moved freely between Windows Forms and Web Forms applications, but some of the code is very much tied to the ASP.NET
programming model. Still, that's what you would expect given that half of a Web Forms application's user-interface code is written in
HTML instead of Visual Basic.

The HTML code that is included is a little nonstandard. Take a look at the HTML markup associated with the application (select View
 Markup when the designer is in view). Although there are the standard <body> and <table> tags throughout the page, there are

also some tags that begin with asp:, as in <asp:RadioButtonList>. Each tag represents a Web Forms Server Control and is directly tied to a
.NET Frameworkcoded class (a class you can instantiate and manipulate just like any other .NET class). The RadioButtonList class, for
instance, is found in the System.Web.UI.WebControls namespace, along with most of the other ASP.NET-specific controls.

When ASP.NET processes a web page with these embedded web controls, the control class emits standard HTML code in place of the
<asp:RadioButtonList> tag set.

Fortunately, you don't need to know how the internals of these classes work or exactly what kind of HTML they emit. You can simply
add the controls to your web page using drag-and-drop, and interact with each control through its events and properties. And that's
what we did here. We added a couple of controls to a form, adjusted their properties, and then responded to a single event. These
actions resulted in a complete web-based application. ASP.NET even adjusts the emitted HTML for the user based on the flavor of the
browser being used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browser being used.

See Also

The recipes in this chapter should be read together to gain a full understanding of general .NET application development concepts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Visual Basic Programming
Introduction

Recipe 1.1. Creating a Windows Forms Application

Recipe 1.2. Creating a Console Application

Recipe 1.3. Creating an ASP.NET Web Forms Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The recipes in this chapter provide routines for playing sound files and for displaying video clips and photos. One recipe
even demonstrates the "new" functionality of Visual Basic 2005 that commands your computer's internal speaker to
emit a system-dependent beep. (That takes us back a few years!) More advanced recipes let you process the JPEG
photos from your digital camera. No longer is C++ coding required to manipulate images with respectable speed. Visual
Basic programmers now have access to a full set of powerful multimedia-processing features built right into .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.1. Playing an Audio File

Problem

You want to play a sound clip file, a system sound, or a music file such as an MP3.

Solution

Several different objects and system utilities are available to play sound clips or media files. In this recipe we'll
demonstrate the use of:

My.Computer.Audio.Play() and SoundPlayer to play audio clip files such as WAV files

My.Computer.Audio. PlaySystemSound() to play operating-system-assigned sounds

Process.Start() to activate Windows Media Player to play MP3 and other media files

Discussion

The code required to play an audio sample is actually quite short. In most cases, a single line of code is all it takes to
play a sound. Visual Basic 2005's new My namespace provides a lot of new easy-to-use functionality. The
My.Computer.Audio.Play() method is a good example. Simply pass this method the name of an audio file and the play mode
that controls how the sound is played:

 My.Computer.Audio.Play("sample.wav", _
 AudioPlayMode.WaitToComplete)

The AudioPlayMode.WaitToComplete option causes the program to wait for the sound to complete before proceeding. The two
other members of this enumeration are Background (plays a sound once in the background) and BackgroundLoop (loops the
sound repeatedly in the background). To stop a background looping sound, issue this command:

 My.Computer.Audio.Stop()

Another way to play sounds is with a SoundPlayer class instance. This works a lot like the My.Computer.Audio features
because those features depend on the SoundPlayer class:

 Dim player As New SoundPlayer("sample.wav")
 player.
Play()

The SoundPlayer object provides quite a few properties and methods to control the playing of sound files, and you should
check these out if you need special functionality in your application. For example, the Stop() and Play() methods allow you
to pause and restart the sound in the middle of the content.

Windows includes several user-configured sounds for various system-level events. For example, when validating user-
entered data, you can play the system-assigned sound for Exclamation in coordination with a custom visual message to
inform the user of some issue with the input data:

 My.Computer.Audio.PlaySystemSound(SystemSounds.Exclamation)

Some sound formats are beyond the basic capabilities of the My.Computer.Audio features. To play these sounds, you can
defer to the default applications designated to play sound files with specific extensions. The following lines of code start
whatever program is currently assigned to play MP3 files, passing it the name of the MP3 file to be played. Often this
will start the Windows Media Player, but the user may have some other program configured to play such files. The
Process.Start() method tells the operating system to play the file using its current settings:

 Dim soundProgram As Process = Process.Start("sample.mp3")
 soundProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 soundProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.10. Getting JPEG Extended Information

Problem

You want to extract information from within the JPEG pictures your camera creates. You might want to do this, for
instance, to rename the pictures based on the date and time they were taken.

Solution

Sample code folder: Chapter 10\JPEGInfo

Use the GetPropertyItem() method of the Bitmap class to extract header information from a JPEG file.

Discussion

Each brand of camera seems to create and store different header information in the picture files it creates, so this
solution may or may not work for you. This recipe's code is generalized enough so that even though you might not have
documentation listing the properties by their access numbers, you can check this program's output to help determine
what information is available.

The GetJpgInformation() function listed here gets a list of all property IDs from the picture's bitmap, calls GetPropertyItem() for
each of these, and then formats the results into a string array as best it can, replacing some characters and zero bytes
as required to prevent string-handling problems:

 Public Shared Function GetJpgInformation(_
 ByVal whichFile As String) As String
 ' ----- Retrieve the properties of a JPEG file.
 Dim bytesPropertyID As Byte()
 Dim stringPropertyID As String
 Dim loadedImage As System.Drawing.Bitmap
 Dim propertyIDs() As Integer
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim scanProperty As Integer

 ' ----- Retrieve the image and its properties.
 loadedImage = New System.Drawing.Bitmap(whichFile)
 propertyIDs = loadedImage.PropertyIdList

 ' ----- Examine each property.
 For Each scanProperty In propertyIDs
 ' ----- Convert the property to a string format.
 bytesPropertyID = loadedImage.GetPropertyItem(_
 scanProperty).Value
 stringPropertyID = System.Text.Encoding.ASCII. _
 GetString(bytesPropertyID)

 ' ----- Only retain characters in the printable
 ' ASCII range.
 For counter = 0 To 255
 If counter < 32 Or counter > 127 Then
 If (stringPropertyID.IndexOf(Chr(counter)) _
 <> -1) Then
 stringPropertyID = Replace(stringPropertyID, _
 Chr(counter), "")
 End If
 End If
 Next counter

 ' ----- Display the property if it's reasonable.
 If (stringPropertyID.Length > 0) And _
 (stringPropertyID.Length < 70) Then
 result.Append(scanProperty.ToString)
 result.Append(": ")
 result.AppendLine(stringPropertyID)
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next scanProperty

 ' ----- Display the results.
 Return result.ToString
 End Function

 Public Shared Function GetString(_
 ByVal sourceBytes As Byte()) As String
 ' ----- Convert a byte array to a string, taking into
 ' account the terminating null character.
 Dim result As String

 result = System.Text.Encoding.ASCII.GetString(sourceBytes)
 If (result.EndsWith(vbNullChar) = True) Then _
 result = result.Substring(0, result.Length - 1)
 Return result
 End Function

Call the GetJpgInformation() function directly with the path to a valid JPEG file to view the properties of the file:

 MsgBox(ProcessJPEG.GetJpgInformation("sample.jpg"))

Figure 10-12 shows a sample of the output produced by this code.

Figure 10-12. The information stored in a JPEG file

As you can see from the output, not all data items are usable, or even recognizable as readable ASCII text. Your output
will probably vary depending on the camera or software used to create your image files. For your camera, you can use
the date and time stamps as shown to help rename your picture files for easy chronological storage and access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.11. Creating Thumbnails

Problem

You want to create good-quality thumbnail JPEG images from larger images. These smaller versions of larger pictures
are handy for web pages.

Solution

The CompressJPEG class presented in Recipe 10.9 provides an ideal solution for creating smaller thumbnail versions of
large JPEG pictures.

Discussion

Instead of setting the CompressJPEG object's SizePercent property to shrink the pictures to some unknown smaller size, set
the Height property to 100 to force the creation of compressed files exactly 100 pixels high. The width of each output
thumbnail picture will be automatically adjusted to retain the proportions of the original image. The default QualityPercent
value of 85 works just fine for these thumbnails:

 Dim imageThumb As New CompressJPEG

 imageThumb.Height = 100
 imageThumb.Load("sample.jpg")
 imageThumb.Save("sampleThumb.jpg")

The picture shown in Figure 10-13 is a 100-pixel-high copy of an original, and much larger, JPEG picture of a mountain
in the Grand Tetons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

Problem

You want to display a picture in a PictureBox on a form, but you aren't sure which size mode setting to use.

Figure 10-13. Thumbnails are easy to create at any chosen size and quality setting

Solution

Sample code folder: Chapter 10\StretchImage

The sample code in this recipe lets you interactively experiment with the display of a picture on a form to determine which size mode setting will work
best for your needs.

Discussion

The PictureBox control is ideal for displaying JPEG and other picture files. However, one of the property settings of the PictureBox
are displayed in a significant way, and having a clear means of visualizing how it affects the displayed images can help you plan your applications
better. The code presented here provides an easy way to see exactly how the SizeMode property works.

Create a new Windows Forms application. Add a PictureBox control to the form, and set its Dock property to Fill. This causes the
stretch to fill the client area of the form on which it resides. (The image displayed in the PictureBox won't necessarily stretch to fill the same areathat
depends on the SizeMode setting of the PictureBox.) Next, add the following code to the form's code template. The code toggles through the
settings each time you click on the PictureBox, letting you easily see and experiment with the various settings:

 Private Sub PictureBox1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PictureBox1.Click

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) Handles PictureBox1.Click
 ' ----- Toggle to the next size mode.
 Static displayState As PictureBoxSizeMode = 0

 ' ----- Move to the next state.
 If ([Enum].IsDefined(GetType(PictureBoxSizeMode), _
 CInt(displayState) + 1) = True) Then
 displayState += 1
 Else
 ' ----- Wrap to the first choice.
 displayState = 0
 End If

 ' ----- Update the display.
 PictureBox1.SizeMode = displayState
 Me.Text = "PictureBoxSizeMode." & displayState.ToString()
 End Sub

This code toggles through all available values of the PictureBoxSizeMode enumeration, the one used to set the size of a PictureBox
when starting the application, add the following code to the form's class:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 ' ----- Prompt for the initial file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 PictureBox1.Load(locateFile.FileName)
 Else
 ' ----- Exit the program.
 Me.Close()
 End If

 ' ----- Show the initial state.
 Me.Text = "PictureBoxSizeMode." & _
 PictureBox1.SizeMode.ToString()
 End Sub

Figures 10-14 and 10-18 show the display of a picture when SizeMode is set to StretchImage. This setting causes the image to distort horizontally and/or
vertically to fit the control, rather than retaining its original proportions.

Figure 10-14. The StretchImage setting distorts images to fit within the dimensions of a PictureBox

As you can see in Figure 10-15, with the Zoom setting, the picture retains its original proportionality. However, this can cause blank areas to appear
either on both sides of or above and below the image. The picture appears smaller than when it's stretched to fit the dimensions of the
least it's not distorted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

least it's not distorted.

Figure 10-15. The Zoom setting reduces an image's width or height to keep it within the PictureBox with
no distortion

In Figure 10-16, SizeMode is set to AutoSize, which means the PictureBox automatically resizes itself to show the entire picture at its full resolution. Because
the PictureBox is limited to the surface of the form, though, only the upper-left corner of the picture is seen here, and only by expanding the form to
great lengths will you begin to see the edge of the mountain in the bottom-right corner of the form. In this figure we only see blue sky and a little bit of
the mountain. You may also detect a small blurry bird image in the very corner.

Figure 10-17 shows the picture when SizeMode is set to CenterImage. The picture is once again shown full-scale, as when the mode was set to
in this case you see the very center of the large picture rather than its upper-left corner.

Figure 10-16. The AutoSize setting displays images at full size, even if they don't fit within the area
provided

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-17. CenterImage displays the center of the image in the center of the PictureBox at full size

Figure 10-18 show what happens after the demonstration program cycles through the settings.

Figure 10-18. The demonstration program cycles through the settings, returning to the original
StretchImage setting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each setting has its uses, and you should become familiar with the effects of each when displaying pictures or other graphics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.13. Scrolling Images

Problem

You want to display a picture with full resolution, but you want to let the user scroll around to see all parts of the picture.

Solution

Sample code folder: Chapter 10\ScrollImage

Store the picture in a PictureBox with its SizeMode property set to AutoSize, and place it on a form with its AutoScroll property set
to true.

Discussion

To see this demonstration in action, add a PictureBox to a form, set its SizeMode property to AutoSize, and set its Location property
to 0,0. Don't worry about its size; the AutoSize setting will take care of that. Change the form's AutoScroll property to true. Now
add the following code to the form's class, which loads a picture on startup:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 ' ----- Prompt for the initial file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 PictureBox1.Load(locateFile.FileName)
 Me.AutoScroll = True
 Else
 ' ----- Exit the program.
 Me.Close()
 End If
 End Sub

Run the program, and select a large picture. The scrollbars will automatically appear when needed, as shown in Figure 10-
19.

Figure 10-19. Implementing scrollbars to enable scrolling around large images

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.14. Merging Two or More Images

Problem

You want to blend two images together, with a variable strength for each, to create a ghost-like effect.

Solution

Sample code folder: Chapter 10\MergeImages

Use the GetPixel() method of the Bitmap class to process the pixels from matching locations in each of the original images,
and use the SetPixel() method to assign the resulting pixels to a third bitmap to create the merged image.

Discussion

This recipe processes the pixels from two identically sized images and creates a third. The action is slow enough that
intermediate results are displayed after each row of pixels is processed. To try it out, add the following code to the
form's class. The code loads two image files (in Form1_Load()) and does the actual processing (DoMergeImages()):

 Private SourceImages(1) As Bitmap

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Prepare the form.
 Dim counter As Integer
 Dim locateFile As New OpenFileDialog

 ' ----- Display the form immediately.
 Me.Show()

 ' ----- Prompt for each file.
 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 For counter = 0 To 1
 ' ----- Prompt for the initial file.
 If (locateFile.ShowDialog() <> _
 Windows.Forms.DialogResult.OK) Then
 ' ----- End the program.
 Me.Close()
 Return
 End If

 ' ----- Load in the picture.
 SourceImages(counter) = New Bitmap(locateFile.FileName)
 Next counter

 ' ----- Start the processing.
 DoMergeImages()
 End Sub

 Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 ' ----- Exit the program. This is needed just in case the
 ' user closed the form in the middle of the merge.
 End
 End Sub

 Private Sub DoMergeImages()
 ' ----- Merge two images.
 Dim workBitmap As Bitmap
 Dim across As Integer
 Dim down As Integer
 Dim firstColor As Color
 Dim secondColor As Color
 Dim mixedColor As Color
 Dim redPart As Integer
 Dim greenPart As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim canvas As Graphics

 ' ----- Use one of the images as the base.
 workBitmap = SourceImages(0)
 canvas = Graphics.FromImage(workBitmap)

 ' ----- Process each row of the image.
 For down = 0 To SourceImages(0).Height - 1
 ' ----- Process each column of the image.
 For across = 0 To SourceImages(0).Width - 1
 Try
 ' ----- Get the colors of a specific pixel.
 firstColor = _
 SourceImages(0).GetPixel(across, down)
 secondColor = _
 SourceImages(1).GetPixel(across, down)
 Catch
 ' ----- If an error occurs, the images must have
 ' been mismatched in size.
 Continue For
 End Try

 ' ----- Build a blended color from the parts.
 redPart = (CInt(firstColor.R) + secondColor.R) \ 2
 greenPart = (CInt(firstColor.G) + secondColor.G) \ 2
 bluePart = (CInt(firstColor.B) + secondColor.B) \ 2
 mixedColor = Color.FromArgb(redPart, greenPart, _
 bluePart)
 ' ----- Update the image.
 workBitmap.SetPixel(across, down, mixedColor)
 Next across

 ' ----- Refresh the display so the user knows
 ' something is happening.
 MergedImage.Image = workBitmap
 Application.DoEvents()
 Next down
 canvas.Dispose()
 End Sub

Figure 10-20 shows the results of blending together images of a goose and the Grand Teton mountains. The code
blends the pixels equally by adding together the color values and dividing by two to find their averages. You could easily
modify this averaging to place more weight on the pixels from one image or the other. Another creative experiment
might be to average together only one or more of the color channels (red, green, or blue).

Figure 10-20. Blending two pictures for a ghostly effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.15. Using Resource Images

Problem

You want to manipulate images on your forms at runtime without having to load them from accompanying files shipped with your application.

Solution

Add the images to the application's resources, then load them into controls or process them as needed by accessing them directly from the
object.

Discussion

Adding pictures, icons, strings, or other items to your application's resources is very straightforward and easy to do in Visual Basic 2005. This recipe
shows the steps involved for adding images, but the process easily extends to other types of resources.

Resource items are maintained at design time by double-clicking My Project in the Solution Explorer list and selecting the Resources tab.
shows an example set of image resources as they appear in the Resources maintenance dialog.

Figure 10-21. Resource-maintenance tasks are carried out on the Resources tab of the Project
Properties window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new picture to the collection of images, click the Add Resources pull-down menu, open the New Image submenu, and select JPEG Image, as
shown in Figure 10-22.

Figure 10-22. Adding new images to your resources

At runtime, the images stored in your application's resources are referenced by name. For example, the following code loads either the Goose or the
Teton image into PictureBox1, based on the current state of the static Boolean variable showTheGoose:

 Private Sub ShowImage(ByVal useTheGoose As Boolean)
 ' ----- Goose or Teton: hard choice!
 If (useTheGoose = True) Then
 PictureBox1.Image = My.Resources.Goose
 Else
 PictureBox1.Image = My.Resources.Teton
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.16. Capturing an Image of the Screen

Problem

You want to capture a copy of the screen for processing in your Visual Basic 2005 application as a bitmap image,
without resorting to any external applications.

Solution

Sample code folder: Chapter 10 \CaptureScreen

Use the GetScreen() function in the ScreenGrab module presented in this recipe.

Discussion

There's no straightforward way to grab the contents of the screen using only functionality within the .NET Framework,
but it is easy to call the appropriate Windows API functions to get the job done. The ScreenGrab module shown here
wraps all the required function declarations and calls in an easy-to-use package.

Create a new Windows Forms application. Add a new module to the project named ScreenGrab.vb, and use the
following code for its definition:

 Module ScreenGrab
 Private Declare Function CreateDC _
 Lib "GDI32" Alias "CreateDCA" (_
 ByVal lpDriverName As String, _
 ByVal lpDeviceName As String, _
 ByVal lpOutput As String, _
 ByVal lpInitData As String _
) As IntPtr

 Private Declare Function CreateCompatibleDC _
 Lib "GDI32" (ByVal hDC As IntPtr) As IntPtr

 Private Declare Function CreateCompatibleBitmap _
 Lib "GDI32" (_
 ByVal hDC As IntPtr, _
 ByVal nWidth As Integer, _
 ByVal nHeight As Integer _
) As IntPtr

 Private Declare Function SelectObject _
 Lib "GDI32" (_
 ByVal hDC As IntPtr, _
 ByVal hObject As IntPtr _
) As IntPtr

 Private Declare Function BitBlt _
 Lib "GDI32" (_
 ByVal srchDC As IntPtr, _
 ByVal srcX As Integer, _
 ByVal srcY As Integer, _
 ByVal srcW As Integer, _
 ByVal srcH As Integer, _
 ByVal desthDC As IntPtr, _
 ByVal destX As Integer, _
 ByVal destY As Integer, _
 ByVal op As Integer _
) As Integer

 Private Declare Function DeleteDC _
 Lib "GDI32" (ByVal hDC As IntPtr) As Integer

 Private Declare Function DeleteObject _
 Lib "GDI32" (ByVal hObj As IntPtr) As Integer

 Const SRCCOPY As Integer = &HCC0020

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Function GetScreen() As Bitmap
 ' ----- Take a picture of the screen.
 Dim screenHandle As IntPtr
 Dim canvasHandle As IntPtr
 Dim screenBitmap As IntPtr
 Dim previousObject As IntPtr
 Dim resultCode As Integer
 Dim screenShot As Bitmap

 ' ----- Get a reference to the display.
 screenHandle = CreateDC("DISPLAY", "", "", "")

 ' ----- Make a canvas that is just like the
 ' display's canvas.
 canvasHandle = CreateCompatibleDC(screenHandle)

 ' ----- Create a bitmap that will hold the screen image.
 screenBitmap = CreateCompatibleBitmap(screenHandle, _
 Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height)

 ' ----- Copy the screen image to the canvas/bitmap.
 previousObject = SelectObject(canvasHandle, _
 screenBitmap)
 resultCode = BitBlt(canvasHandle, 0, 0, _
 Screen.PrimaryScreen.Bounds.Width, _
 Screen.PrimaryScreen.Bounds.Height, _
 screenHandle, 0, 0, SRCCOPY)
 screenBitmap = SelectObject(canvasHandle, _
 previousObject)

 ' ----- Finished with the canvases.
 resultCode = DeleteDC(screenHandle)
 resultCode = DeleteDC(canvasHandle)

 ' ----- Copy image to a .NET bitmap.
 screenShot = Image.FromHbitmap(screenBitmap)
 DeleteObject(screenBitmap)

 ' ----- Finished.
 Return screenShot
 End Function
 End Module

Now return to Form1, and add a Button control named ActCapture. Set its Text property to Capture Now. Next, add a CheckBox
control named IncludeThisForm, set its Checked property to true, and set its Text property to Include This Form. Finally, add a
PictureBox control named ScreenSummary, set its SizeMode property to StretchImage, and set its Size property to 200,150. Figure
10-23 shows the form and its controls.

Figure 10-23. The controls on the screen capture sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following code to Form1's class template:

 Private Sub ActCapture_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActCapture.Click
 ' ----- Copy the screen.
 ScreenSummary.Image = GetScreen()
 End Sub

 Private Sub IncludeThisForm_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles IncludeThisForm.CheckedChanged
 ' ----- Adjust the opacity as needed.
 If (IncludeThisForm.Checked = True) Then
 Me.Opacity = 1.0
 Else
 Me.Opacity = 0.99
 End If
 End Sub

It turns out that the standard method of copying the screen ignores semitransparent forms, so setting the form's
opacity to anything below 1.0 makes it invisible to the screen capture process.

Run the program, and click the ActCapture button. Figure 10-24 shows the form in use.

Figure 10-24. A capture of the entire screen with Visual Studio prominently
displayed

Details of the API functions included in the ScreenGrab module and their use are beyond the scope of this book, but there
are plenty of resources on the Internet if you want to find out how they work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.17. Getting Display Dimensions

Problem

You want to determine the dimensions of the user's screen at runtime, including both the entire screen and just the
working area that doesn't include the task bar. Also, you want to determine the number of monitors on the user's
system, the screen dimensions of each, and which screen is currently active.

Solution

Sample code folder: Chapter 10\ScreenInfo

Access this information from the Screen object, which includes an array of objects, one for each screen on the system.

Discussion

The following code extracts information from each Screen object returned by the Screen.AllScreens property, then formats
the various data items returned for easy review:

 Dim result As New System.Text.StringBuilder
 Dim scanScreen As Screen

 ' ----- Include some summary data.
 result.Append("Number of screens: ")
 result.AppendLine(Screen.AllScreens.Length.ToString)
 result.AppendLine()

 ' ----- Process each installed screen.
 For Each scanScreen In Screen.AllScreens
 result.AppendLine("Device Name: " & _
 GetTerminatedString(scanScreen.DeviceName))

 result.AppendLine("Bounds: " & _
 scanScreen.Bounds.ToString)

 result.AppendLine("Working Area: " & _
 scanScreen.WorkingArea.ToString)

 result.AppendLine("Is Primary: " & _
 scanScreen.Primary.ToString)

 result.AppendLine()
 Next scanScreen

 MsgBox(result.ToString())

The device name returned by the scanScreen.DeviceName property may include an old C-style terminating null character
(ASCII 0), so you must to add a custom function to extract just the part you need:

 Private Function GetTerminatedString(_
 ByVal sourceString As String) As String
 ' ----- Return all text of a string up to the first
 ' null character.
 Dim index As Integer

 index = sourceString.IndexOf(vbNullChar)
 If (index > -1) Then
 Return sourceString.Substring(0, index)
 Else
 Return sourceString
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As shown in Figure 10-25, the system used for testing this code had only one monitor, with a screen resolution of 1680
x 1050 pixels and a working area of 1680 x 990 pixels (the working area is slightly smaller because the task bar was
showing along the bottom edge of the screen).

Figure 10-25. The Screen.AllScreens array provides information about any
monitors on your system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.18. Speeding Up Image Processing

Problem

You want to implement some image-processing algorithms, and you want the operations to be reasonably fast.

Solution

Sample code folder: Chapter 10\LockImage

Use the InteropServices.Marshal.LockBits() method to prevent the operating system from moving the bitmap data around in
memory. This greatly speeds up the program's access to the pixel data. This recipe presents a LockImage class that
wraps the LockBits() functionality for easy use.

Discussion

The LockImage class presented in this recipe and the remaining recipes in this chapter contains several image-processing
methods. (The full LockImage class is listed in Recipe 10.21.) The goal is to provide enough examples to enable you to
design your own image-processing functionality.

The processing function demonstrated in this recipe is Mirror(), a method of the LockImage class that flips an image left and
right. To see how it works, create a form with a PictureBox on it that has its Dock property set to Fill and its SizeMode
property set to StretchImage. Load a picture into its Image property, and add the following code to its Click event:

 Private Sub PictureBox1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PictureBox1.Click
 ' ----- Mirror-image the bitmap.
 Dim mirrorIt As New LockImage
 mirrorIt.Image = PictureBox1.Image
 mirrorIt.Mirror()
 PictureBox1.Image = mirrorIt.Image
 End Sub

When you click on the picture, this procedure creates an instance of the LockImage class, copies the PictureBox's image to
it, calls the Mirror() method to process the image, and then copies the image back into the PictureBox. This is the pattern
for using any of the processing methods of the LockImage class.

Now let's look at the portions of the LockImage class that relate to the mirroring processs.

First, you must import the requisite namespaces. InteropServices.Marshal is required for its LockBits() method. The class
defines a few class-level variables:

 Imports System.Drawing.Imaging
 Imports System.Runtime.InteropServices.Marshal

 Public Class LockImage
 Private BaseImage As Bitmap
 Private BaseImageWidth As Integer
 Private BaseImageHeight As Integer
 Private TotalPixels As Integer
 Private ImageAddress As IntPtr
 Private ImageContent As BitmapData
 Private ImageBuffer() As Integer

The Image property stores or retrieves the bitmap image to be locked and processed:

 Public Property Image() As Bitmap
 ' ----- User access to the relevant image.
 Get
 Return BaseImage
 End Get
 Set(ByVal Value As Bitmap)
 Dim canvas As Graphics
 BaseImage = New Bitmap(Value.Width, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BaseImage = New Bitmap(Value.Width, _
 Value.Height, Value.PixelFormat)
 canvas = Graphics.FromImage(BaseImage)
 canvas.DrawImage(Value, 0, 0, _
 Value.Width, Value.Height)
 canvas.Dispose()
 End Set
 End Property

The LockTheImage() method provides the important core functionality of this class; with it, you can lock down the bits of
the bitmap and present the pixel data in an integer array for efficient processing. All pixel processing in the methods
you create, such as the Mirror() method presented later, will process in place the integer pixel data stored in ImageBuffer().

Each 32-bit integer in ImageBuffer() represents a single pixel. The most significant byte is alpha, the opacity value. The
next most significant byte is for red, then green, and the least significant byte is for blue. Each of these four values
ranges from 0 to 255. Two other variables of importance for your image-processing methods are BaseImageWidth and
BaseImageHeight. The ImageBuffer() array is one-dimensional, so these two values are required to determine the rectangular
layout of the pixels:

 Private Sub LockTheImage()
 ' ----- Lock the image in memory. How much room
 ' do we need?
 BaseImageWidth = BaseImage.Width
 BaseImageHeight = BaseImage.Height
 TotalPixels = BaseImageWidth * BaseImageHeight

 ' ----- Create a stable (locked) area in memory. It
 ' will store 32-bit color images.
 ReDim ImageBuffer(TotalPixels - 1)
 ImageContent = BaseImage.LockBits(_
 New Rectangle(0, 0, BaseImageWidth, _
 BaseImageHeight), ImageLockMode.ReadWrite, _
 PixelFormat.Format32bppRgb)
 ImageAddress = ImageContent.Scan0

 ' ----- Associate the buffer and the locked memory.
 Copy(ImageAddress, ImageBuffer, 0, TotalPixels)
 End Sub

The Mirror() method works by locating the first and last pixels of each row of the image, then swapping the pixels at
those locations. The next and previous pixels in the row are swapped next, and this continues until all pixels in the row
have been swapped. Here is the code for the Mirror() method:

 Public Sub Mirror()
 ' ----- Make a left-to-right mirror image.
 Dim pixelIndex1 As Integer
 Dim pixelIndex2 As Integer
 Dim holdPixel As Integer
 Dim down As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each row of the image.
 For down = 0 To BaseImageHeight - 1
 ' ----- Process each column,
up to halfway across.
 pixelIndex1 = down * BaseImageWidth
 pixelIndex2 = pixelIndex1 + BaseImageWidth - 1
 Do While pixelIndex1 < pixelIndex2
 ' ----- Swap two pixels.
 holdPixel = ImageBuffer(pixelIndex1)
 ImageBuffer(pixelIndex1) = _
 ImageBuffer(pixelIndex2)
 ImageBuffer(pixelIndex2) = holdPixel
 pixelIndex1 += 1
 pixelIndex2 -= 1
 Loop
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The UnlockTheImage() method restores the processed pixel data in ImageBuffer() to the bitmap, ready to be retrieved by the
code that uses the class:

 Private Sub UnlockTheImage()
 ' ----- Unlock the memory area.
 Copy(ImageBuffer, 0, ImageAddress, TotalPixels)
 Image.UnlockBits(ImageContent)
 ImageContent = Nothing
 ReDim ImageBuffer(0)
 End Sub

Figure 10-26 shows a sample picture just before being flipped; Figure 10-27 shows the picture immediately afterwards.

Figure 10-26. An image about to be flipped horizontally

See Also

Recipe 10.21 includes the full source code for the LockImage class.

Figure 10-27. The same image after the Mirror() method has worked its magic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.19. Converting an Image to Grayscale

Problem

You'd like to convert a picture from color to grayscale from within a Visual Basic 2005 application.

Solution

Sample code folder: Chapter 10\LockImage

Use the MakeGray() method of the LockImage class, described in Recipe 10.18.

Discussion

The MakeGray() method of the LockImage class (whose full source code is listed in Recipe 10.21) provides a working
example that processes the individual color bytes stored in the class's ImageBuffer() integer array.

Here's the code for the MakeGray() procedure:

 Public Sub MakeGray()
 ' ----- Make a grayscale version of the image.
 Dim pixelIndex As Integer
 Dim onePixel As Integer
 Dim alphaPart As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

All processing methods added to the LockImage class should call the private method LockTheImage() as the first step and
the corresponding UnlockTheImage() method as the last step.

The following two nested loops process all pixels in all rows of the image. pixelIndex walks the pixels across each row and
then down the image:

 ' ----- Process each pixel in the grid.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Locate the pixel's color.
 pixelIndex = down * BaseImageWidth + across

Each pixel is split up into its parts if the processing requires access to them. The Mirror() method processed the pixels as
whole units, but to compute grayscale values, you need to access the individual color components of each pixel:

 onePixel = ImageBuffer(pixelIndex)

 ' ----- Extract the color values.
 alphaPart = (onePixel >> 24) And &HFF
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF

The next lines convert the color information to grayscale using an algorithm that averages using the two maximum and
minimum values for red, green, and blue. There are other algorithms available for converting to grayscale, and you
might want to experiment with others to best meet your requirements. All three colors are assigned the same byte
value, which is what forces all pixels to become some shade of gray:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value, which is what forces all pixels to become some shade of gray:

 ' ----- Get the general color intensity.
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 onePixel = (maxColor + minColor) \ 2

 ' ----- Use a common intensity for all colors.
 bluePart = onePixel
 greenPart = onePixel
 redPart = onePixel

 ' ----- Set the pixel to the new color. Retain
 ' the original alpha channel.
 ImageBuffer(pixelIndex) = (alphaPart << 24) + _
 (redPart << 16) + (greenPart << 8) + bluePart
 Next across
 Next down

As a last step, it's important to call UnlockTheImage() when the processing of ImageBuffer() is complete:

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

In this example, 256 shades of gray are created. If you want to convert to 16 shades, or even just 2(black-and-white
monochrome), simply round off onePixel to the nearest shade values desired. For example, for two-level black-and-white
images all values of onePixel less than 128 are rounded to zero, and all other byte values are set to 255.

Figure 10-28 shows the results of converting the original color image to grayscale. Although the difference can be hard
to discern in the grayscale figures used in this book, it can easily be seen in Figure 10-29, where a two-level grayscale
(or monochrome black-and-white) conversion was used. This result was obtained by inserting the following lines to
adjust onePixel just before it is assigned to the red, blue, and green variables:

 If (onePixel < 128) Then
 onePixel = 0
 Else
 onePixel = 255
 End If

Figure 10-28. A color picture converted to grayscale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-29. The same image with a 2-level grayscale (black-and-white
monochrome) conversion performed instead of a 256-level conversion

See Also

Recipe 10.18 describes the LockImage class used in this recipe. Recipe 10.21 includes the full source code for the
LockImage class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.2. Displaying Image Files

Problem

You want to display pictures, possibly selected by the user, in your Visual Basic 2005 application.

Solution

Sample code folder: Chapter 10\ShowJPG

The OpenFileDialog class provides a standard way to let the user select any file, such as a picture to be displayed, and the
PictureBox control gives you a great way to display pictures.

Discussion

It's easy to use an OpenFileDialog control on a form to let the user select a file from anywhere in the system. Create a new
Windows Forms application, add a PictureBox control to Form1 named SelectedPicture, and add a Button control named
ActLocate. Set the PictureBox's SizeMode property to StretchImage. Add the following code to the button's Click event handler:

 Private Sub ActLocate_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActLocate.Click
 ' ----- Let the user choose a picture.
 Dim locateFile As New OpenFileDialog

 locateFile.Filter = "JPG files (*.jpg)|*.jpg"
 locateFile.Multiselect = False
 If (locateFile.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- Show the selected picture.
 SelectedPicture.Load(locateFile.FileName)
 End If
 End Sub

Figure 10-1 shows the OpenFileDialog during a typical session in which the user is about to select a JPEG picture file.

If a JPEG file is selected, it is loaded into the form's PictureBox for display. It takes only one command to load the picture:

 SelectedPicture.Load(locateFile.FileName)

Figure 10-2 shows the picture as displayed in the PictureBox on the form.

Figure 10-1. Using the OpenFileDialog control to select a picture file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Displaying pictures on a form with a PictureBox control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.20. Performing Edge Detection on an Image

Problem

You want to perform edge detection on a picture.

Solution

Sample code folder: Chapter 10\LockImage

Use the EdgeDetect() method of the LockImage class, described in Recipe 10.18.

Discussion

Edge detection is a good example of the complex image-processing routines that can be created within the framework
of the LockImage class. The EdgeDetect() method processes the pixels in an image by converting them to grayscale and
then using a filter matrix to process neighboring pixels. The matrix processing detects rapid rates of change in the
pixels and assigns a darker shade of gray where pixels are changing the fastest. Figure 10-30 shows the edges of the
goose after this method has done its work.

Figure 10-30. Edge detection using the LockImage class's EdgeDetect() method

The EdgeDetect() method is a little more involved than the image-processing methods discussed in the previous two
recipes. Two 3 x 3 matrices, edgeX and edgeY, are created to process neighboring pixels for X and Y changes. This
processing requires that the pixels be accessed multiple times. It is easier to set up the algorithm by first converting all
pixels to shades of gray and storing them in a two-dimensional array. Even with these extra processing steps, the
algorithm runs very fast in the .NET Framework.

Here's the code for the EdgeDetect() procedure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the code for the EdgeDetect() procedure:

 Public Sub EdgeDetect()
 ' ----- Enhance the edges within the image.
 Dim onePixel As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer
 Dim pixArray(,) As Integer
 Dim target(,) As Integer
 Dim sumX As Integer
 Dim sumY As Integer
 Dim useSum As Integer
 Dim squareX As Integer
 Dim squareY As Integer

 ' ----- Define the Sobel Edge Detector gradient
 ' matrices.
 Dim edgeX(,) = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}
 Dim edgeY(,) = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}}

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Convert the 1D pixel array to 2D for ease
 ' of processing.
 ReDim pixArray(BaseImageHeight - 1, BaseImageWidth - 1)
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Convert each pixel to a grayscale value.
 onePixel = ImageBuffer(down * BaseImageWidth + _
 across)
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 pixArray(down, across) = (maxColor + minColor) \ 2
 Next across
 Next down

 ' ----- Results will be placed in a second pixel array.
 ReDim target(BaseImageHeight - 1, BaseImageWidth - 1)

 ' ----- Process for
edge detection.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Calculate the edge factor.
 sumX = 0
 sumY = 0
 If (down = 0) Or _
 (down = (BaseImageHeight - 1)) Then
 ' ----- Ignore true
edges.
 useSum = 0
 ElseIf (across = 0) Or _
 (across = (BaseImageWidth - 1)) Then
 ' ---- Ignore true edges.
 useSum = 0
 Else
 ' ----- Summarize a small square around
 ' the point.
 For squareX = -1 To 1
 For squareY = -1 To 1
 sumX += pixArray(down + squareY, _
 across + squareX) * _
 edgeX(squareX + 1, squareY + 1)
 sumY += pixArray(down + squareY, _
 across + squareX) * _
 edgeY(squareX + 1, squareY + 1)
 Next squareY
 Next squareX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Force the value into the 0 to 255 range.
 useSum = Math.Abs(sumX) + Math.Abs(sumY)
 If (useSum < 0) Then useSum = 0
 If (useSum > 255) Then useSum = 255
 useSum = 255 - useSum

 ' ----- Save it as a grayscale value in
 ' the pixel.
 target(down, across) = useSum + _
 (useSum << 8) + (useSum << 16)
 End If
 Next across
 Next down

 ' ----- Move results back into the locked pixels array.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ImageBuffer(down * BaseImageWidth + across) = _
 target(down, across)
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

See Also

Recipe 10.18 describes the LockImage class used in this recipe. Recipe 10.21 includes the full source code for the
LockImage class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.21. Full Listing of the LockImage Class
Sample code folder: Chapter 10\LockImage

This recipe contains the full code for the LockImage class described in Recipes 10.18, 10.19 through 10.20:

 Imports System.Drawing.Imaging
 Imports System.Runtime.InteropServices.Marshal

 Public Class LockImage
 Private BaseImage As Bitmap
 Private BaseImageWidth As Integer
 Private BaseImageHeight As Integer
 Private TotalPixels As Integer
 Private ImageAddress As IntPtr
 Private ImageContent As BitmapData
 Private ImageBuffer() As Integer

 Public Property Image() As Bitmap
 ' ----- User access to the relevant image.
 Get
 Return BaseImage
 End Get
 Set(ByVal Value As Bitmap)
 Dim canvas As Graphics
 BaseImage = New Bitmap(Value.Width, _
 Value.Height, Value.PixelFormat)
 canvas = Graphics.FromImage(BaseImage)
 canvas.DrawImage(Value, 0, 0, _
 Value.Width, Value.Height)
 canvas.Dispose()
 End Set
 End Property

 Private Sub LockTheImage()
 ' ----- Lock the image in memory. How much room
 ' do we need?
 BaseImageWidth = BaseImage.Width
 BaseImageHeight = BaseImage.Height
 TotalPixels = BaseImageWidth * BaseImageHeight

 ' ----- Create a stable (locked) area in memory. It
 ' will store 32-bit color images.
 ReDim ImageBuffer(TotalPixels - 1)
 ImageContent = BaseImage.LockBits(_
 New Rectangle(0, 0, BaseImageWidth, _
 BaseImageHeight), ImageLockMode.ReadWrite, _
 PixelFormat.Format32bppRgb)
 ImageAddress = ImageContent.Scan0

 ' ----- Associate the buffer and the locked memory.
 Copy(ImageAddress, ImageBuffer, 0, TotalPixels)
 End Sub

 Private Sub UnlockTheImage()
 ' ----- Unlock the memory area.
 Copy(ImageBuffer, 0, ImageAddress, TotalPixels)
 Image.UnlockBits(ImageContent)
 ImageContent = Nothing
 ReDim ImageBuffer(0)
 End Sub

 Public Sub MakeGray()
 ' ----- Make a grayscale version of the image.
 Dim pixelIndex As Integer
 Dim onePixel As Integer
 Dim alphaPart As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim down As Integer
 Dim across As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each pixel in the grid.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Locate the pixel's color.
 pixelIndex = down * BaseImageWidth + across
 onePixel = ImageBuffer(pixelIndex)

 ' ----- Extract the color values.
 alphaPart = (onePixel >> 24) And &HFF
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF

 ' ----- Get the general color intensity.
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 onePixel = (maxColor + minColor) \ 2

 ' ----- Use a common intensity for all colors.
 bluePart = onePixel
 greenPart = onePixel
 redPart = onePixel

 ' ----- Set the pixel to the new color. Retain
 ' the original alpha channel.
 ImageBuffer(pixelIndex) = (alphaPart << 24) + _
 (redPart << 16) + (greenPart << 8) + bluePart
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

 Public Sub Mirror()
 ' ----- Make a left-to-right mirror image.
 Dim pixelIndex1 As Integer
 Dim pixelIndex2 As Integer
 Dim holdPixel As Integer
 Dim down As Integer

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Process each row of the image.
 For down = 0 To BaseImageHeight - 1
 ' ----- Process each column, up to halfway across.
 pixelIndex1 = down * BaseImageWidth
 pixelIndex2 = pixelIndex1 + BaseImageWidth - 1
 Do While pixelIndex1 < pixelIndex2
 ' ----- Swap two pixels.
 holdPixel = ImageBuffer(pixelIndex1)
 ImageBuffer(pixelIndex1) = _
 ImageBuffer(pixelIndex2)
 ImageBuffer(pixelIndex2) = holdPixel
 pixelIndex1 += 1
 pixelIndex2 -= 1
 Loop
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub

 Public Sub EdgeDetect()
 ' ----- Enhance the edges within the image.
 Dim onePixel As Integer
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim maxColor As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim maxColor As Integer
 Dim minColor As Integer
 Dim down As Integer
 Dim across As Integer
 Dim pixArray(,) As Integer
 Dim target(,) As Integer
 Dim sumX As Integer
 Dim sumY As Integer
 Dim useSum As Integer
 Dim squareX As Integer
 Dim squareY As Integer

 ' ----- Define the Sobel Edge Detector gradient
 ' matrices.
 Dim edgeX(,) = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}
 Dim edgeY(,) = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}}

 ' ----- Lock the image for speed.
 LockTheImage()

 ' ----- Convert the 1D pixel array to 2D for ease
 ' of processing.
 ReDim pixArray(BaseImageHeight - 1, BaseImageWidth - 1)
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Convert each pixel to a grayscale value.
 onePixel = ImageBuffer(down * BaseImageWidth + _
 across)
 redPart = (onePixel >> 16) And &HFF
 greenPart = (onePixel >> 8) And &HFF
 bluePart = onePixel And &HFF
 maxColor = Math.Max(redPart, Math.Max(greenPart, _
 bluePart))
 minColor = Math.Min(redPart, Math.Min(greenPart, _
 bluePart))
 pixArray(down, across) = (maxColor + minColor) \ 2
 Next across
 Next down

 ' ----- Results will be placed in a second pixel array.
 ReDim target(BaseImageHeight - 1, BaseImageWidth - 1)

 ' ----- Process for edge detection.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ' ----- Calculate the edge factor.
 sumX = 0
 sumY = 0
 If (down = 0) Or _
 (down = (BaseImageHeight - 1)) Then
 ' ----- Ignore true edges.
 useSum = 0
 ElseIf (across = 0) Or _
 (across = (BaseImageWidth - 1)) Then
 ' ---- Ignore true edges.
 useSum = 0
 Else
 ' ----- Summarize a small square around
 ' the point.
 For squareX = -1 To 1
 For squareY = -1 To 1
 sumX += pixArray(down + squareY, _
 across + squareX) * _
 edgeX(squareX + 1, squareY + 1)
 sumY += pixArray(down + squareY, _
 across + squareX) * _
 edgeY(squareX + 1, squareY + 1)
 Next squareY
 Next squareX

 ' ----- Force the value into the 0 to 255 range.
 useSum = Math.Abs(sumX) + Math.Abs(sumY)
 If (useSum < 0) Then useSum = 0
 If (useSum > 255) Then useSum = 255
 useSum = 255 - useSum

 ' ----- Save it as a grayscale value in
 ' the pixel.
 target(down, across) = useSum + _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 target(down, across) = useSum + _
 (useSum << 8) + (useSum << 16)
 End If
 Next across
 Next down

 ' ----- Move results back into the locked pixels array.
 For down = 0 To BaseImageHeight - 1
 For across = 0 To BaseImageWidth - 1
 ImageBuffer(down * BaseImageWidth + across) = _
 target(down, across)
 Next across
 Next down

 ' ----- Finished. Unlock the image.
 UnlockTheImage()
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.3. Playing a Video File

Problem

You want to play video clips from your Visual Basic 2005 application.

Solution

The Process.Start() method lets you automate the playing of video clips in a very reliable and standardized way. Figure 10-3 shows a
video run in Windows Media Player using this method.

Figure 10-3. You can launch Windows Media Player from your .NET app to play video clips

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The Process object lets you run an external application explicitly or implicitly: you can run an application and pass it a specific file to
open and run, or you can pass a file and let the operating system implicitly run the associated application based on the filename's
extension. This is a good way to play a video clipthe user's media player of choice is automatically launched to play the clip.

Another advantage of the Process object is its simplicity. The following two lines of code create an instance of the Process class, run a
shared method to load and start an AVI file, and wait for the media player to exit:

 Dim videoProgram As Process = Process.Start("sample.avi")
 videoProgram.WaitForExit()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.4. Making Your Computer Beep

Problem

You want to play a simple sound or sequence of tones based on frequency and duration using the built-in speaker on
your computer, rather than relying on the sound board or creating audio files specifically tailored for the purpose.

Solution

Sample code folder: Chapter 10\PlayTones

Visual Basic 2005 now provides a Console.Beep() method that plays a tone given frequency and duration parameters.

Discussion

You can use this command to create notification sounds from console applications, but you can also call this method
from any Windows application to create specialized effects.

The following PlayTones() subroutine plays a sequence of tones passed to it in the form of a Point array. This data structure
is ideal for the notes because each note is comprised of integer frequency and duration parameters (similar to the X and
Y values of each point):

 Public Sub PlayTones(ByVal toneArray() As Point)
 ' ----- Play a set of tones, one after another.
 Dim frequency As Integer
 Dim duration As Integer
 For Each tone As Point In toneArray
 frequency = tone.X
 duration = tone.Y
 Console.Beep(frequency, duration)
 Next tone
 End Sub

The following code creates a Point array to play a simple melody:

 Dim soundsAlien As Point() = { _
 New Point(932, 500), _
 New Point(1047, 500), _
 New Point(831, 500), _
 New Point(415, 500), _
 New Point(622, 900)}
 PlayTones(soundsAlien)

This may remind you of something each time you play it; something to do with mashed potatoes, perhaps…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.5. Creating an Animation Using Multiple Images

Problem

You want to add a simple animation to your application without resorting to complicated video techniques.

Solution

Sample code folder: Chapter 10\ ImageListAnim

There are several ways to create simple animations in your Visual Basic 2005 applications, and the next three recipes will show you three different
ways to do so. One straightforward and effective technique is to store bitmap images in an ImageList control, and then display them sequentially in a
PictureBox with each tick of a timer.

Discussion

An ImageList control holds multiple images in one spot in your application to use with other controls that require multiple images. For example, the
ListView, TreeView, Toolbar, and other controls all work hand in hand with an ImageList to display customized images on their surfaces. But you can use an
ImageList for other purposes, too, as this recipe shows.

The first step in creating an animation is to create or collect a sequence of images to be displayed. Figure 10-4 displays a collection of wind-tower
bitmaps with the turbine blades in rotated positions slightly shifted from one to the next.

Figure 10-4. A series of nearly identical images can be used to create a smooth-running animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the sample application for this recipe, an ImageList has been added to the main form, and its Images collection has been filled with the windmill
images (in a specific order). Figure 10-5 shows the image collection.

To display these images sequentially as an animation, add a PictureBox and a Timer control to the form:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw the next image on each tick.
 Static imageNumber As Integer
 imageNumber = (imageNumber + 1) Mod ImageList1.Images.Count
 PictureBox1.Image = ImageList1.Images(imageNumber)
 End Sub

The timer should be enabled, and its Interval property should be set to a number of milliseconds appropriate for the animation. In this case, 40
milliseconds worked well.

As soon as the form loads, the action starts. With each tick of the timer, the static variable imageNumber increments to point to the next image in the
ImageList control. The image is loaded, and the program continues until the Timer's next Tick event. Figure 10-6 shows one frame of the animation.

Figure 10-5. Adding images to an ImageList control

Figure 10-6. Displaying images sequentially in a PictureBox to create an animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-6. Displaying images sequentially in a PictureBox to create an animation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

Problem

You want to add a simple animation to your application based on code-drawn bitmaps, but without resorting to
complicated video techniques.

Solution

Sample code folder: Chapter 10\BitmapAnim

This recipe shows how to create an array of bitmaps in memory, fill them with graphic drawings that vary slightly from
one to the next, and then display them in sequence to create an animation.

Discussion

This recipe is very similar to the previous one, except that in this case, the images are stored in an array of bitmaps
rather than in an ImageList control. The results are very similar.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 50 and its
Enabled property to true. Now add the following code to the form's code template:

 Private StarImages(23) As Bitmap

 Private Sub SpinningStar_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Rebuild the images needed for the animation.
 Dim xCenter As Integer
 Dim yCenter As Integer
 Dim radius As Double
 Dim canvas As Graphics
 Dim counter As Integer
 Dim angle As Double
 Dim x1 As Single
 Dim y1 As Single
 Dim x2 As Single
 Dim y2 As Single
 Const RadPerDeg As Double = Math.PI / 180#

 ' ----- Perform some basic calculations.
 xCenter = Me.ClientSize.Width \ 2
 yCenter = Me.ClientSize.Height \ 2
 radius = IIf(Me.ClientSize.Width < Me.ClientSize.Height, _
 Me.ClientSize.Width, Me.ClientSize.Height) * 0.4

 ' ----- Remove the previous images.
 Array.Clear(StarImages, 0, StarImages.Length)
 For counter = 0 To StarImages.Length - 1
 StarImages(counter) = New Bitmap(_
 Me.ClientSize.Width, Me.ClientSize.Height)
 canvas = Graphics.FromImage(StarImages(counter))
 For angle = 0 To 360 Step 72
 x1 = xCenter + radius * _
 Math.Cos(RadPerDeg * (angle + counter * 3))
 y1 = yCenter + radius * _
 Math.Sin(RadPerDeg * (angle + counter * 3))
 x2 = xCenter + radius * _
 Math.Cos(RadPerDeg * (angle + counter * 3 + 144))
 y2 = yCenter + radius * _
 Math.Sin(RadPerDeg * (angle + counter * 3 + 144))
 canvas.DrawLine(SystemPens.ControlText, _
 x1, y1, x2, y2)
 Next angle
 canvas.Dispose()
 Next counter
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The code runs every time its form is resized, including once when the form first appears. The 24 bitmap images are
recreated nearly instantly, keeping up with the changing form size. Each bitmap is of a five-pointed star, and each star
image is rotated slightly from the previous one in the array.

A timer animates the star bitmaps using the 50-millisecond interval set earlier. Add the following code in the timer's Tick
event handler to display the next bitmap in the sequence, looping back to the start when the end of the array is
reached. The last star is drawn in a position almost rotated to match the first, providing continuously smooth animation:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw one of the star array elements.
 Dim canvas As Graphics
 Static imageNumber As Integer

 On Error Resume Next

 imageNumber = (imageNumber + 1) Mod StarImages.Length
 Try
 canvas = Me.CreateGraphics()
 canvas.Clear(Me.BackColor)
 canvas.DrawImage(StarImages(imageNumber), 0, 0)
 canvas.Dispose()
 End Try
 End Sub

The DrawImage() method of the form's Graphics object copies each bitmap onto the form's surface. For maximum
smoothness, check that the form's DoubleBuffered property is set to true.

A couple of frames of the rotating star are shown in Figures 10-7 and 10-8. Try resizing the form while the animation is
running; you'll see that the star itself resizes as you resize the form.

Figure 10-7. Each star bitmap is drawn with a slightly different rotation angle

Figure 10-8. Multiple bitmaps stored in an array can provide a smooth animation
effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

effect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.7. Creating an Animation by Drawing at Runtime

Problem

You want to add a simple animation to your application without resorting to complicated video techniques.

Solution

Sample code folder: Chapter 10\DrawAnim

A very direct but often effective technique is to simply draw updated images on a graphics surface with each tick of a
timer, as shown in this recipe.

Discussion

The following code handles the Tick event for a timer on a form. It redraws the face of the form at each tick. The current
position and direction of a block are maintained in form-level variables. The timer's Tick event handler updates those
variables so the block drifts around the form and bounces off the walls; the form's Paint event handler is where the
actual drawing of the block takes place. At the end of the timer's Tick event handler is a Refresh() command that causes
the form to redraw itself. That fires the Paint event, which redraws the block.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 10 and its
Enabled property to true. Now add the following code to the form's code template:

 Private UseX As Integer
 Private UseY As Integer
 Private MoveX As Integer
 Private MoveY As Integer
 Private Const BlockSize As Integer = 50

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Draw the next step in the animation.
 UseX += MoveX
 UseY += MoveY

 ' ----- Make adjustments for edge detection.
 If (UseX <= 0) Then MoveX = 1
 If (UseX >= (Me.ClientSize.Width - BlockSize)) Then _
 MoveX = -1
 If (UseY <= 0) Then MoveY = 1
 If (UseY >= (Me.ClientSize.Height - BlockSize)) Then _
 MoveY = -1

 ' ----- Redraw the image.
 Me.Refresh()
 End Sub

Private Sub Bounce_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the block.
 e.Graphics.FillRectangle(Brushes.Red, UseX, UseY, _
 BlockSize, BlockSize)
 e.Graphics.DrawRectangle(New Pen(Color.Blue, 5), _
 UseX, UseY, BlockSize, BlockSize)
 End Sub

Two rectangles are drawn, one to create a red square and the other to draw a 5-pixel-wide border around the square.
The current values for form-level variables UseX and UseY are used for the position at which to draw the squares. Be sure
to set the form's DoubleBuffered property to true for the smoothest effect. Figure 10-9 shows the square block as it drifts
towards the walls of the form.

Figure 10-9. The sketched square bounces off the walls smoothly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-9. The sketched square bounces off the walls smoothly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.8. Creating Animated Sprites

Problem

You want to create sprites, small graphics objects that display in front of a background and can detect collisions with
other sprites.

Solution

Sample code folder: Chapter 10\ Sprites

The Sprite class presented here provides a very simple but useful starting point for creating sprites as complicated as you
desire.

Discussion

The Sprite class exposes public properties for its bitmap, position, and velocity; a method for drawing itself on a graphics
surface; and a function that determines if another sprite is currently in collision with this one. This rudimentary sprite
class provides a good start at understanding how sprites work. You can add new functionality to enhance your sprites
as desired.

This class doesn't define exactly what the sprite will look like or even its size. It provides a public Bitmap property, which
the calling program can fill with any desired image. Likewise, the location and velocity properties are very flexible and
can take on any signed integer values. The calling program is responsible for setting these properties and for
determining when they might change. The Draw() method uses the velocity values to update the position values, which
minimizes the overhead in the calling program each time the sprite is redrawn.

Create a new Windows Forms application. Add a new class to the project named Sprite.vb, and use the following code
for its definition:

 Public Class Sprite
 Public SpriteImage As Bitmap
 Public X As Integer
 Public Y As Integer
 Public VelocityX As Integer
 Public VelocityY As Integer

 Public Sub Draw(ByVal g As Graphics)
 ' ----- Update the location.
 X += VelocityX
 Y += VelocityY

 ' ----- Draw the sprite.
 g.DrawImage(SpriteImage, X, Y)
 End Sub

 Public Function Collision(ByVal targetSprite As Sprite) _
 As Boolean
 ' ----- See if two sprites overlap each other.
 On Error Resume Next

 Dim s1Left As Integer = X
 Dim s1Top As Integer = Y
 Dim s1Right As Integer = s1Left + SpriteImage.Width
 Dim s1Bottom As Integer = s1Top + SpriteImage.Height
 Dim s2Left As Integer = targetSprite.X
 Dim s2Top As Integer = targetSprite.Y
 Dim s2Right As Integer = s2Left + _
 targetSprite.SpriteImage.Width
 Dim s2Bottom As Integer = s2Top + _
 targetSprite.SpriteImage.Height

 ' ----- Compare the positions.
 If (s1Right < s2Left) Then Return False
 If (s1Bottom < s2Top) Then Return False
 If (s1Left > s2Right) Then Return False
 If (s1Top > s2Bottom) Then Return False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (s1Top > s2Bottom) Then Return False

 ' ----- No collision.
 Return True
 End Function
 End Class

There are a lot of ways you can enhance this Sprite class. For example, you can add code to the Draw() method to create
and maintain a bitmap image within the sprite object, perhaps creating a unique Sprite class for each type of sprite
image. The collision-detection code shown here simply looks for overlapping rectangular areas; that is, if any parts of
the bitmaps for the two sprites are touching, they are in collision. However, you might want to make the collision
detection more sophisticated. For example, the code added next uses sprites with transparent corners, yet these
transparent corners still count as collision areas. An enhanced version of collision detection might let the sprites overlap
in the transparent areas, "bouncing" only when the visible portions touch each other.

To demonstrate the Sprite class, the following code creates two instances, draws colored solid circles with transparent
backgrounds to define their bitmaps (that is, everything between the circle and the rectangular border is transparent),
and sets them in motion against a background comprised of stripes. This background lets you see clearly how the
transparent colors in the rectangular bitmaps make the sprites appear as solid circles only. These sprites and their
bitmaps are created just once, as the form loads.

Return to Form1, and set its DoubleBuffered property to TRue. Add a Timer named Timer1. Now add the following code to the
form's code template:

 Private MySprites(1) As Sprite

 Private Sub SpriteDemo_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Prepare the sprites.
 Dim canvas As Graphics

 ' ----- Create the first sprite.
 MySprites(0) = New Sprite
 MySprites(0).X = 37
 MySprites(0).Y = 37
 MySprites(0).VelocityX = 2
 MySprites(0).VelocityY = 1

MySprites(0).SpriteImage = New Bitmap(30, 30)
 canvas = Graphics.FromImage(
MySprites(0).SpriteImage)
 canvas.Clear(Color.FromArgb(0, 0, 0, 0))
 canvas.FillEllipse(Brushes.Red, 0, 0, 30, 30)
 canvas.Dispose()

 ' ----- Create the second sprite.
 MySprites(1) = New Sprite
 MySprites(1).X = 97
 MySprites(1).Y = 57
 MySprites(1).VelocityX = 1
 MySprites(1).VelocityY = -2
 MySprites(1).SpriteImage = New Bitmap(30, 30)
 canvas = Graphics.FromImage(MySprites(1).SpriteImage)
 canvas.Clear(Color.FromArgb(0, 0, 0, 0))
 canvas.FillEllipse(Brushes.Green, 0, 0, 30, 30)
 canvas.Dispose()

 ' ----- Start the action.
 Timer1.Interval = 10
 Timer1.Enabled = True
 End Sub

With each tick of the timer, the two sprites are each checked to see if they've come in contact with the walls of the
form. If so, their appropriate velocity properties are reversed to cause them to bounce back into the display area of the
form. A quick check is also made to see if the two sprites are in collision with each other. If they are, the velocity
properties for both sprites are reversed, causing them to bounce away from each other. This simple action provides a
starting point for creating more complex sprite interaction.

To see the animated sprites in action, add the following code to the form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see the animated sprites in action, add the following code to the form:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Trigger a redraw of the form.
 Me.Refresh()
 End Sub

 Private Sub SpriteDemo_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the sprites on a background.
 Dim counter As Integer

 ' ----- Redraw the striped background.
 For counter = 0 To Me.ClientSize.Width * 2 Step 20
 e.Graphics.DrawLine(New Pen(Color.LightBlue, 5), _
 counter, -5, counter - Me.ClientSize.Height - 10, _
 Me.ClientSize.Height + 5)
 Next counter

 ' ----- Draw the sprites.
 MySprites(0).Draw(e.Graphics)
 MySprites(1).Draw(e.Graphics)
 ' ----- See if the
sprites have hit each other.
 If
MySprites(0).Collision(MySprites(1)) Then
 MySprites(0).VelocityX = -MySprites(0).VelocityX
 MySprites(0).VelocityY = -MySprites(0).VelocityY
 MySprites(1).VelocityX = -MySprites(1).VelocityX
 MySprites(1).VelocityY = -MySprites(1).VelocityY
 End If

 ' ----- Move the sprites for the next update.
 For counter = 0 To 1
 If (MySprites(counter).X < 0) Then
 MySprites(counter).VelocityX = _
 Math.Abs(MySprites(counter).VelocityX)
 End If
 If (MySprites(counter).Y) < 0 Then
 MySprites(counter).VelocityY = _
 Math.Abs(MySprites(counter).VelocityY)
 End If
 If (MySprites(counter).X > _
 (Me.ClientSize.Width - 30)) Then
 MySprites(counter).VelocityX = _
 -Math.Abs(MySprites(counter).VelocityX)
 End If
 If (MySprites(counter).Y > _
 (Me.ClientSize.Height - 30)) Then
 MySprites(counter).VelocityY = _
 -Math.Abs(MySprites(counter).VelocityY)
 End If
 Next counter
 End Sub

Figure 10-10 shows the two sprites in action, just after bouncing away from each other. Notice that the bitmaps are
created outside each sprite object, so the colors are easily set to something unique. In fact, the bitmaps could easily be
made much more unique, with the sprites appearing in different sizes and shapes if desired.

Figure 10-10. These simple sprites drift over a background image, interacting with
each other and with the walls of the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 10.9. Resizing and Compressing JPEG Files

Problem

Your digital camera's pictures are great, but they're way too big to send attached to your family emails. You want to
shrink them to a manageable size, but you also want to control the compression so there's no compromise in the
resulting quality of the images.

Solution

Sample code folder: Chapter 10\CompressImages

The CompressJPEG class presented in this recipe wraps all the code required to compress JPEG pictures to any desired
absolute or relative size. It lets you set the compression factor so you get a good balance between file size and quality
in the resulting JPEG images.

Discussion

Before presenting the CompressJPEG class itself, let's see how it's called. The following code shows how a large picture
named Family.jpg is compressed to 25 percent of its starting size using a compression-factor setting of 70 percent. A
CompressJPEG object is created, and its SizePercent and QualityPercent properties are set to 25 and 70, respectively. The Load()
method loads the original JPEG image, and the Save() method then saves the compressed and resized image to a new
JPEG file:

 Dim imageConverter As New CompressJPEG
 imageConverter.SizePercent = 25
 imageConverter.QualityPercent = 70
 imageConverter.Load("Family.jpg")
 imageConverter.Save("SmallerFamily.jpg")

Both the SizePercent and QualityPercent properties affect the final number of bytes in the output file, and it's important to
understand the difference between these two settings. SizePercent refers to the physical dimensions of the image; that is,
how many pixels wide and high it will be after compression. JPEG compression is not a lossless compression technique,
and the QualityPercent setting controls how much of the original information content of the picture is retained. A low
setting results in graininess and blockiness in the image, whereas a high value for this setting retains the detail and
quality of the original image. Typically, a setting of around 75 to 85 provides good compression with little or no
noticeable loss of image quality. If you don't set the QualityPercent property, it defaults to a very reasonable value of 85. If
you don't set the SizePercent property, the output image retains the same dimensions as the original.

The following code is for the CompressJPEG class itself. In addition to the properties and methods described so far, there
are two more properties you might find handy: instead of setting SizePercent, which resizes the picture to a percentage of
its original size, you can set the Width or Height properties to define the compressed file's dimensions. If you set one of
these properties, the other is calculated to retain the proportions of the original image. Here's the code for the
CompressJPEG class:

 Imports System.Drawing.Imaging

 Public Class CompressJPEG
 Private SourceImage As Image
 Private UseQualityPercent As Double
 Private UseSizePercent As Double
 Private UseWidth As Integer
 Private UseHeight As Integer

 Public Sub Load(ByVal filePath As String)
 ' ----- Assign the user-specified file.
 SourceImage = Image.FromFile(filePath)
 End Sub

 Public Sub Save(ByVal outputFile As String)
 ' ----- Save the file, making adjustments as requested.
 Dim wide As Integer
 Dim tall As Integer
 Dim newImage As Bitmap
 Dim canvas As Graphics
 Dim codecs() As ImageCodecInfo
 Dim jpegCodec As ImageCodecInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim jpegCodec As ImageCodecInfo
 Dim scanCodec As ImageCodecInfo
 Dim qualityParam As EncoderParameters

 ' ----- Don't bother if there is no image.
 If IsNothing(SourceImage) = True Then Return

 ' ----- Use default values if needed.
 If UseQualityPercent = 0 Then UseQualityPercent = 85

 ' ----- Calculate the new dimensions.
 If (UseWidth <> 0) And (UseHeight = 0) Then
 ' ----- Proportional to the width.
 wide = UseWidth
 tall = CInt(UseWidth * _
 SourceImage.Height / SourceImage.Width)
 ElseIf (UseWidth = 0) And (UseHeight <> 0) Then
 ' ----- Proportional to the height.
 wide = CInt(UseHeight * _
 SourceImage.Width / SourceImage.Height)
 tall = UseHeight
 ElseIf (UseWidth <> 0) And (UseHeight <> 0) Then
 ' ----- User-specified size.
 wide = UseWidth
 tall = UseHeight
 ElseIf (UseSizePercent <> 0) Then
 ' ----- Percent scale.
 wide = CInt(SourceImage.Width * _
 UseSizePercent / 100)
 tall = CInt(SourceImage.Height * _
 UseSizePercent / 100)
 Else
 ' ----- Retain the size.
 wide = SourceImage.Width
 tall = SourceImage.Height
 End If

 ' ----- Redraw the image to the new size.
 newImage = New Bitmap(wide, tall)
 canvas = Graphics.FromImage(newImage)
 canvas.DrawImage(SourceImage, 0, 0, wide, tall)
 canvas.Dispose()

 ' ----- Locate the processor for JPEG images.
 codecs = ImageCodecInfo.GetImageEncoders
 jpegCodec = codecs(0)
 qualityParam = New EncoderParameters
 For Each scanCodec In codecs
 If (scanCodec.MimeType = "image/jpeg") Then
 ' ----- Found the one we're looking for.
 jpegCodec = scanCodec
 Exit For
 End If
 Next scanCodec

 ' ----- Prepare the quality reduction.
 qualityParam.Param(0) = New EncoderParameter(_
 Encoder.Quality, CInt(UseQualityPercent))

 ' ----- Adjust
and save the new image in one command.
 newImage.Save(
outputFile, jpegCodec, qualityParam)
 SourceImage = Nothing
 End Sub

 Public Property QualityPercent() As Double
 Get
 Return UseQualityPercent
 End Get
 Set(ByVal Value As Double)
 Select Case Value
 Case Is < 1
 UseQualityPercent = 1
 Case Is > 100
 UseQualityPercent = 100
 Case Else
 UseQualityPercent = Value
 End Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Select
 End Set
 End Property

 Public Property SizePercent() As Double
 Get
 Return UseSizePercent
 End Get
 Set(ByVal Value As Double)
 Select Case Value
 Case Is < 1
 UseSizePercent = 1
 Case Is > 400
 UseSizePercent = 400
 Case Else
 UseSizePercent = Value
 End Select
 End Set
 End Property

 Public Property Width() As Integer
 Get
 If (UseWidth > 0) Then
 Return UseWidth
 Else
 If (SourceImage.Width > 0) Then
 Return CInt(SourceImage.Width * _
 UseSizePercent / 100)
 End If
 End If
 End Get
 Set(ByVal Value As Integer)
 UseWidth = Value
 End Set
 End Property

 Public Property Height() As Integer
 Get
 Return UseHeight
 End Get
 Set(ByVal Value As Integer)
 UseHeight = Value
 End Set
 End Property
 End Class

Figure 10-11 shows an image after compression from the original, much larger file. This compressed file is less than 19
KB in size, reduced from an original of over 1.25 MB!

Figure 10-11. Compressed and reduced images can be made much smaller,
without noticeable loss of quality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Multimedia
Introduction

Recipe 10.1. Playing an Audio File

Recipe 10.2. Displaying Image Files

Recipe 10.3. Playing a Video File

Recipe 10.4. Making Your Computer Beep

Recipe 10.5. Creating an Animation Using Multiple Images

Recipe 10.6. Creating an Animation by Generating Multiple Bitmaps

Recipe 10.7. Creating an Animation by Drawing at Runtime

Recipe 10.8. Creating Animated Sprites

Recipe 10.9. Resizing and Compressing JPEG Files

Recipe 10.10. Getting JPEG Extended Information

Recipe 10.11. Creating Thumbnails

Recipe 10.12. Displaying Images While Controlling Stretching and Sizing

Recipe 10.13. Scrolling Images

Recipe 10.14. Merging Two or More Images

Recipe 10.15. Using Resource Images

Recipe 10.16. Capturing an Image of the Screen

Recipe 10.17. Getting Display Dimensions

Recipe 10.18. Speeding Up Image Processing

Recipe 10.19. Converting an Image to Grayscale

Recipe 10.20. Performing Edge Detection on an Image

Recipe 10.21. Full Listing of the LockImage Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
If there is one thing the typical business computer user needs more than anything else, it's reports. Any readers who
have worked in the IS or IT department of a large organization can quickly attest to that. And reports mean printing,
and printing means pain. At least, that's what I've always found. Certainly, there are many third-party reporting tools
available, such as the version of Crystal Reports included with Visual Studio. But these "banded" reports don't always
meet your needs. Sometimes you need to print out some text or graphics formatted in unique and custom ways.

Fortunately, the printing tools included with .NET are powerful, easy to use, anddare I say itfun. All of the text and
graphics tools you use to update the display with .NET's GDI+ library can be leveraged for printing purposes. The
printing commands aren't just similar to those used for screen updates; they're actually the same commands. (Chapter
9 includes many examples that use the graphics tools included with GDI+, so such examples won't be replicated in this
chapter.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.1. Enumerating Printers

Problem

You want to access a list of the printers available to the current Windows user.

Solution

The "printing" section of GDI+, the .NET drawing system, includes a list of the installed printers. Use the following code
to display the names of each:

 For Each printerName As String In _
 System.Drawing.Printing.PrinterSettings.InstalledPrinters
 MsgBox(printerName)
 Next printerName

Discussion

An early beta version of Visual Basic 2005 did include a My. Printers collection, but it was removed before the final
release. But that's okay, because .NET supplies printer information through other .NET classes. The System.Drawing.
Printing.PrinterSettings.InstalledPrinters collection (of strings) lists the printers attached to the local workstation.

If you need to get a list of all printers available on the local network and not just installed on the local workstation, you
can access the information through the Windows Management Instrumentation (WMI) features installed with .NET. By
default, the WMI library is not included in new .NET projects, so you must add a reference to the library yourself. In the
Project Properties window, select the References tab, and use the Add button to add a reference to
System.Management.dll to the project. Now use the following code to list all network printers:

 Dim printerQuery As Management.ManagementObjectSearcher
 Dim queryResults As Management.ManagementObjectCollection
 Dim onePrinter As Management.ManagementObject

 printerQuery = New Management.ManagementObjectSearcher(_
 "SELECT * FROM Win32_Printer")
 queryResults = printerQuery.Get()
 For Each onePrinter In queryResults
 MsgBox(onePrinter!Name)
 Next onePrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.2. Sending "Raw" Data to a Printer

Problem

You need to send unprocessed data directly to a printer or print spooler, without processing by a printer driver.

Solution

Sample code folder: Chapter 11\RawPrinterData

The .NET Framework does not include direct support for this type of "raw" printing, so create your own class that uses
various Win32 API calls.

Discussion

The .NET Framework does not include support for "raw" printing, the ability to send your own custom data directly to
the printer. Some printers, such as barcode and receipt printers, accept data with embedded "escape sequences" that
control the output on the printer. Many of these older printers do not include Windows drivers and can only be used in
raw mode.

To print to these printers from .NET, you must use a DLL commonly used in Visual Basic 6.0 development to send raw
data and perform other low-level operations on printers. The winspool.drv library includes several useful printer-specific
functions, including functions that let you open a channel to the printer directly and send raw data. Because this library
is not a .NET library, you have to coax .NET through the communication process using the various options to the
DllImport attribute that you attach to each library-call definition.

The following code references the relevant public functions in this library and uses them to connect to the printer and
send the requested data:

 Imports System.Runtime.InteropServices

 Public Class RawPrinter
 ' ----- Define the data type that supplies basic
 ' print job information to the spooler.
 <StructLayout(LayoutKind.Sequential, _
 CharSet:=CharSet.Unicode)> _
 Public Structure DOCINFO
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDocName As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pOutputFile As String
 <MarshalAs(UnmanagedType.LPWStr)> _
 Public pDataType As String
 End Structure

 ' ----- Define interfaces to the functions supplied
 ' in the DLL.
 <DllImport("winspool.drv", EntryPoint:="OpenPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function OpenPrinter(_
 ByVal printerName As String, ByRef hPrinter As IntPtr, _
 ByVal printerDefaults As Integer) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="ClosePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function ClosePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="StartDocPrinterW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function StartDocPrinter(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Shared Function StartDocPrinter(_
 ByVal hPrinter As IntPtr, ByVal level As Integer, _
 ByRef documentInfo As DOCINFO) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="EndDocPrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function EndDocPrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="StartPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function StartPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="EndPagePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function EndPagePrinter(_
 ByVal hPrinter As IntPtr) As Boolean
 End Function

 <DllImport("winspool.drv", EntryPoint:="WritePrinter", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
 Public Shared Function WritePrinter(_
 ByVal hPrinter As IntPtr, ByVal buffer As IntPtr, _
 ByVal bufferLength As Integer, _
 ByRef bytesWritten As Integer) As Boolean
 End Function

 Public Shared Function PrintRaw(_
 ByVal printerName As String, _
 ByVal origString As String) As Boolean
 ' ----- Send a string of
raw data to
the printer.
 Dim hPrinter As IntPtr
 Dim spoolData As New DOCINFO
 Dim dataToSend As IntPtr
 Dim dataSize As Integer
 Dim bytesWritten As Integer

 ' ----- The internal format of a .NET String is just
 ' different enough from what the printer expects
 ' that there will be a problem if we send it
 ' directly. Convert it to ANSI format before
 ' sending.
 dataSize = origString.Length()
 dataToSend = Marshal.StringToCoTaskMemAnsi(origString)

 ' ----- Prepare information for the spooler.
 spoolData.pDocName = "My Visual Basic .NET RAW Document"
 spoolData.pDataType = "RAW"

 Try
 ' ----- Open a channel to
the printer or spooler.
 Call OpenPrinter(printerName, hPrinter, 0)

 ' ----- Start a new document and Section 1.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Start a new document and Section 1.1.
 Call StartDocPrinter(hPrinter, 1, spoolData)
 Call StartPagePrinter(hPrinter)

 ' ----- Send the data to the printer.
 Call WritePrinter(hPrinter, dataToSend, _
 dataSize, bytesWritten)

 ' ----- Close everything that we opened.
 EndPagePrinter(hPrinter)
 EndDocPrinter(hPrinter)
 ClosePrinter(hPrinter)
 Catch ex As Exception
 MsgBox("Error occurred: " & ex.ToString)
 Finally
 ' ----- Get rid of the special ANSI version.
 Marshal.FreeCoTaskMem(dataToSend)
 End Try
 End Function
 End Class

This class includes all shared members, so just call them directly without creating an instance. Use the PrintRaw method
by passing it a printer name and raw data to send:

 RawPrinter.PrintRaw("MyPrinter", _
 "Hello, this is a test." & vbCrLf)

You can use this to send data to network printers by supplying a printer path in the format \\SystemName\PrinterName.

See Also

The code in this recipe is based on a Microsoft-supplied Knowledge Base article. On the MSDN web site
(http://msdn.microsoft.com), access article number 322090 for additional details on using the winspool.drv file from
.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.3. Get Details About the Default Printer

Problem

You need to know some of the settings for the default printer installed on the local workstation, such as its name and
page size.

Solution

Create a PrintDocument object, and use it to access the details for the default printer:

 Dim justChecking As New System.Drawing.Printing.PrintDocument
 MsgBox(justChecking.PrinterSettings.PrinterName)

Discussion

In .NET, printer settings exist in the context of a document to print. The PrintDocument object includes a PrinterSettings
member that fully describes the printer target of the document. When you create a new print document, .NET fills in the
settings for the default printer on the local workstation. If you want to examine the settings for another installed
printer, modify the PrinterSettings.PrinterName property to indicate the desired printer:

 With justChecking.PrinterSettings
 .PrinterName = "AnotherPrinter"
 If (.IsValid = True) Then
 ' ----- Look at the other settings.
 End If
 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.4. Creating a Print Preview

Problem

You want to present a preview of a printed document to the user.

Solution

Sample code folder: Chapter 11\PrintPreview

Use the PrintPreviewDialog class to show the print preview through a form that includes some basic presentation features.

Discussion

The following code displays a basic text string on a print preview document:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents SampleDoc As Printing.PrintDocument

 Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Initiate a print preview.
 Dim previewMode As New PrintPreviewDialog

 ' ----- Create the document to preview.
 SampleDoc = New Printing.PrintDocument

 ' ----- Show the preview.
 previewMode.Document = SampleDoc
 previewMode.ShowDialog()
 End Sub

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Generate a fun one-page document.
 e.Graphics.DrawString("Preview is Fun!", _
 New Font("Ariel", 48, FontStyle.Regular), _
 Brushes.Black, 0, 0)
 e.HasMorePages = False
 End Sub
 End Class

Running this sample code (by clicking on a button named Button1) results in the print preview window shown in Figure
11-1.

Figure 11-1. Print preview in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Framework includes a generalized printing system that allows you to use the same code for both the
previewing and the actual printing. All printing is done to a generic graphics surface within a PrintDocument object. .NET
uses this surface to print to your printer's paper and to the artificial paper in the print preview form.

The PrintPreviewDialog class also comes in a Windows Formsbased control variation (see Figure 11-2). You can add this
control and a related PrintDocument control to your form and generate the print preview that way, but it works just the
same. You assign the PrintDocument control to the PrintPreviewDialog's Document property, and then respond to the
PrintDocument's PrintPage event. It's the exact same code that appears in this recipe's solution; only the declarations of the
PrintPreviewDialog and PrintDocument objects have moved from your source code to the form's surface.

Figure 11-2. The control version of the PrintPreviewDialog class

.NET includes two classes that let you preview your own printed documents. The easiest to use is the PrintPreviewDialog
class, as demonstrated in this recipe. It defines a complete form, and it includes some useful controls in the form of a
tool-bar. But it's a one-size-fits-all solution. Altering the toolbar to include your own set of custom features isn't really
an option.

The alternative uses the PrintPreviewControl class, or, more commonly, its equivalent Windows Forms control. By adding
this control to an existing form along with any other toolbar-type controls you wish, you can provide an enhanced print
preview experience custom-designed for your application.

See Also

Recipe 11.6 provides additional examples of using the PrintDocument class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.5. Prompting for Printed Page Settings

Problem

You want the user to indicate some basic paper-related settings for a printed document.

Solution

Use the PageSetupDialog class to prompt the user for these basic settings. The following code displays the Page Setup
dialog for a basic print document:

 Dim pageSetup As New PageSetupDialog
 pageSetup.Document = New Printing.PrintDocument
 pageSetup.
ShowDialog()

Discussion

The PageSetupDialog's ShowDialog() method presents the user with the basic Page Setup dialog shown in Figure 11-3. Its
initial settings are based on the default printer, or the printer you have specified as the active printer.

The PageSetupDialog class encapsulates a complete form that lets the user set the page size, margins, source, and
orientation for an upcoming print job. Normally, you prompt for these settings for a specific document by setting the
Document property to a valid PrintDocument object. However, you can also call this form generically by setting its
PrinterSettings and PageSettings properties to valid PrinterSettings and PageSettings objects, and setting the printer name to your
intended target (if different from the default):

Figure 11-3. The Page Setup dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim pageSetup As New Forms.PageSetupDialog
 pageSetup.PageSettings = New Printing.PageSettings
 pageSetup.
PrinterSettings = New Printing.PrinterSettings

 pageSetup.PrinterSettings.PrinterName = "\\MySystem\MyPrinter"
 pageSetup.ShowDialog()

Once set, you can assign these PrinterSettings and PageSettings objects to the matching properties in your PrintDocument
object:

 ' ----- Assumes a Printing.PrintDocument object named
 ' targetDocument.
 targetDocument.PrinterSettings = pageSetup.PrinterSettings
 targetDocument.DefaultPageSettings = pageSetup.PageSettings

The PageSetupDialog class also comes in a Windows Formsbased control variation (see Figure 11-4). You can add this
control and a related PrintDocument control to your form and display the page settings that way, but it works just the
same. You assign the PrintDocument control to the PageSetupDialog's Document property, and then call the PageSetupDialog's
ShowDialog() method. It's the exact same code that appears in this recipe's solution; only the declarations of the
PageSetupDialog and PrintDocument objects have moved from your source code to the form's surface.

Figure 11-4. The control version of the PageSetupDialog class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.6. Drawing Text and Graphics to a Printer

Problem

You're ready to print. How do you do it?

Solution

Sample code folder: Chapter 11\TextAndGraphics

Respond to the various events of the PrintDocument object, especially the PrintPage event.

Discussion

The following code sends a two-page document to the default printer when the Button1 button is clicked. Each page
includes some simple text and graphics:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents SampleDoc As Printing.PrintDocument
 Private PageNumber As Integer

 Private Sub Button1_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 SampleDoc = New Printing.PrintDocument
 SampleDoc.Print()
 End Sub

 Private Sub SampleDoc_BeginPrint(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintEventArgs) _
 Handles SampleDoc.BeginPrint
 ' ----- Start the page counting.
 PageNumber = 0
 End Sub

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Keep track of the current page.
 PageNumber += 1
 If (PageNumber >= 2) Then e.HasMorePages = False Else _
 e.HasMorePages = True

 ' ----- Let's use inches, a nice easy measurement system.
 e.Graphics.PageUnit = GraphicsUnit.Inch

 ' ----- Print some text and rectangles.
 e.Graphics.DrawString("This is page " & PageNumber & _
 ".", New Font("Ariel", 48, FontStyle.Regular), _
 Brushes.Black, 2, 2)
 e.Graphics.DrawRectangle(New Pen(Color.Blue, 0.005), _
 3.0!, 3.0!, 3.0!, 0.5!)
 e.Graphics.DrawRectangle(New Pen(Color.Red, 0.005), _
 3.25!, 3.25!, 3.0!, 0.5!)
 End Sub
 End Class

This sample prints two pages similar to the pages in Figure 11-5.

Figure 11-5. Output from the PrintPage event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-5. Output from the PrintPage event

Make sure that you include the WithEvents keyword in your PrintDocument variable's declaration, or you won't be able to
attach an event handler with the Handles keyword.

All printing for a document occurs in the PrintDocument object's PrintPage event. This event includes an e.Graphics property
that exposes a full GDI+ graphics drawing surface for a single document page. Use any of the GDI+ drawing methods
(such as DrawString(), FillPie(), or DrawImage()) or display transformation features (such as translateTransform()) that you need to
organize and print your page.

It's up to you to determine which pages should be included in the print document, and even which page numbers to
use. The PrintDocument object does not know which pages should be included, so you need to do those calculations
yourself, as was done in this recipe with the PageNumber class member. The PrintDocument. PrinterSettings object's PrintRange,
FromPage, and ToPage properties indicate the user-selected pages to include in the output.

Printing will continue until you tell it to stop. The PrintPage event's e.HasMorePages property controls everything. Set it to
true if there are more pages to print after the current page or to False when you are printing the last page.

Besides the PrintPage event, the PrintDocument object includes a few other useful events:

BeginPrint

This event fires before the first triggering of the PrintPage event. You can initialize any settings that apply to the
entire print process here.

EndPrint

This closing event gives you a chance to free any resources you acquired during the print process. This event
always occurs, even if the user aborted the printing early or if an error occurred.

QueryPageSettings

This event allows you to modify the page settings on a page-by-page basis. For instance, you could have all
even pages appear in Portrait orientation while all odd pages print using Landscape orientation.

See Also

Chapter 9 includes examples of GDI+ features you can use on the graphics surface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.7. Determining the Print Destination

Problem

You want to slightly alter the output to the print surface when the user is printing to either the preview window or the
actual printer.

Solution

Access the PrintDocument object's PrintController.IsPreview property during printing to determine if you are in preview mode or
not.

Discussion

The following code prints a "preview only" message at the top of each page when printing in preview mode:

 Private Sub SampleDoc_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _

Handles SampleDoc.PrintPage
 ' ----- Print a "preview only" message.
 If (SampleDoc.PrintController.IsPreview = True) Then _
 e.Graphics.DrawString("This is a preview only.", _
 New Font("Ariel", 12, FontStyle.Regular), _
 Brushes.Red, 0, 0)

 ' ----- Add other printing code here.
 End Sub

.NET includes two different ways to determine the print-preview status of the current PrintDocument object. The
PrintDocument.PrintController.IsPreview property is a simple Boolean value that can be read at any time during the printing
process.

During printing, you can also access the e.PrintAction property in the PrintDocument object's QueryPageSettings event to
determine the printer-output target. This property uses the three possible values of the System.Drawing.Printing.PrintAction
enumeration:

PrintToFile

The print document's output is going to a disk-based file.

PrintToPreview

The print document's output is going to a preview window using the PrintPreviewDialog or PrintPreviewControl classes.

PrintToPrinter

The print document's output is going to a physical printer based on the user's printing choices.

The following code checks the PrintAction flag for a PrintDocument object named SampleDoc and takes action based on its
value:

 Private Sub SampleDoc_QueryPageSettings(_
 ByVal sender As Object, ByVal e As _
 System.Drawing.Printing.QueryPageSettingsEventArgs) _
 Handles SampleDoc.QueryPageSettings
 If (e.PrintAction = PrintAction.PrintToPreview) Then
 ' ----- Take preview-specific action here.
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

This property is available only from the QueryPageSettings event. If you want to access its value during the PrintPage event,
you will have to save it in a class-level or global variable during the QueryPageSettings event.

The initial release of Version 2.0 of the .NET Framework (part of Visual Studio 2005)
included a bug that caused the e.PrintAction flag to indicate the wrong value. Specifically, it
never indicates PrintAction.PrintToPreview when in preview mode. Hopefully, by the time you
read this recipe, a service pack or update that resolves this issue will be available for the
.NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 11.8. Creating Graph Paper

Problem

You've run out of graph paper, but you need a sheet of it right now. You'd like to brush up on your .NET printing skills
at the same time.

Solution

Sample code folder: Chapter 11\GraphPaper

Build a simple application that prints some graph paper for you, using the printing features presented throughout this
chapter and various GDI+ methods.

Discussion

Create a new Windows Forms project, and add the following controls to the form:

A RadioButton control named UseInches. Set its Text property to &Inches and its Checked property to true.

A RadioButton control named UseCentimeters. Set its Text property to &Centimeters.

A TextBox control named LinesPerUnit.

A TextBox control named UnitsWide.

A TextBox control named UnitsHigh.

A Button control named ShowPreview. Set its Text property to Preview.

A Button control named SendToPrinter. Set its Text property to Print.

Add informational labels if desired. The form should look something like the one in Figure 11-6.

Figure 11-6. User interface for the Graph Paper application

Add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following source code to the form's class template:

 Imports System.Drawing.Printing

 Public Class Form1
 Private WithEvents GraphPaper As Printing.PrintDocument

 Private Sub ShowPreview_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _

Handles ShowPreview.Click
 ' ----- Preview the
graph paper.
 Dim previewMode As New PrintPreviewDialog

 GraphPaper = New Printing.PrintDocument
 previewMode.Document = GraphPaper
 previewMode.ShowDialog()
 GraphPaper = Nothing
 End Sub

 Private Sub SendToPrinter_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles SendToPrinter.Click
 ' ----- Preview the
graph paper.
 Dim pageSetup As New PageSetupDialog

 GraphPaper = New Printing.PrintDocument
 pageSetup.Document = GraphPaper
 If (pageSetup.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then _
 GraphPaper.Print()
 GraphPaper = Nothing
 End Sub

 Private Sub GraphPaper_PrintPage(ByVal sender As Object, _
 ByVal e As Printing.PrintPageEventArgs) _
 Handles GraphPaper.PrintPage
 ' ----- Printing of the graph paper occurs here.
 Dim unitLines As Single = CSng(LinesPerUnit.Text)
 Dim totalWidth As Single = CSng(UnitsWide.Text)
 Dim totalHeight As Single = CSng(UnitsHigh.Text)
 Dim x1, y1, x2, y2 As Single
 Dim fineBlackPen As New Pen(Color.Black, 0.00001)
 Dim eachLine As Integer
 Dim factor As Single

 ' ----- Set the units.
 If (UseInches.Checked = True) Then
 e.Graphics.PageUnit = GraphicsUnit.Inch
 factor = 1.0!
 Else
 e.Graphics.PageUnit = GraphicsUnit.Millimeter
 factor = 10.0!
 End If

 ' ----- Draw the vertical lines.
 For eachLine = 0 To CInt(totalWidth * unitLines)
 x1 = factor + (eachLine * factor) / unitLines
 y1 = factor
 x2 = x1
 y2 = y1 + (totalHeight * factor)
 If ((eachLine Mod unitLines) = 0) Then
 ' ----- Each unit marker is thicker.
 fineBlackPen.Width = 0.01 * factor
 Else
 fineBlackPen.Width = 0.000001 * factor
 End If
 e.Graphics.DrawLine(fineBlackPen, x1, y1, x2, y2)
 Next eachLine

 ' ----- Draw the horizontal lines.
 For eachLine = 0 To CInt(totalHeight * unitLines)
 x1 = factor
 y1 = factor + (eachLine * factor) / unitLines
 x2 = x1 + (totalWidth * factor)
 y2 = y1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 y2 = y1
 If ((eachLine Mod unitLines) = 0) Then
 ' ----- Each unit marker is thicker.
 fineBlackPen.Width = 0.01 * factor
 Else
 fineBlackPen.Width = 0.000001 * factor
 End If
 e.Graphics.DrawLine(fineBlackPen, x1, y1, x2, y2)
 Next eachLine

 ' ----- Limit output to a single page.
 e.HasMorePages = False
 End Sub
 End Class

This program builds on the recipes presented throughout this chapter. It creates distinct PrintDocument (with WithEvents
specified), PrintPreviewDialog, and PageSetupDialog classes, and it responds to the print document's PrintPage event to perform
the actual printing.

The code simply loops through the specified number of vertical and horizontal lines destined for the output based on the
user's input, and draws lines at each interval position. The e.Graphics.PageUnit property lets the code easily process both
English and metric measurement systems, although the lack of a basic centimeter unit requires the code to combine the
millimeter unit with a scaling factor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Printing

Introduction

Recipe 11.1. Enumerating Printers

Recipe 11.2. Sending "Raw" Data to a Printer

Recipe 11.3. Get Details About the Default Printer

Recipe 11.4. Creating a Print Preview

Recipe 11.5. Prompting for Printed Page Settings

Recipe 11.6. Drawing Text and Graphics to a Printer

Recipe 11.7. Determining the Print Destination

Recipe 11.8. Creating Graph Paper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
One of the core features of any operating system is how it interacts with a file system. MS-DOS, the predecessor of
Microsoft Windows, even alludes to this importance in its name: the "D" in "MS-DOS" stands for "Disk." With this stress
on file systems and files, it's only natural that the .NET Framework includes significant support for manipulating
directories, files, and the contents of files.

The recipes in this chapter introduce many of the file-management and -manipulation features found in .NET and Visual
Basic. For the Visual Basic programmer, much of the focus is on the My.Computer.FileSystem object, which provides a virtual
cornucopia of file-management features.

The Windows file system includes support for security and access limitations, imposed either by the administrator or by
standard users. Even if a recipe in this chapter says, "You can do such and such," it may not be true for users who have
had file-system limits placed on them or their programs. This is especially true of Click-Once-deployed applications,
which can be run in a type of "sandbox" that places harsh limits on file access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.1. Enumerating Drives

Problem

You need access to the list of drives available on the local workstation.

Solution

Sample code folder: Chapter 12\EnumerateDrives

Use the My.Computer.FileSystem.Drives collection to enumerate through the logical drives.

Discussion

If you have a form (Form1) with a ListBox control (ListBox1), the following code adds the name of each available drive to
the list when the form first opens:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 For Each oneDrive As IO.
DriveInfo In _
 My.Computer.
FileSystem.Drives
 ListBox1.Items.Add(oneDrive)
 Next oneDrive
 End Sub

That code adds complete objects of type System.IO.DriveInfo to the list. If you only want to add the drive names, use this
code instead:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 For Each oneDrive As IO.DriveInfo In _
 My.Computer.FileSystem.Drives
 ListBox1.Items.Add(oneDrive.Name)
 Next oneDrive
 End Sub

Each added item appears as X:\, where X is replaced by the drive letter. Figure 12-1 shows the output of this code on a
computer with just a "C" drive.

Figure 12-1. The list of drives on a typical one-drive workstation

The My.Computer.FileSystem.Drives collection provides access to details about each local or network drive attached to the
workstation. Since it is a collection that exposes the IEnumerable interface, you can use it in a For Each statement,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workstation. Since it is a collection that exposes the IEnumerable interface, you can use it in a For Each statement,
accessing each drive object in the collection.

The System.IO.DriveInfo object includes the following useful properties:

AvailableFreeSpace

Returns the number of free bytes available to the current user on the drive. If the administrator has instituted
disk quotas on the drive, this amount may be considerably less than the total available space on the drive.

DriveFormat

Returns a string indicating the file-system type. Common file systems available in Windows include NTFS, FAT,
FAT32, and CDFS.

DriveType

Indicates the type of drive through the System.IO.DriveType enumeration. The most common drive types include
Fixed, Removable, and CDRom.

IsReady

Returns a Boolean that indicates whether the drive is ready for use. Typically, this flag is accessed on CD drives
to determine whether a CD is in the drive and ready to use.

Name

Gets the name of a drive, in X:\ format.

RootDirectory

Returns a System.IO.DirectoryInfo object that refers to the top-most directory of the drive. This property will not be
valid if the DriveType property is set to NoRootDirectory.

TotalFreeSpace

Returns the number of free bytes available on the drive. Unlike the AvailableFreeSpace property, this property is not
limited by any administrator defined quotas.

TotalSize

Returns the total number of used and unused bytes on the drive. This property is not limited by any
administrator-defined quotas.

VolumeLabel

Indicates the volume label currently assigned to the drive. If the drive supports it, you can modify the volume
label by assigning a new String value to this property. Some drives impose length limits on the volume label.

See Also

Recipe 12.8 shows how to iterate directories within a drive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.10. Determining If a File Exists

Problem

You have a file path supplied by the user, but you need to verify that it is valid before using it.

Solution

Use the My.Computer.FileSystem. FileExists() method to determine whether a path string is a valid file or not:

 If (My.Computer.FileSystem.FileExists(_
 userSuppliedPath) = True) Then
 MsgBox("Invalid file specified.")
 Else
 ' ----- Process file here.
 End If

Discussion

If you wish to validate a directory instead of a file, use the equivalent DirectoryExists() method:

 If (My.Computer.FileSystem.DirectoryExists(_
 userSuppliedPath) = True) Then
 MsgBox("Invalid directory specified.")
 Else
 ' ----- Process directory here.
 End If

See Also

Several of the recipes in this chapter use FileExists() before attempting access to a user-specified path.

Recipe 12.2 discusses the DirectoryExists() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.11. Getting and Setting File Attributes

Problem

You want to view and modify some of the file-level attributes for a specific file.

Solution

Sample code folder: Chapter 12\FileAttributes

Use the Attributes property of a file's System.IO.FileInfo object to interact with the attributes defined for that file. You can get
a FileInfo object for a specific file through the My.Computer. FileSystem. GetFileInfo() method.

Discussion

This recipe's sample code lets you view and update the Read Only and Hidden attributes for any specific file.

Begin a new Windows Forms project, and add a TextBox control named FilePath, two Button controls named ActGet and ActSet,
and two CheckBox controls named FileReadOnly and FileHidden to Form1. You can add labels and provide meaningful captions if
you wish, as is done in Figure 12-7.

Figure 12-7. Controls for the attribute management sample

Set the Enabled properties of the FileReadOnly, FileHidden, and ActSet controls to False. Now add the following source code to
the form's class template:

 Private Sub ActGet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGet.Click
 ' ----- Locate the file and its attributes.
 If (My.Computer.
FileSystem.FileExists(FilePath.Text) _
 = False) Then
 MsgBox("Please supply a valid file.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Exit Sub
 End If

 ' ----- Get the file's attributes.
 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(FilePath.Text)
 FileReadOnly.Checked = fileDetail.IsReadOnly
 FileHidden.Checked = CBool(fileDetail.Attributes _
 And IO.FileAttributes.Hidden)
 FileReadOnly.Enabled = True
 FileHidden.Enabled = True
 ActSet.Enabled = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ActSet.Enabled = True
 End Sub

 Private Sub ActSet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActSet.Click
 ' ----- Modify the settings of the active file.
 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(FilePath.Text)

 ' ----- Set the read-only flag the easy way.
 fileDetail.IsReadOnly = FileReadOnly.Checked

 ' ----- Set the hidden flag.
 If (FileHidden.Checked = True) Then
 fileDetail.Attributes = fileDetail.Attributes _
 Or IO.FileAttributes.Hidden
 Else
 fileDetail.Attributes = fileDetail.Attributes _
 And Not IO.FileAttributes.Hidden
 End If

 ' ----- Finished.
 MsgBox("Attributes updated.", MsgBoxStyle.OkOnly _
 Or MsgBoxStyle.Information, "Attributes")
 End Sub

 Private Sub FilePath_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FilePath.TextChanged
 ' ----- Clear the previous file's attributes.
 If (ActSet.Enabled = True) Then
 ActSet.Enabled = False
 FileReadOnly.Enabled = False
 FileHidden.Enabled = False
 FileReadOnly.Checked = False
 FileHidden.Checked = False
 End If
 End Sub

To use the program, type a valid directory path into the FilePath field, and click the ActGet button. The FileReadOnly and
FileHidden fields will update to show the cur-rent attributes for the specified file. Modify these two fields as needed, and
then click the ActSet button to modify the file attributes.

The System.IO.FileInfo object abstracts access to all information about a file. Once you have the path to the file, use the
following statement to retrieve the FileInfo object:

 Dim fileDetail As IO.FileInfo = _
 My.Computer.FileSystem.GetFileInfo(theFilePath)

The FileInfo object exposes an Attributes property that acts as a bit field for the System.IO.FileAttributes enumeration. (Bit fields
use the bitwise operators, including And, Or, and Not, to store multiple enumeration values in a single integer variable.)
The FileAttributes enumeration includes several members, but here are the four most commonly used when working with
files and directories:

FileAttributes.Archive

FileAttributes.Directory

FileAttributes.Hidden

FileAttributes.ReadOnly

This chapter's sample code examines the bits of the FileInfo.Attributes property to determine whether the file is hidden or
not:

 FileHidden.Checked = CBool(fileDetail.Attributes _
 And IO.FileAttributes.Hidden)

Since the FileInfo object also exposes a simple IsReadOnly property, the code uses that to set the Read Only flag, although

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since the FileInfo object also exposes a simple IsReadOnly property, the code uses that to set the Read Only flag, although
it could have examined the Attributes property for the FileAttributes.ReadOnly bit instead.

Later, those same IsReadOnly and Attributes properties are set with updated values to modify the attributes assigned to the
actual file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.12. Accessing Special User and Windows Directories

Problem

You would like to access some of the Windows-defined special directories, such as My Documents, but you're not sure
where they are.

Solution

Fortunately, you don't have to know where they really are. You need to access only the members of the My.Computer.
FileSystem. SpecialDirectories object.

Discussion

Microsoft Windows uses several " special" directories to store user and system files. The locations of these directories
are generally consistent across workstations of a certain platform (such as Windows XP), but users and administrators
can alter some of the paths, and some of the paths differ between operating system releases. (Windows Vista will make
several location changes to these paths.)

The My.Computer.FileSystem.SpecialDirectories object includes these member properties. Directory components appearing in
angle brackets, such as <user>, should be substituted by the relevant values, such as the username in the case of
<user>. The properties listed in the SpecialDirectories object include:

AllUsersApplicationData

The shared application data-storage directory used by all authorized users who log in to the workstation. In
Windows XP, this directory is typically found at C:\Documents and Settings\All Users\Application Data.

CurrentUserApplicationData

The data-storage directory assigned to a specific authorized user and to the currently running .NET application
on the workstation. This directory is considered part of the active user's "roaming" profile. In Windows XP, this
directory is typically found at C:\Documents and Settings\<user>\Application Data\<company>\<application>\
<version>.

Desktop

The full path to the current authorized user's Desktop directory, which defines the items appearing on the
Windows desktop. In Windows XP, this directory is typically found at C:\Documents and Settings\
<user>\Desktop.

MyDocuments

The My Documents directory, used for general file storage by the current authorized user. In Windows XP, this
directory is typically found at C:\Documents and Settings\<user>\My Documents.

MyMusic

The My Music directory, used to store standard and digital-rights-protected audio data files for the current
authorized user. In Windows XP, this directory is typically found at C:\Documents and Settings\<user>\My
Documents\My Music.

MyPictures

The My Pictures directory, used to store digital images and video content for the current authorized user. In
Windows XP, this directory is typically found at C:\Documents and Settings\<user>\My Documents\My Pictures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProgramFiles

The default software product installation directory used by all authorized users on the workstation. In Windows
XP, this directory is typically found at C:\Program Files.

Programs

The Programs directory for the current authorized user's Start menu. In Windows XP, this directory is typically
found at C:\Documents and Settings\<user>\Start Menu\Programs.

Temp

The temporary directory used by the current authorized user to store short-lived caching and logging data files.
In Windows XP, this directory is typically found at C:\Documents and Settings\<user>\Local Settings\Temp.

There are several special Windows directoriesdirectories defined both for the current user and for shared use among all
usersthat do not have equivalent properties listed in the SpecialDirectories object. The System.Environment object provides
access to some of these special directories not made available through the My.Computer.FileSystem.SpecialDirectories object.
For instance, to access the System directory on the local workstation (defined on my workstation as
C:\WINDOWS\System32), use the following property:

 System.Environment.SystemDirectory

You can access other special directory locations with the System.Environment.GetFolderPath() method, passing it one of the
System.Environment. SpecialFolder enumeration values:

 ' ----- Display the user's "Favorites" directory.
 MsgBox(System.Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites))

The System.Environment.SpecialFolder enumeration includes the members listed below. We have listed the typical location for
each member as found on a Windows XP Professional workstation. Directory components appearing in angle brackets,
such as <user>, should be substituted by the relevant values, such as the username in the case of <user>.

SpecialFolder.ApplicationData

A directory containing roaming application data for the current user.

C:\Documents and Settings\<user>\Application Data

SpecialFolder.CommonApplicationData

A directory containing shared application data for all users on the local workstation.

C:\Documents and Settings\All Users\Application Data

SpecialFolder.CommonProgramFiles

A directory containing shared files used by multiple installed applications.

C:\Program Files\Common Files

SpecialFolder.Cookies

A directory containing Internet-based cookies for the current user.

C:\Documents and Settings\<user>\Cookies

SpecialFolder.Desktop

The logical location of the Desktop directory, which is often the same as the physical location, but not always.

C:\Documents and Settings\<user>\Desktop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\Documents and Settings\<user>\Desktop

SpecialFolder.DesktopDirectory

The physical location of the Desktop directory, which is often the same as the logical location, but not always.

C:\Documents and Settings\<user>\Desktop

SpecialFolder.Favorites

A directory containing shortcuts to the user's favorite Internet-based and local items.

C:\Documents and Settings\<user>\Favorites

SpecialFolder.History

A directory containing a set of web-site shortcuts for recently visited locations.

C:\Documents and Settings\<user>\Local Settings\History

SpecialFolder.InternetCache

A directory containing content recently accessed over the Internet.

C:\Documents and Settings\<user>\Local Settings\Temporary Internet Files

SpecialFolder.LocalApplicationData

A directory containing nonroaming application data for the current user.

C:\Documents and Settings\<user>\Local Settings\Application Data

SpecialFolder.MyComputer

The directory representing the "My Computer" feature on the Windows desktop. On most systems this returns a
null or empty string because My Computer is an artificial view, not a true directory.

SpecialFolder.MyDocuments

The My Documents directory for the current user.

C:\Documents and Settings\<user>\My Documents

SpecialFolder.MyMusic

The audio media directory for the current user.

C:\Documents and Settings\<user>\My Documents\My Music

SpecialFolder.MyPictures

The image and video media directory for the current user.

C:\Documents and Settings\<user>\My Documents\My Pictures

SpecialFolder.Personal

The personal document directory for the current user. This is typically the My Documents directory.

C:\Documents and Settings\<user>\My Documents

SpecialFolder.ProgramFiles

The shared installation directory for applications on the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The shared installation directory for applications on the local workstation.

C:\Program Files

SpecialFolder.Programs

The current user's "Programs" area within the Start menu.

C:\Documents and Settings\<user>\Start Menu\Programs

SpecialFolder.Recent

A directory of shortcuts to files recently used by the current user.

C:\Documents and Settings\<user>\Recent

SpecialFolder.SendTo

A directory of "Send To" target shortcuts for the current user.

C:\Documents and Settings\<user>\SendTo

SpecialFolder.StartMenu

The top-level Start menu directory for the current user.

C:\Documents and Settings\<user>\Start Menu

SpecialFolder.Startup

The current user's "Startup" area within the Start menu.

C:\Documents and Settings\<user>\Start Menu\Programs\Startup

SpecialFolder.System

The System directory that stores the primary Windows system components.

C:\WINDOWS\System32

SpecialFolder.Templates

A directory of new-file templates used when creating new files through Windows Explorer. This is not the same
as the directory used to store Microsoft Word templates or other similar application-specific templates.

C:\Documents and Settings\<user>\Templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.13. Determining the Space on a Drive

Problem

You want to report the amount of space available on a drive, including total and remaining space.

Solution

Sample code folder: Chapter 12\DriveSpace

The My namespace provides access to objects representing the logical drives available on the local workstation.
My.Computer. FileSystem.Drives exposes a collection of all logical drives, with each drive stored as a System.IO. DriveInfo object.
To retrieve a specific drive by name, use the My.Computer.FileSystem. GetDriveInfo() method, and pass it the name of a logical
drive, such as C:\. The returned DriveInfo object includes properties that report the amount of space on the drive.

Discussion

Create an application that reports the amount of total and free space for any logical drive. Start a new Windows Forms
application, and add a ComboBox control named LogicalDrive and three labels for the space totals (FreeSpace, QuotaSpace, and
TotalSpace). Set the DropDownStyle property of LogicalDrive to DropDownList, and set the Text properties of the three labels to
N/A. You can add some additional field labels if you want, resulting in a form like the one in Figure 12-8.

Figure 12-8. Controls for the drive space sample

Add the following source code to the form's class template:

 Private Const NotADrive As String = "<Not Selected>"

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Fill in the list of logical drives.
 LogicalDrive.Items.Add(NotADrive)
 LogicalDrive.SelectedIndex = 0
 For Each oneDrive As IO.DriveInfo In _
 My.Computer.
FileSystem.Drives
 LogicalDrive.Items.Add(oneDrive.Name)
 Next oneDrive
 End Sub

 Private Sub LogicalDrive_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles LogicalDrive.SelectedIndexChanged
 ' ----- Fill in the drive details.
 If (LogicalDrive.Text = NotADrive) Then
 ' ----- <Not Selected>
 FreeSpace.Text = "N/A"
 QuotaSpace.Text = "N/A"
 TotalSpace.Text = "N/A"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TotalSpace.Text = "N/A"
 Else
 ' ----- A logical drive is selected.
 Dim oneDrive As IO.DriveInfo = _
 My.Computer.FileSystem.GetDriveInfo(_
 LogicalDrive.Text)
 FreeSpace.Text = Format(oneDrive.TotalFreeSpace, _
 "#,##0") & " bytes"
 QuotaSpace.Text = Format(oneDrive.AvailableFreeSpace, _
 "#,##0") & " bytes"
 TotalSpace.Text = Format(oneDrive.TotalSize, _
 "#,##0") & " bytes"
 End If
 End Sub

To use the program, select a valid logical drive from the LogicalDrive drop-down list, and take careful note of the exact
byte counts displayed. Figure 12-9 shows this form in use.

Figure 12-9. Displaying the total and free space on a local hard drive

The DriveInfo object includes three properties that deal with space on a drive:

AvailableFreeSpace

The amount of free space, in bytes, available to the current user on the logical drive, expressed as a Long value.
The system administrator can impose disk-space quotas for each authorized user on each drive. This property
returns only the amount of free space remaining in the current user's quota. It excludes any additional disk
space that falls outside the user's quota.

TotalFreeSpace

The amount of total free space, in bytes, on the logical drive, expressed as a Long value. This property ignores
all disk quotas and returns the full free space on the drive.

TotalSize

The total space, in bytes, on the logical drive, whether used or not, expressed as a Long value. This property
ignores all disk quotas and returns the full space on the drive.

See Also

Recipe 12.1 discusses how to list all the drives on the local system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.14. Browsing for a Directory

Problem

The user needs to specify a directory on the file system in which files should be stored or accessed, and you want it to
be done graphically, not just through a textentry field.

Solution

Sample code folder: Chapter 12\DirectoryLocator

Use a FolderBrowserDialog control to display the standard Windows directory-browsing tool.

Discussion

Create a new Windows Forms application, and add a TextBox control named TargetDirectory, a Button control named
LookForDirectory, and a FolderBrowserDialog control named DirectoryBrowser. (You'll find the FolderBrowserDialog control in the
Dialogs area of the Visual Studio Toolbox.) Change the Text property of the button to Browse…. Adding an informative
label gives you the form in Figure 12-10.

Add the following source code to the form's class template:

 Private Sub LookForDirectory_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles LookForDirectory.Click
 ' ----- Locate a directory graphically.
 DirectoryBrowser.Description = _

Figure 12-10. Controls for the directory-browsing sample

 "Which directory do you want to use?"
 If (DirectoryBrowser.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 TargetDirectory.Text = DirectoryBrowser.SelectedPath
 End If
 End Sub

To use the program, click on the Browse button, and use the resulting dialog (shown in Figure 12-11) to select a
directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-11. The standard directory browser dialog

The FolderBrowserDialog class represents one of several system-supplied dialogs made available to your Visual Basic
applications. Other related dialogs let you browse for files (OpenFileDialog and SaveFileDialog), select fonts (FontDialog), and
choose colors (ColorDialog). There are also several printer-specific dialogs. (See Chapter 11 for related recipes.)

Despite their different purposes, all the dialog controls are used in a similar way:

1. Add the dialog control to your form, or create an instance of it as a variable.

2. Set any relevant properties, as is done with the Description property in this recipe.

3. Display the dialog to the user with the ShowDialog() method.

4. If the user makes a selection and clicks the OK button, the dialog returns System.Windows.Forms.DialogResult.OK. If
the user cancels, the dialog returns System.Windows.Forms.DialogResult.Cancel.

5. Examine the properties of the control for user-modified settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.15. Getting File Information

Problem

You need to access a lot of information about a file, such as its size, its last modification time, and its attributes.

Solution

Sample code folder: Chapter 12\FileInformation

Use the My.Computer. FileSystem. GetFileInfo() method to retrieve many basic details about a specific file.

Discussion

The following method displays the size, relevant dates, and attributes of a file path:

 Public Sub ShowFileDetails(ByVal filePath As String)
 ' ----- Given a file path, show some of its details.
 Dim fileDetail As IO.FileInfo

 ' ----- First, make sure the file exists.
 If (My.Computer.FileSystem.FileExists(filePath) _
 = False) Then

 MsgBox("The file '" & filePath & "' does not exist.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Exit Sub
 End If

 ' ----- Retrieve the file details.
 fileDetail = My.Computer.FileSystem.GetFileInfo(filePath)

 ' ----- Show some information.
 MsgBox("Details for '" & filePath & "':" & _
 vbCrLf & vbCrLf & _
 "Attributes: " &
fileDetail.Attributes.ToString() & _
 vbCrLf & _
 "Created: " & fileDetail.CreationTime & vbCrLf & _
 "Accessed: " & fileDetail.LastAccessTime & vbCrLf & _
 "Modified: " & fileDetail.LastWriteTime & vbCrLf & _
 "Size: " & fileDetail.Length & " byte(s)", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Information, _
 "File Details")
 End Sub

Figure 12-12 shows some typical output for this block of code.

Figure 12-12. File attributes for the Notepad.exe program file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The System.IO. FileInfo object exposes properties that document various features of a file. It also includes methods that let
you create, modify, and delete the file, and open the file to examine its contents. Features such as these are discussed
in other recipes found throughout this chapter.

A similar detail-laden object exists for directories. Once you have a directory path, use the My.Computer.
FileSystem.GetDirectoryInfo() method, which returns an object of type System.IO.DirectoryInfo.

Some of the properties of the FileInfo object, such as the modification (last write) time, appear in the Details view of the
Windows File Explorer. One part of that view that isn't directly available through FileInfo is the Type column. This displays
a short name for the type of file based on its extension; for example, the .bmp extension equates to a file type of
"Bitmap Image." To get this type name, you need to access values in the system registry. The sample code in this
discussion uses the registry features found in the My namespace without much explanation. For additional information
on using these registry features, see Recipe 14.20.

The registry consists of several "hives," one of which is HKEY_CLASSES_ROOT. This hive contains a key for each file
extension recognized by Microsoft Windows. The "default value" for that key refers to another key in the same hive, and
the default value for that second key will finally give us the name we seek.

The following function extracts the file-type name from the registry. The argument passed must be the valid name of an
existing file:

 Public Function GetFileTypeName(_
 ByVal filepath As String) As String
 ' ----- Given a file path, obtain its file type.
 Dim fileDetail As IO.FileInfo
 Dim oneKey As Microsoft.Win32.RegistryKey
 Dim valueText As String

 ' ----- First, make sure the file exists.
 If (My.Computer.
FileSystem.FileExists(filepath) _
 = False) Then
 MsgBox("The file '" & filepath & "' does not exist.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid File")
 Return ""
 End If

 ' ----- Retrieve the file details.
 fileDetail = My.Computer.FileSystem.GetFileInfo(filepath)
 If (fileDetail.Extension Is Nothing) Then Return ""
 If (fileDetail.Extension = "") Then Return ""

 ' ----- Access the extension's entry in the registry.
 oneKey = My.Computer.Registry.ClassesRoot.OpenSubKey(_
 fileDetail.Extension)
 valueText = oneKey.GetValue("")
 oneKey.Close()
 If (valueText Is Nothing) Then Return ""
 If (valueText = "") Then Return ""

 ' ----- Access the extension type's entry in the registry.
 oneKey = My.Computer.Registry.ClassesRoot.OpenSubKey(_
 valueText)
 valueText = oneKey.GetValue("")
 oneKey.Close()
 If (valueText Is Nothing) Then valueText = ""
 Return valueText
 End Function

See Also

Recipe 12.10 shows how to determine if a specified file exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.16. Using File-Access Methods

Problem

It seems that there are a million ways to open and edit a file using Visual Basic, and you are unsure of the differences.

Solution

How you edit a file depends on how you first open it. Visual Basic 2005 has some traditional file-editing features that
are variations of what it had back in Version 1.0 of the language, and you can use some of the file-editing features
provided with the .NET Framework (such as streams). Also, many objects provide options to immediately "serialize"
their content to a file in an XML or similar format. This recipe documents some of the common file-editing choices
available to you in Visual Basic. It does not provide full source code using each possible option. Instead, it provides an
overview of the options available to you.

Discussion

Visual Basic supports two primary methods of file access:handle-based and streambased.

Handle-based file access

Visual Basic traditionally supports a handle-based method of file management. Each file opened for input or output has
a generated numeric ID that is always used to reference that file. The Visual Basic FreeFile() method generates this
numeric handle, and the handle is assigned before a file is ever accessed. To open an existing file, you first obtain an ID
and then open the file:

 Dim fileHandle As Integer =
FreeFile()
 FileOpen(fileHandle, "C:\DataFile.dat", OpenMode.Input, _
 OpenAccess.Read, OpenShare.Shared)

There are several other functions in Visual Basic that deal with file manipulation, and all of them use the file handle
returned from FreeFile(). You must continue to use the handle for all interactions with the opened file until you specifically
close the file.

Care must be taken when using FreeFile(). Until you actually use a file handle to open a file, it is considered unused, and
FreeFile() will keep returning it again and again because it knows it to be unused. Consider the following code:

 Dim fileHandleIn As Integer = FreeFile()
 Dim fileHandleOut As Integer = FreeFile()
 FileOpen(fileHandleIn, inputFilePath, OpenMode.Input)
 FileOpen(fileHandleOut, outputFilePath, OpenMode.Output)

The problem with this code is that fileHandleIn and fileHandleOut probably contain the same numeric handle. That handle
number will get used by the first FileOpen() call, leaving the second one to fail. The following code should be used
instead:

 Dim fileHandleIn As Integer = FreeFile()
 FileOpen(fileHandleIn, inputFilePath, OpenMode.Input)
 Dim fileHandleOut As Integer = FreeFile()
 FileOpen(fileHandleOut, outputFilePath, OpenMode.Output)

Handle-based files are opened in one of three modes:

Sequential

Sequential files are typically text files, and you add data to or retrieve data from these files in the form of text
strings and whole text lines. The FileOpen() statement includes three variations of this mode through the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strings and whole text lines. The FileOpen() statement includes three variations of this mode through the
OpenMode.Input, OpenMode. Output, and OpenMode.Append arguments, all of which are fairly self-describing. To open a
file so that you can append additional data, use this statement:

 FileOpen(fileHandle, fileName, OpenMode.Append)

If the file that you open for Output or Append does not yet exist, FileOpen() creates it for you, assuming that the
supplied path is valid.

Additional variations of the FileOpen() method include additional arguments beyond the three shown above. A
fourth argument to FileOpen(), the OpenAccess argument, indicates your read/write interaction with the file. A fifth
argument, OpenShare, declares whether and how you will block other users from the file while you are using it.

Once the file is open, you have a few choices as to the format of the data you will place in the file. Most of the
reading and writing features for sequential files appear in pairs. The Write() and WriteLine() methods send
formatted data to the output in a way that is very easy to read back in later. Each value is specifically prepared
for output. For instance, date values are surrounded with # characters, and use a consistent format. When you
are ready to read such data, the Input() method correctly "unformats" the formatted data created using Write()
and WriteLine().

For more free-form management of data, use the Print() and PrintLine() functions to output character data. Later,
you can use the InputString() or LineInput() functions to retrieve sections of a line or entire text lines.

If you need to line up data columns when outputting data with Print() and PrintLine(), you can use the FileWidth(),
SPC(), and TAB() features that Visual Basic includes to help manage such formatted output.

Binary

Binary files generally store raw binary data, such as image bitmaps, and interaction with these files often occurs
through individual bytes or blocks of bytes. The OpenMode.Binary mode marks an open file as binary.

Binary data is generally written using the FilePut() and FilePutObject() methods and later read back in using the
FileGet() and FileGetObject() methods. There is no concept of "lines" in a binary file; data is written out in chunks,
with nothing to delimit the chunks unless you specifically output a delimiter.

Random

Random file access involves records and structures. Positioning within random files is generally done via record
number, not by byte or character position. The OpenMode.Random mode marks an open file as random. When
using random files, you can add a sixth argument to the FileOpen() method that indicates the common length of
every record.

As with binary files, random files use the FilePut() and FilePutObject() methods for output and the FileGet() and
FileGetObject() methods for input. Each object or structure written out to the file is considered to be a unit
consistent with the specified record length (if used). When you later read the contents of a random file back in,
you must use the same record length to ensure a match between the output and input data boundaries.

Random files allow specific records or sections of the file to be locked and unlocked using the Lock() and Unlock()
methods. You can determine your current position in the file (by record number) using the Loc() function.

There are a few functions that work with all file modes. The FileClose() and Reset() methods let you close a single file and
all open files, respectively. The EOF() function indicates whether you have reached the end of a file that you are
scanning, although it isn't always reliable with random files. Finally, the Seek() function and Seek() method (two features
with the same name) let you determine and move the current position marker within an open file.

Stream-based file access

While Visual Basic continues to support handle-based file access for reasons of compatibility, streams are the preferred
file access method in .NET. Streams are defined through the System.IO.Stream class and through several derived classes
that enhance that base class (such as providing a stream focused on network data).

Streams provide three basic operations: Read() (and its variations), Write() (with variations), and Seek(). Not all streams
support these basic features. You can use the CanRead(), CanWrite(), and CanSeek() methods to determine their availability.

Streams are useful because they let you manage a file at a granular level, through the individual bytes. However, it
isn't always convenient to constantly convert non-Byte data back and forth to Bytes. To make file reads and writes easier,
the System.IO namespace also includes stream readers and stream writers as separate classes. These distinct classes get
wrapped around a stream and provide start-to-finish reading or writing of a stream's content. The StreamReader class
wraps a Stream object, providing simplified reading of the stream's content. For instance, the ReadLine() method returns the
next line in the stream as a string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

next line in the stream as a string:

 Dim oneLine As String
 Dim scanFile As New IO.StreamReader("c:\data.txt")
 Do While Not scanFile.EndOfStream
 oneLine = scanFile.ReadLine()
 ' ----- Process the line contents here.
 Loop
 scanFile.Close()

The StreamWriter class provides the opposite features, allowing you to write strings and other basic data types to a
stream.

Related stream readers and writers include the StringReader and StringWriter pair (identical to the StreamReader and
StreamWriter classes, but using a String as the underlying storage content instead of a Stream) and the BinaryReader and
BinaryWriter classes, which provide a simplified method of reading and writing binary and core data-type content.

Some of the objects and features in the My.Computer. FileSystem object provide access to file streams. My.Computer.
FileSystem.OpenTextFileReader() opens a StreamReader based on an existing file path. You can also create a new file stream
using the System.IO.File.Create() method or other similar methods.

The My namespace includes a TextFieldParser object that provides simplified access to files with columnar data in either
delimited columns (such as tab-delimited fields) or fixed-width fields.

For those objects that support serialization of their content to XML files, the basic transport between the object and the
destination file is the Stream. Streams also appear when data needs to pass through some sort of conversion on its way to
another destination. The cryptography features in the System.Security.Cryptography namespace frequently use streams
during encryption and hashing operations.

See Also

Other recipes in this chapter provide specific examples using the file-processing features available to Visual Basic. Most
of the recipes focus on stream-based file access because that is the preferred file-interaction method in .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.17. Reading and Writing Files as Strings

Problem

You have a rather large string that you need to be able to put into a file and get back later without too much hassle.

Solution

Sample code folder: Chapter 12\SimpleEditor

Use the My.Computer.FileSystem. WriteAllText() and related ReadAllText() methods to quickly get text data into and out of a file.

Discussion

This recipe's sample code creates a simple Notepad-like text editor. Create a new Windows Forms application, and add
two TextBox controls named FilePath and Editor and two Button controls named ActOpen and ActSave to the form. Set the Editor
control's Multiline property to TRue and its ScrollBars property to Both. Add some informational labels, and arrange the
controls to look like Figure 12-13.

Figure 12-13. Controls for the text editor sample

Add the following source code to the form's class template:

 Private Sub ActOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActOpen.Click
 ' ----- Open an existing file and load its text.
 Try
 Editor.Text = My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Editor.Text = My.Computer.
FileSystem.ReadAllText(FilePath.Text)
 Catch ex As Exception
 MsgBox("Could not open the file due to the " & _
 "following error:" & vbCrLf & vbCrLf & ex.Message)
 End Try
 End Sub

 Private Sub ActSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActSave.Click
 ' ----- Save the edited data.
 If (My.Computer.FileSystem.FileExists(FilePath.Text) = _
 True) Then
 If (MsgBox("File exists. Overwrite?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Overwrite") <> MsgBoxResult.Yes) Then Exit Sub
 End If

 ' ----- Save the data.
 Try
 My.Computer.FileSystem.WriteAllText(FilePath.Text, _
 Editor.Text, False)
 Catch ex As Exception
 MsgBox("Could not save the file due to the " & _
 "following error:" & vbCrLf & vbCrLf & ex.Message)
 End Try
 End Sub

To use the program, type in a file path, and click the Open button. Make changes in the Editor field, and then click the
Save button to store those changes in the file.

The My.Computer. FileSystem.ReadAllBytes() and WriteAllBytes() methods provide parallel features for byte arrays.

See Also

Recipe 12.18 discusses the processing of binary files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.18. Reading and Writing Binary Files

Problem

You need to read or write binary content in a file.

Solution

If you have a block of bytes that you want to push out to a file quickly, use the My.Computer.FileSystem.WriteAllBytes()
method:

 Dim fileData() As Byte
 ' ----- Fill in the array with relevant data, and then…
 My.Computer.FileSystem.WriteAllBytes(_
 outputFilePath, fileData, False)

The third argument indicates whether the new data should be appended to the end of any existing file data. If you set it
to False, any existing data is replaced by the new data.

To get the binary data back into a Byte array from a file, use the related ReadAllBytes() method:

 Dim fileData() As Byte = _
 My.Computer.FileSystem.ReadAllBytes(inputFilePath)

Discussion

If you need to do more than just read and write the file en masse with a Byte array, consider using the BinaryReader and
BinaryWriter classes. These classes wrap a basic Stream object (such as a FileStream), providing convenient methods to read
and write content.

The BinaryWriter object provides a single massively overridden Write() method that lets you save most of the core Visual
Basic data-type values to a stream. This code opens/creates a file and writes out some basic values:

 Dim value1 As Integer = 5
 Dim value2 As Boolean = True
 Dim value3 As Char = "A"c
 Dim outStream As New IO.
FileStream(_
 "c:\data.dat", IO.FileMode.OpenOrCreate)
 Dim outFile As New IO.BinaryWriter(outStream)

 outFile.Write(value1)
 outFile.Write(value2)
 outFile.Write(value3)
 outFile.Close()
 outStream.Close()

Read back this data using a BinaryReader:

 Dim value1 As Integer
 Dim value2 As Boolean
 Dim value3 As Char
 Dim inStream As New IO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim inStream As New IO.
FileStream(_
 "c:\data.dat", IO.FileMode.Open, IO.FileAccess.Read)
 Dim inFile As New IO.BinaryReader(inStream)

 value1 = inFile.ReadInt32()
 value2 = inFile.ReadBoolean()
 value3 = inFile.ReadChar()
 inFile.Close()
 inStream.Close()

If you need an even higher level of control, the FileStream object (as derived from the Stream class) also exposes ReadByte()
and WriteByte() methods (and other related methods) that let you read and write individual bytes at any position in the
file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.19. Copying or Moving a File

Problem

You need to copy or move an existing file from one location to another.

Solution

Use the My.Computer.FileSystem. MoveFile() method to move a file from its current location to another place in the file system.
Use the related CopyFile() method to copy the file instead of moving it. The basic syntax is:

 ' ---- To move the file.
 My.Computer.FileSystem.MoveFile(_
 sourceFile, destFile[, overwriteFlag])

 ' ---- To copy the file.
 My.Computer.FileSystem.CopyFile(_
 sourceFile, destFile[, overwriteFlag])

Because destFile is a filename and not a directory name, you can effectively rename the file at the same time you move
or copy it. When moving the file, you can keep the file in the same directory and just give it a new name, although
using the RenameFile() method would be clearer. The optional overwriteFlag is a Boolean that indicates whether any existing
file at the target should be replaced silently by the source file. It defaults to False.

Discussion

A variation of both MoveFile() and CopyFile() uses a different set of arguments to control the display of on-screen prompts
and status notifications during the move or copy:

 ' ----- MoveFile() syntax.
 My.Computer.
FileSystem.MoveFile(_
 sourceFile, destFile, _
 showUI [, onUserCancel])

 ' ----- CopyFile() syntax.
 My.Computer.FileSystem.CopyFile(_
 sourceFile, destFile, _
 showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the file move or copy to indicate the current status during that
operation. (The dialog might not appear for moves or copies that involve a small amount of content.) Any errors
that occur present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the move or copy takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UICancelOption.DoNothing

The on-screen status display during a move or copy operation includes a Cancel button. If the user clicks the
Cancel button when the DoNothing option is in effect, the code calling MoveFile() or CopyFile() will not receive any
notification that the move or copy was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the status dialog when ThrowException is used, the MoveFile() or CopyFile()
method generates a System.IOException exception, which can be caught by the initiating code. This is the default
method.

See Also

Recipes 12.4 and 12.5 show you how to move and copy whole directories instead of just files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.2. Determining if a Directory Exists

Problem

The user has supplied a directory, and you want to confirm that it is valid before accessing it.

Solution

Sample code folder: Chapter 12\DirectoryExists

Use the My.Computer. FileSystem.DirectoryExists() method to determine whether a directory exists or not. Pass the method a
String containing the directory path to check for validity.

Discussion

To try out this feature, create a new Windows Forms application, and add a TextBox control named TextBox1 and a Button
control named Button1 to the form. Now add the following code to the form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Test for a valid directory.
 If (My.Computer.FileSystem.DirectoryExists(_
 TextBox1.Text)) Then
 MsgBox("The directory already exists.")
 Else
 MsgBox("The directory does not exist, " & _
 "or is part of an invalid path.")
 End If
 End Sub

Figure 12-2 shows this form in use.

Figure 12-2. Testing a directory to see if it exists

The DirectoryExists() method checks for the actual presence of a directory, not just for a valid directory-name format. It
works with three types of drive paths:

Absolute paths referenced from a drive letter, as in C:\WINDOWS.

Absolute paths referenced through UNC syntax, as in \\system\share\directory.

Relative paths referenced from the current directory as understood by the running application, as in
..\AnotherDirectory. You can start the path with the current directory (.) or parent directory (..) indicators, or
with the name of a directory assumed to be found in the current directory. Use the My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the name of a directory assumed to be found in the current directory. Use the My.Computer.
FileSystem.CurrentDirectory property to determine or modify the current directory location.

URL-based directory paths, using the "file://" prefix, cannot be used with this method or with most of the features in
My.Computer.FileSystem. Security restrictions in effect for the current user may prevent access to certain portions of a file
system.

See Also

Recipe 12.10 shows how to determine if a file exists.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.20. Sending a File to the Recycle Bin

Problem

You need to delete a file or, even better, send it to the Recycle Bin.

Solution

The My.Computer. FileSystem. DeleteFile() method allows you to either permanently delete a file or send it to the Recycle Bin.
The basic syntax is:

 My.Computer.FileSystem.DeleteFile(filePath _
 [, showUI [, recycle [, onUserCancel]]])

To send the file to the Recycle Bin, the recycle option needs to be set appropriately:

 My.Computer.FileSystem.DeleteFile(filePath, _
 UIOption.OnlyErrorDialogs, _
 RecycleOption.SendToRecycleBin)

Discussion

The first DeleteFile() argument accepts a single file to be deleted, and you can include up to three additional optional
arguments: showUI (which impacts user presentation during the deletion), recycle (which indicates whether or not to use
the Recycle Bin), and onUserCancel (which sets what happens when the user aborts the deletion).

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the file deletion to indicate the current status during that
operation. (The dialog might not appear for deletes that involve a small amount of content.) Any errors that
occur present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the delete takes. This is the default method.

The recycle argument accepts one of the following Microsoft.VisualBasic.FileIO.RecycleOption enumeration values:

RecycleOption.DeletePermanently

The file is immediately and permanently removed from the disk.

RecycleOption.SendToRecycleBin

Instead of deleting the file, DeleteFile() moves the file to the Recycle Bin pseudodirectory.

If you include the onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption enumeration
values:

UICancelOption.DoNothing

The on-screen status display during a delete operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling DeleteFile() will not receive any notification that the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

button when the DoNothing option is in effect, the code calling DeleteFile() will not receive any notification that the
deletion was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the status dialog when ThrowException is used, the DeleteFile() method
generates a System.IOException exception, which can be caught by the initiating code. This is the default method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.21. Creating a Temporary File

Problem

You need to quickly store some data in a file, but the data will just be around for a little while.

Solution

Create a temporary file in the user's "official" temporary file area with the My.Computer. FileSystem.GetTempFileName() method:

 Dim workFile As String = _
 My.Computer.FileSystem.
GetTempFileName()

The filename returned represents a brand-new file created by the method that is zero bytes in size. When you are
ready to use it, open it with one of the stream-based or file handle-based file-management methods, and make any
additions or changes as needed. When you are finished, simply delete the file.

Discussion

The temporary file is added to the user's default temporary file area and always has a .tmp extension. The filename is
guaranteed to be unique and will not conflict with other temporary filenames stored in that same directory. The typical
location for a logged-in Windows user is:

 C:\Documents and Settings\<user>\Local Settings\Temp\

See Also

Recipe 12.16 discusses the editing of files using either stream-based or file handle-based methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.22. Calculating a Checksum for a File

Problem

You want to ensure that the contents of a file have not changed, perhaps after transmitting that file over the Internet.

Solution

Sample code folder: Chapter 12\GenerateChecksum

Generate a checksum for the file. A checksum is a short value or string that is built using the contents of the file.
Calculating a checksum on identical content will yield identical results, but different input produces different and varying
checksums. A good checksum-generating algorithm is very sensitive to even the smallest change in the source data (a
file, in this case).

Discussion

Create a new Windows Forms application, and add two TextBox controls named FileToCheck and HexChecksum and a Button
control named GenerateChecksum to the form. Set the HexChecksum.ReadOnly property to TRue. Add some informational labels
and arrange the controls to look like Figure 12-14.

Figure 12-14. Controls for the file checksum sample

Add the following source code to the form's class template. We've also included some needed Imports statements:

 Imports System.Text
 Imports System.Security.Cryptography
 Public Class Form1
 Private Sub GenerateChecksum_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles GenerateChecksum.Click
 ' ----- The hash value is ready, but I like things in
 ' plain text when possible. Let's convert it to a
 ' long hex string.
 Dim checksum As Byte()
 Dim counter As Integer
 Dim result As String

 ' ----- Generate the checksum for the file.
 Try
 checksum = GenerateFileChecksum(FileToCheck.Text)
 Catch ex As Exception
 MsgBox("An error occurred while trying to " & _
 "calculate the checksum:" & _
 vbCrLf & vbCrLf & ex.Message)
 Exit Sub
 End Try

 ' ----- Prepare the checksum for display.
 If (checksum Is Nothing) Then
 result = "No checksum result."
 Else
 ' ----- Convert the checksum into something readable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Convert the checksum into something readable.
 result = ""
 For counter = 0 To checksum.Length - 1
 result &= String.Format("{0:X2}", _
 checksum(counter))
 Next counter
 End If

 ' ----- Show the result to the user.
 HexChecksum.Text = result
 End Sub

 Public Function GenerateFileChecksum(_
 ByVal filePath As String) As Byte()
 ' ----- Use the HMACSHA1 hashing function to generate
 ' a checksum for a file.
 Dim hashingFunction As HMACSHA1
 Dim hasingBase() As Byte
 Dim hashValue() As Byte
 Dim inStream As IO.Stream

 ' ----- Make sure the file exists.
 If (My.Computer.
FileSystem.FileExists(filePath) _
 = False) Then
 Throw New IO.FileNotFoundException
 Return Nothing
 End If

 ' ----- Prepare the
hashing key. You have to use
 ' the same hashing key every time, or you
 ' will get different results.
 hasingBase = (New UnicodeEncoding).GetBytes("Cookbook")

 ' ----- Create the hashing component using the Managed
 ' SHA-1 function.
 hashingFunction = New HMACSHA1(hasingBase, True)

 ' ----- Open the file as a stream.
 inStream = New IO.
FileStream(filePath, _
 IO.FileMode.Open, IO.FileAccess.Read)

 ' ----- Calculate the checksum value.
 hashValue = hashingFunction.ComputeHash(inStream)

 ' ----- Finished with the file.
 inStream.Close()

 ' ----- Return the checksum as a byte array.
 Return hashValue
 End Function
 End Class

To use the program, type in a file path, and click the Generate button. The resulting 40-hex-digit checksum will appear
in the HexChecksum field. Figure 12-15 shows the results of a checksum calculation.

Figure 12-15. A checksum generated for an executable file

Checksums are especially useful when you want to know if two files, or two sets of data, contain identical content. They
are typically generated using a hashing algorithm, a processing method that takes some original content and generates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are typically generated using a hashing algorithm, a processing method that takes some original content and generates
a summary value representing the full content. Hashing algorithms process the input data in blocks. As a hash is
calculated for each block, the next block is brought in and applied to or overlaid on the existing hash. This constant
merging of the data makes the algorithms very sensitive to any changes in the source content.

The .NET Framework includes several hashing algorithms and encryption features in the System.Security.Cryptography
namespace. This recipe's code uses the HMACSHA1 class (Hash-based Message Authentication Code, or HMAC, via the
SHA-1 hash function) in that namespace to generate the hash. Hash functions such as the SHA-1 function were
developed by private organizations and government security agencies to help protect sensitive content. Several similar
hash functions and related encryption algorithms are included in System.Security.Cryptography for your use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.23. Comparing Two Files for Equality

Problem

You have two files that should contain identical content, and you want to make sure that they do.

Solution

Sample code folder: Chapter 12\CompareFiles

Call the GenerateFileChecksum() routine developed in Recipe 12.22 for each of the files, and compare the checksum.

Discussion

The following code uses the GenerateFileChecksum() method on two distinct files and compares the resulting checksums:

 Public Function AreFilesIdentical(_
 ByVal file1 As String, ByVal file2 As String) _
 As Boolean
 ' ----- Return True if two files are identical.
 Dim checksum1 As Byte()
 Dim checksum2 As Byte()
 Dim counter As Integer

 On Error GoTo ErrorHandler

 ' ------ Calculate the checksums.
 checksum1 = GenerateFileChecksum(file1)
 checksum2 = GenerateFileChecksum(file2)

 ' ----- See if the results are equal.
 For counter = 0 To UBound(checksum1)
 If (checksum1(counter) <> checksum2(counter)) _
 Then Return False
 Next counter

 ' ----- The checksums are equal.
 Return True

 ErrorHandler:
 ' ----- If anything went wrong, assume the
 ' files are unequal.
 Return False
 End Function

See Also

See Recipe 12.22 for the code needed to complete this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.24. Locking a File During Access

Problem

You need to update the content of a file, and you don't want anyone else messing with it while you're in there.

Solution

The System.IO. FileStream object can be used to open a file with various levels of file sharing and locking. When opening a
file stream, use the appropriate locking flag to keep other users or processes from accessing the file while you have it
open.

Discussion

The System.IO. FileStream constructor includes several arguments that indicate how the file should be opened. One of the
basic overloads for this constructor uses a file-sharing flag as its fourth argument:

 Dim newStream As New IO.Stream(path As String, _
 mode As IO.FileMode, access As IO.FileAccess, _
 share As IO.FileShare)

The share argument accepts one of the following System.IO.FileShare enumeration values:

FileShare.None

The file cannot be opened by any other process, or even by other open requests within this same process.

FileShare.Read

Other processes can open the file for reading only, not for modification.

FileShare.ReadWrite

Other processes can open the file for both reading and writing. This is the default setting if you exclude the
FileShare option from the opening of the stream.

FileShare.Write

Other processes can open the file for writing or appending, but they cannot read from it until this process closes
the file.

Although the FileShare enumeration indicates whether other processes can open a file while your process is using it, it
does not control the authorization of access to this file. The other process must still have security rights to access the
file in order to open it, even if you specify FileShare.ReadWrite.

When opening files in random mode using the Visual Basic FileOpen() method (see Recipe 12.16), you can lock specific
records within the opened file using the Lock() method:

 ' ----- Open the file. Each record is 50 bytes.
 Dim fileID As Integer = FreeFile()
 FileOpen(fileID, pathToFile, OpenMode.Random, _
 OpenAccess.ReadWrite, OpenShare.LockWrite, 50)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OpenAccess.ReadWrite, OpenShare.LockWrite, 50)

 …

 ' ----- Lock record number five.
 Lock(fileID, 5)

 …

 ' ----- Make the needed changes, then unlock the record.
 Unlock(fileID, 5)

 …

 ' ----- Finished with the file.
 FileClose(fileID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.25. Reading from a File at a Specific Position

Problem

You need to access content at a specific byte position in a file.

Solution

Use the Seek() method of a stream to relocate the current position of the stream:

 Dim oneByte As Byte
 Dim fileData As New IO.
FileStream(filePath, _
 IO.FileMode.Open, IO.FileAccess.Read)
 ' ----- Jump to byte 1000 and read what's there.
 fileData.Seek(1000, IO.SeekOrigin.Begin)
 oneByte = fileData.ReadByte()

Discussion

The Seek() method lets you quickly adjust your position in the file. The second argument specifies how the movement is
to occur using one of the System.IO.SeekOrigin enumeration values:

SeekOrigin.Begin

The offset indicates a forward position from the beginning of the file. The first byte in the file is position 1.

SeekOrigin.Current

The offset indicates a position relative to the current position in the file. Positive offsets move forward; negative
offsets move backward.

SeekOrigin.End

The offset indicates a position relative to the end of the file. Positive offsets move forward beyond the end of
the file; negative offsets move backward from the end of the file.

If you position the current position past the end of the file, the next data you write to the file will fill in all the unwritten
space between the current end of the file and your new data. If you attempt to read past the end of the file, an
exception occurs. You cannot set the current position to a place before the beginning byte of a file.

To determine the current byte position, access the stream's Position property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.26. Reading and Writing Objects in a File

Problem

You've designed a custom class. You want to store instances of that class in a file and load them back into instances
later, but you don't want the object to open a stream and do all of the necessary reads and writes by itself.

Solution

Sample code folder: Chapter 12\ReadWriteObjects

Add serialization to your class by implementing the ISerializable interface. Serialization is the process of preparing an
object's data for transport over a stream (or similar system), and later rebuilding the object from the previously
transported content.

Discussion

There are three primary steps needed to make a class serializable:

1. Mark the class with the Serializable attribute, and mark it as implementing the ISerializable interface.

2. Implement the ISerializable. GetObjectData() method.

3. Add a custom constructor that uses the same argument signature as ISerializable.GetObjectData().

The following code implements a simple employee class. Serialization support is highlighted:

 Imports System.Runtime.Serialization

 ' ----- Mark the entire class with the
 ' SerializableAttribute attribute.
 <Serializable()> _
 Public Class Employee
 ' ----- Mark the class as using ISerializable.
 Implements ISerializable

 ' ----- Define the basic members
and properties.
 Public FullName As String
 Public HireDate As Date
 Private CurrentSalary As Decimal
 Public Property Salary() As Decimal
 Get
 Return CurrentSalary
 End Get
 Set(ByVal value As Decimal)
 If (value >= 0) Then CurrentSalary = value
 End Set
 End Property

 Public Sub New()
 ' ----- Default constructor. This class should
 ' probably have something more interesting
 ' or data-preparing, but it's just a
 ' serialization sample, so no problem.
 End Sub

 Public Sub New(ByVal info As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub New(ByVal info As
SerializationInfo, _
 ByVal context As StreamingContext)
 ' ----- Rebuild a previously serialized object by
 ' getting the individual member components
 ' from the serialization store.
 FullName = info.GetString("FullName")
 HireDate = info.GetDateTime("HireDate")
 CurrentSalary = info.GetDecimal("Salary")
 End Sub

 Public Sub GetObjectData(_
 ByVal info As SerializationInfo, _
 ByVal context As StreamingContext) _
 Implements ISerializable.GetObjectData
 ' ----- Serialize the object by adding all the class
 ' members to the serialization store as
 ' name-value pairs.
 info.AddValue("FullName", FullName)
 info.AddValue("HireDate", HireDate)
 info.AddValue("Salary", CurrentSalary)
 End Sub
 End Class

The SerializationInfo object used in both the serialization and deserialization code includes overloads and parallel methods
for all the core Visual Basic data types.

Once you've prepared your class for serialization, you can include it in a stream using one of the formatters included
with the serialization system. The BinaryFormatter class streams out a serializable class in a binary form. The class, located
in the System.Runtime.Serialization.Formatters.Binary namespace, connects the serializable object to an open stream. The
following code serializes and deserializes an Employee object (as defined in this recipe) to a standard file stream:

 Imports System.Runtime.Serialization

 Public Class Form1
 Private Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 SaveToFile()
 GetFromFile()
 End Sub

 Private Sub SaveToFile()
 ' ----- Serialize an employee object to a file.
 Dim newEmp As New Employee
 Dim outFile As IO.
FileStream
 Dim formatter As New Formatters.Binary.BinaryFormatter

 ' ----- Build a simple employee record.
 newEmp.FullName = "John Doe"
 newEmp.HireDate = #11/7/2005#
 newEmp.Salary = 10000@

 ' ----- Open the data file for storage.
 outFile = New IO.
FileStream("c:\EmpData.dat", _
 IO.FileMode.Create)

 ' ----- Send the employee to the stream through
 ' a binary serialization formatter.
 formatter = New Formatters.Binary.BinaryFormatter
 formatter.Serialize(outFile, newEmp)

 ' ----- Finished.
 outFile.Close()
 End Sub

 Sub GetFromFile()
 ' ----- Build an employee record from storage.
 Dim oldEmp As Employee = Nothing
 Dim inFile As IO.FileStream
 Dim formatter As Formatters.Binary.BinaryFormatter

 ' ----- Open the file with the stored employee.
 inFile = New IO.FileStream("c:\EmpData.dat", _
 IO.FileMode.Open)

 ' ----- Deserialize the employee through the binary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Deserialize the employee through the binary
 ' serialization formatter.
 formatter = New Formatters.Binary.BinaryFormatter
 oldEmp = CType(formatter.Deserialize(inFile), Employee)
 inFile.Close()

 ' ----- Prove that the data came back intact.
 MsgBox("Name: " & oldEmp.FullName & vbCrLf & _
 "Hire: " & oldEmp.HireDate.ToString() & vbCrLf & _
 "Salaray: " & oldEmp.Salary.ToString())
 End Sub
 End Class

The .NET Framework also includes support for nonbinary serialization through distinct XML and SOAP serialization
systems. The System.Xml.Serialization.XmlSerializer class provides much of this functionality, although its use differs
considerably from the binary formatting presented in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.27. Creating a Comma-Separated-Values File

Problem

You need to output data for use in Excel, without automating Excel directly.

Solution

Sample code folder: Chapter 12\GenerateCSV

Create a CSV file, which is simply a text file with commas separating tabular values. The file will have a .csv file
extension, which is a format already recognized by Excel.

Discussion

Visual Basic 2005 provides some new, enhanced, easy-to-use shared methods in the My namespace that simplify file
reading and writing, among many other things. The sample code presented here uses My.Application.Info.DirectoryPath to get
the full path to where the application's EXE file is located and then uses the My.Computer. FileSystem. OpenTextFileWriter()
method to create a StreamWriter to write the CSV file at this location:

 ' ----- Create the new output file.
 Dim csvFile As String = My.Application.Info.DirectoryPath & _
 "\Test.csv"
 Dim outFile As IO.StreamWriter = _
 My.Computer.
FileSystem.OpenTextFileWriter(csvFile, False)

 ' ----- Build the output, including a header row.
 outFile.WriteLine("Column 1, Column 2, Column 3")
 outFile.WriteLine("1.23, 4.56, 7.89")
 outFile.WriteLine("3.21, 6.54, 9.87")
 outFile.Close()

 ' ----- Display the contents as a message.
 MsgBox(My.Computer.FileSystem.ReadAllText(csvFile))

 ' ----- Display the contents in Excel (if installed).
 Process.Start(csvFile)

The StreamWriter object's Write() and WriteLine() methods output lines of text to the file. The Write() method does not
automatically append a newline with each call, but the WriteLine() does, so that's what is used in this code.

The StreamWriter's Close() method flushes all lines of text to the file and closes the StreamWriter object. However, when
reading a file into a string, you can open, read, and close the file all in one command, as demonstrated by the call to
My.Computer.FilesSystem.ReadAllText() in the previous sample code. Using this method to load and display the new file results
in Figure 12-16.

Figure 12-16. The contents of the CSV file loaded into a single string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last line uses Process.Start() to tell the operating system to load the CSV file, using whatever application is registered
to process files with a .csv extension. If you have Excel installed, this line of code should open the tabular data in a new
work-sheet, as shown in Figure 12-17.

Figure 12-17. The Process.Start() method loads and displays the new CSV file in
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.3. Creating a New Directory

Problem

You need to create a new directory to store user or application data.

Solution

Sample code folder: Chapter 12\NewDirectory

Use the My.Computer.FileSystem. CreateDirectory() method to create the new directory. Pass the method a String containing the
directory path to create.

Discussion

To try out this feature, create a new Windows Forms application, and add a TextBox control named TextBox1 and a Button
control named Button1 to the form. Now add the following code to the form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- The user must supply a directory.
 If (Trim(TextBox1.Text) = "") Then
 MsgBox("Please supply a directory.")
 TextBox1.Focus()
 Exit Sub
 End If

 ' ----- Create the directory requested by the user.
 If (My.Computer.FileSystem.DirectoryExists(_
 TextBox1.Text)) Then
 MsgBox("The directory already exists.")
 Else
 Try
 My.Computer.FileSystem.CreateDirectory(TextBox1.Text)
 MsgBox("Directory created successfully.")
 Catch ex As Exception
 MsgBox("The directory could not be created due " & _
 "to the following error:" & _
 vbCrLf & vbCrLf & ex.Message)
 End Try
 End If
 End Sub

The CreateDirectory() method accepts either absolute or relative paths in drive-letter or UNC format, but not URL-based
"file://" paths. If the directory cannot be created, CreateDirectory() generates an exception.

A variation of this method exists through the System.IO.Directory.CreateDirectory() function. This function returns a
System.IO.DirectoryInfo object for the newly created directory object. It also includes a second overload that accepts
security settings for the new directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.4. Copying Directories

Problem

You need to copy the contents of an existing directory to a new location, leaving the original directory intact.

Solution

Use the My.Computer.FileSystem.CopyDirectory() method to copy the contents of a directory from one place to another.

Discussion

The basic syntax of the CopyDirectory() method is:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The destDirectory argument is also an absolute or relative path,
although it may not appear hierarchically within the source directory. For example:

 My.Computer.FileSystem.CopyDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

The duplication of the source directory is complete, creating copies of all subordinate files and directories to any depth.

If the destination directory does not exist, CopyDirectory() creates it, including any nonexistent path components between
the specified root and the final directory. If the destination directory is already present, any existing files at the
destination remain intact, and new files are copied in amongst them, resulting in a merged destination directory. If one
of the files to be copied already exists at the destination, CopyDirectory() generates an exception. If you want it to
overwrite any matching files at the destination silently, use the optional third argumentthe overwrite argumentpassing a
value of true:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory, True)

A variation of CopyDirectory() uses a different set of arguments to control the display of on-screen prompts and status
notifications during the copy:

 My.Computer.FileSystem.CopyDirectory(_
 sourceDirectory, destDirectory, _

showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

An animated progress dialog appears during the directory copy to indicate the current status as each file is
copied. (The dialog might not appear for copies that involve a small amount of content.) Any errors that occur
present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the copy takes. This is the default method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

how long the copy takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

The on-screen status display during a copy operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling CopyDirectory() will not receive any notification that
the copy was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the directory copy status dialog when ThrowException is used, the
CopyDirectory() method generates a System.IOException exception, which can be caught by the initiating code. This is
the default method.

See Also

See Recipe 12.19 for details on copying individual files instead of whole directories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.5. Moving Directories

Problem

You need to move a directory from one location to another.

Solution

Use the My.Computer.FileSystem.MoveDirectory() method to relocate an existing directory from one place to another.

Discussion

The basic syntax of the MoveDirectory() method is:

 My.Computer.FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The destDirectory argument is also an absolute or relative path,
although it may not appear hierarchically within the source directory. For example:

 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

If the destination directory does not exist, MoveDirectory() creates it, including any nonexistent path components between
the specified root and the final directory.

If all but the final directory component of the source and destination directories are the same, MoveDirectory() acts like a
simple directory rename operation. The My.Computer.FileSystem.RenameDirectory() method may provide a clearer method of
renaming directories within the same parent directory.

The movement of the source directory is complete, moving all subordinate files and directories to any depth. Also, you
can move a directory between different logical disk drives.

The MoveDirectory() method creates the target directory if it does not yet exist. If the destination directory is already
present, any existing files at the destination remain intact, and new files are moved in amongst them, resulting in a
merged destination directory. If one of the files to be moved already exists at the destination, MoveDirectory() generates
an exception. If you want it to overwrite any matching files at the destination silently, use the optional third
argumentthe overwrite argumentpassing a value of TRue:

 My.Computer.FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory, True)

A variation of MoveDirectory() uses a different set of arguments to control the display of on-screen prompts and status
notifications during the directory move:

 My.Computer.
FileSystem.MoveDirectory(_
 sourceDirectory, destDirectory, _

showUI [, onUserCancel])

The showUI argument accepts one of the following Microsoft.VisualBasic.FileIO.UIOption enumeration values:

UIOption.AllDialogs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UIOption.AllDialogs

An animated progress dialog appears during the directory move to indicate the current status as each file is
moved. (The dialog might not appear for moves that involve a small amount of content.) Any errors that occur
present their own separate error-dialog prompts.

UIOption.OnlyErrorDialogs

While errors will appear through distinct error-dialog prompts, no animated status display appears, no matter
how long the move takes. This is the default method.

If you include the fourth onUserCancel argument, you provide it one of the following Microsoft.VisualBasic.UICancelOption
enumeration values:

UICancelOption.DoNothing

The on-screen status display during a move operation includes a Cancel button. If the user clicks the Cancel
button when the DoNothing option is in effect, the code calling MoveDirectory() will not receive any notification that
the move was aborted early.

UICancelOption.ThrowException

If the user clicks the Cancel button on the directory move status dialog when ThrowException is used, the
MoveDirectory() method generates a System.IOException exception, which can be caught by the initiating code. This is
the default method.

See Also

Recipe 12.4 shows how to copy an existing directory instead of moving it. To rename a directory without moving it to
another parent directory, see Recipe 12.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.6. Renaming Directories

Problem

You need to rename a directory, but it's not really a directory move because the renamed directory will stay in the
same parent directory.

Solution

Use the My.Computer. FileSystem.RenameDirectory() method to change the name of an existing directory.

Discussion

The basic syntax of the RenameDirectory() method is:

 My.Computer.FileSystem.RenameDirectory(_
 sourceDirectory, newName)

The sourceDirectory argument contains an absolute UNC-based or drive-letter-based path, or a relative path based on the
current directory from the application's point of view. The newName argument includes only the new name of the final
directory component; you cannot supply an absolute or relative path for this argument. The following statement is
valid:

 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "PlayFiles")

This statement is not:

 ' ----- This statement will fail.
 My.Computer.FileSystem.MoveDirectory(_
 "C:\WorkFiles", "C:\PlayFiles")

If a directory already exists with the new name, RenameDirectory() generates an exception, even if that target directory is
empty.

Visual Basic includes an intrinsic function, Rename(), which can also rename directories. Its syntax is slightly different
because its second argument accepts either a new non-path name or any valid path:

 ' ----- Both of these statements will work.
 Rename("C:\WorkFiles", "PlayFiles")
 Rename("C:\WorkFiles", "C:\PlayFiles")

The Rename() function also moves a directory to another existing directory tree if requested:

 Rename("C:\Temp\Important\LogFiles\OldLogs", _
 "C:\Temp\Archive\LogFiles")

Generally, the features exposed through the My namespace enhance features already found elsewhere. However, this is
one of those times when the older feature provides a more flexible interface. Still, for consistency in new code, you will
probably want to use RenameDirectory().

See Also

To move a directory to a different parent directory, see Recipe 12.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.7. Parsing File and Directory Paths

Problem

You need to extract a directory name from a full path to a file or get just the filename portion, and you don't want to
mess with all of those backslashes.

Solution

Use the path-parsing methods found in the My.Computer. FileSystem object: CombinePath(), GetName(), and GetParentPath().

Discussion

As a programmer, you spend a lot of time manipulating string data. The .NET Framework has taken on itself some of
the burden involved in specific types of string management. XML is a good example: you can use the XML objects
included in .NET instead of stringing together the various components yourself. .NET provides similar convenience
features for path-string manipulation.

The My namespace includes three methods designed to help you manage path strings. None of them compares the
supplied paths to existing files or directories on the local or network file system; they are purely string-manipulation
methods. Here are the methods:

My.Computer.FileSystem.CombinePath()

The CombinePath() method accepts an absolute path and a relative path to attach to the end of the absolute path.
It returns the combined path with the relative part attached to the end of the absolute part, with any necessary
"\" characters added where needed. The relative part may be a directory name or a filename. For example:

 Dim newPath As String = _
 My.Computer.FileSystem.CombinePath(_
 "C:\temp", "WorkFiles\TodaysWork.txt")
 MsgBox(newPath)
 ' Displays: "C:\temp\WorkFiles\TodaysWork.txt"

If you provide a relative path for the first "absolute" argument, CombinePath() first modifies the argument so that
it indicates a directory within the current directory as understood by the application. For instance, if the current
directory is C:\temp, the statement:

 MsgBox(My.Computer.FileSystem.CombinePath(_
 "part1", "part2")

displays C:\temp\part1\part2.

My.Computer.FileSystem.GetName()

This method extracts the final component of a supplied path and returns it:

 ' ----- Displays: part2
 MsgBox(My.Computer.FileSystem.GetName(_
 "C:\temp\part1\part2"))

You can supply absolute or relative paths to the GetName() function. The result of the function is always the final
path component of whatever string you send.

My.Computer.FileSystem.GetParentPath()

The GetParentPath() method returns everything except the final component of a supplied path. That is, it returns
the directory that contains the final path component. If there is a trailing backslash, it is removed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the directory that contains the final path component. If there is a trailing backslash, it is removed:

 ' ----- Displays: C:\temp\part1
 MsgBox(My.Computer.FileSystem.GetParentPath(_
 "C:\temp\part1\part2"))

You can supply absolute or relative paths to the GetParentPath() function. The result of the function is always the
parent-path component of whatever string you send. If you provide a string that contains only a single relative
component (such as "MyDirectory" or ".."), this function returns a zero-length string.

Although these three methods deal exclusively with strings and not with actual paths, they do perform some minimal
text analysis to ensure you process valid paths. If you attempt to use Unix-style forward slashes ("/") in your paths
instead of the Windows-style backslash ("\"), these methods convert all "/" characters to "\" before generating results.
Also, these methods raise an exception if you supply a URI-based file path (as in file://system/directory/file).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.8. Searching Iteratively Through Directories and
Subdirectories

Problem

You need to recursively traverse a directory tree and identify all subdirectory names.

Solution

Sample code folder: Chapter 12\IterateDirectories

Recursively call the My.Computer.FileSystem. GetDirectories() method to scan each subdirectory and its contents in order.

Discussion

This recipe's sample code fills in a TReeView control with all subdirectories and directory descendants of a specified base
path.

In a new Windows Forms project, add a TextBox control named StartPath, a Button control named ActTraverse, and a TReeView
control named PathTree to Form1. You can add labels and provide meaningful captions if you wish, as is done in Figure 12-
3.

Figure 12-3. Controls for the directory traversal sample

Now add the following source code to the form's class template:

 Private Sub ActTraverse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActTraverse.Click
 ' ----- Make sure the supplied path is valid.
 If (My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (My.Computer.
FileSystem.DirectoryExists(_
 StartPath.Text) = False) Then
 MsgBox("Please supply a valid directory path.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid Path")
 Exit Sub
 End If

 ' ----- Clear any previous tree.
 PathTree.Nodes.Clear()

 ' ----- Call the scanning routine, a recursive routine.
 BuildDirectoryTree(Nothing, StartPath.Text)
 End Sub

 Private Sub BuildDirectoryTree(ByVal fromNode As TreeNode, _
 ByVal basePath As String)
 ' ----- Attach all of the subdirectories found in
 ' basePath to the supplied node. If fromNode is
 ' Nothing, create root entries.
 Dim newDirectory As TreeNode
 Dim justTheSubdirectory As String

 ' ----- Retrieve all directories in this path.
 For Each oneDirectory As String In _
 My.Computer.
FileSystem.GetDirectories(basePath)
 ' ----- Extract just the final directory name.
 justTheSubdirectory = My.Computer.FileSystem.GetName(_
 oneDirectory)

 If (fromNode Is Nothing) Then
 ' ----- Add a top-level subdirectory.
 newDirectory = PathTree.Nodes.Add(_
 justTheSubdirectory)
 Else
 ' ----- Add a subordinate node.
 newDirectory = fromNode.Nodes.Add(_
 justTheSubdirectory)
 End If

 ' ----- Recurse into the subdirectory.
 BuildDirectoryTree(newDirectory, My.Computer.FileSystem. _
 CombinePath(basePath, justTheSubdirectory))
 Next oneDirectory
 End Sub

To use the program, type a valid directory path into the StartPath field, then click ActTraverse to build the subdirectory tree
structure. Figure 12-4 shows this program traversing the Visual Studio installation directory.

Figure 12-4. Iteration of a directory ("Common7" expanded after traversal)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code uses several of the path-manipulation features found in the My.Computer.FileSystem object, including the
GetDirectories() method, which returns a list of subdirectory path strings within the supplied parent directory.

Because you cannot know in advance how deep the nesting is for subdirectories, you can't hardcode a specific limit into
the routine. By using a recursive functiona function that calls itselfyou can effectively nest to any depth required.
BuildDirectoryTree() adds a list of subdirectories in a base parent directory to the TReeView control. When it encounters a
directory, it first adds it to the treeView control and then calls itself, using the just-added subdirectory as the new base
path. That call adds all sub-subdirectories to the just-added subdirectory node. Each of those sub-subdirectories, in
turn, calls BuildDirectoryTree() yet again to attach its own nested directories. And on it goes, until BuildDirectoryTree() reaches
a directory with no child directories. At that point, the innermost call to BuildDirectoryTree() exits, returning to the previous
call. As each level runs out of subdirectories, control is returned up the call stack until the code returns to the initial
ActTraverse_Click event handler.

See Also

For information on parsing file and directory paths, see Recipe 12.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 12.9. Finding Directories and Files Using Wildcards

Problem

You need to generate a list of all files and subdirectories in a specific parent directory that have names matching a
designated pattern.

Solution

Sample code folder: Chapter 12\UsingWildcards

Use the wildcard features of the My.Computer.FileSystem. GetFiles() and My. Computer.FileSystem.GetDirectories() methods to retrieve
the matching file and directory names.

Discussion

This recipe's sample code fills in a ListBox control with all matching directories and files of a specified base path, based on
a pattern.

Begin a new Windows Forms project, and add two TextBox controls named StartPath and PathPattern, a Button control named
ActMatch, and a ListBox control named MatchResults to Form1. You can add labels and provide meaningful captions if you wish,
as is done in Figure 12-5.

Figure 12-5. Controls for the name-matching sample

Now add the following source code to the form's class template:

 Private Sub ActMatch_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActMatch.Click
 ' ----- Make sure the supplied path is valid.
 If (My.Computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If (My.Computer.
FileSystem.DirectoryExists(_
 StartPath.Text) = False) Then
 MsgBox("Please supply a valid directory path.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation, _
 "Invalid Path")
 Exit Sub
 End If

 ' ----- Clear any previous items.
 MatchResults.Items.Clear()

 ' ----- First, add in the subdirectories.
 For Each oneItem As String In _
 My.Computer.FileSystem.GetDirectories(_
 StartPath.Text, _
 FileIO.SearchOption.SearchTopLevelOnly, _
 PathPattern.Text)
 MatchResults.Items.Add("[" & _
 My.Computer.FileSystem.GetName(oneItem) & "]")
 Next oneItem

 ' ----- Second, add in the files.
 For Each oneItem As String In _
 My.Computer.FileSystem.GetFiles(StartPath.Text, _
 FileIO.SearchOption.SearchTopLevelOnly, _
 PathPattern.Text)
 MatchResults.Items.Add(_

 My.Computer.FileSystem.GetName(oneItem))
 Next oneItem
 End Sub

To use the program, type a valid directory path into the StartPath field, type a pattern (such as "*.txt") in the PathPattern
field, and then click ActMatch to build the list of matching file and directory names. Figure 12-6 shows this form in use,
listing files matching the "*.log" pattern.

Figure 12-6. Displaying files matching a wildcard pattern

The My.Computer.FileSystem.GetFiles() and parallel Getdirectories() methods normally return a list of all files or directories in a
specified parent path:

 ' ----- Return all files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, both methods allow you to pass one or more "wildcard" pattern strings to limit the return list to just those
items that match the pattern(s):

 ' ----- Return all "LOG" files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows", _
 FileIO.SearchOption.SearchTopLevelOnly, _
 "*.LOG")

The syntax is identical for Getdirectories(), but it returns a list of matching directories instead of files. The second argument
indicates the depth to search for name matches. FileIO.SearchOption.SearchTopLevelOnly returns only matches found directly
within the specified parent path. To include all subdirectories, use the FileIO.SearchOption.SearchAllSubDirectories value instead.

The third wildcard argument accepts any string that includes zero or more wildcard characters. The "*" wildcard
matches zero or more characters at the position where it appears. The " ?" wildcard matches exactly one character at
the position where it appears.

If you need to simultaneously match more than one pattern and return all files (or directories) that match any of the
patterns, include each pattern as a separate argument:

 ' ----- Return all "LOG" and "TXT"
files in C:\Windows
 For Each oneFile As String In _
 My.Computer.FileSystem.GetFiles("C:\Windows", _
 FileIO.SearchOption.SearchTopLevelOnly, _
 "*.LOG", "*.TXT")

See Also

Recipe 12.8 looks at how to recursively traverse a directory tree and identify all subdirectory names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Files and File Systems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Although Visual Basic 2005 is a flexible programming language that can be used to write a variety of applications, most
developers use it to craft database-centric business programs. Interacting with a database is an essential part of Visual
Basic development. Fortunately, Visual Basic includes ADO.NET, the primary database-interaction tool for the .NET
Framework. ADO.NET is a "disconnected" system; it connects to SQL Server, Oracle, and other databases, but only long
enough to transfer the data it needs to manage things in local memory. Older systems, such as ADO and DAO, either
allowed both connected and disconnected sessions, or were fully connected. While the new fully disconnected method
used in ADO.NET is a change from these older systems, it's turned out to be quite powerful and flexible. ADO.NET also
includes new features not available in earlier database-interaction technologies.

The recipes in this chapter often use the System.Data namespace. Each recipe assumes that any source file containing
database-specific code also includes the following statement:

 Imports System.Data

Although ADO.NET supports multiple database platforms, all the source code in this chapter targets the SQL Server
database. The concepts are the same for all providers, although some class names vary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.1. Connecting to a Data Provider

Problem

You are writing an application that interacts with a database, and you need to connect to it to run some queries.

Solution

Use a Connection object and a "connection string" to establish the connection you will use for queries and updates.

Discussion

The following set of statements establishes a connection to a SQL Server Express database named MyDatabase running on
the system named MySystem, using the active Microsoft Windows login account for its security access:

 Dim theDatabase As System.Data.SqlClient.SqlConnection
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"

 theDatabase = New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()
 ' ---- Perform database processing here, then…
 theDatabase.Close()
 theDatabase.Dispose()

ADO.NET includes several different database libraries. The most generic library, found in the System.Data namespace,
defines the core classes used to manage database sets in memory. There are distinct classes for tables, columns, and
rows of data; classes that let you establish relationships between the tables; and classes that let you bundle tables and
relationships in one large "data set." You will probably use these classes quite a bit in your code, but they know nothing
of database connections or how to communicate with any external data source (other than specially formatted XML
files).

To connect to a database, you must use one of the providers included in ADO.NET. Each provider connects to a specific
database or data-communication standard. Four providers ship with .NET, each appearing in a specific namespace, as
shown in Table 13-1.

Table 13-1. Providers included with .NET
Provider Namespace Comments

SQL
Server System.Data.SqlClient

Visual Studio 2005 includes various editions of SQL Server 2005, which you can
access through ADO.NET. This provider also communicates with older versions of
SQL Server, back through Version 7.0.

Oracle System.Data.OracleClient

This is the Microsoft-supplied Oracle provider, and it requires at least Oracle 8.1.7.
You must license and install the Oracle Client tools, available directly from Oracle.
Oracle also supplies its own ADO.NET provider, which appears through the
Oracle.DataAccess namespace. You must contact Oracle directly to acquire that provider.

OLE DB System.Data.OleDb
This OLE DB provider connects to OLE DB data sources, but it is guaranteed to work
only with SQL Server, Oracle, and Jet 4.0 data sources. You can try it with other
sources, but you may receive incomplete or inadequate results.

ODBC System.Data.Odbc

This provider is used with ODBC data sources. As with OLE DB, this provider will
work with many ODBC data sources, but it may not work with all known sources. If
an OLE DB or native provider is available, you should use that instead of the ODBC
alternative.

To connect a provider to a data source, you create a connection object using a valid connection string and then use the
Open() method to establish the connection. ADO.NET connection strings are similar to those used in OLE DB and ADO,
and building them can be tricky. Connection strings are semicolon-delimited sets of connection parameters, with each
entry taking the form parameter=value. The choice of parameters and values varies by connection type and desired

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entry taking the form parameter=value. The choice of parameters and values varies by connection type and desired
features. The connection string used here includes three parameters (DataSource, InitialCatalog, and Integrated Security):

 Data Source=MySystem\SQLEXPRESS;Initial Catalog=MyDatabase;
 Integrated Security=true

Setting Integrated Security to true tells SQL Server to use the current Windows user's authentication information to connect
to the database. If your database uses SQL Server's built-in authentication system, you can use the following
connection string (for user "sa" and password "abc"):

 Data Source=MySystem\SQLEXPRESS;Initial Catalog=MyDatabase;
 User ID=sa;Password=abc

Each provider includes a " connection string builder class" (it's found at System.Data.SqlClient. SqlConnectionStringBuilder for the
SQL Server provider), and although you can use it, it is simply a string-concatenation tool that attaches the semicolon-
delimited parts you provide. You still need to know what each of the parameters and values should be.

The documentation installed with Visual Studio includes an article named "Working with Connection Strings" that
includes common parameter names and values. If you look in the online help index for "connection strings [ADO.NET],"
the "Working with Connection Strings" article is one of the results. For Oracle connection strings using Oracle's own
provider, consult your Oracle documentation or their web site.

Once you have a valid connection string, use it as an argument to the connection object's constructor:

 Dim theDatabase As System.Data.SqlClient.SqlConnection
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 theDatabase = New SqlClient.SqlConnection(connectionString)

Establish the connection by using the Open() method:

 theDatabase.Open()

You don't need to close the connection until you are truly finished interacting with the database. When you use the
Open() method, ADO.NET opens the connection only long enough to verify the connection. It then closes the connection,
waiting for you to issue a SQL statement before it opens the connection again.

When you are really ready to close the connection, use the Close() method:

 theDatabase.Close()

See Also

Although it's not an official Microsoft resource, the http://www.connectionstrings.com web site provides many useful
examples of ADO.NET connection strings. The site is a little out of date, but it's still the best place we've found so far to
locate details on all the various connection-string parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.10. Reading an XML File into In-Memory Data Tables

Problem

You previously exported a DataSet to an XML file, and now you need to get it back.

Solution

Use the DataSet object's ReadXML() method to restore data from a previously generated XML export.

Discussion

Recipe 13.9 exports some XML and a related schema for a table with state-specific information. To read it back into a
DataSet object, use the following code:

 Dim stateSet As New Data.DataSet
 stateSet.ReadXmlSchema("c:\StateSchema.xml")
 stateSet.ReadXml("c:\StateInfo.xml")

You do not need to import a previously saved schema into a DataSet before retrieving the related data, but it helps.
Without the schema, either you will have to recraft the column definitions in each DataTable object yourself, or you will
have to refer to each data column by numeric position and without strong data typing. Reloading a previously saved
schema takes care of a lot of the redesigning work for you. If your program will use a consistent schema regularly, you
can save it internally in your application source code or in an application resource. You can also import schema and data
files directly into a DataTable object, forgoing the larger DataSet object:

 Dim stateTable As New Data.DataTable
 stateTable.ReadXmlSchema("c:\StateSchema.xml")
 stateTable.ReadXml("c:\StateInfo.xml")

Once you have imported the data, you can use that data just as if you had handcrafted it using ADO.NET objects or
imported it from a standard database:

 ' ----- Process each imported state record.
 For Each stateInfo As Data.DataRow In stateTable.Rows()
 MsgBox(stateInfo!FullName)
 Next stateInfo

See Also

Recipe 13.9 demonstrates exporting DataSet or DataTable content to an XML file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.2. Issuing SQL Commands

Problem

Now that you've established a connection to a database through a provider, you're ready to issue SQL commands. But
how?

Solution

Use a Command object to issue SQL commands directly to your database through the provider connection.

Discussion

The following code updates a SQL Server table named Table1, changing every Column2 field to 25 whenever Column1 has a
value of 0:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "UPDATE Table1 SET Column2 = 25 WHERE Column1 = 0", _
 theDatabase)
 sqlStatement.ExecuteNonQuery()

 ' ----- Clean up.
 theDatabase.Close()
 theDatabase.Dispose()

Just like connections, command objects are provider-specific. When using the SQL Server provider, the
System.Data.SqlClient. SqlCommand class wraps a SQL statement string and prepares it for use by the database. You must
supply a valid SQL statement that is recognizable by the database.

The SQL statement you provide to the command can include the standard Data Manipulation Language (DML) SQL
statements (SELECT, INSERT, UPDATE, DELETE), or any of the platform-specific Data Definition Language (DDL) statements
(such as CREATE TABLE). Do not include a terminating semicolon in the statement.

Instead of including the SQL statement and connection object in the command's constructor, you can assign these
values to the command object's CommandText and Connection properties, respectively.

The command object includes several methods that send the command to the database for processing:

ExecuteReader()

Issues a command, and returns the data results in the form of a DataReader object. See Recipe 13.3 for additional
information on data readers.

ExecuteNonQuery()

Issues a command, expecting no results. This method is generally used for INSERT, UPDATE, and DELETE
commands.

ExecuteScalar()

Issues a command, expecting a single row and column of data in response. The data is returned as a generic
System.Object instance, which you can convert to the appropriate data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Object instance, which you can convert to the appropriate data type.

ExecuteXmlReader()

Issues a command, and returns the data results as an XmlReader object.

There are also asynchronous versions of these methods (except for ExecuteScalar()).

See Also

Other recipes in this chapter use additional features of command objects. For instance, Recipe 13.5 uses a command
object to access a stored procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.3. Retrieving Results from a Database Query

Problem

You've issued INSERT, UPDATE, and DELETE statements through a command object, but you need to retrieve some data
with a SELECT statement.

Solution

Use a DataReader object to quickly review the results of a SELECT statement.

Discussion

The following code retrieves a set of records from Table1:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for the reader.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1 WHERE Column2 = 25", _
 theDatabase)
 Dim dataResults As SqlClient.SqlDataReader = _
 sqlStatement.ExecuteReader()

 ' ----- Clean up.
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Assuming that the query returned records, the dataResults object now makes those records available, one at a time. The
Read() method retrieves each successive record from the database:

 Do While dataResults.Read()
 MsgBox("Column1 = " & CStr(dataResults!Column1))
 Loop
 dataResults.Close()

Read() returns False when there are no more records available.

To check for the presence of any records before using the Read() method, use the HasRows property:

 If (dataResults.HasRows = False) Then MsgBox("No data.")

Data readers provide basic and direct access to result sets. They are no-frills objects, but they are quick and simple to
use. Their basic and essential features form the basis of other, more complex data-gathering actions in ADO.NET. When
you retrieve table results and store them in a DataSet object (described in Recipe 13.7), the DataSet indirectly uses a data
reader to transfer the records from the database into the data set.

Records returned by a data reader can be accessed by name or position. For example, if you retrieve data with the
columns Column1, Column2, and Column3 (in that order), you can use any of the following statements to access Column2:

 dataResults!Column2
 dataResults("Column2")
 dataResults(1) ' Zero-based array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The fields returned by the reader are stored as System.Object values. You must convert them to their proper data types
manually, using the available conversion functions.

Data readers are "forward-only" objects; once you have retrieved a record using Read(), you cannot return to it without
reissuing the SQL command to create a new data reader.

While data readers are most often used to process SELECT statements and stored procedures, there are other
statements that return data results. SQL Server 2005 includes a new OUTPUT clause in INSERT statements that you can
use to retrieve one or more data fields from the newly inserted record. It's common to create a database table with an
automatically generated numeric primary key. After inserting a new record into such a table, you have to use a
separate SELECT statement to retrieve the new primary key value. The OUTPUT clause lets you retrieve the new primary
key value directly from the INSERT statement:

 INSERT INTO Table1 (Column2, Column3)
 OUTPUT INSERTED.Column1
 VALUES (10, 20)

Sending this INSERT statement to the database using the ExecuteReader() method returns a single record with a single field
containing the value of the new Column1 field. You can also use the ExecuteScalar() method because only a single value is
returned:

 Dim sqlStatement As New SqlClient.SqlCommand(_
 "INSERT INTO Table1 (Column2, Column3) " & _
 "OUTPUT INSERTED.Column1 VALUES (10, 20)", _
 theDatabase)
 Dim newID As Integer = CInt(sqlStatement.ExecuteScalar())
 sqlStatement = Nothing

See Also

Recipe 13.7 discusses how to simply replace the new data values in the SQL statement without having to build the SQL
statement from scratch each time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.4. Using SQL Parameters

Problem

You need to insert a lot of records into a table, and you would like to simply replace the new data values in the SQL
statement without having to build the SQL statement from scratch each time.

Solution

Attach one or more Parameter objects to the Command object.

Discussion

The following SQL Server example inserts new records into Table1, setting the Column2 column to a distinct value for each
inserted record:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Build the generic command text.
 Dim theCommand As New SqlClient.SqlCommand()
 theCommand.CommandText = _
 "INSERT INTO Table1 (Column1) VALUES (@NewValue)"
 theCommand.Connection = theDatabase

 ' ----- Add the first record.
 theCommand.Parameters.AddWithValue("NewValue", "Blue")
 theCommand.ExecuteNonQuery()

 ' ----- Add the second record.
 theCommand.Parameters("NewValue").Value = "Red"
 theCommand.ExecuteNonQuery()

 ' ----- Finished.
 theCommand = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Parameters are often used to interact with stored procedures, but you can use them in other, more basic SQL
statements to substitute for placeholders included in the SQL statement text. In SQL Server, placeholders begin with an
at sign (@) followed by a parameter identifier. These identifiers match the names used when creating SqlParameter
objects. These parameters are attached to the SqlCommand object containing the generic SQL text.

Once you've created the command object, adding parameters is simple. The easiest method employs the Parameters
collection's AddWithValue() method to add the named parameters. This method accepts a parameter name and a value as
any System.Object instance:

 theCommand.Parameters.AddWithValue("NewValue", "Blue")

Once the parameter is in place, you can modify it in later statement reprocessing, accessing it by name:

 theCommand.Parameters("NewValue").Value = "Red"

The exact syntax used to identify parameter placeholders in the SQL statement text may vary between providers.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.5 uses parameters to interact with stored procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.5. Using Stored Procedures

Problem

You need to use a stored procedure in your database, and you're not sure how to specify values for its input and output
parameters.

Solution

Use the command object's Parameters collection to set and retrieve stored procedure argument values.

Discussion

Here's a simple SQL Server stored procedure that does nothing more than retrieve a field from a table given its ID
value:

 CREATE PROCEDURE GetRecordName
 @PriKey int,
 @NameResult varchar(50) OUT
 AS
 BEGIN
 -- Given an ID value, return the RecordName field.
 SET @NameResult =
 (SELECT RecordName FROM Table1 WHERE ID = @PriKey);
 END

To use this stored procedure, create a command object that calls it, and add separate input and output parameters:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Build the basic command.
 Dim theCommand As New SqlClient.SqlCommand()
 theCommand.CommandType = CommandType.StoredProcedure
 theCommand.Connection = theDatabase
 theCommand.CommandText = "GetRecordName"

 ' ----- Add the input parameter. In this case,
 ' use a test value of 25.
 theCommand.Parameters.AddWithValue("@PriKey", 25)

 ' ----- Add the output parameter.
 Dim outParam As SqlClient.SqlParameter = _
 theCommand.Parameters.Add(_
 "@NameResult", SqlDbType.VarChar, 50)
 outParam.Direction = ParameterDirection.Output

 ' ----- Run the stored procedure.
 theCommand.ExecuteNonQuery()

 ' ----- The parameter has been updated for us.
 MsgBox(outParam.Value)

 ' ----- Clean up.
 theCommand = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stored procedures come in a variety of styles. The most basic stored procedure simply returns a set of records, just like
a SELECT statement does. Other stored procedures return their results either as return values or as output parameters.
ADO.NET supports all these various kinds of stored procedures.

Stored procedures are called using a standard command object, but instead of supplying a SQL statement for the
command text, you supply only the name of the stored procedure. Any input and output parameters are added through
the command object's Parameters collection. The names given to the parameters in each Parameter object match those
included in the stored procedure definition.

Basic input parameters can be added simply with the AddWithValue() method:

 theCommand.Parameters.AddWithValue("@PriKey", 25)

Output parameters require a little more configuration:

 Dim outParam As SqlClient.SqlParameter = _
 theCommand.Parameters.Add(_
 "@NameResult", SqlDbType.VarChar, 50)
 outParam.Direction = ParameterDirection.Output

The Direction property indicates how this parameter is used by the stored procedure. It can be set to one of the following
enumerated values:

ParameterDirection.Input

ParameterDirection.Output

ParameterDirection.InputOutput

ParameterDirection.ReturnValue

Once the parameters have been added, execute the stored procedure as you would any other command object:

 theCommand.ExecuteNonQuery()

If the stored procedure returns a set of records, use ExecuteReader() instead of ExecuteNonQuery() to access those records.

Once processed, ADO.NET automatically updates any output Parameter objects for you. Access the Value properties of
these objects to retrieve the stored procedure results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.6. Using Transactions

Problem

You need to issue multiple database updates in the context of a single, atomic transaction.

Solution

Use an ADO.NET transaction to envelop the various SQL statements that need to be processed as a unit.

Discussion

The following block of code connects to a database via ADO.NET and makes several database updates within a single
transaction:

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Create a command object that will hold each
 ' processed SQL statement.
 Dim sqlStatement As New SqlClient.SqlCommand
 sqlStatement.Connection = theDatabase

 ' ----- Start the transaction.
 Dim theTransaction As System.Data.SqlClient.SqlTransaction
 theTransaction = theDatabase.BeginTransaction()
 sqlStatement.Transaction = theTransaction

 ' ----- Issue the first statement.
 sqlStatement.CommandText = _
 "UPDATE Table1 SET Column2 = 25 WHERE Column1 = 0"
 sqlStatement.ExecuteNonQuery()

 ' ----- Issue the second statement.
 sqlStatement.CommandText = _
 "UPDATE Table1 SET Column2 = 50 WHERE Column1 = 1"
 sqlStatement.ExecuteNonQuery()

 ' ----- Finish the transaction.
 theTransaction.
Commit()

 ' ----- Clean up.
 theTransaction = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Transactions allow multiple SQL statements to exhibit all-or-nothing behavior. The ADO.NET transaction object is
provider-specific and communicates with the target database to manage the atomic nature of the multi-statement
transaction.

The SqlTransaction object establishes a transaction for a set of statements in SQL Server. Instead of creating the object
directly, use the connection's BeginTransaction() method to create it. This establishes the new transaction at the database
level:

 Dim theTransaction As System.Data.SqlClient.SqlTransaction
 theTransaction = theDatabase.BeginTransaction()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All commands issued while the transaction is in effect need to include the transaction object. Assign the object to each
command's transaction property:

 sqlStatement.Transaction = theTransaction

When you have issued all the commands needed for this transaction, use the transaction object's Commit() method to
permanently write all updates to the database:

 theTransaction.Commit()

If for any reason you need to cancel the changes in the middle of the transaction, use the Rollback() method instead:

 theTransaction.Rollback()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.7. Storing the Results of a Query in Memory

Problem

While a data reader is fast and convenient, you would like to keep the retrieved data around for a while, even when you
are disconnected from the database or other data source.

Solution

Use the data reader to bring the results into a data set. The DataSet object represents one or more in-memory database
tables, each with its records stored in a separate DataTable object.

Discussion

The following code loads all records from the Table1 table into a DataSet object, creating a DataTable object named Table1
within that data set:

 ' ----- Connect to the database.
 Dim
connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and
command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create the data set and fill it with the results
 ' of the
query.
 Dim disconnectedSet As New Data.DataSet
 theAdapter.Fill(disconnectedSet, "Table1")

 ' ----- Clean up.
 theAdapter = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

Data sets are like miniature in-memory relational databases, complete with tables, relationships, sorting, filters, field
data types, and so on. They are a lot more complex than DataReader objects, but their disconnected nature and broader
feature set make them useful for the longer-term caching and manipulation of data.

Each data set includes one or more DataTable objects. When you move data from an external data source to a DataSet,
there are several objects that make up the connection between the source and the target:

A Connection object establishes a communication transport between the application and the data source.

Command objects encapsulate individual SQL statements used to retrieve or update data in the database. Each
command may include zero or more Parameter objects that facilitate stored procedure and generic command
processing. All Connection processing occurs via Command objects.

A DataReader provides basic and fast data retrieval from a database via a Command object query.

A DataAdapter builds the individual SQL commands used to retrieve and update data in the database. Working in
conjunction with a CommandBuilder object, it crafts SELECT, INSERT, UPDATE, and DELETE commands that allow a DataSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conjunction with a CommandBuilder object, it crafts SELECT, INSERT, UPDATE, and DELETE commands that allow a DataSet
to interact with a provider database, even though it doesn't know that provider's syntax rules. The DataAdapter
works with a DataReader when retrieving results with a SELECT statement.

The DataSet object contains the records of table and query data retrieved from the data source. These results are
stored in one or more DataTable objects.

The DataTable object contains the actual data for a single source table, whether it's a true table or a pseudotable
based on a query.

Data tables are built from distinct DataRow and DataColumn objects that, when used together, provide access to
individual records and fields.

These represent just the most basic objects used in database/DataSet interactions. You can add even more objects and
complexity through DataRelation and Constraint objects.

Once data has been copied from a database into a DataSet, you can manipulate it just as though it was still part of an
organized data source. For the data retrieved from the Table1 table in our imaginary database, you can access the first
record's Column1 value using code similar to the following. There are a few different ways to do this, including this
statement:

 disconnectedSet.Tables!Table1.Rows(0)!Column1

or the more verbose:

 disconnectedSet.Tables("Table1").Rows(0).Item("Column1")

The Rows member of each table is a standard collection, so you can scan it using ordinary collection features in Visual
Basic:

 For Each oneRow As DataRow In disconnectedSet.Tables!Table1.Rows
 MsgBox(oneRow!Column1)
 Next oneRow

Data sets are great for keeping cached data in memory for ongoing use. But you can also update the fields stored in a
data set, and later send those changes back to the database in a batch. You must use a data adapter to help process
the individual INSERT, UPDATE, and DELETE statements required to modify the source database. While you can write each
command yourself, you can also have a CommandBuilder object generate them for you based on the initial SELECT
statement. The following code modifies this recipe's solution to include updates to the database (we've highlighted the
new statements, and to save some space, we left off the database connection and cleanup code):

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create a command builder that will auto-generate
 ' the various UPDATE statements.
 Dim theBuilder As New SqlClient.SqlCommandBuilder(theAdapter)

 ' ----- Create the data set and fill it with the results
 ' of the
query.
 Dim disconnectedSet As New Data.DataSet
 theAdapter.Fill(disconnectedSet, "Table1")

 ' ---- Modify some data.
 disconnectedSet.Tables!Table1.Rows(0)!Column1 = 50

 ' ----- Return the updates to the database.
 theAdapter.Update(disconnectedSet, "Table1")

If you don't want the "convenience" of the full DataSet object, you can retrieve your results into an individual DataTable
object, which has a little less overhead. DataSet objects use DataTable objects anyway to store the records, so there's no
reason you can't use them yourself. The following code modifies this recipe's original solution to use a DataTable object
instead of a full DataSet object (we've highlighted the lines that are different from the DataSet-specific code):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instead of a full DataSet object (we've highlighted the lines that are different from the DataSet-specific code):

 ' ----- Connect to the database.
 Dim connectionString As String = _
 "Data Source=MySystem\SQLEXPRESS;" & _
 "Initial Catalog=MyDatabase;Integrated Security=true"
 Dim theDatabase As New SqlClient.SqlConnection(connectionString)
 theDatabase.Open()

 ' ----- Prepare the SQL statement for use by the data set.
 Dim sqlStatement As New SqlClient.SqlCommand(_
 "SELECT * FROM Table1", theDatabase)

 ' ----- Create the adapter that links the SQL Server-
 ' specific connection and command objects with
 ' the database-neutral data set.
 Dim theAdapter As New SqlClient.SqlDataAdapter(sqlStatement)

 ' ----- Create and fill the data table with the results
 ' of the query.
 Dim singleTable As New Data.DataTable
 theAdapter.Fill(singleTable)

 ' ----- Clean up.
 theAdapter = Nothing
 sqlStatement = Nothing
 theDatabase.Close()
 theDatabase.Dispose()

See Also

Recipe 13.8 demonstrates how to set up manual DataTable objects that don't interact with database tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.8. Creating In-Memory Data Tables Manually

Problem

You want to manage some data in a database-table-like fashion, but the source data is not coming from a database, or
from anything that looks like a table.

Solution

Build a DataTable manually, and fill in all the table details and data yourself.

Discussion

The following code builds a simple table of state information and adds two records:

 Dim stateTable As DataTable = New DataTable("UnitedStates")

 ' ----- Use the abbreviation as the primary key.
 Dim priKeyCol(0) As Data.DataColumn
 priKeyCol(0) = stateTable.Columns.Add("ShortName", GetType(String))
 stateTable.PrimaryKey = priKeyCol

 ' ----- Add other data columns.
 stateTable.Columns.Add("FullName", GetType(String))
 stateTable.Columns.Add("Admission", GetType(Date))
 stateTable.Columns.Add("Population", GetType(Long))

 ' ----- Add a record.
 Dim stateInfo As Data.DataRow = stateTable.NewRow()
 stateInfo!ShortName = "WA"
 stateInfo!FullName = "Washington"
 stateInfo!Admission = #11/11/1889#
 stateInfo!Population = 5894121
 stateTable.Rows.Add(stateInfo)

 ' ----- Add another record.
 stateInfo = stateTable.NewRow()
 stateInfo!ShortName = "MT"
 stateInfo!FullName = "Montana"
 stateInfo!Admission = #11/8/1889#
 stateInfo!Population = 902195
 stateTable.Rows.Add(stateInfo)

 ' ----- Prove that the data arrived.
 MsgBox(stateTable.Rows.Count) ' Displays "2"
 MsgBox(stateTable.Rows(0)!FullName) ' Displays "Washington"

ADO.NET defines the basic structures for tables, columns (fields), and rows (records), and it's pretty easy to use them
to build your own tables by hand. To create a table, simply create a DataTable object:

 Dim stateTable As DataTable = New DataTable("UnitedStates")

The table isn't of much use yet because it doesn't have any column definitions, but they are simple to add as well.
Columns, at their most basic structure, are composed of a name and a data type. While the columns in your database
may be limited to just a few basic data types, ADO.NET table columns can be defined using any data type or class that
you can build in .NET. You could even store an entire DataSet object in a column of a DataTable record, although that
would be a little strange. To add a column, use the table's Columns.Add() method:

 stateTable.Columns.Add("FullName", GetType(String))

To add a record, use the table's NewRow() method, which generates a DataRow object. You could create a new DataRow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a record, use the table's NewRow() method, which generates a DataRow object. You could create a new DataRow
from scratch, but it wouldn't have any of the column definitions already added to the DataTable. Using NewRow() takes care
of setting up that structure for you. Once you've updated each record field, add it to the table using the table's
Rows.Add() method:

 stateTable.Rows.Add(stateInfo)

Once your records are in your table, you can manipulate them just like you would in a real database table. For instance,
you can sort the records based on one of the fields using the Select() method:

 ' ----- Process an array of states sorted by name.
 For Each stateInfo In stateTable.Select("", "FullName")
 MsgBox(stateInfo!FullName)
 Next stateInfo

If you want to go all the way and add your table to a DataSet object, use code similar to the following:

 Dim fullDataSet As New Data.DataSet
 fullDataSet.Tables.Add(stateTable)

See Also

Recipe 13.7 shows you how to use DataTable objects in conjunction with a database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 13.9. Writing In-Memory Data Tables to an XML File

Problem

You have some data in a DataSet object, and you would like to export it to an XML file for later reimportation.

Solution

Use the DataSet's WriteXML() method to send the DataSet content to the file in a common XML format.

Discussion

Recipe 13.8 builds a DataTable object with two state-specific records. The following code adds that table to a DataSet
object and writes its records to an XML file:

 Dim fullDataSet As New Data.DataSet
 fullDataSet.Tables.Add(stateTable)
 fullDataSet.WriteXml("C:\StateInfo.xml")

These statements generate the following XML content:

 <?xml version="1.0" standalone="yes"?>
 <NewDataSet>
 <UnitedStates>
 <ShortName>WA</ShortName>
 <FullName>Washington</FullName>
 <Admission>1889-11-11T00:00:00-08:00</Admission>
 <Population>5894121</Population>
 </UnitedStates>
 <UnitedStates>
 <ShortName>MT</ShortName>
 <FullName>Montana</FullName>
 <Admission>1889-11-08T00:00:00-08:00</Admission>
 <Population>902195</Population>
 </UnitedStates>
 </NewDataSet>

You can also output the XML directly from the DataTable object without using a DataSet object:

 stateTable.WriteXML("C:\StateInfo.xml")

ADO.NET was designed with an understanding of data from an XML perspective. Publicly, it exposes this awareness
through several XML-specific methods, including the WriteXML() method. The schema generated with this XML database is
crafted for efficient processing by ADO.NET. When you later import the exported data from the XML file to a DataSet or
DataTable object, ADO.NET will complain if the data doesn't match a format it understands.

To access the schema that matches the exported data, use the related WriteXMLSchema() method:

 stateTable.WriteXMLSchema"C:\StateSchema.xml")

See Also

Recipe 13.10 shows you how to bring the exported data back into a DataSet object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The "A" in BASICthe predecessor of Visual Basicstands for "all-purpose." As an heir of that original programming
language, Visual Basic has maintained the standard of being an all-purpose language, a language that is generic enough
to handle a vast set of different programming needs. That has never been truer than with Visual Basic 2005.

The recipes included in this chapter cover a wide range of topics, from basic application management to credit card
verification. The key is that you can do all these varied tasks quite easily in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.1. Preventing Multiple Instances of a Running Application

Problem

You don't want the active user to run more than one copy of an application at any one time.

Solution

Sample code folder: Chapter 14\SingleInstanceOnly

Capture attempts to start up secondary instances of an application through an application-wide event handler. This event
handler, new to Visual Basic 2005 and available only to Windows Forms applications using the Application Framework, triggers
in the primary instance whenever the user tries to start a secondary instance.

Discussion

Create a new Windows Forms application in Visual Studio. The Application Framework is enabled by default; you can confirm
this by checking the "Enable application framework" field on the Application tab of the Project Properties window, shown in
Figure 14-1.

Figure 14-1. Make sure the "Enable application framework" field is checked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even with the Application Framework enabled, by default the application allows multiple instances to start at once. To prevent
this, select the "Make single instance application" field on this same Project Properties panel (Figure 14-1 still shows it as
unchecked).

The event to handle is typically called MyApplication_StartupNextInstance, and it appears by default in the project's
ApplicationEvents.vb file. Since you already have the Application panel of the Project Properties window open, you can access
this file quickly by clicking on the View Application Events button. The source code appears, with the start of a partial
My.MyApplication class:

 Namespace My
 Partial Friend Class MyApplication

 End Class
 End Namespace

To add the event handler, select "(MyApplication Events)" from the Class Name drop-down list, which appears just above and
to the left of the source code editor window. Then select "StartupNextInstance" from the Method Name drop-down list that is
above and to the right of the code editor. The template for the event handler appears in the MyApplication class:

 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance

 End Sub

To complete the program, add the following code to this template:

 MsgBox("You cannot start a second instance " & _
 "of this program.", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Exclamation)
 e.BringToForeground = True

Even if you limit your application to a single instance, it may be important to capture any command-line arguments supplied
with the secondary instance. For example, Microsoft Word works like a single-instance application. It allows you to start up the
application, supplying a document to edit as a command-line argument. If you run this command in Microsoft Word:

 winword.exe C:\Chapter14.doc

the Chapter14.doc file appears as a new document, but running in the context of the already active single allowable instance of
Microsoft Word.

In Visual Basic, you can access command-line arguments through the Command() function or through the
My.Application.CommandLineArgs collection. However, these methods are valid only for the primary instance. If you examine
Command() in the MyApplication_StartupNextInstance event handler, you will only see the arguments for the initial instance.

Fortunately, the e argument of the MyApplication_StartupNextInstance handler includes a CommandLine property, which communicates
the command-line arguments for the subsequent instance as a String. Use this property as you would the return value of the
standard Command() function. Once the event handler ends, you won't have access to the second instance's command line, so
make sure you examine or save it, if needed, while in the handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.10. Watching for File and Directory Changes

Problem

You need to monitor a directory, watching for any files that are added, removed, or changed.

Solution

Sample code folder: Chapter 14\FileWatcher

Use a FileSystemWatcher object and its events notify you of any changes in a specific directory or to specific files.
System.IO.FileSystemWatcher includes many properties that let you adjust the types of files or changes to monitor. It also
includes distinct events for most types of changes.

Discussion

The code in this recipe implements a simple test program that watches for any change in a selected directory. Create a
new Windows Forms application, and add the following controls to Form1:

A TextBox control named WatchDirectory.

A TextBox control named WatchFilter.

A CheckBox control named IncludeSubdirectories. Change its Text property to Include Subdirectories.

A CheckedListBox control named WatchFor.

A Button control named StartStop. Change its Text property to Start.

A ListBox control named DirectoryEvents.

Add additional labels, if desired, and arrange the form to look like the one in Figure 14-7.

Open the source-code file for the form, and add the following code to the Form1 class template:

 Public WithEvents WatchForChanges As IO.FileSystemWatcher

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Add the types of actions. The Enum class's
 ' GetNames method returns a collection of the
 ' enumeration type's members as strings. Since
 ' "Enum" is a keyword in Visual Basic, the
 ' "Enum" class must be escaped with brackets.
 For Each scanFilters As String In [Enum].GetNames(_
 GetType(IO.NotifyFilters))
 WatchFor.Items.Add(scanFilters)

Figure 14-7. Controls for the directory watcher sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next scanFilters
 End Sub

 Private Sub StartStop_Click(ByVal sender As System.
Object, _
 ByVal e As System.EventArgs) Handles StartStop.Click
 ' ----- Start or stop watching a directory.
 Dim monitorEvents As Integer = 0

 If (StartStop.Text = "Start") Then
 ' ----- Check for valid settings.
 If (My.Computer.FileSystem.DirectoryExists(_
 WatchDirectory.Text) = False) Then
 MsgBox("Please specify a valid directory.")
 Exit Sub
 End If
 If (WatchFor.SelectedItems.Count = 0) Then
 MsgBox("Please specify the events to watch for.")
 Exit Sub
 End If

 ' ----- Build the events setting. The Enum class's
 ' Parse() method converts a string back to its
 ' Integer enumeration value, in this case,
 ' from the IO.NotifyFilters enumeration.

For Each scanEvents As String In WatchFor.CheckedItems
 monitorEvents = monitorEvents Or _
 CInt([Enum].Parse(GetType(IO.NotifyFilters), _
 scanEvents))
 Next scanEvents

 ' ----- Start the watching process.
 DirectoryEvents.Items.Clear()
 WatchForChanges = New IO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WatchForChanges = New IO.
FileSystemWatcher
 WatchForChanges.SynchronizingObject = Me
 WatchForChanges.Path = WatchDirectory.Text
 WatchForChanges.Filter = WatchFilter.Text
 WatchForChanges.NotifyFilter = monitorEvents
 WatchForChanges.IncludeSubdirectories = IncludeSubdirectories.Checked
 WatchForChanges.EnableRaisingEvents = True
 StartStop.Text = "Stop"
 Else
 ' ----- End the watching process.
 WatchForChanges.EnableRaisingEvents = False
 WatchForChanges.Dispose()
 WatchForChanges = Nothing
 StartStop.Text = "Start"
 End If
 End Sub

 Private Sub WatchForChanges_Changed(ByVal sender As Object, _
 ByVal e As System.IO.
FileSystemEventArgs) _
 Handles WatchForChanges.Changed
 DirectoryEvents.Items.Add("Changed: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Created(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles WatchForChanges.Created
 DirectoryEvents.Items.Add("Created: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Deleted(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles WatchForChanges.Deleted
 DirectoryEvents.Items.Add("Deleted: " & e.Name)
 End Sub

 Private Sub WatchForChanges_Renamed(ByVal sender As Object, _
 ByVal e As System.IO.RenamedEventArgs) _
 Handles WatchForChanges.Renamed
 DirectoryEvents.Items.Add("Renamed: " & e.OldName & _
 " to " & e.Name)
 End Sub

To use the program, enter a valid directory in the WatchDirectory field, optionally enter a filename or wildcard in the
WatchFilter field, and select one or more entries in the WatchFor list. Now click the StartStop button, and begin making
changes in the target directory.

The FileSystemWatcher class monitors activity in a specific directory and raises events based on changes in that directory.
The class often reports any change immediately. This means that if you create a new file in the directory and take
several minutes to fill it with data before closing it, FileSystemWatcher will report the creation of the file at the start of its
life, not when it was closed. This can lead to interaction issues in your program. When you receive notification of a new
file in a monitored directory, you should confirm that the complete file has been written out before processing it.

The FileSystemWatcher class uses a shared memory buffer for part of its processing. This buffer is limited in size, so if you
experience a lot of changes in a directory, the buffer may "overflow, " and you will lose notifications. The object
includes an Error event that will let you know when this happens. Also, you can adjust the InternalBufferSize property to
allocate more buffer space.

The Toolbox displayed for a Windows Forms form in Visual Studio includes a FileSystemWatcher control. This control is the
same as the class included in this recipe's sample code. If you choose to declare the object through code instead of as a
control, make sure you set its SynchronizingObject property to the active form (as is done in the sample code) to prevent
intrathread errors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.11. Creating an Icon in the System Tray

Problem

You wish to use a System Tray icon to regularly notify the user of the status of your application.

Solution

Sample code folder: Chapter 14\SystemTrayIcon

Add a NotifyIcon control to your application's form. It includes properties that simplify displaying a System Tray icon and
its related notification "balloon.". Once you've added the control to your form, assign an icon (.ico) file or image to its
Icon property, and ensure that its Visible property is set to true. That's it. If you want to enable a tooltip for the icon, set
the Text property as needed.

Discussion

The NotifyIcon control also includes support for simple notification balloons. Use the BalloonTipIcon, BalloonTipText, and
BalloonTipTitle properties to set the icon, main text, and title of the balloon, respectively.

Create a new Windows Forms application. Add a Button control named Button1 to the form, and set its Text property to
Show Warning. Then add a NotifyIcon control named NotifyIcon1 to the form. Set the following properties on that control:

Set BalloonTipIcon to Warning.

Set BalloonTipText to Your system is in need of repair.

Set BalloonTipTitle to Repair Warning.

Set the Icon property to any valid .ico icon file. (See below for a source for icon files.)

Now add the following source code to Form1's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Show the balloon for 3 seconds by default.
 NotifyIcon1.ShowBalloonTip(3000)
 End Sub

Run the program, and click on the Show Warning button to view the notice bubble, as shown in Figure 14-8.

Figure 14-8. A notification icon with a warning balloon

The NotifyIcon control includes many events that can detect various types of clicks or double-clicks on the icon or its
balloon.

If you need a notification icon for your application, you can try one of the many icons included with Visual Studio.
Depending on how you installed the product, you may find a compressed folder named VS2005ImageLibrary.zip in the
Common7\ VS2005ImageLibrary folder of the main product install folder (usually at c:\Program Files\Microsoft Visual
Studio 8). This archive includes an icons folder with many professionally designed icons in it. You can include them

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Studio 8). This archive includes an icons folder with many professionally designed icons in it. You can include them
freely in applications for your personal use, but be sure to read the Visual Studio license agreement if you plan to use
these icons in your commercial applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.12. Accessing the Clipboard

Problem

You want to store data on the clipboard or retrieve data already found on the clipboard.

Solution

Use the My.Computer. Clipboard object to get and set data on the clipboard. This object includes four types of methods:

Contains… methods that indicate whether data of a particular type can be found right now on the clipboard

Get… methods that retrieve data already found on the clipboard in a specific data format

Set… methods that allow you to place data onto the clipboard in one or more predefined or custom formats

A Clear() method that removes all data from the clipboard

Each Contains…, Get…, and Set… method sets focuses on six types of data:

Text

Images

Sound files

Sets of files

Custom data

Custom data in multiple formats

To retrieve plain text data found on the clipboard, use the following statement:

 Dim fromClipboard As String = _

My.Computer.Clipboard.GetText()

Use the Clear() method to remove all data from the clipboard:

 My.Computer.Clipboard.Clear()

Discussion

The My.Computer.Clipboard object includes six distinct Get… methods that let you retrieve the contents of the system
clipboard, each one based on a different type of data:

GetAudioStream()

Retrieves audio content from the clipboard as a System.IO.Stream object. Any .NET features that support such
streams can use the returned data. The following block of code plays a sound file retrieved from the clipboard:

 My.Computer.Audio.Play(_
 My.Computer.Clipboard.GetAudioStream(), _
 AudioPlayMode.Background)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetFileDropList()

Retrieves a list of file paths as a String collection. This collection is created by any application that stores
compatible file lists on the clipboard. For instance, if you copy files in Windows Explorer, those files (but not
their contents) appear on the clipboard as a File Drop List. Use this code to retrieve that list:

 Dim allFiles As System.Collections.Specialized. _
 StringCollection = _
 My.Computer.
Clipboard.GetFileDropList()
 Dim oneFile As String

 For Each oneFile In allFiles
 ' ----- Process each file here.
 Next oneFile

GetImage()

Retrieves any image data stored on the clipboard as a System.Drawing.Image object.

GetText()

Retrieves text from the clipboard. GetText() includes an optional parameter that lets you specify the specific type
of text to retrieve, using the values of the System.Windows.Forms.TextDataFormat enumeration. Their names equate to
the type of text retrieved:

TexTDataFormat.CommaSeparatedValue

TextdataFormat.Html

TextdataFormat.Rtf

TextdataFormat.UnicodeText

If you don't include the text type argument, GetText() retrieves the text in the most basic text format available
on the clipboard.

GetData()

Retrieves data in a custom format from the clipboard. All data stored on the clipboard includes a format name.
You must pass a format name to the Getdata() argument to retrieve data of that type. For example:

 Dim roundaboutText = _
 CStr(My.Computer.Clipboard.GetData("Text"))

The data is returned as a System.Object, and it must be converted to its final data type manually.

GetDataObject()

The clipboard can store data in multiple formats at once. GetdataObject() returns the complete set of all stored
data formats, using an interface defined through System.Windows.Forms.IDataObject. Once retrieved, you can query
the names of each format using this interface's GetFormats() method, check for a specific format using
GeTDataPresent(), and retrieve specific data as a System.Object using GeTData(). The following code displays the
names of each format included on the clipboard:

 MsgBox(Join(My.Computer.Clipboard.GetDataObject(). _
 GetFormats(True), ", "))

Before attempting to retrieve data in a specific format from the clipboard, it is a good idea to confirm that such data
exists. (If the specified data type does not exist, the Get… methods return the value Nothing.) The My.Computer. Clipboard
object includes several such confirmation methods that parallel the Get… methods listed above, each of which returns a
Boolean value indicating whether or not the specified data is available:

 Clipboard.ContainsAudio()

Clipboard.ContainsData(formatName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard.ContainsFileDropList()

Clipboard.ContainsImage()

Clipboard.ContainsText(formatType)

Since the system clipboard is a resource shared among all running programs, and since the user can modify the
clipboard through another program at any time, it is possible that one of these Contains… methods will return true for a
particular format, but the related Get… method, even when used immediately, will return nothing.

A group of Set… methods let you store data back to the clipboard in a variety of formats:

SetAudio()

Stores audio data on the clipboard. The lone argument to this method must be either a Byte array or a Stream
containing audio data.

SetFileDropList()

Stores a list of files on the clipboard. You must pass a collection of strings using the
System.Collections.Specialized.StringCollection to this method. For example:

 Dim filesToInclude As New System.Collections. _
 Specialized.StringCollection
 filesToInclude.Add("c:\datafile.txt")
 filesToInclude.Add("c:\temp\workfile.txt")
 My.Computer.Clipboard.SetFileDropList(filesToInclude)

SetImage()

Stores an image on the clipboard. Pass this method an argument of type System.Drawing.Image.

SetText()

Stores text in a specific format on the clipboard. The first argument is a String containing the text to add. An
optional second argument uses the TexTDataFormat enumeration discussed in the earlier GetText() entry.

SetData()

Stores any type of custom data on the clipboard, based on a format name you provide:

 My.Computer.Clipboard.SetData("MyCustomFormat", dataObject)

SetDataObject()

Lets you append multiple formats at once to the clipboard. You must pass this method an instance of
System.Windows.Forms.DataObject, populated with data you provide. This object includes each of the Set… methods
used for the clipboard itself, including SetText() and SetData():

Dim toClipboard As New System.Windows.Forms.DataObject
 toClipboard.SetData("MyCustomFormat", dataObject)
 toClipboard.SetText(dataObject.ToString())
 My.Computer.Clipboard.SetDataObject(toClipboard)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.13. Adding Tooltips to Controls

Problem

You want a tooltip to appear when the user hovers the cursor (mouse) over a control.

Solution

Use the ToolTip control, included in the Windows Forms Toolbox, on your form. Figure 14-9 shows the ToolTip control in the Toolbox and applied to the
form.

Figure 14-9. The ToolTip control added to a form

Discussion

When applied to a form, the ToolTip control enhances all displayable on-form controls, adding a new pseudoproperty to the properties collection
each control. If you add a ToolTip control named ToolTip1 to the form, each visible control includes a new "ToolTip on ToolTip1" property. For a specific
control, fill this pseudoproperty with the text to display in the tooltip. Figure 14-10 shows a tooltip in use on a running form.

Figure 14-10. A tooltip in use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-10. A tooltip in use

Normally, adding a single ToolTip control to a form is sufficient for all your tooltip display needs. While each control communicates its own tooltip
display text through the added ToolTip pseudoproperty, the ToolTip control itself manages how that text gets displayed, through its own property
settings. For instance, the IsBalloon property, when set to true, displays the tooltip in a balloon display instead of a plain square (see

Figure 14-11. A balloon-shaped tooltip

You can also take full control of the drawing of the tooltip by setting its OwnerDraw property to TRue and responding to the control's
Chapter 9 for examples of drawing to a custom graphics surface.

See Also

Recipe 14.11 shows how to add tooltips to notification icons in the System Tray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.14. Dragging and Dropping Files to a ListBox

Problem

You want a ListBox control to accept file paths dragged to it from Windows Explorer.

Solution

Sample code folder: Chapter 14\DragDropFiles

Use the control's DragEnter and DragDrop events to watch for dropped file lists and process them when dropped.

Discussion

Create a new Windows Forms application, and add a ListBox control named ListBox1 to Form1. Set this control's AllowDrop
property to TRue. Now add the following code to the form's source code:

 Private Sub ListBox1_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragEnter
 ' ----- Allow the dropping of file lists.
 If (e.Data.GetDataPresent(DataFormats.FileDrop) = _
 True) Then
 e.Effect = DragDropEffects.Copy
 End If
 End Sub

 Private Sub ListBox1_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragDrop
 ' ----- Process each dropped file.
 For Each oneFile As String In _
 e.Data.GetData(DataFormats.FileDrop)
 ListBox1.Items.Add(oneFile)
 Next oneFile
 End Sub

To test the program, run it, and then drag one or more files from Windows Explorer (or any other program that
supports the dragging of files). Figure 14-12 shows the result of a multifile drag operation.

Accepting dragged files in a control is a two-step process:

1. Inform the sender of your acceptance criteria through the DragEnter event handler.

2. Accept the files through the DragDrop event handler.

In this recipe's code, the DragEnter event examines the data being dragged into the ListBox to determine if it will accept
the content. In this case, it looks for a "file drop list" (identified by DataFormats.FileDrop). If it finds one, it tells the sender
that it will accept the files through a Copy operation, setting the e.Effect property. By default, e.Effect is set to
DragDropEffects.None, which indicates that the content is not acceptable.

Figure 14-12. Three dragged files accepted by a ListBox control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the DragDrop event, the dragged content exposed through e.Data is accessed, and its "file drop list" content is extracted
as a string array, which is then transferred to the ListBox control.

If you are familiar with the clipboard operations exposed through the My.Computer.Clipboard object, you will recognize the
use of the "file drop list" also available through the clipboard.

See Also

Recipe 14.15 shows you how to perform inter-ListBox drag-and-drop operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.15. Dragging and Dropping Between ListBox Controls

Problem

You have two ListBox controls on a form, and you want the user to be able to drag and drop items between the lists.

Solution

Sample code folder: Chapter 14\DragDropLists

Use code similar to that found in Recipe 14.14 in conjunction with the ListBox control's DoDragDrop() method to enable
dragging and dropping between ListBoxes.

Discussion

Create a new Windows Forms application, and add two ListBox controls named ListBox1 and ListBox2 to the form. In both
controls, set the AllowDrop property to TRue, and set the SelectionMode property to MultiExtended. In the properties for ListBox1,
select the Items property, and click the "…" button in its data value area. In the String Collection Editor window that
appears, enter multiple lines of text, separating them by pressing the Enter key. (We entered the words "One" through
"Six.") Figure 14-13 shows this process in action.

Figure 14-13. Using the ListBox's String Collection Editor

Close the String Collection Editor; you should have a form that looks like Figure 14-14.

Figure 14-14. Two listboxes with draggable items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-14. Two listboxes with draggable items

Now add the following code to the form:

 Private
dragBounds As Rectangle
 Private dragMethod As String

 Private Sub ListBox1_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragEnter
 ' ----- Yes, we accept the items.
 If (e.Data.GetDataPresent(ListBox2.SelectedItems. _
 GetType()) = True) Then _
 e.Effect = DragDropEffects.Move
 End Sub

 Private Sub ListBox1_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox1.DragDrop
 ' ----- Accept the dropped items.
 For Each oneItem As Object In _
 e.Data.GetData(ListBox2.SelectedItems.GetType())
 ListBox1.Items.Add(oneItem)
 Next oneItem
 End Sub

 Private Sub ListBox1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseDown, ListBox2.MouseDown
 ' ----- Prepare the draggable content.
 If (CType(sender, ListBox).SelectedItems.Count = 0) _
 Then Return

 ' ----- Don't start the drag yet. Wait until we move a
 ' certain amount.
 dragBounds = New Rectangle(New Point(e.X - _
 (SystemInformation.DragSize.Width / 2), _
 e.Y - (SystemInformation.DragSize.Height / 2)), _
 SystemInformation.DragSize)
 If (sender Is ListBox1) Then
 dragMethod = "1to2"
 Else
 dragMethod = "2to1"
 End If
 End Sub

 Private Sub ListBox1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseMove
 ' ----- Ignore if not dragging from ListBox1.
 If (dragMethod <> "1to2") Then Return

 ' ----- Have we left the drag boundary?
 If (dragBounds.Contains(e.X, e.Y) = False) Then
 ' ----- Start the drag-and-drop operation.
 If (ListBox1.DoDragDrop(ListBox1.SelectedItems, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DragDropEffects.Move) = _
 DragDropEffects.Move) Then
 ' ----- Successful move. Remove the items from
 ' this list.
 Do While ListBox1.SelectedItems.Count > 0
 ListBox1.Items.Remove(ListBox1.SelectedItems(0))
 Loop
 End If
 dragMethod = ""
 End If
 End Sub

 Private Sub ListBox1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseUp, ListBox2.MouseUp
 ' ----- End of drag-and-drop.
 dragMethod = ""
 End Sub

 Private Sub ListBox2_DragEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox2.DragEnter
 ' ----- Yes, we accept the items.
 If (e.Data.GetDataPresent(ListBox1.SelectedItems. _
 GetType()) = True) Then _
 e.Effect = DragDropEffects.Move
 End Sub

 Private Sub ListBox2_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox2.DragDrop
 ' ----- Accept the dropped items.
 For Each oneItem As Object In _
 e.Data.GetData(ListBox1.SelectedItems.GetType())
 ListBox2.Items.Add(oneItem)
 Next oneItem
 End Sub

 Private Sub ListBox2_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox2.MouseMove
 ' ----- Ignore if not dragging from ListBox2.
 If (dragMethod <> "2to1") Then Return

 ' ----- Have we left the drag boundary?
 If (dragBounds.Contains(e.X, e.Y) = False) Then
 ' ----- Start the drag-and-drop operation.
 If (ListBox2.DoDragDrop(ListBox2.SelectedItems, _
 DragDropEffects.Move) = _
 DragDropEffects.Move) Then
 ' ----- Successful move. Remove the items from
 ' this list.
 Do While ListBox2.SelectedItems.Count > 0
 ListBox2.Items.Remove(ListBox2.SelectedItems(0))
 Loop
 End If

dragMethod = ""
 End If
 End Sub

If you look closely at this code, you will find that much of it is replicated. To support two-way dragging, all code that
applies to ListBox1 appears again for ListBox2.

Run this program, and then drag items from one listBox to the other. You can also multiselect and move multiple items
at once.

Many controls support the DoDragDrop() method. It accepts data content to send and a set of allowed send methods:

 If (SomeControl.DoDragDrop(dataContent, _
 DragDropEffects.Move) = DragDropEffects.Move) Then
 ' ----- Successful move.
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calling this function is easy, and it can be done at any time. Most of the code in this sample deals with determining
what content can be sent and when.

The DragDropEffects enumeration, used for the second DoDragDrop() argument, indicates which operations the supplier of
the data is permitting with the supplied content. Its Move, Copy, and Link enumeration members can be joined with a
bitwise Or to indicate multiple allowed features:

 ' ----- Allow copy and move.
 Select Case SomeControl.DoDragDrop(dataContent, _
 DragDropEffects.Move Or DragDropEffect.Copy)
 Case DragDropEffects.None
 ' ----- The target did not accept the content.
 Case DragDropEffects.Copy
 ' ----- The target copied the content.
 Case DragDropEffects.Move
 ' ----- The target moved the content.
 End Select

See Also

Recipe 14.14 shows you how to accept dragged-and-dropped files in a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.16. Disposing of Objects Appropriately

Problem

You've created an object that allocates its own resources, and you're ready to get rid of it. What's the correct method?

Solution

Visual Basic provides three primary methods for getting rid of objects that implement the IDisposable interface:

Call the object's Dispose() method, exposed by the IDisposable interface and implemented by the object's type. This
is the most direct method of freeing resources. The object should not be used once Dispose() has been called.

Use Visual Basic's Using statement. This block statement automatically calls the object's Dispose() method on your
behalf when the block ends, or execution jumps out of the block for any reason.

Many of the GDI+ drawing objects implement IDisposable and should be disposed of properly when no longer in
use. The Pen object is one such class. The following code uses the Using statement to declare and properly
dispose of a Pen object:

 Using workPen As New Pen(Color.Red)
 ' ----- Add drawing code here using that red pen.
 End Using
 ' ----- workPen has been released and is unavailable.

Let the object go out of scope, or set it to Nothing. This practice is usually undesirable because the garbage-
collection process, and not you, will control when the additional resources get released.

Discussion

The constructor for a class may allocate shared resources that need to be properly released as quickly as possible when
no longer needed. Some classes implement their own custom method for doing this, such as including a "release all
resources" method. You must examine and follow the documented standards for such objects.

Fortunately, most objects that hold such external or shared resources implement the System.IDisposable interface. This
interface exposes a standard Dispose() method that your code or other standardized generic components can call to free
important resources. You can add IDisposable to your own classes, as follows:

 Class SomeClass
 Implements IDisposable

 Protected Overridable Sub
Dispose() _
 Implements IDisposable.Dispose
 ' ----- Add cleanup code here.
 End Sub
 End Class

For classes that do not allocate shared or external resources, or where holding on to such resources for a long time will
not degrade application or system performance, the standard Finalize() deconstructor may be used to free held resources.
For such classes, no special processing is needed to destroy the object. Simply wait for the object to be released on its
own, or set it to Nothing.

If you implement IDisposable on a custom class, you should also override the Finalize() method to ensure that resources are
freed even if the user of the class forgets to call Dispose():

 Protected Overrides Sub Finalize()
 ' ----- Add cleanup guarantee here.
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.17. Fine-Tuning Garbage Collection

Problem

The .NET garbage-collection process is something of a mystery, a black box that has a mind of its own. Does a
programmer have any control over the disposal process?

Solution

The System.GC object exposes several methods that let you "help" the garbage-collection process, either for a specific
object or for the entire garbage system.

When you finish using an object by setting it to Nothing or by letting it otherwise become unused (go out of scope), it is
added to the garbage-collection system for eventual finalization and disposal. Finalization occurs when the object's
Finalize() method is called. Disposal occurs when the memory allocated to the object is finally reclaimed and made
available for use by other managed (or even unmanaged) uses.

Garbage collection occurs in waves, or generations. When an object first enters the system, it appears in Generation 0
(zero). If, after a while, the object has not yet been finalized or disposed of, it is moved to the next generation,
Generation 1. Not all platforms support this system of aging. Use the System.GC.MaxGeneration property to determine the
generation of the longest-lived object. This property always returns zero on platforms that do not use aging.

Discussion

You can use the following members of System.GC to help manage the garbage-collection system in memory-critical
applications:

AddMemoryPressure() and RemoveMemoryPressure()

The garbage-collection system concerns itself only with managed memorymemory allocated through .NET
features. Unmanaged memory does not go through the collection process. However, the collection process does
take the amount of available memory, both managed and unmanaged, into account when determining how
quickly to free resources. The AddMemoryPressure() method accepts a byte count argument and tells the garbage
collector, "Act as if this amount of unmanaged memory has actually been allocated." Depending on the size of
the pressure, the collection process will behave differently due to the perceived changes in available memory.

You must later reverse the pressure allocation with the RemoveMemoryPressure() method, using the same byte
count supplied with the original pressure request. You can have multiple pressure requests active at once.

Collect()

This method forces the immediate collection (finalization and disposal) of garbage. By default, this method
collects garbage in all generations. You can also pass it a generation number, and it will collect garbage only
between Generation 0 and the generation number of the argument.

CollectionCount()

This method returns a count of the number of times garbage has been collected for a specific generation
number. The generation number is passed as an argument.

GetGeneration()

If you have access to a reference object that has already entered the garbagecollection system, passing it as an
argument to GetGeneration() returns the generation number in which that object appears.

GetTotalMemory()

This method returns an estimate of the total allocated managed memory. It accepts a Boolean argument that, if
true, allows garbage collection to occur before the estimate is calculated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

true, allows garbage collection to occur before the estimate is calculated.

KeepAlive()

Normally, when an object goes out of scope, you don't care when the garbagecollection process destroys it.
However, if you allocate some managed memory that you will share with or pass to an external or unmanaged
process (such as an ActiveX DLL function), and that process will use the memory beyond your local use of it,
the garbage collector should delay processing of the object until it is truly no longer in use. The KeepAlive()
method helps you force such a delay.

To use KeepAlive(), you pass it a reference to the object to retain, and you call this method when you no longer
wish to retain it. That is, the call to KeepAlive() says, "Keep the object alive, but only until this point; after this
call, it can go to garbage collection." For this reason, calls to GC.KeepAlive() generally appear near the end of a
method or block of code.

SuppressFinalize() and ReRegisterForFinalize()

Passing an object reference to SuppressFinalize() tells the garbage collector, "Don't call this object's Finalize()
method before disposing of the object." This method is most commonly used with objects that implement the
System.IDisposable interface. If you clean up all allocated resources during the call to Dispose(), such that there is
nothing more for the Finalize() method to do, adding a call to SuppressFinalize() disables the unneeded call to Finalize(
).

Visual Studio normally adds some template code to your class when you declare it using Implements IDisposable.
This template code includes a call to SuppressFinalize(). You may or may not wish to retain this call, depending on
your needs.

If you use the SuppressFinalize() method but later find that you need to reenable the finalization process for an
object, call the ReRegisterForFinalize() method.

WaitForPendingFinalizers()

This method suspends execution of the application until all relevant objects in the garbage collector have had
their Finalize() methods called.

Most of these methods are designed for applications with advanced memory-allocation and processing needs. In most
ordinary applications, only the KeepAlive() and SuppressFinalize() methods will find common use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.18. Moving the (Mouse) Cursor

Problem

You want to reposition the cursor (that is, the mouse pointer) programatically.

Solution

Sample code folder: Chapter 14\MoveMouse

Modify the Position property of the System.Windows.Forms. Cursor object with a new System.Drawing.Point containing the new
location.

Discussion

Create a new Windows Forms project, and add two Button controls named Button1 and Button2. Now add the following code
to the form's class:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Windows.Forms.Cursor.Position = New Point(_
 Me.PointToScreen(Button2.Location).X + _
 Button2.Width / 2, _
 Me.PointToScreen(Button2.Location).Y + _
 Button2.Height / 2)
 End Sub

When you run the program and click on Button1, the cursor centers itself over Button2.

All controls on a form use the client coordinate system for their positions. Each control's X and Y locations are based on
the upper-left corner of the form's client area, the rectangle that is just inside of the form's border. The cursor,
however, is a screen-wide resource, and it uses the coordinates for the entire screen, with its X and Y positions offset
from the upper-left corner of the screen. To move the cursor based on a screen position, you must translate between
the two coordinate systems.

The form includes two methods to perform this translation: PointToScreen(), which converts a client rectangle location to a
matching screen location, and PointToClient(), which translates in the opposite direction. Actually, every control on the
form also includes these two methods. However, all points translated using a control's translation methods are based on
the upper-left corner of the control (that is, on its client area), and not on the upper-left corner of the form's client
rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.19. Intercepting All Key Presses on a Form

Problem

You have a form that needs to watch for certain keys and process them before any control on the form recognizes
those keys.

Solution

Sample code folder: Chapter 14\InterceptKeys

Use the form's KeyPreview property to control access to the form's KeyDown, KeyUp, and KeyPress events.

Discussion

Create a new Windows Forms application, and add a single TextBox control named TextBox1. Set the form's KeyPreview
property to TRue. Now add the following code to the form's class:

 Private Sub Form1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 If (e.KeyCode = Keys.F5) Then MessageBox.Show("Form: F5")
 e.Handled = True
 End Sub

 Private Sub TextBox1_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles TextBox1.KeyDown
 If (e.KeyCode = Keys.F5) Then MessageBox.Show("Text: F5")
 End Sub

Run the program, and press the F5 key when the input focus is in the text box. You should receive only the "Form: F5"
message.

Modify the program by commenting out the e.Handled = True line in the form's KeyDown event handler, and then run the
program again. This time, you will receive both messages when you press F5.

Modify the program once again, setting the form's KeyPreview property to False. When you run the program and press F5,
only the "Text: F5" message will appear.

Normally, a form ignores all keyboard input whenever a control on that form has the input focus. But you can alter that
behavior by setting the KeyPreview property to TRue. Once set, the program sends all keyboard input first to the form's
key-focused event handlers, and after that it sends those same key events to the active control. Stopping processing at
the form level is accomplished by setting the e.Handled property to true in any of the form-level keyboard event handlers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.2. Creating a Simple User Control

Problem

You would like to create your own Windows Forms control by building it up from other existing controls.

Solution

Sample code folder: Chapter 14\UserControl

Create a user control, a custom user-interface control built from a drawing surface in which any other existing controls
can appear.

Discussion

Visual Basic allows you to build two types of controls: user controls and custom controls. User controls act somewhat like
borderless forms on which you can "draw" other existing controls. Custom controls provide no default user interface; you
must manage all custom control drawing yourself through source code. This recipe will focus on the user control,
designing a simple control that displays the current time.

Create a new Windows Forms application. For now, we'll just ignore the Form1 form included in the project. To add a new
user control to the project, select the Project Add User Control menu command. Accept the default UserControl1.vb
name, and then click the Add button on the Add New Item form. A blank user control appears, as shown in Figure 14-2.

Figure 14-2. A new user control surface

Our simple user control will include two constituent controls: a label to display the time, and a timer that will trigger once
a second to update the time. First, resize the user control down to a reasonable size. We used a Size property of 96, 24.
Add a Label control named Label1, and set the following properties:

Set AutoSize to False.

Set Location to 0, 0.

Set Size to 96, 24.

Set Text to 12:00am.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set TextAlign to MiddleCenter.

Add a Timer control named Timer1, and set the following properties:

Set Enabled to true.

Set Interval to 1000, which sets it to trigger once every second.

Switch to the source code for the user control through the View Code menu command, and add the following source
code:

 Public Class UserControl1
 Public Event TimeChanged(ByVal sender As UserControl1, _
 ByVal e As System.EventArgs)

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Update every second.
 Dim newTime As String

 If (Me.DesignMode = False) Then
 newTime = Format(Now, "h:mmtt").ToLower()
 If (newTime <> Label1.Text) Then
 Label1.Text = newTime
 RaiseEvent TimeChanged(Me, New System.EventArgs)
 End If
 End If
 End Sub

 Private Sub UserControl1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Always reset the time when first started.
 If (Me.DesignMode = False) Then
 Label1.Text = Format(Now, "h:mmtt").ToLower()
 RaiseEvent TimeChanged(Me, New System.EventArgs)
 End If
 End Sub
 End Class

That's the whole control. It's just about ready to add to the Form1 surface, but you first have to build the project to allow
Visual Studio to create an instance of the control. Build it using the Build Build WindowsApplication1 menu
command.

Switch over to the Form Designer for Form1. If you open the Toolbox, you will see the user control UserControl1 in the
magically added WindowsApplication1 Components section, as shown in Figure 14-3. (The section name will vary if you
gave your project a different name.)

Figure 14-3. The new UserControl1 control in the Toolbox

Double-click the user control in the Toolbox to add it to the form surface. It should display the "12:00am" message we
added to the control's label. However, if you run the application, the running form will display the correct time.

Our user control included a public event named TimeChanged:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our user control included a public event named TimeChanged:

 Public Event TimeChanged(ByVal sender As UserControl1, _
 ByVal e As System.EventArgs)

You can respond to this event from Form1. Open the source code for Form1, and add the following event handler:

 Private Sub UserControl11_TimeChanged(_
 ByVal sender As UserControl1, _
 ByVal e As System.EventArgs) _
 Handles UserControl11.TimeChanged
 MsgBox("Changed!")
 End Sub

Now, when you run the program, a "Changed!" message appears at startup (via the code for the user control's
UserControl1_Load event handler), and also every time the minute changes (via the user control's Timer1_Tick event handler).

Visual Basic 2005 lets you easily design a new user control using mixtures of existing controls. You can also draw on the
user control's surface through its Paint event handler, but you don't have to. (If you wish to update the surface via Paint,
and not through subordinate controls, use a custom control instead of a user control.)

All child controls added to the surface of the user control are "owned" by the user control, not by (in this example) Form1.
This means that your control can monitor any normal control events for its child controls, but the form using your user
control will not know about those events. In this recipe, the user control exposes a Click event that Form1 can monitor. An
event fires any time the user clicks on the user control surface. However, because we covered the surface with a label,
clicks will never reach the user control surface, and the form will never be informed of such click events. If you want
clicks on the label to transfer to the user control, you must manage that yourself. Adding this code to the user control's
source code will do the trick:

 Public Shadows Event Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Private Sub Label1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Label1.Click
 RaiseEvent Click(Me, e)
 End Sub

 Private Sub UserControl1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Click
 RaiseEvent Click(Me, e)
 End Sub

Because the UserControl class (from which our UserControl1 class derives) already exposes a Click event, you have to cover it
up by declaring a new Click event. The Shadows keyword covers up the event in the base. Now add Click event handlers to
capture clicks on both the Label and UserControl surfaces, and pass them on to those who add UserControl1 to their forms. Look
carefully at the UserControl1_Click event handler just above. Make sure that it handles MyBase.Click, and not Me.Click. If you use
Me.Click, a click on the control surface will repeatedly call itself until you run out of stack space.

After adding this code, resize the label a little smaller so that the user can click on the user control surface. Return to the
source code for Form1, and add this code to its class template:

 Private Sub UserControl11_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles UserControl11.Click
 MsgBox("Clicked!")
 End Sub

Now run the program. You will see the "Clicked!" message whether you click on the label or the user control surface.

If you are building a user control for use elsewhere in the same project, any child controls you include on the surface of
your user control will, by default, be accessible to the entire application. For instance, in this recipe's code, you can
access the caption for the user control's label from the code for Form1. Go back to that UserControl11_TimeChanged event
handler you added to Form1. On a new line, type the following:

 UserControl1.L

As you type the letter L, you will see Label1 appear in the IntelliSense pop up. If you don't want this to happen, return to
the user control designer, select Label1, and change its Modifers property to Private instead of Friend.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.20. Accessing the Registry

Problem

You wish to read or write keys and values in one of the registry hives.

Solution

Sample code folder: Chapter 14\RegistryAccess

Use the My.Computer.Registry object and its members to access and update portions of the registry.

Discussion

This recipe's source code implements a read-only (and highly simplified) version of the Windows RegEdit application.
Create a new Windows Forms application, and add the following controls to Form1:

A treeView control named RegistryTree.

A ListBox control named RegistryValues.

A TextBox control named ValueData. Set its Multiline property to true, its ScrollBars property to Vertical, and its ReadOnly
property to TRue.

Add some informational labels if desired, and arrange the controls so the form looks like Figure 14-15.

Now add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Load the root objects.
 Dim rootNode As TreeNode
 Dim childNode As TreeNode

 rootNode = RegistryTree.Nodes.Add("My Computer")

Figure 14-15. The form and controls for the registry viewer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 childNode = rootNode.Nodes.Add("HKEY_CLASSES_ROOT")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_CURRENT_USER")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_LOCAL_MACHINE")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_USERS")
 childNode.Nodes.Add("")

 childNode = rootNode.Nodes.Add("HKEY_CURRENT_CONFIG")
 childNode.Nodes.Add("")

 rootNode.Expand()
 End Sub

 Private Function BuildRegistryPath(_
 ByVal fromNode As TreeNode) As String
 ' ----- Traverse a tree backward, building the node path.
 If (fromNode.Parent Is Nothing) Then
 ' ----- This is the root node.
 Return "\"
 Else
 ' ----- This is an intermediate node.
 Return BuildRegistryPath(fromNode.Parent) & _
 "\" & fromNode.Text
 End If
 End Function

 Private Function GetHiveFromName(ByVal hiveName As String) _
 As Microsoft.Win32.
RegistryKey
 ' ----- Given the name of a hive, return its key.
 Select Case hiveName
 Case "HKEY_CLASSES_ROOT"
 Return My.Computer.Registry.ClassesRoot
 Case "HKEY_CURRENT_USER"
 Return My.Computer.Registry.CurrentUser
 Case "HKEY_LOCAL_MACHINE"
 Return My.Computer.Registry.LocalMachine
 Case "HKEY_USERS"
 Return My.Computer.Registry.Users
 Case "HKEY_CURRENT_CONFIG"
 Return My.Computer.Registry.CurrentConfig
 Case Else
 Return Nothing
 End Select
 End Function

 Private Function GetKeyFromNode(ByVal whichNode As TreeNode) _
 As Microsoft.Win32.RegistryKey
 ' ----- The user is just about to expand a node. If it
 ' includes a blank node, retrieve the actual
 ' child nodes from the registry.
 Dim registryPath As String
 Dim hiveName As String
 Dim registryKey As Microsoft.Win32.RegistryKey

 ' ----- Access this part of the registry.
 registryPath = BuildRegistryPath(whichNode).Substring(2)
 If (registryPath.Contains("\") = True) Then
 ' ----- Extract the hive and path parts.
 hiveName = registryPath.Substring(0, _
 registryPath.IndexOf("\"c))
 registryPath = registryPath.Substring(_
 hiveName.Length + 1)
 Else
 ' ----- The active node is a hive.
 hiveName = registryPath
 registryPath = ""

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 registryPath = ""
 End If

 ' ----- Obtain the right hive.
 registryKey = GetHiveFromName(hiveName)
 If (registryKey Is Nothing) Then Return Nothing

 ' ----- Obtain the right subkey, if needed.
 If (registryPath <> "") Then _
 registryKey = registryKey.OpenSubKey(registryPath)

 ' ----- This is the right key.
 Return registryKey
 End Function

 Private Sub
RegistryTree_AfterSelect(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms.TreeViewEventArgs) _
 Handles RegistryTree.AfterSelect
 ' ----- Display the values associated with a node.
 Dim registryKey As Microsoft.Win32.RegistryKey

 ' ----- Clear any existing data.
 RegistryValues.Items.Clear()
 ValueData.Clear()

 ' ----- Ignore if this is the root node.
 If (e.Node.Parent Is Nothing) Then Return

 ' ----- Get the registry key associated with this
 ' tree node.
 registryKey = GetKeyFromNode(e.Node)

 ' ----- There is always a default value.
 RegistryValues.Items.Add("(Default)")

 ' ----- Get all of the values of this key, and add them
 ' to the list.
 Me.Cursor = Cursors.WaitCursor
 Try
 For Each oneValue As String In _
 registryKey.GetValueNames()
 RegistryValues.Items.Add(oneValue)
 Next oneValue
 Finally
 Me.Cursor = Cursors.Arrow
 End Try

 registryKey.Close()
 End Sub

 Private Sub RegistryTree_BeforeExpand(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms.TreeViewCancelEventArgs) _
 Handles RegistryTree.BeforeExpand
 ' ----- The user is just about to expand a node. If it
 ' includes a blank node, retrieve the actual
 ' child nodes from the registry.
 Dim registryKey As Microsoft.Win32.RegistryKey
 Dim keyNode As TreeNode

 ' ----- Ignore if this node was already expanded.
 If (e.Node.FirstNode.Text <> "") Then Return
 e.Node.Nodes.Remove(e.Node.FirstNode)

 ' ----- Get the registry key associated with this tree node.
 registryKey = GetKeyFromNode(e.Node)

 ' ----- Get all of the child keys of this key, and add them
 ' to the tree.
 Me.Cursor = Cursors.WaitCursor
 Try
 For Each oneKey As String In _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registryKey.GetSubKeyNames()
 keyNode = e.Node.Nodes.Add(oneKey)
 keyNode.Nodes.Add("")
 Next oneKey
 Finally
 Me.Cursor = Cursors.Arrow
 End Try

 registryKey.Close()
 End Sub

 Private Sub RegistryValues_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles RegistryValues.SelectedIndexChanged
 ' ----- Display the data associated with the selected list item.
 Dim registryKey As Microsoft.Win32.RegistryKey
 Dim actualValue As Object
 Dim valueName As String

 ' ----- Clear any existing data.
 ValueData.Clear()

 ' ----- Ignore if nothing is active.
 If (RegistryValues.SelectedIndex = _
 ListBox.NoMatches) Then Return

 ' ----- Ignore if this is the root node.
 If (RegistryTree.SelectedNode.Parent Is Nothing) _
 Then Return

 ' ----- Get the registry key associated with this
 ' tree node.
 registryKey = GetKeyFromNode(RegistryTree.SelectedNode)

 ' ----- Determine the value to retrieve.
 valueName = RegistryValues.Text
 If (valueName = "(Default)") Then valueName = ""

 ' ----- Display the value.
 actualValue = registryKey.GetValue(valueName)
 If (actualValue IsNot Nothing) Then _
 ValueData.Text = actualValue.ToString()

 registryKey.Close()
 End Sub

To use the program, expand and select registry keys in the RegistryTree control, and select values in the RegistryValues
control. The RegistryTree_BeforeExpand event handler loads only those branches that have been expanded, so the program
doesn't have to load the entire registry at once. The program could be greatly enhanced to properly display nonstring
and nonnumeric data, and to manage security-and access-related errors.

The system registry is grouped into hives, although most of the hives are simply shortcuts to specific portions of the
master HKEY_CLASSES_ROOT hive. The My.Computer.Registry object provides access to these hives through the following
members, each of which is an instance of Microsoft.Win32. RegistryKey:

ClassesRoot provides access to the HKEY_CLASSES_ROOT hive.

CurrentConfig provides access to the HKEY_CURRENT_CONFIG hive.

CurrentUser provides access to the HKEY_CURRENT_USER hive.

DynData provides access to the HKEY_DYNAMIC_DATA hive.

LocalMachine provides access to the HKEY_LOCAL_MACHINE hive.

PerformanceData provides access to the HKEY_PERFORMANCE_DATA hive.

Users provides access to the HKEY_USERS hive.

The RegistryKey class for each hive includes features that let you access the subordinate keys and values associated with
that hive or key. Fortunately, any subordinate key you access can also appear as a RegistryKey instance, making it easy
to traverse the registry from any hive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to traverse the registry from any hive.

This recipe's code uses the RegistryKey. OpenSubKey() method to access specific keys below a hive root. For instance, to
access the key \\HKEY_CURRENT_USER\Software\Microsoft, you would make the following function call:

 Dim microsoftKey As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentUser.OpenSubKey(_
 "Software\Microsoft")

Each key includes zero or more values, including a default value (which is actually named default). To retrieve a value for
a key, use the key's GetValue() method, a feature also used in the sample code. The registry can store data in a variety of
formats, so use the related GetValueKind() method to determine the type of data stored. To access the default value for a
key, use an empty string for the value name.

To add or update a value for a key, use the RegistryKey.SetValue() method.

For both reads and writes of key and value data, the system administrator may impose
access limits on certain areas of the registry. Attempting to read or write an inaccessible
portion of the registry generates an exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.21. Running Procedures in Threads

Problem

You would like to perform some involved background data processing but keep the user interface for your application
responsive to user interaction.

Solution

Sample code folder: Chapter 14\UsingThreads

Use a BackgroundWorker control (or class) to manage the interaction between the main process and a worker thread.

Discussion

This recipe's sample code starts a background worker thread that does some work, reporting its progress back to the
main thread on a regular basis. The main thread has the option to cancel the worker thread. Create a new Windows
Forms application, and add the following controls to Form1:

A Button control named StartWork. Change its Text property to Start.

A Button control named StopWork. Change its Text property to Stop, and set its Enabled property to False.

A Label control named WorkStatus. Change its Text property to Not started.

A ProgressBar control named WorkProgress.

A BackgroundWorker control named BackgroundActivity. Change both the WorkerReportsProgress and WorkerSupportsCancellation
properties to true.

Arrange the controls nicely so they look like Figure 14-16.

Figure 14-16. Controls for the background activity sample

Add the following Imports statement at the top of the source-code file for Form1:

 Imports System.ComponentModel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the Form1 class:

 Private Sub BackgroundActivity_DoWork(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.DoWorkEventArgs) _
 Handles BackgroundActivity.DoWork
 ' ----- The background work starts here.
 Dim theBackground As BackgroundWorker

 ' ----- Call the background thread.
 theBackground = CType(sender, BackgroundWorker)
 TheBusyWork(theBackground)

 ' ----- Check for a cancellation.
 If (theBackground.CancellationPending = True) Then _
 e.Cancel = True
 End Sub

 Private Sub BackgroundActivity_ProgressChanged(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.ProgressChangedEventArgs) _
 Handles BackgroundActivity.ProgressChanged
 ' ----- The background task updated its progress.
 WorkProgress.Value = e.ProgressPercentage
 End Sub

 Private Sub BackgroundActivity_RunWorkerCompleted(_
 ByVal sender As Object, ByVal e As _
 System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles BackgroundActivity.RunWorkerCompleted
 ' ----- Finished.
 If (e.Cancelled = True) Then
 WorkStatus.Text = "Cancelled."
 Else
 WorkStatus.Text = "Complete."
 End If
 WorkProgress.Visible = False
 WorkProgress.Value = 0
 StopWork.Enabled = False
 StartWork.Enabled = True
 End Sub

 Private Sub TheBusyWork(ByVal workerLink As BackgroundWorker)
 ' ----- Perform some work.
 For counter As Integer = 1 To 10
 ' ----- See if we should jump out now.
 If (workerLink.CancellationPending = True) Then _
 Exit For

 ' ----- Take a nap for 2 seconds.
 Threading.Thread.Sleep(2000)
 ' ----- Inform the primary thread that we've
 ' made significant progress.
 workerLink.ReportProgress(counter * 10)
 Next counter
 End Sub

 Private Sub StartWork_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles StartWork.Click
 ' ----- Start the background process.
 StartWork.Enabled = False
 StopWork.Enabled = True
 WorkStatus.Text = "Progress…"
 WorkProgress.Value = 0
 WorkProgress.Visible = True
 BackgroundActivity.
RunWorkerAsync()
 End Sub

 Private Sub StopWork_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles StopWork.Click
 ' ----- Tell the worker thread to stop.
 BackgroundActivity.CancelAsync()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Run the program, and click on the Start button. The progress will update as the background worker proceeds through
its activity loop. You can interrupt the back-ground worker by clicking on the Stop button, although it won't actually
stop until the end of the current two-second sleep.

Processes running in Windows have the option of dividing their work among separate threads of execution within those
processes. By default, Visual Basic processes include only a single thread: the process itself. However, you can start
one or more background worker threads to perform some activity apart from the flow of the primary application.

The .NET Framework includes threading support through the System.Threading namespace, and specifically through the
Thread class in that namespace. While using the THRead class is relatively simple, you have to develop or enhance the
class if you want standardized interactions to occur between your primary and worker threads.

The BackgroundWorker control, part of the System.ComponentModel namespace, implements a lot of these interaction features
for you. To use the control, simply add it to your form. You can also use it as a class by declaring it using the WithEvents
keyword:

 Private WithEvents BackgroundActivity _
 As System.ComponentModel.BackgroundWorker

When you are ready to initiate the background work, call the BackgroundWorker's RunWorkerAsync() method. This triggers the
DoWork event. In this event handler, call the method that will perform the background work. The sample code passes the
BackgroundWorker instance to the worker method. You don't have to pass this information, but it makes it easier to
communicate back to the primary thread if you do.

For example, if you want the worker thread to report its progress, set the control's WorkerReportsProgress property to true,
then monitor the control's ProgressChanged event. Calls to the control's ReportProgress() method by the work trigger this
event in the primary thread.

This communication works both ways. Setting the control's WorkerSupportsCancellation property to TRue allows the primary
thread to request a cancellation of the work by calling the CancelAsync() method. This sets the control's CancellationPending
property, as viewed by the worker thread.

Threads make background processing easy, but interactions between threads can be problematic. The issue is that if
two threads wish to update the same object instance, there is no guarantee that they will update them in a specific
order. Consider a class with three members. Updating these three members occurs over multiple statements:

 Private SomeInstance As SomeClass
 Private Sub UpdateInstance(ByVal scalar As Integer)
 SomeInstance.Member1 = 10 * scalar
 SomeInstance.Member2 = 20 * scalar
 SomeInstance.Member3 = 30 * scalar
 End Sub

But what happens when two different threads call the UpdateInstance() method at the same time (assuming that they are
sharing the SomeInstance variable)? Because of the way that threading works, it's possible that the calls could get
interleaved in ways that corrupt the data. Suppose thread #1 calls UpdateInstance(2) and thread #2 calls UpdateInstance(3).
It's possible the statements within UpdateInstance() could be called in this order:

 SomeInstance.Member1 = 10 * 2 ' From Thread #1
 SomeInstance.Member1 = 10 * 3 ' From Thread #2
 SomeInstance.Member2 = 20 * 3 ' From Thread #2
 SomeInstance.Member2 = 20 * 2 ' From Thread #1
 SomeInstance.Member3 = 30 * 2 ' From Thread #1
 SomeInstance.Member3 = 30 * 3 ' From Thread #2

After this code, Member1 and Member3 is set based on the call from thread #2, but Member2 retains the value from thread
#1.

To prevent this from happening, Visual Basic includes a SyncLock statement that acts as a gatekeeper around a block of
code. (The .NET Framework also includes other classes and features that perform a similar service.) Using SyncLock to fix
the UpdateInstance() problem, you must create a common object and use it as a locking mechanism:

 Private SomeInstance As SomeClass
 Private LockObject As New Object
 Private Sub UpdateInstance(ByVal scalar As Integer)
 SyncLock LockObject
 SomeInstance.Member1 = 10 * scalar
 SomeInstance.Member2 = 20 * scalar
 SomeInstance.Member3 = 30 * scalar
 End SyncLock
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

As each thread enters UpdateInstance(), SyncLock TRies to exclusively lock the LockObject instance. Only when this is
successful does the thread proceed through the block of code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.22. Reading XML into a TreeView

Problem

You have some XML content in a file. You want to display it using a TReeView control, so that you can expand specific
branches.

Solution

Sample code folder: Chapter 14\XMLTreeView

There are many ways to go about this task, but one of the most straightforward is to load the content into an
XmlDocument object, then traverse this object's attributes and nodes. This recipe's code loads an XML file into a TReeView
control.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named XMLFile.

A Button control named LoadFile. Set its Text property to Load.

A TReeView control named XMLTree.

Add informational labels if desired, and arrange the controls so that Form1 looks like the form in Figure 14-17.

Figure 14-17. Controls on the XML-to-TreeView sample

Now add the following source code to Form1's class template:

 Private Sub LoadFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles LoadFile.Click
 ' ----- Load an
XML file into the form's TreeView control.
 Dim fileContent As

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim fileContent As
Xml.XmlDocument

 ' ----- Make sure the file exists.
 If (My.Computer.FileSystem.FileExists(XMLFile.Text) = _
 False) Then
 MsgBox("Please supply a valid file name.")
 Return
 End If

 ' ----- Load the XML content into an XMLDocument object.
 Try
 fileContent = New Xml.XmlDocument
 fileContent.Load(XMLFile.Text)
 Catch ex As Exception
 MsgBox("The XML file could not be loaded due to " & _
 "the following error:" & vbCrLf & vbCrLf & _
 ex.Message)
 fileContent = Nothing
 Return
 End Try

 ' ----- Remove any existing content in the TreeView.
 XMLTree.Nodes.Clear()

 ' ----- Call a recursive method that will scan down
 ' all branches of the XML file.
 For Each oneNode As Xml.XmlNode In fileContent.ChildNodes
 AddNodeToTree(oneNode, Nothing)
 Next oneNode
 End Sub

 Private Sub AddNodeToTree(ByVal oneNode As Xml.XmlNode, _
 ByVal fromNode As TreeNode)
 ' ----- Add a node and all of its subordinate items.
 Dim baseNode As TreeNode

 ' ----- Ignore plain text nodes, as they are picked up
 ' by the inner-text code below.
 If (oneNode.NodeType = Xml.XmlNodeType.Text) Then Return

 ' ----- Treat the "<?xml…" node specially.
 If (oneNode.NodeType = Xml.XmlNodeType.XmlDeclaration) _
 And (fromNode Is Nothing) Then
 baseNode = XMLTree.Nodes.Add(_
 oneNode.OuterXml.ToString())
 Return
 End If

 ' ----- Add the node itself.
 If (fromNode Is Nothing) Then
 baseNode =
XMLTree.Nodes.Add(oneNode.Name)
 Else
 baseNode = fromNode.Nodes.Add(oneNode.Name)
 End If

 ' ----- Add the attributes.
 If (oneNode.Attributes IsNot Nothing) Then
 For Each oneAttr As
Xml.XmlAttribute In _
 oneNode.Attributes
 baseNode.Nodes.Add("Attribute: " & oneAttr.Name & _
 " = """ & oneAttr.Value & """")
 Next oneAttr
 End If

 ' ----- Add content if available.
 If (oneNode.InnerText <> "") Then
 baseNode.Nodes.Add("Content: " & oneNode.InnerText)
 End If

 ' ----- Add the child nodes.
 If (oneNode.ChildNodes IsNot Nothing) Then
 For Each subNode As Xml.XmlNode In oneNode.ChildNodes
 AddNodeToTree(subNode, baseNode)
 Next subNode
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

To run the program, type a valid XML filename in the XMLFile field, and then click the Load button. The XML content
appears in the treeView control, with branches collapsed. This program was run using this recipe's .vbproj file for the
input (it's an XML file). Figure 14-18 shows the results.

Figure 14-18. XML displayed as a TreeView

The TreeView control is designed to present hierarchical data, which is precisely what you find in XML content. The
System.Xml.XmlDocument object represents the content of XML data by parsing the raw XML text and building distinct
Xml.XmlNode objects for each element and branch point within the content. Both XmlDocument and XmlNode include a
ChildNodes collection that provides access to the XML tags found immediately within the current tag. These objects also
include an Attributes collection that lists the name and value of each tag attribute.

See Also

Recipes 14.23 and 14.24 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.23. Creating an XML Document

Problem

You need to build an XML file that contains important configuration or processing data, and you aren't excited about
doing all the string concatenation yourself.

Solution

Sample code folder: Chapter 14\GenerateXMLContent

Use the XML document creation tools in the System.XML namespace to generate the XML. This namespace includes a few
different ways of building XML content. One of the simplest methods is to fill in a System.Xml.XmlDocument object by
building it with distinct System.Xml.XmlElement objects.

Discussion

This recipe's sample code builds a simple program that outputs a list of email recipients in XML format. It groups
recipients by the desired email format, either HTML or plain text. Here is a sample of the generated XML content:

 <?xml version="1.0"?>
 <emailData>
 <emailRecipients mailType="HTML">
 <recipient>
 <name>John Smith</name>
 <address>jsmith@fakeemail.com</address>
 </recipient>
 <recipient>
 <name>Jane Jones</name>
 <address>jane.jones@dontmailme.com</address>
 </recipient>
 </emailRecipients>
 <emailRecipients mailType="Text">
 <recipient>
 <name>Brenda Wong</name>
 <address>puppyfriend@ilikedogs.net</address>
 </recipient>
 </emailRecipients>
 </emailData>

Create a new Windows Forms application, and add the following controls to Form1:

A ComboBox control named EmailType. Set its DropDownStyle property to DropDownList.

A TextBox control named RecipientName.

A TextBox control named RecipientAddress.

A ListBox control named AllRecipients.

A Button control named AddEmail. Set its Text property to Add.

A Button control named DeleteEmail. Set its Text property to Delete.

A TextBox control named XMLFile.

A Button control named SaveFile. Set its Text property to Save.

Add informational labels if desired, and arrange the controls so that Form1 looks like the form in Figure 14-19.

Figure 14-19. Controls for the XML-generation sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-19. Controls for the XML-generation sample

Now add the following source code to Form1's class template:

 Public Class RecipientData
 ' ----- A simple class to hold the basics of an address.
 Public EmailType As String
 Public EmailName As String
 Public EmailAddress As String

 Public Sub New(ByVal newType As String, _
 ByVal newName As String, ByVal newAddress As String)
 ' ----- Constructor to build the new record.
 EmailType = newType
 EmailName = newName
 EmailAddress = newAddress
 End Sub

 Public Overrides Function ToString() As String
 ' ----- Display a nicely formatted address.
 Return EmailName & " <" & EmailAddress & ">"
 End Function
 End Class

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Add the types of email content.
 EmailType.Items.Add("HTML")
 EmailType.Items.Add("Text")
 EmailType.SelectedIndex = 0
 End Sub

 Private Sub DeleteEmail_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles DeleteEmail.Click
 ' ----- Remove the selected email address.
 If (AllRecipients.SelectedIndex <> ListBox.NoMatches) Then _
 AllRecipients.Items.Remove(AllRecipients.SelectedItem)
 End Sub

 Private Sub AddEmail_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles AddEmail.Click
 ' ----- Add an email recipient. Check for missing data.
 If (RecipientName.Text.Trim = "") Then
 MsgBox("Please supply a recipient name.")
 Return
 End If
 If (RecipientAddress.Text.Trim = "") Then
 MsgBox("Please supply a recipient address.")
 Return
 End If

 ' ----- Add this recipient to the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AllRecipients.Items.Add(New RecipientData(_
 EmailType.Text, RecipientName.Text, _
 RecipientAddress.Text))

 ' ----- Get ready for a new entry.
 RecipientName.Clear()
 RecipientAddress.Clear()
 RecipientName.Focus()
 End Sub

 Private Sub SaveFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SaveFile.Click
 ' ----- Save the
XML content.
 Dim emailSet As Xml.XmlDocument
 Dim emailDeclare As
Xml.XmlDeclaration
 Dim emailRoot As Xml.XmlElement
 Dim emailGroup As Xml.XmlElement
 Dim emailRecipient As Xml.XmlElement
 Dim emailDetail As Xml.XmlElement
 Dim counter As Integer
 Dim useType As String
 Dim scanEmail As Object
 Dim oneEmail As RecipientData

 ' ----- Check for missing data.
 If (AllRecipients.Items.Count = 0) Then
 MsgBox("Please enter at least one recipient.")
 Return
 End If
 If (XMLFile.Text.Trim = "") Then
 MsgBox("Please specify the output file.")
 Return
 End If

 ' ----- Warn if the file exists.
 If (My.Computer.FileSystem.FileExists(XMLFile.Text)) Then
 If (MsgBox("The file exists. Overwrite?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question) <> _
 MsgBoxResult.Yes) Then Return
 Try
 Kill(XMLFile.Text)
 Catch ex As Exception
 MsgBox("Could not replace the file. " & ex.Message)
 Return
 End Try
 End If

 ' ----- Start the XML document with an XML declaration.
 emailSet = New Xml.XmlDocument
 emailDeclare = emailSet.CreateXmlDeclaration("1.0", _
 Nothing, String.Empty)
 emailSet.InsertBefore(emailDeclare, _
 emailSet.DocumentElement)

 ' ----- Add in the root <emailData> element.
 emailRoot = emailSet.CreateElement("emailData")
 emailSet.InsertAfter(emailRoot, emailDeclare)

 ' ----- Scan through the recipients, once for each type.
 For counter = 0 To EmailType.Items.Count - 1
 ' ----- Prepare for this pass.
 useType = EmailType.Items(counter)
 emailGroup = Nothing

 For Each scanEmail In AllRecipients.Items
 oneEmail = CType(scanEmail, RecipientData)
 If (oneEmail.EmailType = useType) Then
 ' ----- Found a recipient in this group.
 ' Add the group if needed.
 If (emailGroup Is Nothing) Then
 emailGroup = emailSet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emailGroup = emailSet.
CreateElement(_
 "emailRecipients")
 emailGroup.SetAttribute("mailType", useType)
 emailRoot.AppendChild(emailGroup)
 End If

 ' ----- Build the new output entry.
 emailRecipient = emailSet.CreateElement(_
 "recipient")
 emailGroup.AppendChild(emailRecipient)

 emailDetail = emailSet.CreateElement("name")
 emailDetail.InnerText = oneEmail.EmailName
 emailRecipient.AppendChild(emailDetail)

 emailDetail = emailSet.CreateElement("address")
 emailDetail.InnerText = oneEmail.EmailAddress
 emailRecipient.AppendChild(emailDetail)
 End If
 Next scanEmail
 Next counter

 ' ----- Write out the
XML content.
 Try
 emailSet.Save(XMLFile.Text)
 MsgBox("XML content saved.")
 Catch ex As Exception
 MsgBox("Could not write the XML content. " & _
 ex.Message)
 End Try
 End Sub

To use the program, select an email type (HTML or Text) from the Type drop-down list, enter in a recipient name and
email address in the two text fields next to the drop-down, and then click the Add button to add the recipient to the list.
Repeat as needed. When you have added enough recipients, supply an output filename in the XML File field, and then
click the Save button.

Most of this recipe's sample code lets you build the list of email recipients in a ListBox control. The embedded RecipientData
class helps organize the content stored in each ListBox item.

The real XML work happens in the Click event handler for the SaveFile button. After performing some quick verification,
the method creates a new XmlDocument to store the new XML content. For each node in the output, it then creates
XmlElement objects using the XmlDocument.CreateElement() method. This method generates a generic XML element,
representing a standard XML tag. It adds attributes to the element via the XmlElement.SetAttribute() method. These
completed elements are then inserted into the existing XmlDocument structure relative to other existing nodes.

The various uses of the InsertBefore(), InsertAfter(), and AppendChild() methods in the sample code show how you can position
elements as you need them.

Besides CreateElement(), XmlDocument includes other Create… methods that generate a variety of XML-specific content
entities. For example, the CreateXmlDeclaration() method is used in the sample code to generate the <?xml version="1.0"?> tag
at the start of the document:

 emailDeclare = emailSet.CreateXmlDeclaration("1.0", _
 Nothing, String.Empty)

Once elements have been added to the XmlDocument, you can traverse them using any of the supported XML tools, such
as XPath.

See Also

Recipes 14.22 and 14.24 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.24. Validating an XML Document

Problem

You have an XML document that is supposed to adhere to a specific schema. How can you be sure the document is
valid?

Solution

There are a variety of XML validation methods, including DTD and both internal and external Schema definitions. If you
are going to read the XML content into a System.Xml.XmlDocument object, you can verify it as it is read using any of these
validation methods. Normally, an XmlReader reads any valid XML into an XmlDocument object without validation. However,
you can indicate the type of validation to perform by setting the various properties of an XmlReaderSettings object and
using it when creating the XmlReader. Here is the basic code used to process XML with custom settings:

 ' ----- XML file contained in 'xmlFileName' variable.
 Dim readContent As Xml.XmlReader
 Dim xmlContent As Xml.XmlDocument
 Dim customSettings As New Xml.XmlReaderSettings
 ' ----- Modify customSettings properties here, then…
 readContent = Xml.XmlReader.Create(xmlFileName, customSettings)
 xmlContent = New Xml.XmlDocument
 xmlContent.Load(readContent)

The code you add in the "Modify customSettings" area of the code depends on the type of verification or processing you
wish to do. Include the following statements to validate the XML using a known external schema (.xsd) file:

 customSettings.ValidationType = Xml.ValidationType.Schema
 customSettings.Schemas.Add("urn:my-schema", "MySchema.xsd")

Discussion

The XmlReaderSettings class includes features that control the processing of XML content during import, including the
handling of whitespace and embedded comments. It also determines how to handle validation through its ValidationType
property. In Visual Basic 2005, the allowed settings include None (for no validation, the default), DTD (for included DTD
content), and Schema (for XSD processing, either internal or external).

Care must be taken when performing DTD validation because malformed DTD entries can cause processing issues.
Because of this, DTD processing is disabled by default. To enable it, you must alter two settings:

 customSettings.ValidationType = Xml.ValidationType.DTD
 customSettings.ProhibitDtd = False

If your XML content includes an XSD schema within the XML content (i.e., an inline schema), you must enable
processing support:

 customSettings.ValidationType = Xml.ValidationType.Schema
 customSettings.ValidationFlags = _
 customSettings.ValidationFlags Or _
 Xml.Schema.XmlSchemaValidationFlags.ProcessInlineSchema

When you validate XML, any content that deviates from the schema raises exceptions (System.Xml.XmlException) that
emanate from the call to XmlDocument.Load(). You can also capture problems through a ValidationEventHandler event, exposed
by the XmlReaderSettings class.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipes 14.22 and 14.23 discuss other methods of working with XML content.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.25. Using Generic Collections

Problem

You need to store some objects in a collection, but you want to ensure that the collection allows only objects of a
specific type.

Solution

Use one of the generic collections made available in .NET. They are called "generic" because they are data-typed
generically, allowing you to replace nonspecific data-type placeholders with your own specific data types. ("Specifics"
might have been a better name.) All generic collection classes appear in the System.Collections.Generic namespace.

As an example, the following code creates a stack (represented by the System.Collections.Generic.Stack class) that stores only
Date objects. It then adds items to the stack:

 Dim dateStack As _
 New System.Collections.Generic.Stack(Of Date)
 dateStack.Push(Today)
 dateStack.Push(DateAdd("d", 28, Today))

Discussion

The System.Collections.Generic namespace includes several useful generic collections for your use:

Dictionary(Of TKey, TValue)

This class implements a basic lookup system, with value objects made available through unique keys. You can
indicate the data types of both the key and the value at declaration; they can be different. This class stores
items in the dictionary through the related KeyValuePair(Of TKey, TValue) class.

LinkedList(Of T)

This class implements a doubly linked list, with immediate access to the first and last items in the list. Each list
itemimplemented through the related LinkedListNode(Of T) classincludes a Previous and Next link to make traversal
possible.

List(Of T)

This class implements a simple list of objects, providing access to items by index number. It includes methods
to add, insert, and remove objects. It also includes many methods that locate items already in the list.

Queue(Of T)

This class represents a generic queue of objects, a "First In, First Out" (FIFO) construct. Items are added to the
queue through the Enqueue() method and later retrieved and removed from the queue with the Dequeue()
method. The Peek() method retrieves the oldest object from the queue but does not remove it.

SortedDictionary(Of TKey, TValue)

This class implements a basic lookup system, with value objects made available through unique keys. It also
keeps the records sorted using a binary search tree. You can indicate the data types of both the key and the
value at declaration; they can be different. If the TKey data type implements the IComparer interface, that type's
comparison rules are used for the sort. This class stores items in the dictionary through the related
KeyValuePair(Of TKey, TValue) class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SortedList(Of TKey, TValue)

This class implements an ordered list. Items in the list are sorted by key as they are added. It is identical to the
SortedDictionary(Of TKey, TValue) class, but it is optimized for fast insertion of previously sorted data. If the TKey data
type implements the IComparer interface, that type's comparison rules are used for the sort. This class stores
items in the dictionary through the related KeyValuePair(Of TKey, TValue) class.

Stack(Of T)

This class represents a generic stack of objects, a "Last In, First Out" (LIFO) construct. Items are added to the
stack through the Push() method and later retrieved and removed from the stack with the Pop() method. The
Peek() method retrieves the top-most object from the stack, but does not remove it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.26. Creating a Screensaver

Problem

You have some down time between projects at work, and you want to implement a simple screensaver in Visual Basic.

Solution

Sample code folder: Chapter 14\SimpleScreenSaver

Use this recipe's sample code as an example of how to develop a screensaver using .NET. The code creates a simple
screensaver that displays either the time or the date and time together in the center of the display.

Discussion

Create a new Windows Forms project, and name it SimpleScreenSaver. Change the name of the main form from Form1.vb
to ScreenSaver.vb. Open that form, and set the following properties:

Set Text to Simple Screen Saver.

Set FormBorderStyle to None.

Set TopMost to true.

Set WindowState to Maximized.

This form will serve as the screensaver view. Maximizing it and setting it as the top-most form forces it to consume the
entire display.

Add a Label control named CurrentTime to the form's surface, and set these properties:

Set AutoSize to False.

Set Size to 240, 120.

Set Font.Size to 28.

Set TextAlign to MiddleCenter.

Next, add a Timer control named ClockTimer to the form. Set its Interval property to 1000(which means 1000 milliseconds),
and set its Enabled property to TRue. The form should be somewhat bland and have the general look of Figure 14-20.

Figure 14-20. The design of the screensaver form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following code to the form's code template:

 Private LastMousePosition As New Point(-1, -1)

 Private Sub ClockTimer_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ClockTimer.Tick
 ' ----- Show the time.
 RefreshClock()
 End Sub

 Private Sub RefreshClock()
 ' ----- Update the display when it changes.
 If (IncludeDateFlag() = True) Then
 CurrentTime.Text = Now.ToLongDateString & vbCrLf & _
 Now.ToLongTimeString
 Else
 CurrentTime.Text = Now.ToLongTimeString
 End If
 End Sub

 Private Sub ScreenSaver_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' ----- Restore the mouse pointer.
 Windows.Forms.Cursor.Show()
 End Sub

 Private Sub ScreenSaver_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles Me.KeyDown
 ' ----- Pressing any key stops the program.
 Me.Close()
 End Sub

 Private Sub
ScreenSaver_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Hide the mouse cursor.
 Windows.Forms.Cursor.Hide()
 RefreshClock()
 End Sub

 Private Sub ScreenSaver_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseDown
 ' ----- Clicking stops the program.
 Me.Close()
 End Sub

 Private Sub ScreenSaver_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Moving the mouse stops the program.
 If (LastMousePosition <> New Point(-1, -1)) Then
 ' ----- See if the mouse moved since last time.
 If (LastMousePosition <> New Point(e.X, e.Y)) Then
 Me.Close()
 End If
 End If

 ' ----- Record the current point.
 LastMousePosition = New Point(e.X, e.Y)
 End Sub

 Private Sub ScreenSaver_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Center the label on the form.
 CurrentTime.Location = New Point(0, (Me.Height - _
 CurrentTime.Height) / 2)
 CurrentTime.Size = New Size(Me.Width, CurrentTime.Height)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Add a new module to the project through the Project Add Module menu command, and name the module file
General.vb. Add the following two methods to this module's source code:

 Public Sub Main()
 ' ----- The screen saver starts here.
 Dim startOption As String = ""

 ' ----- Check the command-line arguments. There are
 ' three that we will look for:
 ' /s = Start the screen saver
 ' /c = Configure the screen saver (default)
 ' /p = Show a preview (not implemented here)
 If (My.Application.CommandLineArgs.Count > 0) Then _
 startOption = My.Application.CommandLineArgs(0). _
 ToUpper()
 If (startOption = "") Then startOption = "/C"
 If (startOption.Substring(0, 2) = "/C") Then
 Config.ShowDialog()
 Return
 ElseIf (startOption.Substring(0, 2) <> "/S") Then
 ' ----- Ignore all options besides "startup."
 Return
 End If

 ' ----- Start the
screen saver.
 ScreenSaver.ShowDialog()
 End Sub

 Public Function IncludeDateFlag() As Boolean
 ' ----- Get the current configuration value.
 Dim configKey As Microsoft.Win32.RegistryKey
 Dim theValue As Object

 IncludeDateFlag = False
 Try
 ' ----- Load the setting from the registry.
 configKey = My.Computer.Registry.CurrentUser. _
 OpenSubKey("Software\MyCompany\SimpleScreenSaver")
 If (configKey IsNot Nothing) Then
 theValue = configKey.GetValue("IncludeDate")
 If (theValue IsNot Nothing) Then _
 IncludeDateFlag = CBool(theValue)
 configKey.Close()
 End If
 Catch ex As Exception
 ' ----- Don't show any error.
 Finally
 configKey = Nothing
 End Try
 End Function

Finally, add a form that lets the user indicate whether to include the date on the screensaver display. Add the form
through the Project Add Windows Form menu command, and name the form file Config.vb. Set the following form
properties:

Set FormBorderStyle to FixedDialog.

Set Text to Configure Screen Saver.

Set ControlBox to False.

Set StartPosition to CenterScreen.

Add a CheckBox control to the form named IncludeDate, and set its Text property to Include Date in Screen Saver Display. Also add
two Button controls named ActOK and ActCancel, and set their Text properties to OK and Cancel, respectively.

Select the form again, and set its AcceptButton property to ActOK and its CancelButton property to ActCancel. The form should
look like Figure 14-21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-21. The screensaver configuration form

That's it for the main display and code design, but we still need to make a few changes to the project itself to prepare it
for screensaver use. Open the Project Properties window. On the Application panel, set "Startup object" to Sub Main,
and clear (uncheck) the "Enable application framework" field.

Build the project through the Build Build SimpleScreenSaver menu command. In Windows Explorer, locate the
executable file. It will appear in the bin\Release directory within the project source-code directory. Rename the
SimpleScreenSaver.exe file to SimpleScreenSaver.scr. Then, copy that file into your system's Windows\System32
directory (the exact location will vary by system). The screensaver is ready to use. Open up the Display Properties
within your system's Control panel. On the Screen Saver tab, select SimpleScreenSaver from the Screen Saver drop-
down list (Figure 14-22).

Figure 14-22. The installed screensaver, ready to use

Clicking on the Settings button lets you configure the screensaver through the custom Config.vb form. The Preview
button runs the screensaver immediately.

Screensavers are regular Windows applications, but they reside only in the Windows\System32 directory, and their file
extension is .scr instead of .exe. What the user experiences as a screensaver is simply a maximized borderless form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extension is .scr instead of .exe. What the user experiences as a screensaver is simply a maximized borderless form.
You can add any controls you want to the form, and you can display any graphics or images you require to make the
screen saver interesting.

Screensaver programs perform three distinct functions: main display, preview display, and configuration. (The sample
program does not implement the preview display functionality.) The functionality you present depends on the
command-line options supplied to the application:

The /S command-line option tells the program to start the screensaver and continue until the user types a key
or uses the mouse. (Actually, there is no firm rule about when to stop the screensaver. These are the traditional
methods, but you can require the user to click a button on your main form if you wish.)

The /C command-line option displays any configuration forms used to alter the behavior of the screensaver. In
the sample application, the Config.vb form lets the user adjust a single Boolean value, which is stored in a
registry value.

The /P command-line option updates the minipreview display window in the Control Panel Display Properties
applet. The second command-line argument is an integer that indicates the Win32 window handle for the
preview portion of the applet. Your program can display a preview version of the screensaver in this area if
desired. Updating this area is beyond the scope of this recipe.

The recipe's Sub Main routine examines the command-line arguments and takes the appropriate action. In the absence of
any command-line arguments, the screensaver should assume the /C argument.

This recipe's code implements a very simple screensaver that displays either the time or the combined date and time,
updating the display once per second through a Timer control. It determines whether to display the date portion through
a setting in the registry, located at:

 \\HKEY_CURRENT_USER\Software\MyCompany\SimpleScreenSaver\IncludeDate

The screensaver runs until it detects a key press (through the Form.KeyPress event), a mouse click (Form.MouseDown), or a
mouse movement (Form.MouseMove). It turns out that each form receives a MouseMove message right when the form first
opens, whether the mouse is moving or not. Therefore, the code includes some special code to ensure that the first
MouseMove event call does not exit the screensaver.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.27. Localizing the Controls on a Form

Problem

You want to make your application available to speakers of other languages.

Solution

Sample code folder: Chapter 14\MultiLanguage

Use the features built right into Visual Studio to assist you with the localization process. Windows applications have long supported multiple languages
through inter-changeable language-specific resource files. When managing the display language for the fields on your application forms, you can have
Visual Studio generate the resource files for you automatically.

Discussion

Create a new Windows Forms application, and add two Label controls to Form1, named Label1 and Label2. Set Label1's Text property to
set Label2's Text property to Good day!. Arrange the controls as shown in Figure 14-23.

Figure 14-23. The English-language interface

The English-language version of the application is ready to compile and use. (Actually, the default-language version is ready to use, and the default
language happens to be English.) To enable support for multiple languages on this form, set its Localizable property to TRue.

To enable French-language support, change the form's Language property to French. You will see the form blink briefly. Select
property to Bon jour!, as shown in Figure 14-24.

Figure 14-24. The French-language interface

To test both language versions, change the language either to the default language or to French when the program first starts. On the Application tab
of the Project Properties window, click the View Application Events button to access the ApplicationEvents.vb file. Add the following code to the
MyApplication class in this file:

 Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 ' ----- Prompt to change the culture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Prompt to change the culture.
 Dim newCulture As String

 newCulture = InputBox("Enter new culture string.")
 If (newCulture <> "") Then
 Threading.Thread.CurrentThread.CurrentUICulture = _
 New Globalization.CultureInfo(newCulture)
 End If
 End Sub

Run the program. When prompted for a culture, leave the prompt empty to default to English, or enter fr to use French. Then, enjoy the results.

To see what's really going on, build the program through the Build BuildWindowsApplication1 menu command. Then locate the folder with the
generated application (the bin\Release directory within the project's source-code directory). You will find a subdirectory named
"satellite assembly" containing the language-specific resources.

In addition to building language-specific resources when you design your program, you can add them after release by using the
included with Visual Studio. On our system, the link to this program is found in Start [All] Programs Microsoft .NET Framework SDK v2.0

 Tools Windows Resource Localization Editor (see Figure 14-25). You must have set the form's Localizable property to

Figure 14-25. The winres.exe localization tool

To use the tool, open the Form1.resx resource file associated with the localized form, select each element whose Text property needs to be localized in
turn, and enter in the new language-specific settings. When saving the file, you are prompted for an output language. The tool generates a separate
language-specific resource file. We chose to create a Japanese-specific resource file; the tool generated Form1.ja.resx.

To generate the new resource's satellite assembly, recompile the application. If this is not an option, you can generate the file manually. This is a
two-step process, and it must be done on the command line. Open the Visual Studiospecific command line using the Start
Microsoft Visual Studio 2005 Visual Studio Tools Visual Studio 2005 Command Prompt menu command. Change to the source-code
directory that contains the new .resx resource file:

 cd sourcedirectory

Compile the .resx file into a .resources file, using the resgen.exe application included with Visual Studio:

 resgen.exe Form1.ja.resx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 resgen.exe Form1.ja.resx

The directory now contains a Form1.ja.resources file. Compile it to a satellite assembly using the al.exe (Assembly Linker) program. Enter the
command on a single line, not on four lines as shown here:

 al /t:lib /embed:Form1.ja.resources,
 MultiLanguage.Form1.ja.resources /culture:ja
 /out:MultiLanguage.resources.dll
 /template:bin\Release\MultiLanguage.exe

Now move the new MultiLanguage.resources.dll file to a culture-specific folder within the release directory. You may wish to move the file into a
bin\Release\ja folder you create within the project directory. On deployment, the file should be installed in a ja folder within the release directory.

When you run the program again and enter ja for the culture, you'll see the form in Figure 14-26.

Figure 14-26. The Japanese-language interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.28. Adding Pop-up Help to Controls

Problem

Dialog boxes in Windows applications support pop-up help on controls. On such forms, clicking the question-mark
button in the upper-right corner of the form and then clicking on a form control displays a tooltip-like message
describing the use of the control. (See Figure 14-27 for an example.) You want to add a similar feature to controls on
your form.

Figure 14-27. Pop-up help for a control

Solution

Sample code folder: Chapter 14\PopupHelp

Include a HelpProvider control on your form, and use it to enable the pop-up help.

Discussion

Create a new Windows Forms application, and add a Button control to the form. We'll add pop-up help to this button.
Next, add a HelpProvider control to the form, which you'll find in the Components part of the Windows Forms Toolbox. This
control (HelpProvider1) appears in the off-form area of the designer.

Change the form's HelpButton property to TRue. The button won't appear yet because it only appears when the Minimize
and Maximize buttons are hidden. Set both the MinimizeButton and MaximizeButton properties to False to make the help button
appear. You'll see the standard Windows question-mark button.

To set the help message for the Button control, select it on the form. One of the control's properties is HelpString on
HelpProvider1, which appears indirectly through the HelpProvider1 control. Add some text to this property.

To view the pop-up help, run the program, click on the question-mark button, and then click on the Button control. The
pop-up help will appear until you click some-where else.

The HelpProvider control also supports more standard online help methods. It can display help through a web page that
appears when the user presses the F1 key from anywhere on the form. It can also display online help through a
compiled HTML Help 1.x (.chm) file.

To enable web-page-based help, add a HelpProvider control to your form, and change its HelpNamespace property to any
valid web page.

To display help through HTML Help files, set the HelpProvider control's HelpNamespace property to the help-file path. Change
the form's HelpKeyword on HelpProvider1 property (the name may vary based on the name you gave to the help provider
control) to the name of the page within the compiled file as defined by your HTML Help editing tool. An example may be
html/EditorPage.htm. Also change the form's HelpNavigator on HelpProvider1 property to Topic.

The HelpNavigator on HelpProvider1 property includes other methods with which you can access compiled help pages. For
instance, the TableOfContents and Index values, when used, bring up the Table of Contents page and the Index page for the
online help, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.29. Maintaining User-Specific Settings Between Uses of an
Application

Problem

The user of your application is allowed to configure certain aspects of the application to suit her preferences. You would
like to save these per-user settings so that the application uses them the next time it is run.

Solution

Sample code folder: Chapter 14\UserSettings

Use the My.Settings feature of Visual Basic to enable user-and application-specific settings.

Discussion

This recipe's sample code remembers the position of the form on the screen from one use to the next, and it also
displays the name of the last user, which it retains in local settings.

Create a new Windows Forms application. Add a Button control named ActPrefs, and set its Text property to Preferences…
Then add a Label control named UserName, and set its Text property to Your name is not set. and its UseMnemonic property to
False. Adjust the form to look like Figure 14-28.

Figure 14-28. Controls on the user preferences sample

Open the Project Properties window, and select the Settings tab. This panel presents a grid of user-specific and
application-specific settings. By filling in the grid, you automatically add settings that you can use in your application to
retain user-preferred changes. Add two settings rows to this grid:

Add a setting named PrefsUserName, and leave its Type as String.

Add a setting named MainFormLocation, and select System.Drawing.Point for its Type.

Leave the Scope for both settings as User, and don't provide any Value column data. Close the Project Properties window
and return to the form.

Add the following source code to the form's code template:

 Private Sub ActPrefs_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActPrefs.Click
 ' ----- Prompt the user to change his/her preferred name.
 Dim newName As String

 newName = InputBox("Enter your name.")
 If (newName.Trim() <> "") Then
 ' ----- Save the user's preferences.
 My.Settings.PrefsUserName = newName.Trim
 UserName.Text = "Your name is " & newName.Trim & "."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UserName.Text = "Your name is " & newName.Trim & "."
 End If
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Display the user-defined name, if available.
 If (My.Settings.PrefsUserName <> "") Then
 UserName.Text = "Your name is " & _
 My.Settings.PrefsUserName & "."
 End If
 End Sub

Return to the Form Designer, and select the form. Expand the form's (ApplicationSettings) property, and change the Location
subproperty to MainFormLocation.

If Location does not appear as a subproperty, select the (PropertyBinding) subproperty and click
its "…" button. On the Application Settings form that appears, locate Location in the list, and
set its second column to MainFormLocation. Finally, click OK.

Run the program to test it. Each time you exit and restart the program, it remembers where you moved the form on
the display. If you click the Preferences button and enter your name when prompted, it also remembers this setting the
next time the program runs.

The My.Settings object is new in Visual Basic 2005. It provides a standard way to manage user-and application-specific
settings. Each time the program exits, it saves any settings changes to an XML file, and it reads in that same file the
next time the program runs. The exact location of this file varies, but its default location in Windows XP is:

 C:\Documents and Setting\<username>\Local Settings\
 Application Data\<projectname>\<specialhash>\
 <version>\user.config

Application-specific settings, although not used in this sample program, are stored in an app.config file in the folder that
contains your application assembly. Application-specific settings cannot be modified through the running application;
you can only change them by changing the app.config file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.3. Describing User Control Properties

Problem

You've added an extra property to your user control, and although it appears in the Properties panel when the control is
added to a form, no description appears for that property.

Solution

Sample code folder: Chapter 14\UserControlProperties

Add a < DescriptionAttribute> attribute to the property, and use it to supply any descriptive text you want as metadata
attached to the property.

Discussion

Create a new Windows Forms project, and add a new user control to the project through the Project Add User
Control menu command. (See Recipe 14.2 for details on designing new user controls.) Name the new control
SimpleControl.vb. For this sample, it's not necessary to add any child controls, but you should change the user control's
BackColor property to ButtonShadow, just so you will recognize the control when it's added to Form1 later.

Access the source code for the user control and add the following code to the class:

 Private hiddenData As String

 Public Property ExtraData() As String
 Get
 Return hiddenData
 End Get
 Set(ByVal value As String)
 hiddenData = value
 End Set
 End Property

This code adds a simple property, ExtraData, to the control, storing the actual value in the private hiddenData member. The
control is complete; build it using the Build Build WindowsApplication1 menu command.

Return to the form designer for Form1. Locate the new SimpleControl control in the Toolbox and add it to the form. If you
look in the Properties panel, you will see the ExTRaData property, but it won't have any description (see Figure 14-4).

To add the description, return to the source code for the user control. Add the following line to the top of the
SimpleControl.vb source-code file:

 Imports System.ComponentModel

Figure 14-4. The ExtraData property, with no description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just before the Public Property ExtraData line in the SimpleControl class, add this new code line:

 <DescriptionAttribute(_
 "Extra details related to this control.")> _

so that the start of the property looks like this:

 <DescriptionAttribute(_
 "Extra details related to this control.")> _
 Public Property ExtraData() As String

Rebuild the project, return to Form1, and select the user control you added to the form earlier. When selected, the
ExTRaData property should now include a description, as shown in Figure 14-5.

Figure 14-5. The ExtraData property with its new description

The System.ComponentModel namespace exposes several attributes that, when used, enhance the elements included in the
Properties panel. One of these attributes, <DescriptionAttribute>, identifies the text that appears in the description portion
of the Properties panel when the matching property is selected. This attribute is stored as metadata attached to the
SimpleControl.ExtraData property, and it is referenced by the control that implements the Properties panel.

See Also

Recipe 14.2 discusses the implementation of user controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.30. Verifying a Credit Card Number

Problem

You are writing an application that includes credit card processing and verification functionality. While the third-party
credit card host will let you know when you have passed an invalid card number, you would like to catch invalid card
numbers immediately when users enter them.

Solution

Sample code folder: Chapter 14\LuhnAlgorithm

Use the Luhn Algorithm to determine if a credit card number is valid or not. The Luhn Algorithm (or Luhn Formula) was
invented by Hans Peter Luhn of IBM in the 1960s as a method of verifying account numbers of varying lengths. It is
also called a "modulus 10" formula because it uses the modulus 10 formula (x Mod 10 in Visual Basic) to confirm the
number.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named CreditCard.

A Button control named ActVerify. Set its Text property to Verify.

Now add the following source code to the form's code template:

 Private Sub ActVerify_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActVerify.Click
 ' ----- Check for a valid credit card number.
 Dim useCard As String = ""
 Dim oneDigit As String
 Dim counter As Integer

 ' ----- Create a string with just the digits of the card,
 ' just in case the user entered spaces or dashes
 ' between digit blocks.
 For counter = 1 To Len(CreditCard.Text)
 oneDigit = Mid(CreditCard.Text, counter, 1)
 If (IsNumeric(oneDigit) = True) Then _
 useCard &= oneDigit
 Next counter
 If (useCard.Length = 0) Then
 MsgBox("Invalid card number.")
 ElseIf (VerifyCreditCard(useCard) = False) Then
 MsgBox("Invalid card number.")
 Else
 MsgBox("Card verified.")
 End If
 End Sub

 Private Function VerifyCreditCard(ByVal cardNumber _
 As String) As Boolean
 ' ----- Given a card number, make sure it is valid.
 ' This method uses the Luhn algorithm to verify
 ' the number. This routine assumes that cardNumber
 ' contains only digits.
 Dim counter As Integer
 Dim digitTotal As Integer
 Dim holdValue As Integer
 Dim checkDigit As Integer
 Dim calcDigit As Integer
 Dim useCard As String

 ' ----- Perform some initial checks.
 useCard = Trim(cardNumber)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 useCard = Trim(cardNumber)
 If (IsNumeric(useCard) = False) Then Return False

 ' ----- Separate out the last digit, the check digit.
 ' For cards with an odd number of digits,
 ' prepend with a zero.

 If ((Len(useCard) Mod 2) <> 0) Then _
 useCard = "0" & useCard
 checkDigit = useCard.Substring(Len(useCard) - 1, 1)
 useCard = useCard.Substring(0, Len(useCard) - 1)

 ' ----- Process each digit.
 digitTotal = 0
 For counter = 1 To Len(useCard)
 If ((counter Mod 2) = 1) Then
 ' ----- This is an odd digit position.
 ' Double the number.
 holdValue = CInt(Mid(useCard, counter, 1)) * 2
 If (holdValue > 9) Then
 ' ----- Process digits (16 becomes 1+6).
 digitTotal += (holdValue \ 10) + _
 (holdValue - 10)
 Else
 digitTotal += holdValue
 End If
 Else
 ' ----- This is an even digit position.
 ' Simply add it.
 digitTotal += CInt(Mid(useCard, counter, 1))
 End If
 Next counter

 ' ----- Calculate the 10's complement of both values.
 calcDigit = 10 - (digitTotal Mod 10)
 If (calcDigit = 10) Then calcDigit = 0
 If (checkDigit = calcDigit) Then Return True Else _
 Return False
 End Function

Run the program, enter a credit card number, and click the Verify button to see if the card number is valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.31. Capturing a Console Application's Output

Problem

You want to capture and process the output of a console application in your program.

Solution

Sample code folder: Chapter 14\RedirectConsoleOutput

Use the StartInfo portion of a Process object to redirect the output of a console application into your code. The redirected
output appears as a standard StreamReader object.

Discussion

This recipe's sample code captures the network data generated by the ipconfig command-line tool and displays it in a
ListBox control.

Create a new Windows Forms application, and add three controls:

A ListBox control named OutputData.

A CheckBox control named IncludeAll. Change its Text property to Use the '/ all' flag to get all details.

A Button control named ActProcess. Set its Text property to Process.

The controls should appear as in Figure 14-29.

Figure 14-29. The controls for the redirected console output sample

Next, add the following code to the form's class template:

 Private Sub ActIPConfig_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActIPConfig.Click
 ' ----- Load the output of ipconfig.exe into a ListBox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Load the output of ipconfig.exe into a ListBox.
 Dim ipConfig As Process
 Dim oneLine As String
 Dim lineParts() As String

 ' ----- Remove any existing items.
 OutputData.Items.Clear()

 ' ----- Build and run the command.
 ipConfig = New Process()
 ipConfig.StartInfo.FileName = "ipconfig.exe"
 If (IncludeAll.Checked = True) Then _
 ipConfig.StartInfo.Arguments = "/all"
 ipConfig.StartInfo.UseShellExecute = False
 ipConfig.StartInfo.RedirectStandardOutput = True
 ipConfig.StartInfo.CreateNoWindow = True
 ipConfig.Start()

 ' ----- Process each input line.
 Do While Not ipConfig.StandardOutput.EndOfStream
 ' ----- Ignore blank lines.
 oneLine = ipConfig.StandardOutput.ReadLine()
 If (Trim(oneLine) = "") Then Continue Do

 ' ----- Headings have no initial whitespace.
 If (oneLine = oneLine.TrimStart) Or _
 (InStr(oneLine, ":") = 0) Then
 ' ----- A heading line or informational line.
 OutputData.Items.Add(oneLine.Trim)
 Else
 ' ----- A detail line. The format is:
 ' Title … : Data
 lineParts = oneLine.Trim.Split(":"c)
 lineParts(0) = Replace(lineParts(0), ". ", "")
 lineParts(1) = lineParts(1).Trim
 OutputData.Items.Add(vbTab & lineParts(0) & _
 ":" & lineParts(1))
 End If
 Loop
 ipConfig.WaitForExit()
 ipConfig.Dispose()
 End Sub

Run the program, alter the IncludeAll field as desired, and click the ActProcess button. The ListBox control will be filled with
the data output by the command-line ipconfig.exe program. Figure 14-30 shows some sample output for this program.

Figure 14-30. Output from a console application, redirected to a ListBox

Some command-line programs, such as dir.exe, aren't really programs at all, but rather commands embedded within

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some command-line programs, such as dir.exe, aren't really programs at all, but rather commands embedded within
the command processor. For these programs, you need to use cmd.exe for the process filename and pass the actual
command as an argument of the /c option:

 ipConfig.StartInfo.FileName = "cmd.exe"
 ipConfig.StartInfo.Arguments = "/c dir c:\temp"

Unfortunately, you cannot prevent the command window from momentarily appearing when using cmd.exe as the
process program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.32. Reading an Assembly's Details

Problem

You're curious about the contents of an assembly, and it's not because you want to find out its secrets.

Solution

Sample code folder: Chapter 14\AssemblyManifest

Use the classes of the System.Reflection namespace to access the contents of any assembly.

Discussion

This recipe's sample code displays some basic information contained within an assembly. Create a new Windows Forms
application, and add the following controls to Form1:

A TextBox control named AssemblyLocation.

A Button control named ReadAssembly. Set its Text property to Show.

A TextBox control named AssemblyDetail. Set its Multiline property to true and its ScrollBars property to Both. Also set its
WordWrap property to False. Size this control to fill much of the form, as it will display a lot of content.

The form should look like the one in Figure 14-31.

Now, add the following code to the form's code template:

 Private Sub ReadAssembly_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ReadAssembly.Click
 ' ----- Given an assembly, display details from its
 ' manifest.
 Dim useAssembly As System.Reflection.Assembly
 Dim displayContent As New System.Text.StringBuilder

Figure 14-31. The controls on the show assembly details sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Load this assembly.
 If (My.Computer.FileSystem.FileExists(_
 AssemblyLocation.Text) = False) Then
 MsgBox("Please supply a valid assembly file name " & _
 "with a valid path.")
 Return
 End If
 Try
 useAssembly = Reflection.Assembly.LoadFile(_
 AssemblyLocation.Text)
 Catch ex As System.Exception
 MsgBox("Could not access the assembly: " & ex.Message)
 Return
 End Try

 ' ----- Clear the existing content.
 AssemblyDetail.Clear()

 ' ----- Show its full complex name.
 displayContent.AppendLine("Full Name: " & _
 useAssembly.FullName)

 ' ----- List all of the resources.
 displayContent.AppendLine()
 displayContent.AppendLine("Resources")
 For Each oneName As String In _
 useAssembly.GetManifestResourceNames()
 displayContent.AppendLine(" - " & oneName)
 Next oneName

 ' ----- List all of the exported types.
 displayContent.AppendLine()
 displayContent.AppendLine("Exported Types")
 For Each oneType As System.Type In _

useAssembly.GetExportedTypes()
 displayContent.AppendLine(" - " & oneType.Name)
 Next oneType

 ' ----- Process each module, and each type within
 ' the module.
 displayContent.AppendLine()
 displayContent.AppendLine("Modules")
 For Each oneModule As Reflection.Module In _
 useAssembly.GetLoadedModules()
 displayContent.AppendLine(" - " & oneModule.Name)
 For Each oneType As System.Type In oneModule.GetTypes()
 ' ----- These types will be the primary
 ' classes/forms in the assembly.
 displayContent.AppendLine(" Type: " & _
 oneType.Name)

 ' ----- Show the fields included in each type.
 For Each oneField As Reflection.FieldInfo In _
 oneType.GetFields()
 displayContent.AppendLine(" Field: " & _
 oneField.ToString())
 Next oneField

 ' ----- Show the methods included in each type.
 For Each oneMethod As Reflection.MethodInfo In _
 oneType.GetMethods()
 displayContent.AppendLine(" Method: " & _
 oneMethod.ToString())
 Next oneMethod
 Next oneType
 Next oneModule

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next oneModule

 ' ----- Display the results.
 AssemblyDetail.Text = displayContent.ToString()
 End Sub

To use the program, type a valid assembly file path into the AssemblyLocation field, and then click the Show button. The
AssemblyDetail text box will be filled with details from the specified assembly. For Windows Forms assemblies, you will be
amazed at the amount of content contained in even the simplest program. Figure 14-32 shows this program used on
itself.

Figure 14-32. The assembly details for an application assembly

The .NET Framework includes a system called reflection that lets you examine every aspect of an assembly, if you have
the proper security rights. You can view the basic assembly details, such as the version number and copyright name.
You can also examine all classes, class methods, method parameters, and even the Intermediate Language (IL) code
within a method. It's all available through the System.Reflection namespace.

The code shown here uses only a small portion of the available reflection features. The Reflection.Module class, for
example, has many properties and methods that fully describe a module, which is typically an EXE or DLL file.

This sample code does not take into account nested types. Any class can include
subordinate class definitions. To access these from a System.Type instance, use that
instance's GetNestedTypes() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.33. Performing Serial I/O

Problem

You need to communicate with a device connected to one of the serial ports on the user's workstation.

Solution

Sample code folder: Chapter 14\SerialIO

Use the My.Computer.Ports.OpenSerialPort() method to create a bidirectional System.IO.Ports.SerialPort instance.

Discussion

The following method generically sends data out to the COM1 serial port:

 Public Sub OutToCOM1(ByVal serialData As String, _
 ByVal useLineTermination As Boolean)
 ' ----- Open COM1 and send the supplied data.
 Dim com1Port As IO.Ports.SerialPort = Nothing

 Try
 ' ----- Access the port.
 com1Port = My.Computer.Ports.OpenSerialPort("COM1")

 ' ----- Write the data.
 If (useLineTermination = True) Then
 com1Port.WriteLine(serialData)
 Else
 com1Port.Write(serialData)
 End If

 ' ----- Finished with the port.
 com1Port.Close()
 Catch ex As Exception
 MsgBox("Error writing data to serial port: " & _
 ex.Message)
 Finally
 If (com1Port IsNot Nothing) Then com1Port.Dispose()
 com1Port = Nothing
 End Try
 End Sub

The opened serial port is bidirectional, so you can also read pending content:

For a single byte, use com1Port.ReadByte().

For multiple bytes, use com1Port.Read().

For a single character as an Integer, use com1Port.ReadChar().

For a complete text line, use com1Port.ReadLine().

For all pending characters, use com1Port.Existing().

When opening the serial port, different constructors allow you to specify the various handshaking options, including
baud rate and stop bits. To access the list of available serial ports, use the My.Computer.Ports.SerialPortNames collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.34. Rebooting the System

Problem

You want to programmatically restart the user's workstation.

Solution

Sample code folder: Chapter 14\ShutdownWindows

With all of the convenience features included in .NET, you would think that there would be a ShutdownWindows() method in
some convenient class. But alas, there is nothing like that. To shut down Windows, you must depend on some of the
Win32 DLL features. This recipe's sample code lets you exit Windows in one of four ways:

By locking the workstation (although this is not really exiting Windows)

By logging the current user out of Windows

By rebooting the system

By shutting down the system

Discussion

Create a new Windows Forms application. Add four Button controls to Form1, named ActLockWorkstation, ActLogoff, ActReboot,
and ActShutdown. Change their Text properties to Lock Workstation, Log off, Reboot, and Shut down, respectively. Then add the
following code to the form's code template:

 Private Sub ActLockWorkstation_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActLockWorkstation.Click
 GetOutOfWindows.ExitViaLockWorkstation()
 End Sub

 Private Sub ActLogoff_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActLogoff.Click
 GetOutOfWindows.ExitViaLogoff()
 End Sub

 Private Sub ActReboot_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActReboot.Click
 GetOutOfWindows.ExitViaReboot()
 End Sub

 Private Sub ActShutdown_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActShutdown.Click
 GetOutOfWindows.ExitViaShutdown()
 End Sub

Add a new class to your project using the Project Add Class menu command, giving its file the name
GetOutOfWindows.vb. Use this code for the class body:

 Public Class GetOutOfWindows
 ' ----- Windows constants used in shutdown permissions.
 Const SE_PRIVILEGE_ENABLED As Integer = &H2
 Const TOKEN_QUERY As Integer = &H8
 Const TOKEN_ADJUST_PRIVILEGES As Integer = &H20
 Const SE_SHUTDOWN_NAME As String = "SeShutdownPrivilege"

 ' ----- Shutdown method flags.
 Private Enum ShutdownMethods As Integer
 Logoff = 0
 Shutdown = 1
 Reboot = 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Reboot = 6
 End Enum

 <Runtime.InteropServices.StructLayout(_
 Runtime.InteropServices.LayoutKind.Sequential, Pack:=1)> _
 Private Structure TokenPrivileges
 Public PrivilegeCount As Integer
 Public Luid As Long
 Public Attributes As Integer
 End Structure

 ' ----- External features needed to exit Windows.
 Private Declare Ansi Function AdjustTokenPrivileges _
 Lib "advapi32.dll" _
 (ByVal tokenHandle As IntPtr, _
 ByVal disableAllPrivileges As Boolean, _
 ByRef newState As TokenPrivileges, _
 ByVal bufferLength As Integer, _
 ByVal previousState As IntPtr, _
 ByVal returnLength As IntPtr) As Boolean

 Private Declare Ansi Function ExitWindowsEx _
 Lib "user32.dll" _
 (ByVal flags As Integer, _
 ByVal reason As Integer) As Boolean

 Private Declare Ansi Function GetCurrentProcess _
 Lib "kernel32.dll" () As IntPtr

 Private Declare Ansi Sub LockWorkStation _
 Lib "user32.dll" ()

 Private Declare Ansi Function LookupPrivilegeValueA _
 Lib "advapi32.dll" _
 (ByVal
systemName As String, _
 ByVal privilegeName As String, _
 ByRef lookupID As Long) As Boolean

 Private Declare Ansi Function OpenProcessToken _
 Lib "advapi32.dll" _
 (ByVal processHandle As IntPtr, _
 ByVal desiredAccess As Integer, _
 ByRef tokenHandle As IntPtr) As Boolean

 Private Shared Sub PerformExit(_
 ByVal usingMethod As Integer)
 ' ----- Log off, reboot, or shut down the
system.
 Dim shutdownPrivileges As TokenPrivileges
 Dim processHandle As IntPtr
 Dim tokenHandle As IntPtr = IntPtr.Zero

 ' ----- Give ourselves the privilege of shutting
 ' down the system. First, obtain the token.
 processHandle = GetCurrentProcess()
 OpenProcessToken(processHandle, _
 TOKEN_ADJUST_PRIVILEGES Or TOKEN_QUERY, tokenHandle)

 ' ----- Adjust the token to enable shutdown permissions.
 shutdownPrivileges.PrivilegeCount = 1
 shutdownPrivileges.Luid = 0
 shutdownPrivileges.Attributes = SE_PRIVILEGE_ENABLED
 LookupPrivilegeValueA(Nothing, SE_SHUTDOWN_NAME, _
 shutdownPrivileges.Luid)
 AdjustTokenPrivileges(tokenHandle, False, _
 shutdownPrivileges, 0, IntPtr.Zero, IntPtr.Zero)

 ' ----- Now shut down the system.
 ExitWindowsEx(usingMethod, 0)
 End Sub

 Public Shared Sub ExitViaLockWorkstation()
 ' ----- Lock the workstation.
 LockWorkStation()
 End Sub

 Public Shared Sub ExitViaLogoff()
 ' ----- Log off the current user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Log off the current user.
 PerformExit(ShutdownMethods.Logoff)
 End Sub

 Public Shared Sub ExitViaReboot()
 ' ----- Reboot the system.
 PerformExit(ShutdownMethods.Reboot)
 End Sub

 Public Shared Sub ExitViaShutdown()
 ' ----- Shut down the system.
 PerformExit(ShutdownMethods.Shutdown)
 End Sub
 End Class

Run the program, and click one of the buttons on the form to take the related shutdown action. But be warned: this
program will shut down Windows if you choose anything other than "Lock Workstation." Make sure you save your work
before running this program.

Most of this code gets into the heart of the Windows system, and how it really works is beyond the scope of this book
(and beyond general human comprehension). But here's the gist of it: before you can shut down Windows, you have to
give yourself permission to do so. It must be a safety feature, because if you can give yourself permission, it's really
not a matter of security.

Still, if your application runs in a security-limited context imposed by the user or the system administrator, the attempt
to shut down the system may fail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.4. Starting Other Applications by EXE, Document, or URL

Problem

You need to start up a separate application, based on either the path to the executable program file, a document with a
registered file extension, or a valid URL for a web page or other resource.

Solution

Use the System.Diagnostics.Process.Start() method to initiate applications external to your own application.

Discussion

The Start() method returns an object of type System.Diagnostics.Process that encapsulates the newly started application.
Process.Start() works with three types of targets:

If you know the path to the executable (EXE) file, you can specify it using the first argument to Process.Start(). If
you don't supply a full path, Windows will search through the path defined for the current user for the program.
Any additional command-line arguments appear in the second argument:

 ' ----- Start up a new Notepad window.
 Process.Start("C:\Windows\Notepad.exe")

 ' ----- Excluding the path and extension works.
 Process.Start("Notepad")

 ' ----- Open a specific file through Notepad.
 Process.Start("Notepad.exe", "C:\DataFile.txt")

You can start an application associated with a registered file extension by specifying a file with that extension as
the argument:

 ' ----- Open Notepad with a specific file.
 Process.Start("C:\DataFile.txt")

The file must already exist and must have a valid registered file extension, or an exception will occur.

You can specify any URL, including a web page or email address (in a mailto:// URL). Any of the accepted URL
prefixes, such as http://, mailto://, or file://, can be included in the URL:

 ' ----- Open a specific web page in the default browser.
 Process.Start("http://www.microsoft.com")

The arguments passed to Process.Start() are similar to those you would enter in the Windows Start Run menu
command prompt, or in the Windows Command Prompt using the Start command.

The Process object returned by Process.Start() includes several properties and methods that let you monitor and control
(somewhat) the new process. To force the new process to exit, use the Process object's Kill() method.

Visual Basic also includes another command from its pre-.NET days that starts up external applications. The Shell()
function accepts two arguments: the command and the window style. The command is the executable filename of the
program to run, with any command-line arguments included. The second argument uses the members of the
Microsoft.VisualBasic.AppWinStyle enumeration to indicate whether the new program's main window should start as
maximized, minimized, or normal, and whether it should immediately receive the input focus. Here are the choices:

AppWinStyle.Hide

AppWinStyle.MaximizedFocus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWinStyle.MinimizedFocus

AppWinStyle.MinimizedNoFocus

AppWinStyle.NormalFocus

AppWinStyle.NormalNoFocus

For example, to start up Notepad with a specific file open, use this command:

 Shell("Notepad.exe C:\DataFile.txt", _
 AppWinStyle.NormalFocus)

You can use only executable programs with Shell(). It does not accept URLs or files with registered extensions.

See Also

Recipe 14.5 shows how to wait for the newly started process to complete before continuing with the main program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.5. Waiting for Applications to Finish

Problem

You need to start up a separate application. Once it starts, you need to wait until that program completes. Your
application can then continue on with its own processing.

Solution

Use the System.Diagnostics. Process.Start() method to initiate the program and return an instance of System.Diagnostics.Process.
Now call that object's WaitForExit() method.

Recipe 14.4 discusses how to use the Start() method, so we won't repeat all that detail here. The following code starts up
Notepad and waits for it to exit before continuing:

 Dim notepadProcess = Process.Start("Notepad.exe")
 notepadProcess.
WaitForExit()
 MsgBox("Welcome back!")

Discussion

The WaitForExit() method accepts an optional millisecond count as its only argument. When used, WaitForExit() waits up to
the number of milliseconds specified and then continues with the program, even if the external process is still running.

Another Process class method, WaitForInputIdle(), waits until the external process has reached a state where it is waiting for
user input before continuing. It also accepts an optional millisecond count.

As discussed in Recipe 14.4, you can also use the Visual Basic Shell() function to start applications. This function includes
two optional arguments (the third and fourth arguments) that control how long the current program should wait for the
external process. The third argument, wait, accepts a Boolean value that, when set to true, causes the current program to
wait until the external program completes. The fourth argument, timeout, indicates the maximum time, in milliseconds,
that the program should wait for the external program to complete before continuing. Its default value is -1, which
causes Shell() to wait forever.

The following statement starts up Notepad and waits up to 10 seconds for it to complete:

 Shell("Notepad.exe", AppWinStyle.NormalFocus, True, 10000)

See Also

Recipe 14.4 discusses the Shell() function and the Process.Start() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.6. List All Running Processes

Problem

You need to display a list of the processes that are currently running on the local workstation.

Solution

Sample code folder: Chapter 14\RunningProcesses

Use the System.Diagnostics.Process class to access a collection of objects representing all currently running processes.

Discussion

This recipe's sample code displays any process with a window title in a listbox. Create a new Windows Forms
application, and add a ListBox control named ListBox1 to Form1. Then add the following event handler to Form1's code:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Show all top-level processes.
 For Each oneProcess As Process In Process.GetProcesses()
 If (oneProcess.MainWindowTitle <> "") Then
 ListBox1.Items.Add("Program: " & _
 oneProcess.MainWindowTitle)
 Else
 ListBox1.Items.Add("Process: " & _
 oneProcess.ProcessName)
 End If
 Next oneProcess
 End Sub

Run the program to display the list of processes. It should generally match the list of processes and applications you
see in the Windows Task Manager, although the form itself ("Form1") will probably not appear, since it wasn't yet
visible when ListBox1 was populated. Figure 14-6 shows the running program with the listbox populated.

The System.Diagnostics.Process class includes a shared member named GetProcesses() that returns a collection of Process
objects, each representing a running process. There are many more processes than just those with window titles; all
running Windows services also appear in this collection.

The Process object includes many properties and methods that let you manage each process. However, your level of
authorization as configured by the system administrator may prevent you from modifying or even viewing process
details.

Figure 14-6. Listing all processes running on a system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.7. Terminating a Running Process

Problem

You need to stop a running process immediately.

Solution

Sample code folder: Chapter 14\ProcessTerminate

Use the Process object's Kill() method to stop the running process.

Discussion

This recipe's code creates a simple program that lets you stop any running application, similar to using the End Task
button on the Windows Task Manager. Create a new Windows Forms application, and add to the form a ListBox control
named ProcessList and a Button control named KillProcess. Change the Button control's Text property to Kill, and set the ListBox
control's Sorted property to TRue. Now open the source code for the form, and replace the default empty class template
with the following code:

 Public Class Form1
 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Display all top-level windows.
 For Each oneProcess As Process In _

Process.GetProcesses()
 If (oneProcess.MainWindowTitle <> "") Then
 ProcessList.Items.Add(New SmallProcess(_
 oneProcess.MainWindowTitle, oneProcess.Id))
 End If
 Next oneProcess
 End Sub

 Private Sub KillProcess_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles KillProcess.Click
 ' ----- Kill the selected process.
 Dim oneProcess As Process
 Dim selectedProcess As SmallProcess

 On Error Resume Next

 If (ProcessList.SelectedIndex = -1) Then Exit Sub
 selectedProcess = CType(ProcessList.SelectedItem, _
 SmallProcess)

 ' ----- Confirm with the user.
 If (MsgBox("Really kill '" & _
 selectedProcess.ToString() & "'?", _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo) <> _
 MsgBoxResult.Yes) Then Exit Sub

 ' ----- Locate and kill the process.
 oneProcess = Process.GetProcessById(selectedProcess.ID)
 oneProcess.Kill()

 ' ----- Remove the process from the list.
 ProcessList.Items.Remove(ProcessList.SelectedItem)
 End Sub
 End Class

 Public Class SmallProcess
 ' ----- A small class that makes it easier to
 ' track processes in the on-screen list.
 Public WindowTitle As String
 Public ID As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Sub New(ByVal processTitle As String, _
 ByVal processID As Integer)
 WindowTitle = processTitle
 ID = processID
 End Sub

 Public Overrides Function ToString() As String
 Return WindowTitle
 End Function
 End Class

To kill a process, run this program, select a process from the list, and click the Kill button. Be careful: it will stop the
indicated program.

By providing the Process.Kill() method, .NET endows your application with a lot of power. However, the system
administrator may establish limits on the user running your program that will prevent access to or modification of
process state.

This recipe's code includes a secondary class, SmallProcess, that helps keep track of items in the ListBox control. The Items
collection of a ListBox control can hold any type of object, but how to display its own text is up to the object. You can
store an entire Process object in the list, but the output from Process.ToString() is not as user-friendly. By storing just the
parts you need in a separate class instance that includes its own ToString() method, you can get the results you need,
both in terms of display and of access to the process IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.8. Pausing Execution of a Program

Problem

You want to postpone all activities on the current process thread.

Solution

Sample code folder: Chapter 14\PauseExecution

Put the thread to sleep using the System.Threading.Thread.Sleep() method. This method accepts an amount of time to "sleep,"
in milliseconds.

Discussion

Create a new Windows Forms application, and add a Button control named Button1. Now add the following code to the
form's class template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Threading.Thread.Sleep(3000)
 MsgBox("Good Morning")
 End Sub

When you run the program and click on Button1, the "Good Morning" message appears after a three-second pause.

If your program includes only a single thread (the default behavior), putting the thread to sleep puts the entire
application to sleep.

If you pass zero (0) to the Sleep() method, the thread pauses temporarily to allow other busy threads to perform some
processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 14.9. Control Applications by Simulating Keystrokes

Problem

You need another application to perform some tasks while your application is running, but it doesn't expose any type of
control interface, whether ActiveX or .NET.

Solution

Sample code folder: Chapter 14\UsingSendKeys

Use the My.Computer.Keyboard.SendKeys() method to simulate the user controlling the other application from the keyboard.

Discussion

The following method uses SendKeys() to control the built-in Windows Paint program, using it to convert an existing image
to black and white:

 Public Sub MakeBitmapBW(ByVal sourceFile As String, _
 ByVal destFile As String)
 ' ----- Use the Paint program built into Windows to
 ' convert an existing bitmap file from color to
 ' black and white.
 Dim paintProcess As Process

 On Error Resume Next

 ' ----- Remove the existing output file.
 Kill(destFile)

 ' ----- Start Paint using the original file.
 paintProcess = Process.Start("mspaint.exe", sourceFile)
 appactivate(paintProcess.Id)

 ' ----- Wait a bit for the file to open.
 System.Threading.Thread.Sleep(2000)

 ' ----- Convert the image to black and white. First,
 ' display the Attributes form using Control-E.
 My.Computer.Keyboard.SendKeys("^e", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Alt-B sets the "Black and White" field.
 My.Computer.Keyboard.SendKeys("%b", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Use Enter to accept the change. A confirmation
 ' window will appear. Use Enter for that window
 ' as well.
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(500)
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Save the file using the File->Save As… feature.
 My.Computer.Keyboard.SendKeys("%fa", True)
 System.Threading.Thread.Sleep(500)

 ' ----- Add the filename to the Save As window.
 ' Hopefully, the name has no special characters.
 My.Computer.Keyboard.SendKeys(destFile, True)
 My.Computer.Keyboard.SendKeys("~", True)
 System.Threading.Thread.Sleep(1000)

 ' ----- Exit the
application.
 My.Computer.Keyboard.SendKeys("%{F4}", True)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

To use this method, pass it the full path to an existing bitmap file and a path to the desired output location.

The SendKeys() method inserts specific keyboard commands into the global keyboard input stream. Those commands
appear as if the user had actually typed them from the keyboard. The first argument to SendKeys() is a string containing
each character to be inserted into the input stream. The second argument, a Boolean, indicates whether SendKeys() should
wait until the active window acknowledges acceptance of the input.

Normally, each character you include in the character string is sent to the active window, one by one. However, some
keys, such as the function keys (F1, F2, etc.) and the arrow keys, don't have single-character equivalents. Instead,
there are special sequences you can use for these keys, most enclosed in curly braces. Some normal characters that
have special meaning to SendKeys() must also appear in curly braces. Table 14-1 lists the text to include in the character
string when you wish to use one of these special keyboard keys.

Table 14-1. Special SendKeys() key sequences
To include this key… …use this text

Backspace {BACKSPACE} or {BS} or {BKSP}

Break {BREAK}

Caps lock {CAPSLOCK}

Caret (^) {^}

Clear {CLEAR}

Close brace (}) {}}

Close bracket (]) {]}

Close parenthesis ()) {)}

Delete {DELETE} or {DEL}

Down arrow {DOWN}

End {END}

Enter ~

Escape {ESCAPE} or {ESC}

F1 through F16 {F1} through {F16}

Help {HELP}

Home {HOME}

Insert {INSERT} or {INS}

Keypad add {ADD}

Keypad divide {DIVIDE}

Keypad enter {ENTER}

Keypad multiply {MULTIPLY}

Keypad subtract {SUBTRACT}

Left arrow {LEFT}

Num lock {NUMLOCK}

Open brace ({) {{}

Open bracket ([) {[}

Open parenthesis (() {(}

Page down {PGDN}

Page up {PGUP}

Percent sign (%) {%}

Plus (+) {+}

Print screen {PRTSC}

Return {RETURN}

Right arrow {RIGHT}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right arrow

Scroll lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up arrow {UP}

For example, if you want to send the number 25, a tab character, and then the number 50 to the input stream, send
the following sequence:

 25{TAB}50

You can also simulate the simultaneous use of the Shift, Control, or Alt keys in combination with other keys. Special
prefix characters represent these three special modification keys:

For Shift, use + (the plus sign).

For Control, use ^ (the caret).

For Alt, use % (the percent sign).

So, to send the Control-C character, use:

 ^c

If you want several characters to be used with one of these three modifiers, surround those keys with parentheses, and
put the modifier just before that set. For instance, to send "hello" with the Shift key held down, use:

 +(hello)

The key string provides a shortcut to transmit the same key multiple times, too. To use it, enclose the character to
repeat and a count within curly braces. Separate the character and the count with a space. The following text sends 10
question marks:

 {? 10}

There are some caveats when using SendKeys(). Just because you include characters in the input stream doesn't mean
that they will arrive at the program you target. Remember, the user still has access to the real keyboard, and to the
mouse. The user could start pressing keys and clicking around the display right in the middle of your SendKeys() action,
and you would have no control over the destination or sequence of the streaming input.

Similarly, even if you use True for the second argument to have your program wait until the keys are processed, there
is no guarantee that the impact of those keys on the destination will complete before the wait is complete. A target
program may acknowledge receipt of an input character and start to process it, but it could take several seconds (or
longer) for it to complete the associated action. Meanwhile, your call to SendKeys() has exited, and your code is
continuing on its way, possibly starting another call to SendKeys().

If you can control the other application through more direct means, such as through an exposed library or interface,
that is preferred. Avoid having an application control itself with SendKeys().

Besides the SendKeys() command within the My namespace, Visual Basic includes a SendKeys class in the System.Windows.Forms
namespace. This class includes shared Send() and SendWait() methods. Each accepts a string that is identical to the one
used with the SendKeys() method. Except for slight differences in syntax and location in the .NET hierarchy, there is no
essential difference between the My version and the Forms version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Special Programming Techniques
Introduction

Recipe 14.1. Preventing Multiple Instances of a Running Application

Recipe 14.2. Creating a Simple User Control

Recipe 14.3. Describing User Control Properties

Recipe 14.4. Starting Other Applications by EXE, Document, or URL

Recipe 14.5. Waiting for Applications to Finish

Recipe 14.6. List All Running Processes

Recipe 14.7. Terminating a Running Process

Recipe 14.8. Pausing Execution of a Program

Recipe 14.9. Control Applications by Simulating Keystrokes

Recipe 14.10. Watching for File and Directory Changes

Recipe 14.11. Creating an Icon in the System Tray

Recipe 14.12. Accessing the Clipboard

Recipe 14.13. Adding Tooltips to Controls

Recipe 14.14. Dragging and Dropping Files to a ListBox

Recipe 14.15. Dragging and Dropping Between ListBox Controls

Recipe 14.16. Disposing of Objects Appropriately

Recipe 14.17. Fine-Tuning Garbage Collection

Recipe 14.18. Moving the (Mouse) Cursor

Recipe 14.19. Intercepting All Key Presses on a Form

Recipe 14.20. Accessing the Registry

Recipe 14.21. Running Procedures in Threads

Recipe 14.22. Reading XML into a TreeView

Recipe 14.23. Creating an XML Document

Recipe 14.24. Validating an XML Document

Recipe 14.25. Using Generic Collections

Recipe 14.26. Creating a Screensaver

Recipe 14.27. Localizing the Controls on a Form

Recipe 14.28. Adding Pop-up Help to Controls

Recipe 14.29. Maintaining User-Specific Settings Between Uses of an Application

Recipe 14.30. Verifying a Credit Card Number

Recipe 14.31. Capturing a Console Application's Output

Recipe 14.32. Reading an Assembly's Details

Recipe 14.33. Performing Serial I/O

Recipe 14.34. Rebooting the System

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic has included error handling since its initial release through the On Error statement. Although often derided by
developers, this mechanism did effectively catch and process all errors when used properly. Visual Basic 2005 still
includes this error-handling methodology, but it also includes structured error handling, new with .NET. This chapter
considers this new error-processing system, comprised of the TRy…Catch…Finally statement and System.Exception-derived
error objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.1. Catching an Exception

Problem

Although you've been a Visual Basic 6.0 developer for years, and you've already used On Error statements in your Visual
Basic 2005 code, you want to try out the structured error-handling statements you've heard so much about.

Solution

Use the TRy…Catch…Finally block statement to locally monitor and handle errors. The statement has three sections:

Try

The code you need to monitor for errors appears in this first section.

Catch

When an error occurs, processing jumps immediately from the TRy section to a matching Catch block (We'll
define "matching" shortly). Any remaining unprocessed statements in the TRy block are ignored. You can have
any number of Catch entries in your error-handling block.

Finally

Any code you include in this optional section runs whether an exception occurs or not. It's a useful place to put
any cleanup code related to resources you allocated in the try section.

Here's the syntax of the TRy…Catch…Finally statement:

 Try
 ' ----- Error-prone code here.
 Catch ex As
System.Exception
 ' ----- Error-processing code here. Multiple
 ' Catch blocks can be included.
 Finally
 ' ----- Cleanup code here (optional).
 End Try

Discussion

Although Visual Basic 2005 still supports the On Error statement and related error-handling logic found way back in Visual
Basic 1.0, it also includes a new "structured" error-handling system that more closely parallels the object-oriented
nature of .NET. In this system, exceptions (errors) exist as objects, inherited from the System.Exception class. When an
error occurs in your code, .NET wraps it up in a System.Exception object (or one of its more specific derived classes) and
triggers it in your code. The try…Catch statement watches for any such exceptions and jumps to a Catch block when an
exception occurs.

System.Exception represents the most general type of exception; because all exception objects derive from it, it catches all
error types. In this statement:

 Try
 ' ----- Error-prone code here.
 Catch ex As System.Exception
 ' ----- Error-processing code here.
 End Try

any type of error that occurs in the try block, no matter what it is, falls into the Catch block, since that block catches
every type of error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

every type of error.

.NET also defines more specific exceptions. For example, the System.OutOfMemoryException error occurs when any operation
lacks sufficient memory to execute properly:

 Try
 ' ----- Error-prone code here.
 Catch ex As System.OutOfMemoryException
 ' ----- Handle memory errors here.
 Catch ex As System.Exception
 ' ----- Handle all other errors here.
 End Try

Each Catch block handles only the error types specified in its As clause. In the above block of code, the first Catch block
handles OutOfMemoryException errors. Any other error that occurs in the try block skips over that first Catch entry and jumps
into the second, more general Catch block. This is what is meant by a "matching" Catch block, as mentioned earlier in this
recipe. Exceptions seek the first matching Catch clause, based on an exact class match or a derived match relationship.

When an error occurs, the generated exception is compared to each Catch block's As clause for a match, in order from
top to bottom. Therefore, you should place the most restrictive error type first, saving System.Exception for the last Catch
block. If no error occurs, all Catch blocks are ignored.

Within a Catch block, the ex variable (included just after the Catch keyword) provides access to the actual exception
object. Use its members as you would the members of any other object. A description of the exception appears as
ex.Message. You can name the variable anything you want; the name ex has become common in technical documentation,
but you are free to change it or even vary it between the different Catch clauses.

If included, the Finally block is always processed, no matter what. It is processed after the relevant TRy and Catch blocks
complete. Even if you issue an Exit Sub or similar statement from within a try or Catch block, the Finally section is still
processed. All TRy statements must include at least one Catch or Finally block.

There are some restrictions on TRy…Catch statements. In general, you cannot use GoTo statements to jump into or out of
any of the blocks. There is an Exit Try statement that lets you jump out early, but it can't be used in the Finally block.

If an error occurs in a routine but no error handling is in effect (i.e., the code is out-side of a try statement, and no On
Error statements appear in the procedure), the error "bubbles up" to the calling procedure, looking for another active
error handler to deal with the exception. If no error handlers are available to deal with the error, a message is
displayed to the user, and the application exits.

See Also

Recipe 15.3 discusses a global exception handler that Catches any exceptions not dealt with in local procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.2. Throwing an Exception

Problem

An invalid condition has occurred in your custom class code, and you want to generate an exception to inform the
calling code of the problem.

Solution

Use the Throw statement to send an exception to the next available error handler. THRow takes an instance of a
System.Exception (or derived) object as its only argument:

 Throw New System.Exception("A great big error occurred.")

You can also prepare your exception object in advance and then use its variable in the Throw statement:

 Dim errorDetail As New System.ArgumentOutOfRangeException(_
 "Year", "The 'Year' must be at least 1995.")
 Throw errorDetail

Discussion

When .NET detects an error in your program, it also uses the Throw statement to send errors to your code. When you
use the THRow statement, your generated errors look just like those issued by the Framework.

You can generate an error at any time using the Throw statement, even within a try block. The related Catch handler will
process the error as if some other system-defined process had generated the error.

Visual Basic also includes an Err.Raise method that generates errors, as was done using pre-.NET versions of Visual Basic.
It focuses on error numbers rather than on object-based exceptions. Although .NET will wrap errors issued through
Err.Raise in an Exception object, you should use this method only for backward compatibility. Use the Throw statement
instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.3. Catching Unhandled Exceptions

Problem

Although you make judicious use of TRy…Catch and On Error statements in your code, it's possible that some exceptions
will sneak through your structured and unstructured error-handling barriers. You want to keep these errors from
crashing the program.

Solution

Sample code folder: Chapter 15\ UnhandledException

Handle the application-level UnhandledException event to capture any errors not dealt with elsewhere in your code. This
global error handler is part of the Windows Forms Application Framework. In the Project Properties window's Application
panel, make sure that "Enable application framework" is selected, and then click on the View Application Events button
on that same panel. Visual Studio opens the ApplicationEvents.vb source file, which looks like this:

 Namespace My
 Partial Friend Class MyApplication

 End Class
 End Namespace

The global error handler will appear in this MyApplication class. Select "(MyApplication Events)" from the Class Name list
above and to the left of the code editor window, and then select "UnhandledException" from the Method Name list just
to the right of that. Visual Studio will add a template for the UnhandledException event handler:

 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As Microsoft. _
 VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 End Sub

Code added to this event handler will run whenever an unhandled error or exception occurs somewhere in your
application. Once you have dealt with the error, you can either exit the application immediately (in a more controlled
manner than just letting the program crash) or return to a basic waiting-for-input-from-the-user state. Use the e
argument's ExitApplication property to indicate which choice you want to make. Setting this property to TRue, as shown
here, will terminate the program:

 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As Microsoft. _
 VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MsgBox("An unhandled error occurred. That's bad.")
 e.ExitApplication = True
 End Sub

This code is never called when your application runs in the debugger.

Discussion

The solution listed above is valid only for Windows Forms applications that use the Application Framework. If you
choose to disable the Application Framework, or you are writing a nonWindows Forms application, you must manually
establish a global error handler for each thread of your application. We'll look at the first case here.

Create a new Windows Forms application, and clear the "Enable application frame-work" field in the Project Properties
window. Open up the source code window for the Form1 form, and replace the basically empty content with the following
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code:

 Public Class Form1
 Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 ' ----- Cause a fake unhandled error.
 Throw New System.Exception()
 End Sub

 Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 ' ----- Disable the monitor before exiting.
 RemoveGlobalErrorMonitor()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Enable error monitoring.
 AddGlobalErrorMonitor()
 End Sub
 End Class

 Module Module1
 Public Sub AddGlobalErrorMonitor()
 ' ----- Enable global error monitoring on this thread.

AddHandler Application.ThreadException, _
 AddressOf GlobalErrorMonitor
 End Sub

 Public Sub RemoveGlobalErrorMonitor()
 ' ----- Disable global error monitoring on this thread.
 RemoveHandler Application.ThreadException, _
 AddressOf GlobalErrorMonitor
 End Sub

 Public Sub GlobalErrorMonitor(ByVal sender As Object, _
 ByVal e As System.Threading.ThreadExceptionEventArgs)
 ' ----- An unhandled global error occurred in the thread.
 MsgBox("A global error was caught.")
 End Sub
 End Module

This code uses the AddHandler statement to connect the thread's Application. ThreadException event to a custom event handler,
GlobalErrorMonitor(). It's added immediately when the (main) form is first loaded, and it remains until the form closes.
Remember that this code will not work properly within Visual Studio. You must build the application and run it directly
before your global exception handler can be used.

When writing console applications, monitor the System.appdomain.CurrentDomain. UnhandledException event instead of
Application.ThreadException:

 AddHandler System.appdomain.CurrentDomain. _
 UnhandledException, AddressOf GlobalErrorMonitor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.4. Displaying Exception Information

Problem

An error has occurred, and you want to inform the user in a friendly manner.

Solution

The captured exception object includes all the details concerning the error, with some parts ready for user-friendly
presentation. The simplest presentation option uses the exception's ToString() method to generate information about the
error.

The following code generates the error message in Figure 15-1 when run within Visual Studio:

 Try
 Throw New System.Exception()
 Catch ex As System.Exception
 MsgBox(ex.ToString())
 End Try

Figure 15-1. A basic error message

Discussion

If you encounter an exception in a block of code where you know errors are likely, you can sometimes compensate for the
error through alternate logic without ever informing the user of the problem. In those cases where you cannot continue
normally because of the error, your program can inform the user of the situation.

Beyond the basic ToString() output, you can handcraft the details of the exception into a form that better communicates the
problem to the user. The System.Exception object includes the following useful properties:

Data

Some errors use the collection exposed by this property to store additional details related to the error. The type of
data stored depends on the code that generated the error. It is most often used in custom exceptions.

InnerException

If this exception is a byproduct of another, earlier exception, this property exposes that previous exception.

Message

This property provides a short yet friendly description of the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This property provides a short yet friendly description of the exception.

Source

This property specifies the name of the application, class, or process ID that generated the error.

StackTrace

This text property provides a semihuman-readable listing of the stack tracethe set of called methods that led up to
the method generating the error. This stack trace may include internal procedures from the .NET Framework, and its
overall length may shock the user.

TargetSite

This property exposes a MethodBase object that fully describes the procedure in which the exception occurred. The
properties of this object may or may not be useful in every case, especially when an application has been
obfuscated.

Other exception objects further derived from System.Exception may include additional properties with more detailed information.
By concatenating the various properties of the captured exception object, you should be able to effectively communicate the
problem to the user or store the details in an error log for later analysis.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.5. Creating New Exception Types

Problem

None of the exception objects supplied with .NET really meets the needs of the error you need to generate.

Solution

Build your own exception object by deriving a new class from System.Exception or another class already derived from it.

Discussion

The following class extends the standard Exception object by adding a place for a SQL statement used in a database
query:

 Public Class ExceptionWithSQL
 Inherits System.Exception

 Public SQLStatement As String

 Public Sub New(ByVal message As String, _
 ByVal sqlText As String, _
 ByVal innerException As System.Exception)
 ' ----- Store the details of this exception.
 MyBase.New(message, innerException)
 SQLStatement = sqlText
 End Sub
 End Class

Many business applications that interact with a database use a central procedure to process SQL statements in a
consistent manner. While this procedure may have its own error handler, the calling code also wants to know when an
error occurred with the SQL statement that it provided. The following ProcessSQL method represents just such a common
procedure. If an error occurs in the supplied SQL statement, it uses the ExceptionWithSQL class to communicate the
problem:

 Public Sub ProcessSQL(ByVal sqlText As String)
 Try
 ' ----- Add ADO.NET-specific code here.
 Catch ex As System.Exception
 ' ----- Convert this to a SQL error.
 Throw New WindowsApplication1.ExceptionWithSQL(_
 "A SQL error occurred.", sqlText, ex)
 ' ----- The calling procedure will receive the
 ' modified error.
 End Try
 End Sub

Since the calling code may issue several different SQL statements within a common try block, having the errant SQL
statement in the exception object provides the additional information a programmer may need to locate the problem:

 Dim sqlText As String
 Try
 sqlText = "DELETE FROM Table1 WHERE RecordType = 5"
 ProcessSQL(sqlText)
 sqlText = "DELETE FROM Table2 WHERE RecordType = 5"
 ProcessSQL(sqlText)
 Catch ex As WindowsApplication1.ExceptionWithSQL
 MsgBox("The following SQL statement caused an error:" & _
 vbCrLf & ex.SQLStatement)
 End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also create a new ExceptionWithSQL object for any reason on your own and THRow it, even if no underlying
database error occurred. With custom errors, the choice of when to use them is yours.

Before .NET, errors in Visual Basic were identified solely by a number, many defined for common use by Microsoft
Windows. For instance, error number 7 represents the "Out-of-memory" error condition.

In .NET, all errors are defined by specific classes derived from System.Exception. For example, out-of-memory errors are
thrown as instances of System.OutOfMemoryException. You can derive your own exceptions for use in your application code.
You will often derive such custom errors directly from System.Exception, but if another derived exception class contains
features you don't want to rewrite from scratch, you can derive from that class instead.

The various .NET exceptions derived from System.Exception can also be used directly. For instance, you can throw a
System.DivideByZeroException even if you don't actually perform an invalid division, but your code has a zero-value
denominator ready to use:

 Public Function CheckAndDivide(ByVal numerator As Decimal, _
 ByVal denominator As Decimal) As Decimal
 ' ----- Divide numbers, but check for divide-by-zero first.
 If (denominator = 0@) Then
 Throw New System.DivideByZeroException()
 Else
 Return numerator / denominator
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 15.6. Ignoring Exceptions in a Block of Code

Problem

You have a block of code that might generate errors, but you don't really care. You want the code to continue on with
or without errors and to provide no error report to the user.

Solution

To ignore errors, use the On Error Resume Next statement, or use a TRy statement with an empty Catch block.

Discussion

In Visual Basic, the traditional way to ignore errors in a section of code is to use the On Error Resume Next statement. The
following code shows both ignored and pro-cessed error-handler sections:

 Public Sub DoSomething()
 On Error Resume Next
 ' ----- Error handling is now disabled. You can do
 ' dangerous things and no errors will occur. The
 ' "Err" object will still be filled in with
 ' error content when an error does occur, so you
 ' can check that if you are concerned.

 On Error GoTo ErrorHandler
 ' ----- Error handling has been turned back on. All
 ' errors will jump down to the labeled section.
 Exit Sub

 ErrorHandler:
 ' ----- Do something with the error here, then…
 Resume Next
 End Sub

If you want to ignore errors but prefer using the structured exception-handling features, add a TRy block with an empty
Catch block:

 Public Sub DoSomething()
 Try
 ' ----- As expected, any error that occurs here will
 ' jump to the Catch block.
 Catch
 ' ----- If you don't include any error-handling code
 ' here, the error is just ignored.
 End Try

 ' ----- Errors that occur out here will not be caught by
 ' the Try block, but you knew that already.
 End Sub

There is a small difference between these two blocks of code. When using the On Error Resume Next statement, any error
on a statement causes the code to continue with the next statement. In the TRy…Catch example, any error that occurs in
the TRy block causes the code to continue with the Catch block, and then with the code that follows the entire try…End Try
section. This means that if you have multiple statements in the try block and an error occurs on the first of those
statements, the remaining statements in the try block are skipped completely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
In today's world, security is an increasingly important part of development requirements. Visual Basic 2005 and the
.NET Framework provide advanced and well-established encryption libraries. This chapter provides recipes for some of
the basic tasks you may need to become more familiar with, such as encrypting data files, handling passwords securely,
and so on. Closely related to encryption is the science of compression, so some of these recipes also cover this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.1. Generating a Hash

Problem

You want to hash a string to create a unique, repeatable identifier. This can be used to determine if a string has been
altered in any way, to identify a password without revealing the actual password, and to convert a string of any length
to a unique fixed-length key for cryptographic algorithms.

Solution

Sample code folder: Chapter 16\Cryptography

Use the .NET Framework's cryptographic services to generate an industry-standard hash of your data.

Discussion

A hash is like a one-way encryption. There's no way to recover an original string given its hash value. In fact, it's
technically possible for more than one string to return the exact same hash value, although the odds are against this
ever happening in the time allotted for the unfolding of the universe. The MD5 hash used in this recipe returns a 16-
byte value, and a quick calculation shows there are over 3 x 1038 unique combinations of 16 bytes. If you were to
check through all the possible hash patterns at the rate of a million combinations each second, you'd still be quite busy
after a few trillion centuries.

The advantage of the MD5 hash is that changing the given string in the minutest way results in a completely different
and unique hash value. If you hash a string and get the hash value expected for that string, you can feel very confident
that the string has not been altered in any way. A password, for example, can be checked against the original password
by comparing the hashes for the original password and the new one. If the hashes match, the passwords match, and
you don't even have to know what the passwords are.

The following function isolates the code to generate a hash for a string. This function is part of a module named Crypto
that's presented in its entirety in Recipe 16.9:

 Public Function GetHash(ByVal plainText As String) As String
 ' ----- Generate a hash. Return an empty string
 ' if there are any problems.
 Dim plainBytes As Byte()
 Dim hashEngine As MD5CryptoServiceProvider
 Dim hashBytes As Byte()
 Dim hashText As String

 Try
 ' ----- Convert the plain text to a byte array.
 plainBytes = Encoding.UTF8.GetBytes(plainText)

 ' ----- Select one of the hash engines.
 hashEngine = New MD5CryptoServiceProvider

 ' ----- Get the hash of the plain text bytes.
 hashBytes = hashEngine.ComputeHash(plainBytes)

 ' ----- Convert the hash bytes to a hexadecimal string.
 hashText = Replace(BitConverter.ToString(hashBytes), "-", "")
 Return hashText
 Catch
 Return ""
 End Try
 End Function

There are several cryptography service providers in the .NET Framework, including SHA1, Triple DES, Rijndael, and
others. The MD5 hashing algorithm is a good standard one to use, but you can change the above code to use a different
algorithm if desired.

For convenience, this function returns the 16-byte hash converted to a 32-byte hexa-decimal character string. This
simplifies tasks such as storing the hash in the registry instead of a password, and it provides a useful way to convert
any key string to a 32-byte key for the Rijndael cipher, a technique used in other recipes in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any key string to a 32-byte key for the Rijndael cipher, a technique used in other recipes in this chapter.

The following code demonstrates the GetHash() function by hashing a string and displaying the result, shown in Figure
16-1:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = _
 "The important thing is not to stop questioning. " & _
 "--Albert Einstein"
 Dim hash As String = GetHash(workText)
 result.Append("Plain text: ")
 result.AppendLine(workText)
 result.Append("Hash value: ")
 result.Append(hash)
 MsgBox(result.ToString())

Figure 16-1. Generating an MD5 hash of a string

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.10. Complete Listing of the Compress.vb Module
Sample code folder: Chapter 16\Compression

This recipe contains the full code for the Compress module described in Recipes 16.6 and 16.7:

 Imports System
 Imports System.Text
 Imports System.IO
 Imports System.IO.Compression

 Module Compress
 Public Function StringCompress(_
 ByVal originalText As String) As Byte()
 ' ----- Generate a compressed version of a string.
 ' First, convert the string to a byte array.
 Dim workBytes() As Byte = _
 Encoding.UTF8.GetBytes(originalText)

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Use the newly created memory stream for the
 ' compressed data.
 Dim zipStream As New GZipStream(memoryStream, _
 CompressionMode.Compress, True)
 zipStream.Write(workBytes, 0, workBytes.Length)
 zipStream.Flush()

 ' ----- Close the compression stream.
 zipStream.Close()

 ' ----- Return the compressed bytes.
 Return memoryStream.ToArray
 End Function

 Public Function BytesDecompress(_
 ByVal compressed() As Byte) As String
 ' ----- Uncompress a previously compressed string.
 ' Extract the length for the decompressed string.
 Dim lastFour(3) As Byte
 Array.Copy(compressed, compressed.Length - 4, _
 lastFour, 0, 4)
 Dim bufferLength As Integer = _
 BitConverter.ToInt32(lastFour, 0)

 ' ----- Create an uncompressed bytes buffer.
 Dim buffer(bufferLength - 1) As Byte

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(compressed)

 ' ----- Create the decompression stream.
 Dim decompressedStream As New GZipStream(_
 memoryStream, CompressionMode.Decompress, True)

 ' ----- Read and decompress the data into the buffer.
 decompressedStream.Read(buffer, 0, bufferLength)

 ' ----- Convert the bytes to a string.
 Return Encoding.UTF8.GetString(buffer)
 End Function

 Public Sub FileCompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Decompress a previously compressed string.
 ' First, create the input file stream.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)

 ' ----- Create the output file stream.
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed by a compression
 ' stream.
 Dim compressedStream As New GZipStream(_
 destinationStream, CompressionMode.Compress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 compressedStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 compressedStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Compress the entire contents of a file, and
 ' store it in a new file. First, get the files
 ' as streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed through a
 ' decompression stream.
 Dim decompressedStream As New GZipStream(_
 sourceStream, CompressionMode.Decompress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = decompressedStream.Read(buffer, _
 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 destinationStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 decompressedStream.Close()
 destinationStream.Close()
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.2. Encrypting and Decrypting a String

Problem

You want to encrypt and later decrypt a string using a private key.

Solution

Sample code folder: Chapter 16\Cryptography

Use the StringEncrypt() and StringDecrypt() functions, presented in this recipe, which wrap calls to a cryptography services provider in the .NET
Framework.

Discussion

The StringEncrypt() function processes a plain-text string using a key string and returns a Base64 (MIME) string. This string can be deciphered only
by passing it back to the StringDecrypt() function, along with the same key string. The returned Base64 string is comprised of viewable and
printable ASCII characters and is suitable for printing, emailing, and storing in standard text files. We'll look at the StringEncrypt()

 Public Function StringEncrypt(ByVal plainText As String, _
 ByVal keyText As String) As String
 ' ----- Encrypt some text. Return an empty string
 ' if there are any problems.
 Try
 ' ----- Remove any possible null characters.
 Dim workText As String = plainText.Replace(vbNullChar, "")

 ' ----- Convert plain text to byte array.
 Dim workBytes() As Byte = Encoding.UTF8.GetBytes(plainText)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Write(workBytes, 0, workBytes.Length)
 cryptoStream.FlushFinalBlock()

 ' ----- Convert binary data to a viewable string.
 Dim encrypted As String = _
 Convert.ToBase64String(memoryStream.ToArray)

 ' ----- Close the streams.
 memoryStream.Close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Return the encrypted string result.
 Return encrypted
 Catch
 Return ""
 End Try
 End Function

The RijndaelManaged object was chosen for the encryption algorithm, but you may substitute any of the other encryption engines provided in the
.NET Framework, such as Triple DES. The Rijndael algorithm was chosen because it is one of the latest and strongest algorithms around. Also
known as the Advanced Encryption Algorithm (AES), it survived intense scrutiny by experts in the industry to become the algorithm the
government selected to replace the older Data Encryption Standard (DES) algorithm. It's standard, and it's good.

The StringDecrypt() function is similar to StringEncrypt(), except that the encrypted Base64 string is passed to it along with the same key string as
used before, and the original plain-text result is returned:

 Public Function StringDecrypt(ByVal encrypted As String, _
 ByVal keyText As String) As String
 ' ----- Decrypt a previously encrypted string. The key
 ' must match the one used to encrypt the string.
 ' Return an empty string on error.
 Try
 ' ----- Convert encrypted string to a byte array.
 Dim workBytes() As Byte = _
 Convert.FromBase64String(encrypted)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Decrypted bytes will be stored in
 ' a temporary array.
 Dim tempBytes(workBytes.Length - 1) As Byte

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(workBytes)

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Read)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Read(tempBytes, 0, tempBytes.Length)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Convert the decrypted bytes to a string.
 Dim plainText As String = _
 Encoding.UTF8.GetString(tempBytes)

 ' ----- Return the decrypted string result.
 Return plainText.Replace(vbNullChar, "")
 Catch
 Return ""
 End Try
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the same initialization vector is used in both functions. This is the actual "secret key" you use to encrypt the content. You can use
other sets of bytes to initialize the IV() array, but both the StringEncrypt() and StringDecrypt() functions should use exactly the same values.

The Rijndael encryption object expects an array of 32bytes as the key. The GetHash() function presented in Recipe 16.1 makes it easy to convert
any key string to a 32-byte key suitable for the encryption. The values of the key bytes in this case vary only over a range of 16 unique values
each, but there still are more than 3 x 1038 possible key combinations. Generally, any unique key string always generates a unique 32-byte hash
value as a key, and a brute-force attack based on checking all possible keys generated by GetHash() is, based on today's technology, out of the
question.

The following code demonstrates calling the StringEncrypt() and StringDecrypt() functions:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = _
 "The important thing is not to stop questioning. " & _
 "--Albert Einstein"
 Dim keyString As String = "This string is the key"
 Dim encrypted As String = StringEncrypt(workText, keyString)
 Dim decrypted As String = StringDecrypt(encrypted, keyString)
 result.Append("Plain Text: ")
 result.AppendLine(workText)
 result.AppendLine()
 result.Append("Encrypted: ")
 result.AppendLine(encrypted)
 result.AppendLine()
 result.Append("Decrypted: ")
 result.Append(decrypted)
 MsgBox(result.ToString())

The original plain-text string is encrypted and then decrypted using the same key string. The results of each step are displayed in

Figure 16-2. Encrypting a string with the AES algorithm

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.3. Encrypting and Decrypting a File

Problem

You want an easy-to-use function that encrypts and decrypts any file.

Solution

Sample code folder: Chapter 16\Cryptography

Use the FileEncrypt() and FileDecrypt() functions presented in this recipe.

Discussion

You can theoretically load an entire file into a string and call the StringEncrypt() and StringDecrypt() functions presented in
Recipe 16.2 to process all its contents in one shot, but there may be problems with this approach. For one thing, larger
files require a lot of memory during processing. It's better to process chunks of files a piece at a time until the whole
file is processed. In the FileEncrypt() and FileDecrypt() functions presented here, a buffer of 4,096 bytes processes the
streams of data in smaller, manageable chunks. Here are the two functions showing how this buffer is used:

 Public Sub FileEncrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)
 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal destinationFile As String, _
 ByVal keyText As String)

 ' ----- Create file streams.
 Dim sourceStream As New
FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New
FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by
CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

These two functions are similar to the StringEncrypt() and StringDecrypt() functions, except for a couple of important features.
Instead of the memory stream being used to process the strings, the file contents are processed through file streams.
The cryptoStream object is hooked into the file stream to process the bytes as they flow through the streams.

The other difference is the use of a byte-array buffer that holds 4,096 bytes. Chunks of 4,096 bytes are read from the
input file, processed by the streams in the process, and then written to the output file. This allows processing of very
large files a piece at a time.

The following code demonstrates these two functions by first creating a plain-text file, then encrypting it to a second
file, and finally decrypting the result to a third file, always using the same key:

 Dim result As New System.Text.StringBuilder
 Dim file1Text As String = _
 "This is sample content for a text file" & vbNewLine & _
 "to be encrypted and decrypted. File1 and" & vbNewLine & _
 "File3 should show this plain text. File2" & vbNewLine & _
 "is encrypted and will be indecipherable."
 Dim file2Text As String
 Dim file3Text As String
 Dim file1 As String = Application.StartupPath & "\File1.txt"
 Dim file2 As String = Application.StartupPath & "\File2.ezz"
 Dim file3 As String = Application.StartupPath & "\File3.txt"

 ' ----- Create the encrypted
and decrypted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and decrypted
files.
 My.Computer.
FileSystem.WriteAllText(file1, file1Text, False)
 FileEncrypt(file1, file2, "key")
 FileDecrypt(file2, file3, "key")

 ' ----- Display the results.
 file2Text = My.Computer.FileSystem.ReadAllText(file2)
 file3Text = My.Computer.FileSystem.ReadAllText(file3)
 result.AppendLine("File1:")
 result.AppendLine(file1Text)
 result.AppendLine()
 result.AppendLine("File3:")
 result.AppendLine(file3Text)
 result.AppendLine()
 result.AppendLine("File2:")
 result.Append(file2Text)
 MsgBox(result.ToString())

The original file and the decrypted file are displayed first in the message box, as shown in Figure 16-3, and the
encrypted file (File2) is displayed last. The encrypted file consists of binary data unsuitable for normal display, resulting
in a truncated list of strange characters.

Figure 16-3. Original, encrypted, and decrypted versions of a file

See Also

Recipe 16.9 includes the full source code for the Crypto module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.4. Prompting for a Username and Password

Problem

You need to add a password dialog to an application to prevent unauthorized access to the rest of the program.

Solution

Sample code folder: Chapter 16\LoginTest

Use the standard LoginForm dialog provided by Visual Basic 2005.

Discussion

In Visual Studio 2005, you can add new items to your project, selecting from a variety of predefined forms and other
objects. If you select the Project Add Windows Form menu command, one of the form choices you can add is a
LoginForm. This form is all set up with User Name and Password text boxes, along with two buttons and a nice graphic.
You can modify this dialog to suit your own requirements, perhaps replacing the graphic image with something more
appropriate for your business.

The Password text box displays only asterisks as the user enters his password. All TextBox controls have a PasswordChar
property, which is normally left blank. Enter an asterisk (or any other character) in this property, and the TextBox
displays only the given character. The TextBox.Text property still returns whatever text the user has entered; it's just
displayed as all asterisks to mask it from prying eyes.

The following code block shows how hashed values of the User Name and Password text entries can be compared
against known hashed values. This code requires the GetHash() function defined in Recipe 16.1:

 Dim result As String

 ' ----- Store only the hashed values, not the plain text.
 Dim hashUserName As String = GetHash("AlbertE")
 Dim hashPassword As String = GetHash("E=MC2")

 LoginForm1.ShowDialog()

 ' ----- Hash the input values.
 Dim hashUserInput As String = _
 GetHash(LoginForm1.UsernameTextBox.Text)
 Dim hashPassInput As String = _
 GetHash(LoginForm1.PasswordTextBox.Text)

 ' ----- Test the inputs.
 If (hashUserName = hashUserInput) AndAlso _
 (hashPassword = hashPassInput) Then
 result = "Yes, you passed the password test!"
 Else
 result = "I'm sorry, please try again."
 End If
 MsgBox(result)

Normally, it's best not to put the user's name and password directly in the code, as shown here, but for demonstration
purposes, it works well. In the next recipe we'll store the hashed password in the registry, where the actual password
can't be discovered.

Figure 16-4 shows the LoginForm in action, after the user has entered a username and password, but just before the OK
button is clicked or the Enter key pressed.

Figure 16-4. Visual Basic 2005's customizable standard LoginForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-4. Visual Basic 2005's customizable standard LoginForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.5. Handling Passwords Securely

Problem

You want to test an entered password against a value stored somewhere, but you don't want anyone to be able to look
through the system or through your program to discover what that password is.

Solution

Sample code folder: Chapter 16\SecurePassword

Store the hash of the password in the system registry, and test any user-entered password by comparing its hash
against the registry entry.

Discussion

The following demonstration code includes a method that lets you record a username and password (hashed) in the
system registry, and another method that compares a newly entered username and password with the previously
stored value. This code requires the GetHash() function defined in Recipe 16.1:

 Public Sub StoreUserAndPassword(ByVal userName As String, _
 ByVal passwordText As String)
 ' ----- Save the encrypted password in the registry.
 Dim hashPassword As String = GetHash(passwordText)

 My.Computer.Registry.SetValue _
 ("HKEY_CURRENT_USER\Software\
PasswordsTest", _
 userName, hashPassword)
 End Sub

 Public Function CheckPassword(ByVal userName As String, _
 ByVal passwordText As String) As Boolean
 ' ----- See if the username and password passed to
 ' this function match entries in the registry.
 Dim hashPassword As String = GetHash(passwordText)

 ' ----- Retrieve any stored value.
 Dim hashPassRead As String = _
 Convert.ToString(My.Computer.Registry.GetValue(_

"HKEY_CURRENT_USER\Software\PasswordsTest", _
 userName, Nothing))

 ' ----- Compare the passwords.
 If (hashPassRead = Nothing) Then
 ' ----- Invalid username.
 Return False
 ElseIf (hashPassRead = hashPassword) Then
 ' ----- Good username and password.
 Return True
 Else
 ' ----- Good username, bad password.
 Return False
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.6. Compressing and Decompressing a String

Problem

You want to compress and later decompress a string to save memory or file space.

Solution

Sample code folder: Chapter 16\ Compression

Use Gzip stream compression and decompression, new in Version 2.0 of the .NET Framework.

Discussion

The System.IO.Compression namespace contains the GZipStream class, which can compress or decompress bytes as they
move through the stream. The compression algorithm is similar to the standard ZIP compression found in many
programs, providing decent lossless compression at a high speed.

This compression works best on longer strings. In the following sample code, the contents of the workText string are
repeated several times in order to build a redundant string resulting in a lot of compression.

The compression and decompression calls are wrapped in the functions StringCompress() and BytesDecompress(), contained in
a module named Compress.vb.

The compression function accepts a string and returns a byte array, and the decompression function accepts a byte
array and returns a string. The compressed byte array contains just about any and all possible byte values, and keeping
this data in the form of a byte array prevents subtle problems from arising when you attempt to convert the array
directly to a string:

 Public Function StringCompress(_
 ByVal originalText As String) As Byte()
 ' ----- Generate a compressed version of a string.
 ' First, convert the string to a byte array.
 Dim workBytes() As Byte = _
 Encoding.UTF8.GetBytes(originalText)

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Use the newly created memory stream for the
 ' compressed data.
 Dim zipStream As New GZipStream(memoryStream, _
 CompressionMode.Compress, True)
 zipStream.Write(workBytes, 0, workBytes.Length)
 zipStream.Flush()

 ' ----- Close the compression stream.
 zipStream.Close()

 ' ----- Return the compressed bytes.
 Return memoryStream.ToArray
 End Function

 Public Function BytesDecompress(_
 ByVal compressed() As Byte) As String
 ' ----- Uncompress a previously compressed string.
 ' Extract the length for the decompressed string.
 Dim lastFour(3) As Byte
 Array.Copy(compressed, compressed.Length - 4, _
 lastFour, 0, 4)
 Dim bufferLength As Integer = _
 BitConverter.ToInt32(lastFour, 0)

 ' ----- Create an uncompressed bytes buffer.
 Dim buffer(bufferLength - 1) As Byte

 ' ----- Bytes will flow through a memory stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(compressed)

 ' ----- Create the decompression stream.
 Dim decompressedStream As New GZipStream(_
 memoryStream, CompressionMode.Decompress, True)

 ' ----- Read and decompress the data into the buffer.
 decompressedStream.Read(buffer, 0, bufferLength)

 ' ----- Convert the bytes to a string.
 Return Encoding.UTF8.GetString(buffer)
 End Function

The following code demonstrates these functions by building a moderately long redundant string, passing it to
CompressString(), then passing the compressed byte array back to BytesDecompress() to recover the original string:

 Dim result As New System.Text.StringBuilder
 Dim workText As String = ""
 For counter As Integer = 1 To 9
 workText &= "This redundant string will be compressed" & _
 vbNewLine
 Next counter
 Dim compressed() As Byte = StringCompress(workText)
 Dim uncompressed As String = BytesDecompress(compressed)
 result.AppendLine(workText)
 result.Append("Original size: ")
 result.AppendLine(workText.Length)
 result.AppendLine()
 result.Append("Compressed size: ")
 result.AppendLine(compressed.Length)
 result.AppendLine()
 result.AppendLine(uncompressed)
 result.AppendLine()
 result.Append("Uncompressed size: ")
 result.Append(uncompressed.Length)
 MsgBox(result.ToString())

Figure 16-5 displays the original string and its length, followed by the length of the compressed byte array, and finally
the resulting decompressed string and its length. Longer strings with redundancies, such as this one, compress better
than shorter ones.

See Also

Recipe 16.9 includes the full source code for the Compress module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.7. Compressing and Decompressing a File

Problem

You want to compress and decompress file data.

Solution

Sample code folder: Chapter 16\Compression

Use Gzip stream compression and decompression, new in Version 2.0 of the .NET Framework.

Figure 16-5. Compressing and decompressing a string

Discussion

Because the GZipStream class works on streams, it's easy to point it to file streams as data is read to or written from files.
This lets the compression and decompression algorithms intercept the bytes as they move through the file streams.

The FileCompress() and FileDecompress() functions are found in the same Compress.vb module that contains the string
compression and decompression functions presented in Recipe 16.6. These functions are similar in that they intercept
streams to process bytes as they move through them. One important difference is the use of a 4,096-byte buffer to
process the file-stream data in chunks, rather than loading the entire file contents into memory. This allows even the
largest files to be efficiently processed a piece at a time.

Here are the two file compression and decompression functions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here are the two file compression and decompression functions:

 Public Sub FileCompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Decompress a previously compressed string.
 ' First, create the input file stream.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)

 ' ----- Create the output file stream.
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed by a compression
 ' stream.
 Dim compressedStream As New GZipStream(_
 destinationStream, CompressionMode.Compress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 compressedStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 compressedStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecompress(ByVal sourceFile As String, _
 ByVal destinationFile As String)
 ' ----- Compress the entire contents of a file, and
 ' store the result in a new file. First, get
 ' the files as streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Bytes will be processed through a
 ' decompression stream.
 Dim decompressedStream As New GZipStream(_
 sourceStream, CompressionMode.Decompress, True)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = decompressedStream.Read(buffer, _
 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 destinationStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close all the streams.
 sourceStream.Close()
 decompressedStream.Close()
 destinationStream.Close()
 End Sub

The entire Compress.vb module is listed in Recipe 16.10.

The following code demonstrates file compression and decompression by first filling a file with many repetitions of the
same lines of text. Doubling the size of the file several times causes the number of bytes stored in File1 to grow to
almost 88K.

FileCompress() is called to compress File1 into File2. Because of the highly redundant nature of the data in this example, the
original 88K bytes of data compress down to less than 1K, as stored in File2. Finally, FileDecompress() is called to
decompress File2 into File3. This file ends up being exactly the same size and containing exactly the same data as File1,
verifying the compression and decompression action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

verifying the compression and decompression action:

 Dim result As New System.Text.StringBuilder
 Dim file1Text As String = _
 "This is sample content for a text file to" & vbNewLine & _
 "be compressed and decompressed. File1 and" & vbNewLine & _
 "File3 should show this plain text. File2" & vbNewLine & _
 "is compressed and will be indecipherable." & vbNewLine
 For counter As Integer = 1 To 9
 file1Text &= file1Text
 Next counter
 Dim file2Text As String
 Dim file3Text As String
 Dim file1 As String = Application.StartupPath & "\File1.txt"
 Dim file2 As String = Application.StartupPath & "\File2.gzz"
 Dim file3 As String = Application.StartupPath & "\File3.txt"

 ' ----- Compress and decompress the content files.
 My.Computer.FileSystem.WriteAllText(file1, file1Text, False)
 FileCompress(file1, file2)
 FileDecompress(file2, file3)

 ' ----- Display the results.
 file2Text = My.Computer.FileSystem.ReadAllText(file2)
 file3Text = My.Computer.FileSystem.ReadAllText(file3)
 result.Append("File1 length (original): ")
 result.AppendLine(file1Text.Length)
 result.Append("File2 length (compressed): ")
 result.AppendLine(file2Text.Length)
 result.Append("File3 length (decompressed): ")
 result.AppendLine(file3Text.Length)
 MsgBox(result.ToString())

Figure 16-6 displays the size in bytes of each of the three files after the functions are called.

See Also

Recipe 16.10 includes the full source code for the Compress module.

Figure 16-6. Compressing and decompressing a file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.8. Generating Cryptographically Secure Random Numbers

Problem

You want to generate reliably unpredictable pseudorandom bytes.

Solution

Sample code folder: Chapter 16\RandomNumbers

Use the RNGCryptoServiceProvider class provided in the System.Security.Cryptography namespace to generate random numbers
that are guaranteed to be unpredictable and highly resistant to any pattern analysis.

Discussion

Some random number generators, such as those found in Visual Basic 6.0 and earlier versions of BASIC, were not
really that good. They generally were fine for most statistical analysis purposes, but their cycle lengths were
comparatively short, and certain types of high-powered random number tests showed them to have subtle patterns in
the bits comprising their sequences of bytes. The RNGCryptoServiceProvider class provides a random number generator
that's been carefully studied by professional cryptographers and passes all the standard tests for randomness with
flying colors. There's no realistic way to analyze or predict the next byte in a sequence generated by this class.

The following code demonstrates the RNGCryptoServiceProvider class by using an instance of it to generate a million random
bytes. The mean of these bytes is calculated, as is the time it takes to generate the bytes:

 Dim result As New System.Text.StringBuilder
 Const ProcessSize As Integer = 1000000

 ' ----- Generate the random content.
 Dim randomEngine As New RNGCryptoServiceProvider()
 Dim randomBytes(ProcessSize) As Byte

 Dim timeStart As Date = Now
 randomEngine.GetBytes(randomBytes)

 ' ----- Calculate the mean of all values.
 Dim mean As Double
 For counter As Integer = 1 To ProcessSize
 mean += randomBytes(counter)
 Next counter
 mean /= ProcessSize

 ' ----- How long did this take?
 Dim timeElapsed As Double = _
 Now.Subtract(timeStart).TotalSeconds

 ' ----- Display the results.
 result.AppendLine(String.Format(_
 "Generated and found mean of {0} random bytes", _
 ProcessSize))
 result.AppendLine(String.Format("in {0} seconds", _
 timeElapsed))
 result.Append("Mean: " & mean)
 MsgBox(result.ToString())

The results for a sample run appear in Figure 16-7. You can call the GetBytes() method to fill any size byte array you pass
to it with that many random bytes. The previous code generates the million bytes using only one call to the GetBytes()
method. The loop processes the individual byes to calculate the mean.

Figure 16-7. Cryptographically secure random bytes generated by the
RNGCryptoServiceProvider class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RNGCryptoServiceProvider class

Because the random bytes have equal probabilities for all values from 0 to 255, the average value should theoretically
be very near 127.5. With a million random bytes generated by this sample code, the mean falls very close to this
theoretical value almost every time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 16.9. Complete Listing of the Crypto.vb Module
Sample code folder: Chapter 16\Cryptography

This recipe contains the full code for the Crypto module described in Recipes 16.1, 16.2 through 16.3:

 Imports System.IO
 Imports System.Text
 Imports System.Security.Cryptography

 Module Crypto
 Public Function GetHash(ByVal plainText As String) As String
 ' ----- Generate a hash. Return an empty string
 ' if there are any problems.
 Dim plainBytes As Byte()
 Dim hashEngine As MD5CryptoServiceProvider
 Dim hashBytes As Byte()
 Dim hashText As String

 Try
 ' ----- Convert the plain text to a byte array.
 plainBytes = Encoding.UTF8.GetBytes(plainText)

 ' ----- Select one of the hash engines.
 hashEngine = New MD5CryptoServiceProvider

 ' ----- Get the hash of the plain text bytes.
 hashBytes = hashEngine.ComputeHash(plainBytes)

 ' ----- Convert the hash bytes to a hexadecimal string.
 hashText = Replace(BitConverter.ToString(hashBytes), "-", "")
 Return hashText
 Catch
 Return ""
 End Try
 End Function

 Public Function StringEncrypt(ByVal plainText As String, _
 ByVal keyText As String) As String
 ' ----- Encrypt some text. Return an empty string
 ' if there are any problems.
 Try
 ' ----- Remove any possible null characters.
 Dim workText As String = plainText.Replace(vbNullChar, "")

 ' ----- Convert plain text to byte array.
 Dim workBytes() As Byte = Encoding.UTF8.GetBytes(plainText)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream()

 ' ----- Create the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Write(workBytes, 0, workBytes.Length)
 cryptoStream.FlushFinalBlock()

 ' ----- Convert binary data to a viewable string.
 Dim encrypted As String = _
 Convert.ToBase64String(memoryStream.ToArray)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Return the encrypted string result.
 Return encrypted
 Catch
 Return ""
 End Try
 End Function

 Public Function StringDecrypt(ByVal encrypted As String, _
 ByVal keyText As String) As String
 ' ----- Decrypt a previously encrypted string. The key
 ' must match the one used to encrypt the string.
 ' Return an empty string on error.
 Try
 ' ----- Convert encrypted string to a byte array.
 Dim workBytes() As Byte = _
 Convert.FromBase64String(encrypted)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Decrypted bytes will be stored in
 ' a temporary array.
 Dim tempBytes(workBytes.Length - 1) As Byte

 ' ----- Create the Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Bytes will flow through a memory stream.
 Dim memoryStream As New MemoryStream(workBytes)

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 memoryStream, cryptoTransform, _
 CryptoStreamMode.Read)

 ' ----- Move the bytes through the processing stream.
 cryptoStream.Read(tempBytes, 0, tempBytes.Length)

 ' ----- Close the streams.
 memoryStream.Close()
 cryptoStream.Close()

 ' ----- Convert the decrypted bytes to a string.
 Dim plainText As String = _
 Encoding.UTF8.GetString(tempBytes)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Encoding.UTF8.GetString(tempBytes)

 ' ----- Return the decrypted string result.
 Return plainText.Replace(vbNullChar, "")
 Catch
 Return ""
 End Try
 End Function

 Public Sub FileEncrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)
 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

 ' ----- Create the
cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateEncryptor(keyBytes, IV)

 ' ----- Bytes will be processed by CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub

 Public Sub FileDecrypt(ByVal sourceFile As String, _
 ByVal destinationFile As String, _
 ByVal keyText As String)

 ' ----- Create file streams.
 Dim sourceStream As New FileStream(_
 sourceFile, FileMode.Open, FileAccess.Read)
 Dim destinationStream As New FileStream(_
 destinationFile, FileMode.Create, FileAccess.Write)

 ' ----- Convert key string to 32-byte key array.
 Dim keyBytes() As Byte = _
 Encoding.UTF8.GetBytes(GetHash(keyText))

 ' ----- Create initialization vector.
 Dim IV() As Byte = { _
 50, 199, 10, 159, 132, 55, 236, 189, _
 51, 243, 244, 91, 17, 136, 39, 230}

 ' ----- Create a Rijndael engine.
 Dim rijndael As New RijndaelManaged

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Create the cryptography transform.
 Dim cryptoTransform As ICryptoTransform
 cryptoTransform = _
 rijndael.CreateDecryptor(keyBytes, IV)

 ' ----- Bytes will be processed by
CryptoStream.
 Dim cryptoStream As New CryptoStream(_
 destinationStream, cryptoTransform, _
 CryptoStreamMode.Write)

 ' ----- Process bytes from one file into the other.
 Const BlockSize As Integer = 4096
 Dim buffer(BlockSize) As Byte
 Dim bytesRead As Integer
 Do
 bytesRead = sourceStream.Read(buffer, 0, BlockSize)
 If (bytesRead = 0) Then Exit Do
 cryptoStream.Write(buffer, 0, bytesRead)
 Loop

 ' ----- Close the streams.
 cryptoStream.Close()
 sourceStream.Close()
 destinationStream.Close()
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Cryptography and Compression
Introduction

Recipe 16.1. Generating a Hash

Recipe 16.2. Encrypting and Decrypting a String

Recipe 16.3. Encrypting and Decrypting a File

Recipe 16.4. Prompting for a Username and Password

Recipe 16.5. Handling Passwords Securely

Recipe 16.6. Compressing and Decompressing a String

Recipe 16.7. Compressing and Decompressing a File

Recipe 16.8. Generating Cryptographically Secure Random Numbers

Recipe 16.9. Complete Listing of the Crypto.vb Module

Recipe 16.10. Complete Listing of the Compress.vb Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Programming for the Web is a vast subject worthy of a whole series of books. While we obviously can't cover everything
here, this chapter presents a few web-related recipes for Visual Basic that let you add some useful features to your
applications. They will give you some idea of the power of web functionality combined with desktop applications. For a
comprehensive collection of Visual Basic web recipes, see ASP.NET 2.0 Cookbook by Michael A. Kittel and Geoff T.
LeBlond (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.1. Displaying Web Pages on a Form

Problem

You want to display a web page on your form, possibly built from custom HTML content.

Solution

Sample code folder: Chapter 17\CustomWebContent

Sample code folder: Chapter 17\ WebBrowser

Use the WebBrowser control. It encapsulates the core Microsoft Internet Explorer engine, and it integrates easily into your
Windows Forms applications.

Discussion

This recipe's sample code implements a simple web browser. Create a new Windows Forms application, and add the
following controls to Form1:

A Panel control named WebToolbar. Set its Dock property to Top and its Size.Height property to about 40.

A WebBrowser control named WebContent. Set its Dock property to Fill. It should only fill below the Panel control. If it
doesn't, right-click on the Panel control and select "Send to Back" from the shortcut menu.

A Button control named ActBack. This control should appear on the surface of the Panel control. Set its Text property
to &Back.

A Button control named ActHome. This control should appear on the surface of the Panel control. Set its Text property
to &Home.

A TextBox control named WebAddress. This control should appear on the surface of the Panel control. Set its Anchor
property to Top, Left, Right.

A Button control named ActGo. This control should appear on the surface of the Panel control. Set its Text property to
&Go and its Anchor property to Top, Right.

Arrange the controls as presented in Figure 17-1.

Figure 17-1. Controls for the web browser sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's class template:

 Private Sub ActBack_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActBack.Click
 ' ----- Move to the previous web page.
 If (WebContent.CanGoBack() = True) Then _
 WebContent.GoBack()
 End Sub

 Private Sub ActHome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActHome.Click
 ' ----- Move to the main web page.
 WebContent.GoHome()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Start from the home page.
 ActHome.PerformClick()
 End Sub

 Private Sub ActGo_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActGo.Click
 ' ----- Move to the requested page.
 If (Trim(
WebAddress.Text) <> "") Then _

WebContent.Navigate(WebAddress.Text)
 End Sub

The previous dozen lines of code are all you need to provide your users with a full Internet browsing experience (albeit
without all of the fancy features). Run the program, and use it like a typical web browser.

You are not limited to Internet-based HTML content in the browser. You can supply your own generated-on-the-fly
content as well, by setting the control's DocumentText property to a string containing the HTML content. We added the
following code to a new Form1 that contained only a WebBrowser control:

 WebBrowser1.DocumentText = "<html><body>" & _
 "<h1>Important</h1><p>This is web content." & _
 "</p></body></html>"

Figure 17-2 shows the output.

Figure 17-2. Custom HTML content in a WebBrowser control

Interacting with web-browser links is somewhat indirect. There is no LinkClicked event that occurs when a user clicks on a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interacting with web-browser links is somewhat indirect. There is no LinkClicked event that occurs when a user clicks on a
link. However, there is a Navigating event that is pretty close. You can monitor this event to provide support for your own
internal link events. Decorate your custom HTML with a fake URL address, such as internal://EditCustomer?ID=25 to
trigger the editing of the customer with ID number 25. To test this, create a new Windows Forms application, and add a
WebBrowser control named WebBrowser1. Next, add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add some custom content.
 WebBrowser1.DocumentText = "<html><body>" & _
 "<h1>Select an Airport</h1>" & _
 "<p>" & _
 "Los Angeles</p>" & _
 "<p>" & _
 "New York</p>" & _
 "<p>" & _
 "Seattle</p>" & _
 "</body></html>"
 End Sub

 Private Sub
WebBrowser1_Navigating(ByVal sender As Object, _
 ByVal e As System.Windows.Forms. _

WebBrowserNavigatingEventArgs) _
 Handles WebBrowser1.Navigating
 ' ----- Which link was clicked?
 Dim queryEntries() As String
 Dim oneEntry() As String
 Dim airportCode As String = "Invalid Code"
 Dim scanQuery As String

 ' ----- Look for internal://airport?… links.
 If (e.Url.Scheme = "internal") Then
 If (e.Url.Host = "airport") Then
 If (e.Url.Query.Length > 0) Then
 ' ----- Found an airport link. Get the
 ' airport code. The query starts with
 ' "?". Skip it.
 queryEntries = _
 Split(e.Url.Query.Substring(1), "&")
 For Each scanQuery In queryEntries
 oneEntry = Split(scanQuery, "=")
 If (UCase(oneEntry(0)) = "CODE") Then
 ' ----- Found the airport code.
 airportCode = UCase(oneEntry(1))
 Exit For
 End If
 Next scanQuery
 End If

 ' ----- Show the code.
 MsgBox(airportCode)
 e.Cancel = True
 End If
 End If
 End Sub

Clicking on one of the links gives results similar to Figure 17-3.

Several of the WebBrowser control's properties can be used to limit the allowed actions of the user. For instance, setting
the AllowNavigation, WebBrowserShortcutsEnabled, and IsWebBrowserContextMenuEnabled properties to False can effectively shut down
all user interaction with the Internet, providing a portal for static web content display only.

Figure 17-3. An internally processed link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-3. An internally processed link

See Also

Recipe 17.12 shows how to add a clickable hyperlink to a Windows form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.10. Getting POP3 Emails

Problem

You want to access emails from an application, perhaps just to get a quick count of available emails or to get the
complete contents.

Solution

Sample code folder: Chapter 17\Pop3Email

Use the TcpClient class in the System.Net. Sockets namespace. The Pop3 class presented here wraps this class with supporting
code to make it easier to access your emails.

Discussion

The following class code creates Pop3 objects to simplify accessing emails from a standard POP3 server. Note that some
servers require SSL or other authentication, in which case this code will need modification. For standard POP3 servers,
it works well as presented.

Create a new Windows Forms application, add a new class named Pop3.vb, and use this code for its definition:

 Public Class Pop3
 ' ----- The default TCP/IP port number for POP3 is 110.
 Public Port As Integer = 110
 Public Messages As Integer = 0

 Private Const CommandFailure As String = "-ERR"

 Private Pop3Server As TcpClient
 Private CommandSender As NetworkStream
 Private ContentReceiver As StreamReader

 Public Sub Connect(ByVal serverName As String, _
 ByVal userName As String, ByVal password As String)
 ' ----- Initiate the connection to a POP3 server.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String
 Dim parts() As String

 ' ----- Connect to the POP3 server.
 Try
 Pop3Server = New TcpClient(serverName, Port)
 CommandSender = Pop3Server.GetStream()
 ContentReceiver = New StreamReader(CommandSender)
 Catch
 Throw
 End Try

 If (userName <> "") Then
 ' ----- Authenticate with the user ID.
 commandData = "USER " & userName & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Invalid user name.")
 End If

 ' ----- Send the authenticating password.
 commandData = "PASS " & password & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Invalid password.")
 End If
 End If

 ' ----- Logged in. On some servers, the PASS command
 ' is not enough to push the server into a
 ' transaction state. Send a STAT command twice.
 commandData = "STAT" + vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()

 ' ----- Get a count of the messages.
 commandData = "STAT" + vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception(_
 "Could not retrieve message count.")
 End If

 ' ----- The response includes two integers: a count
 ' and a size, separated by a space. Skip over
 ' the "+OK" part also.
 parts = Split(responseString, " ")
 Messages = Val(parts(1))
 End Sub

 Public Sub Disconnect()
 ' ----- Disconnect from the
POP3 server.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String

 ' ----- Tell the server we're through.
 commandData = "QUIT" & vbCrLf
 contentBuffer = System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()

 ' ----- End the connection.
 ContentReceiver.Close()
 CommandSender.Close()

Pop3Server.Close()
 End Sub

 Function GetMessage(ByVal whichMessage As Integer) _
 As String
 ' ----- Retrieve a single email message.
 Dim commandData As String
 Dim contentBuffer() As Byte
 Dim responseString As String
 Dim theMessage As New System.Text.StringBuilder
 Dim oneLine As String

 ' ----- Check for an invalid message.
 If (whichMessage < 1) Or (whichMessage > Messages) Then
 Throw New ArgumentOutOfRangeException(whichMessage, _
 "Messages are numbered from 1 to the number " & _
 "identified by the Messages property.")
 End If

 Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Try
 ' ----- Request the message.
 commandData = "RETR " & whichMessage & vbCrLf
 contentBuffer = _
 System.Text.Encoding.ASCII.GetBytes(_
 commandData.ToCharArray())
 CommandSender.Write(contentBuffer, 0, _
 contentBuffer.Length)
 responseString = ContentReceiver.ReadLine()
 If (Left(responseString, Len(CommandFailure)) = _
 CommandFailure) Then
 Throw New Exception("Message retrieval failed.")
 End If

 ' ----- The message is all data until a line with
 ' a single dot (.) appears.
 Do While (ContentReceiver.EndOfStream = False)
 oneLine = ContentReceiver.ReadLine()
 If (oneLine = ".") Then Exit Do
 theMessage.AppendLine(oneLine)
 Loop
 Catch ex As InvalidOperationException
 MsgBox("Message retrieval failed: " & ex.Message)
 End Try

 ' ----- Return the constructed message.
 Return theMessage.ToString()
 End Function
 End Class

Return to Form1, and add three TextBox controls named ServerName, UserName, and UserPassword. Set the UserPassword control's
PasswordChar field to the asterisk character (*). Add a ListBox control named MessageList and two Button controls named ActGet
and ActView. Set the Button controls' Text properties to Get Messages and View Message, respectively. Add informational labels if
desired. The form should look like the one in Figure 17-12.

Figure 17-12. Controls for the POP3 sample

Now add the following code to Form1's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following code to Form1's class template:

 Private POP3Connection As Pop3 = Nothing

 Private Sub ActGet_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGet.Click
 ' ----- Initiate a POP3 connection.
 Dim counter As Integer

 ' ----- First, disconnect any previous connection.
 If (POP3Connection IsNot Nothing) Then
 Try
 POP3Connection.Disconnect()
 Catch ex As Exception
 ' ----- Ignore.
 End Try
 End If
 POP3Connection = Nothing

 ' ----- Clear any previous messages.
 MessageList.Items.Clear()

 ' ----- Try the new connection.
 Try

POP3Connection = New Pop3
 POP3Connection.Connect(ServerName.Text, _
 UserName.Text, UserPassword.Text)
 Catch ex As Exception
 MsgBox("Connection failure: " & ex.Message)
 POP3Connection = Nothing
 Return
 End Try

 ' ----- How many messages?
 If (POP3Connection.Messages = 0) Then
 MsgBox("No messages found.")
 POP3Connection.Disconnect()
 POP3Connection = Nothing
 Return
 End If

 ' ----- Show each message.
 For counter = 1 To POP3Connection.Messages
 MessageList.Items.Add("Message Number " & counter)
 Next counter
 End Sub

 Private Sub ActView_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActView.Click
 ' ----- Show a message.
 Dim whichMessage As Integer
 Dim parts As String()
 Dim content As String

 ' ----- Which message? Each item has the format:
 ' Message Number x
 If (MessageList.SelectedIndex = -1) Then Return
 parts = Split(CStr(MessageList.SelectedItem), " ")
 whichMessage = CInt(Val(parts(2)))

 ' ----- Get the content.
 content = POP3Connection.GetMessage(whichMessage)

 ' ----- Show the content.
 MsgBox(content)
 End Sub

 Private Sub MessageList_DoubleClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MessageList.DoubleClick
 ' ----- Same as the View button.
 ActView.PerformClick()
 End Sub

 Private Sub Form1_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 ' ----- Disconnect before leaving.
 On Error Resume Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Resume Next

 If (
POP3Connection IsNot Nothing) Then
 POP3Connection.Disconnect()
 POP3Connection = Nothing
 End If
 End Sub

When you successfully connect to a POP3 server through the ActGet button, it displays a simple list of each message
stored on the server. It's not as good as a real email program such as Microsoft Outlook because it hasn't yet read even
the sender name or subject text, but it does add one entry for each available message. Clicking on the ActView button
retrieves the content for one email message from the server through the Pop3 class's GetMessage() method. The
connection to the email server is closed when the form closes.

Figure 17-13 shows the content from a test email retrieved from a POP3 server. This rather short sample email arrives
with considerable overhead in the header details. The message body is near the end, and it shows the email was sent
using HTML content.

Figure 17-13. An email retrieved from a POP3 server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.11. Sending a Message to Another Computer

Problem

You want to send a pop-up message to one or more users on your network, something they'll see right away without
requiring any special third-party applications to be running on their computers.

Solution

Sample code folder: Chapter 17\SendMessage

Use Windows's Net.exe program to send instant messages to named computers on your network.

Discussion

The general syntax of the Net.exe command, when used to send instant messages, is of the form:

 Net.exe Send ComputerName Message

You'll need to know the name of the computer to which you wish to send the message, or you may use "*" as the
computer name to send a message to all computers on your network in one shot. If you specify a domain name as the
target address, the message is delivered to all computers belonging to that domain.

You can use this command from a Command Prompt window, or you can use a Visual Basic 2005 application as a
wrapper for the command. Create a new Windows Forms application, and add two TextBox controls named TargetComputer
and MessageText. Also add a Button control named ActSend, and set its Text property to Send. Add informational labels if
desired. The form should look something like Figure 17-14.

Figure 17-14. Controls for the message-sending sample

Now add the following code to the form's class template:

 ' ----- Send a message to another computer.
 Process.Start("net.exe", _
 "send " & TargetComputer.Text & _
 " """ & MessageText.Text & """")

The message you send appears in a message box on the other computer, similar to Figure 17-15.

Figure 17-15. A message received by the other computer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-15. A message received by the other computer

Both the sending and the receiving computer(s) must have the Messenger service running, or the message won't be
sent. To enable this service under Windows XP, try the following steps:

1. Click Start Control Panel, and open the Administrative Tools panel.

2. Within the Administrative Tools panel, open Services.

3. Locate Messenger, and double-click its icon to open the Messenger Properties window.

4. Set the Startup Type to Automatic, and click the Start button.

5. Click the OK button, and close all open Control Panel windows.

This starts the Messenger service and causes it to restart each time Windows starts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.12. Adding Hyperlinks to a (Desktop) Form

Problem

You want to add a standard hypertext link to text on a Windows form, without resorting to HTML or other browser
technology.

Solution

Use the LinkLabel control.

Discussion

The LinkLabel control is similar to a standard Label control, except that it has additional properties and events that provide
the behavior expected of a hypertext link as displayed in a browser window. For example, the color of the link before
being clicked the first time is determined by the LinkLabel's LinkColor property, and its color after it has been clicked is
determined by its VisitedLinkColor property. The defaults for these colors work very well, and the results are much like
what you expect after using a browser for any length of time.

The LinkLabel holds text of any reasonable length, and you can set all or just a part of the text as the active, clickable
part by setting its LinkArea property. The Start and Length numbers in the LinkArea determine exactly which group of
contiguous characters in the label are colored as an active link. Clicks on the LinkLabel within the LinkArea activate its
LinkClicked event, whereas clicks anywhere else on the LinkLabel activate the usual Click event.

The code you put in the LinkClicked event is what really makes this control behave like a link should. The following code,
for example, sets the LinkArea's LinkVisited property to true, which causes its VisitedLinkColor to show. It also creates a true
link to an Internet URL, in this case opening a web site in the default browser:

 Private Sub LinkLabel1_LinkClicked(_
 ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms. _
 LinkLabelLinkClickedEventArgs) _
 Handles LinkLabel1.LinkClicked
 ' ----- Open that important web site.
 LinkLabel1.LinkVisited = True
 System.Diagnostics.Process.Start(_
 "http://www.oreilly.com/")
 End Sub

Figure 17-16 shows a small dialog window that displays a single LinkLabel control. The LinkArea is set to the last part of the
LinkLabel's text, and the previous code is activated when this area is clicked. Your default browser will then display very
interesting O'Reilly Media pages for your enjoyment.

Figure 17-16. Using a LinkLabel to include a hyperlink on your form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.2. Accessing Content Within an HTML Document

Problem

You need to extract some information from within a web page.

Solution

Sample code folder: Chapter 17\UseHTMLDOM

While you could use standard string-manipulation techniques to scan through a web page, it's a lot of work. If the HTML
content you need to parse has a consistent format with identifiable tags and elements, you can use Microsoft's Managed
HTML Document Object Model (DOM) to traverse the HTML content as a set of objects.

Discussion

This recipe builds on the code developed in Recipe 17.1. Create a new Windows Forms project following the instructions
in that recipe. Now add the following additional code to the form's code template:

 Private Sub WebContent_DocumentCompleted(_
 ByVal sender As Object, ByVal e As _
 System.Windows.Forms. _
 WebBrowserDocumentCompletedEventArgs) _
 Handles
WebContent.DocumentCompleted
 ' ----- Extract the title and display it.
 MsgBox(WebContent.Document.Title)
 End Sub

Run the program, and as you browse from page to page, the title of each page will appear in a message box.

The Managed HTML DOM, made available through the WebBrowser control's Document property, provides object-based
access to all elements of an HTML page, including links (via the Links property), cookies associated with the page (via
the Cookies string-array property), and the body content (via the Body property). You can search for specific elements by
ID using the GetElementByID() method.

Specific use of the Managed HTML DOM is beyond the scope of this book. Use the MSDN documentation supplied with
Visual Studio to obtain information about the HtmlElement class and other classes used within the DOM.

See Also

Recipe 17.1 includes most of the code used in this recipe. Recipe 17.3 uses the HTML DOM to access links within a web
page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.3. Getting All Links from a Web Page

Problem

You want to build a list of the hyperlinks included in a specific web page.

Solution

Sample code folder: Chapter 17\ListWebLinks

Use the Managed HTML DOM to traverse the list of web page links as objects.

Discussion

This recipe's sample code builds a list of links from a web page. Create a new Windows Forms application, and add the
following controls to Form1:

A TextBox control named WebAddress.

A Button control named ActGo. Set its Text property to Go.

A WebBrowser control named WebContent.

A ListBox control named WebLinks.

Add informational labels if desired, and arrange the controls to look like Figure 17-4.

Figure 17-4. Controls for the listing web links sample

Next add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next add the following source code to the form's class template:

 Private Class LinkDetail
 Public LinkURL As String
 Public LinkText As String

 Public Overrides Function ToString() As String
 Return LinkText
 End Function
 End Class

 Private Sub ActGo_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActGo.Click
 ' ----- Jump to a new web page.
 If (Trim(WebAddress.Text) <> "") Then
 WebLinks.Items.Clear()
 WebContent.Navigate(WebAddress.Text)
 End If
 End Sub

 Private Sub WebContent_DocumentCompleted(_
 ByVal sender As Object, ByVal e As
 System.Windows.Forms. _
 WebBrowserDocumentCompletedEventArgs) _
 Handles WebContent.DocumentCompleted
 ' ----- Build the list of links.
 Dim oneLink As HtmlElement
 Dim newLink As LinkDetail

 ' ----- Scan through all the links.
 For Each oneLink In WebContent.Document.Links

 ' ----- Buld a new link entry.
 newLink = New LinkDetail
 If (oneLink.InnerText = "") Then
 newLink.LinkText = "[Image or Unknown]"
 Else
 newLink.LinkText = oneLink.InnerText
 End If
 newLink.LinkURL = oneLink.GetAttribute("href")

 ' ----- Add the link to the list.

WebLinks.Items.Add(newLink)
 Next oneLink
 End Sub

 Private Sub WebLinks_DoubleClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles WebLinks.DoubleClick
 ' ----- Show the detail of a web link.
 Dim linkContent As LinkDetail

 If (WebLinks.SelectedIndex = -1) Then Return
 linkContent = CType(WebLinks.SelectedItem, LinkDetail)
 MsgBox("Display = " & linkContent.LinkText & vbCrLf & _
 "URL = " & linkContent.LinkURL)
 End Sub

Run the program, enter an address in the TextBox control, and click the Go button. The web page appears, as does the
list of its links. Double-click a link to display its target URL, as shown in Figure 17-5.

Figure 17-5. Displaying the URL for a parsed web link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 17.2 discusses the general use of the Managed HTML Document Object Model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.4. Get the Local Computer's IP Address

Problem

You want to determine the IP address of the computer on which your program is running.

Solution

Sample code folder: Chapter 17\LocalIPAddresses

Use the features in the System.Net. Dns namespace to obtain the IP address(es) for the local host. A single workstation
may have multiple IP addresses; this generally occurs when multiple networking cards are installed and active on that
workstation.

Discussion

It may not be possible to determine the single IP address for your computer, because a computer may have multiple
addresses. What .NET can give you is a list of all current IP addresses for the workstation, and its host name as well.

The following code displays the local host name and all related IP addresses for that host. It uses the System.Net.Dns
namespace, which includes features for managing IP addresses and related hosts:

 Dim hostAddresses() As Net.IPAddress
 Dim ipList As String = ""
 Dim oneAddress As Net.IPAddress

 hostAddresses = Net.Dns.
GetHostAddresses(_
 Net.Dns.GetHostName())
 For Each oneAddress In hostAddresses
 ipList &= vbCrLf & oneAddress.ToString()
 Next oneAddress
 MsgBox("The IP address(es) for host '" & _
 Net.Dns.GetHostName() & "' are:" & vbCrLf & ipList)

On our system, this code displayed the message box in Figure 17-6.

The GetHostAddresses() method returns IP addresses as they are understood by the local host. These addresses may differ
from the IP address of that same workstation as viewed from the Internet. A router that implements Network Address
Translation (NAT) can mask the actual (local) IP address of a system.

Figure 17-6. Displaying the local host's IP address

See Also

Recipe 17.5 discusses determining IP addresses for systems other than the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.5. Resolving a Host Name or IP Address for Another
Computer

Problem

You need to determine the host name for another computer from its IP address, or vice versa.

Solution

Sample code folder: Chapter 17\ResolveHostOrIP

The System.Net. Dns namespace includes methods that let you resolve an IP address to its matching host name or obtain
an IP address for a host name.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named IPAddress.

A Button control named FromIpToHost. Set its Text property to Show Host Name.

A TextBox control named HostName.

A Button control named FromHostToIp. Set its Text property to Show IP Address.

Add informational labels if desired. The form should look like the one in Figure 17-7.

Figure 17-7. Controls for the IP and host name resolution sample

Now add the following source code to the form's code template:

 Private Sub FromIpToHost_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FromIpToHost.Click
 ' ----- Convert from IP address to host name.
 If (Trim(IPAddress.Text) <> "") Then _
 MsgBox("Host Name" & vbCrLf & vbCrLf & _
 Net.Dns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Net.Dns.
GetHostEntry(IPAddress.Text).HostName)
 End Sub

 Private Sub FromHostToIp_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles FromHostToIp.Click
 ' ----- Convert from host name to IP address.
 Dim hostEntry As Net.IPHostEntry
 Dim scanAddress As Net.IPAddress
 Dim hostAddresses As String = ""

 If (Trim(HostName.Text) <> "") Then
 hostEntry = Net.Dns.GetHostEntry(HostName.Text)
 For Each scanAddress In hostEntry.AddressList
 hostAddresses &= vbCrLf & scanAddress.ToString()
 Next scanAddress
 If (hostAddresses = "") Then _
 hostAddresses = vbCrLf & "None."

 MsgBox("
IP Addresses" & vbCrLf & hostAddresses)
 End If
 End Sub

To use the program, enter an IP address in the IP Address field or a host name in the Host Name field, and click the
applicable button to view the resolved name or address.

A bug in some versions of Windows XP prevents the GetHostEntry() method from working correctly. Specifically, if you
supply an IP address of a remote system (out-side of your local network) to the method, the returned
IPHostEntry.HostName property returns the IP address itself instead of the host name. This bug may be resolved in a
Windows XP service pack or hotfix; it is resolved in Windows Vista.

See Also

Recipe 17.4 discusses finding the IP address(es) for the local workstation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.6. Pinging an IP Address

Problem

You want to perform a "ping" operation on a remote system.

Solution

Use the My.Computer.Network.Ping() method. The general syntax is:

My.Computer.Network.Ping(targetSystem[, timeout])

targetSystem is a string IP address, a host name, or a System.Uri instance. The optional timeout argument is supplied in
milliseconds and defaults to 500. This method returns true if the ping is successful, or False on failure or no response.

Discussion

If you receive a ping response from the remote system, it naturally means that the remote system is accessible.
However, if you receive no response, this does not mean the remote system is inaccessible. It may have disabled
responses to ping requests or a firewall or router between your system, and the remote system may have blocked the
request or response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.7. Using FTP to Download Files

Problem

You want to add the ability to download a file from a File Transfer Protocol (FTP) server at the click of a button (or at
any other point in your application) with completely automatic action.

Solution

Sample code folder: Chapter 17\FTPDownload

Use the System.Net. FtpWebRequest class to drive the FTP protocol from within your application.

Discussion

The FtpWebRequest class provides a straightforward way to programmatically download files from FTP servers. This works
fine either for anonymous FTP, as shown in this recipe's code, or when using a specific user ID and password.

The following code demonstrates downloading a file from an anonymous FTP server on the Internet. Create a new
Windows Forms application, and add a Button control named Button1. Then add the following code to the form's class
template:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim sourceFile As String

 ' ----- Prompt the user for an FTP path.
 sourceFile = InputBox(_
 "Specify a URL for an FTP file to download.")
 If (sourceFile = "") Then Return

 ' ----- Initiate the download.
 DownloadViaFTP(sourceFile, "anonymous", "anony@mous.com")
 End Sub

The event handler calls the DownloadViaFTP() method. That method starts by collecting the information it needs,
calculating the target output file. sourceFile is the full path to the file to download, located in a folder on a server
specifically set up for FTP access. destinationFile is the full path (including the filename) where you want the file to be
downloaded, using the same filename as the source file. userName and password are strings containing the credential
information to access the FTP server. For anonymous FTP, use "anonymous" for the username. It's customary to use
your email address as the password. Here's the method declaration:

 Private Sub DownloadViaFTP(ByVal sourceFile As String)
 ByVal userName As String, ByVal password As String)
 ' ----- Download the specified file via FTP and save
 ' it in the application's directory.
 Dim readBuffer(4095) As Byte
 Dim count As Integer

Dim requestFile As System.Net.FtpWebRequest
 Dim responseFTP As System.Net.FtpWebResponse
 Dim responseStream As IO.Stream
 Dim outFile As IO.FileStream
 Dim destinationFile As String

 ' ----- Get the output location.
 destinationFile = My.Computer.FileSystem.CombinePath(_
 My.Application.Info.DirectoryPath, _
 My.Computer.FileSystem.GetName(sourceFile))

The variable requestFile is the instance of the FtpWebRequest that we'll use to drive the FTP protocol. Various properties of
requestFile, such as Credentials and Method, provide the control required to define the FTP action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requestFile, such as Credentials and Method, provide the control required to define the FTP action:

 ' ----- Connect to the file on the FTP site.
 requestFile = CType(System.Net.FtpWebRequest.Create(_
 sourceFile), System.Net.FtpWebRequest)
 requestFile.Credentials = New _
 System.Net.NetworkCredential(userName, password)
 requestFile.KeepAlive = False
 requestFile.UseBinary = True
 requestFile.Method = _
 System.Net.WebRequestMethods.Ftp.DownloadFile

The actual flow of the byes comprising the file to be downloaded is handled by the FtpWebResponse object, which provides
a Stream to move the bytes:

 ' ----- Open a transmission channel for the file content.
 responseFTP = CType(requestFile.GetResponse, _
 System.Net.FtpWebResponse)
 responseStream = responseFTP.GetResponseStream
 outFile = New IO.FileStream(destinationFile, _
 IO.FileMode.Create)

The stream of bytes is read into a buffer in chunks of up to 4,096 bytes, and from there it's written to the local file:

 ' ----- Save the content to the output file block by block.
 Do
 count = responseStream.Read(readBuffer, 0, _
 readBuffer.Length)
 outFile.Write(readBuffer, 0, count)
 Loop Until count = 0

Housekeeping wraps up the process:

 ' ----- Clean up.
 responseStream.Close()
 outFile.Flush()
 outFile.Close()
 responseFTP.Close()

 MsgBox("File downloaded!" & vbNewLine & sourceFile)
 End Sub

By this time, the file has been completely downloaded. To verify that the operation was a success, look in the
application folder (wherever the executable file for this program resides) to confirm that the file has been created there.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.8. Calling a Web Service

Problem

You want to access an XML Web Service across the Internet.

Solution

Sample code folder: Chapter 17\WebReference

Add a Web Reference to your project, and use the My.WebServices object to access the service.

Discussion

An XML Web Service is a function located on the Internet that your application can call. But unlike internal functions, calls to
Services communicate via standard HTTP and plain text. They use defined standards, such as SOAP and WSDL, which are beyond the
scope of this book.

There are a lot of XML Web Services available on the Internet, some free and some for a fee. For demonstration purposes, the following
sample code calls Microsoft's TerraServer engine (http://terraserver.microsoft.com) to get a place name for any latitude and longitude
around the world.

To call an XML Web Service, you must first add a Web Reference to your project. Create a new Windows Forms project, and select the
Project Add Web Reference menu command. When prompted for a service path URL in the Add Web Reference dialog, enter
http://terraserver.microsoft.com/TerraService.asmx to access the Terra-Server Web Service. Then click the Add Reference button.
17-8 shows how the Add Web Reference dialog helps you to explore the functionality provided by a service.

Figure 17-8. The Add Web Reference dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To demonstrate one of the functions provided by this service, this recipe's code calls the ConvertPlaceToLonLatPt() function to do just what it
says: convert a place name to a latitude and longitude location. You can also convert in the other direction, using the service's
ConvertLonLatPtToNearestPlace() function.

Add two Button controls to your form named ActToPlace and ActToLatLon, and set their Text properties to Locate. Also add five TextBox
named CityName, StateName, CountryName, Latitude, and Longitude. Add some informational labels if desired. The form should look something like
Figure 17-9.

Figure 17-9. Controls for the XML Web Services sample

Now, add the following code to the form's class template:

 Private Sub ActToLatLon_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActToLatLon.Click
 ' ----- Locate the latitude and longitude for a place.
 Dim usePlace As com.microsoft.terraserver.Place
 Dim foundLocation As com.microsoft.terraserver.LonLatPt

 ' ----- Prepare the location details for use.
 usePlace = New com.microsoft.terraserver.Place
 usePlace.City = CityName.Text
 usePlace.State = StateName.Text
 usePlace.Country = CountryName.Text

 ' ----- Call the service with the user-supplied values.
 Me.Cursor = Cursors.WaitCursor
 foundLocation = _
 My.WebServices.TerraService.ConvertPlaceToLonLatPt(_
 usePlace)
 Me.Cursor = Cursors.Default

 ' ----- Inform the user.
 MsgBox("That place is located at:" & vbCrLf & vbCrLf & _
 "Latitude: " & foundLocation.Lat.ToString & vbCrLf & _
 "Longitude: " & foundLocation.Lon.ToString)
 End Sub

 Private Sub ActToPlace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActToPlace.Click
 ' ----- Locate the place for a latitude and longitude.
 Dim useLatLon As com.microsoft.terraserver.LonLatPt
 Dim foundPlace As String

 ' ----- Prepare the location details for use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Prepare the location details for use.
 useLatLon = New com.microsoft.terraserver.LonLatPt
 useLatLon.Lat = CDbl(Latitude.Text)
 useLatLon.Lon = CDbl(Longitude.Text)

 ' ----- Call the service with the user-supplied values.
 Me.Cursor = Cursors.WaitCursor
 foundPlace = My.
WebServices.TerraService. _
 ConvertLonLatPtToNearestPlace(useLatLon)
 Me.Cursor = Cursors.Default

 ' ----- Inform the user.
 MsgBox("That location is at or near:" & vbCrLf & _
 vbCrLf & vbTab & foundPlace)
 End Sub

Figure 17-10 shows the form in action. After entering the latitude and longitude for one of our favorite (and certainly one of the most
memorably named) airports, a click of the button reveals the server's place name for this location as the airport at Deadhorse, Alaska.

Figure 17-10. Converting latitude and longitude into a place name

This example shows how easy it is to use an Internet-based XML Web Service as if it were a function local to your application's source
code. XML is used to make these services hardware-and software-independent, which means this same service can be called from a
variety of programming languages using just about any computer and any operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 17.9. Sending Email Using SMTP

Problem

You want to send an email automatically from your application without using an external application such as Outlook.

Solution

Sample code folder: Chapter 17\SendEmail

Use the System.Net. Mail.SmtpClient class in the .NET Framework, supplying the server name and details specific to the
email.

Discussion

The System.Net.Mail.SmtpClient class encapsulates an email submission. All you need to do is fill in its properties and call the
Send() method, and your mail is delivered to the target recipient.

To send email, you must have authorized access to an SMTP server.

Create a new Windows Forms application, and add five TextBox controls named ServerHost, FromEmail, ToEmail, SubjectText, and
BodyText. Set the BodyText control's Multiline property to true. Also add a Button control named ActSend, and set its Text
property to Send. Add informational labels if desired. Your form should look something like Figure 17-11.

Figure 17-11. Controls for the email-sending sample

Now add the following code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following code to the form's class template:

 Imports System.Net.Mail

 Public Class Form1
 Private Sub ActSend_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActSend.Click
 ' ----- Send the requested email.
 Dim
emailSender As SmtpClient
 Dim theMessage As MailMessage

 ' ----- Connect to the server. A second optional
 ' argument lets you alter the port number from
 ' the default.
 emailSender = New System.Net.Mail.SmtpClient(_
 ServerHost.Text)

 ' ----- Build the content details.
 theMessage = New MailMessage
 theMessage.From = New MailAddress(FromEmail.Text)
 theMessage.To.Add(ToEmail.Text)
 theMessage.Subject = SubjectText.Text
 theMessage.Body = BodyText.Text

 ' ----- Fill in the details and send.
 emailSender.Send(theMessage)
 End Sub
 End Class

The MailMessage object includes properties that let you add attachments and specify the properties of the email message.
Its To property is a collection that lets you add an unlimited number of email recipients. It also includes parallel CC and
Bcc collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. Web Development

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Did you know that the Visual Basic 2005 compiler is available to you free of charge? You can download the .NET
Framework with all included compilers directly from Microsoft's web site, and start using it immediately to develop and
distribute your own .NET applications, all without shelling out a single penny.

Well, there are a few caveats. The main one is that you will have to use a tool such as Notepad to write all of your
source code. And you will need to hand-type the statements that start the compilation process through the Windows
Command Prompt. But other than that, it's a piece of cake. And it's still free.

If you're not that bold, you should probably fork over a little cash to obtain Visual Studio, the programming
environment of choice for .NET application development. Although it's not free, you definitely get what you pay for.
(Actually, Visual Basic 2005 Express Edition is free, so you get even more than you pay for.) Visual Studio is stuffed
with features and support tools and visual designers and behind-the-scenes automatic code generation wizards, all of
which let you concentrate on developing great code without having to worry about the picky details of setting up the
compiler and deployment options.

This chapter discusses some of the snazzy features included with Visual Studio 2005. As with all the chapters in this
book, we have concentrated on Visual Studio 2005 Professional Edition. However, most, if not all, recipes in this book
should work with any edition of Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.1. Discovering and Using a Code Snippet

Problem

You know that Visual Studio came with a bunch of prewritten "snippets" that you can use in your applications, but you don't know where to
find them in the vast Visual Studio menu system.

Solution

Code snippets are among the IntelliSense features included with Visual Studio. To find and insert a snippet, use the different snippet-
related menus and keyboard sequences.

Discussion

To insert a code snippet into your source code, right-click at the desired location with the mouse, choose Insert Snippet from the shortcut
menu (Figure 2-1), and navigate to the snippet you want to use.

Figure 2-1. Inserting a snippet with the mouse

An even faster method is to type a question mark (?) anywhere in the source code and then press the Tab key. The more formal location
of this same command within the Visual Studio menu system is at Edit IntelliSense Insert Snippet. If you are in any way
mouse-phobic when developing source code, you can use the default Visual Basic keyboard shortcut of Control-K followed by Control-X to
get to the snippet picker.

Using any of these methods to access snippets presents the top-level set of snippet folders, as shown in Figure 2-2.

Figure 2-2. Primary snippet categories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-2. Primary snippet categories

To negotiate the hierarchy, use the mouse or arrow keys to select a folder or item in the pop-up list, or type a partial list name followed by
the Enter key. Selecting a snip-pet folder updates the list with the items and subfolders in that selected folder. For example, in
selecting "Math" with the mouse or typing "Math" from the keyboard followed by the Enter key, will open the "Math" snippet folder and
display any folders or items contained within that folder. Selecting an item inserts the chosen snippet.

Each snippet contains a useful block of prewritten code, but many also include some intelligence. Some snippets include "fill in the blank"
templates that provide areas for you to supply your custom values. For instance, the Data Typesdefined by Visual Basic
Number to a Hexadecimal String snippet includes a field for the source value, moving the insertion point to that field immediately upon
pasting the snippet in the code:

 Dim hexString As String = Hex(48)

Some snippets place multiple lines of source code in the code editor, sometimes with multiple replacement fields. The Common Code
Patterns Types Define a Structure snippet defines this multiline structure:

 Structure MyStructure
 Public ValueOne As Integer
 Public ValueTwo As Boolean
 End Structure

Some snippets add code to various places in your source-code file and may make other updates to your project. The Security
a String snippet not only adds code to the active procedure but also adds Imports statements to the top of the source-code file if references
to the namespaces it uses are not already there.

Snippets are somewhat location-dependent. Most are written to be used inside a sub-routine, function, or property accessor, while a few
are designed for placement out-side of routines or classes. If you insert a snippet at the top of a source-code file, outside of any class
context, it will be riddled with errors.

Snippets are actually specially formatted XML files, with attributes containing the special insertion rules for each snippet.

See Also

Recipes 2.2, 2.3, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.10. Testing an Application's Command Line

Problem

You have written an application that supports various custom command-line arguments, and you'd like to test the
argument-parsing code from within the development environment.

Solution

Use the "Command line arguments" field in the Project Properties window to enter or modify the temporary testing
command-line arguments.

Discussion

You can test this code by setting a temporary command-line argument string for use in your program:

1. Access the Debug tab of the Project Properties window.

2. Type your temporary command line in the "Command line arguments" field.

This temporary argument string is used only when running programs within the Visual Studio development
environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.11. Obfuscating an Application

Problem

You've written a pretty cool application, and you'd like to sell it to customers. But you also know that the Intermediate Language (IL) code
generated by the Visual Basic compiler can easily be read and turned back into reasonable source code by ne'er-do-wells intent on reaping ill-
gotten rewards from your hard effort.

Solution

Use an obfuscator to alter the compiled application, making futile any attempt to reverse-engineer the application back into understandable
source code. There are several third-party obfuscators on the market that target .NET-compiled applications.

These programs work with any compiled .NET application, whether they were written in Visual Basic, C#, or some other .NET-enabled language.

Visual Studio 2005 also includes an obfuscator you can use with your own applications. It's called Dotfuscator Community Edition, and although
it comes with Visual Studio, it's actually developed by a separate company named PreEmptive Solutions.

It's pretty easy to perform a basic obfuscation using Dotfuscator. First, make sure you have built your application to an EXE executable (or DLL,
if relevant). From Visual Studio, select the Tools Dotfuscator Community Edition menu command. Once you get past some advertising, you
will be prompted to create a new project. This is not a Visual Studio project, but a Dotfuscator project. A new project appears via the main
Dotfuscator form, as shown in Figure 2-5.

Figure 2-5. A new Dotfuscator project

On the Input tab, use the left-most icon (the Open Folder icon) to locate your EXE assembly. Use the other tabs to fine-tune the obfuscation, if
desired. Then use the File Build menu command to generate an obfuscated version of the project. You'll be prompted to save the settings
for this project. Once generated, the obfuscated version of the project appears in a directory named Dotfuscated in the same directory where
you saved the settings.

Discussion

We obfuscated a simple Windows Forms application that contained (1) a mostly empty form, (2) a static label on that form, and (3) a
handler for the label that just displays a message box. We used Microsoft's IL Disassembler (ildasm.exe, one of the tools included with the .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handler for the label that just displays a message box. We used Microsoft's IL Disassembler (ildasm.exe, one of the tools included with the .NET
Framework SDK installed with Visual Studio) to view the internals of the "before" (Figure 2-6) and "after" (Figure 2-7) assemblies.

Figure 2-6. Before obfuscation

Figure 2-7. After obfuscation

Clearly, the obfuscation process did make some changes, but in a simple program like this, it's not too difficult to see what it did. It's interesting
that the old set_Label1 property component was renamed to a, but the related get_Label1 was renamed b; that's obfuscation in action. Local
variables and even embedded strings go through some of the same scrambling procedures. The goal is to scramble the code enough to keep it
safe from prying eyes but keep it stable enough to work exactly as it did before obfuscation.

Dotfuscator Community Edition contains basic obfuscation functionality. If you want something more stringent, you will have to upgrade to one
of PreEmptive's more advanced versions (for a fee) or find another obfuscation product from a different vendor. Be aware that obfuscation is not
for all applications, at least according to the warning label on the Dotfuscator product. It implies that the product is safe to use as long as your
application:

is not designed or intended for use in, or on applications intended for use in on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in medical, biological, pharmaceutical, or other life-dependent applications; or in the
design, construction, operation or maintenance of any nuclear facility.

See Also

Some of the recipes in Chapter 16 will help you obfuscatethat is, encryptthe data used by your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.12. Determining if an Application Is Running in the Visual
Studio Environment

Problem

Your application needs to respond one way if it is running in the Visual Studio development environment and another
way if it is running as a standalone application. For instance, you might want to issue a Stop statement on errors when
in the debugging environment but log the errors to a file when running as a standalone application.

Solution

There are a few different ways to determine the running environment of your application, but the simplest is to examine
the System.Diagnostics.Debugger. IsAttached flag. If this property is TRue, your application is running in the development
environment.

Discussion

The IsAttached property indicates TRue whenever your application is running in a debugger that properly sets the
underlying value of this flag. That means that if the flag is true, the program may be running in some environment other
than Visual Studio. But if your program is running in some nonVisual Studio debugger, there are probably bigger issues
of concern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.13. Accessing Environment Variables

Problem

Your program relies on data stored in DOS-style environment variables, and you're ready to retrieve some of those
values.

Solution

Use the My.Application. GetEnvironmentVariable() method to retrieve specific environment variable values.

Discussion

Microsoft's MS-DOS operating system predated Windows, and when Windows was first released, it needed to use and
support many of the existing MS-DOS features. One such feature involved environment variables, a collection of
name/value pairs that served as a set of global constants programs could read and use. For instance, the PATH variable
stored a list of directories Windows used to locate programs. Other applications could read the PATH variable for their
own use.

To retrieve the PATH environment variable from Visual Basic, use this statement:

 Dim thePath As String = _
 My.Application.GetEnvironmentVariable("PATH")

An error occurs if you supply a variable name that does not exist. If it does exist, the method returns just the value of
the variable, not its name.

Visual Basic also includes a built-in Environ() function that provides similar functionality:

 Dim thePath As String = Environ("PATH")

If the supplied variable name cannot be found, Environ() returns an empty string without raising an error.

Environ() also retrieves environment variables by numeric position. The following code scans through the set of
environment variables until it hits a blank result, indicating the end of the set of variables:

 Dim counter As Integer
 Dim fullVariable As String
 Dim namePart As String
 Dim valuePart As String
 Dim equalsPosition As Integer

 For counter = 1 To 255
 fullVariable = Environ(counter)
 If (fullVariable = "") Then Exit For
 equalsPosition = InStr(fullVariable, "=")
 If (equalsPosition > 0) Then
 namePart = Left(fullVariable, equalsPosition - 1)
 valuePart = Mid(fullVariable, equalsPosition + 1)
 ' ----- Use these values as needed.
 End If
 Next counter

See Also

For additional information on environment variables, see the online help included with Microsoft Windows. On Windows
XP, access help from the Start button (Start Help), and search for "environment variables."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.14. Accessing the Registry

Problem

Although you have been warned that accessing the registry can lead to system instability, you need to store and retrieve values in one or more of the
registry hives.

Solution

Use the registry features in the My.Computer. Registry object to read, write, and otherwise manipulate registry information.

Discussion

The My.Computer.Registry object includes the following members:

ClassesRoot field

Returns a RegistryKey object that refers to the HKEY_CLASSES_ROOT top-level key of the registry.

CurrentConfig field

Returns a RegistryKey object that refers to the HKEY_CURRENT_CONFIG top-level key of the registry.

CurrentUser field

Returns a RegistryKey object that refers to the HKEY_CURRENT_USER top-level key of the registry.

DynData field

Returns a RegistryKey object that refers to the HKEY_DYN_DATA top-level key of the registry.

GetValue() method

Retrieves the data associated with a specific key and value somewhere in the registry.

LocalMachine field

Returns a RegistryKey object that refers to the HKEY_LOCAL_MACHINE top-level key of the registry.

PerformanceData field

Returns a RegistryKey object that refers to the HKEY_PERFORMANCE_DATA top-level key of the registry.

SetValue() method

Adds or updates the data associated with a specific key and value somewhere in the registry.

Users field

Returns a RegistryKey object that refers to the HKEY_USERS top-level key of the registry.

Most of the Registry members return a RegistryKey object, a generic object that can refer to any key within the registry. This object also has many useful
members. Some members let you manipulate the keys that appear just below the one represented by the RegistryKey object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

members. Some members let you manipulate the keys that appear just below the one represented by the RegistryKey object:

CreateSubKey() method

DeleteSubKey() method

DeleteSubKeyTree() method

GetSubKeyNames() method

OpenSubKey() method

SubKeyCount property

Other members focus on the values tied to the active key:

DeleteValue() method

 GetValue() method

GetValueKind() method

GetValueNames() method

SetValue() method

ValueCount property

Using any of the registry-related members is simple. For instance, you can display the \\HKEY_CURRENT_USER\Environment\TEMP
TEMP is a value) using the following statement:

 MsgBox(My.Computer.Registry.GetValue(_
 "HKEY_CURRENT_USER\Environment", "TEMP", ""))

On our system, this statement displays the following result:

 C:\Documents and Settings\Administrator\Local Settings\Temp

But if you use the RegEdit application to view that same value, you see something a little different:

 %USERPROFILE%\Local Settings\Temp

The GetValue() method performs some basic environment variable substitution on the stored registry value before returning it back to you. To get the
unexpanded version, you need to go through one of the exposed RegistryKey objects:

 Dim envKey As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentUser.OpenSubKey(_
 "Environment", False)
 MsgBox(envKey.GetValue("TEMP", "", _
 Microsoft.Win32.RegistryValueOptions. _

DoNotExpandEnvironmentNames))
 envKey.Close()

The DoNotExpandEnvironmentNames flag prompts the GetValue() method to return the original unexpanded version of the value.

The Windows registry combines a machine-and user-specific hierarchical database of text, numeric, and binary values for use by both the operating
system and applications installed on the local system. The hierarchy is akin to the directory/file structure used in the Windows file system, in which
keys parallel directories, and values are similar to files. However, the registry is much more limited in what it can store at each hierarchy level.

Keys are named branches, all starting from a limited set of top-level keys known as hives. Each key can include any number of subkeys, plus zero or
more values. Each value can store basic data values or can simply exist without data. Each key has a default value that includes no specific name.
Figure 2-8 shows some of the components of the registry as viewed through the RegEdit application included with Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-8. RegEdit and the parts of the registry

Users needing access to the registry must be authorized through Windows. Normally, a user has full read/write access to all hives associated with the
active user account, plus at least read access to most of the system hives. However, an administrator can place restrictions on portions of the registry,
so error handling is recommended when using the various registry features of .NET.

The focus on the Windows registry has changed over the years. Originally, it was designed to support the Object Linking and Embedding (OLE) features
of Windows and to provide central access to common system settings. For a while, Microsoft encouraged software developers to use the registry for
application-specific settings as well. Unfortunately, this led to "registry bloat" that in some cases reduced overall application and system performance.
Microsoft now recommends that applications store system-wide and user-specific settings in separate configuration files in the standard file system.
With .NET's limited dependence on OLE/ActiveX components, even Microsoft is getting in on the separate-configuration-file act.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.15. Getting System Information

Problem

You've heard that .NET provides powerful access to the most essential features of Windows, but the Framework Class
Library is huge, and you're not sure where to find the total amount of memory installed on the local system. How can
you get system-specific information quickly and easily?

Solution

Use the various objects and members of Visual Basic's My namespace. Microsoft introduced this new feature in the 2005
release of the language.

Discussion

The My namespace was added to Visual Basic to help restore some of the simplicity and accessibility of Visual Basic that
was lost in its transition to .NET.

For example, to determine the amount of installed memory on the local system, use the following statement:

 Dim installedMemory As Long = _
 My.Computer.Info.TotalPhysicalMemory

Another useful source of system settings is the System.Windows.Forms. SystemInformation object, which has dozens of
informative members.

The My hierarchy makes an incredible number of features available in one easy-to-access place. Table 2-1 includes a
small sampling of the information you can obtain from the My namespace.

Table 2-1. A sampling of My features
If you need to access this information… …use this My namespace member

The command-line arguments used to start the program My.Application.CommandLineArgs

The application version number My.Application.Info.Version

The set of all forms currently open My.Application.OpenForms

Features to read and write clipboard data My.Computer.Clipboard

The current value of the system timer My.Computer.Clock.TickCount

The current directory recognized by the application My.Computer.FileSystem.CurrentDirectory

The location of the user's "My Documents" directory My.Computer.FileSystem.SpecialDirectories.MyDocuments

The directory used to store the user's temporary files My.Computer.FileSystem.SpecialDirectories.Temp

The version of the operating system My.Computer.Info.OSVersion

Total installed memory My.Computer.Info.TotalPhysicalMemory

Whether the user's mouse has a scroll wheel installed My.Computer.Mouse.WheelExists

The assigned name of the computer My.Computer.Name

Whether access to Internet or the local network is enabled My.Computer.Network.IsAvailable

The assigned name of the current Windows user My.User.Name

The My namespace collects some of the most useful and (sometimes) complex areas of the .NET Framework Class
Libraries and makes them available in a simpler and more ordered format. The My keyword, a new 2005 feature specific

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Libraries and makes them available in a simpler and more ordered format. The My keyword, a new 2005 feature specific
to Visual Basic, is at the top of a hierarchy of features that are organized much like .NET namespaces. Each major
object node within the hierarchy implements various properties and methods that are relevant to the specific object. In
most cases, each method or property can be found somewhere else in the large set of .NET classes, although it may
take several source code steps to obtain the information you need from that distant member.

The following list of objects summarizes the features exposed through the My hierarchy:

My.Application

Provides access to application- and instance-specific settings, such as commandline arguments, and in-effect
regional and language settings.

My.Application.Info

Reports details about the active executing assembly, including its title and version number.

My.Application.Log

Provides access to trace recording and logging features for desktop and console applications (not ASP.NET).

My.Computer

Exposes information pertaining to the computer running the application. Most of the members of this object are
other subordinate objects with their own methods and properties.

My.Computer.Audio

Enables you to play system and file-based sounds.

My.Computer.Clipboard

Provides access to features that let you place data on the system clipboard and retrieve data back from that
same clipboard in a variety of common and custom data formats.

My.Computer.Clock

Provides access to the current system time in a standard or local format.

My.Computer.FileSystem

Provides access to various features that let you manage files and directories on local and remote file systems
and that manipulate path strings.

My.Computer.FileSystem.SpecialDirectories

Reports locations of the various special directories, such as the "My Documents" directory.

My.Computer.Info

Reveals information about the local operating system and memory usage.

My.Computer.Keyboard

Reports the current state of the keyboard.

My.Computer.Mouse

Reports various properties of the installed mouse.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

My.Computer.Network

Reports availability of the network connection on the current workstation, and provides features that let you
transfer data over that network.

My.Computer.Ports

Provides access to the system serial ports.

My.Computer.Registry

Provides features that let you manage the keys and values within the Windows registry.

My.Forms

Provides access to all forms defined in the active Windows Forms application.

My.Log

Provides access to trace recording and logging features for ASP.NET applications only.

My.Request

Replicates the Active Server Pages "Request" object within an ASP.NET application.

My.Resources

Provides access to application-specific resources, including string, graphic, and binary resource data.

My.Response

Replicates the Active Server Pages "Response" object within an ASP.NET application.

My.Settings

Provides access to system- and user-focused configuration settings used by the application and automatically
stored in application-specific XML configuration files.

My.User

Contains authentication and identity details gathered about the current user, either through Windows
authentication or some other authentication scheme.

My.WebServices

Contains a collection of all XML web services known to the active application. This object is not available in
ASP.NET applications; it is only used by Windows Forms, console, and other non-web application types.

See Also

For a full reference of the objects and members included in the My hierarchy, see Visual Basic 2005 in a Nutshell by Tim
Patrick, Steven Roman, Ron Petrusha, and Paul Lomaxone, one of O'Reilly's reference works focused on the Visual Basic
language.

All members of the My namespace hierarchy are fully documented in the MSDN documentation included with Visual
Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.16. Getting the User's Name

Problem

You need to obtain the name of the current Windows user.

Solution

Use the My.User.Name property to get the domain and login ID of the current user.

Discussion

The My.User.Name property returns a string containing the current user ID and related domain name in the format
"domain/user." If the user is part of a workgroup instead of a domain, the domain portion may be replaced by the local
machine name. Applications written using ASP.NET do not have access to the same type of user information as desktop
applications because Web Forms programs run in the context of a special web-application user.

If your application uses an authentication system other than the default Windows security scheme, My.User.Name may
return information about the current user in a different format.

If you don't like the merged "domain/user" format, you can get the individual components from other areas within the
.NET object hierarchy. These three properties will probably get you what you need:

System.Environment.MachineName

System.Environment.UserDomainName

System.Environment.UserName

If you are interested in identifying the registered owner of the local workstation, you can find that information in the
system portion of the registry. The key is:

 \\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

The RegisteredOrganization and RegisteredOwner values within that key supply the values that you often see when installing
new software on your system.

See Also

Recipe 2.15 provides additional resources for gathering system-and user-specific details from .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.2. Creating a New Snippet

Problem

You've written an especially useful block of source code, and you want to save it as a code snippet for use in other applications.

Solution

To save a block of code as a snippet for reuse, use the Code Snippet Editor for Visual Basic 2005 to create and store the snippet, or hand-code the
required XML file yourself and place it in an appropriate directory.

Discussion

To add a new snippet to the set of available snippets in your Visual Studio environment, fire up the Snippet Editor, and right-click on the folder where
you want the snippet to appear, then select Add New Snippet from the shortcut menu.(An Add New Folder option lets you adjust the available folders.
You can also create subordinate folders to a reasonable depth.) Type or paste your code into the blank pane of the Editor tab, using the Replacements
tab to add any replaceable parameters. Click the Save icon near the top of the Snippet Editor to store your results. The new snippet will be available
immediately within Visual Studio.

The Snippet Editor is a community-developed application available to you as a free download. You can contribute
features to it yourself if you are so inclined. It's part of the "GotDotNet" Community, located at
http://www.gotdotnet.com, in its "Workspaces" area.

It's also possible to code snippets yourself, using the markup specified by the Microsoft XML snippet schema. However,
doing so is not for the faint of heart, and with few exceptions, the Snippet Editor is more than adequate.

Figure 2-3 shows the "Convert a Number to a Hexadecimal String" snippet used earlier, as presented in the Snippet Editor.

You are probably dying to see the actual XML that makes up a code snippet, so here is the XML for that snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <CodeSnippets xmlns=
 "http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
 <CodeSnippet Format="1.0.0">
 <Header>
 <Title>Convert a Number to a Hexadecimal String</Title>
 <Author>Microsoft Corporation</Author>
 <Description>Returns the hexadecimal
 representation of an integer.</Description>
 <Shortcut>typeHex</Shortcut>
 </Header>
 <Snippet>
 <Imports>
 <Import>
 <Namespace>System</Namespace>
 </Import>
 <Import>
 <Namespace>Microsoft.VisualBasic</Namespace>
 </Import>
 </Imports>
 <Declarations>
 <Literal>
 <ID>Number</ID>
 <Type />
 <ToolTip>Replace with an integer.</ToolTip>
 <Default>48</Default>
 <Function />
 </Literal>
 </Declarations>
 <Code Language="VB" Kind="method body">
 <![CDATA[Dim hexString As String = Hex($Number$)]]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <![CDATA[Dim hexString As String = Hex($Number$)]]>
 </Code>
 </Snippet>
 </CodeSnippet>
 </CodeSnippets>

Figure 2-3. The Snippet Editor

You can find this particular block of snippet code at C:\Program Files\Microsoft Visual Studio 8\VB\
Snippets\1033\datatypes\ConvertaNumbertoaHexaDecimalString.snippet. It's pretty easy to read, although a pain to write. That's why we have
software applications like the Snippet Editor.

See Also

Recipes 2.1, 2.3, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipes 2.1, 2.3, and 2.4 provide additional information on code snippets.

If you really feel that you must write your own snippets and use all the advanced features available within the XML schema, Microsoft's MSDN Library
has full documentation on using and designing snippets.Link to http://msdn.microsoft.com, and search for "snippet."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.3. Sharing Snippets

Problem

You've created a number of terrific code snippets, and you would like to share them with others.

Solution

The .snippet files used to store your code snippets are simple disk-based XML files. To share snippets with others, make
copies of the files, and distribute them as needed.

Discussion

The code snippet technology included in Visual Studio is pretty basic. It simply presents a list of code snippet files found
in directories you specify. As long as snippet files appear in directories referenced by Visual Studio, those snippets are
available for use.

On your system, you can probably find all the Microsoft-supplied snippets in the C:\Program Files\Microsoft Visual
Studio 8\VB\Snippets\1033 folder.

See Also

Recipes 2.1, 2.2, and 2.4 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.4. Adding Snippet Files to Visual Studio

Problem

Someone else has chosen to share snippet files with you, and you're ready to use them.

Solution

Upon receiving one or more snippet files, you can integrate them into your own copy of Visual Studio using the Code
Snippets Manager.

Discussion

The Code Snippets Manager is accessed through Visual Studio's Tools Code Snippets Manager menu command.
The Add button on the form lets you add an entire directory of snippets to Visual Studio, while the Import button adds a
single snippet file.

The quality of the code snippets you receive from others may be limited by the skill and trustworthiness of their
developers. Caveat emptor.

See Also

Recipes 2.1, 2.2, and 2.3 provide additional information on code snippets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.5. Getting an Application's Version Number

Problem

You would like to display the version number of your application on its "About" form.

Solution

Sample code folder: Chapter 02\VersionNumbers

Use the My.Application.Info.Version object to access the version number of the application, and store the result in a Label
control.

Discussion

Visual Basic stores an application's version number as a four-part "dot"-delimited value, such as:

 1.2.3.4

The four components represent the major, minor, build, and revision numbers, respectively. They are made available
through an instance of the System.Version class obtained from the My.Application.Info.Version object. You can use the members
of this class to display version information when needed. The following code assumes your form has a label named
VersionNumber:

 Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 With My.Application.Info.Version
 VersionNumber.Text = "Version " & .Major & _
 "." & .Minor & " (Build " & .Build & "." & _
 .Revision & ")"
 End With
 End Sub
 End Class

Figure 2-4 displays the typical output for a version value set to 1.2.3.4.

Figure 2-4. Displaying an application version number

If you aren't concerned about the display format of the version number, have the Version object format itself:

 VersionNumber.Text = My.Application.Info.Version.ToString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each .NET assembly has a four-part version number, defined as an assembly attribute in the project's source code. In a
typical Visual Basic 2005 application, this attribute is stored in the AssemblyInfo.vb file, which appears only when you
have Show All Files enabled in Visual Studio's Solution Explorer panel. If you open this file, you will quickly find the line
that sets the version number:

 <Assembly: AssemblyVersion("1.0.0.0")>

Altering the four-part number in the string modifies the assembly's version number. Visual Studio also provides a way
to set this through a property form. From the Project Properties window, select the Application tab, and then click the
Assembly Information button. The version number is set through the four fields named Assembly Version.

See Also

Recipe 2.6 adds some automation to the version number process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.6. Letting Visual Studio Automatically Update an
Application's Version Number

Problem

You want to ensure that the version number changes at least a little each time you build the application, but repeatedly
updating the version number by hand is a hassle.

Solution

Let Visual Basic update the build and revision components of the version number for you. Instead of supplying digits for
these components, use an asterisk for the build component:

 <Assembly: AssemblyVersion("1.2.*")>

If you want to control the build number but have Visual Basic generate the revision number, include the digits for the
build component and use an asterisk for the revision component:

 <Assembly: AssemblyVersion("1.2.3.*")>

Discussion

Visual Basic will auto-generate build and revision numbers for you if you supply an asterisk in place of actual digits.
When auto-generating the build number, Visual Basic uses the number of days since January 1, 2000. When auto-
generating the revision number, Visual Basic uses the number of seconds elapsed since midnight of the current day,
divided by two. This value starts over at zero each midnight.

Although Visual Basic will update the build and revision numbers for you, you must supply the major and minor version
numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.7. Setting the Startup Form for an Application

Problem

You want to indicate which of the several Windows Forms your application uses is the "main" form, the focal point of the
application.

Solution

The application's main form is set through the Project Properties window. From that window, select the Application tab,
and then use the " Startup form" field to select the form to use for the main form.

Discussion

You can start up your Visual Basic application using the Windows Forms Application Framework, or without it. The "
Enable application framework" field on the Application tab of the Project Properties window enables or disables this
feature. When it's enabled, Visual Basic controls the startup process associated with your selected startup form. The
Application Framework fires events during the startup process that you can use to include your own custom code. To
access these events, click the View Application Events button on the Application panel of the Project Properties window.

If you disable the Application Framework, you have more control over the startup process. All Visual Basic applications
begin by running a shared method named Main(), which will appear somewhere in your application's source code. You
can use the "Startup form" field on the Application tab to tell Visual Basic to use the Main() method included with a
specific form's code. If you do not supply such a method, Visual Basic will implicitly add one to the startup form, using
code that looks something like this:

 Public Shared Sub Main()
 Application.Run(My.Forms.Form1)
 End Sub

You may add such a method to your startup form and include additional code as needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.8. Setting the Startup to a Sub Main Procedure

Problem

You decide, after all, that you want to run your own startup code and display the main form after doing some initial
nonform processing.

Solution

Sample code folder: Chapter 02\SubMainStartup

Add a Main() method to a module in your application, and use that as the startup code. You will need to display forms on
your own.

Discussion

Add a module to your project, and then add the Main() method with at least the following code:

 Module Module1
 Public Sub Main()
 ' ----- Add startup code here, then…
 Application.Run(My.Forms.Form1)
 ' …passing the startup form as the argument.
 End Sub
 End Module

Next, mark this Main() method as the startup code for your application, via the Application tab of the Project Properties
window. Disable the Windows Forms Application Framework by clearing the "Enable application framework" field. Then
set the "Startup form" field on that same tab to "Sub Main."

As discussed in the previous recipe, all applications begin from some shared method named Main(). You can supply your
own Main() method, and it doesn't need to be part of a form. Adding it to a module with your own initialization code
gives you the most control over the application's startup process.

The Application.Run() method runs the primary message loop for your application, a standard part of all Windows desktop
programs. Pass an instance of your startup form as an argument; Visual Basic will display this form and keep the
program running until the user closes this form.

Because you must disable the Application Framework to use a custom Main() method, some of the convenience and
usability features included with the Framework will not be enabled by default. For instance, you will have to manually
display and hide any "splash" form that appears during the initialization phase of your application.

See Also

See Recipe 2.7 for additional discussion about startup procedures in Visual Basic applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 2.9. Getting an Application's Command Line

Problem

You've designed your program to support optional command-line arguments, and you want to process them.

Solution

There are a few different ways to examine and process the command-line options supplied to your program. The first
and easiest of the methods involves the Visual Basic Command() function, part of the Microsoft.VisualBasic namespace. This
function returns the entire set of command-line options as a String. For instance, if the user enters the following
command:

 MyApp.exe /option1 /option2 filename.txt

the Command() function returns:

 /option1 /option2 filename.txt

The application name and extension are always removed from the string; Command() returns only the options, not the
program name.

Because Command() returns a single string with the entire command-line option text, the responsibility for parsing each
option from the string rests on your shoulders. However, Visual Basic also supplies a pre-parsed version of the options
through the My.Application.CommandLineArgs collection. Each zero-based argument in the collection includes one of the
original space-delimited options as entered by the user. Thus, using the example command line from just a few
paragraphs ago, the following method call:

 MsgBox(My.Application.CommandLineArgs(1))

displays /option2, because the collection is zero-based.

Discussion

Many applications support optional command-line arguments, generally to alter the initial view of the application on
startup. Normally such arguments are entered through the Windows command prompt, cmd.exe. For example, the
Notepad.exe program accepts a single command-line argument, a filename to open immediately:

 Notepad.exe c:\temp\DataFile.txt

Windows does provide some support for command-line option usage. If you create a shortcut to an application, the
Target field in the shortcut's properties (accessed by right-clicking on the shortcut icon and selecting Properties) will
accept commandline arguments after the executable name.

If you use the Windows File Explorer to drag and drop a file onto an application (EXE) icon, Windows starts the
application, adding the dropped file's name as a command-line argument.

No matter which method you use to add command-line arguments to your application, they are received through the
Command() and My.Application.CommandLineArgs features of Visual Basic.

There is one exception to this general rule. Visual Basic applications can be configured as "single-instance" applications
by selecting the " Make single instance application" field on the Application tab of the Project Properties window. If a
user tries to start a second instance of a single-instance application when an instance is already running, the second
instance will not run. Instead, a special event triggers in the first instance, informing the program that the user wants
to start a new instance. It is up to the program to determine how to handle such requests. The Command() and
CommandLineArgs features indicate only the options for the initial instance of a single-instance program; command-line
arguments for subsequent instances are processed as part of the arguments to the special additional-instance event.

To use this special StartupNextInstance event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use this special StartupNextInstance event:

1. Access the Application tab of the Project Properties window.

2. Click on the View Application Events button on that tab to display the source code from the ApplicationEvents.vb
file.

3. Select "(MyApplication Events)" from the Class Name list that is above and to the left of the code window.

4. Select "StartupNextInstance" from the Method Name list just to the right of the Class Name list.

The following code fragment appears:

 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance

 End Sub

The e argument includes a CommandLine collection member that works just like the My.Application.CommandLineArgs collection
but is specific to the new instance requested by the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. The Development Environment

Introduction

Recipe 2.1. Discovering and Using a Code Snippet

Recipe 2.2. Creating a New Snippet

Recipe 2.3. Sharing Snippets

Recipe 2.4. Adding Snippet Files to Visual Studio

Recipe 2.5. Getting an Application's Version Number

Recipe 2.6. Letting Visual Studio Automatically Update an Application's Version Number

Recipe 2.7. Setting the Startup Form for an Application

Recipe 2.8. Setting the Startup to a Sub Main Procedure

Recipe 2.9. Getting an Application's Command Line

Recipe 2.10. Testing an Application's Command Line

Recipe 2.11. Obfuscating an Application

Recipe 2.12. Determining if an Application Is Running in the Visual Studio Environment

Recipe 2.13. Accessing Environment Variables

Recipe 2.14. Accessing the Registry

Recipe 2.15. Getting System Information

Recipe 2.16. Getting the User's Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
This chapter shows you how some of the object-oriented programming (OOP) features in Visual Basic 2005 are used to
build Visual Basic applications. These features include class constructors, namespaces, and support for overloading.
While you will spend most of your coding life writing the basic logic of your functions, properties, and Sub procedures,
you wouldn't be able to do it without the basic container systems introduced here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.1. Creating a Code Module

Problem

You would like to add some general methods and fields that are accessible to your entire application.

Solution

Add a code modulea construct that is similar to a class, but uses the Module key-word instead of Classto your application.

Discussion

Visual Basic includes three major code and value containers: classes, structures, and modules. All three types are based on the core
definition of a class, but there are times when you'll want to choose one over another. Modules are useful for storing functions,
subroutines, constants, and variable fields that are considered "global" to your entire application. In pre-.NET versions of Visual Basic,
most nonform-specific code was stored in a similar "module file" (with a " .bas" file extension). Modules in .NET provide some of that
same functionality but in an object-oriented context.

If you've already created a new project or opened an existing project in Visual Studio, you can add a new module through the Project
 Add Module menu command. The Add New Item dialog (Figure 3-1) should already have the Module template selected. Simply

give it a useful name in the Name field, then click the Add button.

Figure 3-1. Visual Studio's Add New Item dialog

Visual Studio presents you with the code for this new template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio presents you with the code for this new template:

 Module Module1

 End Module

You can start adding members to the module immediately. Supported members include Sub procedures, functions, properties, events,
delegates, classes, structures, and enumerations. Before coding each member, decide the access you want to grant and prefix the
definition with the appropriate access keyword (Public, Shared, or Friend). For instance, the following block of code adds a function to the
module Module1 and assigns the function Public access:

 Module Module1
 Public Function DoubleIt(ByVal origValue As Integer) _
 As Integer
 Return origValue * 2
 End Function
 End Module

Modules specify their own access levels, using the Public or Friend keywords; the default is Friend. All members of a module act as if they
are marked with the Shared keyword. That is, you can use any member of a module without creating an instance of the module itself.
And that's a good thing because Visual Basic will not allow you to create an instance of a module.

You aren't required to create separate source- code files for new modules (or for classes or structures, which are discussed in later
recipes), although you should. Having a one-to-one correspondence between modules (or classes or structures) and source-code files
makes things easier to manage. Still, you may need to double up constructs in a single source-code file. If you already have a file with
a class defined, you can include a module definition in the same file, outside the class:

 Class SomeClass
 ' ----- Class members go here.
 End Class
 Module SomeModule
 ' ----- Module members go here.
 End Module

If you try to do this in a form class file for a desktop application project, the Visual Studio Form Designer looks only at the first class in
the file. If you insert a module (or a structure or another class) before the form-derived class in the file, Visual Studio can't display the
form.

All members of a module are shared and can be used immediately throughout the application. You can limit a member to just the code
within the module by using the Private access-level keyword with that member:

 Module Module1
 Private Sub InModuleUseOnly()
 End Sub
 End Module

This is commonly done with so-called helper methods that can be accessed only by other, more prominent methods in the same
module.

See Also

Recipes 3.2 and 3.3 introduce classes and structures, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.10. Creating a Form Based on Another Form

Problem

You've created a basic form, and you would like to use it to create other forms that extend the functionality of the basic
form.

Solution

Create an inheritance relationship between the original form (the "base" class) and the form with the extended features
(the "inherited" class). There are a few different ways to accomplish this, but the easiest is to let Visual Studio establish
the inheritance relationship for you through the Inheritance Picker dialog.

Discussion

Use the Project Add Windows Form menu command to add the new form to a new or existing Windows Forms
project. When the Add New Item dialog appears, select Inherited Form from the list of templates, type your new form's
filename in the Name field, and then click the Add button. As long as there are other forms defined in your application,
you will see the Inheritance Picker dialog (Figure 3-4).

Figure 3-4. Visual Studio's Inheritance Picker dialog

To establish the inheritance relationship, select the base form from the list of available forms, and then click the OK
button. Visual Studio will add a new form that is derived from the selected base form.

All forms added to your Windows Forms project use inheritance. By default, new forms derive from
System.Windows.Forms.Form, but you can indicate another base form from your own project. If you look in the "designer" file
associated with the form, you will see the following statements in standard forms:

 Partial Class Form2
 Inherits System.Windows.Forms.Form

When you alter the base class through the Inheritance Picker, these statements change to reflect the selected base
form:

 Partial Class Form2
 Inherits WindowsApplication1.Form1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(A form's designer file is hidden by default. Click on the Show All Files button in the Solution Explorer, and then expand
the branch for a form to see its designer file.)

You can manually establish the inheritance relationship by modifying the Inherits statement yourself to include the
correct base class.

Visual Studio must be able to create an instance of the base form before it can show you the derived form through the
Form Designer (or even list the form in the Inheritance Picker). This requires that a compiled version of that base form
exists. Before using the Inheritance Picker to establish form relationships, build your project using the Build Build
WindowsApplication1 (or similar) menu command.

See Also

Although it's not covered in a separate recipe in this chapter, creating inherited user controls follows the same process.
Select Inherited User Control in the Add New Item dialog's template list to establish such a relationship.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.11. Passing and Returning Structures and Other Objects

Problem

You need to pass complex data types to a function, or return an equally complex type.

Solution

Just pass the data. Complex data in .NET is really no different from simple data in how it is passed to or returned from
functions.

Discussion

Arrays are probably the most cumbersome, only because you have to add two extra characters in the function
definition. The following function definition accepts an Integer array and returns a related String array:

 Public Function ConvertIntArrayToString(_
 ByVal origArray() As Integer) As String()
 ' ----- Take a basic Integer array, and return a
 ' String equivalent.
 Dim newArray(UBound(origArray)) As String

 For counter As Integer = 0 To UBound(origArray)
 newArray(counter) = CStr(origArray(counter))
 Next counter

 Return newArray
 End Function

In some non-.NET languagesincluding earlier versions of Visual Basicit is not always obvious how you pass complex data
types, such as complete arrays, into and out of functions. In .NET, it's a snap. All complex data typesinstances of
structures and classesare simple variables that can be passed freely through arguments or return values. An array is a
standard reference type, even if it contains value type elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.12. Creating and Using an Enumeration

Problem

You want to add a set of related constants to your project and establish variables based on that set of constants.

Solution

Add an enumeration to your namespace, class, or other type using the Enum statement. Then use the name of the
enumeration just as you would any other .NET integral data type.

Discussion

Enum lets you build a list of related integer values:

 Enum StorageMedia
 Floppy
 CD
 DVD
 FlashRAM
 Paper
 End Enum

In this enumeration, all elements are of type Integer, with values ranging from 0 (Floppy) to 4 (Paper). You can select a
different type through an As clause, and you can indicate specific numeric values:

 Enum StorageMedia As Short
 Floppy = 100
 CD
 DVD
 FlashRAM
 Paper = 500
 End Enum

After you've created your enumeration, refer to individual members by combining the enumeration name and the
member name:

 storageType = StorageMedia.FlashRAM

Creating variables of an enumeration type is just as simple:

 Dim storageType As StorageMedia

Although storageType might act like a Short or Integer (as defined through the underlying Enum statement), it is truly a
variable of type StorageMedia, a new data type all its own.

Without enumerations, the only way to create a related set of integer values is to define multiple constants and trust
yourself to use them as a set. Enumerations bundle like elements, making it easier to keep track of the relationships.
Visual Studio also picks up on this relationship, using enumerations to enhance IntelliSense, as shown in Figure 3-5.

Figure 3-5. Using IntelliSense with enumerations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-5. Using IntelliSense with enumerations

Although enumeration variables are typed to the specific Enum, Visual Basic allows you to assign any numeric values
(limited to the underlying type of the Enum) to those variables. For instance, Visual Basic doesn't stop you from
assigning the value 700 to the storageType variable, even though none of the StorageMedia enumeration members have a
value of 700.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.13. Converting Between Numeric and String Enumeration
Values

Problem

While you intend to use an enumeration through its members and their numeric equivalents, you also need to be able
to get the string name of an enumeration member and convert it back to numeric form from that string.

Solution

Use the string conversion features of the System.Enum class and its derived enumerations to manipulate the members
through strings.

Discussion

Moving from a numeric member to string form is simple, and you've probably already done something similar for other
types. Let's reuse the enumeration from Recipe 3.12:

 Enum StorageMedia
 Floppy
 CD
 DVD
 FlashRAM
 Paper
 End Enum

If you've created an enumeration variable:

 Dim storageType As StorageMedia = StorageMedia.FlashRAM

you can convert its value to string form using the ToString() member:

 Dim stringForm As String = storageType.
ToString()
 MsgBox(stringForm) ' Displays "FlashRAM"

Converting back from a string is just slightly more indirect. Use the System.Enum class's Parse() method to restore a string
back to its original numeric value:

 storageType = System.Enum.
Parse(GetType(StorageMedia), "DVD")
 MsgBox(CInt(storageType)) ' Displays 2
 MsgBox(storageType.ToString) ' Displays "DVD"

Visual Basic compiles the full name of each enumeration member into the target application. You can take advantage of
these stored names to shuttle enumeration values between their integer and string forms.

If you pass an invalid string to the Parse() method, an error will occur, so keep an eye on that enumerated data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.14. Creating a Method That Accepts Different Sets of
Arguments

Problem

You have a great function that generates its results based on one type of data, but you'd like to reuse that function with
other data types or argument signatures.

Solution

Use method overloading to provide different versions of the same method.

Discussion

You may sometimes write applications that communicate with Oracle databases. Supplying dates to Oracle SQL
statements is frequently done using Oracle's TO_DATE function. When building SQL statements in my .NET application,
you can prepare a Date variable for use in Oracle by first wrapping it in a TO_DATE function. There are other times when
all you have is a date in a user-entered string format, and you need to prepare that date for use by Oracle. To support
both original date and string data values, you can use an overloaded Oracle preparation function:

 Public
Overloads Function ToOracleDate(_
 ByVal origDate As Date) As String
 Return "TO_DATE('" & Format(origDate, "MM/dd/yyyy") & _
 "', 'MM/DD/YYYY')"
 End Function

 Public Overloads Function ToOracleDate(_
 ByVal origDate As String) As String
 If (Trim(origDate) = "") Then
 Return "NULL"
 Else
 Return ToOracleDate(CDate(origDate))
 End If
 End Function

The Overloads keyword informs Visual Basic that you are trying to overload a single function name with two different
argument signature variations. In this example, the string version calls the date version for some of its processing. This
sharing of processing logic can help keep your code simple even when using multiple overloads.

The .NET Framework makes extensive use of method overloading, including over-loads of some Visual Basic features.
The InStr() function, which locates a smaller string within a larger one, uses overloading to support the interesting
syntax it inherited from Visual Basic 1.0. The basic syntax uses two strings, the one being searched and the one being
sought:

 Public Function InStr(ByVal String1 As String, _
 ByVal String2 As String) As Integer

The second variation inserts an Integer starting position as the first argument:

 Public Function InStr(ByVal Start As Integer, _
 ByVal String1 As String, ByVal String2 As String) As Integer

Since Visual Basic does not support optional arguments anywhere but at the end of an argument list, this function uses
overloading to support the argument variety.

Overloading is different from overriding. Overriding occurs only in inheritance relationships, when a function in a
derived class alters or replaces the logic for an identical function in a base class. Overridden functions must have the
same argument signature in both the base and derived classes.

There are no fixed limits on the number of overloads you can use in a single method. And while constructors (Sub New

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are no fixed limits on the number of overloads you can use in a single method. And while constructors (Sub New
procedures) also use a form of overloading, they do not require the Overloads keyword.

See Also

See Recipe 3.6 for information on overloading using class constructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.15. Using Standard Operators for Nonstandard Purposes

Problem

The basic Visual Basic operators, such as the addition operator (+), seem so useful that you would like to use them for
your own custom classes.

Solution

Use operator overloading, a new feature in Visual Basic 2005, to allow your own classes to interact with each other
through the standard Visual Basic operators.

Discussion

Operator overloading extends method overloading to include the standard Visual Basic operators. In a way, it treats
operators such as +, *, and Or as method names. Consider a class that manages scientific specimens:

 Class Specimen

If your application supports the idea of combining two specimens, resulting in a merged yet single larger specimen, it
would be great to be able to use the addition operator to merge two distinct specimens into a single combined
specimen:

 Dim part1 As New Specimen
 Dim part2 As New Specimen
 Dim combinedParts As Specimen
 '…later…
 combinedParts = part1 + part2

To add support for addition to this class, overload the + operator by adding an Operator definition to the class:

 Public Shared Operator +(ByVal firstPart As Specimen, _
 ByVal secondPart As Specimen) As Specimen
 Dim mergedSpecimen As New Specimen

 ' ----- Add logic to merge the two parts, then…
 Return mergedSpecimen
 End Operator

You can include different input or output types in the overloaded function, as long as at least one input or output
matches the class in which the overload appears:

 Public Shared Operator +(ByVal singlePage As Page, _
 ByVal sourceBook As Book) As Book
 ' ----- Adds a page to a book.

 End Operator

All overloaded operators must include the Shared keyword in the definition.

For unary operators, such as the Not operator, only a single argument is sent to the overloaded function. Table 3-1 lists
the overloadable operators.

Table 3-1. Overloadable operators
Operator Description

Unary plus operator, as in the expression "+5." Unary plus is seldom used in standard Visual Basic
programming, but you can use it for your own classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+(Unary)

programming, but you can use it for your own classes.

 Shared Operator +(ByVal arg1 As Type) As Type

-(Unary)

Unary negation operator, as in "-5."

 Shared Operator -(ByVal arg1 As Type) As Type

+

Addition operator, used to "add" items together.

 Shared Operator +(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

-

Subtraction operator, used to "subtract" one item from another.

 Shared Operator -(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

*

Multiplication operator.

 Shared Operator *(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

/

Division operator.

 Shared Operator /(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

\

Integer division operator.

 Shared Operator \(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Mod

Modulo operator.

 Shared Operator Mod(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

&

Concatenation operator.

 Shared Operator &(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

^

Exponentiation operator.

 Shared Operator ^(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

<<

Shift left operator. Since the operand to the right of the standard operator is always an Integer, the second
argument passed to the overload is also an Integer.

 Shared Operator <<(ByVal arg1 As Type, _
 ByVal arg2 As Integer) As Type

>>

Shift right operator. Since the operand to the right of the standard operator is always an Integer, the
second argument passed to the overload is also an Integer.

 Shared Operator >>(ByVal arg1 As Type, _
 ByVal arg2 As Integer) As Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal arg2 As Integer) As Type

=

Equal to comparison operator, for use in If and similar statements. You must also overload the related <>
(not equal to) operator.

 Shared Operator =(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<

Less than comparison operator, for use in If and similar statements. You must also overload the related >
(greater than) operator.

 Shared Operator <(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

>

Greater than comparison operator, for use in If and similar statements. You must also overload the related
< (less than) operator.

 Shared Operator >(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<=

Less than or equal to comparison operator, for use in If and similar statements. You must also overload
the related >= (greater than or equal to) operator.

 Shared Operator <=(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

>=

Greater than or equal to comparison operator, for use in If and similar statements. You must also overload
the related <= (less than or equal to) operator.

 Shared Operator >=(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

<>

Not equal to comparison operator, for use in If and similar statements. You must also overload the related
= (equal to) operator.

 Shared Operator <>(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Boolean

Not

Bitwise negation operator.

 Shared Operator Not(ByVal arg1 As Type) As Type

IsTrue

Used to support overloading of the OrElse operator. You must also overload the related IsFalse operator, and
you will probably want to overload Or as well.

 Shared Operator IsTrue(ByVal arg1 As Type) _
 As Boolean

IsFalse

Used to support overloading of the AndAlso operator. You must also overload the related IsTrue operator,
and you will probably want to overload And as well.

 Shared Operator IsFalse(ByVal arg1 As Type) _
 As Boolean

And

Bitwise conjunction operator.

 Shared Operator And(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Bitwise disjunction operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Or

Bitwise disjunction operator.

 Shared Operator Or(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Xor

Bitwise exclusion operator.

 Shared Operator Xor(ByVal arg1 As Type, _
 ByVal arg2 As Type) As Type

Like

Pattern comparison operator. The second operator is always a pattern string.

 Shared Operator Like(ByVal arg1 As Type, _
 ByVal arg2 As String) As Boolean

CType

Type conversion operator, for converting between different core and custom data types. Visual Basic
supports two types of conversions: narrowing and widening. In narrowing conversions there is a chance
that the source data will not fit in the target data type, as when converting a Long to an Integer.
Conversions in the other direction are widening, and these never result in data loss. You must specify the
type of conversion using the Narrowing or Widening keyword.

 Shared [Narrowing | Widening] Operator _
 CType(ByVal sourceData As Type) As Type

You can overload overloaded operators. That is, you can include multiple overloads for, say, the addition (+) operator in
a single class, as long as the argument signatures differ.

While operator overloading can make your code more straightforward, it can also add a level of confusion, since you will
be using operators in a way that is not part of the standard language usage. Where there is the possibility of confusion,
add meaningful comments to the code to guide the reader through the rough spots.

See Also

Recipe 3.14 discusses standard method overloading.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly
Typed Collection

Problem

You have created a generic collection class that is quite useful and will support data of any class or type. You want to
ensure that data types are never mixed within a single instance of the collection. That is, if a collection contains String
values, you never want Integer values added to that same collection.

Solution

Use generics to restrict the types of data interactions a class may have.

Discussion

Generics allow you to make substitutions of generic data-type placeholders with actual data types. Consider this simple
class:

 Class MultiShow
 Public DisplayValue As String
 Public InterValue As String
 Public Sub ShowDouble()
 ' ----- Display two copies of the value.
 MsgBox(DisplayValue & InterValue & DisplayValue)
 End Sub
 Public Sub ShowTriple()
 ' ----- Display three copies of the value.
 MsgBox(DisplayValue & InterValue & DisplayValue & _
 InterValue & DisplayValue)
 End Sub
 End Class

This class facilitates the display of some stored string value. But what if you wanted to display Integer data? You would
have to rewrite the class, redefining DisplayValue and InterValue as Integer types. And that wouldn't help you much if you
then wanted to use Date values. You could replace String with Object, but this approach would not help you if you needed
to ensure that DisplayValue and InterValue were the same data type.

Generics allow you to treat a class in a generic manner where data types are concerned. Adding generics to our
MultiShow class results in the following code:

 Class MultiShow(Of T)
 Public DisplayValue As T
 Public InterValue As T
 Public Sub ShowDouble()
 ' ----- Display two copies of the value.
 MsgBox(_
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString())
 End Sub
 Public Sub ShowTriple()
 ' ----- Display three copies of the value.
 MsgBox(_
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString() & InterValue.ToString() & _
 DisplayValue.ToString())
 End Sub
 End Class

The Of T clause enables generics on the class. T acts like a placeholder (you don't have to use T; you can give the
placeholder any name you want) for a data type used somewhere in the class. In this example, we used T twice to set
the data types for the public fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the data types for the public fields:

 Public DisplayValue As T
 Public InterValue As T

To use this class, include an Of datatype clause in your reference declaration:

 Dim dataShow As New MultiShow(Of String)

In the dataShow instance, String is used anywhere T appears in the class definition. It's as if Visual Basic generated a String-
specific version of the MultiShow class for you. To generate an Integer version, just update the declaration:

 Dim dataShow As New MultiShow(Of Integer)

Each instance variation of a generic class you define is truly a distinct data type. You cannot pass data freely between
instances of MultiShow(Of Integer) and MultiShow(Of String) without conversion, just as you cannot pass data between Date and
Integer data types without conversion.

You can include multiple data-type placeholders by separating them with commas:

 Class MultiShow(Of T1, T2)
 Public DisplayValue As T1
 Public InterValue As T2

Now you can provide either identical or distinct data types for T1 and T2:

 Dim dataShowUnited As New MultiShow(Of String, String)
 Dim dataShowDivided As New MultiShow(Of String, Integer)

In addition to simple data-type placeholders, you can include restrictions on each placeholder to limit the types of data
used by the class. You can design a generic class that will limit the data-type substitution to just the Form class or any
class derived from Form:

 Class FunForms(Of T As System.Windows.Forms.Form)

 End Class

Interface-specific limits work as well:

 Class ThrowAways(Of T As System.IDisposable)

 End Class

If you want to create new instances of T (whatever it is) within your class, use the As New restriction in the generic
definition:

 Class EntryManager(Of T As New)
 Public Function BuildNewEntry() As T
 ' ----- Create a new object.
 Dim result As New T
 …
 Return result
 End Function
 End Class

This works only if the data type replacing T includes a default constructor (that is, a constructor with no arguments).

Each data-type placeholder in the generic definition can include multiple constraints, all surrounded with curly braces:

 Class FunForms(Of T As {System.Windows.Forms.Form, New})

 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

The list of multiple restrictions can include multiple interfaces if needed, but only one standard class (such as
System.Windows.Forms.Form) is permitted per placeholder.

Generics are useful when defining collection classes. Adding a generic restriction to a collection ensures that objects of
only a single type can be added to the collection, a restriction that may be useful in some cases. For example, a
Collection(Of String) allows only String values to be added to the collection.

See Also

Chapter 14 includes recipes that show you how to use specific generic collection classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.2. Creating a Class

Problem

You need to add a new class to your Visual Basic application.

Solution

To add a new project class to your application, select the Project Add Class menu command, and complete the Add New Item
dialog.

Discussion

The Add New Item dialog, shown in Figure 3-2, prompts you by selecting the Class template.

Figure 3-2. Adding a new class in Visual Studio

Give your class a new name, and then click the Add button. Visual Basic displays your newly added class in a code editor window. For
example, providing "Class1.vb" for the new class filename adds the class source-code file and displays the following empty class
template:

 Public Class Class1

 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Of the various object types included with Visual Basic (classes, structures, and modules), classes have the most flexibility and the
least restrictions on use. You can add pretty much any supported member type, including Sub procedures, functions, fields, constants,
enumerations, events, delegates, other classes and structures, and proper-ties. Here is a simple class that uses many of those
features:

 Public Class Employee
 ' ----- Basic employee information fields.
 Public LastName As String
 Public FirstName As String
 Public HireDate As Date
 Public JobType As EmployeeJobType
 Private CurrentSalary As Decimal

 ' ----- Supplies values to the JobType public field.
 Public Enum EmployeeJobType
 CLevel
 Manager
 NonManager
 Contractor
 End Enum

 ' ----- Used by the SalaryChanged event arguments.
 Public Class SalaryChangedEventArgs
 Inherits System.EventArgs
 Public OldSalary As Decimal
 Public NewSalary As Decimal
 End Class

 ' ----- Argument signature for the SalaryChanged event.
 Public Delegate Sub SalaryChangedDelegate(_
 ByVal sender As Object, _
 ByVal e As SalaryChangedEventArgs)

 ' ----- Issued when private CurrentSalary field changes.
 Public Event SalaryChanged As SalaryChangedDelegate

 Public Function GetFullName() As String
 ' ----- Return a nicely formatted name.
 Return FirstName & " " & LastName
 End Function

 Public Sub GiveRaise(ByVal percentIncrease As Decimal)
 ' ----- To raise 10%, set percentIncrease to 0.10.
 Dim changeDetail As New SalaryChangedEventArgs

 ' ----- Record the new salary, keeping track
 ' of the change.
 changeDetail.OldSalary = CurrentSalary
 CurrentSalary += (CurrentSalary * percentIncrease)
 changeDetail.NewSalary = CurrentSalary

 ' ----- Inform anyone who may be interested.
 RaiseEvent SalaryChanged(Me, changeDetail)
 End Sub

 Public Property Salary() As Decimal
 Get
 ' ----- Report the current salary level.
 Return CurrentSalary
 End Get
 Set(ByVal value As Decimal)
 ' ----- Update the private CurrentSalary field.
 Dim changeDetail As New SalaryChangedEventArgs

 ' ----- Ignore negative salaries.
 If (value < 0@) Then Exit Property

 ' ----- Record the new salary, keeping track
 ' of the change.
 changeDetail.OldSalary = CurrentSalary
 CurrentSalary = value
 changeDetail.NewSalary = value

 ' ----- Inform anyone who may be interested.
 RaiseEvent SalaryChanged(Me, changeDetail)
 End Set
 End Property
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

One source-code file may include multiple classes, structures, and modules:

 Class Class1
 ' ----- First class members go here.
 End Class
 Class Class2
 ' ----- Second class members go here.
 End Class

If you attempt this in a form class file, the Visual Studio Form Designer looks only at the first class in the file. If you insert a class (or
structure or module) before the form-derived class in the file, Visual Studio can't display the form.

Classes are the basic building blocks of Visual Basic applications. The two other major types structures and modulesare variations of
the basic class type, with certain restrictions that make them useful in certain cases.

The code for a class usually appears in a source-code file all its own, although you can divide a class into multiple files (see
3.9). You can also store multiple classes in a single source-code file, but this can quickly clutter your code.

See Also

Recipes 3.1 and 3.3 introduce modules and structures, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.3. Creating a Structure

Problem

You would like to add a new structure to your Visual Basic application.

Solution

Visual Studio does not include an Add Structure menu command, or even a structure-focused template available via the Project
Add New Item menu command. If you want to include a structure in a file all its own, use the Project Add New Item menu
command, and select the Code File template in the Add New Item dialog, as shown in Figure 3-3. You can also simply type a new
structure construct in any existing source-code file.

Figure 3-3. Adding a new structure in Visual Studio

Discussion

The syntax for a structure is very similar to that of a class:

 Structure Structure1

 End Structure

Add members to your structure just as you would in a class. Since structures cannot be used to derive other structures, some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add members to your structure just as you would in a class. Since structures cannot be used to derive other structures, some
keywords that support derived classes (such as the Protected and MustOverride keywords) cannot be used.

Structures must have at least one public instance member or event definition.

The .NET Framework defines two categories of types: reference types and value types. Value types contain basic data at the memory
location assigned for a specific instance. If you looked at the memory location assigned to an Integer value type instance, you would
find the Integer value that the program last assigned to that variable.

Reference types store their data indirectly. The memory location assigned to a reference type contains another memory address that
identifies the true storage area of the data. (This is similar to the pointer used in programming languages such as C.)

In Visual Basic, classes define reference types, while structures define value types. All classes and structures ultimately derive from
the common System.Object class, but value types go through the related System.ValueType class on the way to System.Object.

Because structures store their data directly, they are sometimes faster to use (by the CPU) than classes, and their data can be stored
on the application stack. Classes always require one or more trips to main memory. However, structures do have some limitations not
placed on classes. Structures cannot be used as bases for other structures, nor can a structure derive from other structures or classes.
Also, structures do not support destructors, which are special methods included in classes that perform final cleanup of resources
whenever a class instance is being destroyed.

See Also

Recipes 3.1 and 3.2 introduce modules and classes, the two other major type constructs in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.4. Creating Other Item Types

Problem

Are there any other types of files or items I can add to a Visual Basic project?

Solution

The Add New Item dialog, accessed through the Project Add New Item menu command, includes a large selection
of template choices. Select the one that meets your needs. Some templates use a different default file extension than
the standard .vb extension.

Discussion

Here are the Visual Basicspecific template choices installed by default with Visual Studio 2005 Professional Edition:

Windows Form

Adds a blank Windows form, derived from System.Windows.Forms.Form.

Dialog

Adds a new Windows "dialog-style" form to your project, derived from System.Windows.Forms.Form. The form
includes basic OK and Cancel buttons and is con-figured for typical dialog presentation.

Explorer Form

Adds a new Windows form to your project that has the basic look and functionality of the Windows File Explorer
(explorer.exe). The main area of the form combines TReeView and ListView controls that provide an interface to
the file system.

MDI Parent Form

If you are designing a Multi Document Interface (MDI) application, this form represents the parent that will
include the various child "document" forms.

About Box

Adds a new "About" form to your project. This is a standard Windows form, pre-designed to look like a typical
About form. It automatically fills in application-specific details such as the version number. You must add the
code elsewhere in your project to display this form.

Login Form

Adds a new "Login" form to your project. This form includes the "look and feel" of a login form only; you must
supply authentication code on your own.

Splash Screen

Adds a new "Splash Screen" form to your project. This form appears as your application performs basic
initialization during startup.

Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class

Adds a new class file to your project, containing an empty class definition named according to the filename you
provide.

Module

Adds a new module file to your project, containing an empty module definition named according to the filename
you provide.

Interface

Adds a new interface file to your project, containing an empty interface definition named according to the
filename you provide. By custom, interface names always begin with a capital letter "I."

Component Class

Adds a new "component" to your project, derived from System.ComponentModel.Component. The .NET component
model provides basic interaction services for classes defined as components. All Windows Forms controls are
components.

COM Class

Adds a new class file to your project that exposes COM interface features. This is done via the ComClassAttribute
attribute. All exposed interfaces have to be marshaled across the managed .NET boundary, although .NET
performs most of the difficult work for you.

Data Set

Adds a new data set to your project with an .xsd file extension. These data sets provide a visual design
experience to underlying data stores, such as databases. You can include queried data from several data
sources.

SQL Database

Adds a new SQL Server database file with an .mdf file extension. This file is managed by SQL Server, and you
must have that product installed to use this item type.

Report

Visual Studio includes its own banded report writer that you can use to create data reports. This item adds a
new report with an .rdlc file extension. The report designer interacts with data sources defined in your
application.

Crystal Report

Crystal Reports is a third-party banded reporting tool included with Visual Studio. This item adds a new Crystal
Report to your application with an " .rpt" file extension. Enhanced versions of the Crystal Reports product are
available from its vendor, Business Objects. (Crystal Reports has passed through several owner-ship changes
since its initial version. Business Objects is the owner as of this writing.)

User Control

Adds a new user control file to your application, derived from System.Windows.Forms.UserControl. User controls
contain full user interaction functionality, similar to the controls already included in the Visual Studio Toolbox.
You can build your control from other controls in the Toolbox or from scratch by managing all input and display
needs.

Inherited Form

Adds a new form based on another form already found in your project. When selected, Visual Studio displays
the Inheritance Picker dialog with a list of all forms in your project. Visual Studio must be able to create an
instance of each potential form. Therefore, you must have built your project at least once, including the form to
be inherited. Also, the Inheritance Picker will exclude any form marked as MustInherit. You can manually create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be inherited. Also, the Inheritance Picker will exclude any form marked as MustInherit. You can manually create
inherited forms using the Inherits keyword.

Inherited User Control

Adds a new user control based on another user control already found in your project. When selected, Visual
Studio displays the Inheritance Picker dialog with a list of all user controls in your project. Visual Studio must be
able to create an instance of each potential user control. Therefore, you must have built your project at least
once, including the user control to be inherited. Also, the Inheritance Picker will exclude any user control
marked as MustInherit. You can manually create inherited controls using the Inherits keyword.

Custom Control

Creates a new user control but with more emphasis on controls that will contain no existing subordinate
controls. You will manage the full display of the control yourself.

Web Custom Control

Creates a new web control for use in ASP.NET applications that's similar to the controls supplied with the Web
Forms package. You are responsible for all HTML rendering code.

Resources File

Adds a new resource file to your project, with an .resx file extension. New Windows Forms projects already
include a project-focused resource file.

Settings File

Adds a " .settings" file to your application that stores application-or user-specific settings. Windows Forms
applications already include both kinds of settings support.

Code File

Adds a blank code file to your project. The file will be completely empty, waiting for you to add a class, module,
structure, or other content.

Class Diagram

Adds a new class diagram file with a .cd file extension. Class diagrams let you define classes, structures,
interfaces, and other basic types using a visual designer interface. Visual Studio manages the other files in your
application as you make changes to the class diagram.

XML File

Adds a new XML (Extensible Markup Language) file with an .xml file extension. Visual Studio includes basic
IntelliSense support for editing XML files.

XML Schema

Adds a new XSD (XML Schema Definition) file with an .xsd file extension. XSD files can be used to validate XML
data.

XSLT File

Adds a new XSLT (Extensible Stylesheet Language Transformation) file with an .xslt file extension. XSLT files
are used to transform XML data into another format (either XML or any other format).

Text File

Adds a blank text file to your project with a .txt file extension. You can add any text to this file that you wish.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML Page

Adds a new HTML file with an .htm file extension. Visual Studio includes extended support for editing web
pages.

Bitmap File

Adds a new bitmap file with a .bmp file extension that you can edit directly in Visual Studio.

Cursor File

Adds a new icon file with a .cur file extension that you can edit directly in Visual Studio.

Icon File

Adds a new icon file with an .ico file extension that you can edit directly in Visual Studio.

Application Configuration File

Adds a new .config settings file to your application. This file is often used to con-figure an application from
.NET's point of view. To store application-and user-specific usage settings, consider a settings file instead.

Transactional Component

Adds a new transactional component that manages the lifetime of some data, resource, or activity. These
components inherit from the System.EnterpriseServices.ServicedComponent class and exist mainly to interact within
COM+ environments.

Installer Class

Adds an installer class you can use to create custom installation scenarios for .NET applications. For typical .NET
applications, you should consider creating a standard deployment project instead.

Windows Service

Adds a class that supports the creation of a Windows Service. Services have no direct user interface, so you
should not add this template to a Windows Forms application.

If you use one of the other Visual Studio editions, such as the Express Edition, the list of available templates may differ.
If you have installed third-party products that enhance Visual Studio, you may see additional templates related to those
products.

The My Templates section of the Add New Item dialog includes custom file templates that you have added yourself,
primarily through the Export Template Wizard available through the File Export Template menu command.

See Also

This recipe does not discuss the types of items you can add to an ASP.NET web project. See the recipes in Chapter 17
for additional information on creating web projects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.5. Creating Object Instances

Problem

You need to create an instance of a class or structure.

Solution

Use the New keyword to create a new class or structure instance.

Discussion

There are three basic places you use the New keyword:

When you declare a new instance of a type. The Dim statement offers a few different variations when using the
New keyword. Both of the following examples create a new instance of a project-specific Employee class. Other
than the minor syntax differences, the two lines are functionally identical:

 Dim someEmployee As New Employee
 Dim someEmployee As Employee = New Employee

When you assign new instances to existing variables. Once you have a variable defined, you can assign it an
instance using New:

 Dim someEmployee As Employee
 someEmployee = New Employee

In-line, whenever you need an instance that you don't capture in a variable. Sometimes you simply need a class
to exist only within a statement, perhaps as an argument to another function. This is quite common when
working with GDI+ graphic elements, such as pens. The following code block draws a line on a form during its
Paint event. It creates a new Pen object that disappears once the call to DrawLine() ends:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 e.Graphics.DrawLine(New Pen(Color.Red), 0, 0, 100, 100)
 End Sub

All three uses of New can be intermixed within the same block of code, and you can choose what best fits the needs and
logic of the code block.

See Also

The New keyword is also used in a different context to create class constructors. See Recipe 3.6 for additional details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.6. Initializing a Class Instance with Data

Problem

You want to ensure that some of the fields of a class are initialized before any of the exposed members of the class are
used.

Solution

Add one or more custom constructors to your class.

Discussion

Constructors are Sub procedures named New:

 Public Sub New()

 End Sub

A constructor with no arguments implements the default constructor. This is the constructor that is called anytime a
new instance of the class is requested without additional initialization:

 Dim someEmployee As New Employee

' Custom constructors include one or more arguments. This sample accepts an initial employee name and assigns it to
the public Name field:

 Class Employee
 Public Name As String = "Unknown"

 Public Sub New(ByVal fullName As String)
 If (Trim(fullName) <> "") Then Name = fullName
 End Sub
 End Class

One feature of classes is overloaded methods, which use the special Overloads key-word. This feature lets you use the
same method name more than once in the same class, but have each method accept a different set of arguments. (See
Recipe 3.14 for more information.) Constructors can also be overloaded, but they don't require the Overloads keyword:

 Class Employee
 Public Name As String = "Unknown"
 Public Salary As Decimal = 0@

 Public Sub New(ByVal fullName As String)
 If (Trim(fullName) <> "") Then Name = fullName
 End Sub

 Public Sub New(ByVal fullName As String, _
 ByVal startingSalary As Decimal)
 If (Trim(fullName) <> "") Then Name = fullName
 If (startingSalary >= 0@) Then Salary = startingSalary
 End Sub
 End Class

Visual Basic calls the appropriate constructor based on the argument signature:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Basic calls the appropriate constructor based on the argument signature:

 ' ----- Uses the one-argument constructor.
 Dim someEmployee As New Employee("John Smith")
 ' ----- Uses the two-argument constructor.
 Dim someEmployee As New Employee("John Smith", 50000@)

As an alternative way of doing the same thing, this sample class could have used an optional argument on a single
constructor:

 Class Employee
 Public Name As String = "Unknown"
 Public Salary As Decimal = 0@

 Public Sub New(ByVal fullName As String, _
 Optional ByVal startingSalary As Decimal = 0@)

 If (Trim(fullName) <> "") Then Name = fullName
 If (startingSalary >= 0@) Then Salary = startingSalary
 End Sub
 End
Class

If you don't supply a default constructor but do supply constructors with arguments, any use of the class requires
constructor arguments. If you want the arguments to be optional, either use the Optional keyword or include a default
constructor with no arguments.

All classes must have a constructor, even classes that perform no specific initialization. Consider this empty class:

 Class Employee

 End Class

Although you don't see a specific constructor, a default constructor is there, supplied on your behalf by the Visual Basic
compiler. Any constructor you supply, default or with arguments, replaces the one added by Visual Basic.

All classes (except System.Object) derive from some other class. The default constructor for the base class is called
implicitly from a derived class's constructor. Derived classes can also use a specific base-class constructor by calling it
directly:

 Class Manager
 Inherits Employee

 Public Sub New()
 MyBase.New("Unnamed New Employee")
 End Sub
 End Class

You can create instances of either classes or structures in your code. Modules cannot be instantiated, and therefore
they do not use constructors.

See Also

Recipe 3.7 discusses destructors, which handle the end of an instance's lifetime instead of its beginning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.7. Releasing an Instance's Resources

Problem

Your class instance allocates resources during its lifetime, and you want to ensure that those resources are freed when
the object is destroyed.

Solution

Add a Finalize() method to your class that includes any cleanup code you need to run before .NET destroys the class
instance. Finalize() is a method included in the System.Object base class. To use it in your code, you must override it:

 Protected Overrides Sub
Finalize()

Because a base class from which you derive may need to perform its own cleanup, you should always call its Finalize()
method:

 Protected Overrides Sub Finalize()
 ' ----- Perform my cleanup, then…
 MyBase.Finalize()
 End Sub

Discussion

.NET includes a process, known as garbage collection, which automatically releases all memory associated with a class
instance. However, it doesn't know what processing is required to release any acquired external resources, such as
database connections. Therefore, you must provide that logic in a special method, implemented through an override of
the Finalize() method. This special method is known as the class's destructor.

The garbage collector in .NET runs as needed, so there is no guarantee that your Finalize() method will be called at the
moment you release all references to an instance. It may be called one second, ten seconds, or ten minutes later,
possibly long after your application has stopped running. If you need resources to be released in a timelier manner,
combine the destructor with the IDisposable interface. This interface defines features that help release resources on a
schedule you determine. More specifically, resources are released whenever the related Dispose() method is called on
your instance. (You could simply include your own custom FreeResources() method in your class, but using IDisposable
allows Visual Basic to get more involved in the cleanup process.)

To enable IDisposable in your class, add an Implements statement at the top of the class:

 Class ResourceUsingClass
 Implements IDisposable
 End Class

When you add that Implements line to your class, Visual Studio automatically adds a template of features:

 Class ResourceUsingClass
 Implements IDisposable

 ' To detect redundant calls
 Private disposedValue As Boolean = False
 ' IDisposable
 Protected Overridable Sub Dispose(_
 ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ' TODO: free unmanaged resources when
 ' explicitly called
 End If

 ' TODO: free shared unmanaged resources
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Me.disposedValue = True
 End Sub

 #Region " IDisposable Support "
 ' This code added by Visual Basic to correctly
 ' implement the disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ' Do not change this code. Put cleanup code in
 ' Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
 #End Region

 End Class

Fill in the "TODO" parts of the code with your resource-freeing logic.

When using the IDisposable interface, you should still implement the Finalize()destructor just in case someone forgets to
call Dispose(). Maintain a flag in your class that indicates whether resources have been properly freed or not. The
disposedValue variable that Visual Studio generated serves this purpose.

Some Visual Basic features call Dispose() automatically when working with IDisposable-enabled objects. The Visual Basic
Using statement exists to destroy objects when they are no longer needed, and it calls Dispose() automatically:

 Using externalResources As New ResourceUsingClass
 ' ----- Work with the externalResources instance here.
 End Using
 ' ----- At this point, externalResources.Dispose has been
 ' called automatically by the End
Using statement.

See Also

Recipe 3.6 discusses constructors, the opposite of destructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.8. Using Namespaces

Problem

You want to place your classes within a specific .NET namespace.

Solution

Use the Namespace statement together with the default namespace identified in a project's properties.

Discussion

Every Visual Basic application resides within a default namespace, what we'll call the "absolute namespace position" for
your application. Visual Studio automatically sets this to a top-level namespace with the same name as your project.
For instance, if you just accept the default "WindowsApplication1" name for a new Windows Forms application, the
namespace is also named WindowsApplication1. Since it's a top-level namespace, it resides at the same hierarchy position
as the System namespace.

To alter the namespace for your project, open the Project Properties window, and change the "Root namespace" field on
the Application tab. You can change it to use an existing namespace, such as System.Windows.Forms, but then you must
take care to avoid naming conflicts with your classes.

When generating a full .NET application (EXE), your choice of namespace is not too problematic because that
namespace exists only within the view of your program and its lifetime. Two applications using the WindowsApplication1
namespace will not conflict with each other. However, if you generate a .NET library (DLL) for general distribution to
others outside your organization, you should select a namespace that will avoid conflicts with others. Microsoft
recommends that you use a combination of your company name and the product name, as they did with the
Microsoft.VisualBasic namespace.

Beyond the absolute namespace position, you can place your classes and other types in a "relative namespace position"
within the larger default absolute namespace. When you add a class (or other type) to your project, it appears in the
absolute namespace position:

 Class Class1

 End Class

If your project uses WindowsApplication1 as its absolute namespace, this class appears as WindowsApplication1.Class1. In
relative positioning, you can insert a new namespace between the absolute position and the class:

 Namespace CoolClasses
 Class Class1

 End Class
 End Namespace

Now, Class1 is fully referenced as WindowsApplication1.CoolClasses.Class1.

The Namespace keyword may include multiple namespace components (separated by periods), and you can nest them as
well:

 Namespace CoolClasses
 Namespace SomewhatCool.BarelyCool
 Class Class1

 End Class
 End Namespace
 End Namespace

This Class1 lives at WindowsApplication1.CoolClasses.SomewhatCool.BarelyCool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 3.9. Splitting a Class Across Multiple Files

Problem

You have a class that is simply too much to manage reasonably in a single sourcecode file, and you would like to split it
up.

Solution

Use the Partial keyword on a class to enable splitting the implementation of that class across multiple physical source
files:

Partial Class Class1

 End Class

Discussion

Visual Basic now includes a partial class feature that Visual Studio uses to separate automatically generated code from
nongenerated code. This feature is available to use in your own classes. Before Visual Basic 2005, if you tried to split a
class by using the Class statement multiple times on the same class name, the program would not compile. But now you
can break up your class into separate sections:

 Class Class1
 ' ----- Some class members are defined here.
 End Class
 Partial Class Class1
 ' ----- More class members are defined here.
 End Class

The key is the word Partial. Adding the keyword Partial to at least one of the class components tells the Visual Basic
compiler to collect all the parts and put them together before it builds the compiled version of your program, even if
those parts exist in different files.

You do not need to include Partial on every part of the class, just on one of the parts. Also, if your class inherits from
another class or implements an interface, you need to include only the Inherits or Implements keyword in one of the class
portions.

All class parts must exist in the context of the same namespace. If you create different class definitions with the same
name but in different namespaces, they will be distinct and unrelated classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Application Organization

Introduction

Recipe 3.1. Creating a Code Module

Recipe 3.2. Creating a Class

Recipe 3.3. Creating a Structure

Recipe 3.4. Creating Other Item Types

Recipe 3.5. Creating Object Instances

Recipe 3.6. Initializing a Class Instance with Data

Recipe 3.7. Releasing an Instance's Resources

Recipe 3.8. Using Namespaces

Recipe 3.9. Splitting a Class Across Multiple Files

Recipe 3.10. Creating a Form Based on Another Form

Recipe 3.11. Passing and Returning Structures and Other Objects

Recipe 3.12. Creating and Using an Enumeration

Recipe 3.13. Converting Between Numeric and String Enumeration Values

Recipe 3.14. Creating a Method That Accepts Different Sets of Arguments

Recipe 3.15. Using Standard Operators for Nonstandard Purposes

Recipe 3.16. Enforcing Strong Data Typing in an Otherwise Weakly Typed Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
If you are writing a desktop application, you are dealing with forms and controls. Since its first release, Visual Basic has
made the dream of drag-and-drop programming possible: just add some controls to a form, press F5, and go.

While this method works, it allows you to design only the most rudimentary applications. Most programs require gobs of
code for each on-screen control. Fortunately, .NET simplifies a lot of the plumbing associated with complex controls, so
you can just focus on the logic that responds directly to a user action. This chapter shows you how to take advantage of
the control features included with .NET's Windows Forms library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.1. Creating and Adding Controls at Runtime

Problem

You need to add one or more controls to a form dynamically at runtime. You used to do something similar to this in
Visual Basic 6.0 using control arrays, but those do not exist in Visual Basic 2005.

Solution

Sample code folder: Chapter 04\DynamicControls

You can add any control to a form at runtime just by creating an instance of it. Your code can define the initial
properties, such as the location of the control on the form, at runtime. You can also connect events for these runtime
controls to event handlers, although the handler methods must exist at design time. (Technically, it's possible to write a
method at runtime, but such programming is beyond the scope of this book and is generally frowned upon.)

Discussion

To test this method of dynamically creating controls, start by creating a new Windows Forms application and add the
following source code to Form1's code template:

 Private Sub ShowTheTime(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 ' ----- Display the time in the text box, if it exists.
 Dim theTextBox As TextBox

 ' ----- Locate and update the text control.
 theTextBox = Me.Controls("TimeTextBox")
 If (theTextBox IsNot Nothing) Then
 theTextBox.Text = Now.ToLongTimeString()
 End If
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add controls at runtime.
 Dim dynamicText As TextBox = Nothing
 Dim dynamicButton As Button

 ' ----- Dynamically add a text box control to the form.
 dynamicText = New Windows.Forms.TextBox
 dynamicText.Name = "TimeTextBox"
 dynamicText.Location = New System.Drawing.Point(8, 8)
 dynamicText.Size = New System.Drawing.Size(232, 20)
 dynamicText.TabIndex = 0
 Me.Controls.Add(dynamicText)

 ' ----- Dynamically add a button control to the form.
 dynamicButton = New Windows.Forms.Button
 dynamicButton.Location = New System.Drawing.Point(144, 32)
 dynamicButton.Size = New System.Drawing.Size(99, 23)
 dynamicButton.Text = "Get Time"
 dynamicButton.UseVisualStyleBackColor = True
 dynamicButton.TabIndex = 1
 Me.Controls.Add(dynamicButton)

 ' ----- Connect the button to an event handler.
 AddHandler dynamicButton.Click, AddressOf ShowTheTime
 End Sub

When you run the program, you will see two controlsa TextBox control and a Button controlmagically appear on the
previously empty form. Clicking the button calls the prewritten event handler, which inserts the current time into the
text box, as shown in Figure 4-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text box, as shown in Figure 4-1.

In Visual Basic 6.0, if you wanted to add a control to a form at runtime it was necessary to create a design-time control
just like it, and create a dynamic copy of it at run-time. This was due, in part, to the special design-time method used
to record form controls. If you opened up the .frm file for a Visual Basic 6.0 form, you would see nonVisual Basic code
at the top of the file that defined the controls and the form itself.

Figure 4-1. Dynamically generated controls on a form

In Visual Basic 2005, all form controls, and even the form itself, exist through standard object creation. When Form1
appears on the screen in a running program, it's because somewhere in your program there is code that creates a new
instance of Form1 and calls its Show method:

 (New Form1).Show

Although you add controls to your form using the Visual Studio Form Designer, Visual Studio actually generates runtime
code for you that dynamically creates the controls and adds them to the form. All this code is generally hidden in the
form's designer file. To view this file, select the Project Show All Files menu command, and expand the branch for
one of your forms in the Solution Explorer panel. By default, Form1's designer file is named Form1.Designer.vb.

To create the source code for this project, we added a TextBox and a Button control to the form and then opened the
designer code file. We then copied selected lines from that file and made slight adjustments before pasting that code
into the form's Load event handler. Finally, we deleted the design-time controls from the form.

See Also

Recipes 4.2 and 4.3 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.10. Remembering a Form's Position Between Uses

Problem

You would like the position of a form to be retained between exiting the application (or closing that form) and the next time you access that same form.

Solution

Sample code folder: Chapter 04\RememberFormPosition

Tie the form's Location property to a member of the My.Settings object. You do this using the form's application-setting property bindings.

Create a new Windows Forms application. Access the Project Properties window through the Project WindowsApplication1 Properties (or similar)
menu command. Select the Settings tab in this window, as shown in Figure 4-5.

Figure 4-5. The Settings tab of the Properties window

In the first row of the Settings grid, set the Name field to MainFormLocation, and select System.Drawing.Point in the Type field (Figure 4-6
Properties window.

Figure 4-6. The added MainFormLocation property

Back on Form1, expand its (ApplicationSettings) property. One of the subproperties should be Location. Change its value to MainFormLocation

The program is ready to use. Run it, and move the form to a conspicuous location. Then exit the program. When you run the program again, the form
will be where you moved it.

Discussion

If, when you expand the (ApplicationSettings) property, you don't see the Location subproperty, use the (PropertyBinding) subproperty instead. Click on the "…"
button in its value area to display the "Application Settings for 'Form1'" dialog. Locate the Location enTRy in the form's settings list, and set its value to
MainFormLocation, as shown in Figure 4-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-7. The Application Settings dialog for Form1

Any settings added to the Settings tab in the Project Properties window appear as members of the My.Settings object. In this recipe's case, you get a new
property of type System.Drawing.Point with the name My.Settings.MainFormLocation. You can access this property as needed in your code.

Another way to add a control-linked setting is to skip the trip to the Project Properties' window's Settings panel, and add the new setting directly from
the control's list of properties. When you select the (ApplicationSettings) property for the form or control and bring up the Application Settings dialog (
4-7), if you click the drop-down button in the second column for any property, one of the choices that appears is "(new)." Clicking this link brings up
the New Application Setting dialog, where you can enter the name and starting value of a new setting. The new property automatically obtains the right
data type for the linked field. Figure 4-8 shows this method in action.

Figure 4-8. Adding a new setting for the form's Location property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.11. Attaching a Control to the Edge of a Form

Problem

You want a specific control, such as a toolbar, to always "stick" to one edge of the form, no matter how it is resized.

Solution

Use the control's Dock property to permanently affix the control to the selected side or other "dock region."

Discussion

Dock has six possible values:

None

The control performs no docking.

Top

The control attaches itself to the top of the form's client area and fills the entire width of the client area, if the
control supports such resizing.

Bottom

The control attaches itself to the bottom of the form's client area and fills the entire width of the client area, if the
control supports such resizing.

Left

The control attaches itself to the left edge of the form's client area and fills the entire height of the client area, if
the control supports such resizing.

Right

The control attaches itself to the right edge of the form's client area and fills the entire height of the client area, if
the control supports such resizing.

Fill

The control fills the entire client area of the form, if the control supports such resizing.

If multiple controls have Dock settings other than None, they are attached to the form edges according to their z-order
settings, starting from the back-most control. To alter the z-order of a control, right-click on the control in the Form
Designer and select either "Bring to Front" or "Send to Back" from the shortcut menu. Figures 4-9 and 4-10 show a form
with two controls with different z-orders docked to its bottom edge: a MonthCalendar control (notice how it automatically fills
the width of the form by adding months) and a StatusStrip control.

Figure 4-9. The form when the calendar's z-order is in front

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-9. The form when the calendar's z-order is in front

Some controls are designed to dock along a specific edge of the form's client area. The most obvious example is the
StatusStrip control, shown in this recipe's figures, which is designed to dock along the bottom edge of the form. Other
controls, such as the CheckBox control, really aren't designed for docking. While you can still dock them, they may not look
very nice.

Docking also applies to panels and other containers that can include subordinate controls. Figure 4-11 displays a Panel
control with an included ComboBox control that is docked along the top edge of the panel.

Figure 4-10. The form when the calendar's z-order is in back

Figure 4-11. Docking within a container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-11. Docking within a container

See Also

Recipe 4.12 discusses the Anchor property, which can be used to attach a control to one, two, three, or four sides of the
form. The Dock and Anchor properties cannot be used at the same time on the same control. The last one you set on that
control is the one used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.12. Moving or Resizing Controls as a Form Resizes

Problem

You want a control to move or stretch in proportion to how the form is resized.

Solution

Use the control's Anchor property to attach it to one or more sides of the form.

Discussion

Setting the Anchor property of a control tells that control to permanently maintain a consistent distance relationship with one or more
sides of the form or container. You can anchor a control to any or all of the four sides of a form. By default, controls are anchored to
the left and top sides of the form. This means that as the form resizes, the controls remain the same distance from the form's left
and top edges (i.e., they do not appear to move).

The available Anchor property choices include Left, Top, Right, and Bottom, and you can use them in any combination. The following list
shows the types of combinations you can use with the Anchor property:

Anchored to one side

As the form is resized, the center point of the control along the anchored edge is matched to a position on that form edge
relative to the changing size of the form. The size of the control does not change. For instance, if a control is anchored to the
top of a form and the form is made wider, the control moves to the right in proportion to the size of the form, as shown in
Figure 4-12.

Figure 4-12. The top-anchored control moves when the form is resized

Anchored to two adjacent sides

As the form is resized, the control maintains its distance from both anchor sides. In other words, it seems to be joined to the
corner that is shared by the two anchor sides. By default, most controls anchor to the left and top sides of the form and do
not appear to move when the right and bottom borders of the form are moved in a resize operation.

Anchored to two opposite sides

The anchor sides of the control remain a fixed distance from the anchor borders. For instance, if a control is anchored on the
left and right, the control grows by the same number of pixels as the form is widened (see Figure 4-13). When the
unanchored direction is resized, the control is moved to keep the portion of space between the unanchored sides and the
control the same, but the control is not resized in that direction.

Figure 4-13. The left-and-right-anchored control stretches as the form widens

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-13. The left-and-right-anchored control stretches as the form widens

Anchored to three sides

The control resizes between the two anchor sides that are opposite to each other and remains the same distance from the
single anchor border, as shown in Figure 4-14.

Figure 4-14. Anchored to top, left, and right, the edges of the control remain a fixed
distance from all but the bottom edge of the form

Anchored to all four sides

The control is continually resized with the form. All its sides stay the same distance from all anchored form borders, as
shown in Figure 4-15.

Figure 4-15. Anchored to top, left, bottom, and right, the proportions of the control
change in concert with the form's proportions

Anchoring also applies to panels and other containers that can include subordinate controls.

See Also

See Recipe 4.11 for details on the Dock property, which you can use to attach a control to one side of a form's client area. The
and Anchor properties cannot be used at the same time on the same control. The last one you set on that control is the one used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.13. Limiting the Sizing of a Form

Problem

You want the user to be able to resize a form, but within limits.

Solution

Use the MinimumSize and MaximumSize properties of the form to limit the user's adjustments of the form's size. As with the
standard Size property, these two properties encapsulate separate width and height values. Figure 4-16 shows these
settings in use in the Properties panel.

Figure 4-16. MaximumSize and MinimumSize properties in use

Discussion

These properties do limit the size of the form, whether the user is resizing the form directly or your code sets the Size
property. You will usually want to set the form's FormBorderStyle property to Sizable, and you must set the MaximizeBox
property to False (or in some other way hide the maximize box, such as by setting the ControlBox property to False).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.14. Centering a Form

Problem

You want a form to be in the center of the display when it first appears.

Solution

Set the form's StartPosition property to CenterScreen.

Discussion

That was easy, but there may be cases where you need to set this property to Manual, but you still want the form to
appear centered sometimes. To accomplish this, add the following code to the Load event handler for your form:

 Me.Location = New Point((_
 Screen.PrimaryScreen.Bounds.Width - Me.Width) / 2, _
 (Screen.PrimaryScreen.Bounds.Height - Me.Height) / 2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.15. Creating and Moving a Borderless Form

Problem

You want to display a form without any of the typical window border elements. Also, you want the user to be able to
move the window around by clicking and dragging a PictureBox control.

Solution

Sample code folder: Chapter 04\MoveBorderlessForm

Turning off the border elements is easy: set the form's FormBorderStyle property to None. Then you can manage the
drawing of the form elements yourself.

Creating a fake titlebar that moves the form is a little more involved. Create a new Windows Forms application, and add
two controls: a Button control named ActClose and a PictureBox control named DragBar. Change the button's Text property to
Close. Change the picture box's BackColor property to ActiveCaption, one of the system colors. Also, change the form's
FormBorderStyle property to None. The form should look something like Figure 4-17.

Figure 4-17. A borderless form with a pretend titlebar

Now, add the following source code to the form's code template:

 Const HT_CAPTION As Integer = &H2
 Const WM_NCLBUTTONDOWN As Integer = &HA1

 Private Sub DragBar_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles DragBar.MouseDown
 ' ----- When the user clicks the left mouse button, act
 ' as if the user actually clicked on the form's
 ' title bar.
 If (e.Button = Windows.Forms.MouseButtons.Left) Then
 ' ----- Don't hold on to the mouse locally.
 DragBar.Capture = False

 ' ----- Trick the form into thinking it received a
 ' title click.
 Me.WndProc(Message.Create(Me.Handle, WM_NCLBUTTONDOWN, _
 CType(HT_CAPTION, IntPtr), IntPtr.Zero))
 End If
 End Sub
 Private Sub ActClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 Me.Close()
 End Sub

Run the program, and drag the colored picture box control to move the form around the display.

Discussion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All of the activity within a Windows form happens through messages being processed through a Windows procedure, or
WndProc. This method has existed since the introduction of Windows. The .NET Framework put a bunch of pretty classes
around the messy parts of this messaging system, but it's still there, and you can interact with it to suit your needs.

Normally, when you left-click on a form window (or a control, which is just a different type of window), a
WM_LBUTTONDOWN message is passed to the relevant Windows procedure. That message ultimately triggers a call to one
of your form's MouseDown event handlers.

Your application includes a "message pump" that makes calls to each form's WndProc procedure for message processing.
But there is nothing to stop you from calling that procedure yourself. In fact, it's exposed as a form class member.

When the DragBar picture box control receives the mouse down event, it says, "Hey, I'll just send a fake message to my
window's WndProc routine so that it thinks the user clicked on the titlebar." And that's what the code does. It sends a
WM_NCLBUTTONDOWN message to the form. The "NCL" part of that code means "Non-Client," the area that contains the
titlebar and borders. The HT_CAPTION flag tells the message that the click occurred in the caption area (the titlebar). This
is all that's needed to trick the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.16. Creating a Fading Form

Problem

You want a form to fade out and disappear.

Solution

Sample code folder: Chapter 04\FadingForm

Use the form's Opacity property to slowly fade it out. Create a new Windows Forms application, and add a Button control
named ActClose to the form. Change the button's Text property to Close. Then add the following source code to the form's
code template:

 Private Sub ActClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 ' ----- Fade out the form.
 Dim counter As Integer

 For counter = 90 To 10 Step -20
 Me.Opacity = counter / 100
 Me.Refresh()
 Threading.Thread.Sleep(50)
 Next counter

 Me.Close()
 End Sub

Run the program, and click on the Close button to see the form fade away.

Discussion

You'll find that on some systems, the form momentarily blinks to black right when it makes the transition from an
opacity of 1.0 to any other opacity value. On such systems, setting the Opacity property to a non-1.0 value during the
Load event handler still causes a blink, but it does so when the form first opens, not during the cool fadeout.

 Private Sub AboutProgram_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Prepare the form for later fade-out.
 Me.Opacity = 0.99
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.17. Creating a Nonrectangular Form

Problem

You want to display a form that is nonrectangular; that is, you want some of the form to be invisible.

Solution

Sample code folder: Chapter 04\PartialInvisibility

Use the form's transparencyKey property to identify a color that will be invisible. The sample code in this recipe uses
fuchsia for its "invisible color," but you can choose any color that meets your display requirements.

Create a new Windows Forms application. Change Form1's FormBorderStyle property to None, its StartPosition property to
CenterScreen, and its transparencyKey property to Fuchsia. Then add the following source code to the form's code template:

 Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 ' ----- Any click closes the form.
 Me.Close()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw a nice logo form.
 e.Graphics.Clear(Color.Fuchsia)
 e.Graphics.FillRectangle(Brushes.Gold, 0.0F, _
 Me.ClientRectangle.Height / 3.0F, _
 CSng(Me.ClientRectangle.Width), _
 Me.ClientRectangle.Height / 3.0F)
 e.Graphics.FillPolygon(Brushes.Gold, New PointF() { _
 New Point(Me.ClientRectangle.Width / 4, 0), _
 New Point(Me.ClientRectangle.Width / 2, _
 Me.ClientRectangle.Height / 2), _
 New Point(Me.ClientRectangle.Width / 4, _
 Me.ClientRectangle.Height), _
 New Point(0, Me.ClientRectangle.Height / 2)})
 Dim largerFont = New Font(Me.Font.Name, 20)
 e.Graphics.DrawString("My Nice Program", _
 largerFont, Brushes.Black, 20, _
 (Me.ClientRectangle.Height / 2) - _
 (largerFont.Height / 2))
 End Sub

When you run the program, it appears similar to the display in Figure 4-18. (We left the development environment
behind the form so that you could see the invisibility.)

Figure 4-18. A form with transparent portions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The initial release of Visual Basic 2005 included a bug that prevented the transparency color from properly appearing as
transparent in some cases. Specifically, if your form included an image that contained the transparency color, and the
workstation was using more than 24 bits of color for its display, the image appeared as opaque. To get around this
problem, you need to set transparency on the image manually before you draw it:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- This code assumes that the form's
 ' TransparencyKey property is "Fuchsia".
 Dim logoImage As Bitmap = Bitmap.FromFile(_
 "C:\MyLogo.bmp")
 logoImage.MakeTransparent(Color.Fuchsia)
 e.Graphics.DrawImage(logoImage, 0, 0)
 End Sub

The Microsoft Knowledge Base number for this article is 822495.

See Also

Recipe 9.10 discusses invisibility colors and the transparencyKey property in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.18. Changing Menus at Runtime

Problem

You want to customize the menu structure in your main form at runtime. The structure should be based on settings
made available by some user-configurable method.

Solution

Sample code folder: Chapter 04\RuntimeMenus

The menu-specific classes included in the Windows Forms library can be created at either design time or runtime. This
recipe's code adds a basic menu to a form at design time and enhances it at runtime by adding the user's Internet
Explorer "Favorites" to one of the menus.

Create a new Windows Forms application, and add a MenuStrip control named MainMenu to the form. Perform the following
actions on this menu:

Add a top-level menu named MenuFile, using &File for its Text property.

Add a top-level menu named MenuFavorites, using Fa&vorites for its Text property.

Add a menu item named MenuExitProgram that is subordinate to MenuFile, using E&xit for its Text property. Set its
ShortcutKeys property to Alt+F4.

Add a menu item named MenuNoFavorites that is subordinate to MenuFavorites, using (empty) for its Text property. Set
its Enabled property to False.

Figure 4-19 shows a partial look at this form's menu structure in design mode.

Figure 4-19. The initial menus for the runtime menu sample

Next, replace the form's code template with the following code. I've highlighted the lines that do the actual adding of
menu items:

 Imports MVB = Microsoft.VisualBasic

 Public Class Form1
 Private Declare Auto Function GetPrivateProfileString _
 Lib "kernel32" _
 (ByVal AppName As String, _
 ByVal KeyName As String, _
 ByVal DefaultValue As String, _
 ByVal ReturnedString As System.Text.StringBuilder, _
 ByVal BufferSize As Integer, _
 ByVal FileName As String) As Integer

 Private Sub MenuExitProgram_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As System.EventArgs) _
 Handles MenuExitProgram.Click
 ' ----- Exit the program.
 Me.Close()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Scan through the user's "Favorites" and
 ' add them as menu items.
 Dim favoritesPath As String

 ' ----- Determine the location of the "Favorites"
 ' folder.
 favoritesPath = Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites)
 If (favoritesPath = "") Then Return
 If (My.Computer.FileSystem.DirectoryExists(_
 favoritesPath) = False) Then Return

 ' ----- Call the recursive routine that builds the menu.
 BuildFavorites(MenuFavorites, favoritesPath)

 ' ----- If favorites were added, hide the
 ' "no favorites" item.
 If (MenuFavorites.DropDownItems.Count > 1) Then _
 MenuNoFavorites.Visible = False
 End Sub

 Private Sub BuildFavorites(ByVal whichMenu As _
 ToolStripMenuItem, ByVal fromPath As String)
 ' ----- Given a starting directory, add all files
 ' and directories in it to the specified menu.
 ' Recurse for suborindate directories.
 Dim oneEntry As String
 Dim menuEntry As ToolStripMenuItem
 Dim linkPath As String
 Dim displayName As String

 ' ----- Start with any directories.
 For Each oneEntry In My.Computer.FileSystem. _
 GetDirectories(fromPath)
 ' ----- Create the parent menu, but don't
 ' attach it yet.
 menuEntry = New ToolStripMenuItem(_
 My.Computer.FileSystem.GetName(oneEntry))
 ' ----- Recurse to build the sub-directory branch.
 BuildFavorites(menuEntry, oneEntry)

 ' ----- If that folder contained items,
 ' then attach it.
 If (menuEntry.DropDownItems.Count > 0) Then _
 whichMenu.DropDownItems.Add(menuEntry)
 Next oneEntry

 ' ---- Next, build the actual file links. Only
 ' look at ".url" files.
 For Each oneEntry In My.Computer.FileSystem. _
 GetFiles(fromPath, FileIO.SearchOption. _
 SearchTopLevelOnly, "*.url")
 ' ----- Build a link based on this file. These
 ' files are old-style INI files.
 linkPath = GetINIEntry("InternetShortcut", _
 "URL", oneEntry)
 If (linkPath <> "") Then
 ' ----- Found the link. Add it to the menu.
 displayName = My.Computer.FileSystem. _
 GetName(oneEntry)
 displayName = MVB.Left(displayName, _
 displayName.Length - 4)
 menuEntry = New ToolStripMenuItem(displayName)
 menuEntry.Tag = linkPath
 whichMenu.DropDownItems.Add(menuEntry)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 whichMenu.DropDownItems.Add(menuEntry)

 ' ----- Connect this entry to the event handler.
 AddHandler menuEntry.Click, _
 AddressOf RunFavoritesLink
 End If
 Next oneEntry
 End Sub

 Private Sub RunFavoritesLink(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 ' ----- Run the link.
 Dim whichMenu As ToolStripMenuItem

 whichMenu = CType(sender, ToolStripMenuItem)
 Process.Start(whichMenu.Tag)
 End Sub

 Private Function GetINIEntry(ByVal sectionName As String, _
 ByVal keyName As String, _
 ByVal whichFile As String) As String
 ' ----- Extract a value from an INI-style file.
 Dim resultLength As Integer
 Dim targetBuffer As New System.Text.StringBuilder(500)

 resultLength = GetPrivateProfileString(sectionName, _
 keyName, "", targetBuffer, targetBuffer.Capacity, _
 whichFile)
 Return targetBuffer.ToString()
 End Function
 End Class

Run the program, and access its Favorites menu to browse and open the current user's Internet Explorer favorites.

Discussion

The bulk of this recipe's code deals with scanning through a directory structure and examining each file and
subdirectory. Most of the files in the "Favorites" folder have a .url extension and contain data in an "INI file" format.

Here's a sample link to a popular search engine:

 [DEFAULT]
 BASEURL=http://www.google.com/
 [InternetShortcut]
 URL=http://www.google.com/

The last "URL=" line provides the link we need to enable favorites support in our program.

The important part of the program is the building of the menu structure. Each menu item attached to the form's main
menu MenuStrip control is a related ToolStripMenuItem class instance. These can be attached to the menu at any time
through its DropDownItems collection. Each menu item in turn has its own DropDownItems collection that manages
subordinate menu items.

To make each new menu item do something, as you add them, connect them to the previously written RunFavoritesLink
method:

 AddHandler menuEntry.Click, AddressOf RunFavoritesLink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.19. Creating Shortcut Menus

Problem

You want to display a custom shortcut menu to users when they right-click on a form or one of its controls.

Solution

Sample code folder: Chapter 04\ShortcutMenus

Use the ContextMenuStrip control to design a shortcut menu (also called a context or pop-up menu) that you can attach to
the controls (or form) of your choice.

Create a new Windows Forms application, and add a ContextMenuStrip control named MainShortcutMenu to the form. When
you select that control, it adds a temporary standard menu to the control that you can use to add new menu items (see
Figure 4-20).

Figure 4-20. Shortcut menus in design mode

Add two menu items to this shortcut menu:

A menu item named MenuHello, using Say Hello for its Text property

A menu item named MenuGoodbye, using Say Goodbye for its Text property

Select the form itself, and then change its ContextMenuStrip property to MainShortcutMenu.

Now, add the following source code to the form's code template:

 Private Sub MenuHello_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MenuHello.Click
 MsgBox("Hello")
 End Sub

 Private Sub MenuGoodbye_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MenuGoodbye.Click
 MsgBox("Goodbye")
 End Sub

Run the program, and right-click on the form. The shortcut menu will present itself, as shown in Figure 4-21. Clicking
on the items puts up a message box saying "Hello" or "Goodbye."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on the items puts up a message box saying "Hello" or "Goodbye."

Figure 4-21. The shortcut menu in use

Discussion

Each form and control includes a ContextMenuStrip property that you can assign to any ContextMenuStrip control included with
your form. You can create as many shortcut menus as needed for your controls.

Some controls, such as the TextBox control, already include default shortcut menus. If you wish to enhance one of these
menus, you will have to design your own menu from scratch and provide your own implementations for menu items
previously found in that control's shortcut menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.2. Iterating Through All Controls on a Form

Problem

You need to make updates to some or all controls on a form at runtime, and all in a common way. You aren't excited
about copying and pasting the same lines over and over again to make the changes to every instance of the same
control type.

Solution

Sample code folder: Chapter 04\IteratingControls

The form maintains a collection of all controls on the form. Iterate through this collection, and make your changes as
you pass by each item.

Discussion

Create a new Windows Forms application, and add three Label controls to Form1. Name the controls whatever you want,
and change their Text properties to anything you want as well. Next, add two Button controls to the form, named ActRed
and ActNormal. Set their Text properties to Red and Normal, respectively. Then add the following source code to the form's
code template:

 Private Sub ActRed_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActRed.Click
 ' ----- Set the background of all labels to red.
 UpdateAllLabels(Color.Red)
 End Sub

 Private Sub ActNormal_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActNormal.Click
 ' ----- Set the background of all labels to the
 ' standard color.
 UpdateAllLabels(SystemColors.Control)
 End Sub

 Private Sub UpdateAllLabels(ByVal withColor As Drawing.Color)
 ' ----- Scan all controls, looking for labels.
 For Each scanControls As Control In Me.Controls
 If (TypeOf scanControls Is Label) Then
 scanControls.BackColor = withColor
 End If
 Next scanControls
 End Sub

When you run the code and click on each button, the background color of the three labels changes as indicated by the
clicked button. Figure 4-2 shows a sample use of this code.

Figure 4-2. All labels set to red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All of a form's controls appear in a collection accessed through the form's Controls property. Because it is a standard
collection, you can iterate through it using the For Each statement, or any other technique that accesses elements of a
collection. You can also reference controls by string name:

 Dim firstButton = Me.Controls("ActRed")

Although controls of all types are added to the Controls collection, you can still determine their derived data types using
the TypeOf statement, as is done in this recipe's sample code. This can help you limit updates to a certain type of control
in the collection.

See Also

Recipes 4.1 and 4.3 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

Problem

You have many controls that should use identical event-handler logic for some of their events. You don't want to rewrite
the logic for each control. You accomplished this in Visual Basic 6.0 using control arrays, but they no longer exist in
Visual Basic 2005.

Solution

Sample code folder: Chapter 04\SharingControlLogic

You can use a single .NET method as the event handler for any number of control events on the form, as long as those
events share a common set of event arguments.

Discussion

Visual Basic 6.0 included a feature called control arrays that allowed developers to share a single event-handler
procedure among multiple controls. The controls in the array had to be of the same type and share a common name.
They differed only by the values of their numeric Index properties. Each event handler also included an extra argument
that identified the index of the control triggering the event.

Visual Basic in the .NET world no longer allows control arrays, but you can still share event handlers. To do this, you
alter the event method's Handles clause to include all the control events it should handle.

Create a new Windows Forms application, and add three new TextBox controls to Form1. By default, they are named
TextBox1, TextBox2, and TextBox3. Add a Label control named ShowInfo. Then add this source code to the form's code
template:

 Private Sub MultipleEvents(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles _
 TextBox1.Enter, TextBox2.Enter, TextBox3.Enter, _
 TextBox1.TextChanged, TextBox2.TextChanged, _
 TextBox3.TextChanged

 ' ----- Report the current status of this field.
 Dim activeControl As TextBox
 activeControl = CType(sender, TextBox)
 ShowInfo.Text = "Field #" & _
 Microsoft.VisualBasic.Right(activeControl.Name, 1) & _
 ", " & activeControl.Text.Length & " character(s)"
 End Sub

Run this program. As you move from text box to text box and type things in, the ShowInfo label updates to show you
which text box you are in (based on the number extracted from its control name) and the length of its content. Figure
4-3 shows the form in use.

Figure 4-3. A single event handler dealing with multiple events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 4.1 and 4.2 also discuss features that are replacements for Visual Basic 6.0 control arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.4. Working with Timers

Problem

You need to have some action occur on a regular basis in your form.

Solution

Sample code folder: Chapter 04\ClockTimer

Use a Timer control, and set it for the desired interval. Create a new Windows Forms application, and add a Label control
named CurrentTime to the form. Also add a Timer control to the form, and name it ClockTimer. Set its Interval property to 1000,
and set its Enabled property to true. Then add the following source code to the form's code template:

 Private Sub ClockTimer_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ClockTimer.Tick
 CurrentTime.Text = Now.ToLongTimeString
 End Sub

When you run the program, that label updates once each second with the current time.

Discussion

The Timer control's Interval property sets the time between Tick events in milliseconds (1,000 per second). Although you
can set the Interval as low as one millisecond, the timer's resolution is limited by your system's hardware and operating-
system-level factors.

The Tick event fires at approximately the interval you specify, if nothing more important is going on. If the code within
your Tick event handler is still running when the next Tick event should occur, that subsequent Tick event is disposed
without a call to the event handler.

See Also

Recipe 14.8 shows how to have a section of code sleep, or take a small break. Some older Visual Basic code used
timers for this purpose, although a timer is not the best solution in this case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.5. Determining If a Control Can Take the Focus

Problem

You need to move the current focus to a specific control, but you want to avoid conditions where the focus-setting
action would fail.

Solution

Use the control's CanFocus() method to determine whether the application can take the focus or not:

 If (SomeControl.CanFocus() = True) Then _
 SomeControl.Focus()

Discussion

Event-driven programming can lead to many runtime surprises based on timing. Depending on how you write your
code, it's possible that an event handler will be temporarily interrupted so that another event handler can run instead.
Or, more commonly, unrelated event handlers may fire in an order you did not anticipate because of some interesting
input action by the user.

If you have an event handler that disables and enables a specific control, and another handler that sets the focus to
that control, some situations may arise in which the focus action faisl because the control is disabled. While you could
check the Enabled flag before setting the focus, there are other conditions (such as the presence of a separate modal
dialog) that can also stop a control from receiving the focus, even when the Enabled flag is true. Using the CanFocus()
method provides a more accurate method of determining when it is safe to call the Focus() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.6. Programmatically Clicking a Button

Problem

You want the Click event handler for a button to run, but you want to initiate this action from code instead of waiting for
the user to click the button.

Solution

Call the button's PerformClick() method:

 Button1.PerformClick()

Discussion

While it's nice that the Button control has a PerformClick() method to run its Click event handler in an object-oriented
manner, most controls and most control events have no such related method. If you wish to call an event handler
immediately through code, you have to call it like any other method, passing the correct arguments:

 ' ---- Call the text box control's GotFocus handler.
 TextBox1_GotFocus(TextBox1, New System.EventArgs)

In this case, calling the TextBox1 control's GotFocus() event handler will run that handler's code, but it will not cause the
focus to move to the text box. An even better solution would be to write a shared routine that the GotFocus() event
handler and your other code both call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.7. Drawing a Control

Problem

You want to provide custom drawing code for a control.

Solution

Sample code folder: Chapter 04\ControlDrawing

For most controls, provide an event handler for the Paint event, and add your drawing code there. This event's second
argument includes a Graphics property representing the canvas on which you can issue your drawing commands. Some
controls also provide separate DrawItem events that let you draw specific portions of the control, such as distinct items in
a ListBox control. You can also draw directly on the form's surface. This recipe's code includes samples for all these
activities.

Create a new Windows Forms application, and add two controls: a Button control named XButton and a ComboBox control
named ColorList. Change the ColorList control's DrawMode property to OwnerDrawFixed and its DropDownStyle property to
DropDownList. Then add the following source code to the form's code template:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Add some basic colors to the color list.
 ColorList.Items.Add("Red")
 ColorList.Items.Add("Orange")
 ColorList.Items.Add("Yellow")
 ColorList.Items.Add("Green")
 ColorList.Items.Add("Blue")
 ColorList.Items.Add("Indigo")
 ColorList.Items.Add("Violet")
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw an ellipse on the form.
 e.Graphics.DrawEllipse(Pens.Black, 10, 10, _
 Me.ClientRectangle.Width - 20, _
 Me.ClientRectangle.Height - 20)
 End Sub

 Private Sub XButton_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles XButton.Paint
 ' ----- Draw a big x in a rectangle on the button surface.
 Dim usePen As Pen

 ' ----- Provide a neutral background.
 e.Graphics.Clear(SystemColors.Control)

 ' ----- Draw the outline box.
 usePen = New Pen(SystemColors.ControlText, 3)
 e.Graphics.DrawRectangle(usePen, XButton.ClientRectangle)

 ' ----- Draw the x.
 e.Graphics.DrawLine(usePen, 0, 0, _
 XButton.Width, XButton.Height)
 e.Graphics.DrawLine(usePen, 0, _
 XButton.Height, XButton.Width, 0)
 usePen.Dispose()
 End Sub

 Private Sub ColorList_DrawItem(ByVal sendesender As Object, _
 ByVal e As System.Windows.Forms.DrawItemEventArgs) _
 Handles ColorList.DrawItem
 ' ----- Draw the color instead of the text.
 Dim useBrush As Brush

 ' ----- Check for a nonselected item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Check for a nonselected item.
 If (e.Index = -1) Then Return

 ' ----- Set the neutral background.
 e.DrawBackground()

 ' ----- Fill in the color.
 useBrush = New SolidBrush(Color.FromName(CStr(_
 ColorList.Items(e.Index))))
 e.Graphics.FillRectangle(useBrush, _
 e.Bounds.Left + 2, e.Bounds.Top + 2, _
 e.Bounds.Width - 4, e.Bounds.Height - 4)
 useBrush.Dispose()

 ' ----- Surround the color with a black rectangle.
 e.Graphics.DrawRectangle(Pens.Black, _
 e.Bounds.Left + 2, e.Bounds.Top + 2, _
 e.Bounds.Width - 4, e.Bounds.Height - 4)

 ' ----- Show the item selected if needed.
 e.DrawFocusRectangle()
 End Sub

 Private Sub XButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles XButton.Click
 MsgBox("Button clicked.")
 End Sub

Run the program. The XButton control no longer looks like a button; it instead looks like a custom-drawn "X." Although
the button looks strange, it still works. The ellipse we drew directly on the form's surface is there. Also, the ComboBox
control now displays actual colors instead of just the names of colors. This all appears in Figure 4-4.

Figure 4-4. Controls drawn with custom code

Discussion

Some of the controls that support item-level drawing, such as the ListBox and ComboBox controls, include an e.State
property in the data passed to the event handler. This value indicates the current state of the item being
drawn:selected, not selected, or a half dozen other relevant states. You do not need to take that property into account
if your implementation doesn't require it, but it is generally a good idea to provide feedback to the user in a way the
user expects. Adjusting the display based on this property helps achieve that purpose.

As shown in the sample code, the DrawItem event handler includes e.DrawBackground() and e.DrawFocusRectangle() methods
that help you properly draw the item. Availability of these methods varies by control type.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See the recipes in Chapter 9 for examples that use the various GDI+ drawing commands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.8. Making a Form the Top-Most Form

Problem

You want a specific form to appear on top of all other forms in your application, no matter which form is selected.

Solution

If you wish to have a Toolbox-type form that is accessible at the same time as other forms but always remains on top,
set the form's TopMost property to TRue.

Discussion

If you also want to disable access to all other forms, open the important form of the moment using its ShowDialog()
method:

 Form1.ShowDialog()

No other forms already displayed by the application will be available until the ShowDialog() form closes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

Problem

On a form, you want to have the Enter key trigger a specific button (such as an "OK" button) and have the Escape key
trigger another button (such as a "Cancel" button).

Solution

Use the form's AcceptButton and CancelButton properties to assign the appropriate buttons. In the Visual Studio Form
Designer, setting these form properties to the names of buttons on the form will enable the keyboard shortcuts for
those buttons.

Discussion

Setting a button to be a form's CancelButton object has the side effect of changing that button's DialogResult property to
Cancel.

Even if you set an accept button, the Enter key doesn't always trigger it. For instance, if another button on the form has
the focus, that button, and not the form's accept button, is triggered when the user presses the Enter key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Forms, Controls, and Other Useful
Objects

Introduction

Recipe 4.1. Creating and Adding Controls at Runtime

Recipe 4.2. Iterating Through All Controls on a Form

Recipe 4.3. Sharing Event-Handler Logic Among Many Controls

Recipe 4.4. Working with Timers

Recipe 4.5. Determining If a Control Can Take the Focus

Recipe 4.6. Programmatically Clicking a Button

Recipe 4.7. Drawing a Control

Recipe 4.8. Making a Form the Top-Most Form

Recipe 4.9. Indicating the Accept and Cancel Buttons on a Form

Recipe 4.10. Remembering a Form's Position Between Uses

Recipe 4.11. Attaching a Control to the Edge of a Form

Recipe 4.12. Moving or Resizing Controls as a Form Resizes

Recipe 4.13. Limiting the Sizing of a Form

Recipe 4.14. Centering a Form

Recipe 4.15. Creating and Moving a Borderless Form

Recipe 4.16. Creating a Fading Form

Recipe 4.17. Creating a Nonrectangular Form

Recipe 4.18. Changing Menus at Runtime

Recipe 4.19. Creating Shortcut Menus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Every Visual Basic developer quickly learns how to manipulate strings, but it's often easy to overlook some of the more
powerful techniques available, especially with all the new features in Visual Basic 2005. A good example is the powerful
StringBuilder object, which provides an order-of-magnitude improvement for concatenating strings. Visual Basic 6
developers, in particular, will discover lots of exciting new string-processing features. For example, Visual Basic 2005's
Substring() method provides similar functionality not only to the Mid() function, but also to the Left() and Right() string
functions. The regular expression library included with .NET also provides new and powerful ways to analyze and
process string data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.1. Using a StringBuilder

Problem

You need to process many pieces of string data with more efficiency than is allowed using standard .NET Framework
immutable strings.

Solution

The StringBuilder object provides extremely fast and efficient in-place processing of string and character data. The
following code demonstrates several of its powerful methods and some of the techniques you can use to speed up your
string processing:

 Dim workText As New System.Text.StringBuilder

 ' ----- Build a basic text block.
 workText.Append("The important")
 workText.Append(vbNewLine)
 workText.Append("thing is not")
 workText.AppendLine()
 workText.AppendLine("to stop questioning.")

 workText.
Append("--Albert Einstein")
 MsgBox(workText.ToString())

 ' ----- Delete the trailing text.
 Dim endSize As Integer = "--Albert Einstein".Length
 workText.Remove(workText.Length - endSize, endSize)
 MsgBox(workText.ToString())

 ' ----- Modify text in the middle.
 workText.Insert(4, "very ")
 MsgBox(workText.ToString())

 ' ----- Perform a search and replace.
 workText.Replace("not", "never")
 MsgBox(workText.ToString())

 ' ----- Truncate the existing text.
 workText.Length = 3
 MsgBox(workText.ToString())

Discussion

The first line of the previous code creates a new instance of the StringBuilder object. The next half dozen or so lines of
code show various common uses of the StringBuilder's Append() and AppendLine() methods. Each call to Append() or AppendLine()
concatenates another string or character piece into the StringBuilder's buffer. Figure 5-1 shows the result of these first few
append actions.

Figure 5-1. Piecing together strings with the StringBuilder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Avoid the temptation to concatenate these string pieces using the & operator as you prepare the various pieces for
appending to the StringBuilder. Doing so detracts from the efficiency and speed advantages of the StringBuilder. For
example, both of the following lines of code are legal and correct, but the line that uses the & operator does a lot more
work behind the scenes:

 ' ----- Don't do this!
 workText.Append("This " & "is " & "not advisable!")

 ' ----- Please do this.
 workText.Append("This ").Append("is ").Append("faster!")

The first statement (the one using the & operator) must make working copies of the immutable strings to do the
concatenations. Timing tests demonstrate that this can slow down your code measurably.

Besides Append(), the StringBuilder object also provides methods that parallel other functions available for processing true
strings. These include Remove(), Replace(), and Insert() methods, as demonstrated in the sample code presented earlier in
this recipe. The Length property shown in the sample is also available as a standard property of strings. The remaining
lines of code in the sample demonstrate the use of these methods by modifying parts of the original quote.

A StringBuilder's contents are technically not a string. Rather, the StringBuilder maintains an internal buffer of characters that
at any time can easily be converted to a string using the StringBuilder's ToString() method. Think of a StringBuilder as a string
in the making that's not really a string until you want it to be.

Behind the scenes, the default StringBuilder's buffer starts out with a working space, or capacity, of only 16 bytes. The
buffer automatically doubles in size whenever it needs more space, jumping to 32 bytes, then 64, and so on. If you
have a good idea how much space your string processing may require, you can initialize StringBuilder's buffer to a given
capacity during the declaration. For example, this declaration creates a StringBuilder instance with a preallocated buffer
size of 1,000 bytes:

 Dim workText As New System.Text.StringBuilder(1000)

The advantage of providing the starting capacity is a potential performance boost. In this case, the buffer's workspace
won't need to be doubled until enough strings have been appended to overflow the 1,000-byte limit.

You can access the StringBuilder's capacity at runtime through its Capacity property. It's enlightening to read this property
to follow along as the StringBuilder doubles in size during execution. You can set the Capacity to a new value at any time,
but if you set the Capacity to less than the StringBuilder's current Length, an exception occurs. If your intent is to shorten, or
truncate, the contents of the buffer, set the Length property instead, and leave Capacity alone. The easiest way to empty a
StringBuilder of its contents is to set its Length property to zero.

See Also

Recipe 5.26 also discusses building up strings from smaller components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.10. Converting Strings to and from Character Arrays

Problem

You need to work with individual characters in a string efficiently, changing them in place in memory if possible.

Solution

Sample code folder: Chapter 05\StringsAndCharArrays

Use CType() to convert the string to an array of characters, modify characters throughout the array, and then directly
convert the character array back to a string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim charArray() As Char = CType(quote, Char())
 charArray(46) = "!"c
 Dim result As String = New String(charArray)
 MsgBox(result)

Discussion

In this example, the string is converted to a character array using the versatile CType() type-conversion function. In this
form, it's easy to make a change such as replacing the period at index 46 with an exclamation point. The array is then
recombined into a string by passing it to the overloaded version of the String constructor that takes an array of
characters to initialize the new string. Figure 5-8 shows the displayed string result, now showing an exclamation point
instead of a period.

Figure 5-8. Converting a string to an array of characters enables easy modification
of individual characters in that string

There is another way to access individual characters in a string, but it's read-only, so you can't use the technique to
modify the string:

 MsgBox(someString.
Chars(46))

All strings have a Chars() property that lets you access an indexed character from the string with minimal overhead. The
index is zero-based, so Chars(46) returns the 47th character.

See Also

Recipe 5.12 also examines working with individual characters within a larger string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.11. Converting Strings to and from Byte Arrays

Problem

You need to convert a string to bytes, and back to a string from a byte array. This enables you to work with the exact
binary data comprising the string.

Solution

Sample code folder: Chapter 05\StringsAndByteArrays

Use shared methods of the System.Text. Encoding object to convert to and from bytes. If you know the string data to be
comprised entirely of ASCII characters, use UTF8 encoding to minimize the length of the byte array. Unicode encoding,
which results in two bytes per character instead of one, can be used to guarantee no loss of data when making these
conversions.

Discussion

The following sample code shows both UTF8 and Unicode encoding methods:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim bytes() As Byte
 Dim result As String

 ' ----- Assumed to be all ASCII character.
 bytes = System.Text.Encoding.UTF8.GetBytes(quote)
 bytes(46) = 33 ' ASCII exclamation point
 result = System.Text.Encoding.UTF8.GetString(bytes)
 MsgBox(result)

 ' ----- Works with all character sets.
 bytes = System.Text.Encoding.Unicode.GetBytes(quote)
 bytes(92) = 63 ' ASCII question mark
 bytes(93) = 0
 result = System.Text.Encoding.Unicode.GetString(bytes)
 MsgBox(result)

When using UTF8 encoding, the number of bytes in the array is the same as the number of characters in the string. The
character at indexed position 46 in the string is a period. During the first conversion, this period is changed to an
exclamation point, and the resulting string is displayed, a result identical to that previously shown in Figure 5-8.

A Unicode-encoded byte array contains twice as many bytes as the number of characters in the original string. This
makes sense when you consider that Unicode characters are 16 bits each (or two bytes) in size. Take a close look at
the byte array modifications in the second part of the example code. The byte at position 92 (twice as far into the array
as the ASCII variation) is set to the desired ASCII value (63 in this case, for the question mark). But because each
character now consumes two bytes in the array, you must set both bytes. Setting the byte at position 93 clears the
other half of the two-byte set. Figure 5-9 shows the resulting string, now sporting a question mark at the 46th
character position.

Figure 5-9. Changing the Unicode character at byte locations 92 and 93 to a
question mark

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.12. Tallying Characters

Problem

You want to tally, or count the occurrences of, each character value in a string.

Solution

Sample code folder: Chapter 05\TallyCharacters

Convert the string to a byte array, and then tally the 256 possible byte values into an array of integer counts.

Discussion

In the case presented, the string is assumed to be all ASCII, which means conversion using UTF8 encoding is
appropriate, and the tally array only needs to be dimensioned to hold 256 counting bins:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim counter As Integer
 Dim tally(255) As Integer

Convert the string to a byte array, and then loop through each byte of the array to increment the count for each byte
value:

 Dim bytes() As Byte = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 For counter = 0 To bytes.Length - 1

 tally(bytes(counter)) += 1
 Next counter

The rest of the example prepares the tally for display. For efficiency, the code presents only characters with nonzero
counts:

 Dim result As New System.Text.StringBuilder(quote)
 For counter = 0 To 255
 If (tally(counter) > 0) Then
 result.AppendLine()
 result.Append(Chr(counter))
 result.Append(Space(3))
 result.Append(tally(counter).ToString())
 End If
 Next counter
 MsgBox(result.ToString())

Figure 5-10 shows the results.

Figure 5-10. A quick tally of the characters in a string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to tally Unicode characters, you need to either dimension a much larger tally array or use a lookup system
that constantly adds and counts characters as it finds them.

See Also

Recipe 5.11 provides additional details on encoded conversions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.13. Counting Words

Problem

You want to count the words in a string.

Solution

Sample code folder: Chapter 05\CountWords

Use the Split() function to split the string at each space character. The length of the resulting array is a good
approximation of the number of words in the string.

Discussion

There always seems to be more than one way to get things done in Visual Basic 2005, and counting words is no
exception. The following code shows one quick-and-dirty technique that requires very little coding to get the job done:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim wordCount As Integer = Split(quote, Space(1)).Length
 MsgBox(quote & vbNewLine & "Number of words: " & _
 wordCount.ToString)

Figure 5-11 shows the resulting number of words in the string.

Figure 5-11. Splitting a string to count its words

Inaccuracies can creep in if there are multiple spaces between some words in the string, if extra spaces appear at either
or both ends of the string, or if other whitespace characters (such as tabs) are involved. A little preparation of the string
can help eliminate some of these problems, but at the expense of added complexity. For example, the following lines of
code get rid of runs of two or more space characters, replacing them with single spaces. Adding this code just before
the Split() function can provide a more accurate word count:

 Do While (quote.IndexOf(Space(2)) >= 0)
 quote = quote.Replace(Space(2), Space(1))
 Loop

Similarly, you can use the Replace() method to replace all tabs with spaces (probably best done just before converting all
multiple spaces to single spaces). As you can probably sense, efforts to guarantee a more accurate count cause the
code to grow quickly. The best course is to decide what degree of word-counting accuracy is required, how much value
to place on speed of operation, and so on before deciding how much cleanup code to add.

Another solution to this problem involves regular expressions, which are covered in Recipes 5.37, 5.38, 5.39, 5.40,
5.41 through 5.42.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.42 shows how to solve this same problem using a different solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.14. Removing Extra Whitespace

Problem

You want to remove all extra whitespace characters from a string, leaving a single space character between each word.

Solution

Sample code folder: Chapter 05\RemoveWhitespace

There are several possible ways to remove extra whitespace from a string. One approach, presented here, is to test
each character of the string to see if it is whitespace and to build up the resulting string using a StringBuilder:

 Dim source As String = _
 Space(17) & "This string had " & Chr(12) & _
 StrDup(5, Chr(9)) & "extra whitespace. " & Space(27)
 Dim thisIsWhiteSpace As Boolean
 Dim prevIsWhiteSpace As Boolean
 Dim result As New System.Text.StringBuilder(source.Length)
 Dim counter As Integer

 For counter = 0 To source.Length - 1
 prevIsWhiteSpace = thisIsWhiteSpace
 thisIsWhiteSpace = _
 Char.IsWhiteSpace(source.Chars(counter))
 If (thisIsWhiteSpace = False) Then
 If (prevIsWhiteSpace = True) AndAlso _
 (result.Length > 0) Then result.Append(Space(1))
 result.Append(source.Chars(counter))
 End If
 Next counter
 MsgBox("<" & result.ToString() & ">")

Discussion

The previous code first builds a test string comprised of words separated by extra spaces, tabs, and other whitespace
characters. After processing to replace runs of whitespace characters with single spaces, the resulting string is
displayed for inspection, as shown in Figure 5-12.

Figure 5-12. The test string after zapping extra whitespace characters

Another straightforward approach to removing extra whitespace is to use a series of Replace() functions, first to replace
tabs and other whitespace characters with spaces, and finally to replace multiple spaces with single ones. This will work
fine, but the disadvantage is that many temporary strings are built in memory as the immutable strings are processed.
The code presented here moves each character in memory only once, or not at all if the character is an extra
whitespace.

Another good approach is to use regular expressions to grab an array of the words and then piece them back together
with single spaces using a StringBuilder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 5.42 shows how to use regular expressions to attack the multiwhitespace problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.15. Using the Correct End-of-Line Characters

Problem

You are developing an application that will run on several platforms, so you want to use end-of-line characters that are
compatible with all platforms.

Solution

Sample code folder: Chapter 05\EndOfLine

Use the property Environment.NewLine, which returns the end-of-line characters for the current platform. For example, the
following code adds a self-describing line of text to a StringBuilder and ends the line with the newline characters for the
current platform:

 Dim result As New System.Text.StringBuilder
 result.Append("Environment.NewLine").Append(_
 Environment.NewLine)
 MsgBox(result.ToString())

Discussion

The following code, which simply extends the prevous short snippet, terminates lines in 10 different ways, all with the
same result in the Windows environment:

 Dim result As New System.Text.StringBuilder

 result.Append("
vbNewLine").Append(vbNewLine)
 result.Append("vbCrLf").Append(vbCrLf)
 result.Append("vbCr").Append(vbCr)
 result.Append("vbLf").Append(vbLf)
 result.Append("Chr(13)").Append(Chr(13))
 result.Append("Chr(10)").Append(Chr(10))
 result.Append("Chr(13) & Chr(10)").Append(Chr(13) & Chr(10))
 result.Append("Environment.NewLine").Append(_
 Environment.NewLine)
 result.Append("ControlChars.CrLf").Append(ControlChars.CrLf)
 result.Append("ControlChars.NewLine").Append(_
 ControlChars.NewLine)

 MsgBox(result.ToString())

Figure 5-13 shows each of these self-describing lines as displayed by the message box in the last line.

Figure 5-13. No less than 10 ways to terminate a line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Different platforms, such as Linux and Mac OS, expect different combinations of carriage-return and line-feed
characters to terminate lines in documents or in displayed text. Visual Basic 2005 defines several constants you can use
that explicitly combine these characters in a variety of ways. These named constants are easily identified by their "vb"
prefix.

The somewhat generic vbNewLine constant provides a platform-dependent end of line, but only if an application is
recompiled on each platform. Feel free to substitute any of the others if you find them more suitable.

The ControlChars.NewLine property is not a constant. Instead, this property polls the current operating system and returns
the correct sequence of characters. This is your best choice when you want to compile a .NET application on one
platform but run it on another.

The StreamWriter object has a property named NewLine, which can be altered to change its
default end-of-line definition. This lets you change the set of characters inserted into the
stream at the end of each call to the StreamWriter's WriteLine() method. This can be handy, for
example if you wish to automate double spacing of lines.

See Also

Recipe 5.19 makes use of line endings in its adjustment of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.16. Replacing Substrings

Problem

You need to find and replace all occurrences of a substring in a larger string.

Solution

Use the String object's Replace() method.

Discussion

The following example replaces all occurrences of lowercase "ing" with uppercase "ING" in a sample string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As String = quote.Replace("ing", "ING")
 MsgBox(result)

Figure 5-14 shows the results, where two occurrences were found and replaced.

Figure 5-14. Replacing multiple substrings

In this example, the substrings are replaced with a new string of the same length, but the replacement string can be of
differing length. In fact, a useful technique is to make a replacement with a zero-length string, effectively deleting all
occurrences of a given substring. For example, the following code, applied to the original string, results in the shortened
string displayed in Figure 5-15:

 result = Quote.Replace("not to stop ", "")

Figure 5-15. Zapping substrings by replacing them with an empty string

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.21 shows how to remove characters from the start and end of a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.17. Inserting a Character or String

Problem

You want to insert a character or string into another string at a given location.

Solution

Use the String object's Insert() method.

Discussion

The string method Insert() is overloaded to accept either a character or a string to be inserted at a given location. For
example, the following Insert() method adds a comma just after the word "thing" in the sample string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As String = quote.Insert(19, ","c)
 MsgBox(result)

Figure 5-16 shows the result of inserting the comma character.

Figure 5-16. Sample string with a character inserted

In this case the character is inserted after the 19th character of the string, or just after the "g" in "thing." You can
insert a character in the first position of a string by using position 0, and at the end of a string by using the string's
Length value.

The following code inserts the word "definitely " into the sample string. The inserted text includes a space at the end to
keep the words spaced correctly in the result:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 quote = quote.Insert(23, "definitely ")
 MsgBox(quote)

The 23rd position in the original string is just after the "s" character in "is not." Figure 5-17 shows the result of this
word insertion.

Figure 5-17. Sample string with the word "definitely" (followed by a space)
inserted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inserted

VB 6 Users' Update

The equivalent VB 6 string manipulations to insert one string into another are not nearly as
straightforward or as efficient as using Visual Basic 2005's Insert() method. The following VB 6 line uses
two function calls and concatenates three pieces of strings to get the same result:

 quote = Left(Quote, 23) & "definitely " & Mid(Quote, 24)

See Also

Recipe 5.18 also discusses text insertions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.18. Inserting a Line

Problem

You want to insert a complete line of text in a string that contains multiple lines separated by newlines. The desired
insertion point is after the nth line.

Solution

Sample code folder: Chapter 05\InsertLine

Split the string into a string array using the newlines as the split point, append the line to be inserted to the nth string,
and use Join() to glue the string back together again.

Discussion

Use the string function Split(), which is not to be confused with the String.Split() method, to split the string into a string
array. The Split() method splits the string at individual-character split points, but the Split() function lets you split the
string using a multicharacter string for the defined split point. The vbNewLine constant is actually a two-character string,
so you must use the Split() function to avoid splitting on the carriage-return character only, leaving the line-feed
character at the front end of each array string.

Rather than redimensioning the string array to shuffle the lines and create a slot in which to insert the new one, it's
easier to just concatenate the new string, accompanied by a newline constant, to the appropriate string in the array.
This is a simpler and more efficient procedure that involves less shuffling of string data in memory, and the results after
doing a Join() are identical.

This insert functionality works well as a standalone function, which is presented in the following lines of code:

 Public Function InsertLine(ByVal source As String, _
 ByVal lineNum As Integer, _
 ByVal lineToInsert As String) As String
 ' ----- Insert a line in the middle of a set of lines.
 Dim lineSet() As String
 Dim atLine As Integer

 ' ----- Break the content into multiple lines.
 lineSet = Split(source, vbNewLine)

 ' ----- Determine the new location, being careful not
 ' to fall off the edge of the line set.
 atLine = lineNum
 If (atLine < 0) Then atLine = 0
 If (atLine >= lineSet.Length) Then
 ' ----- Append to the end of everything.
 lineSet(lineSet.Length - 1) &= vbNewLine & lineToInsert
 Else
 ' ----- Insert before the specified line.
 lineSet(atLine) = _
 lineToInsert & vbNewLine & lineSet(atLine)
 End If

 ' ----- Reconnect and return the parts.
 Return Join(lineSet, vbNewLine)
 End Function

The string is first split at line boundaries into a string array. LineNum is the number of the line after which the lineToInsert
string is inserted. You can pass zero to this parameter to insert the new line before the first one. After appending the
new string to the appropriate string in the array, along with a vbNewLine to separate it from the original line, the array is
glued back together with the Join() function, using a vbNewLine between each line to restore its original structure. This
new string is then returned as the result of the InsertLine() function.

The following lines of code demonstrate the function's use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following lines of code demonstrate the function's use:

 Dim result As New System.Text.StringBuilder
 result.AppendLine("This string")
 result.AppendLine("contains")
 result.AppendLine("several")
 result.AppendLine("lines")
 result.Append("of text.")

 ' ----- Show the original content.
 Dim resultAsString As String = result.ToString()
 MsgBox(resultAsString)

 ' ----- Show the modified content.
 resultAsString = InsertLine(resultAsString, 3, "(inserted)")
 MsgBox(resultAsString)

A StringBuilder is used to build the original string containing several lines of text separated by vbNewLines. The first message
box (displayed in Figure 5-18) shows the string before the extra line is inserted. The second message box (displayed in
Figure 5-19) shows the new string inserted after the third line.

Figure 5-18. The original string containing five lines of text

The Split() method will accept either a character or a string to define the split points in a
string, but only the first character of the string is used. The Split() function, however, uses
the entire string parameter, of any length, to split the string. Both the Split() method and
the Split() function are very handy, but make sure you understand the difference in the way
they work.

Figure 5-19. The same string after "(inserted)" is inserted after the third line

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.17 also discusses text insertions. The difference between the Split() method and the Split() function is further
discussed in Recipe 5.44.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.19. Double-Spacing a String

Problem

You want to double-space a string comprised of multiple lines of text separated by newlines.

Solution

Use the String object's Replace() method to replace all vbNewLines with two vbNewLines.

Discussion

The Replace() method provides an easy solution to this problem. Simply replace each occurrence of a vbNewLine separating
the lines of text with a double vbNewLine:

 content = content.Replace(vbNewLine, vbNewLine & vbNewLine)

Figures 5-20 and 5-21 show a multiline example string before and after this replacement.

Figure 5-20. A string comprised of five lines of single-spaced text

Figure 5-21. The same string, double spaced

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 5.16 shows how to replace specific substrings within a larger string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.2. Creating a String of N Identical Characters

Problem

You need to create a string comprised of a single character repeated many times. These strings are sometimes useful in
the formatting of ASCII text for display or printed output.

Solution

Create a new string of repeated characters using the String class itself. One of its overloaded constructors accepts a
character to repeat and a repetition count.

Discussion

Most of the time you create string variables using the default constructor, which initializes the variables to Nothing. This
is why you must assign a string value to a string variable after creating it, but before using its contents. However, you
can use over-loaded versions of the string constructor to assign string data immediately upon creation. One version of
the string constructor takes a character and a count and efficiently builds a string by repeating the character the given
number of times. The following statement builds a string of 72 asterisks:

 Dim lotsOfAsterisks As New String("*"c, 72)

Visual Basic 2005 also provides a second way to create strings of duplicated characters. The StrDup() function, which is
very similar to the original String() function found in Visual Basic 6, does the trick:

 lotsOfAsterisks = StrDup(72, "*")

Notice the difference in the order of the parameters between the string constructor syntax and the function call.
Fortunately, Visual Studio's IntelliSense means you don't have to memorize the order of the parameters.

VB 6 Users' Update

The VB 6 String() function returns a string based on a count and the first character of the string:

 lotsOfAsterisks = String(72, "*")

Most sources mention only the new String constructor technique to create strings of duplicate characters
in Visual Basic 2005, but after doing a lot of timing tests, we've seen that the StrDup() function is very
nearly identical in speed and efficiency. Also, its syntax is much more like that of the original VB 6 String()
function. Use whichever technique suits you better.

See Also

Recipe 5.45 demonstrates another method of creating strings of a common character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.20. Formatting Numbers into Strings

Problem

You want to format a number into a string suitable for displaying or printing, something that provides formatting control
beyond the defaults.

Solution

Sample code folder: Chapter 05\ FormatNumbers

Apply the String object's Format() method, and use its custom formatting codes to get the output you desire.

Discussion

There are several ways and places in Visual Basic 2005 to apply formatting to numerical data. One of the best (and
possibly the easiest to remember) is the Format() method, available as a shared method of the String object. A few simple
examples will show you how to use this method:

 Dim intValue As Integer = 1234567
 Dim floatValue As Double = Math.PI
 Dim result As New System.Text.StringBuilder

 result.AppendLine(String.Format("{0} … {1}", _
 intValue, floatValue))
 result.AppendLine(String.Format("{0:N} … {1:E}", _
 intValue, floatValue))
 result.AppendLine(intValue.ToString("N5") & " … " & _
 floatValue.ToString("G5"))

 MsgBox(result.ToString())

This example formats an Integer and a Double in several different ways. Other numerical values, such as Long, Short, Single,
Decimal, and so on, can be formatted in the same ways. Figure 5-22 shows the result of applying the above formatting.

Figure 5-22. A sampling of the many ways numbers can be formatted into strings

The Format() method's first argument is a formatting string that indicates how to use the remaining arguments. It can
include zero or more zero-based position specifiers in curly braces. For instance, the text {1} says to insert the second
data argument at that position. Consider this line of code:

 result = String.Format(_
 "There are about {0} days in {1} years.", _
 365.25 * 3, 3, 17)

The first indexed specifier, {0}, inserts the first data argument, the calculated result of 365.25 * 3. The second indexed
formatting specifier, {1}, inserts the integer value 3 at that spot in the resulting string. The argument list also includes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

formatting specifier, {1}, inserts the integer value 3 at that spot in the resulting string. The argument list also includes
a third data element, 17, but because {2} does not appear in the format string, that argument is ignored.

You can use as many indexed formatting specifiers as you want in a single string, but you should always provide a
matching indexed argument in the method call following the string, and the first argument is always zero-based. You
can use the same argument more than once, you can use them in any order, and you can even skip some arguments.
The important thing to remember is to match carefully the index number in the brackets with the argument's position,
starting with zero.

When the index appears in the braces by itself, a default format is used. However, there are many formatting options
available to customize the formatting. In the previous sample code, the {0:N} formatted the number to contain commas
between every third digit, and {1:E} formatted the number using scientific notation. The Visual Studio online help
documentation for the Format() method lists the many formatting options in detail.

You might have noticed that the last formatting line in the example is quite different from the previous ones. If you
want to format a number into a string format without directly inserting it into a bigger string, you can use the many
formatting options of the ToString() method, a method available to every .NET object (although specially overloaded for
the numeric data types). In our example, the first number was formatted using "N5", which inserts commas and
formats the digits to five places after the decimal point. The second number was formatted using "G5", causing
"general" formatting of the number to five significant digits.

There are other formatting options for creating hexadecimal strings, formatting dates and times, formatting culture-
specific data such as currency values, and so on. Several of these formatting options are used throughout this book.
See the Visual Studio online documentation for specific predefined and custom format strings.

See Also

See the "String.Format" and "NumberFormatInfo Class" topics listed in the Visual Studio online help index. There are
many links to related information, so plan to explore the help content for a while.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.21. Trimming Sets of Characters from a String

Problem

You need to delete extraneous characters from each end of a string.

Solution

Use the String object's Trim() method, passing to it a list of all characters to be deleted.

Discussion

The following example deletes four letters from the head and tail ends of a string. The letters chosen are just for
demonstrating how the trim() method works; a real-world example of where this might be handy would be to remove
line numbers, colons, or other characters from the beginnings or ends of strings. As shown in Figure 5-23, the following
code causes the entire first word ("The") and the last character ("n") to be removed, or trimmed, from the string:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim trimChars() As Char = {"T"c, "h"c, "e"c, "n"c}
 Dim result As String = quote.Trim(trimChars)
 MsgBox(result)

Figure 5-23. Trimming specific characters from the head and tail ends of a string

You do not need to supply the characters in any particular order; all supplied characters will be trimmed. Trimming
continues until the first and last characters of the string are something other than those supplied to the trim() method. If
you supply no arguments to trim(), all whitespace characters are trimmed instead.

If you want to trim certain characters from either the start or end of the string, but not both, use the trimStart() and
TRimEnd() methods, respectively. They accept the same character-array argument as the trim() method.

See Also

Recipes 5.14 and 5.16 discuss related techniques.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.22. Identifying and Validating Types of Data in a String

Problem

You want to check a string variable to see whether it has been assigned a value, or if it can be converted to a number,
date, or time. This check can prevent an exception, and it can free your code from having to use an exception as part of
its testing logic.

Solution

Sample code folder: Chapter 05\StringTypes

Visual Basic 2005 has three string functions that help solve this problem: IsNothing(), IsNumeric(), and IsDate(). Use these to
test a string's contents before attempting conversions.

Discussion

The following code demonstrates the use of these three functions with data set to Nothing:

 Dim theData As String = Nothing
 Dim result As New System.Text.StringBuilder

 ' ----- Format nothing.
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.AppendLine(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))
 result.AppendLine()

String variables are normally undefined, assigned the value of Nothing. We specifically assigned theData the value Nothing in
the above code, but if we had left it blank Visual Studio would have questioned our motives and marked the first use of
theData with a warning, as shown in Figure 5-24. As you can see, the unassigned string variable has squiggly lines under
it, indicating a problem; hovering the mouse pointer over it causes the displayed explanation to pop up. This is a
nonfatal warning, and the program will still run.

Figure 5-24. Visual Studio warns you if you attempt to use a string that has no
data assigned to it

As shown in the first three lines of output displayed in Figure 5-25 (below), in this case the IsNumeric() and IsDate()
functions verify that the string does not represent a valid number or date, but it does pass the IsNothing() test, as
expected.

Next, the string is assigned a value that represents a valid number:

 ' ----- Format a number in a string.
 theData = "-12.345"
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.AppendLine(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))
 result.AppendLine()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result.AppendLine()

When the three tests are repeated, they match expectations. As shown in the middle three lines of output in Figure 5-
25, the IsNumeric() test now returns TRue, and the IsDate() and IsNothing() tests return False.

Finally, the string is assigned a valid date, and the three tests are repeated for the last time:

 ' ----- Format a date in a string.
 theData = "July 17, 2007"
 result.AppendLine(String.Format(_
 "IsNumeric({0}) … {1}", theData, IsNumeric(theData)))
 result.AppendLine(String.Format(_
 "IsDate({0}) … {1}", theData, IsDate(theData)))
 result.Append(String.Format(_
 "IsNothing({0}) … {1}", theData, IsNothing(theData)))

 MsgBox(result.ToString())

In this last case the IsDate() function returns true, and the other two tests return False, as shown in the last three lines of
output in Figure 5-25.

See Also

Recipes 5.24 and 5.25 show how to examine content for correct processing.

Figure 5-25. Results of testing a string's contents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.23. Converting Strings Between Encoding Systems

Problem

You need to convert string data to and from byte arrays using an encoding method matched to your data, environment,
or culture.

Solution

Sample code folder: Chapter 05\Encoding

Use System.Text.Encoding shared functions to convert between strings and byte arrays, using either UTF7, UTF8, Unicode,
or UTF32 encoding, as appropriate.

Discussion

The following code starts with a sample string and then converts it to four byte arrays, one for each type of encoding.
The length of each byte array will vary as a function of the encoding (to be explained in more detail later), so the Length
property of each array is formatted into a StringBuilder for display at the end of the code. The four byte arrays are then
converted back to Strings, using the same encoding in each case, and a quick check is made to verify that the resulting
strings match the original:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim result As New System.Text.StringBuilder

 ' ----- Convert a string to various formats.
 Dim bytesUTF7 As Byte() = _
 System.Text.Encoding.UTF7.GetBytes(quote)
 Dim bytesUTF8 As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 Dim bytesUnicode As Byte() = _
 System.Text.Encoding.Unicode.GetBytes(quote)
 Dim bytesUTF32 As Byte() = _
 System.Text.Encoding.UTF32.GetBytes(quote)

 ' ----- Show the converted results.
 result.Append("bytesUTF7.Length = ")
 result.AppendLine(bytesUTF7.Length.ToString())
 result.Append("bytesUTF8.Length = ")
 result.AppendLine(bytesUTF8.Length.ToString())
 result.Append("bytesUnicode.Length = ")
 result.AppendLine(bytesUnicode.Length.ToString())
 result.Append("bytesUTF32.Length = ")
 result.AppendLine(bytesUTF32.Length.ToString())

 ' ----- Convert everything back to standard strings.
 Dim fromUTF7 As String = _
 System.Text.Encoding.UTF7.GetString(bytesUTF7)
 Dim fromUTF8 As String = _
 System.Text.Encoding.UTF8.GetString(bytesUTF8)
 Dim fromUnicode As String = _
 System.Text.Encoding.Unicode.GetString(bytesUnicode)
 Dim fromUTF32 As String = _
 System.Text.Encoding.UTF32.GetString(bytesUTF32)

 ' ----- Check for conversion issues.
 If (fromUTF7 <> quote) Then _
 Throw New Exception("UTF7 Conversion Error")
 If (fromUTF8 <> quote) Then _
 Throw New Exception("UTF8 Conversion Error")
 If (fromUnicode <> quote) Then _
 Throw New Exception("Unicode Conversion Error")
 If (fromUTF32 <> quote) Then _
 Throw New Exception("UTF32 Conversion Error")

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

All strings in .NET are internally stored as two-byte Unicode characters. However, if each character of the string always
falls within a known range of characters, the string can be converted to a one-byte-per-character byte array.

UTF7 encoding converts each character of the string to a single byte with the assumption that only the lower seven bits
of each byte are used, leaving the highest-order bit as zero in all cases. This is true of ASCII characters with binary
values in the range 0to 127, which covers the normal range of English-language displayable and printable characters.

UTF8 is very similar to UTF7, but it also allows conversion of special characters in the byte value range 128 to 255. This
is the extended ASCII character set that is sometimes used for special purposes. UTF8 uses all eight bits of each byte to
define each character's value in the range 0 to 255.

Today's computer systems now invariably use the international standard Unicode character set, which requires two
bytes per character. Standard ASCII characters still fall within the same 0to 127 range in Unicode, so the second byte
of each Unicode character in this range is set to zero. Other languages and cultures have character sets with Unicode
integer values greater than 255, and Visual Basic strings handle them just fine.

UTF32 is not widely used, because it requires four bytes per character. However, even the two-byte Unicode characters
occasionally require multiple sequential characters to define the specialized characters defined in some languages.
UTF32 covers all possible characters in a simple four-bytes-per-character way, allowing internal processing
simplifications. Generally, most worldwide string data is stored on external media in the two-byte Unicode format. Only
occasionally is it converted to and processed as four-byte UTF32 bytes, and then only while in memory.

For most ASCII conversions, UTF8 is a good choice, requiring the same number of bytes as UTF7 but handling the full
range of character values from 0to 255. If squeezing bytes down to a minimum is not a mandate, Unicode is the safest
bet.

See Also

Recipe 5.11 shows how to store standard string data as byte values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.24. Determining a Character's Type

Problem

You want to determine if a character is a letter, a digit, whitespace, or any of several other types before processing it
further. This can avoid unexpected exceptions, or prevent having to use an exception on purpose to help determine the
type of a character.

Solution

Sample code folder: Chapter 05\CharType

Use one of the many type-testing shared methods of the Char object.

Discussion

The Char object includes several methods that let you determine if a character is part of a larger general category of
characters, such as the set of digits. The following code shows many of these in operation while it creates a handy
listing of the types of all characters in the ASCII range 0 to 127:

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim testChar As Char
 Dim testHex As String
 Dim soFar As Integer

 ' ----- Scan through the first half of the ASCII chart.
 For counter = 0 To 127
 ' ----- What character will we test this time?
 testChar = Chr(counter)
 testHex = "\x" & Hex(counter)

 If Char.IsLetter(testChar) Then _
 result.AppendLine(testHex & " IsLetter")
 If Char.IsControl(testChar) Then _
 result.AppendLine(testHex & " IsControl")

 If Char.IsDigit(testChar) Then _
 result.AppendLine(testHex & " IsDigit")
 If Char.IsLetterOrDigit(testChar) Then _
 result.AppendLine(testHex & " IsLetterOrDigit")
 If Char.IsLower(testChar) Then _
 result.AppendLine(testHex & " IsLower")
 If Char.IsNumber(testChar) Then _
 result.AppendLine(testHex & " IsNumber")
 If Char.IsPunctuation(testChar) Then _
 result.AppendLine(testHex & " IsPunctuation")
 If Char.IsSeparator(testChar) Then _
 result.AppendLine(testHex & " IsSeparator")
 If Char.IsSymbol(testChar) Then _
 result.AppendLine(testHex & " IsSymbol")
 If Char.IsUpper(testChar) Then _
 result.AppendLine(testHex & " IsUpper")
 If Char.IsWhiteSpace(testChar) Then _
 result.AppendLine(testHex & " IsWhiteSpace")

 ' ----- Display results in blocks of 16 characters.
 soFar += 1
 If ((soFar Mod 16) = 0) Then
 MsgBox(result.ToString())
 result.Length = 0
 End If
 Next counter

The message box displays the results for 16 characters at a time. Figure 5-26 shows the output displayed for the first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The message box displays the results for 16 characters at a time. Figure 5-26 shows the output displayed for the first
set of characters, and Figure 5-27 shows the results for characters with hexadecimal values in the range of some of the
ASCII digits and letters.

Figure 5-26. Characters with ASCII values 0 to 15 are mostly control characters

Figure 5-27. Characters in the range hexadecimal 30 to hexadecimal 3F are mostly
digits, letters, and numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that many characters fall into several categories. For example, the "0" (zero) character with hexadecimal value
30passes the test for IsDigit, IsLetterOrDigit, and IsNumber.

See Also

Recipe 5.22 includes examples of verifying logical data within strings, instead of the individual characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.25. Parsing Strings

Problem

You want to convert string data to several types of numeric or date/time variables in a consistent way.

Solution

Sample code folder: Chapter 05\ParseString

Use the Parse() method provided by all types of variables in Visual Basic 2005.

Discussion

The Parse() method is the counterpart to each object's ToString() method. That is, the string created by calling an object's
ToString() method will always be in a for-mat suitable for converting back to the same type of object using its Parse()
method. A few examples can help clarify this:

 Dim doubleParse As Double = Double.Parse("3.1416")
 Dim ushortParse As UShort = UShort.Parse("65533")
 Dim dateParse As Date = Date.Parse("December 25, 2007")

 MsgBox(String.Format(_
 "doubleParse: {0}{3}ushortParse: {1}{3}dateParse: {2}", _
 doubleParse, ushortParse, dateParse, vbNewLine))

As shown in Figure 5-28, the data items are stored in the variables as expected when they are parsed.

Figure 5-28. Converting string data to numeric and date/time formats

In many cases, you might want to first check the string to make sure it can be parsed to the desired type of variable
before making any attempt to do so. For example, use the IsDate() function to test a string to make sure it can be
converted successfully before calling a Date variable's Parse() method to parse the date from the string. If the string is not
convertible to the indicated data type, an exception will occur.

See Also

Recipe 5.22 discusses additional content-verification methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.26. Concatenating Strings

Problem

You want to concatenate strings quickly and efficiently.

Solution

Sample code folder: Chapter 05\Concatenate

Use the &= concatenation shortcut, or, even better, use a StringBuilder.

Discussion

Visual Basic 2005 offers a few tricks for working with strings more efficiently. The following code presents several
helpful techniques, from least to most efficient.

This approach simply concatenates two words and assigns the resulting string to a string variable:

 Dim quote As String
 quote = "The " & "important "

This is how additional string data was always concatenated to the end of a string in VB 6 and earlier versions of the
BASIC language:

 quote = quote & "thing "

Because .NET strings are immutable, this code copies the current contents of quote to a new location in memory, then
copies the short string "thing " to its tail end, and finally assigns the address of the resulting string to the quote variable,
marking the previous contents of quote for garbage collection. By the time you've repeat this type of command a few
times to concatenate more strings to the tail end of quote, a lot of bytes have gotten shuffled in memory.

This newer technique, available in Visual Basic 2005, provides an improved syntax, although timing tests seem to
indicate that a lot of string data is still being shuffled in memory:

 quote &= "is not to stop questioning. "
 quote &= "--Albert Einstein"

The StringBuilder is by far the better way to proceed when concatenating many strings end to end, and you'll find a lot of
examples of its use in this book. As shown here, you can run the Append() method on the results of another Append(),
which may or may not make it easier to read the code:

 Dim result As New _
 System.Text.StringBuilder("The important thing ")
 result.Append("is questioning. ")
 result.Append("--").Append("Albert ").Append("Einstein")

As explained in Recipe 5.1, the StringBuilder maintains an internal buffer of characters, not a true string, and the buffer
grows by doubling in size whenever room runs out during an Append() operation. String data is concatenated in place in
memory, which keeps the total clock cycles for concatenation way down compared to standard string techniques.

Just to round things out, these last few lines show some of the additional commands available when working with a
StringBuilder:

 result.Insert(23, "note to stop ")
 result.Replace("note", "not")
 result.Insert(0, quote & vbNewLine)

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

These lines complete the building of the string data displayed by the message box shown in Figure 5-29. The two
strings demonstrate that identical results are obtained even after we've manipulated the StringBuilder's contents.

Figure 5-29. The string built up using a StringBuilder

See Also

Recipe 5.1 and Recipe 5.27 discuss the StringBuilder class in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.27. Speeding Up String Manipulation

Problem

You want to see a timing-test-based example that shows just how much faster a StringBuilder can be than standard string
concatenation.

Solution

Sample code folder: Chapter 05\StringTime

Create a short routine to concatenate the string values of the numbers 1 to 10,000, first using direct concatenation to a
string variable and then using a StringBuilder. Use Date variables to calculate elapsed time for each loop in milliseconds,
and dis-play the results of each for comparison.

Discussion

Here's the code for doing the timing test. The two contestants are ready for the race. content is a conventional
immutable string, and result is the highly acclaimed StringBuilder challenger:

 Dim content As String = ""
 Dim result As New System.Text.StringBuilder

The supporting cast of characters is ready to rally to the cause. Here, counter is a loop counter, dateTime1 tHRough
dateTime3 are Date variables to hold instants in time, and loopCount provides the number of laps for the race:

 Dim counter As Integer
 Dim dateTime1 As Date
 Dim dateTime2 As Date
 Dim dateTime3 As Date
 Dim loopCount As Integer = 15000

The flag is waved to start the race, and the starting time is noted very accurately:

 Me.Cursor = Cursors.WaitCursor
 dateTime1 = Now

The first contestant runs all the loops, concatenating the string representations of the numbers for each lap into one big
string named content. The time of completion is carefully noted:

 For counter = 1 To loopCount
 content &= counter.ToString()
 Next counter
 dateTime2 = Now

The StringBuilder now runs the same laps, appending the same strings in its internal buffer. The time at completion is
accurately noted:

 For counter = 1 To loopCount
 result.Append(counter.ToString())
 Next counter
 dateTime3 = Now

The flag drops, signaling the crossing of the finish line for both contestants:

 Me.Cursor = Cursors.Default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.Cursor = Cursors.Default

In a moment, the results of the race appear:

 content = String.Format(_
 "First loop took {0:G4} ms, the second took {1:G4} ms.", _
 dateTime2.Subtract(dateTime1).TotalMilliseconds, _
 dateTime3.Subtract(dateTime2).TotalMilliseconds)
 MsgBox(content)

The results are shown in the message box displayed in Figure 5-30. Due to differences between systems, your results
may vary.

Figure 5-30. The StringBuilder is the clear winner of this race

To be fair, this race was highly contrived to help point out the difference in operational speed between string
concatenation and StringBuilder appending. If you create a loop in which the same strings are used each time, the timing
is much more equal. This is because Visual Basic handles immutable strings very intelligently, reusing existing strings
whenever possible and hence speeding up repetitive operations involving the same data. The test shown here creates a
unique string for each concatenation by converting the loop index number to a string, forcing a lot of extra string
creation and storage in memory during the loops.

When running this test yourself, you might need to adjust the value of loopCount for your system. If the race seems to
take too long, stop the program manually and adjust loopCount to a value a few thousand lower; if the race is too fast,
resulting in an apparent elapsed time of 0ms for the StringBuilder, bump up loopCount by a few thousand, and try again.

See Also

Recipe 5.1 and Recipe 5.26 provide additional discussion of strings and StringBuilder instances.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.28. Counting Occurrences of a Substring

Problem

You need to count occurrences of a specific word or substring in a string.

Solution

Sample code folder: Chapter 05\CountSubstring

There are three standard approaches to this problem:

Use the regular expression object (System.Text. RegularExpressions.Regex)to provide a count of the number of matches
on the string.

Use the Split() function to split the string using the specific substring as a split point, then use the length of the
resulting string array to determine the count.

Loop through the string using the IndexOf() method to find all occurrences of the substring.

Discussion

This recipe's sample code presents all three techniques. You can decide, based on your specific programming task,
which will work best for you. Here's the setup:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim count1 As Integer
 Dim count2 As Integer
 Dim count3 As Integer

With the first technique, the Regex.Matches() method returns a collection of matches on the searched-for string, and the
collection's Count property provides the number we want:

 count1 = Regex.Matches(quote, "(in)+").Count

The second technique splits the string using the searched-for string as the split point. The result of the split is a string
array, and its Length is one greater than the number of split points where each substring occurred:

 count2 = Split(quote, "in").Length - 1

The third technique involves a little more coding, but no string data is shuffled in memory during the search, resulting
in an efficient way to locate and count each occurrence of the searched-for string. The IndexOf() method searches for the
next occurrence of a string within another, optionally starting the search at an indexed location within the string:

 Dim content As String = "in"
 Dim position As Integer = -content.Length
 Do
 position = quote.IndexOf(content, position + content.Length)
 If (position < 0) Then Exit Do
 count3 += 1
 Loop

This lets the search proceed from occurrence to occurrence until IndexOf() runs out of matches and returns an index of1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This lets the search proceed from occurrence to occurrence until IndexOf() runs out of matches and returns an index of1.
count3 keeps count of the number of times the IndexOf() search is successful, providing a count of the occurrences.

The last line of the example code formats and displays the three counts, as shown in Figure 5-31:

 MsgBox(String.Format(_
 "{0}{3}{1}{3}{2}", count1, count2, count3, vbNewLine))

Figure 5-31. The substring "in" occurs four times in the sample string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.29. Padding a String for Exact Length and Alignment

Problem

You want to pad a string with spaces (or some other character) either on the head end, the tail end, or both ends, such
that the resulting string is n characters in total length.

Solution

Sample code folder: Chapter 05\PadString

Use the String. PadLeft() and String.PadRight() methods to pad the head and tail ends of the string, respectively, and use a
calculated combination of these two methods to pad the string on both ends.

Discussion

The PadLeft() and PadRight() methods take a count value that defines the target length of the string after sufficient spaces
are concatenated to it. An optional second parameter provides a character to use for the padding if you want something
other than spaces to be used. In the first block of code the default space characters are used for the padding:

 Dim content1 As String
 Dim content2 As String
 Dim content3 As String
 Dim content4 As String
 content1 = "Not padded"
 content2 = "PadLeft".PadLeft(50)
 content3 = "PadRight".PadRight(50)
 content4 = "PadCenter"
 content4 = content4.PadLeft((50 + _
 content4.Length) \ 2).PadRight(50)
 MsgBox(String.Format("{0}{4}{1}{4}{2}{4}{3}", _
 content1, content2, content3, content4, vbNewLine))

The PadCenter() calculation adds half of the required padding characters to the head end of the string, then pads out the
right end to the target length. The PadLeft() method is applied to the string first, and the PadRight() method is applied to
the result, all in a single line. Figure 5-32 shows the strings with the padding causing the text to align to the left, right,
and middle, depending on where the padding was applied.

Figure 5-32. Padding strings with spaces at the head, the tail, or both ends

Padding with spaces is often what you want to do in a real-world application, but for display purposes it isn't very
helpful. In Figure 5-32, for instance, you can't tell that "PadRight" has 50spaces at its end. Therefore, let's recode this
example, padding the strings with periods instead:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, padding the strings with periods instead:

 content1 = "Not padded"
 content2 = "PadLeft".PadLeft(50, "."c)
 content3 = "PadRight".PadRight(50, "."c)
 content4 = "PadCenter"
 content4 = content4.PadLeft((50 + content4.Length) \ 2, _
 "."c).PadRight(50, "."c)
 MsgBox(String.Format("{0}{4}{1}{4}{2}{4}{3}", _
 content1, content2, content3, content4, vbNewLine))

In this case, the same padding takes place, but with a period for the padding character. Figure 5-33 shows the result,
which is more meaningful than Figure 5-32.

Figure 5-33. The same padding as before, but using periods for padding instead of
spaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.3. Creating a String by Repeating a String N Times

Problem

You want a string comprised of a sequence of characters repeated many times. For example, you want to create a fancy
separator string comprised of alternating "+" and "~" characters, as shown in Figure 5-2.

Figure 5-2. A string formed by repeating two characters many times

Solution

Use a StringBuilder to append as many copies of the string as desired. Then convert the result to a true string using the
StringBuilder's ToString() method:

 Dim fancyString As New System.Text.StringBuilder
 For counter As Integer = 1 To 35
 fancyString.Append("+~")
 Next counter
 MsgBox(fancyString.ToString())

Discussion

Strings in .NET are immutable, which means that once they've been created, they sit in one spot in memory and can
never be modified. All functions that might appear to be changing a string's contents are actually making new copies of
the original string, modified en route. In most cases, immutability provides superior string handling and processing
capabilities, but when it comes to concatenating strings, the speed and efficiency advantages are nullified.

The StringBuilder object solves the concatenation dilemma nicely. It allows dynamic, in-place modification of a buffer
containing a sequence of string characters, without the need to constantly reallocate String objects. If the allocated
buffer space runs out, the StringBuilder efficiently and automatically doubles the number of bytes for its character
workspace, and it will do so as many times as are required to handle the strings and characters appended to it.

See Also

Recipe 5.27 shows how the StringBuilder alternative really is faster than standard string concatenation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.30. Converting Tabs to Spaces

Problem

You need to convert a string's tab characters to spaces while preserving the string's spacing.

Solution

Sample code folder: Chapter 05\TabsToSpaces

Create a function to convert tabs to spaces in the defined way:

 Public Function TabsToSpaces(ByVal source As String, _
 ByVal tabSize As Integer) As String
 ' ----- Replace tabs with space characters.
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 For counter = 0 To source.Length - 1
 If (source.Chars(counter) = vbTab) Then
 Do

 result.Append(Space(1))
 Loop Until ((result.Length Mod
tabSize) = 0)
 Else
 result.Append(source.Chars(counter))
 End If
 Next counter
 Return result.ToString()
 End Function

Discussion

The trick to replacing the tabs is to insert just the right number of spaces to preserve the original alignment of the text.
Tab characters generally shift the next character to a position that is an exact multiple of the tab spacing. In Visual
Studio, this spacing constant is often 4, but in many text editors, and even in the Windows Forms TextBox control, the
standard tab spacing is 8. The sample function accepts an argument to set the tab-spacing constant to any value.

The function uses a StringBuilder to rebuild the original string, replacing tabs with enough spaces to maintain the
alignment. The Chars property of the string makes it easy to access and process each individual character from the
string, and the Mod() function simplifies the math checks required to determine the number of spaces to insert.

This code shows the TabsToSpaces() function in use:

 Dim tabs As String = _
 "This~is~~a~tabbed~~~string".Replace("~"c, vbTab)
 Dim spaces As String = TabsToSpaces(tabs, 8)
 Dim periods As String = spaces.Replace(" "c, "."c)

The first line builds a string comprised of words separated by multiple tab characters. The tilde (~) characters provide a
visual way to see where the tabs will go, and the Replace() method replaces each tilde with a tab.

The second statement calls the new function and places the returned string in spaces. This string contains no tab
characters, but it does contain many spaces between the words.

The periods string provides a visual way to see the spaces more clearly. The Replace() method in this case replaces each
space with a period.

Figure 5-34 shows these three strings displayed on a form containing three TextBox controls. Setting the Font property to
Courier New, a fixed-width font, more clearly shows the alignment of the characters in the strings. The tab-spacing
constant in these text boxes is 8, which is the value passed to TabsToSpaces(), correctly replacing the tabs and
maintaining the original alignment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maintaining the original alignment.

See Also

Recipe 5.16 also discusses replacing substrings.

Figure 5-34. The same string with tabs, spaces instead of tabs, and periods
instead of spaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.31. Reversing a String

Problem

You want to reverse, or mirror image, the order of the characters in a string.

Solution

Use the StrReverse() function.

Discussion

The StrReverse() function makes reversing a string simple:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim reversed As String = StrReverse(quote)
 MsgBox(reversed)

Figure 5-35 shows the reversed string as displayed in the message box.

Figure 5-35. The sample string reversed

Another way to reverse a string is to process the characters yourself. This sample code scans through the string in
reverse order and appends each found character to a new StringBuilder instance:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 Dim counter As Integer
 Dim result As New System.Text.StringBuilder(quote.Length)

 For counter = quote.Length - 1 To 0 Step -1
 result.Append(quote.Chars(counter))
 Next counter

 Dim reversed As String = result.ToString()
 MsgBox(reversed)

The overloaded constructor for the StringBuilder accepts an optional parameter defining the capacity the StringBuilder should
use for its internal character buffer. Since we know the reversed string will be the same length as the original, the
capacity can be set to exactly the amount needed. This prevents the StringBuilder from having to double its capacity when
it runs low on space while appending characters (see Recipe 5.1). Using the Chars property of the string to grab
characters and setting the initial capacity of the StringBuilder in this way ensures that the character bytes are transferred
in memory just once in a tight, efficient loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.32. Shuffling a String

Problem

You want to shuffle the order of the characters in a string quickly but thoroughly.

Solution

Sample code folder: Chapter 05\StringShuffle

The best technique is to loop through each character location once, swapping the character at that location with a
character at a random location anywhere in the string.

Discussion

The basic algorithm for shuffling a string, as presented here, is also good for shuffling arrays or any other ordered data.
This algorithm takes a finite amount of time to run, and the results are as random as the random number generator
used.

A walk through the code explains the process clearly. These lines declare the variables required and initialize the
random number generator to a unique sequence, using the system clock for the random number generator's seed:

 Dim counter As Integer
 Dim position As Integer
 Dim holdChar As Char
 Dim jumbleMethod As New Random
 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

To manipulate the individual characters of the string, it's best to convert the string to a character array:

 Dim chars() As Char = CType(quote, Char())

This allows for swapping the characters in memory without having to make multiple copies of immutable strings. You
can directly access a string's individual characters using the string's Chars property, but this property is read-only. In this
case, we need to store new characters into the string's locations during each swap.

The following loop is the core of the shuffling algorithm:

 For counter = 0 To chars.Length - 1
 position = jumbleMethod.Next Mod chars.Length
 holdChar = chars(counter)
 chars(counter) = chars(position)
 chars(position) = holdChar
 Next counter

Each character is sequentially processed by swapping it with another character located randomly at any position in the
string. This means that a character might even get swapped with itself occasionally, but that does not reduce the
randomness of the results. This loop guarantees that each character gets swapped at least once, but statistically
speaking each character gets swapped twice, on average.

The last two lines convert the character array back to a string and then display the result in a message box, as shown
in Figure 5-36:

 Dim result As String = New String(chars)
 MsgBox(result)

Figure 5-36. The shuffled string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-36. The shuffled string

The sample string will be shuffled into a unique random order every time the sample code is run.

See Also

Recipes 6.27 and 8.5 show additional uses of random numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.33. Using a Simple String Encryption

Problem

You want to encrypt a string using a key. The encrypted result should be a displayable and printable string of standard
ASCII characters.

Solution

Sample code folder: Chapter 05\EncryptString

The following short class defines a SimpleCrypt object containing shared functions for encrypting and decrypting a string.
In addition to the string to be encrypted or decrypted, an integer is passed to each function to serve as the key:

 Public Class SimpleCrypt
 Public Shared Function Encrypt(ByVal source As String, _
 ByVal theKey As Integer) As String
 ' ----- Encrypt a string.
 Dim counter As Integer
 Dim jumbleMethod As New Random(theKey)
 Dim keySet(source.Length - 1) As Byte
 Dim sourceBytes() As Byte = _
 System.Text.Encoding.UTF8.GetBytes(source)

 jumbleMethod.NextBytes(keySet)
 For counter = 0 To sourceBytes.Length - 1
 sourceBytes(counter) = _
 sourceBytes(counter) Xor keySet(counter)
 Next counter

 Return Convert.ToBase64String(sourceBytes)
 End Function

 Public Shared Function Decrypt(ByVal source As String, _
 ByVal theKey As Integer) As String
 ' ----- Decrypt a previously encrypted string.
 Dim counter As Integer
 Dim jumbleMethod As New Random(theKey)
 Dim sourceBytes() As Byte = _
 Convert.FromBase64String(source)
 Dim keySet(sourceBytes.Length - 1) As Byte

 jumbleMethod.NextBytes(keySet)
 For counter = 0 To sourceBytes.Length - 1
 sourceBytes(counter) = _
 sourceBytes(counter) Xor keySet(counter)
 Next counter

 Return System.Text.Encoding.UTF8.GetString(sourceBytes)
 End Function
 End Class

Discussion

The following code calls the shared functions of the SimpleCrypt class to encrypt a sample string using a key integer value
of 123456789, and then decrypts the results using the same key:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 Dim myKey As Integer = 123456789
 Dim encrypted As String = SimpleCrypt.Encrypt(quote, myKey)
 Dim decrypted As String = _
 SimpleCrypt.Decrypt(encrypted, myKey)
 MsgBox(quote & vbNewLine & encrypted & vbNewLine & decrypted)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(quote & vbNewLine & encrypted & vbNewLine & decrypted)

The encryption function first converts the string to a byte array using UTF8 encoding. Each byte is then Xor'd with a
predictable sequence of pseudorandom bytes seeded using the given key integer, and the resulting byte array is
converted back to a string. Since this encrypted string likely contains ASCII characters in the range of control and
nonprintable characters, the string is then converted to a slightly longer Base64 string comprised of displayable
characters.

The decryption function reverses the order of these same steps. First, the Base64 string is converted to a byte array,
and the same set of pseudorandom bytes is Xor'd with these bytes to recover the bytes of the original string. Figure 5-
37 shows the original string, the encrypted version of this string using a key value of 123456789, and the string that
results by decrypting this Base64 string using the same key. As expected, the original string is restored.

Figure 5-37. Encrypting and decrypting a string using a key integer

The Random object can return an array of pseudorandom bytes with any desired length. This lets the code generate the
required number of bytes used in the Xor process with only one call to the Random object.

The supplied key is any integer value from 0 to the maximum value for signed integers, which is 2,147,483,647. You
can use a negative integer, but the Random class will automatically take its absolute value as the seed.

With over two billion unique seeds, the average user won't be able to break this simple encryption easily. For quick,
simple, relatively secure encryption for typical users, this class can serve you well. However, in cryptographic circles
this level of encryption is considered dangerously poor, so be sure to check out Chapter 16 if you need to use
something more serious and well tested by the cryptographic community.

See Also

See Chapter 16 for more encryption topics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.34. Converting a String to Morse Code

Problem

You want to convert a text string to Morse code characters.

Solution

Sample code folder: Chapter 05\MorseCode

Use the IndexOf() string method to look up and cross-reference characters to string array entries representing each
Morse code character.

Discussion

The following code converts the string "Hello world!" to a string that displays the Morse code "dahs" and "dits" for each
character:

 Dim source As String = "Hello world!"
 Dim characters As String = _
 "~ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,:?'-/"""
 Dim morse() As String = { _
 "?", ".-", "-…", "-.-.", "-..", ".", "..-.", "--.", "….", _
 "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", _
 "--.-", ".-.", "…", "-", "..-", "…-", ".--", "-..-", _
 "-.--", "--..", "-----", ".----", "..---", "…--", _
 "….-", "…..", "-….", "--…", "---..", "----.", _
 ".-.-.-", "--..--", "---…", "..--..", ".----.", _
 "-….-", "-..-.", ".-..-."}

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim position As Integer

 For counter = 0 To source.Length - 1
 position = characters.IndexOf(Char.ToUpper(_
 source.Chars(counter)))
 If (position < 0) Then position = 0
 result.Append(source.Substring(counter, 1))
 result.Append(Space(5))
 result.AppendLine(morse(position))
 Next counter

 MsgBox(result.ToString())

For most people this code is not all that useful, but there are some interesting details to be learned from this example.
For instance, the second line assigns the standard set of characters covered by Morse code to a string named characters.
Notice that at the tail end of this string there are three quote characters in a row. The last one terminates the string, as
expected, and the pair just before the last one demonstrates how to enter a single-quote character into a string. By
doubling up the quote character, you tell the Visual Basic compiler to enter one double-quote character and not to
terminate the string.

At the head of the characters string is a tilde (~) character. This is not a Morse code character, but it provides a way to
catch all characters in the string to be converted that aren't found in the set of Morse code characters. For example, in
the test string "Hello world!" there's an exclamation point, which is not defined in the table of International Morse code
characters. When the IndexOf() method attempts to find this exclamation point in characters, a value of1 is returned. This
value is changed to zero, which indexes to the question-mark sequence in the Morse() string array. Figure 5-38 shows
how the sample string ends up with a question mark instead of the unavailable exclamation point.

Figure 5-38. The Morse code equivalent of the standard "Hello World!" string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-38. The Morse code equivalent of the standard "Hello World!" string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.35. Adding Strings to an Application's Resources

Problem

You need to store and edit strings in an application's resources. This makes it easy to internationalize the application by changing the
strings for each culture.

Solution

To edit the resource strings in the Visual Studio environment, open the project's properties page, and select the Resources tab on the left.
Edit the table of string entries, changing the Name, Value, and Comment fields as required.

In the application, refer to each string through the My.Resources object.

Discussion

In Visual Studio, it's very easy to maintain a table of strings in the application's resources. Figure 5-39 shows the project's properties page
with the Resources tab selected along the left side.

Figure 5-39. Editing resource strings in Visual Studio

The example shows two resource strings, one named Caption and the other named Text. As the following code shows, in the application
these two strings are referenced by name through the My.Resources object. This code then displays a message box using the two strings
from the resources, as shown in Figure 5-40:

 Dim stringText As String = My.Resources.Text
 Dim stringCaption As String = My.Resources.Caption
 MsgBox(stringText, , stringCaption)

Figure 5-40. The results of editing the message box's Caption and Text properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-40. The results of editing the message box's Caption and Text properties

Other types of resources can be added, such as images, sounds, and other files. Each of these resources is accessed in the application
through the My.Resources object.

See Also

See Chapter 10for an example of storing and using media files in your application's resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.36. Converting Any Data to a String

Problem

You have an instance of data and want to convert it to its default string representation.

Solution

Sample code folder: Chapter 05\UseToString

Use the ToString() method, which is included in all .NET objects, to return a general string for an object instance. To get
you started, the following code demonstrates the default ToString() method on several types of variables:

 Dim someInt As Integer = 123
 Dim someDouble As Double = Math.PI
 Dim someString As String = "Testing"
 Dim someDate As Date = #7/4/1776 9:10:11 AM#
 Dim someDecimal As Decimal = 1D / 3D
 Dim result As New System.Text.StringBuilder

 result.Append("someInt.ToString ")
 result.AppendLine(someInt.ToString())

 result.Append("someDouble.ToString ")
 result.AppendLine(someDouble.ToString())

 result.Append("someString.ToString ")
 result.AppendLine(someString.ToString())

 result.Append("someDate.ToString ")
 result.AppendLine(someDate.ToString())

 result.Append("someDecimal.ToString ")
 result.Append(someDecimal.ToString())

 MsgBox(result.ToString())

Discussion

Figure 5-41 shows the results displayed by the sample code. Default formatting is used for all these ToString() methods.

The ToString() method is often overloaded to support a variety of formatting options, depending on the type of variable.
This lets you convert doubles, for instance, to scientific or other formats. Check the Visual Studio online help resources
for the ToString() method for each type of variable to discover the formatting options available.

All objects sport a ToString() method because all objects inherit it from System.Object. An example used repeatedly
throughout this chapter is the StringBuilder class, which returns its internal character buffer converted to a string through
its ToString() method.

Figure 5-41. Results of converting several variable types by using the ToString()
method on each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you create your own classes, consider adding both a ToString() method and a corresponding Parse() method if the
object's state can be represented as a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.37. Using Regular Expressions to Extract All Numbers

Problem

You want to extract all numbers from a string that has extra whitespace, text, and other nonnumeric characters
interspersed throughout.

Solution

Sample code folder: Chapter 05\RegexExtractNum

Use a regular expression (Regex) object to identify and parse out a list of all numbers in the string.

Discussion

This is a very tricky problem if the exact format of the string is not known. Identifying exactly which sets of characters
are parts of numbers with accuracy in all cases can be difficult. Negative signs, scientific notation, and other
complications can arise. Fortunately, the regular expression object greatly simplifies the task. The fol-lowing code
demonstrates how it works:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim source As String = _
 "This 321.0 string -0.020 contains " & _
 "3.0E-17 several 1 2. 34 numbers"
 Dim result As String
 Dim parser As New _
 Regex("[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?")

 Dim sourceMatches As MatchCollection = _
 parser.
Matches(source)
 Dim counter As Integer

 result = "Count: " & _
 sourceMatches.Count.ToString() & vbNewLine
 For counter = 0 To sourceMatches.Count - 1
 result &= vbNewLine
 result &= sourceMatches(counter).Value.ToString()
 result &= Space(5)
 result &= CDbl(sourceMatches(counter).Value).ToString()
 Next counter
 MsgBox(result)

The string to be parsed is source, which contains a variety of integer and floating-point numbers, both positive and
negative, with words and other nonnumeric characters mixed in. A Regex object named parser is instantiated using a
specially crafted regular expression designed to locate all conventionally defined numbers. The Matches() method of the
Regex object is applied to the string, and a collection of Matches is returned. This collection's Count property provides a
tally of how many numbers were found in the string. Each item in the Matches collection has a Value property with a
ToString() method that converts the numeric value to a string.

Figure 5-42 shows the results of parsing the sample string, listing the numbers found using the regular expression. The
Matches value displays the string exactly as copied from the original string. That's the first number on lines 27 in the
message box. The second number shows the string converted to a Double and then back to a string. The reason for this
extra step is to verify that the match string does convert to a numeric value.

Figure 5-42. Parsing the sample string reveals all the numbers it contains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-42. Parsing the sample string reveals all the numbers it contains

The regular expression presented in this example is one of many that can be found on
multiple Internet web sites. The Internet provides a great resource for locating regular
expressions for any specific purposes.

See Also

Recipe 5.38 also discusses regular expression processing. The following web sites are just some of the many places on
the Internet that provide regular expression samples:

http://www.regular-expressions.info/examples.html
http://sitescooper.org/tao_regexps.html
http://en.wikipedia.org/wiki/Regular_expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38. Getting a Count of Regular Expression Matches

Problem

You want a quick count of the number of matches a regular expression finds in a string.

Solution

Sample code folder: Chapter 05\RegexCountMatch

Use the Count property of the Matches() method of the Regex object.

Discussion

The following example code shows how to use regular expressions to count words in a string, as defined by the pattern
\w+:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim parser As New Regex("\w+")
 Dim totalMatches As Integer = parser.Matches(quote).Count
 MsgBox(quote & vbNewLine & "Number words: " & _
 totalMatches.ToString)

This example returns a count of the number of matches, not a collection of matches. Figure 5-43 shows the results as
displayed by the message box.

Figure 5-43. Using the Regex object to count words in a string

This technique can be useful for many other types of regular expression searches, too. For example, the regular
expression shown in Recipe 5.37 can be used to quickly determine the number of numbers of all types in a string of any
size.

See Also

Recipes 5.13 and 5.37 discuss regular expression processing in additional detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.39. Getting the Nth Regular Expression Match

Problem

You want to get the nth match of a regular expression search within a string.

Solution

Sample code folder: Chapter 05\RegexMatchN

Use the Regex object to return a MatchCollection based on the regular expression. The nth match is accessed by indexing
item n1 in the collection.

Discussion

The following code finds all numbers in a sample string, returning all matches as a MatchCollection. In this example, the
regular expression accesses the third match in the zero-based collection as item number 2:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim source As String = "This 7. string -0.02 " & _
 "contains 003.141600 several 0.9 numbers"
 Dim parser As New Regex(_
 "[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?")
 Dim sourceMatches As MatchCollection = _
 parser.Matches(source)
 Dim result As Double = CDbl(sourceMatches(2).Value)
 MsgBox(source & vbNewLine & "The 3rd number: " & _
 result.ToString())

Figure 5-44 shows the third number found in the string.

Figure 5-44. Using a regular expression to find the nth match in a string

See Also

Recipe 5.37 discusses the specific regular expression pattern used in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.4. Obfuscating a String

Problem

You need to store a string in such a way that a user won't recognize it, but you also want to make sure that the string
stays the same length and that it contains only printable ASCII characters.

Solution

Sample code folder: Chapter 05\ObfuscateString

Process each printable character of the string by shifting its ASCII value to that of another character within the same
set. The following two functions can be used to obfuscate strings in this way and then return them to their original
states:

 Public Function Obfuscate(ByVal origText As String) As String
 ' ----- Make a string unreadable, but retrievable.
 Dim textBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(origText)
 For counter As Integer = 0 To textBytes.Length - 1
 If (textBytes(counter) > 31) And _
 (textBytes(counter) < 127) Then
 textBytes(counter) += CByte(counter Mod 31 + 1)
 If (textBytes(counter) > 126) Then _
 textBytes(counter) -= CByte(95)
 End If
 Next counter
 Return System.Text.Encoding.UTF8.GetChars(textBytes)
 End Function

 Public Function DeObfuscate(ByVal origText As String) _
 As String
 ' ----- Restore a previously obfuscated string.
 Dim textBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(origText)
 For counter As Integer = 0 To textBytes.Length - 1
 If (textBytes(counter) > 31) And _
 (textBytes(counter) < 127) Then
 textBytes(counter) -= CByte(counter Mod 31 + 1)
 If (textBytes(counter) < 32) Then _
 textBytes(counter) += CByte(95)
 End If
 Next counter
 Return System.Text.Encoding.UTF8.GetChars(textBytes)
 End Function

Figure 5-3 shows a string before and after calling Obfuscate(), and after returning it to its original state by calling
DeObfuscate().

Figure 5-3. Results of obfuscating a string to make it unreadable, then
deobfuscating it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Discussion

The Obfuscate() function lets you modify strings to an unreadable state without resorting to full-blown cryptographic
techniques. An example of where this might come in handy is for storing string data in the registry in such a manner
that the original contents are not easily searched for and that the typical user won't recognize the data.

When modifying individual bytes of a string, it's often best to first convert the string to an array of bytes, as shown in
these functions. You can freely modify the byte values in place, unlike the contents of the immutable string they came
from, and generate a new string result by converting the entire byte array in one function call.

If you work with international character sets, consider using the Unicode versions of the encoding conversion functions
instead of the UTF8 versions. The byte arrays will be twice as large, but you should be able to handle other sets of
characters. You'll also need to pay close attention to the numerical shift of the byte values, modifying the above code to
keep the results within the desired range of characters.

See Also

Recipe 5.23 discusses additional modifications to strings that can be reversed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.40. Compiling Regular Expressions for Speed

Problem

You want to compile a regular expression to maximize runtime speed.

Solution

Sample code folder: Chapter 05\RegexDLL

There are two steps to this solution, best described by working through an example. The first step is to run the code to create the
compiled DLL file, and the second is to use the new compiled regular expression in one or more applications.

Discussion

First, run the following code one time only to compile and create a DLL file containing a regular expression, in this case using a pattern
designed to find all numbers in a string:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim numPattern As String = _
 "[-+]?([0-9]*\.)?[0-9]+([eE][-+]?[0-9]+)?"
 Dim wordPattern As String = "\w+"
 Dim whichNamespace As String = "NumbersRegex"
 Dim isPublic As Boolean = True

 Dim compNumbers As New RegexCompilationInfo(numPattern, _
 RegexOptions.Compiled, "RgxNumbers", _
 whichNamespace, isPublic)
 Dim compWords As New RegexCompilationInfo(wordPattern, _
 RegexOptions.Compiled, "RgxWords", whichNamespace, _
 isPublic)
 Dim compAll() As RegexCompilationInfo = _
 {compNumbers, compWords}

 Dim whichAssembly As New _
 System.Reflection.AssemblyName("RgxNumbersWords")
 Regex.CompileToAssembly(compAll, whichAssembly)

This code creates a new file named RgxNumbersWords.dll that contains the compiled regular expression. The file is created in the same
folder in which the executable program is located.

To use the new DLL in an application, you need to add a reference to it. Right-click on References in the Solution Explorer, click the
Browse tab, find the DLL file in the folder where the application's EXE file is located, and select it to add the reference. Figure 5-45
shows the new reference in the Solution Explorer.

Figure 5-45. The DLL file named RgxNumbersWords added to the References list in the
Solution Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You also need to import the namespace defined in this DLL into your application. Either add an Imports command at the top of your source
code or, in the Project Properties window, select the References tab, and place a checkmark next to the name of the namespace, as
shown in Figure 5-46.

Figure 5-46. Importing a namespace via the Project Properties window

Once the new DLL is referenced and its object's namespace has been imported, you can use the compiled regular expression in an
application. The following code uses the new RgxNumbers regular expression to count the numbers in a string:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…
 Dim source As String = _
 "Making a Pi (3.1415926) is easy as One 1 Two 2 Three 3"
 Dim parser As New RgxNumbers
 Dim totalMatches As Integer = parser.Matches(source).Count

 MsgBox(source & vbNewLine & "Number count: " & _
 totalMatches.ToString())

Figure 5-47 shows the result of running this code to determine how many numbers are in the sample string.

Figure 5-47. Quickly counting numbers in a string using the compiled regular expression

See Also

Recipe 5.37 also discusses regular expression processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.41. Using Regular Expressions to Validate Data

Problem

You need to validate string data entered by a user to ensure it meets defined criteria.

Solution

Sample code folder: Chapter 05\RegexValidate

Use a regular expression to check the string to make sure it matches the type of data expected.

Discussion

The Internet is a good place to find a wide range of regular expressions to validate strings using specific rules, and this
recipe won't attempt to list them all. Instead, the following code, which validates a String as an email address,
demonstrates a specific example to show you the general technique involved:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim testString As String
 Dim emailPattern As String = _
 "^([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@" & _
 "([-0-9a-zA-Z]+[.])+[a-zA-Z]{2,6}$"

 testString = "johndoe@nowhere.com"
 MsgBox(testString & Space(3) & _
 Regex.
IsMatch(testString, emailPattern))

 testString = "john@doe@mybad.com"
 MsgBox(testString & Space(3) & _
 Regex.IsMatch(testString, emailPattern))

This regular expression checks a string to see if it is a valid email address. As shown in Figures 5-48 and 5-49, the first
string passes the test, but the second has a problem. In general, the IsMatch() method returns TRue if the string matches
the criteria defined in the regular expression and False if it fails the test.

Figure 5-48. A string that passes the regular expression test for valid email
addresses

Figure 5-49. A string that fails the regular expression test designed to validate it
as a legal email address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a legal email address

See Also

Recipe 5.22 also discusses data validation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.42. Using Regular Expressions to Count Characters, Words,
or Lines

Problem

You want to count the characters, words, and lines in a string.

Solution

Sample code folder: Chapter 05\RegexCountParts

Use separate regular expressions to count words, characters, and lines in a string of any length.

Discussion

The following code demonstrates three very short regular expressions that provide simple counts of characters, words,
and lines in a string of any length:

 Imports System.Text.RegularExpressions

 ' …Later, in a method…

 Dim quote As String = _
 "The important thing" & vbNewLine & _
 "is not to stop questioning." & vbNewLine & _
 "--Albert Einstein" & vbNewLine
 Dim numBytes As Integer = quote.Length * 2
 Dim numChars As Integer = Regex.Matches(quote, ".").Count
 Dim numWords As Integer = Regex.Matches(quote, "\w+").Count
 Dim numLines As Integer = Regex.Matches(quote, ".+\n*").Count
 MsgBox(String.Format(_
 "{0}{5}bytes: {1}{5}Chars: {2}{5}Words: {3}{5}Lines: {4}", _
 quote, numBytes, numChars, numWords, numLines, vbNewLine))

The number of bytes in the string is also displayed, as shown in Figure 5-50, but the string's Length property provides
this count directly without having to resort to a regular expression.

Figure 5-50. Using simple regular expressions to count characters, words, or lines
in a string

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38 also discusses the results of regular expression processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.43. Converting a String to and from Base64

Problem

You want to convert a string to or from Base64 format for predictable transfer across a network.

Solution

Sample code folder: Chapter 05\Base64

To convert a string to Base64, first use System.Text.Encoding methods to convert the string to a byte array and then use
the Convert.ToBase64String() method to convert the byte array to a Base64 string.

To convert a Base64 string back to the original string, use Convert. FromBase64String() to convert the string to a byte array,
and then use the appropriate System.Text.Encoding method to convert the byte array to a string.

Discussion

The following code demonstrates these steps as it converts a sample string to Base64 and back again:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim quoteBytes As Byte() = _
 System.Text.Encoding.UTF8.GetBytes(quote)
 Dim quote64 As String = Convert.ToBase64String(quoteBytes)
 Dim byteSet As Byte() = Convert.FromBase64String(quote64)
 Dim result As String = _
 System.Text.Encoding.UTF8.GetString(byteSet)
 MsgBox(quote & vbNewLine & quote64 & vbNewLine & result)

UTF8 encoding is used because the sample string's characters all fall within the range of standard ASCII characters. For
other character sets, it's best to use Unicode encoding, in which case you should change both occurrences of "UTF8" to
"Unicode" in the code sample. The byte array and the Base64 string will each be twice as large when using Unicode, but
this eliminates the possibility of any data loss during the conversions.

Figure 5-51 shows the results of the above conversions as displayed by the message box.

Figure 5-51. A sample string converted to Base64 and back again

See Also

Recipe 5.33 also shows how to convert string data into an alternative format that uses only printable characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.44. Splitting a String

Problem

You want to split a string using a multicharacter string rather than a single character as the split point, but the String
object's Split() method only splits using one or more individual characters.

Solution

Sample code folder: Chapter 05\SplitString

You can use the Visual Basic Split() function instead of the String.Split() method, or you can pass an array of strings to
String.Split().

Discussion

The following code shows the differences between using the Split() function and the String.Split() method:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"
 Dim strArray1() As String = Split(quote, "ing")
 Dim strArray2() As String = quote.Split(CChar("ing"))
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 For counter = 0 To strArray1.Length - 1
 result.AppendLine(strArray1(counter))
 Next counter
 result.AppendLine(StrDup(30, "-"))

 For counter = 0 To strArray2.Length - 1
 result.AppendLine(strArray2(counter))
 Next counter
 MsgBox(result.ToString())

String array strArray1 is created by applying the Split() function to the sample string, splitting the string at all occurrences
of "ing". strArray2 uses the String.Split() method to do the same thing. However, even though the string "ing" is passed to
the String.Split() method to define the split points, only the first character of this string, the character "i," is used to make
the splits. The results of these two splits are quite different, as shown in the output displayed in the message box in
Figure 5-52.

Figure 5-52. Results of passing the Split() function and the Split() method a
multicharacter string as the split point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To confuse the issue even further, it is possible to use the String.Split() method to split a string at whole substring
boundaries, but only by passing an array of strings to the method to define the split points (not just a simple string)
and passing a required parameter defining split options. The following two lines of code demonstrate this technique,
returning the desired results. The first line uses the Visual Basic function, and the second line uses the string array
technique just described:

 Dim strArray1() As String = Split(quote, "ing")
 Dim strArray1() As String = _
 quote.Split(New String() {"ing"}, StringSplitOptions.None)

Both String() options are very powerful and useful, but you do need to use the correct one, passing appropriate
parameters.

See Also

Recipe 5.28 also discusses string parsing using Split().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.45. Creating a String of Space Characters

Problem

You want to create a string of n space characters.

Solution

Use the Space(N) function, which returns a string of n space characters.

Discussion

The following sample code actually presents three different ways to create a string of n spaces. In most cases the
Space() function works quite well to create the spaces, but it's informative to compare the three techniques:

 Dim lotsOfSpaces1 As String = New String(" "c, 500)
 Dim lotsOfSpaces2 As String = StrDup(500, " "c)
 Dim lotsOfSpaces3 As String = Space(500)
 Dim result As String = String.Format(_
 "Length of lotsOfSpaces1: {0}{3}" & _
 "Length of lotsOfSpaces2: {1}{3}" & _
 "Length of lotsOfSpaces3: {2}{3}", _
 lotsOfSpaces1.Length, _
 lotsOfSpaces2.Length, _
 lotsOfSpaces3.Length, vbNewLine)
 MsgBox(result)

The String constructor is overloaded to initialize strings as they are created in several ways. As shown in the first
statement above, you can create a new string comprised of n repetitions of any character (in this case, a space
character).

The StrDup() function is similar in operation in that it also returns a string comprised of n occurrences of a given
character. Both the String constructor and the StrDup() function are useful when the repeated character is something other
than a space.

Finally, the Space() function returns a string comprised of n space characters, without the option to use any other
character.

The rest of the code displays the lengths of the three strings of spaces to help verify that they were created as
indicated, as shown in Figure 5-53.

Figure 5-53. Three identical long strings of spaces created in three different ways

See Also

Recipe 5.2 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.5. Converting Binary Data to a Hexadecimal String

Problem

You need to convert a byte array to a hexadecimal string. This is handy for the display or documentation of binary data.

Solution

Use a bit converter to get the hexadecimal representation of each byte within a block of data. The following code generates the hexadecimal string from
source data:

 Dim result As String = Replace(BitConverter.ToString(_
 origBytes), "-", "")

Discussion

There are several approaches to solving this problem. A quick review of some of these approaches will demonstrate several different programming
techniques available to you in Visual Basic 2005.

The code samples in this recipe assume a byte array named origBytes built using the following code, which creates a byte array of length 256 containing
one each of the byte values 0 through 255:

 Dim origBytes(255) As Byte
 For counter As Byte = 0 To 255
 origBytes(counter) = counter
 Next counter

The first approach is somewhat "brute force" in nature. Each byte of the array is converted to a two-character string using one of the many formatting
options of the byte's ToString() method. These short strings are concatenated to the result string one at a time:

 Dim result As String = ""
 For counter As Byte = 0 To 255
 result &= origBytes(counter).ToString("X2")
 Next counter

This is fine for small arrays of bytes, but the string concatenation quickly becomes problematic as the byte count increases. The next approach uses a
StringBuilder to make the concatenation more efficient for large data sources:

 Dim workText As New System.Text.StringBuilder(600)
 For counter = 0 To 255
 workText.Append(origBytes(counter).ToString("X2"))
 Next counter
 Dim result As String = workText.ToString()

This solution runs faster, but it seems to lack the elegance and power we expect of Visual Basic. Fortunately, the .NET Framework is full of surprises,
and of useful objects too. The BitConverter object provides a shared method that converts an entire array of bytes to a hexadecimal string in one call. The
resulting string has dashes between each pair of hexadecimal characters. This can be nice in some circumstances, but in this case, we're trying to
create a compact hexadecimal string comprised of only two characters for each byte. The following two lines of code show how to call the
BitConverter.ToString() method, and then squeeze out all the dashes using a single call to the Replace() function:

 Dim result As String
 result = BitConverter.ToString(origBytes) '00-3F-F7 etc.
 result = Replace(result, "-", "") '003FF7 etc.

The solution presented first in this recipe is the result of combining these two function calls into a single line of code. Figure 5-4
hexadecimal string displaying all possible byte values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4. The hexadecimal string equivalent of a byte array comprised of the values 0 to 255

See Also

Recipes 5.16 and 5.26 show other useful ways of modifying portions of strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.6. Extracting Substrings from Larger Strings

Problem

You want to extract substrings located at the left end, the right end, or somewhere in the middle of a string.

Solution

Visual Basic 2005 strings now have a built-in method named Substring() that provides an alternative to the traditional
Visual Basic functions Left(), Mid(), and Right(), although the language retains these features if you wish to use them. To
emulate each of these functions, set the Substring() method's parameters appropriately. The following code shows how to
do this:

 Dim quote As String = "The important thing is not to " & _
 "stop questioning. --Albert Einstein"

 ' ----- Left(quote, 3) … "The"
 MsgBox(quote.Substring(0, 3))

 ' ----- Mid(quote, 5, 9) … "important"
 MsgBox(quote.Substring(4, 9))

 ' ----- Mid(quote, 58) … "Einstein"
 MsgBox(quote.Substring(57))

 ' ----- Right(quote, 8) … "Einstein"
 MsgBox(quote.Substring(quote.Length - 8))

Discussion

Each line of code in the sample is prefaced by a comment line showing the equivalent syntax from VB 6. One of the big
differences apparent in these examples is that the first character in the string is now at offset position 0 instead of 1,
requiring a change in the offsets supplied to the Substring() method. The lengths of the sub-strings are still the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.7. Converting a String's Case

Problem

You want to convert a string to all uppercase, all lowercase, or mixed case (with only the first letter of each word in
uppercase).

Solution

Sample code folder: Chapter 05\MixedCase

The string methods ToUpper() and ToLower() make it easy to convert strings to upper-and lowercase, and a short special-
purpose function can perform the mixed conversion. You can also use the standard Visual Basic UCase() and LCase()
methods. To mix-case a string, use Visual Basic's StrConv() function.

Discussion

Changing strings to upper- or lowercase is standard Visual Basic fare:

 ' ----- To upper case.
 newString = oldString.ToUpper()
 newString = UCase(oldString)

 ' ----- To lower case.
 newString = oldString.ToLower()
 newString = LCase(oldString)

To convert the string to mixed or "proper" case, use one of the conversion methods included in the StrConv() function:

 newString = StrConv(oldString, VbStrConv.ProperCase)

This function converts the first letter of each word to uppercase, making every other letter lowercase. Its rules are
pretty basic, and it doesn't know about special cases. If you need to correctly capitalize names such as "MacArthur,"
you have to write a custom routine. The following code provides the start of a routine using an algorithm that works
much like the StrConv() function. It assumes that space characters separate each word:

 Public Function MixedCase(ByVal origText As String) As String
 ' ----- Convert a string to "proper" case.
 Dim counter As Integer
 Dim textParts() As String = Split(origText, " ")

 For counter = 0 To textParts.Length - 1
 If (textParts(counter).Length > 0) Then _

 textParts(counter) = _
 UCase(Microsoft.VisualBasic.Left(_
 textParts(counter), 1)) & _
 LCase(Mid(textParts(counter), 2))
 Next counter

 Return Join(textParts, " ")
 End Function

The code splits up the original text into an array at space-character boundaries using the Split() function. It then
processes each word separately and merges them back together with the Join() method.

Figure 5-5 shows the results of various conversions on a string, including a conversion using the custom MixedCase()
function. Notice that "albert" is not capitalized in the mixed-case string. This is because the two leading dashes are
considered to be part of this word, based on how the Split() function separated the words at space-character locations.

Figure 5-5. The original string before and after various case conversions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-5. The original string before and after various case conversions

VB 6 Users' Update

VB 2005 strings have a built-in Split() method, but this example doesn't use it. Instead, we chose to use
the Split() function, provided for backward compatibility with VB 6. Generally speaking, this function is
preferablebecause it makes it easier to split a string using a multicharacter substring at the point of each
split. The newer Split() method of VB 2005 strings works great for splitting at single-character boundaries.

See Also

Recipe 5.44 discusses the Split() function and the Split() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.8. Comparing Strings with Case Sensitivity

Problem

You need to compare two strings, taking into account their case.

Solution

Use the shared Compare() method provided by the String object to compare two strings:

 Select Case String.Compare(content1, content2, False)
 Case Is < 0
 MsgBox("Content1 comes before Content2.")
 Case Is > 0
 MsgBox("Content1 comes after Content2.")
 Case Is = 0
 MsgBox("Content1 and Content2 are the same.")
 End Select

Setting the third parameter of the Compare() method to False instructs the method to perform a case-sensitive
comparison.

Discussion

Consider the results shown in Figure 5-6, which indicate that "apples" is less than "Apples". The ASCII values for the
lowercase character "a" and the uppercase character "A" are 97 and 65, respectively, which normally puts the
uppercase version first. But the String.Compare() method compares text using culture-defined sorting rules, and by default,
English words beginning with lowercase letters are considered "less than" the same words beginning with uppercase
letters.

Figure 5-6. Culture-defined rules apply to case-sensitive string comparisons

You can change the comparison rules in several ways to match what you want to accomplish. See the Visual Studio
online help for the CompareOptions property for more information on how to make these changes.

See Also

Recipe 5.9 discusses related comparisons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.9. Comparing Strings Without Case Sensitivity

Problem

You need to compare two strings without regard to their case.

Solution

Use the shared Compare() method provided by the String object to compare two strings:

 Select Case String.Compare(content1, content2, True)
 Case Is < 0
 MsgBox("Content1 comes before Content2.")
 Case Is > 0
 MsgBox("Content1 comes after Content2.")
 Case Is = 0
 MsgBox("Content1 and Content2 are the same.")
 End Select

Setting the third parameter of the Compare() method to True instructs the method to perform a case-insensitive
comparison.

Discussion

This type of string comparison compares all alphabetic characters as though lower-case and uppercase characters were
identical. Figure 5-7 shows that "apples" is equal to "Apples" when the strings are compared this way.

Figure 5-7. When case is ignored, lowercase and uppercase are treated identically

String comparisons are culturally defined by default, so be sure the sort order you get is really what you want. See the
Visual Studio online help for the CompareOptions property to find more information on how to make changes to the way
strings are sorted.

See Also

Recipe 5.8 discusses related comparisons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Strings
Introduction

Recipe 5.1. Using a StringBuilder

Recipe 5.2. Creating a String of N Identical Characters

Recipe 5.3. Creating a String by Repeating a String N Times

Recipe 5.4. Obfuscating a String

Recipe 5.5. Converting Binary Data to a Hexadecimal String

Recipe 5.6. Extracting Substrings from Larger Strings

Recipe 5.7. Converting a String's Case

Recipe 5.8. Comparing Strings with Case Sensitivity

Recipe 5.9. Comparing Strings Without Case Sensitivity

Recipe 5.10. Converting Strings to and from Character Arrays

Recipe 5.11. Converting Strings to and from Byte Arrays

Recipe 5.12. Tallying Characters

Recipe 5.13. Counting Words

Recipe 5.14. Removing Extra Whitespace

Recipe 5.15. Using the Correct End-of-Line Characters

Recipe 5.16. Replacing Substrings

Recipe 5.17. Inserting a Character or String

Recipe 5.18. Inserting a Line

Recipe 5.19. Double-Spacing a String

Recipe 5.20. Formatting Numbers into Strings

Recipe 5.21. Trimming Sets of Characters from a String

Recipe 5.22. Identifying and Validating Types of Data in a String

Recipe 5.23. Converting Strings Between Encoding Systems

Recipe 5.24. Determining a Character's Type

Recipe 5.25. Parsing Strings

Recipe 5.26. Concatenating Strings

Recipe 5.27. Speeding Up String Manipulation

Recipe 5.28. Counting Occurrences of a Substring

Recipe 5.29. Padding a String for Exact Length and Alignment

Recipe 5.30. Converting Tabs to Spaces

Recipe 5.31. Reversing a String

Recipe 5.32. Shuffling a String

Recipe 5.33. Using a Simple String Encryption

Recipe 5.34. Converting a String to Morse Code

Recipe 5.35. Adding Strings to an Application's Resources

Recipe 5.36. Converting Any Data to a String

Recipe 5.37. Using Regular Expressions to Extract All Numbers

Recipe 5.38. Getting a Count of Regular Expression Matches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 5.38. Getting a Count of Regular Expression Matches

Recipe 5.39. Getting the Nth Regular Expression Match

Recipe 5.40. Compiling Regular Expressions for Speed

Recipe 5.41. Using Regular Expressions to Validate Data

Recipe 5.42. Using Regular Expressions to Count Characters, Words, or Lines

Recipe 5.43. Converting a String to and from Base64

Recipe 5.44. Splitting a String

Recipe 5.45. Creating a String of Space Characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic is now completely on a par with C# and other languages in its scientific, engineering, and financial number-
crunching capabilities. This chapter demonstrates how easy it is to develop very fast and powerful, yet easy-to-read
code for advanced number-crunching applications. Some of the recipes will appeal to almost all developers, such as
those demonstrating rounding, the new unsigned integers, and the new Decimal numbers that are suitable for the most
demanding financial calculations. Other recipes will appeal to the many scientist and engineer types searching for 21st
century updates for FORTRAN, programmable calculators, and Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.1. Using Compact Operator Notation

Problem

You want to write compact, efficient code using the latest syntax available for assignment operators.

Solution

Sample code folder: Chapter 06\CompactOperators

Visual Basic 2005 now lets you use the same compact assignment notation for some math operations that has been
used in the C and C# languages for many years.

There are several compact assignment operators, and they all work the same way. The variable to the left of the
operator is used both as a source value and as a destination for the results of the operation. The operators are listed in
Table 6-1.

Table 6-1. Compact assignment operators
Operator Description

^= Exponentiation

*= Multiplication

/= Division

\= Integer division

+= Addition

-= Subtraction

<<= Shift left

>>= Shift right

&= Comparison

Discussion

Consider the following program statement, which increments the variable count:

 count = count + 1

The variable count is repeated twice in this simple line of code, once to retrieve its value and once to assign the results
of adding 1 to the value. The new, more efficient compact assignment syntax uses the variable's name just once:

 count += 1

The compact assignment operator += causes the variable to be used both as the source of the value to be operated on
and as the destination for the result.

The following sample code demonstrates all of the operators listed in Table 6-1:

 Dim result As New System.Text.StringBuilder

 Dim testDouble As Double = Math.PI
 result.Append("Double ").AppendLine(testDouble)
 testDouble += Math.PI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 testDouble += Math.PI
 result.Append("+= ").AppendLine(testDouble)
 testDouble *= Math.PI
 result.Append("*= ").AppendLine(testDouble)
 testDouble -= Math.PI
 result.Append("-= ").AppendLine(testDouble)
 testDouble /= Math.PI
 result.Append("/= ").AppendLine(testDouble)
 testDouble ^= Math.PI
 result.Append("^= ").AppendLine(testDouble)
 result.AppendLine()

 Dim testInteger As Integer = 17
 result.Append("Integer ").AppendLine(testInteger)
 testInteger \= 2
 result.Append("\= 2 … ").AppendLine(testInteger)
 testInteger += 1
 result.Append("+= 1 … ").AppendLine(testInteger)
 testInteger <<= 1
 result.Append("<<= 1 … ").AppendLine(testInteger)
 testInteger >>= 3
 result.Append(">>= 3 … ").AppendLine(testInteger)
 result.AppendLine()

 Dim testString As String = "Abcdef"
 result.Append("String ").AppendLine(testString)
 testString &= "ghi"
 result.Append("&= ghi … ").AppendLine(testString)
 testString += "jkl"
 result.Append("+= jkl … ").AppendLine(testString)

 MsgBox(result.ToString())

Figure 6-1 shows the results displayed by this block of code. While many of the operators work on double-precision
variables, some work only on integers of various sizes, and the concatenation operator works only on strings.

Figure 6-1. The compact assignment operators in action

Although the += (addition) operator is overloaded to operate on either numerical variables or strings, your code will be
clearer if you use the addition operator only for mathematical operations. For string concatenation, use the &= operator
instead. This rule can also help you avoid hidden errors when working with numbers formatted as strings. For instance,
consider the following code, which updates an Integer value with numbers stored in strings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

consider the following code, which updates an Integer value with numbers stored in strings:

 Dim numberFromStrings As Integer
 numberFromStrings = "4"
 numberFromStrings += "3"
 MsgBox(numberFromStrings)

When you run this code, it displays "7" in the message box. This works because Visual Basic is "helping you out,"
automatically converting the strings to Integer values before performing the assignment or addition. If you replace the
+= operator in that code with the &= operator, the code behaves differently:

 Dim numberFromStrings As Integer
 numberFromStrings = "4"
 numberFromStrings &= "3"
 MsgBox(numberFromStrings)

This time, the message box displays "43," the concatenation of the two strings. Some of the documentation for the +=
and &= operators claims that the two are functionally equivalent when working with strings, but this example shows
that care should be exercised when using them in mixed string/number situations.

See Also

Search for "operator procedures" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.10. Converting Between Radians and Degrees

Problem

You want a simple, consistent, easy-to-read, and easy-to-use way to convert angles between radians and degrees.

Solution

Define two constants, RadPerDeg and DegPerRad, and multiply by degrees or radians, respectively, to convert to the other
units.

Discussion

You can create standalone functions to perform these conversions, but these constants are straightforward definitions,
and your code will compile to inline conversions that are compact and fast. The following code defines the constants and
uses them to convert a few sample angular values. It's generally best to define your constants at the top of your
source-code files or in a global module, but here they are shown close to the code where they are used for easy
reference:

 Const RadPerDeg As Double = Math.PI / 180#
 Const DegPerRad As Double = 180# / Math.PI

 Dim radians As Double
 Dim degrees As Double

 radians = Math.PI / 4#
 degrees = radians * DegPerRad
 radians = degrees * RadPerDeg

 MsgBox("Radians: " & radians.ToString & _
 vbNewLine & "Degrees: " & degrees.ToString)

This code rather redundantly converts radians to degrees and then immediately converts degrees right back to radians.
You wouldn't want to do this normally, but it shows both conversions side by side for easy comparison.

Figure 6-10 shows the same angle (45 degrees, or π/4 radians) expressed in the calculated units after conversion using
the constants.

Figure 6-10. Using the RadPerDeg and DegPerRad constants to convert between
degrees and radians

Both constants are defined using a division calculation. The Visual Basic 2005 compiler converts this math statement to
a single constant by doing the division at compile time rather than at runtime, so there is no inefficiency in expressing
the constants this way. The value of π is defined as a constant in the Math object with full double-precision accuracy, so
the constants defined here are also accurate with Double values.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See "Derived Math Functions" in Visual Studio Help for additional derived functions, many of which assume radian units.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.11. Limiting Angles to a Range

Problem

You want to shift intermediate angular calculation results into a range such as 0° to 360°, -180° to 180°, 0 to 2π
radians, or π to π radians.

Solution

Sample code folder: Chapter 06\AngleRange

Create a function that handles all these range conversions efficiently.

Discussion

Some scientific calculations produce angular results that are beyond normal ranges, requiring adjustment to bring them
into the standard range of values. For example, in astronomical calculations a variety of polynomials are used to
compute highly accurate positions of the planets and stars, but the polynomials often return angles representing many
revolutions of the various orbs. You might say the angles are astronomical in size before they are adjusted into a
normalized range such as 0° to 360°. The following function handles these range adjustments efficiently, bringing the
values back down to earth:

 Public Function FixRange(ByVal origValue As Double, _
 ByVal rangeMin As Double, ByVal rangeMax As Double) _
 As Double
 ' ----- Adjust a value to within a specified range.
 ' Use the range size as the adjustment factor.
 Dim shiftedValue As Double
 Dim delta As Double

 shiftedValue = origValue - rangeMin
 delta = rangeMax - rangeMin
 Return (((shiftedValue
Mod delta) + delta) Mod delta) + _
 rangeMin
 End Function

The FixRange() function accepts an out-of-range angular value expressed in either degrees or radians (or any range-
limited system), followed by the minimum and maximum limits of the desired normalized range. All three parameters
must use the same measurement system, such as radians, for the results to make sense.

The function uses a double application of the Mod operator plus some additions and subtractions to bring the value into
the desired range. This calculation is more straightforward and efficient than adding or subtracting values in a loop until
the value is brought into range, which is the technique sometimes shown in astronomical calculation books.

The following code demonstrates the use of the Range() function on a variety of positive and negative angular values as
they are brought into a number of desired ranges:

 Dim result As New System.Text.StringBuilder
 Dim formatDegrees As String = _
 "Degrees: {0} Range: {1},{2} Value: {3}"
 Dim formatRadians As String = _
 "Radians: {0} Range: {1},{2} Value: {3}"
 Dim degrees As Double
 Dim radians As Double
 Dim ranged As Double

 ' ----- Degrees over the range.
 degrees = 367.75
 ranged = FixRange(degrees, 0, 360)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, 0, 360, ranged))

 ' ----- Degress under the range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Degress under the range.
 degrees = -97.5
 ranged = FixRange(degrees, 0, 360)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, 0, 360, ranged))

 ' ----- Degrees in range.
 degrees = -97.5
 ranged = FixRange(degrees, -180, 180)
 result.AppendLine(String.Format(formatDegrees, _
 degrees, -180, 180, ranged))

 ' ----- Radians over the range.
 radians = Math.PI * 3.33
 ranged = FixRange(radians, -Math.PI, Math.PI)
 result.AppendLine(String.Format(formatRadians, _
 radians, -Math.PI, Math.PI, ranged))

 MsgBox(result.ToString())

Figure 6-11 shows the results produced by this sample code.

Figure 6-11. Using the Range() function to normalize angles in degrees or radians

See Also

Search for information on the Mod operator in Visual Studio Help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.12. Creating Double-Precision Point Variables

Problem

The PointF structure used in many graphics and other methods is defined to hold single-precision X and Y values, but you
need greater precision.

Solution

Sample code folder: Chapter 06\DoublePoint

Create your own Point2D class with double-precision X and Y values.

Discussion

The following simple class provides a blueprint for creating Point2D objects containing double-precision X and Y values:

 Public Class Point2D
 Public X As Double
 Public Y As Double

 Public Sub New(ByVal xPoint As Double, _
 ByVal yPoint As Double)
 Me.X = xPoint
 Me.Y = yPoint
 End Sub

 Public Overrides Function
Tostring() As String
 Return "{X=" & X & ",Y=" & Y & "}"
 End Function
 End Class

As shown in the sample class code, the ToString() function overrides the default ToString() and returns a string formatted in
a way that's similar to the PointF class in the .NET Framework.

The following code demonstrates the creation of both the PointF and new Point2D objects. Both types of objects have the
same "look and feel" in that they allow access directly to the X and Y values, they both can be populated with a pair of X,
Y values at the moment of creation, and they both return similar strings via their respective ToString() functions:

 Dim result As New System.Text.StringBuilder

 ' ----- Original PointF version.
 Dim singlePoint As New PointF(1 / 17, Math.PI)
 result.AppendLine("PointF: " & singlePoint.ToString()
 result.AppendLine("X: " & singlePoint.X)
 result.AppendLine()

 ' ----- New Point2D version.
 Dim doublePoint As New Point2D(1 / 17, Math.PI)
 result.AppendLine("Point2D: " & doublePoint.ToString())
 result.AppendLine("X: " & doublePoint.X)
 result.AppendLine()

 MsgBox(result.ToString())

Figure 6-12 shows the results displayed by the message box in this sample code.

Figure 6-12. Point2D objects have double the precision of PointF objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

See "Graphics" in Visual Studio Help for more information about the use of two-dimensional points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.13. Converting Between Rectangular and Polar Coordinates

Problem

You want to convert between two-dimensional coordinates expressed in either rectangular or polar notation.

Solution

Sample code folder: Chapter 06\ConvertPolar

Create two functions for the two conversions: ToPolar() and ToRectangular().

Discussion

The PointF structure provides a natural way to handle two-dimensional coordinates because each X, Y pair is handled as a
single unit. A straightforward way to handle conversions between coordinates expressed in either rectangular (X, Y) or
polar (radius, radians) notation is to simply pass and return PointF objects. This requires you, the programmer, to keep
track of the current notation of each PointF object, but this is generally easy to do. Here are the two functions for making
the conversions:

 Public Function ToPolar(ByVal sourcePoint As PointF) _
 As PointF
 ' ----- Convert
rectangular coordinates to polar.
 Dim magnitude As Single
 Dim radians As Single

 magnitude = CSng(Math.Sqrt(sourcePoint.X ^ 2 + _
 sourcePoint.Y ^ 2))
 radians = CSng(Math.Atan2(sourcePoint.Y, sourcePoint.X))
 Return New PointF(magnitude, radians)
 End Function

 Public Function ToRectangular(ByVal sourcePoint As PointF) _
 As PointF
 ' ----- Convert polar coordinates to rectangular.
 Dim X As Single
 Dim Y As Single

 X = CSng(sourcePoint.X * Math.Cos(sourcePoint.Y))
 Y = CSng(sourcePoint.X * Math.Sin(sourcePoint.Y))
 Return New PointF(X, Y)
 End Function

Both functions assume angles will be expressed in radians, which is consistent with the way angles are expressed in
Visual Basic. You can convert angles to and from degrees using the constants presented in Recipe 6.10.

The following block of code demonstrates the use of the ToPolar() and ToRectangular() functions:

 Dim result As New System.Text.StringBuilder
 Dim pointA As PointF
 Dim pointB As PointF
 Dim pointC As PointF

 pointA = New PointF(3, 4)
 pointB = ToPolar(pointA)
 pointC = ToRectangular(pointB)

 result.AppendLine("Rectangular: " & pointA.ToString())
 result.AppendLine("Polar: " & pointB.ToString())
 result.AppendLine("Rectangular: " & pointC.ToString())
 MsgBox(result.ToString())

The ToString() function presents the X and Y values of the PointF data using "X=" and "Y=" labels, which can be misleading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ToString() function presents the X and Y values of the PointF data using "X=" and "Y=" labels, which can be misleading
when the PointF is holding a coordinate in polar mode. Be sure to keep track of the state of the data as you work with it.

Figure 6-13 shows the formatted string results of the ToRectangular() and ToPolar() functions in action.

Figure 6-13. Rectangular and polar two-dimensional coordinate conversions using
PointF variables

See Also

Searching for " polar rectangular" on the Web will lead you to a variety of explanations and learning materials about
this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.14. Creating Three-Dimensional Variables

Problem

You want to work with three-dimensional coordinates as single entities.

Solution

Sample code folder: Chapter 06\ThreePoint

Create a Point3D class that works like the PointF class except that it contains a Z property in addition to X and Y.

Discussion

The following class definition is similar to the Point2D class presented in Recipe 6.12:

 Public Class Point3D
 Public X As Double
 Public Y As Double
 Public Z As Double

 Public Sub
New(ByVal xPoint As Double, _
 ByVal yPoint As Double, ByVal zPoint As Double)
 Me.X = xPoint
 Me.Y = yPoint
 Me.Z = zPoint
 End Sub

 Public Overrides Function Tostring() As String
 Return "{X=" & X & ",Y=" & Y & ",Z=" & Z & "}"
 End Function
 End Class

The most important modification is the addition of a public Z value for the third dimension. As presented here, the X, Y,
and Z properties are all Double precision, but you can easily redefine these to Single if that provides sufficient precision for
your calculations, and if you want to save memory when you create large arrays of this data type.

The following code demonstrates the use of some Point3D objects. Notice how the New() function lets you create a Point3D
variable with nonzero X, Y, and Z values:

 Dim result As New System.Text.StringBuilder
 Dim distance As Double
 Dim point1 As Point3D
 Dim point2 As Point3D
 Dim deltaX As Double

 Dim deltaY As Double
 Dim deltaZ As Double

 point1 = New Point3D(3, 4, 5)
 point2 = New Point3D(7, 2, 3)
 deltaX = point1.X - point2.X
 deltaY = point1.Y - point2.Y
 deltaZ = point1.Z - point2.Z
 distance = Math.Sqrt(deltaX ^ 2 + deltaY ^ 2 + deltaZ ^ 2)

 result.AppendLine("3D Point 1: " & point1.ToString())
 result.AppendLine("3D Point 2: " & point2.ToString())
 result.AppendLine("Distance: " & distance.ToString())

 MsgBox(result.ToString())

Figure 6-14 shows the results of calculating the distance in space between these two coordinates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-14 shows the results of calculating the distance in space between these two coordinates.

Figure 6-14. Manipulating three-dimensional coordinates with a Point3D class

See Also

Search for "basic 3D math" on the Web for a variety of explanations and further information about this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.15. Converting Between Rectangular, Spherical, and
Cylindrical Coordinates

Problem

You need to convert three-dimensional coordinates between rectangular, spherical, and cylindrical notation.

Solution

Sample code folder: Chapter 06\Convert3D

Create a set of six functions to convert Point3D variables to and from each coordinate notation.

Discussion

The following six functions convert from any one of the three types of three-dimensional coordinates to any of the
others. All these functions accept a Point3D argument and return a Point3D value. It is up to you to keep track of the
current type of coordinate notation in each Point3D variable. Note that in all cases the Point3D value passed in to any of
these functions is not altered; a new Point3D instance is returned instead. Here are the six functions:

 Public Function RectToCylinder(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert
rectangular 3D coordinates to
 ' cylindrical coordinates.
 Dim rho As Double
 Dim theta As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Y ^ 2)
 theta = Math.Atan2(pointA.Y, pointA.X)
 Return New Point3D(rho, theta, pointA.Z)
 End Function

 Public Function CylinderToRect(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert cylindrical coordinates to
 '
rectangular 3D coordinates.
 Dim x As Double
 Dim y As Double

 x = pointA.X * Math.Cos(pointA.Y)
 y = pointA.X * Math.Sin(pointA.Y)
 Return New Point3D(x, y, pointA.Z)
 End Function

 Public Function RectToSphere(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert rectangular 3D coordinates to
 '
spherical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim phi As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Y ^ 2 + _
 pointA.Z ^ 2)
 theta = Math.Atan2(pointA.Y, pointA.X)
 phi = Math.Acos(pointA.Z / Math.Sqrt(_
 pointA.X ^ 2 + pointA.Y ^ 2 + pointA.Z ^ 2))
 Return New Point3D(rho, theta, phi)
 End Function

 Public Function SphereToRect(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert spherical coordinates to
 ' rectangular 3D coordinates.
 Dim x As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim x As Double
 Dim y As Double
 Dim z As Double

 x = pointA.X * Math.Cos(pointA.Y) * Math.Sin(pointA.Z)
 y = pointA.X * Math.Sin(pointA.Y) * Math.Sin(pointA.Z)
 z = pointA.X * Math.Cos(pointA.Z)
 Return New Point3D(x, y, z)
 End Function

 Public Function CylinderToSphere(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert cylindrical
coordinates to
 '
spherical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim phi As Double

 rho = Math.Sqrt(pointA.X ^ 2 + pointA.Z ^ 2)
 theta = pointA.Y
 phi = Math.Acos(pointA.Z / _
 Math.Sqrt(pointA.X ^ 2 + pointA.Z ^ 2))
 Return New Point3D(rho, theta, phi)
 End Function

 Public Function SphereToCylinder(ByVal pointA As Point3D) _
 As Point3D
 ' ----- Convert spherical coordinates to
 ' cylindrical coordinates.
 Dim rho As Double
 Dim theta As Double
 Dim z As Double

 rho = pointA.X * Math.Sin(pointA.Z)
 theta = pointA.Y
 z = pointA.X * Math.Cos(pointA.Z)
 Return New Point3D(rho, theta, z)
 End Function

The following code creates several Point3D variables using names that indicate the types of coordinates they contain. For
example, pointCyl is a Point3D variable containing three-dimensional cylindrical coordinates. The various conversion
functions are used to populate the variables, and the results are shown in Figure 6-15:

 Dim result As New System.Text.StringBuilder
 Dim pointRec As New Point3D(3, 4, 5)
 Dim pointCyl As Point3D = RectToCylinder(pointRec)
 Dim pointSph As Point3D = RectToSphere(pointRec)
 Dim pointRecToCyl As Point3D = RectToCylinder(pointRec)
 Dim pointRecToSph As Point3D = RectToSphere(pointRec)
 Dim pointCylToRec As Point3D = CylinderToRect(pointCyl)
 Dim pointCylToSph As Point3D = CylinderToSphere(pointCyl)
 Dim pointSphToRec As Point3D = SphereToRect(pointSph)
 Dim pointSphToCyl As Point3D = SphereToCylinder(pointSph)

 result.AppendLine("Rec: " & pointRec.ToString())
 result.AppendLine("Cyl: " & pointCyl.ToString())
 result.AppendLine("Sph: " & pointSph.ToString())
 result.AppendLine()

 result.AppendLine("Rec to Cyl: " & pointRecToCyl.ToString())
 result.AppendLine("Rec to Sph: " & pointRecToSph.ToString())
 result.AppendLine("Cyl to Rec: " & pointCylToRec.ToString())
 result.AppendLine("Cyl to Sph: " & pointCylToSph.ToString())
 result.AppendLine("Sph to Rec: " & pointSphToRec.ToString())
 result.AppendLine("Sph to Cyl: " & pointSphToCyl.ToString())

 MsgBox(result.ToString())

Figure 6-15. Converting Point3D variables between three different types of spatial
coordinates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

coordinates

See Also

Search for " rectangular cylindrical spherical" on the Web for a variety of explanations and further information about
this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.16. Working with Complex Numbers

Problem

You want an easy way to calculate with complex numbers.

Solution

Sample code folder: Chapter 06\ComplexNumbers

Create a ComplexNumber structure. Overload the standard mathematical operators so that using complex number
variables is easy and natural.

Discussion

This recipe provides a great way to see how overloading standard operators can enhance the usability of your classes
and structures. In this case, we've created a ComplexNumber structure. Structures are similar to classes, except that they
exist as value types rather than reference types. This allows complex number instances to act the same as other simple
variables, such as standard numerical variables.

The following code defines the ComplexNumber number structure. Place this code in its own file named ComplexNumber.vb
for easy inclusion in any application that requires complex numbers:

 Structure ComplexNumber
 Public Real As Double
 Public Imaginary As Double

 Public Sub New(ByVal realPart As Double, _
 ByVal imaginaryPart As Double)
 Me.Real = realPart
 Me.Imaginary = imaginaryPart
 End Sub

 Public Sub New(ByVal sourceNumber As ComplexNumber)
 Me.Real = sourceNumber.Real
 Me.Imaginary = sourceNumber.Imaginary
 End Sub

 Public Overrides Function ToString() As String
 Return Real & "+" & Imaginary & "i"
 End Function

 Public Shared Operator +(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Add two
complex numbers together.
 Return New ComplexNumber(a.Real + b.Real, _
 a.Imaginary + b.Imaginary)
 End Operator

 Public Shared Operator -(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Subtract one complex number from another.
 Return New ComplexNumber(a.Real - b.Real, _
 a.Imaginary - b.Imaginary)
 End Operator

 Public Shared Operator *(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Multiply two complex numbers together.
 Return New ComplexNumber(a.Real * b.Real - _
 a.Imaginary * b.Imaginary, _
 a.Real * b.Imaginary + a.Imaginary * b.Real)
 End Operator

 Public Shared Operator /(ByVal a As ComplexNumber, _
 ByVal b As ComplexNumber) As ComplexNumber
 ' ----- Divide one complex number by another.
 Return a * Reciprocal(b)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return a * Reciprocal(b)
 End Operator

 Public Shared Function Reciprocal(_
 ByVal a As ComplexNumber) As ComplexNumber
 ' ----- Calculate the reciprocal of a complex number;
 ' that is, the 1/x calculation.
 Dim divisor As Double

 ' ----- Check for divide-by-zero possibility.
 divisor = a.Real * a.Real + a.Imaginary * a.Imaginary
 If (divisor = 0.0#) Then Throw New DivideByZeroException

 ' ----- Perform the operation.
 Return New ComplexNumber(a.Real / divisor, _
 -a.Imaginary / divisor)
 End Function
 End Structure

The overloaded New() function lets you instantiate a ComplexNumber number using either a pair of numbers (the real and
imaginary parts) or another ComplexNumber number.

The following code demonstrates how complex numbers are created and how standard operators allow mathematical
operations such as addition and subtraction in a natural way. The overloaded + operator also impacts the +=
assignment operator. The last example in the code demonstrates this by adding complex number b to complex number
a using the new assignment-operator syntax:

 Dim result As New System.Text.StringBuilder
 Dim a As ComplexNumber
 Dim b As ComplexNumber
 Dim c As ComplexNumber

 a = New ComplexNumber(3, 4)
 b = New ComplexNumber(5, -2)
 c = a + b

 result.AppendLine("
Complex Numbers")
 result.AppendLine("a = " & a.ToString())
 result.AppendLine("b = " & b.ToString())

 ' ----- Addition.
 c = a + b
 result.AppendLine("a + b = " & c.ToString())

 ' ----- Subtraction.
 c = a - b
 result.AppendLine("a - b = " & c.ToString())

 ' ----- Multiplication.
 c = a * b
 result.AppendLine("a * b = " & c.ToString())

 ' ----- Division.
 c = a / b
 result.AppendLine("a / b = " & c.ToString())

 ' ----- Addition as assignment.
 a += b
 result.AppendLine("a += b … a = " & a.ToString())

 MsgBox(result.ToString())

The ToString() function is overridden in the ComplexNumber structure to format the real and imaginary parts. Figure 6-16
shows the output from the sample code.

Figure 6-16. Working with complex numbers in VB 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Search for " complex numbers" on the Web for more information on this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.17. Solving Right Triangles

Problem

You want to calculate all the remaining sides and angles of a right triangle given two known parts of the triangle.

Solution

Sample code folder: Chapter 06\RightTriangle

Create a RightTriangle class that calculates all parts of a right triangle given any two of its parts.

Discussion

The parts of a right triangle we are concerned with are the two sides A and B adjacent to the right angle, the
hypotenuse (the side opposite the right angle), and the two angles formed where the hypotenuse meets sides A and B.
If you know any two of these values, all the rest can be determined.

There are many ways to set up the RightTriangle class, and the technique chosen here is not the only reasonable approach
to the problem. We chose to use the initializing function New() to define the triangle by passing in nonzero numbers for
the known parts and a value of zero for the unknowns. The IntelliSense pop-up prompt makes it easy to remember
what parts of the triangle are passed in at each parameter position. It's as easy as filling in the blanks. The code for the
RightTriangle class is as follows:

 Public Class RightTriangle
 Private StoredSideA As Double
 Private StoredSideB As Double
 Private StoredHypotenuse As Double
 Private StoredAngleA As Double
 Private StoredAngleB As Double

 Public Sub New(ByVal hypotenuse As Double, _
 ByVal sideA As Double, ByVal sideB As Double, _
 ByVal angleA As Double, ByVal angleB As Double)
 Me.StoredHypotenuse = hypotenuse
 Me.StoredSideA = sideA
 Me.StoredSideB = sideB
 Me.StoredAngleA = angleA
 Me.StoredAngleB = angleB
 Me.Resolve()
 End Sub

 Public ReadOnly Property SideA() As Double
 Get
 Return StoredSideA
 End Get
 End Property

 Public ReadOnly Property SideB() As Double
 Get
 Return StoredSideB
 End Get
 End Property

 Public ReadOnly Property AngleA() As Double
 Get
 Return StoredAngleA
 End Get
 End Property

 Public ReadOnly Property AngleB() As Double
 Get
 Return StoredAngleB
 End Get
 End Property

 Public ReadOnly Property Hypotenuse() As Double
 Get
 Return StoredHypotenuse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return StoredHypotenuse
 End Get
 End Property

 Private Sub Resolve()
 ' ----- Figure out the missing (zero) parts of the
 ' triangle. Start with the angles.
 If (StoredAngleA = 0.0#) And _
 (StoredAngleB <> 0.0#) Then _
 StoredAngleA = Math.PI / 2 - StoredAngleB
 If (StoredAngleB = 0.0#) And _
 (StoredAngleA <> 0.0#) Then _
 StoredAngleB = Math.PI / 2 - StoredAngleA
 If (StoredAngleA <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideB = StoredHypotenuse * _
 Math.Cos(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideA = StoredHypotenuse * _
 Math.Cos(StoredAngleB)
 If (StoredAngleA <> 0.0#) And _
 (StoredSideA <> 0.0#) Then _
 StoredHypotenuse = StoredSideA / _
 Math.Sin(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = StoredSideB / _
 Math.Sin(StoredAngleB)
 If (StoredAngleA <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = StoredSideB / _
 Math.Cos(StoredAngleA)
 If (StoredAngleB <> 0.0#) And _
 (StoredSideA <> 0.0#) Then _
 StoredHypotenuse = StoredSideA / _
 Math.Cos(StoredAngleB)

 ' ----- Now calculate the sides.
 If (StoredSideA <> 0.0#) And _
 (StoredSideB <> 0.0#) Then _
 StoredHypotenuse = Math.Sqrt(StoredSideA ^ 2 + _
 StoredSideB ^ 2)
 If (StoredSideA <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideB = Math.Sqrt(StoredHypotenuse ^ 2 - _
 StoredSideA ^ 2)
 If (StoredSideB <> 0.0#) And _
 (StoredHypotenuse <> 0.0#) Then _
 StoredSideA = Math.Sqrt(StoredHypotenuse ^ 2 - _
 StoredSideB ^ 2)
 If (StoredAngleA = 0.0#) Then StoredAngleA = _
 Math.Asin(StoredSideA / StoredHypotenuse)
 If (StoredAngleB = 0.0#) Then StoredAngleB = _
 Math.Asin(StoredSideB / StoredHypotenuse)
 End Sub

 Public Overrides Function Tostring() As String
 ' ----- Display all values of the triangle.
 Dim result As New System.Text.StringBuilder

 result.AppendLine("
Right Triangle:")
 result.AppendLine("Hypotenuse=" & _
 StoredHypotenuse.ToString)
 result.AppendLine("Side A=" & StoredSideA.ToString)
 result.AppendLine("Side B=" & StoredSideB.ToString)
 result.AppendLine("Angle A=" & StoredAngleA.ToString)
 result.Append("Angle B=" & StoredAngleB.ToString)
 Return result.ToString()
 End Function
 End Class

The core calculations of this class are performed in the private Resolve() function. There, the various triangle parts are
tested to see if they are nonzero, and the appropriate calculations are performed to start filling in the blanks for the
unknowns. Resolve() is called just once, at the moment when the RightTriangle object is instantiated. All the parts of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unknowns. Resolve() is called just once, at the moment when the RightTriangle object is instantiated. All the parts of the
right triangle are later returned as required via read-only properties.

Visual Basic internally always assumes angles to be in radians, even though degrees are the most commonly used units
for angles among the general population. It's tempting to use degrees in user-defined classes and procedures, but for
consistency this book will assume radians throughout.

The following sample code creates an instance of the RightTriangle object and uses it to calculate a typical right triangle.
In this example, the lengths of sides A and B are known. All other parts of the triangle are passed as zero when the
RightTriangle is instantiated:

 Dim testTriangle As RightTriangle
 Dim area As Double

 testTriangle = New RightTriangle(0, 3, 4, 0, 0)
 area = (testTriangle.SideA * testTriangle.SideB) / 2
 MsgBox(testTriangle.Tostring & vbNewLine & _
 "Area = " & area.ToString)

Figure 6-17 shows the results of calculating the missing parts of a right triangle with sides A and B of lengths 3 and 4.

Figure 6-17. Using the RightTriangle class to calculate unknown parts of a right
triangle

See Also

Search for "right triangle" on the Web for more information about this subject (see, for example,
http://mathworld.wolfram.com/RightTriangle.html).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.18. Solving Any Triangle

Problem

You want to solve any triangle given any three known parts. Examples might include the lengths of any two sides and the measure of the angle
between them, or the measures of two angles and the length of the side between them.

Solution

Sample code folder: Chapter 06\AnyTriangle

Create a triangle class to handle the details of calculating all the remaining parts of a triangle given any combination of three of its parts. Also
create a separate utility function to calculate any triangle's area given the lengths of its three sides.

Discussion

The triangle class, presented below, allows the remaining elements of any triangle to be calculated given the measures of any three of its sides
and angles. The only combination that won't work, of course, is when three angles are given, as these pin down the shape of a triangle but not
its size. Here is the code for the TRiangle class:

 Imports System.Math

 Public Class Triangle
 Private StoredSideA As Double
 Private StoredSideB As Double
 Private StoredSideC As Double
 Private StoredAngleA As Double
 Private StoredAngleB As Double
 Private StoredAngleC As Double

 ' ----- The GivenParts variable indicates which parts
 ' the user has already supplied. Uppercase letters
 ' (A, B, C) indicate sides; lowercase letters
 ' (a, b, c) are angles.
 Private GivenParts As String = ""

 Public Overrides Function ToString() As String
 ' ----- Show the details of the triangle.
 Return String.Format(_
 "SideA={0}, SideB={1}, SideC={2}, " & _
 "AngleA={3}, AngleB={4}, AngleC={5}", _
 StoredSideA, StoredSideB, StoredSideC, _
 StoredAngleA, StoredAngleB, StoredAngleC)
 End Function

 Public Property SideA() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideA Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_
 "Negative side length (A) not allowed.")
 CheckIt("A")
 StoredSideA = Value
 Resolve()
 End Set
 End Property

 Public Property SideB() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideB Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Throw New ArgumentOutOfRangeException(_
 "Negative side length (B) not allowed.")
 CheckIt("B")
 StoredSideB = Value
 Resolve()
 End Set
 End Property

 Public Property SideC() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredSideC Else NotYet()
 End Get
 Set(ByVal Value As Double)

 If (Value < 0) Then _
 Throw New ArgumentOutOfRangeException(_
 "Negative side length (C) not allowed.")
 CheckIt("C")
 StoredSideC = Value
 Resolve()
 End Set
 End Property

 Public Property AngleA() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleA Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (A) must range from 0 to PI.")
 CheckIt("a")
 StoredAngleA = Value
 Resolve()
 End Set
 End Property

 Public Property AngleB() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleB Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (B) must range from 0 to PI.")
 CheckIt("b")
 StoredAngleB = Value
 Resolve()
 End Set
 End Property

 Public Property AngleC() As Double
 Get
 If (GivenParts.Length >= 3) Then _
 Return StoredAngleC Else NotYet()
 End Get
 Set(ByVal Value As Double)
 If (Value < 0) Or (Value > Math.PI) Then _
 Throw New Exception(_
 "Angle (C) must range from 0 to PI.")
 CheckIt("c")
 StoredAngleC = Value
 Resolve()
 End Set
 End Property

 Private Sub CheckIt(ByVal whatToCheck As String)
 ' ----- Make sure it is OK to adjust a component.
 If (GivenParts.Length >= 3) Then Throw New Exception(_
 "Triangle is immutable once defined by three parts.")
 If (GivenParts.IndexOf(whatToCheck) >= 0) Then _
 Throw New Exception(_
 "Triangle component cannot be modified once set.")

 ' ---- Mark this part as modified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ---- Mark this part as modified.
 GivenParts &= whatToCheck
 End Sub

 Private Sub NotYet()
 ' ----- The user tried to access components before
 ' anything was calculated.
 Throw New Exception(_
 "Triangle has not yet been completely defined.")
 End Sub

 Private Sub Resolve()
 ' ----- Calculate the missing angles and sides of
 ' the triangle.
 Dim sinRatio As Double
 Dim inSort() As Char

 ' ----- Wait for the triangle to be completely defined.
 If (GivenParts.Length < 3) Then Return

 ' ----- Sort the known parts list.
 inSort = GivenParts.ToCharArray()
 Array.Sort(inSort)
 GivenParts = New String(inSort)

 ' ----- Time to resolve. In all cases, the goal is to
 ' get three known sides. Then, the ResolveABC()
 ' method can work on getting the missing angles.
 Select Case GivenParts
 Case "ABC"
 ResolveABC()
 Case "ABa"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredAngleB = Asin(StoredSideB * sinRatio)
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio

 Case "ABb"
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredAngleA = Asin(StoredSideA * sinRatio)
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "ABc"
 StoredSideC = Sqrt(StoredSideA ^ 2 + _
 StoredSideB ^ 2 - 2 * StoredSideA * _
 StoredSideB * Cos(StoredAngleC))
 Case "ACa"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredAngleC = Asin(StoredSideC * sinRatio)
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "ACb"
 StoredSideB = Sqrt(StoredSideA ^ 2 + _
 StoredSideC ^ 2 - 2 * StoredSideA * _
 StoredSideC * Cos(StoredAngleB))
 Case "ACc"
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredAngleA = Asin(StoredSideA * sinRatio)
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Aab"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideB = Sin(StoredAngleB) / sinRatio
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Aac"
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideC = Sin(StoredAngleC) / sinRatio
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Abc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleA) / StoredSideA
 StoredSideB = Sin(StoredAngleB) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "BCa"
 StoredSideA = Sqrt(StoredSideB ^ 2 + _
 StoredSideC ^ 2 - 2 * StoredSideB * _
 StoredSideC * Cos(StoredAngleA))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 StoredSideC * Cos(StoredAngleA))
 Case "BCb"
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredAngleC = Asin(StoredSideC * sinRatio)
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 Case "BCc"
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredAngleB = Asin(StoredSideB * sinRatio)
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 Case "Bab"
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Bac"
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Bbc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleB) / StoredSideB
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideC = Sin(StoredAngleC) / sinRatio
 Case "Cab"
 StoredAngleC = PI - StoredAngleA - StoredAngleB
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Cac"
 StoredAngleB = PI - StoredAngleA - StoredAngleC
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "Cbc"
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 sinRatio = Sin(StoredAngleC) / StoredSideC
 StoredSideA = Sin(StoredAngleA) / sinRatio
 StoredSideB = Sin(StoredAngleB) / sinRatio
 Case "abc"
 Throw New Exception("Cannot resolve " & _
 "triangle with only angles specified.")
 Case Else
 Throw New Exception(_
 "Undefined combination of triangle parts.")
 End Select
 ResolveABC()
 End Sub

 Private Sub ResolveABC()
 ' ----- All three sides are known. Calculate the angles.
 LengthCheck(StoredSideA, StoredSideB, StoredSideC)
 StoredAngleC = Acos((StoredSideA ^ 2 + _
 StoredSideB ^ 2 - StoredSideC ^ 2) / _
 (2 * StoredSideA * StoredSideB))
 StoredAngleB = Acos((StoredSideA ^ 2 + _
 StoredSideC ^ 2 - StoredSideB ^ 2) / _
 (2 * StoredSideA * StoredSideC))
 StoredAngleA = PI - StoredAngleB - StoredAngleC
 End Sub

 Private Sub LengthCheck(ByVal A As Double, _
 ByVal B As Double, ByVal C As Double)
 ' ----- Make sure that one of the sides isn't
 ' too long for the other two.
 If (A >= B) AndAlso (A >= C) AndAlso _
 (A <= (B + C)) Then Return
 If (B >= A) AndAlso (B >= C) AndAlso _
 (B <= (A + C)) Then Return
 If (C >= A) AndAlso (C >= B) AndAlso _
 (C <= (A + B)) Then Return
 Throw New Exception(_
 "One side is too long for the others.")
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Class

Exceptions are thrown if the triangle "doesn't make sense." For example, if the sum of two sides is less than the length of the third, or if three
angles are given, the triangle is impossible, or at least the data is insufficient to completely define the triangle.

To find the area of any triangle, you could include a shared function within the TRiangle class, but for the sake of demonstration (and because it
can be useful in a wider variety of computational situations) we've chosen to create a triangleArea() function separate from the class. This makes it
easy to find the area of any triangle given the lengths of its three sides, whether or not you're solving triangles using the triangle

 Public Function TriangleArea(ByVal sideA As Double, _
 ByVal sideB As Double, _
 ByVal sideC As Double) As Double
 ' ----- Calculate the area of a triangle.
 Dim sumHalfSides As Double
 Dim deltaA As Double
 Dim deltaB As Double
 Dim deltaC As Double

 sumHalfSides = (sideA + sideB + sideC) / 2
 deltaA = sumHalfSides - sideA
 deltaB = sumHalfSides - sideB
 deltaC = sumHalfSides - sideC
 Return Math.Sqrt(sumHalfSides * deltaA * deltaB * deltaC)
 End Function

The following code demonstrates the use of the TRiangle class by solving for a triangle that has two sides of length 4 and 5, with a 75°; angle
between the two sides. The RadPerDeg constant (see Recipe 6.10) converts 75°to radians at compile time rather than at runtime (to be consistent
with all other angular measurements in Visual Basic 2005, radians are always assumed in all the procedures in this book that involve angles):

 Const RadPerDeg As Double = Math.PI / 180
 Dim testTriangle As New Triangle
 Dim area As Double

 ' ----- Build a triangle with sides of 4 and 5, and an
 ' angle between them of 75 degrees.
 testTriangle.SideA = 4
 testTriangle.SideB = 5
 testTriangle.AngleC = 75 * RadPerDeg

 ' ----- The triangle is already resolved. Calculate area.
 area = TriangleArea(testTriangle.SideA, _
 testTriangle.SideB, testTriangle.SideC)

 MsgBox(testTriangle.ToString & vbNewLine & _
 "Area = " & area.ToString)

A ToString() function is included in the TRiangle class to provide a default format for presenting the triangle's parts in a single string. The solved
triangle for our example is shown in Figure 6-18.

Figure 6-18. Solving a triangle with the Triangle class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.19. Determining if a String Contains a Valid Number

Problem

You want to verify that a user-entered string contains a valid number.

Solution

Use Visual Basic's IsNumeric() function to check the string.

Discussion

Visual Basic 2005 provides a function named IsNumeric() that checks the content of any string, returning a Boolean true if
the string contains a valid number representation and False if it doesn't:

 Dim result As New System.Text.StringBuilder
 Dim testString As String

 testString = "2.E3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "2.D3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "-123"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "-1 2 3"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 testString = "$54.32"
 result.Append(testString).Append(vbTab)
 result.AppendLine(IsNumeric(testString).ToString)

 MsgBox(result.ToString())

Currency values are valid numbers, even with the currency symbol included. The IsNumeric() function expects a single
number in the string, so extra spaces, such as those shown in the next-to-last string in the example, cause IsNumeric() to
return False. If you want to determine how many valid numbers are in a string, and be able to grab them all, consider
using regular expressions instead.

Figure 6-19 shows the strings used in this example and the results returned by IsNumeric() for each.

Figure 6-19. Testing whether a string contains a valid number using IsNumeric()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

Problem

You want to use the right- sized integer variable for the job at hand.

Solution

Sample code folder: Chapter 06\UsingIntegers

Visual Basic 2005 now has signed and unsigned integer variable types that range in size from 8 bits to 64 bits (1 byte
to 8 bytes). Using the right size and type of integer can save memory, generate more efficient code, and provide
ranges of integer values suitable to a variety of needs.

Discussion

Visual Basic 2005 is the first version of Visual Basic to support signed byte values and unsigned integer values in a
variety of sizes. Here's a list of all the integer types now supported:

Byte

Eight-bit (1-byte) values ranging from 0 to 255. Equivalent to System.Byte.

SByte

A signed type that is 8 bits (1 byte) in size and holds values ranging from -128 to +127. Equivalent to
System.SByte.

Short

Sixteen-bit (2-byte) values ranging from -32,768 to +32,767. Equivalent to System.Int16.

UInt16

An unsigned type that is 16 bits (2 bytes) in size and holds values ranging from 0 to 65,535. Equivalent to
System.UInt16.

Integer

Thirty-two-bit (4-byte) values ranging from -2,147,483,648 to +2,147,483,647. Equivalent to System.Int32.

UInteger

An unsigned type that is 32 bits (4 bytes) in size and holds values ranging from 0 to 4,294,967,295. Equivalent
to System.UInt32.

Long

Sixty-four-bit (8-byte) values ranging from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 (-9
to +9 quintillion). Equivalent to System.Int64.

ULong

An unsigned type that is 64 bits (8 bytes) in size and holds values ranging from 0 to
18,446,744,073,709,551,615 (18 quintillion). Equivalent to System.UInt64.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18,446,744,073,709,551,615 (18 quintillion). Equivalent to System.UInt64.

The following code demonstrates each of these integer types by displaying the largest possible value for each:

 Dim result As New System.Text.StringBuilder()
 result.AppendLine("MaxValue…")
 result.AppendLine()

 Dim maxByte As Byte = Byte.MaxValue
 Dim maxSByte As SByte = SByte.MaxValue
 Dim maxShort As Short = Short.MaxValue
 Dim maxUShort As UShort = UShort.MaxValue
 Dim maxInteger As Integer = Integer.MaxValue
 Dim maxUInteger As UInteger = UInteger.MaxValue
 Dim maxLong As Long = Long.MaxValue
 Dim maxULong As ULong = ULong.MaxValue

 result.Append("Byte ").AppendLine(maxByte)
 result.Append("SByte ").AppendLine(maxSByte)
 result.Append("Short ").AppendLine(maxShort)
 result.Append("UShort = ").AppendLine(maxUShort)
 result.Append("Integer = ").AppendLine(maxInteger)
 result.Append("UInteger = ").AppendLine(maxUInteger)
 result.Append("Long = ").AppendLine(maxLong)
 result.Append("ULong = ").AppendLine(maxULong)

 MsgBox(result.ToString())

For all unsigned variable types, the minimum possible value is zero. For all signed types, to find the minimum value add
one to the maximum value, and change the sign. For example, the maximum value for signed bytes is 127, and the
minimum value is -128. As shown above, the MaxValue property of each integer type provides a straightforward way to
access the largest possible value. Similarly, you can get the smallest possible value by accessing each type's MinValue
property.

Figure 6-2 shows the maximum values for each type of integer, as displayed by the message box in the example code.

Figure 6-2. Maximum values for the various integer variable types

One other variable type is worth considering for extremely large integer values. Although not true integers, Decimal
variables can hold integer values up to 79,228,162,514,264,337,593,543,950,335 (79 octillion). The rule for
determining the minimum value for a Decimal-type variable is slightly different than for the true integer types: in this
case, just reverse the sign of the maximum value, don't add 1. The MinValue for Decimal variables is thus -
79,228,162,514,264,337,593,543,950,335.

Decimal values are signed 128-bit (16-byte) numbers, and they may have a decimal point. If you appropriately round off
or truncate values, the Decimal type can accurately hold extremely large integer values. However, even on 64-bit
machines, this data type can slow down calculations somewhat because the processor must perform calculations using
multiple steps to process each value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.20. Converting Numbers to Integers

Problem

You want to convert numbers to integers, or perhaps truncate or round values to integer values, and you want to
understand the various ways to do this.

Solution

As always, use the best tool for the job. If you want to remove decimal parts of a number, consider using Int(), Floor(), or
the Round() function. But if you want to convert a numeric value to an Integer data type, use CInt() or Convert.ToInteger()
instead.

Discussion

The following code demonstrates differences between the CInt() and Int() functions. Once you gain a good understanding
of these two functions, you'll be well on your way to understanding similar functions such as Round(), Convert.ToInteger(),
and so on.

One important difference between CInt() and Int() is that Int() is overloaded to work with a wide variety of numeric data
types. For example, you can pass a Double, such as the value of π, to Int(), and it will return another Double value that no
longer has any post-decimal digits (i.e., it will round to a whole number). This is entirely different from converting a
number to an Integer. The Int() function works on numbers that are way out of the legal range for an Integer. Using CInt()
on similar numbers would throw an exception.

The two functions are demonstrated in the following code:

 Dim result As New System.Text.StringBuilder
 Dim number As Double

 ' ----- Positive decimal value.
 number = 3.14
 result.Append(number)
 result.Append(" CInt(): ")
 result.Append(CInt(number).ToString)
 result.Append(" Int(): ")
 result.AppendLine(Int(number).ToString)

 ' ----- Negative decimal value.
 number = -3.14
 result.Append(number)
 result.Append(" CInt(): ")
 result.Append(CInt(number).ToString)
 result.Append(" Int(): ")
 result.AppendLine(Int(number).ToString)

 ' ----- Number that won't fit in an Integer.
 number = 3000000000.0
 result.Append(number)
 result.Append(" CInt(): ")
 Try
 result.Append(CInt(number).ToString)
 Catch
 result.Append("(error)")
 End Try
 result.Append(" Int(): ")
 result.Append(Int(number).ToString)

 MsgBox(result.ToString())

There are some other functions in the Math object that provide similar functionality to Int(). For example, the Math.Floor()
and Math.Ceiling() functions also operate on numbers that might be out of the range of Integers. Floor() returns the largest
whole number less than or equal to a given number, and Ceiling() returns the smallest whole number that's greater than
or equal to a given number. See Figure 6-20.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-20. The CInt() function converts numbers to Integer data types, while
the Int() function returns whole numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.21. Calculating π to Thousands of Digits

Problem

You want to impress people by showing how quickly Visual Basic 2005 can calculate π to a thousand or more decimal places. While you're at it, you
might want to discover how to create multidigit mathematical functions using integer arrays of digits.

Solution

Sample code folder: Chapter 06\ CalculatePi

Create functions for basic mathematical operations (+, -, *, /) that operate on integer arrays of any reasonable size. Then demonstrate these functions
by calculating π to many digits using one of the standard π-calculation algorithms.

Discussion

This recipe includes a module called PiCalculator that contains the functions needed to perform multidigit math, along with one to calculate π to any
number of digits. The four main multidigit functions are named ArrayMult(), ArrayDivide(), ArrayAdd(), and ArraySub(). These are declared as
because they serve only as support routines to the FindPi() function, but you can change them to Public to experiment with them for other purposes.
Other supporting functions include ArrayZero(), which sets all "digits" in an array to zeros, and ArcTangent(), which calls the other functions to calculate the
arctangent of a multi-digit number.

The way the basic math functions work is similar to the way math is performed on paper by grade-schoolers: when two digits are added, any overflow
is added into the next pair of digits, and so on. Calculating π to 500 decimal places requires a huge number of these small repetitive calculations, but
that's what computers are really good at doing.

Here is the code to calculate π. It is based on the following calculation for π:

π/4 = (arctan 1/2)+ (arctan 1/3)

Each part of the algorithm is performed manually, including the arctangent calculation:

 Module PiCalculator
 Private NumberDigits As Integer

 Public Function FindPi(ByVal digits As Integer) As String
 ' ----- Calculate Pi to the specified number of digits,
 ' based on the formula:
 ' Pi/4 = arctan(1/2) + arctan(1/3)
 Dim result As New System.Text.StringBuilder("PI=3.")
 Dim digitIndex As Integer
 Dim divFactor As Integer

 ' ----- Build an array that will hold manual calculations.
 NumberDigits = digits + 2
 Dim targetValue(NumberDigits) As Integer
 Dim sourceValue(NumberDigits) As Integer

 ' ----
Perform the calculation.
 divFactor = 2
 ArcTangent(targetValue, sourceValue, divFactor)
 divFactor = 3
 ArcTangent(targetValue, sourceValue, divFactor)
 ArrayMult(targetValue, 4)

 ' ----- Return a string version of the calculation.
 For digitIndex = 1 To NumberDigits - 3
 result.Append(Chr(targetValue(digitIndex) + Asc("0"c)))
 Next digitIndex
 Return result.ToString
 End Function

 Private Sub ArrayMult(ByRef baseNumber() As Integer, _
 ByRef multiplier As Integer)
 ' ----- Multiply an array number by another number by hand.
 ' The product remains in the array number.
 Dim carry As Integer
 Dim position As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Multiple each base digit, from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the multiplication went past 9, carry the
 ' tens value to the next column.
 holdDigit = (baseNumber(position) * multiplier) + carry
 carry = holdDigit \ 10
 baseNumber(position) = holdDigit Mod 10
 Next position
 End Sub

Private Sub ArrayDivide(ByRef dividend() As Integer, ByRef divisor As Integer)
 ' ----- Divide an array number by another number by hand.
 ' The quotient remains in the array number.
 Dim borrow As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Process division for each digit.
 For position = 0 To NumberDigits
 ' ----- If the division can't happen directly, borrow from
 ' the previous position.
 holdDigit = dividend(position) + borrow * 10
 dividend(position) = holdDigit \ divisor
 borrow = holdDigit Mod divisor
 Next position
 End Sub

 Private Sub ArrayAdd(ByRef baseNumber() As Integer, ByRef addend() As Integer)
 ' ----- Add two array numbers together.
 ' The sum remains in the first array number.
 Dim carry As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ----- Add each digit from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the sum goes beyond 9, carry the tens
 ' value to the next column.
 holdDigit = baseNumber(position) + addend(position) + carry
 carry = holdDigit \ 10
 baseNumber(position) = holdDigit Mod 10
 Next position
 End Sub

 Private Sub ArraySub(ByRef minuend() As Integer, ByRef subtrahend() As Integer)
 ' ----- Subtract one array number from another.
 ' The difference remains in the first array number.
 Dim borrow As Integer
 Dim position As Integer
 Dim holdDigit As Integer

 ' ---- Subtract the digits from right to left.
 For position = NumberDigits To 0 Step -1
 ' ----- If the subtraction would give a negative value
 ' for a column, we will have to borrow.
 holdDigit = minuend(position) - subtrahend(position) + 10
 borrow = holdDigit \ 10
 minuend(position) = holdDigit Mod 10
 If (borrow = 0) Then minuend(position - 1) -= 1
 Next position
 End Sub

 Private Function ArrayZero(ByRef baseNumber() As Integer) As Boolean
 ' ----- Report whether an array number is all zero.
 Dim position As Integer

 ' ----- Examine each digit.
 For position = 0 To NumberDigits
 If (baseNumber(position) <> 0) Then
 ' ----- The number is nonzero.
 Return False
 End If
 Next position

 ' ----- The number is zero.
 Return True
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

 Private Sub ArcTangent(ByRef targetValue() As Integer, _
 ByRef sourceValue() As Integer, _
 ByVal divFactor As Integer)
 ' ----- Calculate an arctangent of a fraction,
 ' 1/divFactor. This routine
performs a modified
 ' Maclaurin series to calculate the arctangent.
 ' The base formula is:
 ' arctan(x) = x - x^3/3 + x^5/5 -' x^7/7 + x^9/9 - …
 ' where -1 < x < 1 (1/divFactor in this case).
 Dim workingFactor As Integer
 Dim incremental As Integer

 ' ----- Figure out the "x" part, 1/divFactor.
 sourceValue(0) = 1
 incremental = 1
 workingFactor = divFactor
 ArrayDivide(sourceValue, workingFactor)

 ' ----- Add "x" to the total.
 ArrayAdd(targetValue, sourceValue)
 Do
 ' ----- Perform the "- (x^y)/y" part.
 ArrayMult(sourceValue, incremental)
 workingFactor = divFactor * divFactor
 ArrayDivide(sourceValue, workingFactor)
 incremental += 2
 workingFactor = incremental
 ArrayDivide(sourceValue, workingFactor)
 ArraySub(targetValue, sourceValue)

 ' ----- Perform the "+ (x^y)/y" part.
 ArrayMult(sourceValue, incremental)
 workingFactor = divFactor * divFactor
 ArrayDivide(sourceValue, workingFactor)
 incremental += 2
 workingFactor = incremental
 ArrayDivide(sourceValue, workingFactor)
 ArrayAdd(targetValue, sourceValue)
 Loop Until ArrayZero(sourceValue)
 End Sub
 End Module

To exercise these procedures, the following statement uses the FindPi() function to calculate π to 500 digits:

 MsgBox(FindPi(500))

You can change the 500 argument to obtain a different number of digits. However, even though the time required to calculate π to 500 or even 1,000
digits is fairly negligible, every time you double the count, the FindPi() function requires around four times as long to return the results. Try smaller
counts first, moving up to larger counts when you have a good feel for just how long the calculation will take on your computer.

Figure 6-21 shows the first 500 digits of π as formatted by the FindPi() function. If you prefer to format the digits differently, say in groups of 10 digits or
with occasional end-of-line characters, you might want to change FindPi() to return an array of digits. The calling code can then format the digits as
desired. The "digits" in the array have values in the range 0 to 9, and they need to be converted to ASCII digits by adding the ASCII equivalent of "0"
(zero) to their value before applying the Chr() conversion function.

Figure 6-21. Pi calculated to 500 decimal places

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

There are many places on the Web to see many digits of π and to learn of the different algorithms used for calculating π to even millions of decimal
places. See, for example, http://www.exploratorium.edu/pi/Pi10-6.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.22. Getting a Number's Prime Factors

Problem

You need to determine all prime factors of a given number, perhaps for demonstrating cryptographic algorithms or for
some other purpose.

Solution

Sample code folder: Chapter 06\PrimeFactor

Create a function called PrimeFactors() that analyzes any Long integer and returns a string listing all the number's prime
factors in a clear format.

Discussion

The algorithm used here is fairly straightforward, suitable for reasonably sized Long integers. The prime factors are
found by checking for even divisibility by numbers from 2 to the square root of the number being checked. Whenever a
factor is found, it is extracted, and the divisibility check is repeated. Tallies for the factors are converted to string
format during this process, and the string is returned when all the checks are completed:

 Private Function PrimeFactors(_
 ByVal numberToFactor As Long) As String
 ' ----- Calculate the prime factors of a starting number.
 Dim result As New System.Text.StringBuilder
 Dim testFactor As Long
 Dim workNumber As Long
 Dim factorCount As Long

 ' ----- Scan through all numbers up to
 ' Sqrt(numberToFactor).
 workNumber = numberToFactor
 testFactor = 1
 Do While (testFactor < Math.Sqrt(CType(workNumber, _
 Double)))
 testFactor += 1
 factorCount = 0
 Do While (workNumber / testFactor) = _
 (workNumber \ testFactor)
 ' ----- Found a factor.
 factorCount += 1
 workNumber \= testFactor
 Loop
 Select Case factorCount
 Case 1
 ' ----- Show a prime factor.
 result.AppendLine(testFactor)
 Case Is > 1
 ' ----- Show a prime factor as a power.
 result.Append(testFactor)
 result.Append("^")
 result.AppendLine(factorCount)
 End Select
 Loop

 ' ----- Include the final prime factor, if available.
 If (workNumber > 1) Then result.Append(workNumber)
 Return result.ToString
 End Function

Here's the code that drives the example, which finds and displays the prime factors for the number 7999848:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the code that drives the example, which finds and displays the prime factors for the number 7999848:

 Dim result As New System.Text.StringBuilder
 Dim number As Long = 7999848

 result.AppendLine("PrimeFactors(" & number & ")… ")
 result.AppendLine()
 result.Append(PrimeFactors(number))

 MsgBox(result.ToString())

Figure 6-22 shows the results of calculating that number's prime factors.

See Also

There are many good resources on the Web for learning about prime numbers and prime factors. See, for example,
http://primes.utm.edu/largest.html.

Figure 6-22. Using the PrimeFactors() function to find all the prime factors of a
number in one call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.23. Using Recursion to Calculate Factorials

Problem

You want to study a sample of Visual Basic's ability to define recursive functions, or you need a factorial function for
smaller integers.

Solution

Sample code folder: Chapter 06\Factorial

Create a Factorial() function that recursively calls itself.

Discussion

The code in this recipe does not represent the most efficient way to calculate factorials for larger integers. You'll want to
use a standard For…Next loop or similar process when working with larger numbers, simply because each recursive
function call uses up stack space and adds a little overhead. However, recursive functions can be quite useful in some
programming situations. A simple recursive function that calculates the factorial of a number is a great way to
understand recursion.

The factorial of a number N is the product of all numbers from 1 to N. For example, the factorial of 3 is calculated as 3 x
2 x 1, which results in a value of 6. The Factorial() function returns the value 1 if it is passed a value of zero; otherwise, it
returns the passed value times the factorial of the next smaller integer. Study the Select Case lines of code in the function
to see how this is accomplished:

 Public Function Factorial(ByVal number As Decimal) As Decimal
 Select Case number
 Case Is < 0
 Throw New Exception("Factorial: Bad argument")
 Case Is = 0
 Return 1
 Case Else
 Return number * Factorial(number - 1)
 End Select
 End Function

Calling the Factorial() function from inside its own code is what recursion is all about. All pending returns are literally
stacked up until the value of the passed number finally reaches zero, at which time the pending multiplications all
happen in a hurry. As a result of the way this recursion works, if you request the Factorial() of a large number, you run
the risk of running out of stack memory or of numeric over-flow. With Decimal variables, as shown in the previous code,
the largest value you can pass to the function without overflow is just 27. Of course, the factorial of 27 is a huge
number, and the answer is exact when using Decimal values. You might consider switching the algorithm to use Double
values to find approximations of even larger factorials.

The following lines demonstrate the Factorial() function by calculating and displaying the factorial of 7:

 Dim result As New System.Text.StringBuilder
 Dim number As Decimal = 7

 result.AppendLine("Factorial(" & number & ")… ")
 result.AppendLine()
 result.Append(Factorial(number))

 MsgBox(result.ToString())

Figure 6-23 shows the results of calculating the factorial of 7.

Figure 6-23. Calculating the factorial of a number with the Factorial() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-23. Calculating the factorial of a number with the Factorial() function

See Also

Search for "Factorial" on the Web to learn more about factorials (see, for example,
http://mathworld.wolfram.com/Factorial.html).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.24. Manipulating Bits with Bitwise Operators

Problem

You need to shift, mask, and perform other bitwise manipulations on integers.

Solution

Visual Basic 2005 has functions for all the major bit-manipulation techniques, and it's easy to combine these to perform
more complicated bitwise calculations as required.

Discussion

There are several operators that are most often thought of as Boolean operators, working with and returning true and
False (Boolean) values. However, these operators also accept and return integer values of various sizes, and this is
where they can be of value for bit manipulations. These bitwise operators include the following:

And

Bits are combined to 1 only if they are both 1.

Not

Bits are inverted, 0 to 1 and 1 to 0.

Xor

Bits are combined to 1 only if the two bits are not the same.

Or

Bits are combined to 1 if either bit is a 1.

<<

Bits are all shifted left a given number of bit positions.

>>

Bits are all shifted right a given number of bit positions.

The two bit-shift operators can be used as assignment operators. That is, the following two
lines of code provide identical results:

 a = a << 3
 a <<= 3

In both cases the bits in integer variable a are shifted to the left three positions. The And,
Or, Not, and Xor operators don't support assignment notation.

The following code demonstrates a sampling of these bit manipulations. You can change the program to experiment
with the various operators:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the various operators:

 Dim result As New System.Text.StringBuilder
 Dim number As Integer = 7

 result.Append(number)
 result.Append(" <<= 3 … ")
 number <<= 3
 result.AppendLine(number)
 result.Append(number)
 result.Append(" Xor 17 … ")
 number = number Xor 17
 result.AppendLine(number)

 MsgBox(result.ToString())

Figure 6-24 shows the output displayed by this sample code.

Figure 6-24. Bit manipulations with Visual Basic 2005

See Also

Search for "Logical and Bitwise Operators in Visual Basic" in Visual Studio Help to learn more about this topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.25. Storing and Retrieving Bits in a BitArray

Problem

You want to store and retrieve a lot of bits without wasting memory and without sacrificing speed of operation.

Solution

Sample code folder: Chapter 06\GetPrimes

Use a BitArray to store and access individual bits in memory efficiently.

Discussion

The BitArray object lets you access bits by indexed position, and all the details of decoding which bit position of which
byte the bit is stored in are taken care of transparently behind the scenes. A BitArray of 80 bits is actually stored in 10
bytes of memory.

To demonstrate using a BitArray, we've created a module named Eratosthenes.vb that contains code to find all prime
numbers between 2 and 8,000,000 very quickly. The 8 million bits are stored in 1 million bytes of memory, and the
individual bits are accessed using indexes in the range 0 to 8,000,000.

The Sieve of Eratosthenes (http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) works by first setting all bits to 1, or
TRue. The BitArray can be instantiated with a count and an optional second Boolean parameter that presets all bits to true
or False. In this case, true sets them all to 1. Starting with 2, each prime number, or bit that is set, clears all bits that are
exact multiples of that number. So, for instance, bit 2 is kept at TRue, but bits 4, 6, 8, and so on, are all set to False. This
marks all even numbers except for 2 as nonprime. Similarly, bit 3 is left TRue, and bits 6, 9, 12, 15, etc., are set to False
to mark all multiples of 3 as nonprime. This looping technique very quickly sets all bits in the BitArray that appear in
prime number positions to True and all other bits to False.

The Eratosthenes module contains the BitArray itself, a Sieve() method to set all the prime number bits as described
earlier, and a GetBit() function to retrieve the bit at any location, converting the bit's true or False Boolean value to a 1 or 0
integer value:

 Module Eratosthenes
 Private Const MaxNumber As Integer = 8000000
 Private PrimeStorage As New BitArray(MaxNumber, True)

 Public Sub Sieve()
 ' ----- Get all the prime numbers from 1 to MaxNumber.
 Dim index As Integer = 1
 Dim counter As Integer

 ' ----- Scan through all primes.
 Do While (index < (MaxNumber - 1))
 index += 1
 If (PrimeStorage(index) = True) Then
 ' ----- Found a prime. Set all of its multiples
 ' to non-prime.
 For counter = index * 2 To MaxNumber - 1 _
 Step index
 PrimeStorage(counter) = False
 Next counter
 End If
 Loop
 End Sub

 Public Function GetBit(ByVal index As Integer) As Integer
 ' ----- Retrieve the status of a single prime bit.
 If (PrimeStorage(index) = True) Then _
 Return 1 Else Return 0
 End Function
 End Module

The following block of code demonstrates the BitArray in action, displaying the prime numbers up to the size of the
BitArray. To prevent information overload, only the first and last few numbers in the desired range are formatted into a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BitArray. To prevent information overload, only the first and last few numbers in the desired range are formatted into a
string for display, as there are a lot of prime numbers between 0 and 8,000,000:

 Dim result As New System.Text.StringBuilder
 Dim counter As Integer
 Dim needBreak As Boolean = True
 result.AppendLine(_
 "Prime numbers using the ""Sieve of Eratosthenes""")

 ' ----- Generate the primes.
 Sieve()

 ' ----- Report each prime.
 For counter = 2 To 7999999
 If (GetBit(counter) = 1) Then
 If (counter < 50) Or (counter > 7999800) Then
 ' ----- Only show a limited number of primes.
 result.AppendLine(counter)
 ElseIf (needBreak = True) Then
 ' ----- Show that we are leaving something out.
 result.AppendLine("…")
 needBreak = False
 End If
 End If
 Next counter
 MsgBox(result.ToString())

Figure 6-25 shows the partial list of all the prime numbers as determined by the bits in the BitArray. On your system
there could be less than a second's delay during the computation and display of these prime numbers!

Figure 6-25. All the prime numbers between 0 and 8,000,000, calculated quickly
using a BitArray

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Search for "prime numbers" on the Web for more information. See also "Logical and Bitwise Operators in Visual Basic"
in the Visual Studio online help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.26. Enhancing the Random Number Generator

Problem

You want to greatly extend the cycle length of Visual Basic's pseudorandom number generator.

Solution

Sample code folder: Chapter 06\RepeatRandom

You can use the RNGCryptoServiceProvider class to generate cryptographically strong random numbers, or you can use the
technique presented here to greatly extend the cycle length of the standard pseudorandom number generator and
make it easier to use.

Discussion

The BetterRandom class presented here uses the standard Rnd() function and the Randomize() initialization method, but it
enhances them in several ways. Contrary to what some people claim, it is possible to initialize the random number
generator to a unique but repeatable sequence, but the technique is far from obvious. You have to call the Randomize()
method immediately after calling the Rnd() function, but only after passing Rnd() a negative numerical value. So, one
advantage of this BetterRandom class is the encapsulation of this technique into something that makes a lot more sense. If
you instantiate a BetterRandom object by passing any string to it, each unique string initializes the generator to a unique
but repeatable state. If you instantiate a BetterRandom object with no string, the system clock generates a unique
sequence for every system tick, which means it is always unique.

The cycle length of the generator is greatly enhanced by maintaining a table of pseudorandom Double numbers in the
normalized range 0 to 1. Rolling indexes are used to add table entries together along with the next value returned by
Rnd(), and the result is brought back into the range 0 to 1 using the Mod operator. The GetNextdouble() function forms the
core of this algorithm, as shown here:

 Public Function GetNextDouble() As Double
 ' ----- Return the next pseudorandom number as a Double.
 ' ----- Move to the next index positions.
 Index1 = (Index1 + 1) Mod TableSize
 Index2 = (Index2 + 1) Mod TableSize

 ' ----- Update the random numbers at those positions.
 RandomTable(Index1) += RandomTable(Index2) + Rnd()
 RandomTable(Index1) = RandomTable(Index1) Mod 1.0

 ' ----- Return the newest random table value.
 Return RandomTable(Index1)
 End Function

This table keeps the pseudorandom values well mixed while providing a nice flat distribution of the values with excellent
statistical results. When the Rnd() function cycles back around to its starting point, the table will be in a completely
different state, which means the cycle length of the values returned from this table will be some off-the-chart
astronomical value. It simply won't repeat in the amount of time there is in this universe to exercise the algorithm.

The table size is set to 32, but feel free to make the table larger or smaller as desired. A larger table will be slightly
slower to initialize, but subsequent pseudorandom numbers will be calculated and returned just as fast.

Another advantage of this class is that it can be used to return several types of pseudorandom numbers. The
GetNexTDouble() function, which is demonstrated in this recipe, returns a double-precision value between 0 and 1. The
next few recipes in this chapter will demonstrate how the BetterRandom class can be used to return several other types of
pseudorandom numbers. The code for the class is presented here in its entirety for easy review:

 Public Class BetterRandom
 Private Const TableSize As Integer = 32
 Private RandomTable(TableSize - 1) As Double
 Private Index1 As Integer
 Private Index2 As Integer

 Public Sub New()
 ' ----- Generate truly pseudorandom numbers.
 InitRandom(Now.Ticks.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InitRandom(Now.Ticks.ToString)
 End Sub

 Public Sub New(ByVal Key As String)
 ' ----- Generate a repeatable random sequence.
 InitRandom(Key)
 End Sub

 Private Sub InitRandom(ByVal repeatKey As String)
 ' ----- Prepare the random number generator.
 Dim stringIndex As Integer
 Dim workNumber As Double
 Dim counter As Integer

 ' ----- All sequences start with the same base sequence.
 Randomize(Rnd(-1))

 ' ----- Initialize the table using the key string.
 For counter = 0 To TableSize - 1
 stringIndex = counter Mod repeatKey.Length
 workNumber = Math.PI / _
 Asc(repeatKey.Substring(stringIndex, 1))
 RandomTable(counter) = (Rnd() + workNumber) Mod 1.0
 Next counter

 ' ----- Set the starting state for the table.
 Index1 = TableSize \ 2
 Index2 = TableSize \ 3

 ' ----- Cycle through a bunch of values to get a good
 ' starting mix.
 For counter = 0 To TableSize * 5
 GetNextDouble()
 Next counter

 ' ----- Reset the random sequence based on our
 ' preparations.
 Randomize(Rnd(-GetNextSingle()))
 End Sub

 Public Function GetNextDouble() As Double
 ' ----- Return the next pseudorandom number as
 ' a Double.

 ' ----- Move to the next index positions.
 Index1 = (Index1 + 1) Mod TableSize
 Index2 = (Index2 + 1) Mod TableSize

 ' ----- Update the random numbers at those positions.
 RandomTable(Index1) += RandomTable(Index2) + Rnd()
 RandomTable(Index1) = RandomTable(Index1) Mod 1.0

 ' ----- Return the newest random table value.
 Return RandomTable(Index1)
 End Function

 Public Function GetNextSingle() As Single
 ' ----- Return the next pseudorandom number as
 ' a Single.
 Return CSng(GetNextDouble())
 End Function

 Public Function GetNextInteger(ByVal minInt As Integer, _
 ByVal maxInt As Integer) As Integer
 ' ----- Return the next pseudorandom number within an
 ' Integer range.
 Return CInt(Int(GetNextDouble() * _
 (maxInt - minInt + 1.0) + minInt))
 End Function

 Public Function GetNextReal(ByVal minReal As Double, _
 ByVal maxReal As Double) As Double
 ' ----- Return the next pseudorandom number within a
 ' floating-point range.
 Return GetNextDouble() * (maxReal - minReal) + minReal
 End Function

 Public Function GetNextNormal(ByVal mean As Double, _
 ByVal stdDev As Double) As Double

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal stdDev As Double) As Double
 ' ----- Return the next pseudorandom number adjusted
 ' to a normal distribution curve.
 Dim x As Double
 Dim y As Double
 Dim factor As Double
 Dim radiusSquared As Double

 Do
 x = GetNextReal(-1, 1)
 y = GetNextReal(-1, 1)
 radiusSquared = x * x + y * y
 Loop Until radiusSquared <= 1.0
 factor = Math.Sqrt(-2.0 * Math.Log(radiusSquared) / _
 radiusSquared)

 Return x * factor * stdDev + mean
 End Function

 Public Function GetNextExp(ByVal mean As Double) As Double
 ' ----- Return the next pseudorandom number adjusted
 ' for exponential distribution.
 Return -Math.Log(GetNextDouble) * mean
 End Function
 End Class

The following code demonstrates the BetterRandom class by generating two short sequences of pseudorandom Double
numbers in the range 0 to 1. The first sequence is generated uniquely each time by not passing a string during
initialization of the BetterRandom object. The second sequence uses the same string each time for initialization, and
therefore the sequence is always repeated:

 Dim result As New System.Text.StringBuilder
 Dim generator As BetterRandom

 result.AppendLine("Never the same sequence:")
 generator = New BetterRandom
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine()

 result.AppendLine("Always the same sequence:")
 generator = New BetterRandom(_
 "Every string creates a unique, repeatable sequence")

 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)
 result.AppendLine(generator.GetNextDouble.ToString)

 MsgBox(result.ToString())

Figure 6-26 shows the never-and always-repeating sequences generated by this demonstration code.

Figure 6-26. Two pseudorandom sequences are generated: one that's always
unique and one that always repeats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Search Visual Studio Help for "Random Class" and "RNGCryptoServiceProvider Class" for information about other ways
to generate pseudorandom numbers in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.27. Generating Random Integers in a Range

Problem

You need to generate a sequence of pseudorandom integers with a flat distribution over a given range.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextInteger() function. Two parameters define the range limits for the
returned pseudorandom integer, as shown here:

 newRnd.GetNextInteger(minInt, maxInt)

The returned integer has a statistically flat distribution across the given range.

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 200 pseudorandom
integers in the range -10 to +10. The results are collected and then displayed for review. As a programming exercise,
you might consider changing this code to display the average and perhaps the standard deviation for these returned
values.

The generator object is created without passing a string to initialize the generator, so a unique sequence is created every
time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim minInt As Integer = -10
 Dim maxInt As Integer = 10
 Dim counter As Integer

 result.Append("Random integers in range ")
 result.AppendLine(minInt & " to " & maxInt)
 For counter = 1 To 200
 ' ----- Add one random number.
 result.Append(generator.GetNextInteger(-10, 10))
 If ((counter Mod 40) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(",")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-27 shows the results of generating the 200 pseudorandom integers.

Figure 6-27. Pseudorandom integers in the range -10 to +10 generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

Search Visual Studio Help for "Random Class" and "RNGCryptoServiceProvider Class" for information about other ways
to generate pseudorandom numbers in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.28. Generating Random Real Numbers in a Range

Problem

You need to generate a sequence of pseudorandom real numbers with a flat distribution over a given range.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextreal() function. Two parameters define the range limits for the
returned pseudorandom real values, and the returned value has a statistically flat distribution across the given range:

 GetNextReal(minReal, maxReal)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision real numbers in the range -10.0 to +10.0. The results are collected and then displayed for review. As
a programming exercise, you might consider changing this code to display the average and perhaps the standard
deviation for these returned values.

The generator object is created without passing a string to initialize the generator, so a unique sequence will be created
every time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim minReal As Integer = -10
 Dim maxReal As Integer = 10
 Dim counter As Integer

 result.Append("Random reals in range ")
 result.AppendLine(minReal & " to " & maxReal)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextReal(minReal, maxReal))
 If ((counter Mod 5) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-28 shows the results of generating the 20 pseudorandom double-precision real values.

Figure 6-28. Pseudorandom reals in the range -10.0 to +10.0 generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.29. Generating Normal-Distribution Random Numbers

Problem

You need to generate a sequence of pseudorandom numbers with a normal distribution, given the distribution's mean
and standard deviation.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextNormal() function. Two parameters passed to this function define
the mean and standard deviation for the distribution of the generated values:

 GetNextNormal(mean, stdDev)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision numbers with the desired normal distribution. As a programming exercise you might consider changing
this code to display the mean and standard deviation for the returned values, to compare the results with the goal.

The generator object is created without passing a string to initialize the generator, so a unique sequence will be created
every time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim mean As Double = 100
 Dim stdDev As Double = 10
 Dim counter As Integer

 result.Append("Normal distribution randoms with mean ")
 result.AppendLine(mean & " and standard deviation " & stdDev)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextNormal(mean, stdDev))
 If ((counter Mod 3) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-29 shows the results of generating the 20 pseudorandom double-precision normal-distribution numbers.

Figure 6-29. Pseudorandom normally distributed numbers generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BetterRandom object

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.3. Using Unsigned Integers

Problem

You want to work with nonnegative integers while minimizing the memory requirements of variables in your code.

Solution

Use the smallest unsigned integer variable types that will hold the desired range of nonnegative values.

Discussion

As mentioned in the previous recipe, the unsigned integer variable types provide many new options for working with
nonnegative integers in Visual Basic 2005. The following code provides a specific example to help clarify the concept:

 Dim testUShort As UShort
 Do Until (testUShort > CUShort(33000))
 testUShort += CUShort(1)
 Loop
 MsgBox("UShort result: " & testUShort.ToString())

The standard Visual Basic Short variable type holds signed integers in the range -32,768 to +32,767 and uses only two
bytes of memory. If the previous code used signed integers, an exception would be generated during the looping
because values up to 33,001 are not allowed. The unsigned testUShort integer stores values up to 65,535, so the
program runs successfully, and the variable still requires only two bytes of memory. Figure 6-3 shows a two-byte
unsigned variable displaying a number too big for a standard signed two-byte integer.

Figure 6-3. Unsigned integer variables can hold bigger numbers than signed
integers, in the same amount of memory

See Also

Search for "UInteger" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.30. Generating Exponential-Distribution Random Numbers

Problem

You need to generate a sequence of pseudorandom numbers with an exponential distribution given the distribution's
mean.

Solution

Sample code folder: Chapter 06\RepeatRandom

The BetterRandom class (see Recipe 6.26) sports a GetNextExp() function. One parameter passed to this function defines the
mean of the exponentially distributed return values:

 GetNextExp(mean)

Discussion

The following code creates a new instance of the BetterRandom object, which it then uses to generate 20 pseudorandom
double-precision numbers with the desired exponential distribution. As a programming exercise you might consider
changing this code to display the mean of the returned values, to compare the results with the goal.

The generator object is created without passing a string to initialize the generator, so a unique sequence is created every
time this program is run:

 Dim result As New System.Text.StringBuilder
 Dim generator As New BetterRandom
 Dim mean As Double = 10
 Dim counter As Integer

 result.Append("Exponential distribution randoms with mean ")
 result.AppendLine(mean)
 result.AppendLine()
 For counter = 1 To 20
 ' ----- Add one random number.
 result.Append(generator.GetNextExp(mean))
 If ((counter Mod 3) = 0) Then
 ' ----- Group on distinct lines periodically.
 result.AppendLine()
 Else
 result.Append(", ")
 End If
 Next counter

 MsgBox(result.ToString())

Figure 6-30 shows the results of generating the 20 pseudorandom double-precision exponential-distribution numbers.

Figure 6-30. Pseudorandom exponentially distributed numbers generated by the
BetterRandom object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 6.26 shows the full code for the BetterRandom class.

There are many good references on the Web to learn more about random number generation (see, for example,
http://random.mat.sbg.ac.at).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.31. Creating a Matrix

Problem

You want to declare a matrix, populate it with nonzero values, and perform several standard matrix calculations on it.

Solution

Sample code folder: Chapter 06\Matrix

This recipe demonstrates how to declare and populate a matrix in a clear, readable way. A module of matrix functions is
also included, although several of the functions it contains will be presented in follow-up recipes.

Discussion

Nested braces containing comma-separated numbers can be used to fill arrays of one or more dimensions. In the case
of a two-dimensional matrix, the braces can optionally be separated to show each row of numbers on its own line using
the underscore (_) line-continuation character. Feel free to use whatever layout details work for you, but the following
sample of a 3 x 3 matrix can provide a decent, visually appealing layout in your source code:

 Dim matrixA(,) As Double = { _
 {4, 5, 6}, _
 {7, 8, 9}, _
 {3, 2, 1}}
 MsgBox(MatrixHelper.MakeDisplayable(matrixA))

The last line of this code uses a function named MakeDisplayable() to return a string representation of a matrix suitable for
display, as shown in Figure 6-31. This function is one of several to be presented in the code module named MatrixHelper.

Figure 6-31. The custom output of the matrix

The MatrixHelper module contains several functions to work with matrices, and the recipes that follow will describe them
further. A complete listing of MatrixHelper.vb can be found at the end of this chapter.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.32. Inverting a Matrix

Problem

You want to invert a matrix.

Solution

Sample code folder: Chapter 06\Matrix

Use the MatrixHelper. Inverse() function presented here and expanded upon in the MatrixHelper module presented in Recipe
6.35.

Discussion

The inverse of a matrix is another identically sized matrix that, when multiplied with the original matrix, gives the
identity matrix. Only square matrices can be inverted. Matrix inversion is one of the basic matrix operations used for
scientific, engineering, and computer graphics work. (A full description of matrices and their operations is beyond the
scope of this book.)

Visual Basic 2005 is a good language for developing high-speed .NET Frameworkbased mathematical collections of
number-crunching routines. It allows you to create fast-running classes, structures, and modules containing related
functions or methods to meet many requirements. This recipe presents the code required to invert a matrix efficiently:

 Dim matrixA(,) As Double = { _
 {1, 3, 3}, _
 {2, 4, 3}, _
 {1, 3, 4}}
 Dim matrixB(,) As Double = MatrixHelper.Inverse(matrixA)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & _
 vbNewLine & vbNewLine & "Inverse: " & _
 vbNewLine & MatrixHelper.MakeDisplayable(matrixB))

The MatrixHelper module is listed in its entirety in Recipe 6.35; it includes the Inverse()
function and other functions called by Inverse().

Figure 6-32 shows the result of finding the inverse of a 3 x 3 matrix.

Figure 6-32. Finding the inverse of a square matrix with the MatrixHelper.Inverse(
) function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the MatrixHelper.Inverse() function in your own applications, add the MatrixHelper module to your project and call the
function from anywhere within your application.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.33. Calculating the Determinant of a Matrix

Problem

You need to calculate the determinant of a matrix.

Solution

Sample code folder: Chapter 06\Matrix

Add the MatrixHelper module to your application, and pass your matrix to the MatrixHelper.Determinant() function.

Discussion

The determinant of a matrix is a single number derived from a matrix. It helps determine if a matrix is invertible, and it
also comes into play when using matrices to solve simultaneous equations. (A full description of matrices and their
operations is beyond the scope of this book.)

The following sample code creates a square matrix of double-precision numbers and passes it to the
MatrixHelper.Determinant() function in the MatrixHelper module, which returns the determinant of the matrix:

 Dim matrixA(,) As Double = { _
 {1, 2, 3}, _
 {5, 4, 6}, _
 {9, 7, 8}}
 Dim determinant As Double = MatrixHelper.Determinant(matrixA)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & _
 vbNewLine & vbNewLine & "Determinant: " & _
 determinant.ToString)

The complete MatrixHelper module is listed in Recipe 6.35. The Determinant() function is listed here for easy reference:

 Public Function Determinant(ByVal sourceMatrix(,) _
 As Double) As Double
 ' ----- Calculate the determinant of a matrix.
 Dim result As Double
 Dim pivots As Integer
 Dim count As Integer

 ' ----- Only calculate the determinants of square matrices.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Determinant only " & _
 "calculated for square matrices.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)
 ' ----- Make a copy of the matrix so we can work
 ' inside of it.
 Dim workMatrix(rank, rank) As Double

Array.Copy(sourceMatrix, workMatrix, _
 sourceMatrix.Length)

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, count)

 ' ----- Get the product at each of the pivot points.
 result = 1
 For pivots = 0 To rank
 result *= workMatrix(rowPivots(pivots), _
 colPivots(pivots))
 Next pivots

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next pivots

 ' ----- Determine the sign of the result using
 ' LaPlace's formula.
 result = (-1) ^ count * result
 Return result
 End Function

A very useful technique for copying one array into another is shown in one of the program lines in the Determinant()
function. Consider the following line of code:

 Array.Copy(a, b, a.Length)

The Array class sports a shared Copy() method that provides a high-speed way to copy the binary data from one array
into another. There are several overloaded versions of this method, but as used here, all bytes in array a are copied
into array b, starting at the first byte location in each array. The transfer of these bytes from one location in memory to
another is highly efficient. You could loop through all of array a's indexed variable locations and copy them one at a
time into corresponding locations within array b, but the Array.Copy() method copies all the bytes with one function call
and no looping.

Figure 6-33 shows the calculated determinant of a 3 x 3 matrix.

Figure 6-33. Finding the determinant of a square matrix with the
MatrixHelper.Determinant() function

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.34. Solving Simultaneous Equations

Problem

You want to solve a set of n simultaneous equations containing n unknowns.

Solution

Sample code folder: Chapter 06\Matrix

Use the matrix operations presented in the MatrixHelper module to solve the equation.

Discussion

Matrices are useful in solving simultaneous equations. The solution is defined in Cramer's Rule, a theorem of linear
algebra named after mathematician Gabriel Cramer. (A full description of matrices and their operations is beyond the
scope of this book.)

The MatrixHelper module contains a special-purpose function that solves simultaneous equations by calling several matrix-
analysis functions. You pass a square matrix of size n containing the coefficients of the unknowns from the equations,
along with a one-dimensional array containing the equation constants. The MatrixHelper.SimultEq() function then returns a
one-dimensional array containing the solution values for the equation's unknowns. Here is the code listing for the
MatrixHelper.SimultEq() function:

 Public Function SimultEq(_
 ByVal sourceEquations(,) As Double, _
 ByVal sourceRHS() As Double) As Double()
 ' ----- Use matrices to solve simultaneous equations.
 Dim rowsAndCols As Integer

 ' ----- The matrix must be square and the array size
 ' must match.
 Dim rank As Integer = UBound(sourceEquations, 1)
 If (UBound(sourceEquations, 2) <> rank) Or _
 (UBound(sourceRHS, 1) <> rank) Then
 Throw New Exception(_
 "Size problem for simultaneous equations.")
 End If

 ' ----- Create some arrays for doing all of the work.
 Dim coefficientMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Make copies of the original matrices so we don't
 ' mess them up.
 Array.Copy(sourceEquations, coefficientMatrix, _
 sourceEquations.Length)
 Array.Copy(sourceRHS, rightHandSide, sourceRHS.Length)

 ' ----- Use LU decomposition to form a triangular matrix.
 coefficientMatrix = FormLU(coefficientMatrix, _
 rowPivots, colPivots, rowsAndCols)

 ' ----- Find the unique solution for the upper-triangle.
 BackSolve(coefficientMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)

 ' ----- Return the simultaneous equations result in
 ' an array.
 Return solutions
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, say you have a pile of 18 coins comprised of pennies, nickels, dimes, and quarters totaling $2.23. The
nickels and dimes total $.70, and the dimes and quarters total $2.00. The unknowns are the numbers of each of the
four types of coins. The given information provides all you need to solve a set of four equations with four unknowns:

P + N + D + Q + = 18
P + 5N + 10D + 25Q = 223
0P + 5N + 10D + 0Q= 70
0P + 0N + 10D + 25Q= 200

The following code sets up the 4 x 4 matrix of coefficients and the array of constants, then passes these two arrays to
MatrixHelper.SimultEq() to solve for the four unknowns:

 Dim matrixA(,) As Double = { _
 {1, 1, 1, 1}, _
 {1, 5, 10, 25}, _
 {0, 5, 10, 0}, _
 {0, 0, 10, 25}}
 Dim arrayB() As Double = {18, 223, 70, 200}
 Dim arrayC() As Double = _
 MatrixHelper.SimultEq(matrixA, arrayB)

 MsgBox(MatrixHelper.MakeDisplayable(matrixA) & vbNewLine & _
 vbNewLine & MatrixHelper.MakeDisplayable(arrayB) & _
 vbNewLine & vbNewLine & _
 "Simultaneous Equations Solution:" & _
 vbNewLine & MatrixHelper.MakeDisplayable(arrayC))

As shown by the results displayed in Figure 6-34, there are three pennies, four nickels, five dimes, and six quarters in
the pile.

Figure 6-34. Solving a set of four equations with four unknowns

The MatrixHelper.SimultEq() function is listed in the MatrixHelper module code, presented in the next recipe.

See Also

See the full MatrixHelper.vb listing in Recipe 6.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.35. Listing of the MatrixHelper Class
Sample code folder: Chapter 06\Matrix

Following is the full code for the MatrixHelper class described in Recipes 6.31, 6.32, 6.33 through 6.34:

 Module MatrixHelper
 Public Function MakeDisplayable(_
 ByVal sourceMatrix(,) As Double) As String
 ' ----- Prepare a multi-line string that shows the
 ' contents of a matrix, a 2D array.
 Dim rows As Integer
 Dim cols As Integer
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim result As New System.Text.StringBuilder

 ' ----- Process all rows of the matrix, generating one
 ' output line per row.
 rows = UBound(sourceMatrix, 1) + 1
 cols = UBound(sourceMatrix, 2) + 1
 For eachRow = 0 To rows - 1
 ' ----- Process each column of the matrix on a
 ' single row, separating values by commas.
 If (eachRow > 0) Then result.AppendLine()
 For eachCol = 0 To cols - 1
 ' ----- Add a single matrix element to the output.
 If (eachCol > 0) Then result.Append(",")
 result.Append(sourceMatrix(eachRow, _
 eachCol).ToString)
 Next eachCol
 Next eachRow

 ' ----- Finished.
 Return result.ToString
 End Function

 Public Function MakeDisplayable(_
 ByVal sourceArray() As Double) As String
 ' ----- Present an array as multiple lines of output.
 Dim result As New System.Text.StringBuilder
 Dim scanValue As Double

 For Each scanValue In sourceArray
 result.AppendLine(scanValue.ToString)
 Next scanValue

 Return result.ToString
 End Function

 Public Function Inverse(_
 ByVal sourceMatrix(,) As Double) As Double(,)
 ' ----- Build a new matrix that is the mathematical
 ' inverse of the supplied matrix. Multiplying
 ' a matrix and its inverse together will give
 ' the identity matrix.
 Dim eachCol As Integer
 Dim eachRow As Integer
 Dim rowsAndCols As Integer

 ' ----- Determine the size of each dimension of the
 ' matrix. Only square matrices can be inverted.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Matrix must be square.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Clone a copy of the matrix (not just a
 ' new reference).
 Dim workMatrix(,) As Double = _
 CType(sourceMatrix.Clone, Double(,))
 ' ----- Variables used for backsolving.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Variables used for backsolving.
 Dim destMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, rowsAndCols)

 ' ----- Backsolve the triangular matrix to get the
 ' inverted value for each position in the
 ' final matrix.
 For eachCol = 0 To rank
 rightHandSide(eachCol) = 1
 BackSolve(workMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)
 For eachRow = 0 To rank
 destMatrix(eachRow, eachCol) = solutions(eachRow)
 rightHandSide(eachRow) = 0
 Next eachRow
 Next eachCol

 ' ----- Return the inverted matrix result.
 Return destMatrix
 End Function

 Public Function Determinant(ByVal sourceMatrix(,) _
 As Double) As Double
 ' ----- Calculate the determinant of a matrix.
 Dim result As Double
 Dim pivots As Integer
 Dim count As Integer

 ' ----- Only calculate the determinants of square
 ' matrices.
 If (UBound(sourceMatrix, 1) <> _
 UBound(sourceMatrix, 2)) Then
 Throw New Exception("Determinant only " & _
 "calculated for square matrices.")
 End If
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Make a copy of the matrix so we can work
 ' inside of it.
 Dim workMatrix(rank, rank) As Double
 Array.Copy(sourceMatrix, workMatrix, _
 sourceMatrix.Length)

 ' ----- Use LU decomposition to form a
 ' triangular matrix.
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer
 workMatrix = FormLU(workMatrix, rowPivots, _
 colPivots, count)

 ' ----- Get the product at each of the pivot points.
 result = 1
 For pivots = 0 To rank
 result *= workMatrix(rowPivots(pivots), _
 colPivots(pivots))
 Next pivots

 ' ----- Determine the sign of the result using
 ' LaPlace's formula.
 result = (-1) ^ count * result
 Return result
 End Function

 Public Function SimultEq(_
 ByVal sourceEquations(,) As Double, _
 ByVal sourceRHS() As Double) As Double()
 ' ----- Use matrices to solve simultaneous equations.
 Dim rowsAndCols As Integer

 ' ----- The matrix must be square and the array size
 ' must match.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' must match.
 Dim rank As Integer = UBound(sourceEquations, 1)
 If (UBound(sourceEquations, 2) <> rank) Or _
 (UBound(sourceRHS, 1) <> rank) Then
 Throw New Exception(_
 "Size problem for simultaneous equations.")
 End If

 ' ----- Create some arrays for doing all of the work.
 Dim coefficientMatrix(rank, rank) As Double
 Dim rightHandSide(rank) As Double
 Dim solutions(rank) As Double
 Dim rowPivots(rank) As Integer
 Dim colPivots(rank) As Integer

 ' ----- Make copies of the original matrices so we don't
 ' mess them up.
 Array.Copy(sourceEquations, coefficientMatrix, _
 sourceEquations.Length)
 Array.Copy(sourceRHS, rightHandSide, sourceRHS.Length)

 ' ----- Use LU decomposition to form a triangular matrix.
 coefficientMatrix = FormLU(coefficientMatrix, _
 rowPivots, colPivots, rowsAndCols)

 ' ----- Find the unique solution for the upper-triangle.
 BackSolve(coefficientMatrix, rightHandSide, solutions, _
 rowPivots, colPivots)
 ' ----- Return the simultaneous equations result in
 ' an array.
 Return solutions
 End Function

 Private Function FormLU(ByVal sourceMatrix(,) As Double, _
 ByRef rowPivots() As Integer, _
 ByRef colPivots() As Integer, _
 ByRef rowsAndCols As Integer) As Double(,)
 ' ----- Perform an LU (lower and upper) decomposition
 ' of a matrix, a modified form of Gaussian
 ' elimination.
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim pivot As Integer
 Dim rowIndex As Integer
 Dim colIndex As Integer
 Dim bestRow As Integer
 Dim bestCol As Integer
 Dim rowToPivot As Integer
 Dim colToPivot As Integer
 Dim maxValue As Double
 Dim testValue As Double
 Dim oldMax As Double
 Const Deps As Double = 0.0000000000000001

 ' ----- Determine the size of the array.
 Dim rank As Integer = UBound(sourceMatrix, 1)
 Dim destMatrix(rank, rank) As Double
 Dim rowNorm(rank) As Double
 ReDim rowPivots(rank)
 ReDim colPivots(rank)

 ' ----- Make a copy of the array so we don't mess it up.
 Array.Copy(sourceMatrix, destMatrix, _
 sourceMatrix.Length)

 ' ----- Initialize row and column pivot arrays.
 For eachRow = 0 To rank
 rowPivots(eachRow) = eachRow
 colPivots(eachRow) = eachRow
 For eachCol = 0 To rank
 rowNorm(eachRow) += _
 Math.Abs(destMatrix(eachRow, eachCol))
 Next eachCol
 If (rowNorm(eachRow) = 0) Then
 Throw New Exception(_
 "Cannot invert a singular matrix.")
 End If
 Next eachRow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next eachRow

 ' ----- Use Gauss-Jordan elimination on the matrix rows.
 For pivot = 0 To rank - 1
 maxValue = 0
 For eachRow = pivot To rank
 rowIndex = rowPivots(eachRow)
 For eachCol = pivot To rank
 colIndex = colPivots(eachCol)
 testValue = Math.Abs(destMatrix(rowIndex, _
 colIndex)) / rowNorm(rowIndex)
 If (testValue > maxValue) Then
 maxValue = testValue
 bestRow = eachRow
 bestCol = eachCol
 End If
 Next eachCol
 Next eachRow

 ' ----- Detect a singular, or very nearly
 ' singular, matrix.
 If (maxValue = 0) Then
 Throw New Exception(_
 "Singular matrix used for LU.")
 ElseIf (pivot > 1) Then
 If (maxValue < (Deps * oldMax)) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 End If
 End If
 oldMax = maxValue

 ' ----- Swap row pivot values for the best row.
 If (rowPivots(pivot) <> rowPivots(bestRow)) Then
 rowsAndCols += 1
 Swap(rowPivots(pivot), rowPivots(bestRow))
 End If

 ' ----- Swap column pivot values for the best column.
 If (colPivots(pivot) <> colPivots(bestCol)) Then
 rowsAndCols += 1
 Swap(colPivots(pivot), colPivots(bestCol))
 End If

 ' ----- Work with the current pivot points.
 rowToPivot = rowPivots(pivot)
 colToPivot = colPivots(pivot)

 ' ----- Modify the remaining rows from the
 ' pivot points.
 For eachRow = (pivot + 1) To rank
 rowIndex = rowPivots(eachRow)
 destMatrix(rowIndex, colToPivot) = _
 -destMatrix(rowIndex, colToPivot) / _
 destMatrix(rowToPivot, colToPivot)
 For eachCol = (pivot + 1) To rank
 colIndex = colPivots(eachCol)
 destMatrix(rowIndex, colIndex) += _
 destMatrix(rowIndex, colToPivot) * _
 destMatrix(rowToPivot, colIndex)
 Next eachCol
 Next eachRow
 Next pivot

 ' ----- Detect a non-invertible matrix.
 If (destMatrix(rowPivots(rank), _
 colPivots(rank)) = 0) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 ElseIf (Math.Abs(destMatrix(rowPivots(rank), _
 colPivots(rank))) / rowNorm(rowPivots(rank))) < _
 (Deps * oldMax) Then
 Throw New Exception(_
 "Non-invertible matrix used for LU.")
 End If

 ' ----- Success. Return the LU triangular matrix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Success. Return the LU triangular matrix.
 Return destMatrix
 End Function

 Private Sub Swap(ByRef firstValue As Integer, _
 ByRef secondValue As Integer)
 ' ----- Reverse the values of two reference integers.
 Dim holdValue As Integer
 holdValue = firstValue
 firstValue = secondValue
 secondValue = holdValue
 End Sub

 Private Sub BackSolve(ByVal sourceMatrix(,) As Double, _
 ByVal rightHandSide() As Double, _
 ByVal solutions() As Double, _
 ByRef rowPivots() As Integer, _
 ByRef colPivots() As Integer)
 ' ----- Solve an upper-right-triangle matrix.
 Dim pivot As Integer
 Dim rowToPivot As Integer
 Dim colToPivot As Integer
 Dim eachRow As Integer
 Dim eachCol As Integer
 Dim rank As Integer = UBound(sourceMatrix, 1)

 ' ----- Work through all pivot points. This section
 ' builds the "B" in the AX=B formula.
 For pivot = 0 To (rank - 1)
 colToPivot = colPivots(pivot)
 For eachRow = (pivot + 1) To rank
 rowToPivot = rowPivots(eachRow)
 rightHandSide(rowToPivot) += _
 sourceMatrix(rowToPivot, colToPivot) _
 * rightHandSide(rowPivots(pivot))
 Next eachRow
 Next pivot
 ' ----- Now solve for each X using the general formula
 ' x(i) = (b(i) - summation(a(i,j)x(j)))/a(i,i)
 For eachRow = rank To 0 Step -1
 colToPivot = colPivots(eachRow)
 rowToPivot = rowPivots(eachRow)
 solutions(colToPivot) = rightHandSide(rowToPivot)
 For eachCol = (eachRow + 1) To rank
 solutions(colToPivot) -= _
 sourceMatrix(rowToPivot, colPivots(eachCol)) _
 * solutions(colPivots(eachCol))
 Next eachCol
 solutions(colToPivot) /= sourceMatrix(rowToPivot, _
 colToPivot)
 Next eachRow
 End Sub
 End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.4. Swapping Two Integers Without Using a Third

Problem

You want to swap the values of two integer variables without creating a third.

Solution

Sample code folder: Chapter 06\IntegerSwap

Use the exclusive-or bit manipulation function to do the trick.

Discussion

Nowadays efforts to save the space of a single variable in memory seem kind of silly, but this recipe nevertheless
demonstrates an interesting technique for swapping two numbers without creating a third variable. More importantly, it
demonstrates how bit-manipulation functions can be quite useful in Visual Basic 2005. Here's the sample code:

 Dim result As String
 Dim firstValue As Integer
 Dim secondValue As Integer

 ' ----- Set the initial test values.
 firstValue = 17
 secondValue = 123
 result = String.Format("Before swap: {0}, {1}", _
 firstValue, secondValue)
 result &= vbNewLine

 ' ----- Swap the values at the bit level.
 firstValue = firstValue Xor secondValue
 secondValue = firstValue Xor secondValue
 firstValue = firstValue Xor secondValue
 result &= String.Format("After swap: {0}, {1}", _
 firstValue, secondValue)

 MsgBox(result)

The above code loads values into integers firstValue and secondValue, then swaps their values by applying three successive
Xor operators on them. The Xor operator combines the two integers on a bit-by-bit basis, resulting in a 1 bit whenever
the original bits are different and a 0 when they are the same. Once these three Xor operations have been performed,
the original contents of the two integers will have migrated to the opposite locations in memory. Figure 6-4 shows the
results displayed by the sample code.

Figure 6-4. Swapping two integers using Xor

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Search for "Xor operator" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.5. Using Single- and Double-Precision Variables

Problem

You want to use floating-point numbers but aren't sure if you should use Singles or Doubles.

Solution

Sample code folder: Chapter 06\SingleDouble

Choose the most appropriate variable type based on the range and precision of numbers it can hold and on its memory
footprint.

Discussion

To help you understand the capabilities of Single and Double variables, the following sample code uses several useful
properties and functions to display information about them:

 Dim result As New System.Text.StringBuilder
 Dim maxSingle As Single = Single.MaxValue
 Dim maxDouble As Double = Double.MaxValue
 Dim sizeOfSingle As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxSingle.GetType)
 Dim sizeOfDouble As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxDouble.GetType)

 result.Append("Memory size of a Single (bytes): ")
 result.AppendLine(sizeOfSingle)
 result.Append("Maximum value of a Single: ")
 result.AppendLine(maxSingle)
 result.AppendLine()

 result.Append("Memory size of a Double (bytes): ")
 result.AppendLine(sizeOfDouble)
 result.Append("Maximum value of a Double: ")
 result.AppendLine(maxDouble)

 MsgBox(result.ToString())

The MaxValue constant provided by each type provides the largest possible value for variables of that type. The
Marshal.SizeOf() function returns the unmanaged size, in bytes, of any class, which in this case is the class returned by the
GetType() method of our Single and Double variables. Figure 6-5 shows the results.

If you're working with large arrays of numbers and memory issues are of concern, the Single type might be appropriate.
If you need greater precision, and using twice the memory per occurrence is not a problem, Doubles might work best.

Figure 6-5. Singles and Doubles require a different amount of memory and hold
different-sized numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many mathematical functions, such as those provided by the Math class, operate on Doubles only. Generally this is not a
problem, as conversion between Single and Double types in memory is efficient. On the other hand, the GDI+ Graphics
object operates on Single values, so it's best to work with these where possible when creating graphics. For example,
many of the graphics functions and methods accept PointF objects passed as parameters, and a PointF is comprised of a
pair of Single numbers, X and Y.

See Also

The "PointF" topic in Visual Studio Help describes how Singles are used for many graphics methods.

The "Math Class" subject lists many useful functions that operate on Doubles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.6. Using Decimal Variables for Maximum Precision

Problem

You want to manipulate numbers with many significant digits of accuracy.

Solution

Sample code folder: Chapter 06\SingleDouble

The Decimal number type holds numbers with up to 29 digits of accuracy and is well suited to tasks in which rounding
errors are to be kept to a minimum, as in financial calculations.

Discussion

For really big numbers where you want many digits of accuracy, the Decimal number type is ideal. Numbers of this type
are stored in 16 bytes (128 bits) of memory each, with up to 29 significant digits. These numbers can be positive or
negative, and a decimal point can be included anywhere within the number. The following code demonstrates Decimal
variables in action:

 Dim result As New System.Text.StringBuilder
 Dim maxDecimal As Decimal = Decimal.MaxValue
 Dim sizeOfDecimal As Integer = _
 Runtime.InteropServices.Marshal.SizeOf(maxDecimal.GetType)

 result.Append("Memory size of a Decimal (bytes): ")
 result.AppendLine(sizeOfDecimal)
 result.Append("Maximum value of a Decimal: ")
 result.AppendLine(maxDecimal)
 result.Append("Divided by one million: ")
 result.AppendLine(maxDecimal / 1000000D)
 result.Append("1D / 3D: ")
 result.AppendLine(1D / 3D)

 MsgBox(result.ToString())

Figure 6-6 shows the display created by this code. The Marshal.SizeOf() function determines the number of bytes of
memory the Decimal variable uses, and the MaxValue constant gets the largest possible numerical value it can hold. To
demonstrate how the decimal point can be anywhere in the number, the maximum value is divided by one million. The
decimal point shifts six digits in from the right as a result. To demonstrate that the math operators are overloaded to
accurately take advantage of the Decimal's full precision, the quantity 1/3 is calculated and displayed in the last line of
the message box. An uppercase "D" is appended to the constants 1 and 3 in the code to tell the compiler that they are
Decimal values.

Figure 6-6. Using the Decimal number type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

See "Decimal data type" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.7. Converting Between Number Types

Problem

You want to explicitly convert numeric variables and calculation results between the various number types.

Solution

Sample code folder: Chapter 06\ConvertNumber

It's always a good idea to make sure your project's Option Explicit and Option Strict settings are on, but this often forces you
to apply explicit conversions when working with more than one type of numeric variable. The solution is to apply one of
the many standalone conversion functions provided by Visual Basic or to use one of the many methods of the Convert
object.

Discussion

The following code sample demonstrates a simple conversion of Double numeric values to Byte values, using both the
standalone CByte() function and the Convert.ToByte() method. Some people prefer to use the Convert object exclusively,
which may be easier to remember because all the conversion methods have names beginning with "To". Others prefer
the standalone conversion functions, because many of these have been around in previous versions of Visual Basic for
some time now. We look at both approaches here:

 Dim result As New System.Text.StringBuilder
 Dim b1 As Byte = CByte(3.1416) + CByte(314.16 / 2)
 Dim b2 As Byte = Convert.ToByte(3.1416) + _
 Convert.ToByte(314.16 / 2)

 result.AppendLine("Example conversions to Byte…")
 result.AppendLine()

 result.AppendLine("Dim b1 As Byte = CByte(3.1416) + " & _
 "CByte(314.16 / 2)")
 result.Append("b1 = ")
 result.AppendLine(b1.ToString)
 result.AppendLine()

 result.Append("Dim b2 As Byte = Convert.ToByte(3.1416) + ")
 result.AppendLine("Convert.ToByte(314.16 / 2)")
 result.Append("b2 = ")
 result.AppendLine(b2.ToString)
 result.AppendLine()

 result.AppendLine("Numeric Conversions…")
 result.AppendLine()
 result.AppendLine("CByte(expression)")
 result.AppendLine("CSByte(expression)")
 result.AppendLine("CShort(expression)")
 result.AppendLine("CUShort(expression)")
 result.AppendLine("CInt(expression)")
 result.AppendLine("CUInt(expression)")
 result.AppendLine("CLng(expression)")
 result.AppendLine("CULng(expression)")
 result.AppendLine("CSng(expression)")
 result.AppendLine("CDbl(expression)")
 result.AppendLine("CDec(expression)")

 MsgBox(result.ToString())

The Double value 314.16 will not convert to a Byte because it is out of range for byte values. Attempting this conversion
causes an exception. However, dividing this value by 2 results in a Double value that does convert. The point is that the
decimal digits don't cause a problem when converting to a Byte (they are simply rounded to the nearest byte value), but
the number must be in the range 0 to 255 to allow the conversion.

Figure 6-7 shows the results of the above demonstration code in action. A sample conversion is shown using both
techniques, and a list of the standalone conversion functions is displayed for easy review.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

techniques, and a list of the standalone conversion functions is displayed for easy review.

Figure 6-7. Different ways of converting between number types

The signed byte and unsigned integer data types are new with this latest version of Visual Basic, and so are the
functions to convert values to them.

See Also

See "conversion functions" in Visual Studio Help for more information on these functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.8. Rounding Numbers Accurately

Problem

You need to round off double-precision numbers in a standard, accurate way.

Solution

Sample code folder: Chapter 06\Rounding

Use the Math.Round() function to round numbers to the desired precision.

Discussion

The Math.Round() function is overloaded to accept several different sets of parameters. If you pass just a Double or Decimal
number to it, the number is rounded to the nearest whole number. By passing a second parameter, you control the
number of digits after the decimal point where the rounding is to occur. For example, the following code rounds off the
value of pi (π) using zero through five as the number of digits for the rounding:

 Dim outputFormat As String = _
 "Rounding value: {0} Results: {1}"
 Dim oneTry As String
 Dim result As New System.Text.StringBuilder
 Dim piRounded As Double
 Dim digits As Integer

 For digits = 0 To 5
 piRounded = Math.Round(Math.PI, digits)
 oneTry = String.Format(outputFormat, digits, piRounded)
 result.AppendLine(oneTry)
 Next digits

 MsgBox(result.ToString())

Figure 6-8 shows the results of these rounding actions.

Figure 6-8. Using the Math.Round() function to round numbers accurately

A third optional parameter lets you fine-tune the way a number is rounded when the number is exactly halfway
between two values at the point where the number is to be rounded. The choices are to have the number rounded to an
even digit, or away from zero. The default is to round to an even digit.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See "Math.Round" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 6.9. Declaring Loop Counters Within Loops

Problem

You want to create a variable to hold the loop counter in a For…Next loop, but you want the variable to exist only within
the body of the loop.

Solution

Declare the variable type directly using the optional syntax for doing this in the For… Next loop command.

Discussion

If you include As Type immediately after the variable name used in the For…Next statement, Visual Basic 2005 creates this
variable on the spot, and its scope is limited to the body of the For…Next loop. If you declare the variable elsewhere,
don't add the As Type clause in the loop statement; doing so triggers an exception.

This sample code creates nested For…Next loops, with the outer loop counter variable declared outside the loop and the
inner loop variable declared just for the body of the loop. Study the lines starting with For to see the difference:

 Dim formatString As String = "outerLoop: {0} innerLoop: {1}
 "Dim result As String = ""
 Dim outerLoop As Integer

 For outerLoop = 1 To 2
 For innerLoop As Integer = 1 To 2
 result &= String.Format(formatString, _
 outerLoop, innerLoop)
 result &= vbNewLine
 Next innerLoop
 Next outerLoop

 MsgBox(result)

These two loops are nearly the same. Their counter variable values are displayed each time through the inner loop, as
shown in Figure 6-9. The variable outerLoop can be referenced past the end of the sample lines of code, but referencing
innerLoop will causes an exception. innerLoop exists only within the For…Next loop where it is declared.

Figure 6-9. The results of our nested loops using two different counter declaration
methods

See Also

See "For…Next statements" in Visual Studio Help for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Numbers and Math
Introduction

Recipe 6.1. Using Compact Operator Notation

Recipe 6.2. Choosing Integers of the Right Size and Type for the Job

Recipe 6.3. Using Unsigned Integers

Recipe 6.4. Swapping Two Integers Without Using a Third

Recipe 6.5. Using Single- and Double-Precision Variables

Recipe 6.6. Using Decimal Variables for Maximum Precision

Recipe 6.7. Converting Between Number Types

Recipe 6.8. Rounding Numbers Accurately

Recipe 6.9. Declaring Loop Counters Within Loops

Recipe 6.10. Converting Between Radians and Degrees

Recipe 6.11. Limiting Angles to a Range

Recipe 6.12. Creating Double-Precision Point Variables

Recipe 6.13. Converting Between Rectangular and Polar Coordinates

Recipe 6.14. Creating Three-Dimensional Variables

Recipe 6.15. Converting Between Rectangular, Spherical, and Cylindrical Coordinates

Recipe 6.16. Working with Complex Numbers

Recipe 6.17. Solving Right Triangles

Recipe 6.18. Solving Any Triangle

Recipe 6.19. Determining if a String Contains a Valid Number

Recipe 6.20. Converting Numbers to Integers

Recipe 6.21. Calculating π to Thousands of Digits

Recipe 6.22. Getting a Number's Prime Factors

Recipe 6.23. Using Recursion to Calculate Factorials

Recipe 6.24. Manipulating Bits with Bitwise Operators

Recipe 6.25. Storing and Retrieving Bits in a BitArray

Recipe 6.26. Enhancing the Random Number Generator

Recipe 6.27. Generating Random Integers in a Range

Recipe 6.28. Generating Random Real Numbers in a Range

Recipe 6.29. Generating Normal-Distribution Random Numbers

Recipe 6.30. Generating Exponential-Distribution Random Numbers

Recipe 6.31. Creating a Matrix

Recipe 6.32. Inverting a Matrix

Recipe 6.33. Calculating the Determinant of a Matrix

Recipe 6.34. Solving Simultaneous Equations

Recipe 6.35. Listing of the MatrixHelper Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The Date data type holds a compact representation of an exact moment in time, with 100-nanosecond resolution,
covering a 10,000-year span of dates starting with day 1 of year 1 AD. Visual Basic 2005 and the .NET Framework
provide many powerful functions for working with dates and times, but the syntax and conceptual changes can be
daunting, especially if you're updating your skills from VB 6. It can often be tricky to figure out how or what to use to
get the job done.

The good news is that once you get up to speed with all the changes, it's now easier than ever to work with dates and
times. Is a given year a leap year? How many days are there in a given month? What day of the year is a given date?
All of these questions, and many more, can now be answered with single function calls or single lines of code.

The recipes in this chapter provide solutions for many of the common date and time calculations that come up in day-
to-day development, and they should get you up to speed in "no time" (pun intended).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.1. Getting the System Date and Time

Problem

You want to know the current time and date.

Solution

Sample code folder: Chapter 07\SystemDateTime

Use Now, which returns the current moment of time from your system clock as a Date value.

Discussion

The Now property returns a Date, which you can store in a Date variable or process directly. There are many properties
and methods available to extract information from Dates. The following code demonstrates just a few of them, and the
rest of this chapter provides insight into many more:

 Dim rightNow As Date = Now
 Dim result As New
System.Text.StringBuilder

 result.AppendLine("""Now""…")
 result.AppendLine()
 result.Append("Date: ").AppendLine(rightNow.
ToShortDateString)
 result.Append("Time: ").AppendLine(rightNow.ToShortTimeString)
 result.Append("
Ticks: ").Append(rightNow.Ticks.ToString)

 MsgBox(result.ToString())

rightNow is a Date variable used here to grab and store a single value of Now. If Now were to be used repeatedly in the
remainder of this code, it's possible that its value could change in the process. In the code shown, this would not be a
problem, but if your application might be affected by having the value of Now suddenly change, you should consider
assigning its value to a Date variable just once, to freeze the moment in time for further processing.

This code uses a StringBuilder to piece together several bits of information extracted from rightNow. The properties
ToShortDateString and ToShortTimeString extract the date and time in a readable format. Figure 7-1 shows typical output
displayed by the message box at the end of the sample code.

Figure 7-1. Basic information about a frozen moment in time

Ticks is an interesting property of the Date data type. It represents the number of 100-nanosecond intervals of time
elapsed since midnight on January 1 of the year 1 AD. This is a value closely tied to how the date and time are stored
internally in a Date variable. The Ticks property is explained in further detail in Recipe 7.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB 6 Users' Update

VB 6 dates and times are stored in a different internal binary format than the one used in .NET. VB 6
users sometimes access the numerical values of Dates as double-precision numbers, providing a shortcut
for some specialized processing. .NET dates are stored as Long integers in an incompatible format. It's
best to rewrite your code to use the new Date values, but if you do have old date data that needs to be
converted to the new format, use the ToOADate() and FromOADate() functions provided specifically for this
purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.10. Formatting Dates and Times

Problem

You want to format a date or time for output using some standard or custom format.

Solution

Sample code folder: Chapter 07\FormatDateTime

Use one of the single-letter format options, or set up a custom format to convert the date or time as desired.

Discussion

The following code displays most of the standard formats available for converting dates and times to strings, plus a
sampling of what the custom formatting options can do:

 Dim rightNow As Date = Now
 Dim result As New System.Text.StringBuilder
 result.AppendLine("""Now""…")
 result.AppendLine()

 ' ----- Use some of the built-in Date properties to
 ' format the date in predefined ways.
 result.Append("ToString: ").AppendLine(rightNow.ToString)
 result.Append("ToLongDateString: ")
 result.AppendLine(rightNow.ToLongDateString)
 result.Append("ToShortDateString: ")
 result.AppendLine(rightNow.ToShortDateString)
 result.Append("ToLongTimeString: ")
 result.AppendLine(rightNow.ToLongTimeString)
 result.Append("ToShortTimeString: ")
 result.AppendLine(rightNow.ToShortTimeString)
 result.Append("ToUniversalTime: ")
 result.AppendLine(rightNow.ToUniversalTime)
 result.AppendLine()

 ' ----- Use format specifiers to control the
date display.
 result.Append("d: ").AppendLine(rightNow.ToString("d"))
 result.Append("D: ").AppendLine(rightNow.ToString("D"))
 result.Append("t: ").AppendLine(rightNow.ToString("t"))
 result.Append("T: ").AppendLine(rightNow.ToString("T"))
 result.Append("f: ").AppendLine(rightNow.ToString("f"))
 result.Append("F: ").AppendLine(rightNow.ToString("F"))
 result.Append("g: ").AppendLine(rightNow.ToString("g"))
 result.Append("G: ").AppendLine(rightNow.ToString("G"))
 result.Append("M: ").AppendLine(rightNow.ToString("M"))
 result.Append("R: ").AppendLine(rightNow.ToString("R"))
 result.Append("s: ").AppendLine(rightNow.ToString("s"))
 result.Append("u: ").AppendLine(rightNow.ToString("u"))
 result.Append("U: ").AppendLine(rightNow.ToString("U"))
 result.Append("y: ").AppendLine(rightNow.ToString("y"))
 result.AppendLine().AppendLine()

 ' ----- Use custom format specifiers, which provide
 ' more flexibility than the single-letter formats.
 result.Append("dd: ").AppendLine(rightNow.ToString("dd"))
 result.Append("ddd: ").AppendLine(rightNow.ToString("ddd"))
 result.Append("dddd: ").AppendLine(rightNow.ToString("dddd"))
 result.Append("HH:mm:ss.fff z: ")
 result.AppendLine(rightNow.ToString("HH:mm:ss.fff z"))
 result.Append("yy/MM/dd g: ")
 result.AppendLine(rightNow.ToString("yy/MM/dd g"))

 MsgBox(result.ToString)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString)

The output of this code appears in Figure 7-10.

The first group of lines shows string conversions provided by specific members of the Date object. You'll probably find
these common formats sufficient for most purposes.

The second group of lines shows the single-letter predefined formats, which provide even more options. These letters
don't appear in the IntelliSense pop ups, so if you do a lot of formatting along these lines, you might want to make a
list for your own reference.

Custom date output is provided by strings of specifically defined characters that format parts of the Date appropriately. A
sampling is shown in this code, and the Visual Studio online help documents all available formats.

This recipe's sample code uses the Date's ToString() method exclusively to format the dates and times. However, there are
other objects that support the IFormattable interface, which provides very similar formatting capabilities. Specifically, the
String.Format() shared method provides similar formatting capabilities in its braces-defined format parameters.

Figure 7-10. A sampling of predefined and custom formats available for formatting
Date variables to strings

For example, here's one of the lines from the previous example code:

 result.Append("d: ").AppendLine(rightNow.ToString("d"))

This same line of output can also be formatted using String.Format():

 result.Append(String.Format(_
 "d: {0:d}{1}", rightNow, vbNewLine))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "d: {0:d}{1}", rightNow, vbNewLine))

In this case, the {0:d} format parameter provides the same formatting instruction as the d string parameter in the
ToString() method. These two lines demonstrate very different syntax, but they produce the same results.

See Also

For details on all predefined and custom format strings available in .NET, access the "formatting types" entry in the
Visual Studio online help documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.11. Parsing and Validating Dates and Times

Problem

You want to parse a string to convert it to a date or time, and you want to avoid using error trapping to detect
incorrectly formatted strings.

Solution

Sample code folder: Chapter 07\ParseDate

Use the IsDate() function to predetermine the validity of a string's representation of a date or time, and then use the
Date.Parse() method on the string to reliably convert it to a Date.

Discussion

The new TRy…Catch…End Try structured error trapping is a great tool for catching unexpected exceptions in applications,
but it's always best to make sure you have clean data before you use it in a way that could generate an error. For
example, it's best to use the IsDate() function to check a date's validity before trying to use it in your main code's logic;
this will turn up errors such as misspelled month names.

The following code uses IsDate() to validate a string and allow conversion to a date value only if the string passes the
test:

 Dim testDate As String
 Dim results As New System.Text.StringBuilder

 ' ----- Test an invalid date.
 testDate = "Febtember 43, 2007"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a time.
 testDate = "23:57:58"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a date.
 testDate = "December 7, 2007"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test a standardized
date and time.
 testDate = "2007-07-04T23:59:59"
 If (IsDate(testDate) = True) Then _
 results.AppendLine(Date.Parse(testDate).ToString)

 ' ----- Test another standardized UTC date and time.
 testDate = "2007-07-04T23:59:59Z"

 If (
IsDate(testDate) = True) Then _
 results.AppendLine(Date.
Parse(testDate).ToString)

 ' ----- Display the results.
 MsgBox(results.ToString())

As shown in Figure 7-11, the first string is a bad one, so it's not converted. The remaining four strings are correctly
parsed to Dates.

Figure 7-11. Dates parsed from a variety of string representations of dates and
times

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

times

It's safe to assume that any string that returns true when passed to IsDate() will not cause an exception when passed to a
Date's Parse() method.

The Visual Basic CDate() conversion function also changes a string date to its true Date
counterpart:

 Dim realDate As Date = CDate("January 1, 2007")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.12. Adding to Dates and Times

Problem

You want to manipulate a Date value by adding an amount of time to it.

Solution

Sample code folder: Chapter 07\AddTime

Use one of the Date functions, such as AddYears() or AddMinutes(), to add specific units of time to a Date's current value.

Discussion

There are seven "Add" functions used to add specific units of time to a Date:

AddYears()

AddMonths()

AddDays()

AddHours()

AddMinutes()

AddSeconds()

AddMilliseconds()

Each function adds a given amount of time to the Date. Confusion may arise because the parameters passed to some of
these functions must be integers, while others require double-precision floating-point numbers. You can add only
integer numbers of years, months, and hours, but you can add values with fractional parts to the days, minutes,
seconds, and milliseconds. This is usually not a problem, but be aware that the various functions do require different
types of parameters.

The following code demonstrates the "Add" functions by adding various amounts of time to the current date and time:

 Dim results As New System.Text.StringBuilder
 Dim rightNow As Date = Now

 ' ----- Show the current date and time.
 results.AppendLine("RightNow: " & rightNow.ToString)
 results.AppendLine()

 ' ----- Add date values.
 results.AppendLine("RightNow.AddYears(2): " & _
 rightNow.AddYears(2))
 results.AppendLine("RightNow.AddMonths(3): " & _
 rightNow.AddMonths(3))
 results.AppendLine("RightNow.AddDays(4): " & _
 rightNow.AddDays(4))

 ' ----- Add time values.
 results.AppendLine("RightNow.AddHours(5): " & _
 rightNow.AddHours(5))
 results.AppendLine("RightNow.AddMinutes(6): " & _
 rightNow.AddMinutes(6))
 results.AppendLine("RightNow.AddSeconds(7): " & _
 rightNow.AddSeconds(7))
 results.AppendLine("RightNow.AddMilliseconds(8000): " & _
 rightNow.AddMilliseconds(8000))

 ' ----- Display the results.
 MsgBox(results.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(results.ToString())

Figure 7-12 shows the date and time "right now," and the results of adding the various amounts of time to this value.

Adding a number of years or days accurately can be tricky because the addition can be defined in more than one way.
For example, if one month is added to August 31, 2005, you might expect a result of October 1, 2005 because there
are only 30 days in September. However, the result of adding one month to either August 30 or August 31 is
September 30.

Figure 7-12. Using the "Add" category of Date functions to add various amounts of
time to a Date

Similarly, adding one year to February 29, 2004 results in a date of February 28, 2005, instead of March 1, 2005. The
variable lengths of months and years are ignored when adding these units of time.

The hard-to-define lengths of years and months could explain why these units are added as integer parameters in the
functions described earlier. However, hours are well-defined, invariable units of time, yet AddHours() also requires an
integer parameter. Go figure (literally)!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.13. Subtracting from Dates and Times

Problem

You want to subtract some amount of time from a date or time.

Solution

Sample code folder: Chapter 07\SubtractTime

Use the various "Add" functions of the Date object, passing negative values to subtract amounts of time.

Discussion

The Date object does not provide any "Subtract" functions for subtracting specific units of time. You can instead simply
"add" negative amounts of time. The following code demonstrates how this works:

 Dim results As New System.Text.StringBuilder
 Dim rightNow As Date = Now

 results.AppendLine("RightNow: " & rightNow.ToString)
 results.AppendLine()

 results.AppendLine("One year ago: " & _
 rightNow.AddYears(-1).ToString)

 results.AppendLine("365.25 days ago: " & _
 rightNow.AddDays(-365.25).ToString)

 MsgBox(results.ToString())

Figure 7-13 shows the results of these negative time additions as displayed by the message box in the last line.

Figure 7-13. To subtract years, days, or other amounts of time, add negative
quantities

Each Date object does provide a Subtract() function, as discussed in Recipe 7.14. However, this function subtracts either
another Date value or a TimeSpan. It is possible to create a TimeSpan given an amount of time and its units, but simply
adding specific negative units of time is a very straightforward way to get the task accomplished.

See Also

Recipe 7.12 lists the various "Add" date methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.14. Determining the Number of Days Between Two Dates

Problem

You want to calculate the number of days between two dates.

Solution

Sample code folder: Chapter 07\DateDiff

Use the later date's Subtract() function to calculate a TimeSpan between the two dates, and then use the Days property of
the TimeSpan to get the elapsed number of days.

Discussion

A TimeSpan object is a representation of an elapsed amount of time. As shown in the following code, you can subtract
one date from another using its Subtract() method, which returns a TimeSpan. To access the units of time from the
TimeSpan, access its properties for each type of unit. For example, the following code determines the number of days a
person has been on the earth by subtracting his birth date from today's date. The Days property of the resulting TimeSpan
provides the desired information:

 Dim inputString As String
 Dim birthDay As Date
 Dim lifeTime As TimeSpan
 Dim lifeDays As Integer

 ' ----- Prompt the user for a date.
 Do
 inputString = InputBox("Enter the date of your birth")
 Loop Until IsDate(inputString) = True

 ' ----- Perform the amazing calculations.
 birthDay = Date.Parse(inputString)
 lifeTime = Now.Subtract(birthDay)
 lifeDays = lifeTime.Days
 MsgBox(String.Format(_
 "There are {0} days between {1:D} and {2:D}", _
 lifeDays, birthDay, Now))

Figure 7-14 shows the number of days since Albert Einstein was born (as of August 8, 2005).

Figure 7-14. Determining the difference between two dates

The five span-generating members are Days, Hours, Minutes, Seconds, and Milliseconds. These each return a whole integer
value stating the difference between the two dates or times. Five additional properties (TotalDays, TotalHours, TotalMinutes,
TotalSeconds, and TotalMilliseconds) return decimal values that are not rounded to the nearest interval.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.15. Determining the Day of the Week for a Date

Problem

You want to get a number or a string representing the day of the week for a given date.

Solution

Sample code folder: Chapter 07\ DayOfWeek

Use the Date's DayOfWeek property, which returns a number from 0 (Sunday) to 6 (Saturday) for the day of the week, or
use its ToString() method to return the week-day name. You can also use various string-formatting options of the
String.Format() method to return either the short or longer string name for the day of the week.

Discussion

If you want a number representation of the day of the week, the Date object's DayOfWeek property provides this directly.
By default it returns 0 for Sunday, 1 to 5 for the workdays Monday through Friday, and 6 for Saturday.

To get the name of the weekday, call the DayOfWeek's ToString() method:

 MsgBox(Today.DayOfWeek.ToString())

To get an abbreviated version of the weekday name, apply the "ddd" formatting as you convert the date to a string.
(Use "dddd" for the full weekday name.) The following lines of code demonstrate these techniques:

 Dim rightNow As Date = Now
 Dim weekDay As Integer = rightNow.DayOfWeek
 Dim weekDayShort As String = Format(rightNow, "ddd")
 Dim weekDayLong As String = String.Format("{0:dddd}", _
 rightNow)

 Dim results As String = String.Format(_
 "Today's day of the week: {0}, or {1}, or {2}", _
 weekDay, weekDayShort, weekDayLong)
 MsgBox(results)

Figure 7-15 shows the results as displayed by the message box in the last line of the example code.

Figure 7-15. Getting the day of the week either as a number from 0 to 6 or as a
short or longer string name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.16. Determining the Day of the Year for a Date

Problem

You want to calculate the day of the year for a date, a number in the range 1 to 366.

Solution

Use the Date object's DayOfYear property to get this number directly, with no calculations required.

Discussion

The following code shows how to determine a date's day of the year:

 Dim rightNow As Date = Now
 Dim yearDay As Integer = rightNow.DayOfYear

 Dim results As String = String.Format(_
 "Day of year for {0:D}: {1}", Now, yearDay)
 MsgBox(results)

Figure 7-16 shows the day of the year for a date, as displayed by the message box in the sample code.

Figure 7-16. Determining the day of year for a specific date with the Date object's
DayOfYear property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.17. Determining the Number of Days in a Month

Problem

You want to calculate the number of days in a given month.

Solution

Use the shared function DaysInMonth provided by the Date object. This function returns the number of days in a month,
given the month and year.

Discussion

Unlike the DayOfWeek and DayOfYear properties available on every Date variable, DaysInMonth is a shared function. Instead of
prefixing the call with a specific Date, use the generic Date object to access this function. The following code shows the
correct syntax as it gets the number of days in the current month:

 Dim daysInMonth As Integer = _
 Date.DaysInMonth(Now.Year, Now.Month)
 MsgBox(String.
Format(_
 "Number of days in the current month: {0}", daysInMonth))

Figure 7-17 shows the results as displayed by the message box.

Figure 7-17. Determining the number of days in a given month with the shared
function DaysInMonth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.18. Using Controls to Enter or Select a Date

Problem

You want to add controls to a form to let the user enter or select a date.

Solution

Sample code folder: Chapter 07\DateEntry

Use a text box for easy text entry, a DateTimePicker for a control more tailored to entering a date, or a MonthCalendar control
for a more graphical way to allow the user to select a date.

Discussion

The sample code in this recipe presents a form with all three controls, each of which has its uses, advantages, and
drawbacks. Experiment with them to determine which will work best for your goals.

Figure 7-18 shows the form during development, with the three date-entry controls and three associated Label controls.
As the following code listing shows, changes to the dates in each control are shown in the label control to its right.

Figure 7-18. Three different ways for a user to enter or select a date

The TextBox control is the simplest in the sense that no special property settings are required to define its behavior as a
field for entering dates. Instead, most of the work is done in its TextChanged event:

 Private Sub TextBox1_TextChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TextBox1.TextChanged
 ' ----- Check and display only valid dates.
 If (IsDate(TextBox1.Text) = True) Then
 Label1.Text = Date.Parse(TextBox1.Text).ToShortDateString
 Else
 Label1.Text = ""
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

This event activates whenever any change is made to the TextBox's text. During date entry the incomplete string in this
text box will probably not represent a valid date, so the IsDate() function verifies the entered text before use. If it's not
yet a valid date, Label1 displays nothing, but as soon as the text becomes a valid date, the string is parsed, and the date
is reformatted for display in Label1.

The DateTimePicker control does have some properties you can use to control the interaction with the user. For example,
in this demonstration the control's ShowUpDown property has been set to true to show the little arrows at the end of the
field for incrementing and decrementing the displayed date. The control's Format property has also been set to Short to
display the date in a simplified format.

At runtime, the DateTimePicker control allows the user to highlight one of the three parts of the dateyear, month, or
dayand then use the up and down arrows to scroll through possible values for each. The control's ValueChanged event
activates as the user does so, and the current date is displayed in Label2. Here's the single line of code added to this
event to cause this action:

 Private Sub DateTimePicker1_ValueChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles DateTimePicker1.ValueChanged
 ' ----- Show the selected date.
 Label2.Text = DateTimePicker1.Value.ToShortDateString
 End Sub

The MonthCalendar control provides the user with an even more interactive and graphical way to select a date. When any
date on the displayed calendar is clicked, the control's DateChanged event fires, and the line of code in this event handler
causes Label3 to update with the currently selected date:

 Private Sub MonthCalendar1_DateChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.Windows.
Forms.DateRangeEventArgs) _
 Handles MonthCalendar1.DateChanged
 ' ---- Show the slected date.
 Label3.Text = _
 MonthCalendar1.SelectionStart.ToShortDateString
 End Sub

The TextBox control's text needs to be parsed to become a Date value, but the DateTimePicker and MonthCalendar controls' Value
and SelectionStart properties return Date values directly.

Figure 7-19 shows the form in action as a user is selecting a date using the MonthCalendar control.

Figure 7-19. The MonthCalendar control sports a variety of interactive features
when selecting a date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.19. Calculating the Phase of the Moon

Problem

You want to calculate the phase of the moon for a given date.

Solution

Sample code folder: Chapter 07\MoonPhase

Use Visual Basic 2005's Date and Math functions to apply a linear-fit equation to calculate the phase of the moon,
accurate to within half an hour.

Discussion

The linear curve fit equation presented here was researched and created only recently, using data from the Internet
that provided the date and time of all new moons over a period of several centuries. The results are surprisingly
accurate, and the equation is easy to use, especially with the helpful math and date functions available in Visual Basic.

Here's the MoonPhase() function resulting from the research:

 Public Function MoonPhase(ByVal dateUtc As Date) As Double
 ' ----- Determine the phase of the moon for any date.
 Dim days As Double = dateUtc.Subtract(#1/1/1600#).TotalDays
 Dim cycles As Double = days * 0.03386319 - 12.5
 Return
Math.IEEERemainder(cycles, 1.0) * 29.53059
 End Function

The date for determining the moon's phase is passed to this function as dateUtc, and it should be an exact date and time
value expressed in Coordinated Universal Time. A TimeSpan is calculated by subtracting from the date the literal date
constant for midnight, January 1, 1600. The TotalDays property of the resulting TimeSpan provides the total elapsed days,
complete with a decimal result for the fraction of the day. The decimal number of days is stored in the Double variable
named days.

The heart of this algorithm is in the second line of the function. The number of elapsed days since the start of 1600 is
multiplied by 0.03386319, and an offset of 12.5 days is subtracted from the result. This linear equation provides an
approximate number of full moons since 1600. The fractional part, which cycles through values from 0 to 1 between
successive new moons, is the part that's interesting. Rather than simply extracting the fractional part of cycles, the
Math.IEEERemainder() function returns a value ranging from-0.5 to +0.5, and this value is multiplied by the number of
mean days between full moons to get the number of days, plus or minus, to the closest full moon.

The following code reports the closest new moon using the MoonPhase() function:

 Dim phaseDay As Double
 Dim result As String

 ' ----- Determine the phase of the moon.
 phaseDay = MoonPhase(Now.ToUniversalTime)

 ' ----- Show the nearest new moon.
 result = "UTC is now: " & _
 Now.ToUniversalTime.ToString("u") & vbNewLine & vbNewLine
 If (phaseDay < 0) Then
 result &= "Approx days until new moon: " & _
 (-phaseDay).ToString("F1")
 Else
 result &= "Approx days since new moon: " & _
 phaseDay.ToString("F1")
 End If
 MsgBox(result)

This code converts the current local time to UTC using the ToUniversalTime() method before sending that time to the
moon-phase calculator. Figure 7-20 shows the sample code in use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

moon-phase calculator. Figure 7-20 shows the sample code in use.

Figure 7-20. The moon is waxing and it's about ¼ lit by the sun

After running a curve fit program to compute the equation used earlier, a second program was written to find the
maximum absolute error in time for all new moons in the range of years from 1600 to 2500. Surprisingly, the maximum
drift of the time of new moon was less than half an hour. This equation, even though it's a simple one, is good enough
to allow you to predict when you'll be able to fish, plant, and dance by the light of the moon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.2. Accessing the System's Time Zone

Problem

You want to programmatically determine the time-zone offset for the local system's time and determine if daylight
savings time is currently in effect.

Solution

Sample code folder: Chapter 07 \SystemTimeZone

Use the TimeZone object, which provides properties and methods for determining the name of the current time zone, the
number of hours offset from Greenwich Mean Time (GMT), and whether daylight savings is currently in effect.

Discussion

The following code shows how the TimeZone information is accessed:

 Dim theZone As TimeZone = TimeZone.CurrentTimeZone
 Dim result As New System.Text.StringBuilder

 result.Append("DaylightName: ").AppendLine(_
 theZone.DaylightName)
 result.Append("StandardName: ").AppendLine(_
 theZone.StandardName)
 result.Append("IsDaylightSavingTime(
Now): ").AppendLine(_
 theZone.IsDaylightSavingTime(Now))
 result.Append("GetUtcOffset(Now): ").AppendLine(_
 theZone.GetUtcOffset(Now).ToString)
 result.Append("
System time is Local Time: ")
 result.AppendLine(Now.Kind = DateTimeKind.Local)
 result.Append("System time is Universal Coordinated Time: ")
 result.AppendLine(Now.Kind = DateTimeKind.Utc)
 result.Append("System time is Unspecified: ")
 result.AppendLine(Now.Kind = DateTimeKind.Unspecified)

 MsgBox(result.ToString())

The TimeZone variable theZone is assigned the current system's time-zone information in the first line of this code. The
rest of the lines extract information from this variable and prepare string versions for display by appending to the
StringBuilder. The theZone variable lets you determine the name of the time zone, the number of hours that time zone is
offset from GMT, and whether daylight savings is currently in effect.

The Kind property determines if a Date represents local time, Coordinated Universal Time (UTC), or is unspecified. This is
a property of a Date, not a TimeZone, but the information it provides is closely associated with the TimeZone information.

Figure 7-2 shows the TimeZone information displayed for a computer set to Central Standard Time during the summer.

Figure 7-2. Determining a system's time-zone information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.20. Creating a Calendar

Problem

You want to display a full-year calendar on a reasonably sized form.

Solution

Use the MonthCalendar control, dock it to fill its parent form, and size the form large enough that all 12 months appear.

Discussion

The MonthCalendar control normally displays only one month at a time, with buttons and controls to toggle through
neighboring months and years as desired. However, if it's docked to the center of the form ("Fill") or other parent
control, it attempts to fill the area completely. Instead of displaying larger text, the control displays multiple months
either side by side or stacked vertically, depending on which way you stretch the form. Stretch the form a little, and
suddenly the one-month calendar changes to display two months. Keep going, and it will display three, four, or more
months in a rectangular array. At a form size of about 551 pixels wide by 615 pixels high, a full year of a dozen months
displays nicely in a three-across and four-high pattern. Figure 7-21 shows the form at this size.

Figure 7-21. A nice one-year calendar displayed with no code at all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.21. Checking for Leap Years

Problem

You want to check a year to see if it's a leap year.

Solution

Use the shared IsLeapYear() function provided by the Date object to test any year.

Discussion

The IsLeapYear() function returns true if the year passed to it is a leap year and False if it isn't. The following code provides
a working demonstration showing how to call this shared function to test the current year:

 Dim leapYear As Boolean = Date.IsLeapYear(Now.Year)
 MsgBox(String.Format(_
 "{0} is a leap year: {1}", Now.Year, leapYear))

Figure 7-22 shows the results as displayed by the message box.

Figure 7-22. The Date.IsLeapYear function reveals instantly that 2005 is not a leap
year

Because the IsLeapYear() function is a shared function, you must call it directly from the Date object, not from an instance
of a Date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.22. Dates and Times in ISO 8601 Formats

Problem

You want to format a date and time into a string using the ISO 8601 standard, with a "T" separating the date and time
parts and an optional "Z" at the end if Coordinated Universal Time is used.

Solution

Sample code folder: Chapter 07\ISO8601

Use the single-character "s" string-format parameter and concatenate a "Z" if Coordinated Universal Time is used.

Discussion

String formatting in .NET has much of the ISO 8601 standard built in. The "s" string-format parameter creates a date
and time string of the form "yyyy-mm-ddThh:mm:ss," and the "u" format parameter creates the same string minus the
"T" that separates the date and time parts and with a "Z" at the tail end to signify Coordinated Universal Time. The
standard is actually fairly relaxed about the "T" separator requirement, so these two string-formatting parameters cover
most bases. The first two lines of output in Figure 7-23 show the strings created using these formatting parameters.

Figure 7-23. Date and time strings that closely conform to the ISO 8601 standard

One scenario not covered is when you want to include both the "T" separator character and the "Z" at the tail end. As
shown previously, the "s" and "u" formatting parameters give you one or the other but not both. The other scenario not
covered is when you want to drop both the "T" and the "Z" from the string. Fortunately, it's easy to add this
functionality.

The following code was used to create the output shown in Figure 7-23:

 Dim rightNow As Date = Now.ToUniversalTime
 Dim format1 As String = rightNow.ToString("s")
 Dim format2 As String = rightNow.ToString("u")
 Dim format3 As String = rightNow.ToString("s") & "Z"
 Dim format4 As String = rightNow.ToString(_
 "u").Substring(0, 19)

 MsgBox(String.Format(_
 "s: {1}{0}u: {2}{0}T&Z: {3}{0}Neither: {4}", _
 vbNewLine, format1, format2, format3, format4))

To add both the "T" and the "Z" to the formatted string, use the "s" format and concatenate a "Z" to the tail of the
result. format3 in the code and the third line of the output demonstrate this technique.

To eliminate both the "T" and the "Z" from the ISO-formatted string, use the "u" format parameter to create a 20-
character string; then use Substring() to drop the "Z" from the tail end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.3. Using System Ticks

Problem

You want to get a simple, sequential number from the system clock for timing purposes, or perhaps you want to get a
guaranteed unique bit pattern for seeding a random number generator each time your application starts.

Solution

Sample code folder: Chapter 07\SystemTicks

Use the Now.Ticks property, which returns a long integer containing the number of 100-nanosecond intervals since
midnight of January 1 in the year 1 AD.

Discussion

The Ticks property is available on any Date variable, but it's most often used on the ever-changing Now property. Using
Now.Ticks means the value returned will always be a unique Long value for every tick of the system clock, providing a
good source for unique bit patterns.

Although Ticks appears to be accurate to the nearest 100 nanoseconds, it actually has much less resolution than
expected. The following code shows how to access the Ticks property and, more importantly, demonstrates how many
times the returned value of Ticks changes per second:

 Dim lastTicks As Long
 Dim numTicks As Long
 Dim endTime As
Date
 Dim results As String

 ' ----- Count the actual tick changes.
 endTime = Now.AddSeconds(1)
 Do
 If (Now.Ticks <> lastTicks) Then
 numTicks += 1
 lastTicks = Now.Ticks
 End If
 Loop Until (Now > endTime)

 ' ----- Display the results.
 results = "Now.Ticks: " & Now.Ticks.ToString & vbNewLine & _
 "Number of updates per second: " & numTicks.ToString
 MsgBox(results)

As shown in Figure 7-3, the value of the Ticks property changes only about 65 times per second. At the speed of today's
computers, a lot of instructions can be processed in 1/65 of a second, making Ticks a poor choice for high-resolution
timing.

Figure 7-3. Ticks represent short timing units, but they aren't updated very often

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ticks does have some good uses, but for timing that really is accurate to the nearest millisecond, consider using the new
Stopwatch object, described later in this chapter.

See Also

Compare the results of this recipe with those of Recipe 7.4, which provides a much greater level of accuracy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.4. Timing Application Activities

Problem

You want to time application events with greater accuracy than is provided by the Date type's Ticks property.

Solution

Sample code folder: Chapter 07\ Stopwatch

Use the System.Diagnostics.Stopwatch object to accurately determine elapsed time to the nearest millisecond.

Discussion

The new System.Diagnostics.Stopwatch object is easy and intuitive to use. Just like a real stopwatch, you start it when you
want and measure elapsed time as needed. The Start() method starts the timing, and the ElapsedMilliseconds property
returns the number of elapsed milliseconds. Similarly, there are Stop() and Reset() methods to stop and reset the
stopwatch, and these methods behave as you'd expect.

The following code demonstrates how to create an instance of the Stopwatch object and how to measure elapsed time
with it. But it also points out an advantage of using this object for fine-grained timing measurements rather than using
Ticks. The Do…Loop block of code runs for one second, tallying the number of times the value returned by the
ElapsedMilliseconds property changes to a new value:

 Dim lastMillis As Long
 Dim numMillis As Long
 Dim testWatch As New System.Diagnostics.Stopwatch
 Dim endTime As Date
 Dim results As String

 ' ----- Start the timer.
 endTime = Now.AddSeconds(1)
 testWatch.Start()
 Do
 ' ----- Keep track of each change of the stopwatch.
 If (testWatch.ElapsedMilliseconds <> lastMillis) Then
 numMillis += 1
 lastMillis = testWatch.ElapsedMilliseconds
 End If
 Loop Until (Now > endTime)

 ' ----- Display the results.
 results = "Elapsed milliseconds: " & _
 testWatch.ElapsedMilliseconds.ToString & vbNewLine & _
 "Number of updates per second: " & numMillis.ToString
 MsgBox(results)

As shown in Figure 7-4, the property returns a new number of elapsed milliseconds slightly over 1,000 times during the
second, a result to be expected when the loop timing is based on the system clock. Hence, the Stopwatch is accurate to
the nearest millisecond.

Figure 7-4. The Stopwatch object accurately maintains a timing resolution of one
millisecond

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Compare the results of this recipe with those of Recipe 7.3, which provides a lower level of accuracy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.5. Calculating Elapsed Time Using Ticks

Problem

You want a simple way to determine elapsed time when millisecond accuracy is not required.

Solution

Sample code folder: Chapter 07\ ElapsedTicks

Use the difference between system ticks returned by Now.Ticks and divide by 10 million to get elapsed decimal seconds.

Discussion

As shown in Recipe 7.1, Ticks returns the number of 100-nanosecond time intervals elapsed since midnight of January 1,
1 AD. Dividing Ticks by 10,000,000 converts the time units to seconds. The following code demonstrates this technique
by timing how long the user takes to click an OK button and then displaying the number of decimal seconds elapsed:

 Dim ticksBefore As Long
 Dim ticksAfter As Long
 Dim tickSeconds As Double

 ' ----- Time the user!
 ticksBefore = Now.Ticks

 MsgBox("Press OK to see elapsed seconds")
 ticksAfter = Now.Ticks

 tickSeconds = (ticksAfter - ticksBefore) / 10000000.0
 MsgBox("Elapsed seconds: " & tickSeconds.ToString())

Figure 7-5 shows the result.

Figure 7-5. Using Ticks to measure elapsed decimal seconds

This is a simple technique for getting decimal seconds for each moment in time, but the real workhorse for determining
spans of time is the TimeSpan object, which is demonstrated in Recipe 7.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.6. Calculating Elapsed Time with the Stopwatch

Problem

You want to measure elapsed time accurate to the nearest millisecond.

Solution

Sample code folder: Chapter 07\ElapsedStopwatch

Use the Stopwatch object, which is designed to measure elapsed milliseconds accurately.

Discussion

The new System.Diagnostics.Stopwatch object introduced with Visual Basic 2005 provides better-resolution timing than using
system ticks. The ElapsedMilliseconds property accurately returns elapsed time to the nearest millisecond, as demonstrated
in Recipe 7.4. This is ideal for timing blocks and loops of code to compare the efficiency of various algorithms or for
other high-resolution timing tasks. The following code times how long the user takes to click an OK button when
prompted:

 Dim testWatch As New System.Diagnostics.Stopwatch
 Dim results As String

 ' ----- Start counting.
 testWatch.Start()
 MsgBox("Press OK to see elapsed seconds")

 ' ----- Stop and record.
 results = String.Format(_
 "testWatch.Elapsed.Seconds: {0}{3}" & _
 "testWatch.Elapsed.TotalSeconds: {1}{3}" & _
 "testWatch.ElapsedMilliseconds / 1000: {2}", _
 testWatch.Elapsed.Seconds, _
 testWatch.Elapsed.TotalSeconds, _
 testWatch.ElapsedMilliseconds / 1000, vbNewLine)
 MsgBox(results)

The Elapsed property returns a TimeSpan object, which provides properties useful for extracting time durations. In this
example the whole number of seconds is returned by the TimeSpan's Elapsed.Seconds property, and a more exact decimal
number of seconds is returned by its Elapsed.TotalSeconds property. Figure 7-6 displays the results.

Figure 7-6. Using the Stopwatch object to accurately measure elapsed time

When using a Stopwatch, be sure to call its Start() method before attempting to access elapsed time from it. If Start() is not
called first, elapsed time is always returned as zero.

You can accumulate elapsed time in pieces by calling the Start() and Stop() methods repeatedly. The elapsed time freezes
when Stop() is called; the counting resumes when Start() is called. To clear the Stopwatch's count at any time, call the Reset()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when Stop() is called; the counting resumes when Start() is called. To clear the Stopwatch's count at any time, call the Reset()
method. These methods simulate the buttons on a real stopwatch, but do so much faster and more accurately than
punching buttons by hand!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.7. Extracting Year, Month, and Day Numbers from a Date
Value

Problem

You want to access the year, month, and day numbers from a Date.

Solution

Sample code folder: Chapter 07\DateParts

Use the Year, Month, and Day properties of the Date.

Discussion

These three properties provide a direct route to a Date's date information. Each returns an integer that can be used in
further computations. The following code demonstrates these properties in action:

 Dim rightNow As Date = Now
 Dim yearNow As Integer = rightNow.Year
 Dim monthNow As Integer = rightNow.Month
 Dim dayNow As Integer = rightNow.Day

 Dim results As String = String.Format(_
 "Year: {1}{0}Month: {2}{0}Day: {3}{0}", _
 vbNewLine, yearNow, monthNow, dayNow)
 MsgBox(results)

Figure 7-7 shows the system's current date numbers as displayed by the message box in this sample code.

Figure 7-7. Extracting year, month, and day numbers from a Date variable

These properties are read-only, so while they work well for extracting the date values, they are not appropriate for
assigning a new date to a Date variable. (As explained in Recipe 7.9, Date variables can be set to specific dates, and they
can be modified to new dates by adding amounts of time to them.)

See Also

Recipe 7.8 discusses how to access the hour, minute, and second numbers from a Date.

Assigning a specific date and/or time to a new Date variable is covered in Recipe 7.9, while Recipes 7.12 and 7.13
discuss assigning a new date to an existing Date variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.8. Extracting Hour, Minute, and Second Numbers from a Date
Value

Problem

You want to access the hours, minutes, or seconds from a Date.

Solution

Sample code folder: Chapter 07\TimeParts

Use the Hour, Minute, and Second properties of the Date instance.

Discussion

These properties are similar to the Year, Month, and Day properties of the Date object, but they extract and return the time
of the day parts of the Date rather than the date parts. Like the date parts, these time parts of the Date are read-only.
The following code shows how to access these properties:

 Dim rightNow As Date = Now
 Dim hourNow As Integer = rightNow.Hour
 Dim minuteNow As Integer = rightNow.Minute
 Dim secondNow As Integer = rightNow.Second
 Dim millisecondNow As Integer = rightNow.Millisecond

 Dim results As String = String.Format(_
 "Hour: {1}{0}Minute: {2}{0}Second: " & _
 "{3}{0}Millisecond: {4}", vbNewLine, _
 hourNow, minuteNow, secondNow, millisecondNow)
 MsgBox(results)

The Millisecond property also appears in this code. As of this writing, this property's resolution isn't all that great,
although it's possible that in the future the milliseconds value will become more accurate. If you need true millisecond
timing, use the Stopwatch object described in Recipe 7.6. Even so, the Millisecond property does provide greater accuracy
than just to the nearest second.

Figure 7-8 shows the results of the above sample code as displayed by the message box.

Figure 7-8. Extracting hour, minute, second, and millisecond numbers from a Date

See Also

Recipe 7.7 discusses how to extract the year, month, and day numbers from a Date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 7.9. Creating a Date or Time Value from Its Parts

Problem

You want to create a Date variable and assign it a specific date, a specific time of day, or both, but all you have are the
individual components, such as the year, month, and day.

Solution

Sample code folder: Chapter 07\SerialDate

Use one of the overloaded Date constructors to assign date and time numbers as the variable is created.

Discussion

You can hardcode a date and/or a time in your application by delimiting the text rep-resentation with a pair of number
sign (#) characters. Here's a line of code that assigns a hardcoded date of July 4, 1776 to a date variable named
theFourth:

 theFourth = #7/4/1776#

As shown, theFourth is assigned a time value of zero, which occurs during the first second of the day, just after midnight
as the date changes from the third to the fourth of July. The sample block of code that follows shows how to assign a
specific time in addition to a specific date. The first line sets the date variable thirdOfJuly to the last second of the day:

 Dim thirdOfJuly As Date = #7/3/1776 11:59:59 PM#
 Dim fourthOfJuly As New Date(1776, 7, 4)
 Dim inTheMorning As New Date(1776, 7, 4, 9, 45, 30)

 MsgBox(_
 "The 3rd and 4th of July, 1776…" & _
 vbNewLine & vbNewLine & _
 "#7/3/1776 11:59:59 PM# … " & _
 thirdOfJuly.ToString & vbNewLine & _
 "New Date(1776, 7, 4) … " & _
 fourthOfJuly.ToString & vbNewLine & _
 "New Date(1776, 7, 4, 9, 45, 30) … " & _
 inTheMorning.ToString)

The second and third lines of this example show how to assign a date and a date/time combination to a date variable in
a more dynamic way. Rather than a hardcoded date-and-time literal, integer variables containing Year, Month, Day, Hour,
Minute, and Second values can be passed to the Date constructor to assign a moment of time to the Date variable as it is
created. Figure 7-9 shows the results of these date and time assignments, as displayed by the message box at the end
of the sample code.

Figure 7-9. Different ways to assign specific dates and times to Date variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another approach to adjusting a Date variable's date and time is to add quantities of time to it. For example, a freshly
dimensioned but unassigned Date variable contains the default date and time of midnight, January 1, 1 AD. You could
add 1,775 years, 6 months, and 3 days to the Date variable to adjust it to July 4, 1776. The various date and time
addition methods are explained and demonstrated in Recipe 7.12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Dates and Times

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Visual Basic 2005 makes it very easy to pass arrays and collections into and out of methods. This makes arrays,
collections, and similar objects very useful for efficiently grouping data. Additionally, there are some new and useful
methods for processing arrays that are easy to overlook if you're just moving up from Visual Basic 6.0. Several recipes
in this chapter focus on these methods. For example, arrays have a built-in Sort() method that will sort some or all of the
elements in the array, a feature that had to be coded by hand before .NET.

Generics are also new in Visual Basic 2005, providing a powerful new type-safe way to define collections and other
objects such as lists, stacks, and queues. Generics enable compile-time typing of objects without your having to write
separate classes for each type you want to support. This chapter demonstrates a simple generic collection. Other
chapters provide further examples of generics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.1. Filling an Array While Declaring It

Problem

You want to fill an array with starting values without having to explicitly assign each array element individually.

Solution

You can load an array in the Dim statement using empty parentheses after either the array's name or its type
designation, followed by braces listing the array elements to be assigned.

Discussion

The following line of code creates a one-dimensional array of integers with three elements (elements 0 through 2):

 Dim array1D() As Integer = {1, 2, 3}

A two-dimensional array is only slightly trickier to fill on the spot, requiring nested braces containing the array
elements. You can put the nested braces all on one line, or you can use the underscore line-continuation symbol to
format the data in a more readable layout, such as in the following example:

 Dim array2D(,) As Integer = { _
 {1, 2}, _
 {3, 4}}

For comparison, the following line of code creates exactly the same array:

 Dim array2D(,) As Integer = {{1, 2}, {3, 4}}

Arrays with three or more dimensions are declared in a similar way, with additional commas and curly braces included
as needed:

 Dim array3D(,,) As Integer = _
 {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}

For comparison, the following block of code creates exactly the same three-dimensional array and fills each element
with the same values, but does so using a more traditional method of assigning each individual element:

 Dim array3D(1, 1, 1) As Integer
 array3D(0, 0, 0) = 1
 array3D(0, 0, 1) = 2
 array3D(0, 1, 0) = 3
 array3D(0, 1, 1) = 4
 array3D(1, 0, 0) = 5
 array3D(1, 0, 1) = 6
 array3D(1, 1, 0) = 7
 array3D(1, 1, 1) = 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.10. Reading a Comma-Separated-Values File into a String
Array

Problem

You need to read a CSV file into an array.

Solution

Sample code folder: Chapter 08\ReadCSVFiles

Use the Split() function to parse the file's content to fill an array.

Discussion

Today's computers generally have a lot of memory, which often allows entire files to be read into a single string in one
operation. If you have an extremely large CSV file, you might want to read the file one line at a time. In either case,
the Split() function provides a great tool for parsing the comma-separated values so they can be copied into an array.

The following code reads the entire file created in the previous recipe into a single string, and then splits this string into
an array of strings, lineData, using the newline characters as the split point. Each line is then further split at the comma
character separating individual words. If the CSV file contains numbers, this is the point where each "word" of the text
from the file could be converted to Double, Integer, or whatever type is appropriate. In this example, however, the words
are simply reformatted for display and verification in a message box:

 Dim result As New System.Text.StringBuilder
 Dim wholeFile As String
 Dim lineData() As String
 Dim fieldData() As String

 ' ----- Read in the file.
 Dim filePath As String = _
 My.Computer.FileSystem.CurrentDirectory & "\Test.csv"
 wholeFile = My.Computer.FileSystem.ReadAllText(filePath)

 ' ----- Process each line.
 lineData = Split(wholeFile, vbNewLine)
 'OR: lineData = wholeFile.Split(New String() {vbNewLine}, _
 ' StringSplitOptions.None)
 For Each lineOfText As String In lineData
 ' ----- Process each field.
 fieldData = lineOfText.Split(",")
 For Each wordOfText As String In fieldData
 result.Append(wordOfText)
 result.Append(Space(1))
 Next wordOfText
 result.AppendLine()
 Next lineOfText

 MsgBox(result.ToString())

String objects have a Split() method, and Visual Basic 2005 also provides a Split() function. Notice the commented-out line
in the previous code. This line demonstrates how workText can be split using the string's Split() method instead of using
the Split() function, and it's useful to compare that line with the line just above it. In both cases linedata is filled with the
lines of the file, but the syntax is different for these two Split() variations. With the string Split() method, only individual
characters or an array of strings can be designated for the split point. In other words, you'll run into trouble if you try to
split the lines in the following way:

 lineData = workText.Split(vbNewLine, StringSplitOptions.None)

The special constant vbNewLine is actually two characters in length (carriage return and line feed), and the resulting
strings will all still contain one of these two characters. It took considerable time and effort to debug the rather strange
results when we first encountered this problem. To avoid it, pass an array of multicharacter strings to the string Split()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

results when we first encountered this problem. To avoid it, pass an array of multicharacter strings to the string Split()
method, as shown in the commented-out line in the code above, or use the Visual Basic 2005 Split() function, which has
a simpler syntax and does accept multicharacter strings for the split point. Figure 8-10 shows the result of running the
example code.

Figure 8-10. Parsing CSV files into arrays using Split()

See Also

Recipe 8.9 shows the reverse of this recipe.

Recipe 8.12 discusses the differences between the Split() function and the Split() method in more detail. Also, see Recipe
5.44 for more on the Split() function and method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional
Array

Problem

You want to store data in a two-dimensional array, but the number of items in each row varies. You don't want to
dimension the array for the longest row and waste a lot of space in the array.

Solution

Sample code folder: Chapter 08\MultivalueArray

Instead of creating a two-dimensional array, create an array of arrays, sometimes referred to as a multivalue array.

Discussion

A two-dimensional array is identified by its single pair of parentheses containing one comma separating the two
indexes. A multivalue array has two sets of parentheses, and the contents are stored as one-dimensional arrays stored
in the elements of another one-dimensional array. The following code demonstrates a multivalue array containing three
string arrays of varying lengths:

 Dim result As New System.Text.StringBuilder
 Dim multiValue(2)() As String
 Dim counter1 As Integer
 Dim counter2 As Integer

 ' ----- Build the multivalue array.
 multiValue(0) = New String() {"alpha", "beta", "gamma"}
 multiValue(1) = New String() _
 {"A", "B", "C", "D", "E", "F", "G", "H"}
 multiValue(2) = New String() {"Yes", "No"}

 ' ----- Format the array for display.
 For counter1 = 0 To multiValue.Length - 1
 For counter2 = 0 To multiValue(counter1).Length - 1
 result.Append(multiValue(counter1)(counter2))
 result.Append(Space(1))
 Next counter2
 result.AppendLine()
 Next counter1

 MsgBox(result.ToString())

Inside the nested For loops is a line where each string from the array of arrays is accessed to form the results displayed
in Figure 8-11. Two pairs of parentheses are used to index the specific string stored in the multivalue array:

 multiValue(counter1)(counter2)

Figure 8-11. Using multivalue arrays to store a variable number of items in each
row of a two-dimensional array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

row of a two-dimensional array

A true two-dimensional array element would be accessed with a pair of indexes within one set of parentheses, as in the
following:

 twoDimArray(counter1, counter2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.12. Converting Between Delimited Strings and Arrays

Problem

You have a string that contains data delimited by one or more characters, and you want to divide the parts into an
array. Or you want to reverse the process, moving array elements into a delimited string.

Solution

Sample code folder: Chapter 08\SplitAndJoin

The Split() and Join() functions provided as part of the Visual Basic 2005 language, and the similar Split() and Join() methods
of the string data type, provide a flexible and powerful way to manipulate string arrays.

Discussion

The Split() and Join() functions and methods are described in Chapter 5, which deals with strings, but here they are
presented in the context of how they add useful functionality when working with string arrays.

Split() operates on a single string and returns a string array comprised of pieces of the original string split apart at the
designated points. You can split the string at all occurrences of a given single character, at any occurrence of any single
character in an array of characters, at any occurrence of any multicharacter string in a string array, or at any
occurrence of a single multicharacter string. The overloaded versions of these methods provide considerable flexibility.

You do need to be careful when splitting a string at all occurrences of a single multi-character string. The string Split()
method accepts a single string as the split parameter, but it uses only the first character of the string to define where to
do the split. To use any multicharacter string for the split point, you must pass an array of strings instead of a single
string. The string array can have just one string in it, but it must be an array in order to work as expected. (The Visual
Basic 2005 Split() function doesn't have this limitation.)

To illustrate this, the following code splits a string at all occurrences of "en" and joins it again using Join(). The string to
insert at the join points is "EN". This effectively uppercases all occurrences of "en" in the string. The string array
splitArray() is the string array created by the split:

 Dim workText As String
 workText = _
 "This sentence will have all ""en"" characters uppercased."
 Dim splitArray() As String = {"en"}
 Dim workArray() As String = _
 workText.Split(splitArray, StringSplitOptions.None)
 workText = String.Join("EN", workArray)
 MsgBox(workText)

Figure 8-12 shows the result.

Figure 8-12. Using Split() and Join() to replace all occurrences of a substring

There is a better way to replace all occurrences of a substring with another one: use the
Replace() function. The following line of code has the same result as the previous code:

 workText = Replace(workText, "en", "EN")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 workText = Replace(workText, "en", "EN")

See Also

See Recipe 5.18 and Recipe 5.44 for more on the Split() and Join() functions and methods. Recipe 5.16 gives an example
of using the Replace() function to replace all occurrences of a given substring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.13. Formatting an Array as a Single String

Problem

You want to format the contents of an array into a string, but the ToString() method returns only a string description of
the array reference.

Solution

Sample code folder: Chapter 08 \PrintArrays

Build generic helper routines that format the contents of an array nicely.

Discussion

The ToString() method all objects inherit from System.Object is ideal in most cases; it gives you a quick and simple string
representation of any object's contents. However with arrays, the ToString() method returns a description of the array,
rather than a listing of its contents. This makes sense in that the array variable name contains a reference, not data,
but it makes it tricky to get a listing of the array's contents.

The following code demonstrates how to format the contents of both one-and two-dimensional arrays generically. The
two ToBracedString() functions accept an appropriately sized array and return a string with braces surrounding the array
elements. The braces, data items, and separating commas are formatted in the same way as required when initializing
an array in code. For example, output from this function for a two-dimensional array will have nested braces to indicate
the layout of the array's rows and columns.

Here are the ToBracedString() functions used to display one-and two-dimensional arrays:

 Public Function ToBracedString(Of T)(ByVal sourceArray() _
 As T) As String
 ' ----- Display the contents of a one-dimensional array.
 Dim result As New System.Text.StringBuilder
 Dim counter As Integer

 result.Append("{")
 For counter = 0 To sourceArray.Length - 1
 result.Append(sourceArray(counter).ToString())
 If (counter < (sourceArray.Length - 1)) Then _
 result.Append(",")
 Next counter
 result.Append("}")

 Return result.ToString()
 End Function

 Public Function ToBracedString(Of T)(ByVal sourceArray(,) _
 As T) As String
 ' ----- Display the contents of a two-dimensional array.
 Dim result As New System.Text.StringBuilder
 Dim counter1 As Integer
 Dim counter2 As Integer
 Dim rank1Size As Integer = sourceArray.GetLength(0)
 Dim rank2Size As Integer = sourceArray.GetLength(1)

 result.Append("{")
 For counter1 = 0 To sourceArray.GetLength(0) - 1
 result.Append("{")
 For counter2 = 0 To rank2Size - 1
 result.Append(sourceArray(counter1, _
 counter2).ToString())
 If (counter2 < (rank2Size - 1)) Then _
 result.Append(",")
 Next counter2
 result.Append("}")
 If (counter1 < (rank1Size - 1)) Then result.Append(",")
 Next counter1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next counter1
 result.Append("}")

 Return result.ToString()
 End Function

In the following code, two arrays are created and initialized with sample data, and their contents, as returned by
ToBracedString(), are displayed for review:

 Dim result As New System.Text.StringBuilder
 Dim arrayA() As Integer = {1, 2, 3}
 Dim arrayB(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

 ' ----- Show the typical ToString results.
 result.AppendLine("arrayA.ToString… ")
 result.AppendLine(arrayA.ToString)
 result.AppendLine()

 ' ----- Format arrayA nicely.
 result.AppendLine("ToBracedString(arrayA)… ")
 result.AppendLine(ToBracedString(Of Integer)(arrayA))
 result.AppendLine()

 ' ----- Format arrayB nicely.
 result.AppendLine("ToBracedString(arrayB)… ")
 result.Append(ToBracedString(Of Integer)(arrayB))

 MsgBox(result.ToString())

Compare the braced initialization strings in the first few lines of the previous code with the output as shown in Figure 8-
13. The goal was to duplicate the same simple format.

Figure 8-13. Using the ToBracedString() functions to format the contents of an
array

See Also

Recipe 8.1 shows how to properly format new array content in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.14. Iterating Through Array Elements

Problem

You want to process all the elements of an array without the overhead of creating extra variables, and you'd like to
minimize the scope of all working variables.

Solution

Sample code folder: Chapter 08\ForEachLoops

Use the For Each looping construct to process each element of an array.

Discussion

The following code creates a simple string array of fruit names, then processes each string in the array inside a For Each
loop:

 Dim result As New System.Text.StringBuilder
 Dim fruitArray() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 For Each fruit As String In fruitArray
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The For Each line declares a temporary variable named fruit that exists only for the duration of the For Each loop. This ties
the variable name closely to the processing going on locally and frees up resources as soon as that processing is
completed. Also, there is no need to access the length of the array to control the looping because the loop implicitly
processes all elements, no matter what the array's size is. (The standard For loop syntax requires a separate counting
variable and access to the array's length.) Figure 8-14 shows the results displayed by the example code.

Figure 8-14. Processing arrays with For Each loops

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.15. Passing Arrays to Methods

Problem

You want to pass and return arrays to and from methods as easily as other simple variable types.

Solution

Sample code folder: Chapter 08\ArrayParameters

Unlike Visual Basic 6.0, in Visual Basic 2005 it's easy to pass and return any type of object, including arrays.

Discussion

The following code provides a fun example by passing a string array to a function that returns an even bigger string
array. The names of the four card suits are placed in a small string array. This array is passed to FillDeckOfCards(), which
creates and returns a string array containing the names of all the cards in a deck:

 Dim result As New System.Text.StringBuilder
 Dim suits() As String = {"Spades", "Hearts", "Diamonds", "Clubs"}
 Dim cardDeck() As String = FillDeckOfCards(suits)

 Shuffle(cardDeck)
 For counter As Integer = 0 To 6
 result.AppendLine(cardDeck(counter))
 Next counter

 MsgBox(result.ToString())

The Shuffle() method (designed in Recipe 8.5) shuffles the returned array, and the first seven cards in the array are
displayed for review, as shown in Figure 8-15. Of course, your results will vary based on the state of your random
number generator.

Figure 8-15. Passing and returning arrays

The FillDeckOfCards() function is passed a string array and returns one, too:

 Public Function FillDeckOfCards(ByVal suit As String()) As String()
 Dim deck(51) As String
 Dim cardNumber As Integer
 Dim suitNumber As Integer

 For counter As Integer = 0 To 51
 cardNumber = counter Mod 13
 suitNumber = counter \ 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 suitNumber = counter \ 13
 Select Case cardNumber
 Case 0
 deck(counter) = "Ace of "
 Case 10
 deck(counter) = "Jack of "
 Case 11
 deck(counter) = "Queen of "
 Case 12
 deck(counter) = "King of "
 Case Else
 deck(counter) = cardNumber.ToString & " of "
 End Select
 deck(counter) &= suit(suitNumber)
 Next counter
 Return deck
 End Function

You may pass and return objects in Visual Basic 2005, a process similar to using Variants in Visual Basic 6.0. But in
general, it is better to pass and return explicitly typed arrays, as in the example presented here. This prevents the
runtime overhead required for constantly converting variable types, and it helps the compiler determine at compile time
if you're attempting to pass incompatible data. In general, consider overloaded methods and generics as two ways to
enhance the flexibility of methods, while optimizing the compile- and runtime operations.

See Also

Recipe 8.16 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.16. Returning Arrays from Functions

Problem

You want to return an array from a function.

Solution

Sample code folder: Chapter 08\FunctionArrays

Declare the function to return an array of the desired type and do so in the function's Return statement.

Discussion

This recipe is very similar to Recipe 8.15, but the lesson is worth repeating: arrays of any type and size are easily
passed to and returned from methods. The following example demonstrates a function that returns an array of 16
hexadecimal characters. The array is joined into a string and displayed for review in a message box, as shown in Figure
8-16:

 Dim result As New System.Text.StringBuilder
 result.Append("Hexadecimal characters: ")
 result.Append(String.Join(",", HexadecimalCharacters()))
 MsgBox(result.ToString())

Figure 8-16. Returning an array of hexadecimal characters from a function

The HexadecimalCharacters() function includes a set of parentheses at the very end of the function declaration. This
indicates that the function will return a string array and not just an ordinary string. The Return statement near the end of
the function returns the string array hexChars():

 Public Function HexadecimalCharacters() As String()
 ' ----- Return the first 16 hex numbers as an array.
 Dim hexChars(15) As String

 For counter As Integer = 0 To 15
 hexChars(counter) = Hex(counter)
 Next counter
 Return hexChars
 End Function

See Also

Recipe 8.15 discusses similar functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.17. Creating a Collection

Problem

You want a simple example of a collection to demonstrate the basics of using the collection object.

Solution

Sample code folder: Chapter 08\ Collections

This recipe provides a simple example collection to use as a starting point for further explorations of the topic.

Discussion

Collections provide capabilities similar to those of arrays, but they have some advantages. A collection is inherently
more dynamic and allows the insertion and deletion of items, and it can be resized without loss of any current contents.
You can do these same tasks with arrays, but collections make the whole process much simpler and more
straightforward.

The following example creates a collection of strings. Each string(in this case they are all just simple words) is added to
the collection using the collection's Add() method. After all words are added to the collection, its entire contents are
retrieved for display and review, as shown in Figure 8-17:

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Build the collection.
 wordCollection.Add("This")
 wordCollection.Add("is")
 wordCollection.Add("a")
 wordCollection.Add("collection")
 wordCollection.Add("of")
 wordCollection.Add("words")

 ' ----- Display the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

Figure 8-17. A collection of strings

As with arrays, you can retrieve each item from the collection using an index, or you can use the For Each loop, as shown
in this example. Unlike with arrays, however, you can optionally pass a key string to the Add() method to provide a way
to retrieve items from a collection based on their keys.

You can store varying types of data in the same collection. This provides some flexibility, but in most cases you should
store only the same type of data in any single collection. Methods you write to process the collection's data will need to
handle whatever data type is stored in the collection, so keeping it consistent greatly simplifies the coding
requirements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requirements.

If data-type issues become a problem with your collections, consider using the new generic collections instead.

See Also

Recipes 8.18, 8.19, through 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.18. Inserting an Item into a Collection

Problem

You want to insert a new item in the middle of a collection, rather than just adding it to the end of the collection.

Solution

Sample code folder: Chapter 08\Collections

Use the Add() method, but include its optional parameters to control the insertion point.

Discussion

The Add() method by default appends items to the end of a collection, but optional parameters can modify this behavior.
Here's the general syntax of the Add() method:

 variable.Add(content, key, before, after)

All parameters other than content are optional, and you can't supply values for both before and after in the same
statement. before and after represent the element positions before or after which the new item should be inserted. In the
next code example, the word "slightly" is inserted after position 3 because the after parameter passed to the Add()
method is a 3. The word "longer" is then inserted into the collection before the fifth position, because the before
parameter of the Add() method is a 5:

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Start with a basic collection.
 wordCollection.Add("This")
 wordCollection.Add("is")
 wordCollection.Add("a")
 wordCollection.Add("collection")
 wordCollection.Add("of")
 wordCollection.Add("words")

 ' ----- Insert a word after item 3.
 wordCollection.Add("slightly", , , 3)

 ' ----- Insert a word before item 5.
 wordCollection.Add("longer", , 5)

 ' ----- Display the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

The results of these two "before and after" additions into the collection are shown in Figure 8-18.

Figure 8-18. Using a collection's Add() method to insert items at a given point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 8.17, 8.19, and 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.19. Deleting a Collection Item

Problem

You need to delete an item from a collection.

Solution

Sample code folder: Chapter 08\Collections

Use the collection's Remove() method, passing either the position of the item or its key string.

Discussion

The following example fills a collection with several words using "key strings," identifiers that provide an optional way to
specify each item. The item at index position 5 is then removed, followed by the item with key "six":

 Dim result As New System.Text.StringBuilder
 Dim wordCollection As New Collection

 ' ----- Start with a basic collection.
 wordCollection.Add("This", "one")
 wordCollection.Add("is", "two")
 wordCollection.Add("a", "three")
 wordCollection.Add("collection", "four")
 wordCollection.Add("of", "five")
 wordCollection.Add("words", "six")

 ' ----- Remove an element by position.
 wordCollection.Remove(5)

 ' ----- Remove an element by key.
 wordCollection.Remove("six")

 ' ----- Dipslay the collection.
 For Each word As String In wordCollection
 result.Append(word)
 result.Append(Space(1))
 Next word
 MsgBox(result.ToString())

Once item number 5 is removed, the item at position 6 moves to position 5. This means that removing items 5 and 6
both by number wouldn't work; you would need to remove the item at position 5 twice in a row. This hints at the
usefulness of using key strings to uniquely identify each item, especially when items might be freely added to or
removed from the collection over time. Figure 8-19 shows the contents of the collection after the two items are
removed.

Figure 8-19. The Remove() method removes items from a collection by position or
by key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipes 8.17, 8.18, and 8.20 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.2. Sorting Array Elements

Problem

You want to sort the elements of an array.

Solution

Sample code folder: Chapter 08\SortingArrays

Use the Sort() method of the Array class.

Discussion

The Array class has a shared Sort() method that works on arrays of any kind. There are several optional parameters that
let you customize the sorting algorithm for different types of objects, but for arrays of strings and numbers, the name
of the array is generally all you need to pass. The following example creates a string array containing the names of a
few types of fruit, then sorts them into alphabetical order and displays the sorted list of fruit names for review:

 Dim result As New System.Text.StringBuilder
 Dim arrayToSort() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the elements before sorting.
 result.AppendLine("Before sorting:")
 For Each fruit As String In arrayToSort
 result.AppendLine(fruit)
 Next fruit

 ' ----- Show the elements after sorting.
 result.AppendLine()
 result.AppendLine("After sorting:")
 Array.Sort(arrayToSort)
 For Each fruit As String In arrayToSort
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The StringBuilder is first filled with the names of the fruits in the unsorted order used to create the string array. The
Array.Sort() method is invoked to sort the fruits alphabetically, and the sorted fruits are then added to the StringBuilder to
demonstrate the sorted order. Figure 8-1 shows the array before and after the sort.

Figure 8-1. Sorting arrays using the shared Sort() method of the Array class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sorting intrinsic types is simple, but you can also sort custom classes based on any comparison criteria you specify. You
do this by implementing the IComparable interface on the custom class. The following class implements a simple
comparison interface that merges group and item values into a single string for comparison:

 Private Class CustomData
 Implements IComparable

 Public GroupName As String
 Public ItemName As String

 Public Sub New(ByVal theGroup As String, _
 ByVal theItem As String)
 GroupName = theGroup
 ItemName = theItem
 End Sub

 Public Overrides Function ToString() As String
 Return GroupName & ": " & ItemName
 End Function

 Public Function
CompareTo(ByVal obj As Object) As Integer _
 Implements System.IComparable.CompareTo
 ' ----- Compare two records.
 Dim compareValue As String

 ' ----- Since we're just going to compare the ToString
 ' value, no need to convert to CustomData.
 compareValue = obj.ToString()

 ' ----- Return the relative comparison value.
 Return String.Compare(Me.ToString(), compareValue)
 End Function
 End Class

The CompareTo() method returns a negative value if the object itself should come before another object supplied for
comparison, a positive value if the instance should come after, and zero if they are equal. The String object's comparer
was deferred to here, but you can use any complex calculations for comparison.

The following sample sorts an array of CustomData data elements:

 Dim result As New System.Text.StringBuilder
 Dim
arrayToSort() As CustomData = { _
 New CustomData("Fruit", "Orange"), _
 New CustomData("Vegetable", "Onion"), _
 New CustomData("Fruit", "Apple"), _
 New CustomData("Vegetable", "Carrot"), _
 New CustomData("Fruit", "Grape")}

 ' ----- Show the elements before sorting.
 result.AppendLine("Before sorting:")
 For Each food As CustomData In arrayToSort
 result.AppendLine(food.ToString())
 Next food

 ' ----- Show the elements after
sorting.
 result.AppendLine()
 result.AppendLine("After sorting:")
 Array.
Sort(arrayToSort)
 For Each food As CustomData In arrayToSort
 result.AppendLine(food.ToString())
 Next food

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-2 shows the output from this code.

Figure 8-2. Sorting custom data using the IComparable interface

See Also

Recipe 8.3 shows how to reverse the elements of an array, and Recipe 8.5 shows how to randomly rearrange the
elements of an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.20. Iterating Through a Collection

Problem

You want to process all the items in a collection one at a time.

Solution

Sample code folder: Chapter 08\Collections

Use a For Each loop, or use the collection's Count property in a For…Next loop.

Discussion

The For Each loop is the recommended way to process items in a collection because you don't need an index variable,
you don't have to access the Count property of the collection, and each item in the collection is automatically retrieved
(i.e., you don't have to explicitly access each indexed item).

The following code shows both a For…Next loop and a For Each loop used to access the same collection. Each loop creates a
single line of the output display, showing the contents of each item in the collection:

 Dim result As New System.Text.StringBuilder
 Dim numberCollection As New Collection

 ' ----- Start with a basic collection.
 numberCollection.Add(14, "C")
 numberCollection.Add(25, "D")
 numberCollection.Add(36, "E")
 numberCollection.Add(47, "A")
 numberCollection.Add(58, "B")

 ' ----- Scan the collection with a loop counter.
 ' Collections are base-1, not base-0.
 For counter As Integer = 1 To numberCollection.Count
 result.Append(numberCollection(counter))
 result.Append(",")
 Next counter

 ' ----- Remove the ending comma.
 result.Length -= 1
 result.AppendLine()

 ' ----- Scan the collection by item.
 For Each number As Integer In numberCollection
 result.Append(number)
 result.Append(",")
 Next number

 ' ----- Remove the ending comma.
 result.Length -= 1
 result.AppendLine()

 ' ----- Retrieve items by key.
 result.Append(numberCollection("A")).Append(",")
 result.Append(numberCollection("B")).Append(",")
 result.Append(numberCollection("C")).Append(",")
 result.Append(numberCollection("D")).Append(",")
 result.Append(numberCollection("E"))

 ' ----- Display the results.
 MsgBox(result.ToString())

The third line of the output is the same collection accessed in the order of the item keys, instead of the default order,
which is based on the item positions in the collection. Figure 8-20 shows the collection's items as accessed in each of
these three ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these three ways.

Figure 8-20. Items in a collection can be accessed with For Next or For Each loops
or by the item keys

See Also

Recipes 8.17, 8.18, through 8.19 show other features of collections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.3. Reversing an Array

Problem

You want to reverse the order of the elements in an array. This might be useful, for instance, immediately after sorting
an array to change the sort order from ascending to descending.

Solution

Sample code folder: Chapter 08\ArrayReversal

The Array class provides a shared Reverse() method that reverses the order of its elements.

Discussion

The Array.Reverse() method reverses an array, whether its elements have been sorted first or not. The following code fills
a string array with a few fruit names, in no special order. The Array.Reverse() method then reverses the order of the
array's elements:

 Dim result As New System.Text.StringBuilder
 Dim arrayReverse() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the elements before reversal.
 result.AppendLine("Before reversing:")
 For Each fruit As String In arrayReverse
 result.AppendLine(fruit)
 Next fruit

 ' ----- Show the elements after reversal.
 result.AppendLine()
 result.AppendLine("After reversing:")
 Array.Reverse(arrayReverse)
 For Each fruit As String In arrayReverse
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The StringBuilder fills first with the strings from the original array, then with the reversed array's contents for comparison.
Figure 8-3 shows the results as displayed by the StringBuilder in the message box.

Figure 8-3. Reversing the contents of an array with the shared Array.Reverse()
method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 8.2 shows another method of arranging the elements of an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.4. Inserting into an Array

Problem

You need to insert a new value at an arbitrary location in the middle of an array.

Solution

Sample code folder: Chapter 08\ArrayInsertion

Unlike some of the collection classes in .NET, arrays do not include a method that lets you insert an element in the
middle of an array. Instead, you have to create a new array and copy the elements of the original array into it,
reserving space for the new element. The code in this recipe implements such a method.

Discussion

Because arrays can be created using any data type, we will require a generic method capable of handling any data:

 Public Sub InsertArrayElement(Of T) (_
 ByRef sourceArray() As T, _
 ByVal insertIndex As Integer, _
 ByVal newValue As T)
 ' ----- Insert a value in the middle of an array.
 Dim newPosition As Integer
 Dim counter As Integer

 ' ----- Get a valid positon, checking for boundaries.
 newPosition = insertIndex
 If (newPosition < 0) Then newPosition = 0
 If (newPosition > sourceArray.Length) Then _
 newPosition = sourceArray.Length

 ' ----- Make room in the array.
 Array.Resize(sourceArray, sourceArray.Length + 1)

 ' ----- Move the after-index items.
 For counter = sourceArray.Length - 2 To newPosition Step -1
 sourceArray(counter + 1) = sourceArray(counter)
 Next counter

 ' ----- Store the new element.
 sourceArray(newPosition) = newValue
 End Sub

The code stretches the initial array, making it one position larger. It then shifts some of the elements one position
higher to make room for the new element. Finally, it saves the new element at the desired position.

To use this method, pass it an array of any type, and also indicate the type used for the generic parameter.

You can insert the new value at position 0, just before the very first element, or at a position one greater than the
maximum current index of the array. Insert positions outside this range adjust themselves to fit the valid range.

The following example demonstrates calling the InsertArrayElement() method by first creating a string array of fruit names
and then inserting an element in the middle:

 Dim result As New System.Text.StringBuilder
 Dim arrayInsert() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the contents before insertion.
 result.AppendLine("Before insertion:")
 For Each fruit As String In arrayInsert

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each fruit As String In arrayInsert
 result.AppendLine(fruit)
 Next fruit

 ' ----- Insert more fruit.
 InsertArrayElement(Of String)(arrayInsert, 2, "Lemons")

 ' ----- Show the contents after insertion.
 result.AppendLine()
 result.AppendLine("After insertion:")
 For Each fruit As String In arrayInsert
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

The string "Lemons" is inserted at position 2 (counting from zero) in the array. The results are shown in Figure 8-4.

Figure 8-4. Inserting values into an array

See Also

Recipe 8.7 also discusses adding elements to an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.5. Shuffling an Array

Problem

You want to randomize the order of the elements in an array efficiently.

Solution

Sample code folder: Chapter 08\ShuffleArray

Write a routine that randomly rearranges the elements of an array. The code in this recipe does this using an array of
any data type.

Discussion

The Shuffle() method presented here swaps each element of the array with a randomly selected element from elsewhere
in the array. Sometimes this may cause an element to be swapped with itself, but that doesn't make the results any
less random. By sequencing through all elements, the algorithm guarantees that each one will be swapped at least
once:

 Public Sub Shuffle(ByRef shuffleArray() As Object)
 ' ----- Reorder the elements of an array in a random order.
 Dim counter As Integer
 Dim newPosition As Integer
 Dim shuffleMethod As New Random
 Dim tempObject As Object

 For counter = 0 To shuffleArray.Length - 1
 ' ----- Determine the new position.
 newPosition = shuffleMethod.Next(0, _
 shuffleArray.Length - 1)

 ' ----- Reverse two elements.
 tempObject = shuffleArray(counter)
 shuffleArray(counter) = shuffleArray(newPosition)
 shuffleArray(newPosition) = tempObject
 Next counter
 End Sub

The following code creates a string array of fruit names, shuffles the array, and displays the array contents both before
and after the shuffling:

 Dim result As New System.Text.StringBuilder
 Dim arrayShuffle() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the pre-random results.
 result.AppendLine("Before shuffling:")
 For Each fruit As String In arrayShuffle
 result.AppendLine(fruit)
 Next fruit
 ' ----- Randomize.
 Shuffle(arrayShuffle)

 ' ----- Show the post-random results.
 result.AppendLine()
 result.AppendLine("After
shuffling:")
 For Each fruit As String In arrayShuffle
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

Figure 8-5 shows the results from running the sample code, listing the array's contents before and after the shuffling.
Your output may vary due to the random nature of the test.

Figure 8-5. Randomizing an array's elements with the Shuffle() method

See Also

Recipe 8.6 uses a portion of this recipe's code to generically reverse two array elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.6. Swapping Two Array Values

Problem

You want to swap the contents of any two elements in an array.

Solution

Sample code folder: Chapter 08\SwapArrayElements

Write a custom method that reverses the positions of two specific array elements. The code in this recipe implements a
Swap() method that does just that.

Discussion

The Swap() method accepts an array of any data type, plus the positions of two elements to swap. After doing some
boundary checking, it reverses the elements:

 Public Sub Swap(ByRef swapArray() As Object, _
 ByVal first As Integer, ByVal second As Integer)
 ' ----- Reverse two elements of an array.
 Dim tempObject As Object

 ' ----- Check for invalid positions.
 If (first < 0) Then Return
 If (first >= swapArray.Length) Then Return
 If (second < 0) Then Return
 If (second >= swapArray.Length) Then Return
 If (first = second) Then Return

 ' ----- Reverse two elements.
 tempObject = swapArray(first)
 swapArray(first) = swapArray(second)
 swapArray(second) = tempObject
 End Sub

Several lines of this code simply check to make sure the indexes into the array are valid. If they are out of range, no
swapping takes place.

The following code demonstrates the Swap() method by creating a string array of fruit names and swapping the contents
at the first and third indexes into the array. The ArrayHelper is instanced to accept string parameters, and the string array
is passed to its Swap() method:

 Dim result As New System.Text.StringBuilder
 Dim arraySwap() As String = { _
 "Oranges", "Apples", "Grapes", "Bananas", "Blueberries"}

 ' ----- Show the pre-swap data.
 result.AppendLine("Before swap:")
 For Each fruit As String In arraySwap
 result.AppendLine(fruit)
 Next fruit

 ' ----- Swap two elements.
 Swap(arraySwap, 1, 3)

 ' ----- Show the post-swap data.
 result.AppendLine()
 result.AppendLine("After swap:")
 For Each fruit As String In arraySwap
 result.AppendLine(fruit)
 Next fruit

 MsgBox(result.ToString())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(result.ToString())

Figure 8-6 shows the array's contents before and after elements 1 and 3 are swapped. Notice that the array elements
start at zero, so the swap is between the second and fourth values in the array.

Figure 8-6. Swapping two array elements with the Swap() method

See Also

Recipe 8.5 shows how to randomly rearrange the contents of an entire array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.7. Resizing Arrays Without Losing Existing Values

Problem

You want to add an unknown number of elements to an array, resizing the array as needed, but you don't want to lose
any data in the process.

Solution

Sample code folder: Chapter 08\SwapArrayElements

Visual Basic 2005 provides the ReDim Preserve command to resize an array without losing any of the array's current
contents.

Discussion

Actually, you can lose some contents of an array using ReDim Preserve, but only if you are decreasing the array's size.
ReDim Preserve is most often used to grow an array, and it is ideal for adding new elements on the fly, without losing any
data already in the array.

For example, the following code creates an integer array and then loops to grow it one element at a time. A number is
stored in each new array element as the array grows:

 Dim result As New System.Text.StringBuilder
 Dim growingArray() As String = Nothing

 ' ----- Add elements to the array.
 For counter As Integer = 0 To 2
 ReDim Preserve growingArray(counter)
 growingArray(counter) = (counter + 1).ToString
 Next counter

 ' ----- Display the results.
 For Each workText As String In growingArray
 result.AppendLine(workText)
 Next workText
 MsgBox(result.ToString())

Figure 8-7 displays the simple integer array that was resized, one element at a time, to hold the three numbers shown.

Figure 8-7. Resizing an array on the fly with ReDim Preserve

One nice thing about ReDim Preserve is that it works with arrays that are empty or set to Nothing, as shown in the sample
code.

The Array object's Resize() method provides similar functionality.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.4 shows how to insert elements into the middle of an existing array, instead of just at the end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.8. Quickly Copying Part of an Array into Another

Problem

You want to copy elements of one array into another without having to move the items one at a time.

Solution

Sample code folder: Chapter 08\ CopyingArrays

Use the Array.Copy() method to copy a sequential subset of one array to another array of the same type. Or, if the entire
array is to be copied, use the array's Clone() method. Assign one array directly to another only if you want both variables
to reference the same contents in memory.

Discussion

This recipe explores several ways to copy elements from one array to another, and one way that appears to do a copy
but doesn't. It's important to know the difference between these various techniques. The following block of code
demonstrates all of them and displays the results in a message box:

 Dim result As New System.Text.StringBuilder

 Dim arrayA() As String = _
 {"One", "Two", "Three", "Four", "Five", "Six"}
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

 Dim arrayB() As String = _
 {"A", "B", "C", "D", "E", "E", "F", "G", "H"}
 result.AppendLine()
 result.Append("arrayB: ").AppendLine(Join(arrayB, ","))

 ' ----- Make a reference copy.
 Dim arrayC() As String = arrayA
 result.AppendLine()
 result.AppendLine("Dim arrayC() As String = arrayA")
 result.Append("arrayC: ").AppendLine(Join(arrayC, ","))

 arrayC(4) = "Was a five here"
 result.AppendLine()
 result.AppendLine("arrayC(4) = ""Was a five here""")
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

 ' ----- Make a full, unique copy of all elements.
 Dim arrayD() As String = arrayA.Clone
 result.AppendLine()
 result.AppendLine("Dim arrayD() As String = arrayA.Clone")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

 ' ----- Copy elements by position.
 Array.Copy(arrayB, 0, arrayD, 1, 3)
 result.AppendLine()
 result.AppendLine("Array.Copy(arrayB, 0, arrayD, 1, 3)")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

 MsgBox(result.ToString())

Let's break down this code into smaller chunks so we can take a closer look. The first three sections create two string
arrays, arrayA and arrayB, containing simple strings so we can follow the action later. The first line of the next section is
where it gets interesting:

 Dim arrayC() As String = arrayA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This appears to be an array copy command, but it isn't. The two array names both reference the same contents in
memory. In other words, the reference to the array is copied, not the array itself. The code in the next section
demonstrates this clearly:

 arrayC(4) = "Was a five here"
 result.AppendLine()
 result.AppendLine("arrayC(4) = ""Was a five here""")
 result.Append("arrayA: ").AppendLine(Join(arrayA, ","))

The new string is assigned to arrayC(4), but when the contents of arrayA are formatted for display the new string appears
there, too. As Figure 8-8 shows, the new string appears as an element of both arrayA and arrayC.

Figure 8-8. Various ways to copy data between arrays

The next-to-last code section demonstrates the proper way to truly copy an entire array to another. The array's Clone()
method returns a clone, or identical duplicate, of the original array. The result is that the array's contents are copied to
a new place in memory. In the example code, the reference to the cloned copy of the array is assigned to arrayD:

 Dim arrayD() As String = arrayA.Clone
 result.AppendLine()
 result.AppendLine("Dim arrayD() As String = arrayA.Clone")
 result.Append("arrayD: ").AppendLine(Join(arrayD, ","))

Finally, the last code section demonstrates the use of the Array class's Copy() method to copy part of one array to
another. In this case both arrays must exist before the copy, and the indexes must point to real locations within the
arrays. There are several overloaded versions of the Copy() method. The version shown here lets you move array
elements starting at a given indexed position to any position in the destination array, and the number of elements to
copy limits how much data is copied:

 Array.Copy(arrayB, 0, arrayD, 1, 3)
 result.AppendLine()
 result.AppendLine("Array.Copy(arrayB, 0, arrayD, 1, 3)")
 result.Append("arrayD: ").AppendLine(
Join(arrayD, ","))

arrayB's contents, starting at index 0, are copied into arrayD, starting at index 1, and three items are copied. If you've
followed along carefully as these sections of code manipulate the contents of the arrays, you'll see that the result shown
in Figure 8-8 does verify this copy action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 8.9. Writing a Comma-Separated-Values File from a String
Array

Problem

You need to write data stored in an array to a comma-separated-values (CSV) file. This is often done to provide input
to Excel.

Solution

Sample code folder: Chapter 08\CreateCSVFiles

Use the String class's Join() method to concatenate array contents into strings, using a comma as the character to insert
at the join points. Then write the string or strings to a file using the WriteAllText() method provided by the
My.Computer.FileSystem object.

Discussion

In many cases you'll have several data items that you want to appear in each of several rows of a spreadsheet. This is
accomplished by separating each data item in each row with a comma, and separating the rows from each other using
newline characters. The following code demonstrates various ways to accomplish this. headings is a string array
containing three words. The Join() method concatenates this array into a single string with commas separating each
word. To simplify the example, several more similar comma-separated strings are concatenated to the string, each
separated with vbNewLine characters. The resulting string is written to a file named Test.csv in a single command using
the My.Computer.FileSystem.WriteAllText() method:

 Dim result As New System.Text.StringBuilder
 Dim headings() As String = {"Alpha", "Beta", "Gamma"}
 Dim workText As String = String.Join(",", headings)
 ' ----- Prepare the raw data.
 workText &= vbNewLine
 workText &= "1.1, 2.3, 4.5" & vbNewLine
 workText &= "4.2, 7.9, 3.1" & vbNewLine
 workText &= "3.5, 2.2, 9.8" & vbNewLine

 ' ----- Convert it to CSV and save it to a file.
 Dim filePath As
String = _
 My.Computer.FileSystem.CurrentDirectory & "\Test.csv"
 My.Computer.FileSystem.WriteAllText(filePath, workText, False)
 result.Append("File written: ")
 result.AppendLine(filePath)
 result.AppendLine()
 result.AppendLine("File contents:")
 result.Append(workText)

 MsgBox(result.ToString())

The remaining lines of example code display the new Test.csv file contents, as shown in Figure 8-9.

Figure 8-9. Writing CSV files from array data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Recipe 8.10 is the reverse of this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Arrays and Collections
Introduction

Recipe 8.1. Filling an Array While Declaring It

Recipe 8.2. Sorting Array Elements

Recipe 8.3. Reversing an Array

Recipe 8.4. Inserting into an Array

Recipe 8.5. Shuffling an Array

Recipe 8.6. Swapping Two Array Values

Recipe 8.7. Resizing Arrays Without Losing Existing Values

Recipe 8.8. Quickly Copying Part of an Array into Another

Recipe 8.9. Writing a Comma-Separated-Values File from a String Array

Recipe 8.10. Reading a Comma-Separated-Values File into a String Array

Recipe 8.11. Using a Multivalue Array Instead of a Two-Dimensional Array

Recipe 8.12. Converting Between Delimited Strings and Arrays

Recipe 8.13. Formatting an Array as a Single String

Recipe 8.14. Iterating Through Array Elements

Recipe 8.15. Passing Arrays to Methods

Recipe 8.16. Returning Arrays from Functions

Recipe 8.17. Creating a Collection

Recipe 8.18. Inserting an Item into a Collection

Recipe 8.19. Deleting a Collection Item

Recipe 8.20. Iterating Through a Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The recipes in this chapter introduce the powerful, fast, and creative graphics capabilities of Visual Basic 2005. They
provide working examples of everything from drawing simple lines to creating charts and simple animations. If you're
coming from Visual Basic 6.0, you'll be especially pleased with the powerful new capabilities of the GDI+ graphics.
Several recipes will help you update your skills by substituting new functionality for the primitive graphics commands
provided by Visual Basic 6.0, such as Line, Circle, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.1. Creating Graphics Objects

Problem

You're just getting started with GDI+ graphics and want to know where to begin.

Solution

Sample code folder: Chapter 09\GDIObjects

Always start by defining and creating the fundamental graphics objects relied upon by all GDI+ graphics methods.
These include colors, pens, fonts, brushes, and of course the Graphics object itself, the drawing surface used by all
graphics drawing methods.

Discussion

The sample code in this recipe demonstrates the creation of several graphics-related objects, providing a good starting
point for studying some GDI+ fundamentals. We'll look at the code in sections.

The most common place to put drawing code is in the Paint event handler for the form or control on which you will draw:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

You can draw in other events or methods as well, but you'll run into fewer hassles if you paint when the system tells
you to, rather than forcing redrawing of surfaces based on other events.

The Paint event provides a couple of useful parameters to help with the painting. You can create your own Graphics
objecta technique handy in some situationsbut when drawing in a Paint event, simply use the Graphics object passed to
the event. You can reference the e.Graphics object by that nomenclature, or you can create a shorter reference to it (such
as, in this example, canvas):

 ' ----- Grab the graphics object for this form.
 Dim canvas As Graphics = e.Graphics

You typically use the Graphics object a lot in the Paint method, so keeping the reference easy to use can simplify your
coding.

Colors can be defined in several ways, some of which are demonstrated in the following group of program lines. You
can choose from a long list of enumerated colors with fanciful names like "cornsilk," or you can build your own color by
setting each of the red, green, and blue components of the color to a value from 0 to 255. There are also some named
system colors you can access to employ the standard colors selected by the user for the entire workstation. The
advantage of using these colors is that your graphics will take on the system-described colors, even if the user has
changed one of those colors from its default base. A fourth optional parameter (actually passed as the first argument to
Color.FromArgb())), called Alpha, controls the transparency of a color. As shown in the following code, a transparent shade
of green is created by setting its Alpha parameter to a middle-of-the-road value of 127:

 ' ----- Create some colors.
 Dim colorBackground As Color = Color.Cornsilk
 Dim colorRed As Color = Color.FromArgb(255, 0, 0)
 Dim colorTransparentGreen As Color = _
 Color.FromArgb(127, 0, 255, 0)
 Dim colorControlDark As Color = _
 SystemColors.ControlDark

A Pen is used as a parameter for many drawing methods. For example, lines, ellipses, rectangle edges, and polygon
edges are all drawn using a designated pen to define the lines used to construct them. A basic Pen object is comprised
of a color and an optional width. If not given, the width defaults to 1 unit, and you'll get what you expect if your scaling
mode is the default pixels. If a different scaling is used, the thickness of the pen's line will remain at 1 unit, but
depending on the scaling this can drastically affect the appearance of the lines you draw (see Recipe 9.8 for more on
this topic). The following code block defines pen1 with a width of 1 unit and pen2 with a width of 25:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this topic). The following code block defines pen1 with a width of 1 unit and pen2 with a width of 25:

 ' ----- Create some pens.
 Dim pen1 As New Pen(Color.Blue)
 Dim pen2 As New Pen(colorRed, 25)

Font objects are required whenever text is drawn on a graphics surface. There are several ways to define a new Font
object: you can specify its name and a few optional properties such as font size, or you can start with a given font and
make changes to it. Both of these techniques are used in the program lines shown here:

 ' ----- Create some fonts.
 Dim font1 As New Font("Arial", 24, _
 FontStyle.Bold Or FontStyle.Italic)
 Dim font2 As New Font(Me.Font, FontStyle.Regular)

Visual Basic 2005 doesn't have a plain old Print command, like the one that was available in the good old days of VB 6.
You'll need to become familiar with fonts, brushes, and GDI+ methods such as DrawString() to draw even the simplest
text content. The upside of this situation is that text can be drawn on any surface in the same way, whether it's a
printer page, a form, or the face of a button or other control.

When you draw shapes using lines, you pass the graphics method a pen. When you fill Graphics objects with color, such
as when drawing a solid-filled rectangle or ellipse, you pass a brush. Brushes can be solid-filled with a color, as shown
here, or they can be created using a repeating fill pattern or image:

 ' ----- Create some brushes.
 Dim brush1 As New SolidBrush(Color.DarkBlue)
 Dim brush2 As New SolidBrush(colorTransparentGreen)

The next lines use several methods of the Graphics object to render ellipses, rectangles, and a string:

 ' ----- Demonstrate a few sample graphics commands.
 canvas.Clear(colorBackground)
 canvas.DrawEllipse(pen2, 100, 50, 300, 200)
 canvas.FillEllipse(brush1, New Rectangle(_
 50, 150, 250, 200))
 canvas.FillRectangle(New SolidBrush(colorTransparentGreen), _
 120, 30, 150, 250)
 canvas.DrawString("Text is drawn using GDI+", _
 font1, brush1, 120, 70)

Figure 9-1 displays the results generated by this code. The biggest ring is a single-line outline of an ellipse, drawn using
the pen2 object defined above (it's actually a red pen with a width of 25 unitsin this case, the units are the default
pixels). The lower ellipse is solid-filled using a blue brush. Clipping takes place automatically, and although the blue
ellipse doesn't quite fit on the form's surface, this causes no problems. The rectangle uses the transparent green brush
defined earlier, allowing the red and blue ellipses to show through from underneath. Finally, the string of text can be
drawn at any location, using any font, any size, any color, and any rotation angle.

Figure 9-1. Creating GDI+ graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proper GDI+ etiquette requires that you properly dispose of all objects you create. Back in the old days before Windows
95, proper cleanup of graphics objects was essential, and the system could crash if it ran out of its few precious
graphics resources. Those fears are long gone, but GDI+ objects still consume system resources. The .NET garbage-
collection system will eventually dispose of all graphics objects, but it's best if you do it yourself immediately:

 ' ----- Clean up.
 brush2.Dispose()
 brush1.Dispose()
 font2.Dispose()
 font1.Dispose()
 pen2.Dispose()
 pen1.Dispose()
 canvas = Nothing
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.10. Using Transparency

Problem

You know that .NET includes cool new transparency and " alpha blending" features, and you'd like to try them out.

Solution

Windows Forms include a few different transparency features. The simplest are accessible through two properties of
each form: Opacity and TransparencyKey. Opacity ranges from 0% to 100% (actually, 0.0 for full transparency and 1.0 for full
opacity) and impacts the entire form. Figure 9-14 shows a form set at 50% opacity with this paragraph showing
through.

Figure 9-14. A see-through form with 50% opacity

The TRansparencyKey property lets you indicate one form color as the "invisibility" color. When used, anything on the form
that appears in the indicated color is rendered invisible. Figure 9-15 shows a form with its transparencyKey property set to
Control, the color normally used for the form's background. It appears over this paragraph's text.

Figure 9-15. A see-through form with surface invisibility

Discussion

A bug in the initial release of Visual Basic 2005 causes some images drawn on a form's surface or on one of its
contained controls to ignore the transparencyKey setting, even if that image contains the invisibility color. There is a
workaround that uses a third transparency feature of GDI+, the Bitmap object's MakeTransparent() method. The following
block of code loads an image from a file, sets the White color as transparent, and draws it on the invisible background
from Figure 9-15, producing the results in Figure 9-16:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim backImage As New Bitmap("c:\logo.bmp")
 backImage.MakeTransparent(Color.White)
 Me.BackgroundImage = backImage
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Figure 9-16. A transparent image on a transparent form

A fourth transparency feature involves partially invisible colors. Although the System.Drawing.Color structure includes
several predefined colors, you can create your own colors through that structure's FromArgb() method. One variation of
this method accepts four arguments: red, green, and blue components, and an "alpha" component that sets the
transparency of the color. That value ranges from 0 (fully transparent) to 255 (fully opaque). Another variation accepts
just an alpha component and a previously defined color:

 ' ----- Make a semi-transparent red color.
 Dim semiRed As Integer = New Color(128, Color.Red)

 ' ----- Here's another way to do the same thing.
 Dim semiRed As Integer = New Color(128, 255, 0, 0)

You can then use this color to create pens or brushes as you would with any other color.

Some older systems don't support all methods of transparency. If there is any chance your program will run on such
older systems, don't depend on transparency as the sole method of communicating something important to the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.11. Scaling with Transforms

Problem

You want to zoom the view of a drawing area so that the user has a wider or narrower view of the content.

Solution

Sample code folder: Chapter 09\ScalingTransform

Add a scaling transform to the drawing surface before outputting the text. The System.Drawing.Graphics object includes a ScaleTransform()
method that lets you scale the output automatically, with separate scales in the X and Y directions.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named DisplayText. Set its Multiline property to true and its ScrollBars property to Vertical. Size it so that you can
see multiple lines of user-entered text.

A trackBar control named DisplayScale. Set its Minimum property to 1 and its Maximum property to 5. The trackBar control appears in
the All Windows Forms section of the Toolbox by default.

A Button control named ActDisplay. Set its Text property to Display.

A PictureBox control named DrawingArea. Set its BackColor property to White and its BorderStyle property to Fixed3D.

Add informational labels if desired. The form should look like Figure 9-17.

Figure 9-17. The controls on the scaled content sample

Now add the following source code to the form's class template:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's class template:

 Private Sub ActDisplay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActDisplay.Click
 ' ----- Force the text to redisplay.
 DrawingArea.Invalidate()
 End Sub

 Private Sub DrawingArea_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles DrawingArea.Paint
 ' ----- Refresh
the drawing area.
 Dim titleFont As Font
 Dim mainFont As Font
 Dim titleArea As Rectangle
 Dim textArea As Rectangle
 Dim titleFormat As StringFormat
 Const MainTitle As String = "Important Message"

 ' ----- Clear any existing content.
 e.Graphics.Clear(Color.White)

 ' ----- Build some fonts used for the display text.
 titleFont = New Font("Arial", 16, FontStyle.Bold)
 mainFont = New Font("Arial", 12, FontStyle.Regular)

 ' ----- Determine where the title and main text will go.
 titleArea = New Rectangle(0, 0, _
 DrawingArea.ClientRectangle.Width, titleFont.Height)
 textArea = New Rectangle(0, titleFont.Height * 1.4, _
 DrawingArea.ClientRectangle.Width, _
 DrawingArea.ClientRectangle.Height - _
 (titleFont.Height * 1.4))

 ' ----- Scale according to the user's request.
 e.Graphics.
ScaleTransform(DisplayScale.Value, _
 DisplayScale.Value)

 ' ----- Add a title to the content.
 titleFormat = New StringFormat()
 titleFormat.Alignment = StringAlignment.Center
 e.Graphics.DrawString(MainTitle, titleFont, _
 Brushes.Black, titleArea, titleFormat)
 titleFormat.Dispose()

 ' ----- Draw a nice dividing line.
 e.Graphics.DrawLine(Pens.Black, 20, _
 CInt(titleFont.Height * 1.2), _
 DrawingArea.ClientRectangle.Width - 20, _
 CInt(titleFont.Height * 1.2))

 ' ----- Draw the main text.
 e.Graphics.DrawString(DisplayText.Text, mainFont, _
 Brushes.Black, textArea)

 ' ----- Clean up.
 mainFont.Dispose()
 titleFont.Dispose()
 End Sub

Run the program, enter some text in the TextBox control, adjust the DisplayScale control value, and click the ActDisplay button.
drawing area zooms in on the content as you adjust the scale. Figure 9-18 shows content without scaling (DisplayScale.Value = 1
with a 2x scale (DisplayScale.Value = 2).

Figure 9-18. x and 2x scaling of content

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-18. x and 2x scaling of content

The ScaleTransform() method scales everything: text and shape sizes, pen thickness, X and Y positions, rectangular bounding boxes,
and so on. The previous sample code scaled the textArea bounding box used to limit the extent of the main text to the output display
area. When the content was scaled, though, the bounding box was also scaled, so that the content no longer fits the bounding box.
If you still want such bounding boxes to fit, you have to scale them by an inverse factor:

 textArea = New Rectangle(0, titleFont.Height * 1.4, _
 DrawingArea.ClientRectangle.Width / DisplayScale.Value, _
 DrawingArea.ClientRectangle.Height - _
 (titleFont.Height * 1.4))

Figure 9-19 shows the output from this revised block of code.

Figure 9-19. X scaling with boundary adjustments

See Also

Recipe 9.4 discusses scaling based on inches and centimeters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.12. Using an Outline Path

Problem

You want to create a complex graphics drawing path that can simplify graphics drawing commands and can be reused
repeatedly.

Solution

Sample code folder: Chapter 09\ GraphicsPath

The GraphicsPath object lets you create and store a complex sequence of graphics lines, rectangles, ellipses, and polygons
as a single object.

Discussion

The GraphicsPath is part of the Drawing2D namespace, so be sure to add the following Imports statement to the top of your
code:

 Imports System.Drawing.Drawing2D

In this recipe we'll use a GraphicsPath object to draw a checkerboard. The drawing takes place in the form's Paint event
handler:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

To begin, the graphics surface for the form is referenced, and a static GraphicsPath reference variable (thePath) is created.
The path is created the first time the event handler gets called and is used again on successive calls:

 ' ----- Draw a checkerboard.
 Dim across As Integer
 Dim down As Integer
 Dim canvas As Graphics = e.Graphics
 Static thePath As GraphicsPath

 ' ----- Draw the checkerboard the first time only.
 If (thePath Is Nothing) Then
 thePath = New GraphicsPath
 For across = 0 To 7
 For down = 0 To 7
 If (((across + down) Mod 2) = 1) Then
 thePath.AddRectangle(_
 New Rectangle(across, down, 1, 1))
 End If
 Next down
 Next across
 End If

The scaling needs to take place every time the Paint event is triggered because as the user changes the size of the form
(and the graphics surface), the checkerboard stretches to fit it:

 ' ----- Scale the form for the checkerboard.
 Dim scaleX As Single
 Dim scaleY As Single
 scaleX = CSng(Me.ClientSize.Width / 10)
 scaleY = CSng(Me.ClientSize.Height / 10)
 canvas.ScaleTransform(scaleX, scaleY)
 canvas.TranslateTransform(1, 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 canvas.TranslateTransform(1, 1)

Finally, the path is drawn using a blue brush, and its outline is drawn around the edges:

 ' ----- Draw and outline the checkerboard.
 canvas.FillPath(Brushes.Blue, thePath)
 canvas.DrawRectangle(New Pen(Color.Blue, -1), 0, 0, 8, 8)
 End Sub

The form's Resize event needs a command to cause the form to refresh as it is resized. This causes the checkerboard to
be redrawn on the fly as the form is stretched or shrunk:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize

 ' ----- Redraw the checkerboard.
 Me.Refresh()
 End Sub

For maximum smoothness of the action, be sure to set the form's DoubleBuffered property to true.

Figure 9-20 shows the checkerboard when the form has been resized to fairly square dimensions.

Figure 9-20. A checkerboard drawn using a single path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.13. Using Gradients for Smooth Color Changes

Problem

You want to fill a graphics area with colors that smoothly transition from one shade to another.

Solution

Sample code folder: Chapter 09\SmoothColor

Create a GraphicsPath object, use it to create and define a PathGradientBrush, set the various colors of the brush, and then
use the new gradient brush to fill a graphics area.

Discussion

The PathGradientBrush object enables a lot of creative color transitions in your graphics. The code in this recipe provides a
good starting point for further experimentation.

Some of these objects require referencing the Drawing2D namespace, so be sure to add the following Imports statement to
the top of your source code:

 Imports System.Drawing.Drawing2D

This example dynamically updates the gradient fill as you move the mouse over the face of the form. To do this, the
mouse position is recorded with each MouseMove event, and the form repaints itself by calling its Refresh() method:

 ' ----- Keep track of the mouse position.
 Private MouseX As Integer
 Private MouseY As Integer

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Record the mouse position.
 MouseX = e.X
 MouseY = e.Y

 ' ----- Cause a repaint of the form.
 Me.Refresh()
 End Sub

The form's Paint event handles the important details of the gradient color fill. Let's take this step by step.:

1. The Paint event is called with each move of the mouse:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

2. The graphics path can be any shape, even discontinuous rectangles, ellipses, and so on. In this case the path is
defined as the rectangle around the edge of the form's client area:

 ' ----- Create path around edge of form's client area.
 Dim thePath As New GraphicsPath
 thePath.AddRectangle(Me.ClientRectangle)

3. The PathGradientBrush is created using the predefined path. The object uses this geometric information internally
to determine smoothly transitioning colors for all pixel locations during drawing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to determine smoothly transitioning colors for all pixel locations during drawing:

 ' ----- Use the path to construct a gradient brush.
 Dim smoothBrush As PathGradientBrush = _
 New PathGradientBrush(thePath)

4. You can define one point in the center of the brush area to have a specific color. Here, set the point under the
mouse cursor to White. Colors will transition away from white based on distance from the mouse cursor to the
edges of the path:

 ' ----- Set the color at the mouse point.
 smoothBrush.CenterPoint = New PointF(MouseX, MouseY)
 smoothBrush.CenterColor = Color.White

5. One or more colors can be set along the path using the SurroundColors property of the PathGradientBrush object. Set
an array of four colors, so each corner of the form provides a standard color:

 ' ----- Set a color along the entire boundary of the path.
 Dim colorArray() As Color = _
 {Color.Red, Color.Green, Color.Blue, Color.Yellow}
 smoothBrush.SurroundColors = colorArray

6. The new PathGradientBrush is used to fill the rectangular area of the form, and all pixels on the form are set to a
smoothly transitioned shade depending on the geometry and settings made earlier in the code:

 ' ----- Fill form with gradient path.
 e.Graphics.FillRectangle(smoothBrush, Me.ClientRectangle)
 End Sub

7. To have the effect update smoothly, set the form's DoubleBuffered property to true. Figure 9-21 shows the form's
appearance as the mouse is moved around on it.

Figure 9-21. Color gradients open the door to many special color-shading effects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.14. Drawing Bezier Splines

Problem

You need to draw smooth curves between points, but you'd prefer not to delve into a lot of complex mathematical
calculations.

Solution

Sample code folder: Chapter 09\BezierSplines

The DrawBezier() graphics method draws a smooth curve between two points, using two other points as control pointsor
points that tug at the curve to change its shape as desired.

Discussion

Bezier splines are defined by two endpoints and two control points. (The mathematical theory behind Bezier splines is
beyond the scope of this book. For more information, check out the links in the "See Also" section at the end of this
recipe.)

The example program shown here lets you experiment interactively with the DrawBezier() graphics method. First, make
sure you import the Drawing2D namespace, as follows:

 Imports System.Drawing.Drawing2D

Up to four mouse-click points will be recorded in an array of points. Keep track of the points using a generic list:

 ' ----- Keeps track of the mouse positions.
 Dim BendPoints As New Generic.List(Of Point)

As the mouse is clicked and new points are added to the array, the form is told to refresh itself by calling its Refresh()
method:

 Private Sub Form1_MouseClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseClick
 ' ----- Record another mouse position.
 BendPoints.Add(New Point(e.X, e.Y))

 ' ----- Update the display.
 Me.Refresh()
 End Sub

The form's Paint event is where the important action takes place:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Get the form's drawing surface.
 Dim canvas As Graphics = e.Graphics

Each point is drawn as a small solid-filled ellipse (circle). When there are four points, they are passed to the DrawBezier()
method to draw the curve using a black pen. The first and fourth clicks are the endpoints. Clicking on the form a fifth
time erases all the points, and the curve starts over:

 Dim scanPoint As Point
 Const PointSize As Integer = 7

 ' ----- Draw available points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Draw available points.
 If (BendPoints.Count <= 4) Then
 For Each scanPoint In BendPoints
 canvas.FillEllipse(Brushes.Red, _
 scanPoint.X - PointSize, _
 scanPoint.Y - PointSize, _
 PointSize * 2, PointSize * 2)
 Next scanPoint
 End If

 ' ----- Draw the spline if all points are there.
 If (BendPoints.Count >= 4) Then
 canvas.DrawBezier(Pens.Black, BendPoints(0), _
 BendPoints(1), BendPoints(2), BendPoints(3))
 BendPoints.Clear()
 End If
 End Sub

Figure 9-22 shows the results after four points have been clicked.

Figure 9-22. Drawing a Bezier spline

See Also

See http://www.ibiblio.org/e-notes/Splines/Bezier.htm and http://mathforum.org/library/drmath/view/54434.html for
more information on Bezier splines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.15. Drawing Cardinal Splines

Problem

You need a curve that goes smoothly through two or more points.

Solution

Sample code folder: Chapter 09\CardinalSplines

A Cardinal spline plots a curve through two or more points. Unlike the Bezier spline, the Cardinal spline intersects every
point and does not use external control points.

Discussion

The mathematical description of the way the Cardinal spline works is beyond the scope of this book. For a more in-
depth discussion and explanation of the math involved, see the links in the "See Also" section at the end of this recipe.

The following code demonstrates the Cardinal spline by collecting points as they are clicked on the face of the form. A
list of the points is built up, and with each added point, the Cardinal spline is drawn anew. A button at the top of the
form lets you erase all the points to start over, and a TrackBar control lets you set the tension parameter for the spline.
The tension is a number ranging from 0 to 1 that is passed to the DrawCurve() method to determine the smoothness of
the curve as it passes through each point. The easiest way to understand the effect of this parameter is to slide the
trackBar and watch the curve change shape.

Here's the code that lets the form monitor for mouse clicks, builds the set of points, and refreshes the form to activate
its Paint event:

 ' ----- Keep track of the mouse positions.
 Private BendPoints As New Generic.List(Of Point)

 Private Sub Form1_MouseClick(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseClick
 ' ----- Add a mouse position.
 BendPoints.Add(New Point(e.X, e.Y))

 ' ----- Update the display.
 Me.Refresh()
 End Sub

The form's Paint event is where the drawing of the selected points and the spline connecting them takes place. The
event fires when the form is refreshed, which is caused by calling the Refresh() method when the mouse is clicked or the
trackbar is adjusted.

This code draws each plotted point in red as the user clicks it. Then, if there are two or more accumulated points, it
draws the Cardinal spline using the DrawCurve() method:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw the spline points and line.
 Dim tension As Single
 Dim canvas As Graphics
 Dim scanPoint As Point
 Const PointSize As Integer = 7

 ' ----- Determine the tension.
 tension = TensionLevel.Value / TensionLevel.Maximum
 LabelTension.Text = "Tension: " & tension.ToString

 ' ----- Draw the points on the surface.
 canvas = e.Graphics
 For Each scanPoint In BendPoints
 canvas.FillEllipse(Brushes.Red, _
 scanPoint.X - PointSize, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 scanPoint.X - PointSize, _
 scanPoint.Y - PointSize, _
 PointSize * 2, PointSize * 2)
 Next scanPoint

 ' ----- Draw the Cardinal spline.
 If (BendPoints.Count > 1) Then
 canvas.DrawCurve(Pens.Black, _
 BendPoints.ToArray, tension)
 End If
 End Sub

When the trackbar's slider is adjusted, the form's Refresh() method is called to trigger a repaint:

 Private Sub TensionLevel_ValueChanged(_
 ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles TensionLevel.ValueChanged
 ' ----- Update the tension and display.
 Me.Refresh()
 End Sub

When the Reset button is clicked, the set of points is emptied, and the form is repainted to erase the points and the
curve:

 Private Sub ActReset_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActReset.Click

 ' ----- Clear all points.
 BendPoints.Clear()
 Me.Refresh()
 End Sub

Figure 9-23 shows a typical spline curve through six points with the tension set to 0.6. A lower tension results in sharp
angles at the bend points, while higher tension gives a smoother curve.

Figure 9-23. Cardinal splines travel through all given points

See Also

See http://www.ibiblio.org/e-notes/Splines/Cardinal.htm and http://en.wikipedia.org/wiki/Cardinal_spline for more
information on Cardinal splines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.16. Limiting Display Updates to Specific Regions

Problem

You want to clip your graphics using some complexly shaped area, without having to resort to difficult code to compute
intersections and other clipping details.

Solution

Sample code folder: Chapter 09\ClippingRegion

Create a Region object defined by a path, set the Graphics object's Clip property to this region, and draw any standard graphics on
the Graphics object surface. Clipping takes place using the path.

Discussion

A single path can range from a simple sequence of lines to an elaborate mix of connected or disconnected rectangles, ellipses,
or polygons. This means that a path can take on a complex outline, and it can involve a lot of independent parts. In the
example presented here a large number of tall, thin rectangles are added to a single path, and this path is then used to define
a Region object that clips the drawing of a string.

Several of the objects used in this example are in the Drawing2D namespace, so be sure to add the following Imports statement
to the top of your source code:

 Imports System.drawing.Drawing2D

The remaining code appears in the form's Paint event handler. The first thing the Paint handler does is access the form's
graphics surface, passed as a member of the PaintEventArgs instance (e). The area is cleared to solid white:

 Private Sub Form11_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw using a region to restrict output.
 Dim canvas As Graphics
 Dim fencePath As GraphicsPath
 Dim onePicket As Rectangle
 Dim counter As Integer
 Dim slottedRegion As Region

 ' ----- Clear the background.
 canvas = e.Graphics
 canvas.Clear(Color.White)

Next, a GraphicsPath object is created and filled with a lot of tall, thin rectangles, spaced apart somewhat like the pickets on a
picket fence. These rectangles don't touch each other, but they are all added to a single complex path object:

 ' ----- Create a picket fence path.
 fencePath = New GraphicsPath
 For counter = 0 To 200
 onePicket = New Rectangle(counter * 10, 0, 6, 500)
 fencePath.AddRectangle(onePicket)
 Next counter

The path just created is then used to define a new Region object:

 ' ----- Create a region from the path.
 slottedRegion = New Region(fencePath)

The path itself can't be used to define a clipping region, but a Region object can. Even regions defined by complexly shaped
paths provide rapid clipping on the graphics surface. To this end, we'll now assign the slottedRegion to the Graphics object's Clip

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

paths provide rapid clipping on the graphics surface. To this end, we'll now assign the slottedRegion to the Graphics object's Clip
property:

 ' ----- Set clipping using the region.
 canvas.Clip = slottedRegion

You can apply any graphics drawing methods you want at this point, and everything drawn will be clipped as defined by the
Graphics object's Clip property. In this example we clear the entire surface to a new color (given a white-cyan-white-cyan picket
fence image), and then draw a string of text using a large font:

 ' ----- Draw some slotted
text.
 canvas.Clear(Color.Aqua)
 canvas.
DrawString("Picket Fence", _
 New Font("Times New Roman", 77), _
 Brushes.Blue, 20, 20)
 End Sub

Figure 9-24 shows how both graphics methods are clipped.

Figure 9-24. Regions can be used to clip graphics in very intricate ways

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.17. Drawing Text

Problem

You want to draw some nicely formatted text on the drawing surface.

Solution

Sample code folder: Chapter 09\DrawingText

The primary tool for drawing text is the Graphics.DrawString() method. To make adjustments to the text, you can alter the
font's properties, apply transformations to the canvas itself, or use a StringFormat object. This recipe's sample code uses
each of these methods to display a string of text.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A TextBox control named DisplayText. Set its Multiline property to true and its ScrollBars property to Vertical. Size it so
that you can see multiple lines of user-entered text.

A CheckBox control named UseBold. Set its Text property to Bold.

A CheckBox control named UseItalic. Set its Text property to Italic.

A CheckBox control named UseUnderline. Set its Text property to Underline.

A CheckBox control named UseStrikeout. Set its Text property Strikeout.

ACheckBox control named ShowBoundingBox. Set its Text property to Show Bounding Box.

AComboBox control named DisplayAlign. Set its DropDownStyle property to DropDownList.

A trackBar control named DisplayRotate. Set its Minimum property to 0, its Maximum property to 360, its TickFrequency
property to 15, its SmallChange property to 15, and its LargeChange property to 60. The trackBar control appears in the
All Windows Forms section of the Toolbox by default.

A Button control named ActDisplay. Set its Text property to Display.

A PictureBox control named DrawingArea. Set its BackColor property to White and its BorderStyle property to Fixed3D.

Add informational labels if desired. The form should look like Figure 9-25.

Figure 9-25. The controls on the text drawing sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-25.

Now add the following source code to the form's class template:

 Private Sub ActDisplay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActDisplay.Click
 ' ----- Force the
text to redisplay.
 DrawingArea.Invalidate()
 End Sub

 Private Sub DrawingArea_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles DrawingArea.Paint
 ' ----- Refresh the drawing area.
 Dim mainFont As Font
 Dim
textArea As Rectangle
 Dim textStyle As New FontStyle
 Dim textFormat As StringFormat
 Dim alignParts() As String

 ' ----- Clear any existing content.
 e.Graphics.Clear(Color.White)

 ' ----- Build the font used for the display text.
 textStyle = FontStyle.Regular
 If (UseBold.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Bold
 If (UseItalic.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Italic
 If (UseUnderline.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Underline
 If (UseStrikeout.Checked = True) Then _
 textStyle = textStyle Or FontStyle.Strikeout
 mainFont = New Font("Arial", 12, textStyle)

 ' ----- Move the (0,0) origin to the center of the
 ' display.
 e.Graphics.TranslateTransform(_
 DrawingArea.ClientRectangle.Width / 2, _
 DrawingArea.ClientRectangle.Height / 2)

 ' ----- Determine where the main text will go. The Offset
 ' method repositions the rectangle's coordinates
 ' by the given X and Y values.
 textArea = New Rectangle(20, 20, _
 DrawingArea.ClientRectangle.Width - 40, _
 DrawingArea.ClientRectangle.Height - 40)
 textArea.Offset(_
 -CInt(DrawingArea.ClientRectangle.Width / 2), _
 -CInt(DrawingArea.ClientRectangle.Height / 2))

 ' ----- Prepare the alignment.
 textFormat = New StringFormat
 alignParts = Split(DisplayAlign.Text, ",")

 Select Case alignParts(0)
 Case "Left"

textFormat.Alignment = StringAlignment.Near
 Case "Center"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

textFormat.Alignment = StringAlignment.Center
 Case "Right"
 textFormat.Alignment = StringAlignment.Far
 End Select
 Select Case alignParts(1)
 Case "Top"
 textFormat.LineAlignment = StringAlignment.Near
 Case "Middle"
 textFormat.LineAlignment = StringAlignment.Center
 Case "Bottom"
 textFormat.LineAlignment = StringAlignment.Far
 End Select

 ' ----- Rotate the world if requested.
 If (DisplayRotate.Value <> 0) Then
 e.Graphics.RotateTransform(DisplayRotate.Value)
 End If

 ' ----- Draw the bounding box if requested.
 If (ShowBoundingBox.Checked = True) Then
 e.Graphics.DrawRectangle(Pens.Gray, textArea)
 End If

 ' ----- Draw the main text.
 e.Graphics.DrawString(DisplayText.Text, mainFont, _
 Brushes.Black, textArea, textFormat)

 ' ----- Clean up.
 mainFont.Dispose()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Build the list of alignments.
 DisplayAlign.Items.Add("Left,Top")
 DisplayAlign.Items.Add("Left,Middle")
 DisplayAlign.Items.Add("Left,Bottom")

 DisplayAlign.Items.Add("Center,Top")
 DisplayAlign.Items.Add("Center,Middle")
 DisplayAlign.Items.Add("Center,Bottom")

 DisplayAlign.Items.Add("Right,Top")
 DisplayAlign.Items.Add("Right,Middle")
 DisplayAlign.Items.Add("Right,Bottom")

 DisplayAlign.SelectedIndex = 0
 End Sub

To use the program, enter some text in the TextBox field, and adjust the other controls as desired to alter the text. Then
click the Display button to refresh the displayed text. Figure 9-26 shows some sample text displayed through the
program.

Figure 9-26. Rotated and embellished text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Graphics. DrawString() method is pretty simple to use: you pass it a text string, a position (or bounding rectangle), a
font, and a colored or patterned brush, and the text appears on the canvas. Except for how the position and boundaries
of the text are specified, there isn't that much flexibility in the method itself. However, there is flexibility in the values
passed to the method. Changes to the font or font styles, as demonstrated in this code, clearly have an impact on the
results. Similarly, you can create any type of solid, patterned, or image-based brush, and use it to draw the text itself.

Transformations made to the canvas also impact the text output. This recipe's code applies two transformations to the
canvas: it repositions the X-Y coordinate system origin from the upper-left corner of the canvas to the center, and it
rotates the canvas if requested by the user so that the text appears rotated. Recipe 9.18 discusses the reasons for
these two transformations in more detail.

The Drawing.StringFormat class, used in this sample to align the text within its bounding box, provides additional text-
drawing options. The StringFormat.FormatFlags property lets you set options that adjust how the text appears in its bounding
box. For instance, you can indicate whether the text should automatically wrap or not. The StringFormat.HotkeyPrefix
property lets you indicate which character should be used to draw shortcut-key underlines below specific letters of the
text, as is done using "&" in Label and other controls.

See Also

Many of the recipes in this chapter show text being formatted and output in a variety of formats and displays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.18. Rotating Text to Any Angle

Problem

You want to draw some text onto the output canvas and rotate it by a specific number of degrees.

Solution

Sample code folder: Chapter 09\DrawingText

The code for Recipe 9.17 includes features that let you rotate text in 15-degree increments. The code will not be repeated in full in this
recipe, but this recipe's discussion will expand on the text-rotation features in more detail.

Discussion

The sample code in Recipe 9.17 includes two transformations to the canvas. As mentioned in other recipes, transformations impact
every drawing command made to the canvas surface, preprocessing all drawing commands for size, position, and rotation before the
output appears on the canvas. The sample code performs two transformations: one that repositions the (0,0) origin (or center point)
from the upper-left corner of the canvas to the center of the canvas, and one that rotates the canvas by a user-specified amount. Here
is the relevant code:

 ' ----- Move the (0,0) origin to the center of the display.
 e.Graphics.TranslateTransform(_
 DrawingArea.ClientRectangle.Width / 2, _
 DrawingArea.ClientRectangle.Height / 2)

 ' ----- Rotate the world if requested.
 If (DisplayRotate.Value <> 0) Then
 e.Graphics.RotateTransform(DisplayRotate.Value)
 End If

Rotating text is a byproduct of canvas rotation; although the user sees the text rotate, your code acts as if the canvas itself is being
rotated under the drawing pens. This means that it is not the text that is rotated, but the world of the canvas, and this rotation occurs
around the (0,0) origin of the canvas.

In the sample code, the goal is to rotate the text so that the center of the text's bounding box stays in the center of the display. The
movement of the origin through the TranslateTransform() method call is required to properly rotate the text about its center point. If the
code had left the origin at the upper-left corner of the canvas, the rotation would have occurred around that point, and some rotation
angles would have moved the text right off the display. The left half of Figure 9-27 shows the out-put of text rotated at a 45-degree
angle according to the sample code: the text rotates about its own center because the origin of the canvas world was moved to that
same position. The right half of the figure shows what would have happened if the origin had remained at the upper-left corner of the
PictureBox control.

Figure 9-27. Rotating the text's bounding box when the origin has been moved to the center
of the canvas (left) and when it remains at the default upper-left corner (right)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the sample code allows rotations only in 15-degree increments, you can pass any valid degree value to the RotateTransform()
method.

See Also

Recipe 9.17 contains the code discussed in this recipe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.19. Mirroring Text on the Canvas

Problem

You want to mirror the text displayed on a graphics canvas.

Solution

Sample code folder: Chapter 09\MirrorText

Use a custom matrix transformation through the Graphics object's transform property. This recipe's sample code mirrors
text both vertically and horizontally.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named VerticalMirror Set its Text property to Vertical and its Checked property to true.

A RadioButton control named HorizontalMirror. Set its Text property to Horizontal.

A PictureBox control named MirroredText. Set its BorderStyle property to FixedSingle and its BackColor property to White.
Size it so that it can show a sentence or two of text in either direction.

Figure 9-28 shows the layout of the controls on this form.

Figure 9-28. The controls on the mirror text sample

Now add the following source code to Form1's class template:

 Private Const QuoteText As String = _
 "The best car safety device is a rear-view mirror " & _
 "with a cop in it. (Dudley Moore)"

 Private Sub VerticalMirror_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles VerticalMirror.CheckedChanged
 ' ----- Update the display. This event indirectly
 ' handles both radio buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' handles both radio buttons.
 MirroredText.Invalidate()
 End Sub

 Private Sub MirroredText_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MirroredText.Paint
 ' ----- Draw the text and its reverse.
 Dim drawingArea As Rectangle
 Dim saveState As Drawing2D.GraphicsState
 Dim mirrorMatrix As Drawing2D.Matrix

 ' ----- Clear the background.
 e.Graphics.Clear(Color.White)

 ' ----- Deterine the drawing area.
 If (VerticalMirror.Checked = True) Then
 ' ----- Put text on the left and right of the mirror.
 drawingArea = New Rectangle(5, 5, _
 (MirroredText.ClientRectangle.Width \ 2) - 10, _
 MirroredText.ClientRectangle.Height - 10)

 ' ----- Draw the mirror line.
 e.Graphics.DrawLine(Pens.Black, _
 MirroredText.ClientRectangle.Width \ 2, _
 5, MirroredText.ClientRectangle.Width \ 2, _
 MirroredText.ClientRectangle.Height - 10)
 Else
 ' ----- Put text on the top and bottom of the mirror.
 drawingArea = New Rectangle(5, 5, _
 MirroredText.ClientRectangle.Width - 10, _
 (MirroredText.ClientRectangle.Height \ 2) - 10)

 ' ----- Draw the mirror line.
 e.Graphics.DrawLine(Pens.Black, 5, _
 MirroredText.ClientRectangle.Height \ 2, _
 MirroredText.ClientRectangle.Width - 10, _
 MirroredText.ClientRectangle.Height \ 2)
 End If

 ' ----- Draw the text.
 e.Graphics.DrawString(QuoteText, MirroredText.Font, _
 Brushes.Black, drawingArea)

 ' ----- Mirror the display.
 saveState = e.Graphics.Save()
 If (VerticalMirror.Checked = True) Then
 mirrorMatrix = New Drawing2D.Matrix(-1, 0, 0, 1, _
 MirroredText.ClientRectangle.Width, 0)
 Else
 mirrorMatrix = New Drawing2D.Matrix(1, 0, 0, -1, _
 0, MirroredText.ClientRectangle.Height)
 End If
 e.Graphics.Transform = mirrorMatrix

 ' ----- Draw the text, this time, mirrored.
 e.Graphics.DrawString(QuoteText, MirroredText.Font, _
 Brushes.Black, drawingArea)

 ' ----- Undo the mirror.
 e.Graphics.Restore(saveState)
 End Sub

Run the program, and use the RadioButton controls to adjust the direction of the mirror. Figure 9-29 shows the mirror in
the vertical orientation.

Figure 9-29. Text reversed with a vertical mirror

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-29. Text reversed with a vertical mirror

The Graphics object includes methods that perform basic scaling (ScaleTransform())), repositioning (TranslateTransform()), and
rotating transformations (RotateTransform())). While these transformations all seem quite different from each other, they
all actually use the same method to accomplish the canvas-level adjustments. Each method sets up a matrix
transformation, a mathematical construct that maps points in one coordinate system to another through a basic set of
operations. In college-level math courses, this system generally appears under the topic of Linear Algebra.

In addition to the predefined transformations, you can define your own matrix calculation to transform the output in any
way you need. This recipe's sample code applies a custom matrix that reverses all coordinate system points in either
the horizontal or vertical direction. The intricacies of matrix transformations and cross products are beyond the scope of
this book. You can find some basic discussions of the math involved by searching for "matrix transformations" in the
Visual Studio online help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.2. Drawing on Controls for Special Effects

Problem

You want to alter the appearance of a control by drawing on it in reaction to mouse or other events.

Solution

Sample code folder: Chapter 09\SpecialEffects

Add code to the control's Paint event handler, and if required, call the control's Refresh() method to trigger the Paint event.

Discussion

Any visible control has a Paint event that lets you patch in code to modify the control's appearance in any way you want.
The following code demonstrates this technique by completely changing the appearance and behavior of a standard
Button control. For the sample, we created a new Windows Forms application, then added a Panel control named Panel1
and two Button controls, Button1 and Button2. Button1 is left untouched for comparison, but Button2 changes as the mouse is
used with it. The button's background color is altered as the mouse moves over its face, and again when the mouse is
clicked. The ButtonBackColor variable holds the indicated color as set within the various mouse-event procedures, and it is
used in the button's Paint event to render its background color:

 Public Class Form1
 Private ButtonBackColor As Color = Color.LightGreen

These four events change the background color in response to the mouse cursor entering or leaving the face of the
button and to the mouse button being depressed and released when the cursor is over the button:

 Private Sub Button2_MouseEnter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.MouseEnter
 ' ----- Change the button to show the effect of the mouse.
 ButtonBackColor = Color.FromArgb(32, 192, 32)
 End Sub

 Private Sub Button2_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.MouseLeave
 ' ----- Return the button to normal mode.
 ButtonBackColor = Color.LightGreen
 End Sub

 Private Sub Button2_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Button2.MouseDown
 ' ----- The mouse is clicking the button. Show an effect.
 ButtonBackColor = Color.LightPink
 End Sub

 Private Sub Button2_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Button2.MouseUp
 ' ----- The mouse was released. Go back to normal.
 ButtonBackColor = Color.LightGreen
 Button2.Refresh()
 End Sub

The Refresh() method in the MouseUp event handler tells the control to redraw itself, triggering a Paint event. You would
expect the other three event handlers to each need a Refresh() call as well, but the Button control issues those calls on our
behalf during these events.

The following method repaints Button2's surface whenever Windows fires the Paint event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following method repaints Button2's surface whenever Windows fires the Paint event:

 Private Sub Button2_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Button2.Paint
 ' ----- Draw a fancy button surface.
 Dim counter As Integer
 Const numberOfLobes As Integer = 5

 ' ----- Get the graphics object for the button.
 Dim canvas As Graphics = e.Graphics

 ' ----- Set a new background color.
 canvas.
Clear(ButtonBackColor)

The button's Graphics object provides the surface for all graphics commands. The Clear() method optionally renders the
background in a given color. In this case, the variable ButtonBackColor tells the button what colors to set the background
to in response to the various mouse events:

 ' ----- Draw the atomic orbits in blue, two pixels wide.
 Dim atomPen As Pen = New Pen(Color.Blue, 2)

 ' ----- Specify the location and size of the electron orbits.
 Dim sizeFactor As Integer = Button2.ClientSize.Width \ 2
 Dim lobeLength As Integer = sizeFactor * 8 \ 10
 Dim lobeWidth As Integer = lobeLength \ 4

 ' ----- Shift center of orbits to center of button.
 canvas.TranslateTransform(sizeFactor, sizeFactor)

The following lines of code repeatedly draw an ellipse in blue, rotated around its center to create an "atom" effect:

 ' ----- Draw orbits rotated around center.
 For counter = 1 To numberOfLobes
 canvas.RotateTransform(360 / numberOfLobes)
 canvas.DrawEllipse(atomPen, -lobeLength, -lobeWidth, _
 lobeLength * 2, lobeWidth * 2)
 Next counter
 End Sub

We chose this graphic partly because it was just plain fun to create, but also to show how easy it is to draw some things
in Visual Basic 2005 that are cumbersome to draw in VB 6.

The following Paint event handler paints the panel with a background color and some text, as shown in Figure 9-2. This
same effect can be accomplished with a standard Label, but this provides another example of how the face of just about
any control can be graphically rendered as desired:

Figure 9-2. Buttons and other controls can be graphically redefined for unique or
special effects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Panel1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Panel1.Paint
 ' ----- Draw a nice title.
 Dim canvas As Graphics = e.Graphics
 canvas.Clear(Color.Azure)
 canvas.DrawString(_
 "
Drawing on Controls for Special Effects", _
 New Font("Arial", 14), Brushes.DarkBlue, 5, 5)
 End Sub

The next two methods, one for Button1 and the other for Button2, are nearly identical. They demonstrate that even though
Button2 now appears much different from the more standard Button1 (see Figure 9-2), both buttons behave the same and
can be used in a program in the same way:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 MsgBox("Button1 clicked!", MsgBoxStyle.Exclamation, _
 "Painting on Controls")
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 MsgBox("Button2 clicked!", MsgBoxStyle.Exclamation, _
 "Painting on
Controls")
 End Sub
 End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.20. Getting the Height and Width of a Graphic String

Problem

You want to know how many pixels a text string will require in both the horizontal and vertical directions.

Solution

Sample code folder: Chapter 09\MeasuringText

GDI+ includes several features that let you examine the width and height of a string. Graphics.MeasureString() is a general-
purpose text-measurement method that bases its measurements on a font you pass to it:

 Dim result As SizeF = _
 e.
Graphics.MeasureString("How big am I?", Me.Font, _
 Me.ClientRectangle.Width)
 MsgBox("Width = " & result.Width & vbCrLf & _
 "Height = " & result.Height)

On our system, using the default form font of Microsoft Sans Serif 8.25 Regular, the message box displays the following
response:

 Width = 75.71989Height = 13.8252

Discussion

Font measurement is tricky. Fonts are more than just the width and height of their letters. The height is a combination
of the core height, plus the height of ascenders (the part of the letter "d" that sticks up) and descenders (the part of
the letter "p" that sticks down). The width of a character string is impacted by kerning, the adjustment of two letters
that fit together better than others. To get a flavor of some of these measurements, consider the following code:

 Public Class Form1
 Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Show vertical font measures.
 Dim textArea As SizeF
 Dim linePen As Pen
 Dim largeFont As Font
 Dim fontRatio As Single
 Dim ascentSize As Single
 Dim descentSize As Single
 Dim emSize As Single
 Dim cellHeight As Single
 Dim internalLeading As Single
 Dim externalLeading As Single

 ' ----- Create the font to use for drawing.
 ' Using "AntiAlias" to enable text smoothing
 ' will result in more precise output.
 e.Graphics.TextRenderingHint = _
 Drawing.Text.TextRenderingHint.AntiAlias
 largeFont = New Font("Times New Roman", 96, _
 FontStyle.Regular)

 ' ----- Fonts are measured in design units. We need to
 ' convert to pixels to mix measurement systems.
 ' Determine the ratio between the display line
 ' height and the font design's line height.
 fontRatio = largeFont.Height / _
 largeFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Get the measurements.
 textArea = e.
Graphics.MeasureString("Ag", largeFont)

 ' ----- Offset everything for simplicity.
 e.Graphics.TranslateTransform(20, 20)

 ' ----- Draw the text.
 e.Graphics.DrawString("Ag", largeFont, _
 Brushes.Black, 0, 0)

 ' ----- Create a line-drawing pen.
 linePen = New Pen(Color.Gray, 1)
 linePen.DashStyle = Drawing2D.DashStyle.Dash

 ' ----- Calculate all of the various font measurements.
 ascentSize = largeFont.FontFamily.GetCellAscent(_
 FontStyle.Regular) * fontRatio
 descentSize = largeFont.FontFamily.GetCellDescent(_
 FontStyle.Regular) * fontRatio
 emSize = largeFont.FontFamily.GetEmHeight(_
 FontStyle.Regular) * fontRatio
 cellHeight = ascentSize + descentSize
 internalLeading = cellHeight - emSize
 externalLeading = _
 (largeFont.FontFamily.GetLineSpacing(_
 FontStyle.Regular) * fontRatio) - cellHeight

 ' ----- Draw the top and bottom lines.
 e.Graphics.DrawLine(linePen, 0, 0, textArea.Width, 0)
 e.Graphics.DrawLine(linePen, 0, textArea.Height, _
 textArea.Width, textArea.Height)

 ' ----- Draw the ascender and descender areas.
 e.Graphics.DrawLine(linePen, 0, _
 ascentSize, textArea.Width, ascentSize)
 e.Graphics.DrawLine(linePen, 0, _
 ascentSize + descentSize, textArea.Width, _
 ascentSize + descentSize)

 ' ----- Clean up.
 linePen.Dispose()
 largeFont.Dispose()
 e.Graphics.ResetTransform()
 End Sub
 End Class

We added this code to a form with a single PictureBox control. The results appear in Figure 9-30.

The four lines from top to bottom are as follows:

The top of the "line height" box

The baseline, based on the ascender height

Figure 9-30. Measuring elements of a font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bottom of the descender

The bottom of the "line height" box

The code also includes calculations for other measurements, although they are not used in the output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.21. Drawing Text with Outlines and Drop Shadows

Problem

You want to draw some text but display only its outline, and you want the text to have a drop shadow.

Solution

Sample code folder: Chapter 09\OutlineText

Use a GraphicsPath object to record the outside edge of a text string, and then use that outside edge, or path, to draw the
actual drop shadow and outline elements.

Discussion

Create a new Windows Forms application, and add a PictureBox control named PictureBox1 to the form. Set this control's
BackColor property to White and its BorderStyle property to FixedSingle. Give it a size of approximately 400,150. Now add the
following source code to the form's class template:

 Private Sub PictureBox1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles PictureBox1.Paint
 ' ----- Draw text using an outline.

 Dim outlinePath As New Drawing2D.GraphicsPath
 Dim useFont As Font

 ' ----- Make some output adjustments to get a better
 ' outline.
 e.Graphics.TextRenderingHint = _
 Drawing.Text.TextRenderingHint.AntiAlias
 e.Graphics.SmoothingMode = _
 Drawing2D.SmoothingMode.AntiAlias

 ' ----- Draw the text into a path.
 useFont = New Font("Times New Roman", _
 96, FontStyle.Regular)
 outlinePath.AddString("Outline", useFont.FontFamily, _
 FontStyle.Regular, 96, New Point(0, 0), _
 StringFormat.GenericTypographic)
 useFont.Dispose()

 ' ----- Replay the path to draw a drop shadow.
 e.Graphics.TranslateTransform(25, 25)
 e.Graphics.FillPath(Brushes.LightGray, outlinePath)

 ' ----- Replay the path to the surface.
 e.Graphics.TranslateTransform(-5, -5)
 e.Graphics.FillPath(Brushes.White, outlinePath)
 e.Graphics.DrawPath(Pens.Black, outlinePath)

 ' ----- Finished.
 outlinePath.Dispose()
 End Sub

Running this program displays the outline and drop shadow shown in Figure 9-31.

Figure 9-31. Text in an outline form, with a drop shadow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-31. Text in an outline form, with a drop shadow

While the Font class includes support for italic, bold, strikeout, and underline for-matting, it does not include features
that automatically enable outlining or drop shadows. However, you can enable these features yourself using a
GraphicsPath object. A graphics path is like a tape recording of a set of drawing commands that records the outline of the
drawn elements. You use the GraphicsPath's drawing methods to record the outlines of shapes and text strings in the
path. You can then later use this path like a macro that can be replayed on the graphics surface.

The GraphicsPath object's AddString() method adds the outer edge of all characters in the supplied text string to the path.
There are additional methods that let you include other shapes, such as AddLine(), AddRectangle(), and AddEllipse().

See Also

Recipe 9.17 includes some similar alignment and rotation features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.22. Calculating a Nice Axis

Problem

You want to create a chart with a "nice" axis; that is, one with reasonable scaling numbers for a given number of tick
marks and with a reasonably rounded increment for each tick value. These scale values should be chosen so the range
of data points spans most of the length of the axis.

Solution

Sample code folder: Chapter 09\NiceAxis

Use the NiceAxis() function presented here to calculate a reasonable axis given the minimum and maximum values of the
data and the number of ticks along the axis.

Discussion

This function was created to solve the tricky problem of determining a reasonable plotting axis for a range of numbers.
When manually determining a scale, it's easy to accidentally scrunch the data points too closely by choosing a scale
with larger than necessary values or a scale with awkward fractional values at each tick mark that make mental
interpolation of intermediate values nearly impossible.

This function solves these problems by automatically choosing reasonable values for a chart's axis. In many cases you
will want to call this function twice, once for the X-axis and once for the Y-axis.

Pass this function the minimum and maximum data values to be plotted, and the number of divisions or tick marks
along the axis. The calculations in the function iterate to find division steps that are reasonable and that still allow all
data points to fall within the range of the axis. Here's the code for the NiceAxis() function:

 Public Function NiceAxis(ByVal minimumValue As Double, _
 ByVal maximumValue As Double, _
 ByVal divisions As Double) As Double()
 ' ----- Determine reasonable tick marks along an axis.

 ' Returns an array of three values:
 ' 0) minimum tick value
 ' 1) maximum tick value
 ' 2) tick mark step size
 Dim axis(2) As Double
 Dim trialDivisionSize As Double
 Dim modFourCount As Double = 1
 Dim divisionSize As Double

 ' ----- Get the starting values.
 divisionSize = (maximumValue - minimumValue) / divisions
 trialDivisionSize = 10 ^ Int(Math.Log10(divisionSize))

 ' ----- Iterate until we arrive at reasonable values.
 Do While (maximumValue > (trialDivisionSize * _
 Int(minimumValue / trialDivisionSize) + _
 divisions * trialDivisionSize))
 modFourCount += 1
 If ((modFourCount Mod 4) > 0) Then
 trialDivisionSize = 8 * trialDivisionSize / 5
 End If
 trialDivisionSize = 5 * trialDivisionSize / 4
 Loop

 ' ----- Return the results.
 axis(0) = trialDivisionSize * _
 Int(minimumValue / trialDivisionSize)
 axis(1) = axis(0) + divisions * trialDivisionSize
 axis(2) = (axis(1) - axis(0)) / divisions
 Return axis
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function shows a good example of returning an array. In this case the array returns the minimum and maximum
values for the ends of the nice axis, and the step size for the numbers along the tick marks or divisions along the axis.

The following code provides a working example. NiceAxis() is called with minimum and maximum data values of 3.4 and
3.27, and 10 tick marks are requested along the scale of this axis. As shown in Figure 9-32, the function returns the
nearest whole-number values for each end of the axis (4 and 6) and a recommended whole step size of 1 for each tick
mark:

 Dim result As New System.Text.StringBuilder
 Dim axis() As Double = NiceAxis(-3.4, 3.27, 10)

 result.AppendLine("Minimum Value: -3.4")
 result.AppendLine("Maximum Value: 3.27")
 result.AppendLine("Divisions: 10")
 result.AppendLine()

 result.Append("Axis Minimum: ")
 result.AppendLine(axis(0).ToString)
 result.Append("Axis Maximum: ")

 result.AppendLine(axis(1).ToString)
 result.Append("Division Steps: ")
 result.AppendLine(axis(2).ToString)

 MsgBox(result.ToString())

Figure 9-32. The NiceAxis() function returns end points and the division step size
for a nicely scaled chart axis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.23. Drawing a Simple Chart

Problem

You want to create your own data charts, and you would like to have code for a sample chart as a starting point for
your own customizations.

Solution

Sample code folder: Chapter 09 \DrawingCharts

The simple chart presented in this recipe should provide plenty of creative ideas and useful techniques for designing
your own custom charts.

Discussion

The chart presented here provides a good starting point for drawing your own charts, but it shouldn't be used as
presented. For one thing, the data values are hard-coded into an array in the form's Paint event, and you'll likely want to
pass in your own data for plotting. The goal of this example is to present several graphics techniques in an easy-to-
follow way.

As in most of the graphics examples in this chapter, the drawing takes place in the form's Paint event. The graphics
drawing surface is referenced for easy use of its drawing methods:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

 ' ----- Draw a nice chart.
 Dim canvas As Graphics = e.Graphics

For demonstration purposes, an array of Y data point values is hardcoded in this routine, and the corresponding X
values are assumed to be evenly spaced 10 units apart in the range 0 to 100:

 ' ----- Create an array of data points to plot.
 Dim chartData() As Single = _
 {20, 33, 44, 25, 17, 24, 63, 75, 54, 33}

We'll use three pens: a red one, a black one, and a gray one. By setting each pen's widths to 1, we guarantee the
sketched lines to be one pixel wide even if the scaling changes, and in this example we do change the scaling to plot
the entire chart on the form no matter what size the window is stretched to:

 ' ----- Create some pens.
 Dim penRed As New Pen(Color.Red, -1)
 Dim penBlack As New Pen(Color.Black, -1)
 Dim penShadow As New Pen(Color.Gray, -1)

The next lines create the font and brush used to draw the axis numbers along the tick marks. The font size is relative to
the chart scaling, which means that as the chart window is resized, the numbers along the axis will grow and shrink
proportionately:

 ' ----- Prepare to add labels.
 Dim labelFont As New Font("Arial", 3, FontStyle.Regular)
 Dim labelBrush As New SolidBrush(Color.Blue)

Several variables are used during the scaling process and to plot the data points:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Several variables are used during the scaling process and to plot the data points:

 ' ----- Used to plot the various elements.
 Dim x1, y1 As Single 'Lower left corner
 Dim x2, y2 As Single 'Upper right corner
 Dim scaleX, scaleY As Single
 Dim xScan, yScan As Single
 Dim oneBar As RectangleF

The chart is drawn in a rectangle from 0 to 100 in both the X and Y directions. By scaling the graphics surface from 10
to 110, a margin is left for the axis labels. By default, the Y scaling of a graphics surface starts at the top-left corner
and increases as you move down in the area. A standard X-Y chart assumes an origin in the bot-tom-left corner, with
increasing values going up the graphics surface. This requires the Y scaling factor in the ScaleTransform() method to be a
negative value, which inverts the scale. Also, once inverted, the scale origin needs to be shifted, or trans-lated,
appropriately to relocate the origin to the bottom left of the graphics surface. This is accomplished using the Graphics
object's TranslateTransform() method:

 ' ----- Set the scaling.
 x1 = -10
 y1 = -10
 x2 = 110
 y2 = 110
 scaleX = Me.ClientSize.Width / (x2 - x1)
 scaleY = Me.ClientSize.Height / (y2 - y1)
 canvas.ScaleTransform(scaleX, -scaleY) '(inverted)
 canvas.TranslateTransform(-x1, -y2) '(inverted)

The chart's background color, outline, and gridlines are drawn in the following lines of code:

 ' ----- Color the background.
 canvas.Clear(Color.Cornsilk)

 ' ----- Draw chart outline rectangle.
 canvas.DrawRectangle(penBlack, New Rectangle(0, 0, 100, 100))

 ' ----- Draw the chart grid.
 For xScan = 10 To 90 Step 10
 canvas.DrawLine(penBlack, xScan, 0, xScan, 100)
 Next xScan
 For yScan = 10 To 90 Step 10
 canvas.DrawLine(penBlack, 0, yScan, 100, yScan)
 Next yScan

We'll use a 3D shadowed effect to draw the vertical data bars. First, draw each bar using a transparent shade of gray.
To create the transparent gray color, set the alpha component of the solid brush's color to 127. As you can see in
Figure 9-33, the gridlines show through the transparent "shadows" created by these rectangles.

Figure 9-33. A simple chart that can be used as a starting point for customizing
your own special-purpose charts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data bar rectangles (they're actually red) are then drawn on top of and slightly above and to the right of the
transparent gray bars. This results in a nice 3D shadowed effect:

 ' ----- Draw some shadowed bars.
 For xScan = 0 To 90 Step 10
 ' ----- Draw the shadow first.
 oneBar.X = xScan + 0.6
 oneBar.Y = 0
 oneBar.Width = 6
 oneBar.Height = chartData(xScan \ 10) - 2
 canvas.FillRectangle(New SolidBrush(Color.FromArgb(127, _
 Color.Gray)), oneBar)

 ' ----- Now draw the bars in front.
 oneBar.X = xScan + 2
 oneBar.Y = 0
 oneBar.Height = chartData(xScan \ 10)
 canvas.FillRectangle(New SolidBrush(Color.Red), oneBar)
 Next xScan

When drawing text, a complication arises if the scaling has been inverted: the text is drawn upside down! This might be
useful in some situations, but to get the labels correct on this chart, the Y scaling transform must be reinverted to
correctly plot the tick-mark numbers:

 ' ----- Need to un-invert the scaling so text labels are
 ' right-side-up.
 canvas.ResetTransform()
 canvas.ScaleTransform(ScaleX, ScaleY)
 canvas.TranslateTransform(-x1, -y1)

Each number along the X and Y axes is drawn using the Graphics object's DrawString() method. Parameters passed to this
method include the string to draw, the font for the text, the brush for the text's color, and the coordinates at which to
start drawing the string. These coordinates are not pixel locations, because the graphics have been scaled using
transforms. Instead, they are relative positions or units within the scaled world. This causes the text to be plotted in the
correct relative position, no matter what size the window is stretched to:

 ' ----- Label the Y-axis.
 For yScan = 0 To 100 Step 10
 canvas.DrawString(yScan.ToString, labelFont, labelBrush, _
 -2 * yScan.ToString.Length - 3, 97 - yScan)
 Next yScan

 ' ----- Label the X-axis.
 For xScan = 0 To 100 Step 10
 canvas.DrawString(xScan.ToString, labelFont, labelBrush, _
 xScan + 1.7 - 2 * xScan.ToString.Length, 103)
 Next xScan

The last step is to clean up all of the graphics objects we've created:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last step is to clean up all of the graphics objects we've created:

 ' ----- Clean up.
 labelFont.Dispose()
 labelBrush.Dispose()
 penRed.Dispose()
 penBlack.Dispose()
 penShadow.Dispose()
 canvas = Nothing
 End Sub

Figure 9-33 shows the chart drawn on the form as a result of the previous code. Set-ting the form's DoubleBuffered
property to true ensures that the chart is drawn smoothly and continuously as the form is resized when the following
code is included:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Refresh on resize.
 Me.Refresh()
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.24. Creating Odd-Shaped Forms and Controls

Problem

You're tired of the plain rectangular forms and controls. You want to use irregular shapes for your form and the controls
included on it.

Solution

Sample code folder: Chapter 09\IrregularShapes

Use a GraphicsPath object to define the new drawing and clipping region for the form and controls. This recipe's code uses
an ellipse to define the boundaries of a form and a control.

Discussion

Create a new Windows Forms application, and add a Button control named ActClose. Set its Text property to Close, and put
the button somewhere in the middle of the form. Then add the following source code to the form's class template:

 Private Sub ActClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActClose.Click
 ' ----- Close the form.
 Me.Close()
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' ----- Change the shape of the form and button.
 Dim finalShape As Region
 Dim shapePath As Drawing2D.GraphicsPath

 ' ----- Reshape the form.
 shapePath = New Drawing2D.GraphicsPath()
 shapePath.AddEllipse(0, 0, Me.Width, Me.Height)
 finalShape = New Region(shapePath)
 Me.Region = finalShape
 shapePath.Dispose()

 ' ----- Reshape the button.
 shapePath = New Drawing2D.GraphicsPath()
 shapePath.AddEllipse(0, 0, ActClose.Width, ActClose.Height)
 finalShape = New Region(shapePath)
 ActClose.Region = finalShape
 shapePath.Dispose()
 End Sub

When you run the program, both the form and the button appear with elliptical shapes. Figure 9-34 shows the form in
use. We left the Visual Studio view of the source code in the background so that you can see the nonrectangular shape
of the form.

Figure 9-34. An irregularly shaped form and button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So what shapes can you use? If you can build it into a GraphicsPath object, you can use it to define the boundaries of your
form or control. Replacing the form or control's Region property results in a new clipping region for the form (the clipping
region is the area outside which the form is not drawn; it's not just hidden, it actually doesn't exist).

Since the new region indicates only which portions of the form are drawn or not, you'll find that any normal form or
control components that reside only partially within the clipping region will appear cut off. Unfortunately, the result can
be some-what ugly. For example, the elliptical button created by this recipe's sample code doesn't look very good
because portions of the original rectangular border still appear. You can also still see small portions of the form border.
In addition to providing a custom region, you may want to provide custom drawing code for the control or form in its
Paint event handler. For forms, setting the FormBorderStyle to None lets you supply your own form border.

Another way to change the shape of a form is by making a portion of the form invisible. This is done by setting a
specific form color to the invisible color using the form's transparencyKey property.

See Also

Recipe 9.10 shows how to use transparency to make a portion of a form invisible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

Problem

You want to provide the user with options for color selection: RGB (red-green-blue), HSB (hue-saturation-brightness,
also known as HSV for hue-saturation-value), and HSL (hue-saturation-luminosity).

Solution

Sample code folder: Chapter 09\RGBandHSV

The easiest way to provide user-based color selection is to use the ColorDialog control to prompt the user to choose a
color. This standard Windows dialog includes fields for RGB numeric entry and for HSL entry. Each of the HSL scales
ranges from 0 to 240 (239 for hue), and changes to those fields automatically update the displayed RBG values (see
Figure 9-35).

The ColorDialog control is described in Recipe 9.3.

In addition to the ColorDialog control, the new .NET System.Drawing.Color structure provides access to many predefined
colors, plus methods to specify and obtain color values. Three of its methods let you convert an instance's RBG value to
distinct HSB values:

The GetHue() method returns a value from 0 to 360 that indicates the hue of the Color object's current color.

The GetSaturation() method returns a value from 0.0 to 1.0 for the active color, in which 0.0 indicates the neutral
grayscale value, and 1.0 is the most saturated value.

The GetBrightness() method returns a value from 0.0 (black) to 1.0 (white).

Figure 9-35. Using the ColorDialog control with separate HSL and RBG fields

This recipe's sample code lets the user select a color using either the RBG method or the HSB (a.k.a. HSV) method.

Discussion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a new Windows Forms application, and add the following controls to Form1:

Three HScrollBar controls with the names ValueRed, ValueGreen, and ValueBlue. Set their Maximum properties to 255.

One HScrollBar control named ValueHue. Set its Maximum property to 360.

Two HScrollBar controls with the names ValueSaturation and ValueBrightness. Set their Maximum properties to 100.

A PictureBox control named ShowColor.

Six Label controls with the names NumberRed, NumberGreen, NumberBlue, NumberHue, NumberSaturation, and
NumberBrightness. Set their Text properties to 0.

Add descriptive labels if desired. The form should look like Figure 9-36.

Now add the following source code to the form's class template:

 Private Sub RBG_Scroll(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.ScrollEventArgs) _
 Handles ValueRed.Scroll, ValueGreen.Scroll, _
 ValueBlue.Scroll
 ' ----- Update the HSV values based on RBG.
 Dim
rgbColor As Color

Figure 9-36. The controls on the color model sample

 ' ----- The
color structure already has the formulas
 ' built in.

rgbColor = Color.FromArgb(0, ValueRed.Value, _
 ValueGreen.Value, ValueBlue.Value)
 ValueHue.Value = CInt(rgbColor.GetHue())
 ValueSaturation.Value = _
 CInt(rgbColor.GetSaturation() * 100.0F)
 ValueBrightness.Value = _
 CInt(rgbColor.GetBrightness() * 100.0F)

 ' ------ Refresh everything else.
 RefreshDisplay()
 End Sub

 Private Sub ValueHue_Scroll(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.ScrollEventArgs) _
 Handles ValueHue.Scroll, ValueSaturation.Scroll, _
 ValueBrightness.Scroll
 ' ----- Update the RBG values based on HSV.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Update the RBG values based on HSV.
 Dim useRed As Integer
 Dim useGreen As Integer
 Dim useBlue As Integer
 Dim useHue As Single
 Dim useSaturation As Single
 Dim useBrightness As Single
 Dim hueSector As Integer
 Dim factor As Single
 Dim target1 As Single
 Dim target2 As Single
 Dim target3 As Single

 ' ----- Convert to relative 0.0 to 1.0 values.
 useHue = CSng(ValueHue.Value)
 useSaturation = CSng(ValueSaturation.Value) / 100.0F
 useBrightness = CSng(ValueBrightness.Value) / 100.0F

 If (useSaturation = 0.0F) Then
 ' ----- Pure grayscale.
 useRed = CInt(useBrightness * 255)
 useGreen = useRed
 useBlue = useRed
 Else
 hueSector = CInt(useHue / 60.0F)
 factor = Math.Abs((useHue / 60.0F) - CSng(hueSector))
 target1 = useBrightness * (1 - useSaturation)
 target2 = useBrightness * (1 - (factor * useSaturation))
 target3 = useBrightness * (1 - ((1 - factor) * _
 useSaturation))

 Select Case hueSector
 Case 0, 6
 useRed = CInt(useBrightness * 255.0F)
 useGreen = CInt(target3 * 255.0F)
 useBlue = CInt(target1 * 255.0F)
 Case 1
 useRed = CInt(target2 * 255.0F)
 useGreen = CInt(useBrightness * 255.0F)
 useBlue = CInt(target1 * 255.0F)
 Case 2
 useRed = CInt(target1 * 255.0F)
 useGreen = CInt(useBrightness * 255.0F)
 useBlue = CInt(target3 * 255.0F)
 Case 3
 useRed = CInt(target1 * 255.0F)
 useGreen = CInt(target2 * 255.0F)
 useBlue = CInt(useBrightness * 255.0F)
 Case 4
 useRed = CInt(target3 * 255.0F)
 useGreen = CInt(target1 * 255.0F)
 useBlue = CInt(useBrightness * 255.0F)
 Case 5
 useRed = CInt(useBrightness * 255.0F)
 useGreen = CInt(target1 * 255.0F)
 useBlue = CInt(target2 * 255.0F)
 End Select
 End If

 ' ----- Update the
RGB values.
 ValueRed.Value = useRed
 ValueGreen.Value = useGreen
 ValueBlue.Value = useBlue

 ' ------ Refresh everything else.
 RefreshDisplay()
 End Sub

 Private Sub RefreshDisplay()
 ' ----- Update the numeric display.
 NumberRed.Text = CStr(ValueRed.Value)
 NumberGreen.Text = CStr(ValueGreen.Value)
 NumberBlue.Text = CStr(ValueBlue.Value)
 NumberHue.Text = CStr(ValueHue.Value)
 NumberSaturation.Text = _
 Format(CDec(ValueSaturation.Value) / 100@, "0.00")
 NumberBrightness.Text = _
 Format(CDec(ValueBrightness.Value) / 100@, "0.00")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Format(CDec(ValueBrightness.Value) / 100@, "0.00")

 ' ----- Update the
color sample.
 ShowColor.BackColor = Color.FromArgb(255, _
 ValueRed.Value, ValueGreen.Value, ValueBlue.Value)
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Set the initial color.
 RBG_Scroll(ValueRed, _
 New Windows.Forms.ScrollEventArgs(_
 ScrollEventType.EndScroll, 0))
 End Sub

Run the program, and use the six scrollbars to adjust the color selection.

The RGB model for describing colors numerically has become common for use in Microsoft Windows, but it is not always
the most convenient method for certain applications or for output to devices other than computer monitors. The
HSB/HSV system is more useful in selecting colors for computer-based artwork.

The System.Drawing.Color structure includes methods that let you extract the HSB components of an RGB color, but it
doesn't work in the other direction. Therefore, the sample code includes the calculation for HSB-to-RGB conversions.

See Also

A useful web site that discusses color models is EasyRGB, found at http://www.easyrgb.com.

See Recipe 9.3 for details on using the ColorDialog control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.26. Creating a Rubber-Band Rectangular Selection

Problem

You want to add " rubber-band selection" to your graphics, giving the user the ability to click and drag with the mouse
to select a rectangular region of an image.

Solution

Sample code folder: Chapter 09\RubberBand

Use the RubberBand class presented here to use one of three different-appearing rubber-band selection algorithms.

Discussion

You've probably seen rubber-band selection in action when cropping images or working with screen-grabbing programs,
paint programs, and so on. The RubberBand class presented here can be included in any project in which you want to let
the user select a rectangular area of an image in this way.

The complete code for the class is presented below. The RubberBandStyle enumeration and the public Style property work
together to let you set the RubberBand object's appearance while in operation. While the user drags the mouse, the
selected area is outlined with either a dashed-line rectangle (as in Figure 9-37, below), a solid line with inverted colors,
or a solid-filled box with inverted colors.

There are two overloaded constructors in this class, which let you instantiate a RubberBand object in three different ways.
(The plan was to have only one constructor with two optional arguments, but Visual Basic does not permit structure
objectsColor, in this caseto be optional.) You can set the RubberBand's Style and BackColor properties when you create the
object, or you can set these properties later. You do need to indicate the control on which the RubberBand is to operate,
so the painting on the screen can coordinate with the surface of the control. The Start(), Stretch(), and Finish() methods are
called from the program that creates the RubberBand object to update the rectangular selection. Once "rubberbanding" is
complete, the Rectangle property returns the results. These methods are demonstrated in the calling code presented
later.

Here's the code for the RubberBand class:

 Public Class RubberBand
 ' ----- The three types of rubber bands.
 Public Enum RubberBandStyle
 DashedLine
 ThickLine
 SolidBox
 End Enum

 ' ----- The current drawing state.
 Public Enum RubberBandState
 Inactive
 FirstTime
 Active
 End Enum

 ' ----- Class-level variables.
 Private BasePoint As Point
 Private ExtentPoint As Point
 Private CurrentState As RubberBandState
 Private BaseControl As Control
 Public Style As RubberBandStyle
 Public BackColor As Color
 Public Sub New(ByVal useControl As Control, _
 Optional ByVal useStyle As RubberBandStyle = _
 RubberBandStyle.DashedLine)
 ' ----- Constructor with one or two parameters.
 BaseControl = useControl
 Style = useStyle
 BackColor = Color.Black
 End Sub

 Public Sub New(ByVal useControl As Control, _
 ByVal useStyle As RubberBandStyle, _
 ByVal useColor As Color)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal useColor As Color)
 ' ----- Constructor with three parameters.
 BaseControl = useControl
 Style = useStyle
 BackColor = useColor
 End Sub

 Public ReadOnly Property Rectangle() As Rectangle
 Get
 ' ----- Return the bounds of the
rubber-band area.
 Dim result As Rectangle

 ' ----- Ensure the coordinates go left to
 ' right, top to bottom.
 result.X = IIf(BasePoint.X < ExtentPoint.X, _
 BasePoint.X, ExtentPoint.X)
 result.Y = IIf(BasePoint.Y < ExtentPoint.Y, _
 BasePoint.Y, ExtentPoint.Y)
 result.Width = Math.Abs(ExtentPoint.X - BasePoint.X)
 result.Height = Math.Abs(ExtentPoint.Y - BasePoint.Y)
 Return result
 End Get
 End Property

 Public Sub Start(ByVal x As Integer, ByVal y As Integer)
 ' ----- Start drawing the rubber band. The user must
 ' call Stretch() to actually draw the first
 ' band image.
 BasePoint.X = x
 BasePoint.Y = y
 ExtentPoint.X = x
 ExtentPoint.Y = y
 Normalize(BasePoint)
 CurrentState = RubberBandState.FirstTime
 End Sub

 Public Sub Stretch(ByVal x As Integer, ByVal y As Integer)
 ' ----- Change the size of the rubber band.
 Dim newPoint As Point

 ' ----- Prepare the new stretch point.
 newPoint.X = x
 newPoint.Y = y
 Normalize(newPoint)

 Select Case CurrentState
 Case RubberBandState.Inactive
 ' ----- Rubber band not in use.
 Return
 Case RubberBandState.FirstTime
 ' ----- Draw the initial rubber band.
 ExtentPoint = newPoint
 DrawTheRectangle()
 CurrentState = RubberBandState.Active
 Case RubberBandState.Active
 ' ----- Undraw the previous band, then
 ' draw the new one.
 DrawTheRectangle()
 ExtentPoint = newPoint
 DrawTheRectangle()
 End Select
 End Sub

 Public Sub Finish()
 ' ----- Stop drawing the rubber band.
 DrawTheRectangle()
 CurrentState = 0
 End Sub

 Private Sub Normalize(ByRef whichPoint As Point)
 ' ----- Don't let the rubber band go outside the view.
 If (whichPoint.X < 0) Then whichPoint.X = 0
 If (whichPoint.X >= BaseControl.ClientSize.Width) _
 Then whichPoint.X = BaseControl.ClientSize.Width - 1

 If (whichPoint.Y < 0) Then whichPoint.Y = 0
 If (whichPoint.Y >= BaseControl.ClientSize.Height) _
 Then whichPoint.Y = BaseControl.ClientSize.Height - 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Then whichPoint.Y = BaseControl.ClientSize.Height - 1
 End Sub

 Private Sub DrawTheRectangle()
 ' ----- Draw the rectangle on the control or
 ' form surface.
 Dim drawArea As Rectangle
 Dim screenStart, screenEnd As Point

 ' ----- Get the square that is the
rubber-band area.
 screenStart = BaseControl.PointToScreen(BasePoint)
 screenEnd = BaseControl.PointToScreen(ExtentPoint)
 drawArea.X = screenStart.X
 drawArea.Y = screenStart.Y
 drawArea.Width = (screenEnd.X - screenStart.X)
 drawArea.Height = (screenEnd.Y - screenStart.Y)

 ' ----- Draw using the user-selected style.
 Select Case Style
 Case RubberBandStyle.DashedLine
 ControlPaint.DrawReversibleFrame(_
 drawArea, Color.Black, FrameStyle.Dashed)
 Case RubberBandStyle.ThickLine
 ControlPaint.DrawReversibleFrame(_
 drawArea, Color.Black, FrameStyle.Thick)
 Case RubberBandStyle.SolidBox
 ControlPaint.FillReversibleRectangle(_
 drawArea, BackColor)
 End Select
 End Sub
 End Class

To demonstrate the RubberBand class, the following code creates an instance and calls its Start(), Stretch(), and Finish()
methods based on the user's mouse activities. When the mouse button is first depressed, the code calls the Start()
method. As the mouse is moved, the Stretch() method is called to continuously update the visible selection rectangle.
When the mouse button is released, the Finish() method completes the selection process. At this point, the read-only
Rectangle property returns a complete description of the selected area:

 Public Class Form1
 ' ----- Adust the second and third arguments to
 ' see different methods.
 Dim SelectionArea As RubberBand = New RubberBand(Me, _
 RubberBand.RubberBandStyle.DashedLine, Color.Gray)

 Private Sub Form1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseDown
 ' ----- Start
rubber-band tracking.
 SelectionArea.Start(e.X, e.Y)
 End Sub

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseMove
 ' ----- Update the rubber-band display area.
 SelectionArea.Stretch(e.X, e.Y)
 End Sub

 Private Sub Form1_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles MyBase.MouseUp
 ' ----- Finished with the selection.
 SelectionArea.Finish()
 Me.Refresh()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles MyBase.Paint
 ' ----- Add some interest to the form surface.
 Dim canvas As Graphics = e.Graphics
 Dim polygonPoints() As Point = {New Point(300, 150), _
 New Point(200, 300), New Point(400, 300)}

 ' ----- Draw some shapes and text.
 canvas.FillEllipse(New SolidBrush(Color.Red), _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 canvas.FillEllipse(New SolidBrush(Color.Red), _
 10, 20, 200, 150)
 canvas.FillRectangle(New SolidBrush(Color.Blue), _
 100, 100, 250, 100)
 canvas.FillPolygon(New SolidBrush(Color.Green), _
 polygonPoints)
 canvas.DrawString(
SelectionArea.Rectangle.ToString, _
 New Font("Arial", 12), Brushes.Black, 0, 0)
 End Sub
 End Class

Figure 9-37 shows the results of running this demonstration code to select a rectangular area on the form. In this case
the mouse was dragged down and to the right to select the area, but the code compensates for dragging in any
direction and returns a proper rectangle.

Figure 9-37. The RubberBand class lets you select rectangular areas of any
graphics area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.27. Animating with Transparency

Problem

You want to add some simple animation to a form and make it interesting enough to catch the user's eye without being
overbearing or distracting.

Solution

Sample code folder: Chapter 09 \TransparentAnimation

One idea is to use a timer to redraw graphics whose transparency varies over time.

Discussion

There are many ways to add simple animation to your graphics, and adjusting the transparency is just one simple trick
that can add an interesting and creative effect to your images. This example also demonstrates how the alpha setting of
a color changes drawings through the full range of transparency, from completely invisible to completely opaque.

Create a new Windows Forms application, and add a Timer control named Timer1. Set its Interval property to 10
(milliseconds) and its Enabled property to true. Also, set the form's DoubleBuffered property to TRue.

A good way to drive the animation action is by redrawing with each tick of a timer. Notice that the drawing commands
are not done in the timer's Tick event. Instead, you tell the form to refresh itself and add the graphics commands where
they really belongin the form's Paint event. Add the following code to the form's class template to have the timer trigger
screen updates:

 Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 ' ----- Update the animated display.
 Me.Refresh()
 End Sub

The form's Paint event is called at the rate set by the Interval property of the timer. The 10-milliseconds setting provides a
fairly smooth and noticeable transparency transition. Use a larger number for slower, more subtle action.

The currentSetting variable increments or decrements each time through the Paint event handler, with the change amount
reversing direction when 0 or 255 is reached:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Display the next step in the animation.
 Static currentSetting As Integer = 0
 Static changeFactor As Integer = 1
 Dim transparentGreen As Color
 Dim canvas As Graphics = e.Graphics
 Dim trianglePoints() As Point = {New Point(180, 50), _
 New Point(30, 280), New Point(330, 280)}

 ' ----- Adjust the transparency factor.
 currentSetting += changeFactor
 If (currentSetting = 0) Or (currentSetting = 255) Then
 ' ----- Change direction.
 changeFactor = -changeFactor
 End If

The following line is the heart of this example; it shows how to create a color with a controllable degree of
transparency. You can pass just red, green, and blue values to Color.FromArgb() to create a solid shade, or you can add
the fourth parameter, called alpha, to control the color's transparency. The values of all four parameters range from 0 to
255. Anything drawn with the designated color will be drawn with the indicated amount of transparency:

 ' ---- Set the transparent green color.
 transparentGreen = Color.FromArgb(currentSetting, 0, 255, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transparentGreen = Color.FromArgb(currentSetting, 0, 255, 0)

These statements draw the solid geometric objects in the background, in preparation for drawing a transparent triangle
in front of them:

 ' ----- Draw some geometric figures.
 canvas.FillEllipse(New SolidBrush(Color.Red), _
 10, 20, 200, 150)
 canvas.FillRectangle(New SolidBrush(Color.Blue), _
 100, 100, 250, 100)

There is no GDI+ method to draw a triangle, per se. But a triangle is just a three-sided polygon, so it's easy to use the
DrawPolygon() or FillPolygon() methods to do the trick. In this case we fill a polygon (triangle) using a solid brush comprised
of our current shade of transparent green:

 ' ----- Draw a transparent green triangle in front.
 canvas.FillPolygon(New SolidBrush(transparentGreen), _
 trianglePoints)
 End Sub

Figure 9-38 shows the graphics with the triangle drawn using an intermediate transparency.

Figure 9-38. The triangle in the foreground fades from complete transparency to
complete opacity and back again

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

Problem

You used to use a lot of form-based drawing features in Visual Basic 6.0, but many of them seem to be missing from
the .NET versions of Visual Basic.

Solution

Sample code folder: Chapter 09\VB6Replacements

GDI+ is a full-featured drawing package that provides easier access to form-based drawing than Visual Basic 6.0 did.
Unfortunately, finding the replacements for some of VB 6's form-based drawing features takes a bit of work. This recipe
discusses some of the more significant replacements.

Discussion

Most of the replacement features involve GDI+ drawing, although you can simulate some older features using Label
controls. The features discussed in this section focus on those methods and controls that were used directly on a form.
In .NET, any of the drawing commands that you use on the form's surface can also be used on any control.

Any discussion that mentions "drawing on the form" refers to drawing through the form's Graphics object. Such drawing
is usually done in the form's Paint event handler, which provides you with a Graphics object:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw a
line.
 e.Graphics.DrawLine(…)
 End Sub

You can also create a Graphics object at any time in other event handlers and methods using the form's CreateGraphics()
method:

 Dim formCanvas As Graphics = Me.CreateGraphics()
 e.Graphics.DrawLine(…)

 ' ----- Properly dispose of the graphics canvas.
 formCanvas.Dispose()

Let's look at some of the specific replacements:

Line controls

There are two replacements for Visual Basic 6.0 Line controls. If your line is horizontal or vertical, you can use a
Label control with the BackColor property set to the line color you need. Adjust the width or height of the label as
needed to increase the thickness of the line. Be sure to clear the Text property and set the AutoSize property to
False.

If you need diagonal lines, you can draw them on the form surface in the form's Paint event using the DrawLine()
method.

Shape controls

There is no direct control replacement for the Visual Basic 6.0 Shape controls. Rectangular or elliptical shapes
can be drawn directly on the form using the DrawRectangle() and DrawEllipse() methods. The related FillRectangle() and
FillEllipse() methods draw filled shapes, with no edge lines.

There is no drawing command that can generate a rectangle with rounded corners. You must create it yourself
using DrawLine() and DrawArc() method calls. You can also build this shape as a GraphicsPath object. Here is a method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using DrawLine() and DrawArc() method calls. You can also build this shape as a GraphicsPath object. Here is a method
that draws a rounded rectangle directly on a graphics surface. The rounded corner has a radius of five pixels
(units, actually):

 Private Sub DrawRoundedRectangle(_
 ByVal sourceRectangle As Rectangle, _
 ByVal canvas As Graphics, ByVal usePen As Pen)
 ' ----- Draw a rounded rectangle.
 Dim saveState As Drawing2D.GraphicsState
 ' ----- Move the origin to the upper-left corner
 ' of the rectangle.
 saveState = canvas.Save()
 canvas.TranslateTransform(sourceRectangle.Left, _
 sourceRectangle.Top)

 With sourceRectangle
 ' ----- Draw the four edges, starting from the top
 ' and moving clockwise.
 canvas.DrawLine(usePen, 5, 0, .Width - 5, 0)
 canvas.DrawLine(usePen, .Width, 5, .Width, .Height - 5)
 canvas.DrawLine(usePen, .Width - 5, .Height, 5, .Height)
 canvas.DrawLine(usePen, 0, .Height - 5, 0, 5)

 ' ----- Draw the four corners, starting from the
 ' upper left and moving clockwise.
 canvas.DrawArc(usePen, 0, 0, 10, 10, 180, 90)
 canvas.DrawArc(usePen, .Width - 10, 0, 10, 10, 270, 90)
 canvas.DrawArc(usePen, .Width - 10, .Height - 10, _
 10, 10, 0, 90)
 canvas.DrawArc(usePen, 0, .Height - 10, 10, 10, 90, 90)
 End With

 ' ----- Restore the original
graphics canvas.
 canvas.Restore(saveState)
 End Sub

This code draws a 100-by-100-unit rounded rectangle at position (10,10) on the form's surface:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 DrawRoundedRectangle(New Rectangle(10, 10, 100, 100), _
 e.Graphics, Pens.Black)
 End Sub

Figure 9-39 shows the output from this code.

Figure 9-39. A manually rounded rectangle

Cls() method

To clear the entire graphics surface, use the Clear() method. You pass it the color used to clear the surface:

 e.Graphics.Clear(Color.White)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.Graphics.Clear(Color.White)

Scale() method

To change the coordinate system on the form's surface, use the Graphics object's ScaleTransform() method. You can
also supply a custom matrix transformation by assigning the Graphics object's transform property.

PSet() method

There is no method that can draw a single pixel on a graphics surface. You can simulate it using the DrawLine(),
DrawRectangle(), or FillRectangle() methods and providing very precise coordinates. Another way to draw a single
point is to create a single-point bitmap and draw the bitmap onto the canvas. The Bitmap class does have a
SetPixel method:

 ' ----- Draw a red pixel at (5,5).
 Dim tinyBitmap As New Bitmap(1, 1)
 tinyBitmap.SetPixel(0, 0, Color.Red)
 e.Graphics.DrawImageUnscaled(tinyBitmap, 5, 5)
 tinyBitmap.Dispose()

Point() method

While the Graphics object does not let you query the color of an individual pixel, you can do so with a Bitmap
object. This object's GetPixel() method returns a Color object for the specified pixel.

Line() method

Replaced by the DrawLine() method.

Circle() method

Replaced by the DrawEllipse() and FillEllipse() methods.

PaintPicture() method

Replaced by the DrawImage() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.3. Letting the User Select a Color

Problem

You need the user to select a specific color for drawing.

Solution

Sample code folder: Chapter 09\UserColorSelect

For simple color-selection needs, use the ColorDialog control. This dialog, shown in Figure 9-3, lets the user select any of
the 16,777,216 24-bit colors available in Windows.

Figure 9-3. The color dialog, in "full open" mode

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A Label control named ColorName. Set its Text property to Not Selected.

A PictureBox control named ColorDisplay. Set its BorderStyle property to FixedSingle.

A Button control named ActChange. Set its Text property to Change….

A ColorDialog control named ColorSelector.

Add informational labels if desired. The form should look something like Figure 9-4.

Figure 9-4. The controls on the color selection sample form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-4. The controls on the color selection sample form

Now add the following source code to the form's code template:

 Private Sub ActChange_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ActChange.Click
 ' ----- Prompt to change the color.
 ColorSelector.Color = ColorDisplay.BackColor
 If (ColorSelector.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 ' ----- The user selected a color.
 ColorDisplay.BackColor = ColorSelector.Color
 If (ColorSelector.Color.IsNamedColor = True) Then
 ' ----- Windows has a name for this color.
 ColorName.Text = ColorSelector.Color.Name
 Else
 ColorName.Text = "R" & ColorSelector.Color.R & _
 " G" & ColorSelector.Color.G & _
 " B" & ColorSelector.Color.B
 End If
 End If
 End Sub

Run the program, and click the Change button to access the dialog. The form will show the selected color, and either the
name of the color (if known) or its red-green-blue (RGB) value.

The ColorDialog includes a few Boolean properties that let you control the availability of the "color mixer" portion of the
form (the right half). The dialog does not include features that let the user indicate transparency or the "alpha" level of
a color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.4. Working with Coordinate Systems (Pixels, Inches,
Centimeters)

Problem

You've been drawing on a graphics canvas (such as the surface of a form or control), and working with pixels. But your
program lets the user work in inches or centimeters, and you don't want to do all the conversions yourself.

Solution

Sample code folder: Chapter 09\MeasurementSystems

The Graphics object that you receive in a Paint event handler (or that you create else-where) provides a few different
ways to scale to different measurement systems. The easiest way is to set its PageUnit property to one of the predefined
GraphicsUnit enumeration values. The sample code in this recipe uses GraphicsUnit.Display (the default), .Inch, and .Millimeter.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named ShowPixels. Set its Text property to Pixel Sample.

A RadioButton control named ShowInches. Set its Text property to Inches Sample.

A RadioButton control named ShowCentimeters. Set its Text property to Centimeters Sample.

A Label control named Comment. Set its AutoSize property to False, and resize it so that it can hold a dozen or so
words.

A PictureBox control named SampleDisplay. Set its BorderStyle property to FixedSingle. Size it at about 250 x 250 pixels.

Your form should look something like Figure 9-5.

Now add the following source code to the form's class template:

 Private Sub ChangeSystem(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ShowPixels.CheckedChanged, _
 ShowInches.CheckedChanged, _
 ShowCentimeters.CheckedChanged
 ' ------ Update the example text.
 If (ShowPixels.Checked = True) Then
 Comment.Text = "50x50 rectangle at position " & _
 "(50, 50). Major ruler ticks are at 100 pixels."
 ElseIf (ShowInches.Checked = True) Then
 Comment.Text = "1x1 inch rectangle at position " & _
 "(1, 1). Major ruler ticks are inches."

Figure 9-5. The controls in the measurement systems sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else
 Comment.Text = "1x1 centimeter rectangle at " & _
 "position (1, 1). Major ruler ticks are centimeters."
 End If

 ' ----- Now update the display.
 SampleDisplay.Invalidate()
 End Sub

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ' ----- Show the pixel example by default.
 ShowPixels.Checked = True
 End Sub

 Private Sub SampleDisplay_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles SampleDisplay.Paint
 ' ----- Draw the surface based on the user's selection.
 Dim rectangleArea As Rectangle
 Dim thinPen As Pen
 Dim rulerWidth As Single
 Dim tickStep As Single
 Dim tickSize As Single
 Dim counter As Integer
 Dim bigTick As Single
 Const ticks As String = "1424142414241"

 ' ----- Clear any previous content.
 e.Graphics.Clear(Color.White)

 ' ----- Adjust to the right system.
 If (ShowPixels.Checked = True) Then
 ' ----- Draw a 50-by-50-pixel rectangle at (50,50).
 rectangleArea = New Rectangle(50, 50, 50, 50)
 rulerWidth = e.Graphics.DpiX / 5.0F
 bigTick = 100.0F
 ElseIf (ShowInches.Checked = True) Then
 ' ----- Scale for inches.
 e.Graphics.PageUnit = GraphicsUnit.Inch

 ' ----- Draw a 1" x 1" rectangle at (1,1).
 rectangleArea = New Rectangle(1, 1, 1, 1)
 rulerWidth = 0.2F
 bigTick = 1.0F
 Else
 ' ----- Scale for centimeters (actually, millimeters).
 e.Graphics.PageUnit = GraphicsUnit.Millimeter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.Graphics.PageUnit = GraphicsUnit.Millimeter

 ' ----- Draw a 1cm x 1cm rectangle at (1,1).
 ' Note: 0.2 inches is 1/5 of 25.4 millimeters.
 rectangleArea = New Rectangle(10, 10, 10, 10)
 rulerWidth = 25.4F / 5.0F
 bigTick = 10.0F
 End If

 ' ----- Create a single-pixel pen.
 thinPen = New Pen(Color.Black, 1 / e.Graphics.DpiX)

 ' ----- Draw a ruler area. The rulerWidth is 0.2 inches
 ' wide, no matter what the scale. Make a 3-inch
 ' ruler.
 e.Graphics.FillRectangle(Brushes.BlanchedAlmond, 0, 0, _
 rulerWidth, rulerWidth * 15)
 e.Graphics.FillRectangle(Brushes.BlanchedAlmond, 0, 0, _
 rulerWidth * 15, rulerWidth)
 e.Graphics.DrawLine(thinPen, rulerWidth, rulerWidth, _
 rulerWidth, rulerWidth * 15)
 e.Graphics.DrawLine(thinPen, rulerWidth, rulerWidth, _
 rulerWidth * 15, rulerWidth)

 ' ----- Draw the ruler tick marks. Include whole steps,
 ' half steps, and quarter steps.
 For counter = 1 To ticks.Length
 ' ----- Get the tick measurements. The "ticks" constant
 ' includes a set of "1", "2", and "4" values. "1"
 ' gives a full-size tick mark (for whole units),
 ' "2" gives a half-size tick mark, and "4" gives
 ' a 1/4-size tick mark.
 tickSize = CSng(Mid(ticks, counter, 1))
 tickStep = rulerWidth + ((bigTick / 4.0F) * (counter - 1))

 ' ----- Draw the horizontal ruler ticks.
 e.Graphics.DrawLine(thinPen, tickStep, 0, _
 tickStep, rulerWidth / tickSize)

 ' ----- Draw the vertical ruler ticks.
 e.Graphics.DrawLine(thinPen, 0, tickStep, _
 rulerWidth / tickSize, tickStep)
 Next counter

 ' ----- Adjust the (0,0) point to the corner of the ruler.
 e.Graphics.TranslateTransform(rulerWidth, rulerWidth)

 ' ----- Draw the rectangle.
 e.Graphics.DrawRectangle(thinPen, rectangleArea)

 ' ----- Put things back to normal.
 e.Graphics.PageUnit = GraphicsUnit.Display
 thinPen.Dispose()
 End Sub

Run the program, and click on each of the three radio buttons to see the results. Figure 9-6 shows the application using
centimeters.

Figure 9-6. Drawing using centimeters (millimeters) as the unit system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The focus of the application is on drawing the black rectangle:

 e.Graphics.DrawRectangle(thinPen, rectangleArea)

The rest of the code is there to make it easy to see the difference between the drawing systems.

The Graphics object defaults to the coordinate system of the display. On a monitor, each unit is a single pixel. When you
draw a 10 x 10 rectangle, you are drawing a rectangle 10 pixels high and 10 pixels wide. To draw a 10 x 10-inch
rectangle, you need to change the scaling system so that "1" represents an inch instead of a pixel.

The PageUnit property does just that. It supports a few common measurement systems, including Inches, Millimeters, and
even Points.

You can also create your own custom scaling factor in each direction (X and Y) by using the Graphics object's
ScaleTransform() method. This lets you set a scaling factor for both the horizontal (X) and vertical (Y) directions. To see
scaling in action, create a new Windows Forms application, and add the following source code to the form's code
template:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 e.Graphics.Clear(Color.White)
 e.Graphics.DrawRectangle(Pens.Black, 10, 10, 30, 30)
 e.Graphics.ScaleTransform(2, 2)
 e.Graphics.DrawRectangle(Pens.Black, 10, 10, 30, 30)
 End Sub

This code draws two 30 x 30 rectangles, one normal (i.e., 30 x 30 pixels), and one scaled by a factor of two in each
direction (resulting in a 60 x 60 square). Figure 9-7 shows the output of this code.

Figure 9-7. A normal and a scaled square

Everything about the second (larger) square is scaled by two: its size, its starting position (at (20,20) instead of
(10,10)), and even the thickness of its pen (it's twice as thick).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.5. Creating a Bitmap

Problem

You want to create off-screen bitmaps to store graphics in memory.

Solution

Sample code folder: Chapter 09\BitmapObject

Create Bitmap objects, and load images into them or draw directly on them.

Discussion

You can create a bitmap in memory, draw graphics onto a Graphics object created for the bitmap, and then draw the
bitmap to a form, panel, or other paintable surface. This can provide an increase in speed, and sequentially drawing
multiple bitmaps onto a visible surface gives you a simple but effective type of animation.

The code example in this recipe creates a bitmap based on the size of the form and the nature of the Graphics object for
the form. A new Graphics object is created based on the new bitmap, so graphics methods will apply to the bitmap. Much
of the rest of the code creates radial lines emanating from two points near the center of the bitmap. Finally, once the
bitmap graphics are complete, the bitmap is drawn to the form's Graphics object, which paints onto the face of the form:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw to the form indirectly through a bitmap.
 Dim x As Single
 Dim y As Single
 Dim xc As Single
 Dim yc As Single
 Dim angle As Single
 Dim radians As Single
 Dim workImage As Bitmap
 Dim canvas As Graphics

 ' ----- Create a bitmap that is the same size and
 ' format as the form surface.
 workImage = New Bitmap(Me.Size.Width, Me.Size.Height, _
 e.Graphics)

 ' ----- Create a canvas for the bitmap. Drawing on the
 ' canvas impacts the bitmap directly.
 canvas = Graphics.FromImage(workImage)

 ' ---- Draw a radial pattern.
 For angle = 0 To 360 Step 2
 radians = angle * Math.PI / 180
 x = 500 * Math.Cos(radians)
 y = 500 * Math.Sin(radians)
 yc = Me.ClientSize.Height / 2
 xc = Me.ClientSize.Width * 10 / 21
 canvas.DrawLine(Pens.Black, xc, yc, xc + x, yc + y)
 xc = Me.ClientSize.Width * 11 / 21
 canvas.DrawLine(Pens.Black, xc, yc, xc + x, yc + y)
 Next angle

 ' ----- Stamp the bitmap on the form surface.
 e.Graphics.DrawImage(workImage, 0, 0)
 End Sub

The key lines of code here are the ones that create the workImage and canvas objects. They create a bitmap compatible
with the form and a graphics surface for the bit-map. All drawing methods require a Graphics object to provide a drawing
surface. The last line uses the Graphics. DrawImage() method to draw the custom image onto the form, providing a way to
get the in-memory bitmap onto a visible surface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get the in-memory bitmap onto a visible surface.

Figure 9-8 shows the new bitmap's contents as drawn onto the face of the form.

Figure 9-8. Drawing an in-memory bitmap onto a form

As you resize this form, its Paint event fires repeatedly, and the bitmap is recreated on the fly. However, it doesn't
redraw the entire surface, because Windows tries to limit screen redraws to only those parts that it thinks have
changed. In this case, only the newly exposed areas of the form are redrawn. To circumvent this, add the following
code to the form:

 Private Sub Form1_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize
 ' ----- Redraw the surface cleanly.
 Me.Invalidate()
 End Sub

Now the entire image is redrawn as the form size changes.

For the smoothest action be sure to set the form's DoubleBuffered property to true. The
combination of double buffering and drawing the lines in-memory on a bitmap creates
surprisingly smooth graphics updates as the form is resized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.6. Setting a Background Color

Problem

You want to customize a form's background color but don't want the controls on the form to look out of place.

Solution

Sample code folder: Chapter 09\BackgroundColor

No problem: most controls automatically take on the same background color as their container.

Discussion

The demonstration of this effect is simple. Add the following code to a button's Click event to change the background
color to some random selection. Place any controls of interest on the form to see how the changing background affects
them:

 Private Sub ActBackground_Click(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ActBackground.Click
 ' ----- Change the background to some random color.
 Dim redPart As Integer
 Dim greenPart As Integer
 Dim bluePart As Integer
 Dim surpriseColor As New Random

 redPart = surpriseColor.Next(0, 255)
 greenPart = surpriseColor.Next(0, 255)
 bluePart = surpriseColor.Next(0, 255)
 Me.BackColor = Color.FromArgb(redPart, _
 greenPart, bluePart)
 End Sub

As shown in Figure 9-9, the RadioButton, Label, and CheckBox controls all adjust automatically by taking on the same
background color as the containing form. The TextBox control's background remains white, by design. Place any other
controls you might be using on this form to see how they behave.

Figure 9-9. Many controls automatically take on the same background color as
their container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

Problem

You need to draw some basic shapes on a graphics surface. What choices are available?

Solution

Sample code folder: Chapter 09\ DrawingBasicShapes

The System.Drawing.Graphics object includes several methods that draw filled and unfilled shapes, including methods for lines,
rectangles, and ellipses. This recipe's code implements a simple drawing program using these basic shapes.

Discussion

Create a new Windows Forms application, and add the following controls to Form1:

A RadioButton control named DrawLine. Set its Text property to Line and its Checked property to true.

A RadioButton control named DrawRectangle. Set its Text property to Rectangle.

A RadioButton control named DrawEllipse. Set its Text property to Ellipse.

A ComboBox control named LineColor. Set its DropDownStyle property to DropDownList.

A ComboBox control named FillColor. Set its DropDownStyle property to DropDownList.

A PictureBox control named DrawingArea. Set its BackColor property to White (or 255, 255, 255) and its BorderStyle property to
Make it somewhat large.

Add informational labels if desired. The form should look like the one in Figure 9-10.

Figure 9-10. The controls on the shape drawing sample

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now add the following source code to the form's code template:

 Private FirstPoint As Point = New Point(-1, -1)

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Fill in the list of colors.
 For Each colorName As String In New String() _
 {"Black", "Red", "Orange", "Yellow", "Green", _
 "Blue", "Indigo", "Violet", "White"}
 LineColor.Items.Add(colorName)
 FillColor.Items.Add(colorName)
 Next colorName
 LineColor.SelectedIndex = LineColor.Items.IndexOf("Black")
 FillColor.SelectedIndex = LineColor.Items.IndexOf("White")
 End Sub

 Private Sub DrawingArea_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles DrawingArea.MouseDown
 ' ----- Time to do some drawing.
 Dim useLine As Pen
 Dim useFill As Brush
 Dim canvas As Graphics
 Dim drawBounds As Rectangle

 ' ----- Is this the first or second click?
 If (FirstPoint.Equals(New Point(-1, -1))) Then
 ' ----- This is the first click. Record the location.
 FirstPoint = e.Location
 ' ----- Draw a marker at this point.
 DrawMarker(FirstPoint)
 Else
 ' ----- Get the two colors to use.
 useLine = New Pen(Color.FromName(LineColor.Text))
 useFill = New SolidBrush(Color.FromName(FillColor.Text))

 ' ----- Get the
drawing surface.
 canvas = DrawingArea.CreateGraphics()

 ' ----- Remove the first-point marker.
 DrawMarker(FirstPoint)

 ' ----- For
rectangles and
ellipses, get the
 ' bounding area.
 drawBounds = New Rectangle(_
 Math.Min(FirstPoint.X, e.Location.X), _
 Math.Min(FirstPoint.Y, e.Location.Y), _
 Math.Abs(FirstPoint.X - e.Location.X), _
 Math.Abs(FirstPoint.Y - e.Location.Y))

 ' ----- Time to draw.
 If (DrawLine.Checked = True) Then
 ' ----- Draw a line.
 canvas.DrawLine(useLine, FirstPoint, e.Location)
 ElseIf (DrawRectangle.Checked = True) Then
 ' ----- Draw a rectangle.
 canvas.FillRectangle(useFill, drawBounds)
 canvas.DrawRectangle(useLine, drawBounds)
 Else
 ' ----- Draw an ellipse.
 canvas.FillEllipse(useFill, drawBounds)
 canvas.DrawEllipse(useLine, drawBounds)
 End If

 ' ----- Clean up.
 canvas.Dispose()
 useFill.Dispose()
 useLine.Dispose()
 FirstPoint = New Point(-1, -1)
 End If
 End Sub

 Private Sub DrawMarker(ByVal centerPoint As Point)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub DrawMarker(ByVal centerPoint As Point)
 ' ----- Given a point, draw a small square at
 ' that location.
 Dim screenPoint As Point
 Dim fillArea As Rectangle

 ' ----- Determine the fill area.
 screenPoint = DrawingArea.PointToScreen(centerPoint)
 fillArea = New Rectangle(screenPoint.X - 2, _
 screenPoint.Y - 2, 5, 5)

 ' ----- Draw a red rectangle. Cyan is the RBG
 ' inverse of red.
 ControlPaint.FillReversibleRectangle(fillArea, Color.Cyan)
 End Sub

Run the program, and use the RadioButton and ComboBox controls to select the object style and colors. Click on the DrawingArea
controls twice to specify the two endpoints of each line, rectangle, or ellipse. Figure 9-11 shows the program in use.

Figure 9-11. Drawing basic shapes

Drawing shapes is so easy in .NET as to make it somewhat humdrum. Back in the early days of computer drawing, drawing a line
or circle required a basic understanding of the geometric equations needed to produce such shapes on a Cartesian coordinate
system. But no more! The Graphics object includes a set of methods designed to make drawing simple. Most of them are used
throughout the recipes in this chapter.

This recipe's code spends some time watching for the locations of mouse clicks on the drawing surface. Once it has these locations
and the user-selected colors, it draws the basic shapes in just a few quick statements:

 If (DrawLine.Checked = True) Then
 canvas.DrawLine(useLine, FirstPoint, e.Location)
 ElseIf (DrawRectangle.Checked = True) Then
 canvas.FillRectangle(useFill, drawBounds)
 canvas.DrawRectangle(useLine, drawBounds)
 Else
 canvas.FillEllipse(useFill, drawBounds)
 canvas.DrawEllipse(useLine, drawBounds)
 End If

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.26 discusses the FillReversibleRectangle() method used in this recipe's code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

Problem

You need to draw a one- pixel-wide line, but this becomes problematic when the graphics scaling mode is changed.

Solution

Sample code folder: Chapter 09\ PenWidth

Set the pen's width to -1. Although this approach is not formally documented in the GDI+ references, it does cause the
thinnest line possible to be drawn no matter what the scaling is set to.

Discussion

The Graphics object's PageUnit property allows you to set the scaling to standard units such as inches or millimeters. This
can be very handy for some types of graphics-drawing tasks, but it alters the way lines are drawn. The DrawLine()
method accepts a pen that defines the color and width of the drawn line. By default the pen's width is always set to 1
unit wide, and as long as the PageUnit is left at its default setting of Pixels, all is well: a 1-unit-wide line will be drawn as 1
pixel wide. However, when PageUnit is set to Inches, for example, a 1-unit-wide line is rendered as 1 inch wide, which is
likely not what you want at all.

To demonstrate this in action, and to show the workaround, this recipe's code first draws a line diagonally across the
form with a red pen set to a width of 1, then draws another line on the other diagonal using a green pen set to a width
of -1.

Create a new Windows Forms application, and place three RadioButton controls on the form, named UsePixels, UseMillimeters,
and UseInches. Set their Text properties appropriately. Then add the following code to the form's code template:

 Private Sub RadioButton_CheckedChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles UsePixels.CheckedChanged, _
 UseMillimeters.CheckedChanged, _
 UseInches.CheckedChanged

 ' ----- Change the scaling system.
 Me.Refresh()
 End Sub

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint
 ' ----- Draw contrasting
lines.
 Dim xCorner As Single
 Dim yCorner As Single
 Dim canvas As Graphics

 canvas = e.Graphics
 xCorner = Me.ClientSize.Width
 yCorner = Me.ClientSize.Height
 If (UseMillimeters.Checked = True) Then
 canvas.PageUnit = GraphicsUnit.Millimeter
 xCorner /= canvas.DpiX
 yCorner /= canvas.DpiY
 xCorner *= 25.4
 yCorner *= 25.4
 ElseIf (UseInches.Checked = True) Then
 canvas.PageUnit = GraphicsUnit.Inch
 xCorner /= canvas.DpiX
 yCorner /= canvas.DpiY
 Else
 canvas.PageUnit = GraphicsUnit.Pixel
 End If

 ' ----- Clear any previous lines.
 canvas.Clear(Me.BackColor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' ----- Draw a one-unit line.
 canvas.DrawLine(New Pen(Color.Red, 1), 0, 0, _
 xCorner, yCorner)

 ' ----- Draw a one-pixel line.
 canvas.DrawLine(New Pen(Color.Green, -1), xCorner, _
 0, 0, yCorner)
 End Sub

As this code shows, the graphics PageUnit property is set appropriately for these units, and the red line will show the
obvious difference in the line width. Figure 9-12 shows the results when the red line is drawn 1 inch wide (it's black and
white here, obviously, but imagine it's red). The green line is drawn 1 pixel wide, no matter which scaling mode is
selected.

In addition to the PageUnit mode, the ScaleTransform() method can customize the scaling of your graphics. This transform
affects all coordinates, and all pen widths too; a pen width of 1 draws a 1-unit-wide line at whatever scale is set. Again,
the workaround is to set the pen's width to 1 to get a consistent 1- pixel-wide line.

Figure 9-12. A one-inch-wide line and a one-pixel-wide line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recipe 9.9. Forcing a Form or Control to Redraw

Problem

You want to activate the Paint event for a form or control to cause its graphics to refresh.

Solution

Sample code folder: Chapter 09\Invalidating

It's best to let the operating system handle exactly when any object should repaint itself. In Visual Basic 2005, this
means it's best to draw in an object's Paint event and not to worry about when to activate the painting. However, there
are times when you want to control when graphics are redrawn, such as for simple animations, when data values in the
program change, or when other events happen that affect the image. In these cases, you can call the Refresh() method
of the object to be refreshed, or you can call the Invalidate() method to do much the same thing. The operating system
handles the rest of the details.

Discussion

The demonstration code shown here draws a five-pointed star centered on the mouse cursor. As the mouse moves
around on the form, the star moves with it, which means each mouse-move event should trigger a form Paint event. You
accomplish this by invalidating the form with each move of the mouse. You can also use the Refresh() method.

Create a new Windows Forms application, and add the following code to the form's class template:

 ' ----- Keep track of the mouse position.
 Private MouseX As Integer
 Private MouseY As Integer

 Private Sub Form1_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles Me.MouseMove
 ' ----- Record the mouse position.
 MouseX = e.X
 MouseY = e.Y

 ' ----- Mark the form for redrawing.
 Me.Invalidate()

 ' ----- If you want to update the form quicker,
 ' call Refresh() instead of Invalidate().
 'Me.Refresh()
 End Sub

The form's Paint event grabs the form's Graphics object to provide the surface to draw on, then creates an array of points
defining the five points of the star, centered around the current position of the mouse:

 Private Sub Form1_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) _
 Handles Me.Paint

 ' ----- Refresh the form display.
 Dim canvas As Graphics = e.Graphics
 Dim starPoints(4) As Point
 Dim angle As Double
 Dim radians As Double
 Dim pointX As Double
 Dim pointY As Double
 Dim counter As Integer
 Const pointDistance As Double = 50
 Const angleStart As Integer = 198
 Const angleRotation As Integer = 144

 ' ----- Calculate each of the star's points.
 angle = angleStart
 For counter = 0 To 4
 angle += angleRotation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 angle += angleRotation
 radians = angle * Math.PI / 180
 pointX = Math.Cos(radians) * pointDistance + MouseX
 pointY = Math.Sin(radians) * pointDistance + MouseY
 starPoints(counter) = New Point(CInt(pointX), _
 CInt(pointY))
 Next counter

 ' ----- Draw the star. I've provided a few alternatives.
 canvas.FillPolygon(Brushes.DarkRed, starPoints, _
 Drawing2D.FillMode.Alternate)
 'canvas.FillPolygon(Brushes.DarkRed, starPoints, _
 '
Drawing2D.FillMode.Winding)
 'canvas.DrawPolygon(Pens.DarkRed, starPoints)
 End Sub

There are several ways to draw or solid-fill a polygon such as this five-pointed star. The last three statements in the
code let you experiment with three different techniques. The algorithm used to fill the center of a polygon can either
end up with alternating areas filled, or not. Figure 9-13 shows the results of filling using Drawing2D.FillMode.Alternate. The
Drawing2D.FillMode.Winding mode causes the star to be completely filled in, including the center area.

Figure 9-13. As the mouse moves the form is invalidated, causing the star to move
with the cursor

The Invalidate() method does not force an immediate refresh of the form. Instead, it puts in a request for a redraw the
next time the system is not too busy. Windows considers screen updates low-priority tasks, so if your system is busy
doing other things, the screen changes will be postponed. If you want the changes to occur immediately, follow the
Invalidate() method call with a call to the form's (or, if you are drawing on a control, the control's) Update() method:

 Me.Invalidate()
 Me.Update()

The Refresh() method combines both lines into one method call. So why would you call Invalidate() when the more powerful
Refresh() method is available? Invalidate() accepts arguments that let you narrow down the size of the area to redraw.
Redrawing the entire form can be a slow process, especially if you have to do it often. By passing a Rectangle or Region
object to Invalidate(), you can tell Windows, "Redraw only in this limited area."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Graphics

Introduction

Recipe 9.1. Creating Graphics Objects

Recipe 9.2. Drawing on Controls for Special Effects

Recipe 9.3. Letting the User Select a Color

Recipe 9.4. Working with Coordinate Systems (Pixels, Inches, Centimeters)

Recipe 9.5. Creating a Bitmap

Recipe 9.6. Setting a Background Color

Recipe 9.7. Drawing Lines, Ellipses, and Rectangles

Recipe 9.8. Drawing Lines One Pixel Wide Regardless of Scaling

Recipe 9.9. Forcing a Form or Control to Redraw

Recipe 9.10. Using Transparency

Recipe 9.11. Scaling with Transforms

Recipe 9.12. Using an Outline Path

Recipe 9.13. Using Gradients for Smooth Color Changes

Recipe 9.14. Drawing Bezier Splines

Recipe 9.15. Drawing Cardinal Splines

Recipe 9.16. Limiting Display Updates to Specific Regions

Recipe 9.17. Drawing Text

Recipe 9.18. Rotating Text to Any Angle

Recipe 9.19. Mirroring Text on the Canvas

Recipe 9.20. Getting the Height and Width of a Graphic String

Recipe 9.21. Drawing Text with Outlines and Drop Shadows

Recipe 9.22. Calculating a Nice Axis

Recipe 9.23. Drawing a Simple Chart

Recipe 9.24. Creating Odd-Shaped Forms and Controls

Recipe 9.25. Using the RGB, HSB (HSV), and HSL Color Schemes

Recipe 9.26. Creating a Rubber-Band Rectangular Selection

Recipe 9.27. Animating with Transparency

Recipe 9.28. Substitutions for Obsolete Visual Basic 6.0 Features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

Editor: John Osborn Indexer: John Bickelhaupt

Production Editor: Colleen Gorman Cover Designer: Karen Montgomery

Copyeditor: Rachel Wheeler Interior Designer: David Futato

Proofreader: Mary Anne Mayo Illustrators: Robert Romano and Jessamyn Read

Printing History:
September 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The Cookbook series designations, Visual Basic 2005 Cookbook, the image of a bream, and related trade dress are
trademarks of O'Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-10177-5

ISBN-13: 978-0-596-10177-0

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
Most of us learn to cook at an early age, starting with peanut butter and jelly sandwiches and quickly progressing to
macaroni and cheese. But very few people make it to the advanced cooking stage, whipping up new culinary creations
in the blink of an eye and dazzling all who taste the literal fruits of our labor. And for most of us, that's OK. We don't
expect any more than the ordinary, the mundane, on our daily plates.

But in the programming world, things are different. Users expect the moon when it comes to software quality, and if
you can't deliver something more than just the mundane, you're sure to get an earful. Visual Basic 2005 is a good tool
for writing great programs, but it is also very good at letting people write ordinary software. Ordinary cooking usually
only results in ordinary food, but ordinary programming can lead to something much worse: bugs. So how can you take
your programming to the "master chef" level?

For those of you who have limited creative talent in the kitchen, and even for experts who are just looking to try
something new, there are cookbooks galore at your local bookstore and smiling chefs each Saturday morning on your
local PBS station. For Visual Basic programmers, locating a similar type of cookbook of "programming recipes" has been
somewhat difficultuntil now. The book you are now holding, Visual Basic 2005 Cookbook, is the recipe book you have
been looking for. It's chock full of tasty software development tidbits that you can try right now in your kitchenthat is,
at your computer.

The recipes in this cookbook will introduce you to a wide range of Visual Basic 2005 programming topics, from simple
string and number manipulation to advanced topics involving animations and matrix transformations. Some of the
recipes may not be to your taste, but many of them will be just what you need. Perhaps you're in the middle of a meaty
project, and you aren't sure how to copy an existing directory from one place to another. A quick look at Recipe 12.4,
"Copying Directories," will provide the missing ingredients and keep your whole project from boiling over. Or maybe you
are trying to format some content for the printer, and you want to draw a text string at a 27.3-degree angle. If so, you
are likely hungry for what's in Recipe 9.18, "Rotating Text to any Angle."

In the world of cooking, regular practice brings noticeable improvements in the quality of your food. It is our belief that
regular programming practice using the recipes in this book will bring similar improvements in your software
development life. Bon appétit!

Who This Book Is For
Visual Basic 2005 Cookbook includes a large variety of recipes, and it was written to meet the needs of a wide range of
software developers, from the novice programmer trying out new code to the professional full-time developer. No
matter what your level of expertise, you will benefit from the recipes found in each chapter. But even the simplest
recipes assume a minimum understanding of Visual Basic and .NET programming concepts. If you are a first-time
programmer still learning the basics of loop constructs and conditions, you might want to spend a little more time with
a good tutorial book such as Programming Visual Basic 2005 by Jesse Liberty (O'Reilly) before you dive into the recipes
found in these pages.

This book was written with two purposes in mind. The first was a desire to help readers expand their understanding of
general and specific programming concepts and algorithms. As you read and study the recipes in this book, you should
become more fluent not just in the Visual Basic language, but in the mindset that is required to develop high-quality
and stable code. The book's second purpose was to help professional programmers (and also recreational
programmers) become more productive by providing a collection of software answers to the questions that may stump
them from time to time. If either of these purposes resonates with you and your programming needs, this book is
definitely for you.

How This Book Is Organized
Visual Basic 2005 Cookbook is primarily a reference book. Each recipe is organized as a problem/solution pair: you
have a problem, you locate a recipe that concerns your problem, and then you obtain the solution through the code and
discussion included with the recipe. If you are the adventurous type, you can read through the book from cover to
cover, and we will applaud you all the way. For most readers, the skim-and-look-up method will probably work better.
The ample index pages should help you find the recipe you need quickly.

The recipes in the book are organized into general programming topic areas, by chapter. The following miniature table
of contents quickly summarizes what you'll find in each chapter:

Chapter 1, Visual Basic Programming

This chapter introduces you to the three main types of projects you will develop using Visual Basic: desktop
applications, console applications, and web (ASP.NET) applications.

Chapter 2, The Development Environment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2, The Development Environment

This chapter shows you how to use some of the newer features of Visual Studio and introduces the new Visual
Basic 2005 My namespace feature. It also discusses development issues concerning general system resources
such as the registry and the clipboard.

Chapter 3, Application Organization

The recipes in this chapter cover the core programming concepts found in classes, structures, and modules,
including method usage and operator overloading.

Chapter 4, Forms, Controls, and Other Useful Objects

As the chapter title implies, the recipes found here deal with Windows Forms (desktop) applications, with a
strong emphasis on using the various controls available for building them.

Chapter 5, Strings

This chapter includes dozens of recipes that focus on strings and string manipulation. A few recipes focus on
regular expression processing.

Chapter 6, Numbers and Math

The .NET Framework, and by extension Visual Basic, includes several data types that each manipulate different
sizes and ranges of numbers. This chapter's recipes show you ways to interact with those data types and
values. For those who miss their high school math classes, there are several recipes that deal with more
advanced math topics, including geometry and linear algebra.

Chapter 7, Dates and Times

The recipes in this chapter demonstrate how to use and manipulate date and time values and the components
from which they are built. Timing and time ranges are also covered.

Chapter 8, Arrays and Collections

Storing individual data values is fine, but sometimes you need to store a whole bunch of similar values as a
group. This chapter shows you how to do just that by demonstrating various features of arrays and collections.
Generics, new to Visual Basic 2005, play a prominent role in this chapter.

Chapter 9, Graphics

This chapter discusses the graphics features included with .NET, focusing on the many GDI+ graphic objects
that let you draw complex shapes and text on almost any display surface.

Chapter 10, Multimedia

Moving pictures and sounds are the core of this chapter. The recipes found here will help you bring action to
otherwise static forms and applications.

Chapter 11, Printing

Printing in .NET depends on GDI+ and its drawing engine. While some of the recipes in Chapter 9 will be useful
for general printing, you'll find recipes dealing with other printing-specific topics, such as print preview support
and the incorporation of user-specified page settings, in this chapter.

Chapter 12, Files and File Systems

This chapter focuses on the interaction between software and the data stored in disk files. Also covered are the
different methods you can use to access and manage the file systems and directories where such files reside.

Chapter 13, Databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13, Databases

Most Visual Basic applications communicate with one or more database systems. This chapter's recipes
demonstrate different methods you can use in your applications to join databases and users through the
medium of your custom software.

Chapter 14, Special Programming Techniques

If you didn't find it in another chapter, it's here. This somewhat large chapter covers topics that didn't fit neatly
into other chapters. But in our opinion, it includes some of the most interesting and tasty recipes in the entire
book.

Chapter 15, Exceptions

Error processing is the focus of this chapter. Its recipes deal specifically with exceptions and error management
in your Visual Basic applications.

Chapter 16, Cryptography and Compression

Shhsome of the recipes in this chapter are secret. But it's all right for you to read them and use them to protect
and ensure the integrity of the data managed by your application.

Chapter 17, Web Development

Most of the recipes in this book can be used in desktop or web-based applications, but there are a few special
topics that are unique to ASP.NET applications. They appear in this chapter.

Most of the book's recipes include source code you can use in your own applications. Some of the code samples are
rather long, and typing them in while reading this book would be a chore. That's why we've made the source code for
most recipes available as a separate download from the O'Reilly Media web site. To access the code, locate this book's
web page at http://www.oreilly.com/catalog/vb2005ckbk/.

What You Need to Use This Book
The recipes included in this book were designed specifically for use with Visual Basic 2005 or later. While some of the
more general recipes will work with earlier versions of Visual Basic .NET, many other recipes will generate compile-time
or runtime errors if you attempt to use them with earlier versions.

If you do not yet own a copy of Visual Studio 2005, and you aren't sure if you are ready to make the financial
investment to obtain it, you can use the free version of the development environment, Microsoft Visual Basic 2005
Express Edition. Although this version does not include all of the features included with the Standard, Professional, and
Enterprise editions of the product, you will be able to use most of the recipes in this book with it.

Microsoft Visual Basic 2005 Express Edition can build only desktop applications. If you are looking for a no-cost tool for
ASP.NET application development, try the Microsoft Visual Web Developer 2005 Express Edition.

Both Express Edition tools are available from Microsoft's MSDN web site at http://msdn.microsoft.com/express/.

The recipes in this book were all developed using Visual Studio 2005 Professional Edition.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, and directories.

Constant width

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, statements, keywords, events, event handlers, XML
tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user; also used for emphasis within code.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Visual Basic 2005 Cookbook by Tim Patrick and John Clark Craig. Copyright 2006 O'Reilly Media, Inc., 978-0-
596-10177-0."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book that lists errata, examples, and any additional information. You can access this page
at:

http://www.oreilly.com/catalog/vb2005ckbk/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you see a Safari Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

Acknowledgments
For those of you who plan on writing a computer book some day, we wholeheartedly recommend O'Reilly Media for your
publishing consideration. It produces great booksincluding this oneyear after year, books that regularly meet the
computing needs of readers. And here is why: the people who work at O'Reilly aren't just book publishers, they are
technology lovers. They actually understand and try out the code included in their books.

The authors wish to especially thank John Osborn and Ralph Davis for their constant editorial devotion and dedication to
this book, from the first glimmer of interest during the "idea phase," to the final push to get every word just where it
needed to be. Also essential were Caitrin McCollough and the dozens of other technically adept people who had their
fingers in this project.

Jay Schmelzer and Steve Saunders provided regular and valuable feedback on all technical aspects of the book. If you
find any problem with any of the code in this book, it was probably something we added in after they had a chance to
review each chapter.

From Tim Patrick
Once again my family has been incredibly patient with me as I spent time playing with the computer. You would think
that there would be a limit on how many times a person can hear me say "Just one more paragraph," and still love me.
But they do.

My beautiful wife Maki is certainly the best wife anyone could find, and I sometimes feel sad for all of the other
husbands who have to settle for less than what I have. And when I also take into account my son Spencer, who is just
becoming a fourth grader as I write this, I truly know that I am one blessed man. It is a miracle of God that such joy
comes through the two people I get to be with each and every day.

Although I see her much less often, my agent Claudette Moore is also a treasure. She lets me call her and talk about
boring paperwork and new book ideas that I should get to work on later today. Thank you again for being part of the
fun of writing.

Thanks to John Craig, John Osborn, Ralph Davis, and the team at O'Reilly for trusting me with a portion of this book's
content. As everyone in the computer industry already knew, O'Reilly Media is a top-notch group producing great
technical resources.

From John Clark Craig
This has been a bittersweet year of transition for me, starting with the unexpected death of Jeanie, my wonderful wife
of 34 years, soon after the first few chapters were authored. Jeanie was always supportive of my book writing, and she
was very excited about this one. I know she still is.

My family and friends have been a steadfast source of joy, inspiration, and support throughout this year. Dakotah and
Makayla are the best grandkids a guy could ever hope for, and all my parents, siblings, and in-laws have been there for
me when I needed them most.

My fiancée EJ Thornton has been an absolute angel, and a bright guiding light in my life for the past few months. Thank
you EJ for bringing a renewal of meaning and purpose to my life, and thank you Jeanie for blessing us and for bringing
us together!

I owe a huge debt of gratitude to Tim Patrick for jumping in with his tremendous talent to help create this book, to
Ralph Davis for his great editorial skills and emotional support (Ralph's wife passed away recently, too), to John Osborn
for his nearly infinite patience, understanding, and guidance on this project, and to everyone else involved at O'Reilly.

Finally, I want to thank Microsoft for creating an excellent set of programming tools for today's software development
needs. In particular, the recent decision to make Visual Basic 2005 Express "free forever" to the public was a smart
win/win decision for us all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WaitForExit() method
WaitForInputIdle() method
WaitForPendingFinalizers() method
Web custom control template
web development 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 email
 FTP downloads
 host name or IP address resolution for remote computers
 hyperlinks
 IP addresses
 links
 local computer IP address
 web pages 2nd 3rd 4th 5th
 XML Web Services
WebBrowser control
whitespace
wildcards
Windows file system security
Windows Forms
 basic forms
 controls
 drawing on controls 2nd 3rd 4th 5th
 localizing controls
 form properties
 host names or IP addresses of remote computers
 links
 project creation
 Properties Window
 Solution Explorer
 startup form
 tab order
 text 2nd
 Toolbox
Windows Management Instrumentation (WMI)
Windows service template
winres.exe application
winspool.drv library
WMI (Windows Management Instrumentation)
words
WriteAllBytes() method
WriteAllText() method 2nd
WriteXML() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML 2nd 3rd 4th
XML documents 2nd 3rd 4th 5th 6th
 validating
XML file template
XML Schema template
XML Web Service
XmlDocument.CreateElement() method
XmlReaderSettings class
Xor operators
.xsd file extension
XSLT file template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

