

Wrox’s Visual Basic®2005
Express Edition Starter Kit

Andrew Parsons

01_595733 ffirs.qxd 12/1/05 1:31 PM Page i

Wrox’s Visual Basic®2005 Express Edition Starter Kit
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-10: 0-7645-9573-3
ISBN-13: 978-0-7645-9573-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SR/RS/QV/IN

Library of Congress Cataloging-in-Publication Data:

Parsons, Andrew, 1970–
Wrox’s Visual Basic 2005 express edition starter kit / Andrew Parsons.

p. cm.
Includes index.
ISBN 0-7645-9573-3 (paper/cd-rom)
1. Microsoft Visual BASIC. 2. BASIC (Computer program language) I.
Title.
QA76.73B3P2542 2005
005.2_768—dc22

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Depart-
ment, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUIT-
ABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

"Microsoft" is a registered trademark of Microsoft Corporation in the United States and/or other countries and is used by
Wiley Publishing, Inc. under license from owner. Wrox’s Visual Basic® 2005 Express Edition Starter Kit is an independent pub-
lication not affiliated with Microsoft Corporation.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_595733 ffirs.qxd 12/7/05 2:24 PM Page ii

www.wiley.com

Credits
Acquisitions Editor
Katie Mohr

Senior Development Editor
Kevin Kent

Technical Editor
Todd Meister

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Permissions Editor
Laura Moss

Media Development Specialist
Angela Denny
Kit Malone
Travis Silvers

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Barbara Moore

Quality Control Technicians
Leeann Harney
Susan Moritz
Joe Niesen

Proofreading and Indexing
TECHBOOKS Production Services

01_595733 ffirs.qxd 12/1/05 1:31 PM Page iii

01_595733 ffirs.qxd 12/1/05 1:31 PM Page iv

About the Author
Andrew Parsons has been programming with the Basic language for more than 20 years and with Visual
Basic for the last eight years. He has experience with more than a dozen programming languages but
keeps coming back to the Basic language because of its easy-to-understand syntax and the powerful fea-
tures found in the modern versions, and he believes that Visual Basic is the best language to program in
no matter what your level of experience.

Andrew has written several books and technical articles about Visual Basic for magazines in Australia
and New Zealand and is constantly improving his own skills in Visual Basic with ongoing programming
work with companies such as Quicken Software (associated with Intuit Inc.) and APS. When he’s not
writing code for other people, or books to help people learn how to program effectively, he serves as edi-
tor of MSDN Magazine, Australia and New Zealand, and still finds time to write add-ins for Microsoft
Office at GrayMatter Software (www.graymatter.com.au).

You can contact Andrew at andrewp@parsonsdesigns.com.

01_595733 ffirs.qxd 12/1/05 1:31 PM Page v

01_595733 ffirs.qxd 12/1/05 1:31 PM Page vi

Contents

Acknowledgments xiii
Introduction xv

Part I: Getting Familiar 1

Chapter 1: Basic Installation 3

Where Did Basic Come From? 3
And Then Came Visual Basic 4
The Old and the New 5

Let’s Get Started 6
What It Looks Like 7

The Major Components 9
Your First Program 11

Try It Out: Creating Your First Program 11

That Was Too Easy 12
Try It Out: Your Very Own Web Browser 13

Summary 15
Exercises 15

Chapter 2: Why Do All That Work? 17

Object-Oriented Programming 101 17
Starting Out Right 19

Try It Out: Using Starter Kits 20

Try It Out: Modifying Starter Kit Projects 23

Wizards, Too 25
Try It Out: Using a Wizard 26

Everything Is Optional 28
Try It Out: Customizing the Options 30

It’s All There in the Documentation 30
Summary 31
Exercises 32

02_595733 ftoc.qxd 12/1/05 1:32 PM Page vii

viii

Contents

Chapter 3: Using Databases 33

SQL Server Express 33
Data to Database 34

Try It Out: Creating the Database 41

Connecting Database to a Project 45
Try It Out: Connecting a Database and Project 47

Alternatives to SQL Server Express 48
Summary 49
Exercise 49

Chapter 4: What the User Sees 51

User Interface Basics 51
User Interface Fundamentals 52
Adding and Customizing Controls 53

Try It Out: Adding a Control to a Form 54

The Controls 55
Basic Controls 55
Layout Controls 58
Menu and Status Controls 59
Dialog Controls 61
Graphic Controls 61
Other Controls 62

Anchoring and Docking 63
Anchoring 63
Docking 64

Building the User Interface for the Personal Organizer 64
Try It Out: Creating the Main User Interface 64

Summary 67
Exercises 67

Chapter 5: How Do You Make That Happen? 69

Writing Code 69
The Basics of Basic 70

Try It Out: Writing Code #1 74

Want Something More? 76
Try It Out: Adding Conditional Code 77

Try It Out: Writing Event Handlers 82

Objects: A Special Case 83
Applying the Knowledge 83

Try It Out: Connecting User Interface Elements 84

02_595733 ftoc.qxd 12/1/05 1:32 PM Page viii

ix

Contents

Summary 88
Exercises 89

Part II: Extending Yourself Is Good 91

Chapter 6: Take Control of Your Program 93

Adding Some Class to Your Program 93
Creating Custom Classes 94
Special Method Actions 101

Try It Out: Creating a Class 103

Control Freaks Are Cool 104
Design-time Properties 105

Try It Out: Modifying the Menu and Toolbar 108

Custom Controls — Empower Yourself 111
Try It Out: Adding Properties to Persons 112

Go That Extra Mile 115
Try It Out: Creating Dynamic Buttons 116

Summary 119
Exercises 119

Chapter 7: Who Do You Call? 121

Using the Database Connection 121
An Alternate Method 124
What about Existing Controls? 125

Try It Out: Adding a Database to Personal Organizer 126

Database Programming 127
Actions You Can Perform 128

Try It Out: Accessing the Database through Code 129

Summary 141
Exercise 141

Chapter 8: It’s My World — Isn’t It? 143

They’re My Classes 143
It’s All about the Computer 144

Try It Out: Using the Clipboard 145

Try It Out: Accessing System Information 147

Try It Out: Sending Keystrokes with SendKeys 149

Getting to the App 153
Try It Out: Using My Project and My.Application 154

02_595733 ftoc.qxd 12/1/05 1:32 PM Page ix

x

Contents

You Can Use It Again and Again . . . and Again 156
Try It Out: Using Code Snippets 156

Reusing Code Properly 158
Partial Classes 158
Generics 160

Try It Out: Adding the Login Form 162

Summary 167
Exercises 167

Chapter 9: Getting into the World 169

Creating a Web Browser 169
WebBrowser Properties 170
WebBrowser Methods 171
WebBrowser Events 172

Try It Out: Creating a Custom Web Browser Control 174

Web Services 179
Try It Out: Consuming a Web Service 181

Commercial Web Services 183
Try It Out: Web Service Registration 183

Amazon’s ItemSearch 184
Try It Out: Adding “Suggested Gift Ideas” 185

Visual Web Developer 2005 Express 196
Try It Out: Using Web Developer Express 196

Summary 198
Exercise 198

Chapter 10: When Things Go Wrong 199

Protecting Your Code 199
Try, Try, and Try Again 200

Try It Out: Using Try and Catch 201

Let the Others Know! 203
Try It Out: Throwing Exceptions Around 204

Troubleshooting Your Code 205
Telling the Program to Stop 205
Keeping Track of Variables 207

Try It Out: Using the Debug Object 210

Gone Too Far and Don’t Want to Stop? 211
Try It Out: Using Edit and Continue 212

Summary 213
Exercise 213

02_595733 ftoc.qxd 12/1/05 1:32 PM Page x

xi

Contents

Part III: Making It Hum 215

Chapter 11: It’s Printing Time! 217

Timing Is Everything — Well, Almost 217
A Use for Timers 218

Try It Out: Using the Timer Effectively 220

Printing 224
Try It Out: Printing 226

System Components 231
Try It Out: Using System Components 232

Summary 239
Exercises 240

Chapter 12: Using XML 241

So What Is XML? 241
Extensible Means Just That 243
XML Attributes 244
Validating Data 244

Databases and XML 245
Try It Out: Exporting and Importing XML 246

The System.Xml Namespace 253
Try It Out: Creating a Wizard Form 256

Summary 277
Exercises 278

Chapter 13: Securing Your Program 279

Program Security 279
Role-Based Security 280
A Closer Look at Identity and Principal 282

Try It Out: Using Role-Based Security 282

Code-Based Security 283
Cryptography and Encryption 284

Secret Key Cryptography 285
Public Key Cryptography 285

Try It Out: Encrypting a Password 286

Summary 291
Exercise 291

02_595733 ftoc.qxd 12/1/05 1:32 PM Page xi

xii

Contents

Chapter 14: Getting It Out There 293

Installing the “Hard” Way 293
Just ClickOnce 294

Try It Out: Using ClickOnce 295

ClickOnce Options 299
ClickOnce Has Security and Signing, Too 302

Try It Out: Advanced Settings in ClickOnce 304

Summary 306
Exercise 306

Appendix A: Need More? What’s on the CD and Website 307
Appendix B: .NET — The Foundation 309
Appendix C: Answers to Exercises 317

Index 341

02_595733 ftoc.qxd 12/1/05 1:32 PM Page xii

Acknowledgments

While I would love to claim that this book is the result of only my own work, it just wouldn’t be true.
Without the help of a number of colleagues, I would not have been able to complete this book at all,
let alone with the high quality of examples and the accuracy of code listings that you’ll find throughout
the chapters.

In particular, I would like to thank the following people from Microsoft who have been continuously
available to help out when I was stuck with various beta builds of Visual Basic Express and who gave
me excellent feedback that made the book better — Charles Sterling, Frank Arrigo, Ari Bixhorn, and Jay
Roxe. There are a heck of a lot of other Microsoft guys in Australia and the United States who have
helped out in various ways, too — to all of you, a big THANK YOU!

It also helped that I had an awesome set of fellow developers out there who are as committed to helping
people learn how to program as I am, and the following names are just some of the guys who have
encouraged me in a myriad of ways while I was writing this book. So, to Tony Gray, Nick Wienholt,
Nick Randolph, Greg Low, Mitch Denny, Carl “GoatBoy” Belle, Kevin Johnson, and “uber-boss” Pierre
Le Grange: You all know what you did and it was all worth it — thanks for sharing the passion I have to
help other people get into programming.

Saving the best for last — I want to thank my family. Without the support of my wife, Glenda, and her
understanding and acceptance of the many late nights and absences while I slaved away at this book, it
just wouldn’t have been possible at all. And to my kids, Jacob and Ashleigh, I love you, and thanks for
loving me back!

One last note — in a pretty special way, I’ve written this book for my son, Jacob. He’s convinced that he
wants to follow in my footsteps as a programmer, and I feel privileged to be able to write a book that
will help him learn how to program, too. It’s not often that a father has an opportunity to help his chil-
dren in this unique way, and I’m very thankful that I can do it for him.

Jake, you rock, little buddy!

03_595733_flast.qxd 12/1/05 1:33 PM Page xiii

03_595733_flast.qxd 12/1/05 1:33 PM Page xiv

Introduction

So you want to get a proper start in programming but don’t know quite where to begin? You couldn’t
have chosen a better tool to get you on the ground running than Microsoft’s new programming applica-
tion, Visual Basic 2005 Express Edition. Of course, you’ll now need to learn how to use it, maximizing
your education while minimizing the impact on your busy life.

That’s where this book comes in. Not only do you have a comprehensive introduction to Visual Basic
Express as a language and a development tool, but you also have tips, tricks, and additional techniques
that will bring you up to speed before you know it.

From installation to building your own programs, customizing existing code, debugging, securing, and
deploying solutions, the next few hundred pages will be your guide to the world of Visual Basic Express.

I’ve been using the Basic programming language in many forms for over 20 years, and I freely and hap-
pily admit that this version is the easiest I’ve ever encountered. Considering that Basic as a language has
always been one of the most easily understood, that’s saying something.

Who This Book Is For
If you’ve picked this book up to see what Visual Basic is all about, then I’ve got a little secret — this
book is for you. Wrox’s Visual Basic 2005 Express Starter Kit comes with Visual Basic Express and other
Microsoft products, such as Visual Web Developer Express and SQL Server Express, on a CD — so you
don’t need anything else other than what you’re holding in your hands.

This book has been designed from a practical, task-oriented approach so that the information taught is
backed up with solid examples that confirm and extend the text. If you’re someone who prefers to get
straight into your learning experience, rather than try to wade through thousands of pages of text, this is
exactly the book you need. From the first chapter, you will be writing programs and learning how to use
Visual Basic to solve common programming tasks.

If you’ve used the Basic language in its previous forms, you’ll appreciate the elegance and simplicity of
this latest iteration, which is coupled with the most powerful library of functions and classes Visual
Basic has ever been able to access. In addition, if you’re new to the language or new to programming,
this book will introduce you to the important concepts and information you’ll need to get up to speed —
by the end of this book, you’ll find that Visual Basic Express is so easy to learn that you’ll wonder why
you haven’t been programming already.

What This Book Covers
This book is completely, unabashedly focused on the just released Microsoft Visual Basic 2005 Express
Edition. From installation to deployment, everything that you can do in Visual Basic Express is discussed
here so you can get up to speed as quickly as possible.

03_595733_flast.qxd 12/1/05 1:33 PM Page xv

xvi

Introduction

It should be noted that Microsoft has released Visual Basic in a few different editions this time around.
First, there is the professional programmer’s tool, Visual Studio 2005, which includes Visual Basic 2005
(in both Professional and Enterprise versions). The newcomers to Microsoft’s development tool collec-
tion are the Express Editions, of which Visual Basic features in two: Microsoft Visual Basic 2005 Express
Edition and Microsoft Web Developer 2005 Express Edition. As the name of the latter suggests, Web
Developer Express enables you to create applications designed to run over the Internet and enables
developers to write their code in the Visual Basic language. However, it is Microsoft Visual Basic 2005
Express Edition that is the focus of this book.

Although these other editions of Visual Basic are not covered in detail, Visual Web Developer 2005
Express Edition is featured in Chapter 9, which deals with programming for online applications.

How This Book Is Structured
To ease your way into the world of Visual Basic programming, I’ve split the information into three gen-
eral parts — ”Getting Familiar,” “Extending Yourself Is Good,” and “Making It Hum.” As the titles may
intimate, I first introduce you to Visual Basic, then describe how to take control of the language, and
then finally explain how to fine-tune everything and make all the bells and whistles work.

❑ Part I, “Getting Familiar” — Part I covers Visual Basic first as a language, and then as a devel-
opment environment. The chapters in this section show you how to install Visual Basic Express
and navigate around the environment, building your first program as you go, and then it delves
into detail about the user interface, event programming, and how to access data.

❑ Part II, “Extending Yourself Is Good” — Part II is where things start getting really interesting,
showing you how to write proper programming code by creating additional features for your
applications, such as multiple users and custom-built controls. You’ll also learn how to debug
code that isn’t functioning correctly.

❑ Part III, “Making It Hum” — In Part III of the book, you’ll be introduced to topics that previ-
ously would have been well out of reach for the beginner and intermediate programmer. XML
processing, data encryption, and notification dialogs were all difficult to implement until .NET
came along. Using Visual Basic Express smoothes those processes even further so that they
become almost as easy as the introductory lessons most programmers learn.

As a bonus to learning each individual task, if you follow the steps outlined in every chapter, you’ll end
up with the basics of your own personal organizer, complete with DVD library; information about
friends and family members, including birthdays and contact information; and a reminder system so
you can ensure that you don’t forget to do the important things that need doing.

What You Need to Use This Book
Everything you need to use this book can be found on the accompanying CD. You’ll need Visual Basic
2005 Express Edition installed, as well as SQL Server Express for some of the later topics, both of which
have installers on the CD. Apart from that, everything else you will create yourself by following the
examples and exercises found in each chapter. If you’re not sure of the best way to tackle an exercise at
the end of a chapter, Appendix C has suggested answers for each one so you can be confident that you’re
learning what you need to know.

03_595733_flast.qxd 12/1/05 1:33 PM Page xvi

xvii

Introduction

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book:

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ I highlight important words when I introduce them.

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show filenames, URLs, and code within the text like so: persistence.properties.

❑ Code is presented in two different ways:

In code examples, I highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose to either type in all the code manually
or use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the 10-
digit ISBN is 07-64595-9573-3 (changing to 978-0-7645-9573-8 as the new industry-wide 13-digit
ISBN numbering system is phased in by January 2007).

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

03_595733_flast.qxd 12/1/05 1:33 PM Page xvii

xviii

Introduction

reader hours of frustration; and at the same time, you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem that enable you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Enter the required information to join, as well as any optional information you wish to provide,
and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_595733_flast.qxd 12/1/05 1:33 PM Page xviii

Part I

Getting Familiar

04_595733 pp01.qxd 12/1/05 1:33 PM Page 1

04_595733 pp01.qxd 12/1/05 1:33 PM Page 2

1
Basic Installation

Ever wondered where Basic came from? Much maligned but still the most popular programming
language in the world, the Basic language has enjoyed a colorful past and many evolutions to get
where it is today. In this chapter, you’ll discover the origins of this powerful programming lan-
guage. You’ll install Visual Basic 2005 Express Edition along with the supporting applications and
frameworks you’ll need to write programs effectively. And finally, yes, you will indeed write your
first program.

By the time you hit the end of this chapter, you’ll be familiar with how Visual Basic is put together
and be ready to create programming projects that will form the basis for all of your solutions from
here on out.

In this chapter, you learn about the following:

❑ The history of Visual Basic as a language

❑ Installing Visual Basic Express and its dependencies

❑ Creating your first program

Where Did Basic Come From?
If you tell friends or work colleagues who are experienced in programming that you’re going to
learn Visual Basic, there is a good chance that they’ll look at you with a question in their eyes. That
questioning glare is usually an indicator that they’re in what I call the “other half” of the program-
ming world. This is the group of programmers who still believe that Basic is not a real program-
ming language, and should be reserved for people who don’t know how to write a “real” program.

If this happens to you, just look at them and smile. For while Basic has indeed had a rocky history,
the last couple of versions of Visual Basic rival the best alternatives in development, and with
Visual Basic 2005 Express’s extra features that make it even easier to create full-blown solutions,
not only will your programs be able to achieve the same results as the best professional coder, but
you will also be able to do it in less time — much less time.

05_595733 ch01.qxd 12/1/05 1:34 PM Page 3

However, to be fair, this section provides a quick rundown of where Visual Basic Express came from, just
so you know how far it has come. You’ll learn that Visual Basic has a rich past that has helped it evolve
into a solid, respected language that often leaves the more recent programming languages scrambling
for a foundation on which they can be compared against it.

The Basic programming language was first created back in 1964 — more than 40 years ago. Its very
inception was meant to make programming easy and more accessible. In fact, the name was actually
originally an acronym that stood for Beginner’s All-Purpose Symbolic Instruction Code. It was designed
as an interim step for students when they were learning programming concepts for more complex lan-
guages such as Fortran.

In the 1970s, Bill Gates and Paul Allen got involved and worked with the company MITS (Micro
Instrumentation Telemetry Systems) to develop a version of Basic for the Altair PC. From that humble
beginning, Gates and company ported Basic to various other computing platforms, and by the end of
that decade, most computers had some form of the Basic language. It was from this starting point that
both its ease of use and popularity, as well as the disparaging opinions of many hardcore programmers,
sprang.

When DOS was first released for the early PCs, versions of a Basic interpreter were distributed along
with the operating system. Programming code can be executed in two ways — interpreted or compiled:

❑ When it is compiled, it is assembled into the underlying machine code and can execute fast.
However, the compilation can take a while, and the program will not execute at all if even one
error is present.

❑ An interpreter, on the other hand, requires another program to run through the code one line at
a time and execute it piece by piece. While this is slower than compiled code, it doesn’t require a
compilation routine before running, and it can execute working code up to the point where an
error occurs. Basic, and Visual Basic in particular, requires some form of a runtime component
because of the interpretive nature of the language compilers.

Microsoft took the command-line interpreter to the next step and introduced QuickBasic. QuickBasic did
actually compile the code into an executable, but it was still slow in comparison to the professional lan-
guages on the market. In the late 1980s and early 1990s, Alan Cooper created a prototype that enabled
a developer to dynamically add components, then called widgets, to a program running off a small,
custom-built language engine. Microsoft bought the concept and combined it with QuickBasic to form
Visual Basic 1.

And Then Came Visual Basic
Visual Basic was a revolution to Basic programmers worldwide as it enabled them to drag and drop con-
trols from a toolbox onto their forms without having to write any code at all. It also changed the focus of
the actual code to an event-oriented model that reacted to things happening, as opposed to making
things happen.

Visual Basic’s versatility enabled third-party companies to develop add-ins and additional controls that
Visual Basic programmers could use in their own applications, and the popularity of the language grew
hugely.

4

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 4

Subsequent versions of Visual Basic introduced database support (ODBC in VB2, and Jet in VB3) and the
ability to create your own add-ins and classes (in VB4), and ultimately your own controls (in VB6).
While all of this was happening, Basic appeared in other applications such as Access Basic and VBScript
for Internet Explorer. This integration of Basic as a way of programmatically accessing features in
Windows and applications culminated in Visual Basic for Applications, which first appeared in
Microsoft Office 97.

Throughout all these stages of its evolution, however, Visual Basic was still crippled with additional run-
time components and a (much) less than perfect implementation of object-oriented programming that
hurt its reputation in the performance and pure programming stakes.

That all changed with .NET. Visual Basic .NET was the first fully compiled language and required no
extra runtime component other than the one required by all other .NET languages — the .NET Common
Language Runtime (CLR). Visual Basic .NET programs compile down to the same assembled code that
the other .NET languages do; and because of this, Visual Basic has no performance issues in comparison
to C# or C++.

The Old and the New
The beauty of this latest move for Basic is that it has not lost the ease of use and additional features that
make it the choice of many programmers — wizards, intuitive user interface design, and some excellent
debugging features (although edit-and-continue was removed in the early days of .NET, it lives again in
Visual Basic 2005 Express).

In fact, the modern development environment for .NET has more in common with the way Visual Basic
6 worked than the C++ equivalent. The toolbox, Solution Explorer, and properties pages are almost
unchanged, and the way of associating code with user interface elements is identical to previous ver-
sions. For people with previous experience in Visual Basic programming, the only real hurdle is learning
how to handle the new way of actually coding — proper object-oriented programming is admittedly dif-
ferent from the way VB6 did it.

So here we are, with a programming language that has evolved over more than 40 years and through
many iterations and somehow has maintained a freshness with each release that has kept programmers
faithful to it over all that time. It is a language that possesses an incredibly robust and intuitive framework
of objects and programming constructs that ease you, as a programmer, into creating full-blown applica-
tions almost without thought, and an environment that can produce applications that rival the profession-
ally built solutions on the market in performance and user interface. Visual Basic 2005 Express — want to
use it? Thought so.

In the last few paragraphs, several programming terms have been used that you may
not be familiar with. If you are new to programming, then the next few chapters will
be extremely useful to you — particularly the information in Chapter 2 that explains
the most commonly used object-oriented programming terms that you’ll encounter
in Visual Basic Express.

5

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 5

Let’s Get Star ted
Obviously, before you do anything else, you’re going to need to install Visual Basic Express on your
computer. Microsoft has fine-tuned this process over the years, and you’ll find the steps to be as easy as
1-2-3.

When you go through the Visual Basic 2005 Express Setup wizard, you need to select only a couple of
options before the setup process takes over and does the rest for you. After you read and accept the
license agreement, the installation program will examine your system and present you with a list of two
optional products (see Figure 1-1).

Figure 1-1

As far as I’m concerned, both of the optional components are essential:

❑ The MSDN Express Library includes the documentation for both the .NET Framework and
Visual Basic 2005 Express. If you do not include this in the installation, you will have only very
rudimentary help available to you without going to the Internet.

❑ The second option includes SQL Server 2005 Express Edition in the installation process so that
you can develop full-blown database-based applications. And if you’re still not convinced, you
will need it to be installed if you want to complete all of the exercises and tasks set out in this
book.

6

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 6

The only exception would be if you already have SQL Server installed on your system. In that
case, you could use the existing installation for any database server examples instead, although
I cannot guarantee they will work as expected if you are using an older version of SQL Server.

The only other decision that you have to make is to where to install the application. Note that you don’t
actually get to choose the location of the optional components or the underlying .NET Framework. In
addition, this location does not affect the location of the projects you will create — you’ll set that location
later in this chapter. Once you’ve made that decision, click Next to start the actual file copy and registra-
tion process.

As the installer copies each component over to your computer, it will mark the status on an interim
screen. The obvious icons will point out any errors, but most likely you’ll encounter nothing but success.
In the event of an error, the installation process will advise you as to what steps to take to rectify it
before you try again.

Fortunately for you, the rest of the installation is automatic, and while it can take quite some time, you
can sit back and have a coffee (and perhaps a Danish) while you wait. When you’re presented with the
final screen, you have the capability to submit to Microsoft a copy of the installation log so they can
check it against what they expect.

While many people believe submitting this information is either pointless or a way for Microsoft to gain
access to private data, Microsoft does actually find the information useful in fine-tuning its processes,
and anything that improves the speed and efficiency of an installation process is something I am 100
percent behind.

What It Looks Like
Once you have successfully installed Visual Basic 2005 Express, you can start it up by selecting it from
your Start menu. Click Start ➪ All Programs ➪ Visual Basic 2005 Express Edition. After the obligatory
splash screen identifying the application and version, you’ll be presented with an interface much like the
one shown in Figure 1-2.

The main program is known as an Integrated Development Environment, or IDE for short. The IDE of
Visual Basic Express has been formed from the experiences of many programmers and many other envi-
ronments, but it will definitely be familiar to anyone who has programmed in Visual Basic before.

To explore the main elements, you should expand and pin several windows and explorers. As you can
see in Figure 1-2, to the right of the Welcome page is an area entitled Solution Explorer. In the top-right
corner of this area are three small buttons. The middle one is the pin, or auto hide, button. When clicked,
this tells the IDE to always show the area, or to automatically hide it when it is not needed. Another win-
dow that is currently hidden is the toolbox to the left of the Welcome page.

7

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 7

To better describe the environment, and to start setting it up in a way that will be useful to following the
examples in this book, move your mouse over the Toolbox tab on the left, and when the IDE automati-
cally expands it, click the pin button to keep it from automatically hiding. Next, create a basic project by
clicking on the File menu, selecting New Project, and clicking OK when the New Project dialog window
is shown. This will create an empty form and show it in Design view.

Figure 1-2

To finish setting the scene, double-click on the word Button in the Toolbox window, and the Visual Basic
Express IDE will automatically place a button on the form in a default location and with default settings.
After you’ve done all this, the IDE should look like Figure 1-3.

8

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 8

Figure 1-3

The Major Components
Now that the main components of the IDE are visible (and you have even used some!) it’s time to tell
you what each section does. You should already be familiar with menus and toolbars — they’re present
in almost every current application. The thing to be aware of in Visual Basic Express is that they’re
dynamic, and show only the commands that are appropriate to the current context. For example, the
Format menu will disappear when you’re in a code window, as it doesn’t make sense for it to be present
when you’re writing code. Similarly, the Text Window toolbar won’t show when you’re designing a
form layout.

The next major window is the Toolbox. In the next several chapters, you’ll use the Toolbox to add various
components to your applications, which should give you an idea of what each one does. Every funda-
mental component you can add to your solution can be found in the Toolbox. To add one to your form
layout, you can double-click on it or click-and-drag it to the form.

9

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 9

The objects are grouped into logical sections based on function. By default, you’ll find the Windows
Forms section is expanded and contains many commonly used elements such as buttons and text areas.
The other readily available groups deal with data-related components, such as database connections and
system components, that give you access to system-level features such as performance monitors and
hardware devices.

Moving over to the other side of the main window, you’ll find two more essential windows: the Solution
Explorer and the Properties window (both of which are shown in Figure 1-4).

Figure 1-4

❑ The Solution Explorer provides you with a way to navigate through your program’s structure,
with entries for each form, module, and class, along with supporting files such as the applica-
tion configuration file. The view is structured in a way similar to Windows Explorer, so you
should have no problem navigating your way through the program.

❑ The Properties window gives you access to the various configurable options available to the
currently selected item. This can be a form, a server component, or an individual object (such as
the Button object shown in Figure 1-4). By default, the Properties window is organized into cate-
gories, but you can click the A–Z button to sort the properties alphabetically instead.

The last major areas to cover are the Error List and Task List windows at the bottom of the IDE. These two
windows will not appear until you have compiled or run an application, but after that point, they will
always be present by default:

❑ The Error List will be populated with any potential issues with the code and form design of
your application. The issues will be broken down into three categories — errors that will stop
the program from compiling at all, warnings that indicate a probable runtime error that ought
to be investigated before running your program, and informational messages that are purely
there for your reference and won’t affect the way the program runs.

❑ The Task List contains automatically generated tasks, although you can also manually create
your own user tasks. You can use this list to keep an eye on what needs to be done, and you can
check individual tasks off as you complete them.

10

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 10

Your First Program
You’re actually well on the way to creating your first program in Visual Basic 2005 Express. Earlier in the
chapter, you created a Windows Application that generated a blank form. On the form, you added a but-
ton. To finish the job, you’ll need to write a single line of code that will be executed when a user clicks on
the button. The following Try It Out walks you through the entire process of creating the project, adding
the button to the form, and writing your first line of code.

Try It Out Creating Your First Program
If you didn’t create the project in the previous part of this chapter, follow these steps:

1. Start Visual Basic 2005 Express. As mentioned previously, you’ll find the link to Visual Basic in
your main All Programs list on the Start menu.

2. Create a new Visual Basic project by selecting File ➪ New Project. This will present you with the
New Project window, listing all available project templates (see Figure 1-5).

Figure 1-5

By default, Windows Application should be selected. This will create a normal program that
runs in Windows. Click OK when you’re ready to have the project generated for you.

3. After a moment, you will be presented with a blank form in the center of the IDE. Find the
Button control in the Toolbox and double-click it to automatically add it to the form in the top-
left corner.

4. Select the Button object that was added to the form by clicking it once. Locate the Text prop-
erty in the Properties window (it may be easier if you sort it alphabetically) and change it to Say
Hello. To do this, you should click the right-hand column next to Text to access the value (by
default it says Button1, which is the name of the control).

11

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 11

5. Double-click the button on the form and the IDE will automatically open the code window for
this form. It will then create the necessary code to execute your code when the button is clicked,
like so:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

6. In between the Private Sub and End Sub lines, write the code MessageBox.Show(“Hello
World!”) so that the program appears like this:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

MessageBox.Show(“Hello World!”)
End Sub

7. Now you can run your program. The easiest way is to simply press the F5 button, but if you
find the menus and toolbars easier to use, you’ll find the Start command in the Debug menu.
Either way, when you run your program, you’ll be presented with a simple form with a single
button on it. If you click the button, it will display a message box with the words “Hello World!”
(as shown in Figure 1-6). Congratulations — you’ve written your first complete Visual Basic
Express program!

Figure 1-6

What you’ve done is create a Windows Application — a program designed to run on Windows with a
base form. You then added a button to it and wrote actual code to generate a message dialog box when
the user clicked it.

That Was Too Easy
Yes, I know — that first program seemed a little too easy, didn’t it? That you needed to write only one
line of code to actually create a program containing a button on a form that produces a message might
seem a little crazy, but that’s what Visual Basic Express is all about — making life as a programmer
incredibly simple.

12

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 12

To show you that this simplicity extends well beyond the age-old Hello World program, I can show you
how to create a simple web browser. The intention is to create a form that has a button, a text input area,
and a fully functional web browser on it. When the user clicks the button, the web browser will attempt
to navigate to the URL entered in the text area.

Try It Out Your Very Own Web Browser
1. Start a new Windows Application project in the same way you did in the previous Try It Out

exercise.

2. Once the blank form is generated, you need to add a Button control, along with a TextBox con-
trol, and a WebBrowser. Because you want to be able to see what’s on the web page, resize the
form to 500 pixels wide by 460 pixels high. To do this, you can select the form in the design win-
dow and click and drag the bottom right corner to the desired size, or you can locate the Size
values in the Properties window. You’ll learn more about properties in more detail in subse-
quent chapters, but for now overwrite the current setting with the value 500, 460.

3. Once the form size is set, click and drag the three controls from the Toolbox onto the form and
then resize them — again using either the click-and-drag method or setting the values directly in
the Properties window — so they are laid out as shown in Figure 1-7. You should also set the
Text property of the button control to the word Go.

You’ll notice that as you click and drag controls to move them about or to resize them, small
helper lines appear. These lines indicate ideal proximity to the edges of the form or to other con-
trols. In some cases, you’ll also see small blue alignment lines that make aligning controls with
each other easy.

Figure 1-7

13

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 13

4. Now that you’re done with design, all you need to do is add the code to make the button react
when clicked. Just as you did in the previous Try It Out, double-click on the button to generate
the code necessary to hook into the click of the button.

5. The only thing you need to do in the code is tell the WebBrowser control to go to the URL speci-
fied in the TextBox control. The properties you see in the Properties window are also accessible
in code. The way you access these properties is by specifying the name of the control followed
by a period (.) and then the name of the property. Methods are functions connected to an object,
and they execute a certain task. In this case, you need the Text property of the TextBox control
to get the URL text, and the Navigate method of the WebBrowser control to tell it to go to the
URL. This is all achieved with the following line of code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

WebBrowser1.Navigate(TextBox1.Text)
End Sub

6. Run the program by pressing F5 or selecting the Start command on the Debug menu. When the
form is displayed, type a URL in the text area, such as http://www.wrox.com, and then click
the Go button. After a moment, the web browser area of the form will be populated with the
web page associated with the URL, as shown in Figure 1-8.

Figure 1-8

As you can see, creating what appears to be a fairly complex program is made simple in Visual Basic
2005 Express. The controls used to create this program, along with the techniques known as method and
property access in code, are discussed in the next few chapters.

14

Chapter 1

05_595733 ch01.qxd 12/1/05 1:34 PM Page 14

Summary
Creating programs using Visual Basic 2005 Express is an immensely rewarding process. When you need
to write only a couple of lines of code to achieve a feature-rich solution, it frees you to think of more
complex solutions and helps you harness the power of Windows in ways that previously would be too
difficult to contemplate.

In this chapter, you learned to do the following:

❑ Install Visual Basic Express, SQL Server Express, and the associated documentation

❑ Create a simple application that says “Hello World,” and another that can browse a website

In the next chapter, you’ll find out about starter kits and wizards — more features of Visual Basic Express
that make your programming life easier. Along with these wizards, you’ll learn about some core pro-
gramming concepts such as controls, classes, methods, and properties that are essential to programming
in any language.

Exercises
1. Installing Visual Web Developer 2005 Express Edition: To create applications that run on the

Internet, you can still use Visual Basic 2005 as a language, but you will need to install Visual
Web Developer 2005 Express Edition. The method for installing Web Developer Express is
exactly the same as what has been outlined here, but it will install Web Developer instead of
Visual Basic. If you have already installed Visual Basic Express, you’ll find that the Web
Developer installation process does not include options for MSDN or SQL Server, as it automati-
cally detects that they are already present on your system.

2. Customizing the Browser Application: Extend your web browser program so you can both go
back to the previous web page you visited and navigate to the default home page of Internet
Explorer. You’ll need to use two more methods of the WebBrowser control —GoHome and
GoBack.

15

Basic Installation

05_595733 ch01.qxd 12/1/05 1:34 PM Page 15

05_595733 ch01.qxd 12/1/05 1:34 PM Page 16

2
Why Do All That Work?

Other programming languages require you to create everything you’ll need using code. While that
might appear to give you more control over every aspect of your program, that perception is often
wrong when it comes to modern languages such as Visual Basic 2005 Express.

Rather than write code, the development environments included as part of the whole package
along with the language enable the programmer to click and drag user interface elements around,
provide quick access to the various components and their properties, and format the actual code
portions of the application in a way that makes creating new subroutines relatively painless.

In addition to these fundamental capabilities, Visual Basic 2005 Express takes it a step further with
wizards and starter kits. Both of these walk you through various options and then generate large
sections of code designed to do what you require without you needing to know how it was done.

In this chapter, you learn about the following:

❑ The programming fundamentals of an object-oriented world

❑ How to use starter kits

❑ What wizards are and how to take advantage of them

❑ How to set up the environment and options to customize your experience

Object-Oriented Programming 101
When it comes down to it, in order to understand any programming language, you actually need
to know how the code fits together. The majority of this chapter walks you through the wonderful
features of Visual Basic Express that reduce the amount of code you have to write, sometimes
enormously; and along the way, you’ll benefit from a basic understanding of how the language
works in general.

Visual Basic Express is an object-oriented programming language. What this means is that every-
thing revolves around individual objects and how they interact with each other and the rest of the
world. A real-world example might be an employee of a company. The employee has a name, date

06_595733 ch02.qxd 12/1/05 1:35 PM Page 17

of birth, and a salary. The employee can start work, finish work, and perform a variety of functions in
between. One such function might be to deliver the results of a job to another employee. Another func-
tion might be leaving the office if the fire alarm sounds.

All of these functions and descriptive elements about the employee help define it as an object. In pro-
gramming terms, the employee could be defined as an individual object, with its name, date of birth,
and salary being stored as properties, and the various functions defined as methods and events. Other
employees can interact with this one using these methods.

It gets a little more involved than that, however. Objects can house other objects. Continuing the
employee example, each department in the company could be defined as an object with specific proper-
ties and functions. Within the department are a number of employees. This translates directly to the pro-
gramming concept — a department object can have a collection of employee objects and these employee
objects can relate to each other through the functions they expose to each other, or even cross depart-
ment boundaries and talk to an employee belonging to another department. The only caveat to this is
that you as the programmer must implement the code that makes this interaction possible.

In other words, everything in Visual Basic Express is an object, and all code is written to make the
objects interact with each other. Every object has a collection of descriptive elements called properties. A
property is something that defines an aspect of the object, such as its name, color, or size. In addition to
properties, objects can have methods. Methods are subroutines that perform a section of code. They can
do pretty much anything you want them to and are usually defined in two groups — internal functions
that are called only by other parts of the object, and external methods that are invoked by other objects.
Finally, objects include events. Events are special method subroutines that are connected to set circum-
stances. For example, a button control could be clicked by the user, and you’ll usually want to know
about that when it occurs so you can respond accordingly — for this purpose, the Click event is
exposed by the Button object.

All these elements — properties, methods, and events — combine to form the structure of an object. In
programming code, this structure is defined and known as a class. When you need an instance of a class,
you create an object based on the class as a template. This method of creating a class definition enables
you to easily create multiple objects of the same kind. In the employee example, you would define an
Employee class and define the various properties, events, and methods in it. Then you would create an
Employee object for each employee you want to handle, and it would automatically receive every ele-
ment you defined in the class.

When creating an object-oriented program in Visual Basic Express, you don’t need to know much more
than that. All the properties belonging to a particular object are accessible in the Properties window or in
the code, by typing the object name, followed by a period (.), followed by the property name. Methods
are called using a similar method.

Events work slightly differently, as you need to tell the code how to handle the event when it occurs. You
do this by “handling” the event with a function defined in the containing object that owns the object that
has raised the event. In the company example outlined so far, there may be a Building object that has a
FireAlarmSounded event. This event is triggered whenever there is a fire and the alarm goes off. The
Employee object would reference the Building object and have a function defined that handles the
Building’s FireAlarmSounded event. This might appear like so:

Private Sub FireAlarmSounded Handles myBuilding.FireAlarmSounded
ExitTheBuilding

End Sub

18

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 18

The final thing to note at this point is that you can refer to objects within objects as well. If the
Department object needed to know the name of the building in which a particular employee was situ-
ated, it might get that information by concatenating the Employee object with the Building object and
the Building object’s name, all joined with periods, as shown in the following line of code:

sNameOfBuilding = myEmployee.Building.Name

Now that the essential theory work is done, you can have some more fun — this time with starter kits.

Starting Out Right
The people at Microsoft have outdone themselves this time around. Normally, programming languages
come with an Integrated Development Environment (IDE), a bunch of prebuilt controls that can be
dragged and dropped onto a form, and a number of wizards to automate certain tasks. Visual Basic 2005

19

Why Do All That Work?

Quick Reference Glossary
As you read through Wrox’s Visual Basic 2005 Express Edition Starter Kit, you may find
yourself encountering the following programming terms. Use the definitions provided
here as a cheat sheet to help remember what they all mean:

Class — The definition of something to be used in the programming. The class defines an
object’s makeup, while an object implements a class structure for an individual instance.

Object — A discrete piece of data that is defined by a class, including public elements
and internal data

Property — A descriptive element of an object. Properties are defined in the class and
normally describe the object in some way. For example, name, date of birth, and phone
number are all properties of a Person object.

Method — A function belonging to an object that can be called by other parts of the
program. Usually, methods will perform an action or set of actions against the object.
A Person object may have a GoToSleep method, which puts it into a sleep state.

Event — A predefined occurrence that the object knows about and can communicate to
other parts of a program. Events are intercepted by event handlers and can convey to
the recipient code information that is necessary for it to function properly. The Person
object could have a GoneToSleep event that is raised whenever the object’s sleep state
is activated.

Here are some other basic programming terms you’ll need to remember as you
progress through this book:

Function — A subroutine that can accept pieces of data as input and return another
data element as output.

Variable — A special kind of object that contains a single piece of data, such as some
text or a number. Variables store this information so you can retrieve it later.

Control — A special kind of object that you can put on a window or form that behaves
in a specific manner. Examples of controls are Buttons, TextBoxes, and ListBoxes.

06_595733 ch02.qxd 12/1/05 1:35 PM Page 19

Express does do all of that, but there’s an extra feature that sets a new standard for rapid development —
the starter kit.

The main starter kit is the DVD Movie Collection Starter Kit. This project template will automatically
create your main form, complete with all necessary controls to create and maintain a simple DVD collec-
tion. In addition, it comes with web access calls to retrieve information from Amazon.com and a
database setup so all of the information can be retained between program executions.

Once you have the base application generated by the starter kit, you can customize it as much as you
need to — everything used to create the program is accessible by you when it is complete. This enables
you to check out other coding styles, the programming structure of a working application, and some
best practices for project organization.

In the next Try It Out sequence, you’ll create a DVD Movie Collection application using the starter kit,
and then look at several elements of the program to see how they work.

Try It Out Using Starter Kits
1. Start Visual Basic 2005 Express and select File ➪ New Project.

2. Starter kits appear right alongside normal project templates, so you create a new application
based on one just like any other project type. Find and select the My Movie Collection Starter
Kit template. Type a suitable name for the project — you’re going to use this project as part of
the larger application later, so if you would like to be prepared for the later chapters, name the
project MyOrganizerMovies. Once you’ve entered the name, click the OK button to create the
starter kit project.

3. After a moment, you will be presented with the main IDE window, which is populated with
documentation related to how to use the starter kit; and the Solution Explorer window on the
right-hand side, which contains a hierarchical list of all the modules, forms, controls, and objects
that form part of the project.

4. Run the application by selecting Debug ➪ Start or by pressing the F5 key. When Visual Basic
has completed building the application’s executable files, it will display the main form (see
Figure 2-1).

5. You’ll notice two buttons on the top of the form — View DVDs and Search Online. The screen
you can see initially is the View DVDs form, where you can scroll through all the DVDs in your
collection. Add a title manually by clicking the Add Title button and entering the details on the
right-hand side.

6. Click the Search Online button. The main area of the form will switch over to a search page.
Here you can search Amazon’s website via their web service to look for any movies that match
the words you entered, which if found will be presented in a list. Unfortunately, the version
of the starter kit that ships with Visual Basic Express doesn’t come with the necessary code
behind the user interface to connect to the web, so all you can do is look at the form (which
appears in Figure 2-2).

20

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 20

Figure 2-1

Figure 2-2

21

Why Do All That Work?

06_595733 ch02.qxd 12/1/05 1:35 PM Page 21

7. You can see here that you can type in keywords and click the Search button. At that point, the
web-enabled version of this starter kit accesses Amazon’s website and downloads movies that
match the criteria you entered. You can browse through the list (the list is on the left and the
details for the selected movie are on the right) and then add the correct DVD to the database
with the Add to Collection button.

8. Return to the View DVDs page and add more DVDs manually. Once you’re done, click the Close
button in the top-right corner to terminate the application and return to Visual Basic Express.

To get the web-enabled version of this project, you’ll need to go to the Starter Kit web page on
Microsoft’s developer site. The URL is http://lab.msdn.microsoft.com/vs2005/downloads/
starterkits/. Locate the Amazon-Enabled Movie Collection Starter Kit section of the page and down-
load the Starter Kit for Visual Basic.

Once the .vsi file (a special file type for installing add-ins to Visual Basic Express) is downloaded to your
computer, locate it in Windows Explorer and double-click it to start the installation. Visual Basic Express
will prompt you for confirmation and then install the new template for the web-enabled Starter Kit.

Restart Visual Basic Express and create a new project. You’ll find the new template in the My Templates
section with a label of My Movie Collection Starter Kit (Download). When you use this template instead
of the one supplied as part of the normal installation of Visual Basic Express, you will be able to perform
the online functions, such as searching Amazon.com.

How It Works
Did you notice what you just did? You created a full-blown application that includes a database, custom-built
controls, formatted backgrounds, and buttons; and to top it off, if you use the web-enabled version available
from Microsoft’s website, the system actually accesses the web and communicates with a real web service.
And what did you actually do to create all of this magic? Nothing more than a couple of clicks of your mouse!

Even better, the magic doesn’t stop there. As mentioned earlier, starter kits not only give you a great
head start in creating whole programs like this one, they also give you full access to maintain and mod-
ify (and potentially break if you’re not careful) the application to suit your needs.

If you delve into the Visual Basic Express development environment, you’ll find that all of the features
used in the Try It Out are easily accessible. First take a look at the main form in Design view. Locate the
MainForm.vb file in the Solution Explorer and double-click it. When the Design view is shown, you’ll
see that the form itself is quite empty — it has the two navigation buttons on the side, but the main part
of the page is empty except for a blank object called TargetPanel. Panels are special objects that are
often used to design the layout of a form, and are kept as placeholders for other objects.

The View DVDs and Search Online buttons each load a different custom-built control into the
TargetPanel. These custom-built controls are where the remainder of the user interface design can be
found. Double-click the ListDetails.vb entry in the Solution Explorer to show the Design view of the
control. Here you can see and modify the various controls that make up the View DVDs page.

You can access the code as easily. Locate the SearchOnline.vb entry in the Solution Explorer and right-
click it to bring up its context menu. Select View Code to show the Visual Basic code that drives the vari-
ous functions and events for this control.

The code generated by a starter kit often contains best practices and more efficient methods of achieving
the result you’re after, so it’s a good idea to take a look at it.

22

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 22

As an example, when the Search button is clicked, the SearchButton_Click subroutine is executed,
which in turn simply calls a privately accessible subroutine called PerformSearch — the code for this
appears as follows:

Private Sub PerformSearch()
‘object responsible for containing dvd search results
Dim searchResults As New List(Of DVD)

‘simple wrapper object responsible for handling requests and responses
‘from the Amazon.com Web service
Dim amazonService As New SimpleAmazonWS

‘show hour glass during the search to tell users that work is being done
Me.Cursor = Cursors.WaitCursor

Try
‘request search results from the Web service passing in the user’s search
‘criteria
searchResults = amazonService.SearchDVDs(Me.SearchTextBox.Text)

‘data bind the search results to the form UI
Me.DVDBindingSource.DataSource = searchResults

Catch ex As Exception
MsgBox(String.Format(“There was a problem connecting to the Web service. “ _

“ Please verify that you are connected to the Internet. Additional “ _
“details: {0}”, ex.Message))

My.Application.Log.WriteException(ex)
End Try

‘set cursor back to the default now that work is done
Me.Cursor = Cursors.Default

‘tell the user how many results were found. Use String.Format feature to concat
‘strings in a Localization-friendly way
Me.Label2.Text = String.Format(“{0} results found. “, _

searchResults.Count.ToString)
End Sub

This code is self-describing through the use of meaningful names for variables and well-placed comments
that communicate less obvious commands. It first creates an empty list of DVDs along with a copy of the
Amazon web service object. The routine then attempts to retrieve the list of DVDs from Amazon using the
search text that was entered. Once it obtains the list, it passes it over to the database objects so they can
populate the rest of the control. If there is a problem, a message dialog will be displayed for the user.

To see how easy it is to modify the code to suit your own requirements, follow along with this Try It Out
to change some code along with some of the user interface design.

Try It Out Modifying Starter Kit Projects
1. Return to the MainForm in Design view (double-click on the MainForm.vb entry in the Solution

Explorer list). You’ll change the caption of the form to better suit the rest of the application
you’ll be creating.

2. Click on the caption bar to select the form itself, and then locate the Text entry in the Properties
window. If the Properties window is not visible, press the F4 key to display it first.

23

Why Do All That Work?

06_595733 ch02.qxd 12/1/05 1:35 PM Page 23

3. Highlight the current text and replace it with Personal Organizer – DVDs.

4. Locate the My Project entry in the Solution Explorer and double-click it to open the project’s
properties. This special set of pages (shown in Figure 2-3) contains projectwide settings, includ-
ing how to compile the application. Click the Resources tab on the left to display the list of cur-
rently included images.

Note that when you are viewing the Resources tab in the Project properties, you can also access other
resource types such as icons and audio files.

Figure 2-3

5. Click the small down arrow next to the Add Resource button and select Existing File. Locate
a picture file on your computer that you would like to use as a background. I chose the
winnt.bmp file found in the main Windows directory because it is commonly found on most
systems. Once you have found the file, click the Open button and Visual Basic Express will
import the file into the Resource library for your project.

The image is now in the Resource library, but before you can use it in the rest of the program,
you’ll need to save the Resources section. Do this by selecting File ➪ Save Selected Items.

6. Now that you have the new image, you’ll want to tell the program to use it as a background
image. Open the ListDetails control by double-clicking the ListDetails.vb entry in the
Solution Explorer. Click anywhere on the background of the form to make sure the Properties
window is referring to the form and not any of the objects on it, and locate the
BackgroundImage property in the Properties window.

7. Click the ellipsis button in the BackgroundImage property, and Visual Basic Express will dis-
play a dialog window that enables you to change the image to another one in the Resources
library. Scroll through the Project resource file list until you find the winnt entry and select it.
Click OK to save that image as the background image for the form.

24

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 24

8. Select the BackgroundImageLayout property (which is listed immediately below the
BackgroundImage property you just changed) and, using the drop-down list to choose from
the available options, select Stretch so that the image is resized to fit the form size.

9. Run the program again. Notice how the caption of the window has changed to your new title,
and the background of the ListDetails area has been modified so that it shows the new image
(see Figure 2-4). Click the Search Online button to confirm that the background of that control
has remained unaltered.

Figure 2-4

10. Once you’re satisfied, end the program, and save the project in Visual Basic Express by selecting
the File ➪ Save All command. Visual Basic Express will prompt you for a location for your proj-
ect. Choose somewhere you’ll remember later, as you’ll need to call this application from the
main Personal Organizer application you will build in the rest of the book.

In just a few short minutes, you updated an application by changing a property on the form, adding a
new resource to the project, and then referencing that resource in the design of a control.

Wizards, Too
Starter kits aren’t the only aids you have to remove some of the burden of actually writing code —
they’re just the most glamorous. Their older and humbler cousins, wizards, have been around for a long
time and aren’t restricted just to the programming world. When you create a new account in Outlook or
set up your home network, you’ll most likely use a wizard to do so. In a nutshell, a wizard is a multistep

25

Why Do All That Work?

06_595733 ch02.qxd 12/1/05 1:35 PM Page 25

process that walks you through a (typically difficult) task. At the end of the process, the wizard takes the
information it has collected from you and produces the desired result. In Visual Basic Express, this result
is usually lovely code ready to use.

In fact, in Chapter 12, you’ll create your own wizard as part of the Personal Organizer application to
export data from your database. The next Try It Out shows you a very popular and useful wizard that is
included with Visual Basic Express — the Visual Basic Upgrade Wizard. This wizard is automatically
fired up if you attempt to open a Visual Basic 6 project in Visual Basic Express, and it attempts to auto-
matically create a .NET version of the project for use in Visual Basic Express.

This project, and a number of others throughout the book, need the code download available from
www.wrox.com for this book. Refer to the Introduction or Appendix A to find out how to locate and
download this code.

Try It Out Using a Wizard
1. Start Visual Basic 2005 Express and select the File ➪ Open Project command.

2. When the Open Project dialog window appears, browse to the location where you extracted the
code downloaded from Wrox’s site and find the Chapter 2/VB6Calc folder. In here you will
find a file called Project1.vbp. Select this file and click the Open button.

3. Visual Basic Express will detect that the Visual Basic project was created in Visual Basic 6 and
start the Visual Basic Upgrade Wizard.

4. The wizard goes through five steps. At each window, simply click Next (you can optionally
change the location of where the new project will be built on page 3 — see Figure 2-5). When
you reach the last page, the wizard takes over and begins to build the new project by analyzing
the forms and modules in the old project and converting the various design elements and code
subroutines to run in Visual Basic Express.

Figure 2-5

26

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 26

27

Why Do All That Work?

5. When the wizard is complete, it will close the wizard form and display an upgrade report. If the
upgrade report is not shown by default, it usually means the upgrade worked completely. You can
still view the report by locating and opening the _UpgradeReport.htm file in the Solution Explorer.

This sample project should upgrade and build without any errors. See the sidebar “Upgrading Visual
Basic” for more information on upgrading from Visual Basic 6.

Upgrading Visual Basic
Visual Basic 2005 Express is part of the latest release of Visual Basic from Microsoft and
can automatically convert projects developed in previous versions of Visual Basic,
often with minimal human intervention required.

The Visual Basic Upgrade Wizard does an enormous amount of work for you by con-
verting the old language syntax to the new style of doing things, and replaces various
controls and classes as much as it can.

The project used as an example in this chapter is cleanly converted completely — all
of the controls are converted to their Visual Basic 2005 Express equivalents, and none of
the underlying code needs to be changed other than event handler connections (which
you’ll find out about in the second part of this book).

However, many issues can arise when upgrading older Visual Basic 6 projects, and
many require unique solutions to deal with the problems that the converter has
encountered. These issues fall into two categories — the known and the unknown.

The known issues are problems that the Upgrade Wizard encountered as it converted
the code and design to the new format. For every single issue that the Upgrade Wizard
finds, it will insert comments in the code to highlight the problem as well as a new
entry in the Task List. In both locations, you will also find a link to the appropriate
place in the Microsoft help documentation that describes why the Upgrade Wizard was
unable to convert the code and what steps you can do to fix the problem yourself.

While these can be a pain to fix, it is the unknown problems that are more of a concern.
These are caused by the subtle differences between the ways in which the two different
versions of Visual Basic work, and they are not found by the Upgrade Wizard. You will
not encounter many of these, and rather than being strictly language-specific problems,
they are usually related to the way the original code was written.

Because these issues don’t cause compilation errors or show up in the Upgrade Wizard
process, they won’t be seen until the application is running. Admittedly, they will not
occur frequently, but because there is always the potential for this kind of logical error,
you should test any project you’ve upgraded from Visual Basic 6 thoroughly before
changing it further.

On the other end of the spectrum, it’s worth noting at this point that any project you
create in Visual Basic 2005 Express is automatically compatible with Visual Basic 2005
as well. Therefore, if you’ve been developing applications in Visual Basic 2005 Express
but then upgrade to the full version of Visual Basic to take advantage of the enterprise
and web features found in that product, you can be sure that your work will translate
seamlessly.

You reverse isn’t necessarily true, however. If the Visual Basic 2005 project contains ref-
erences or code constructs that are available only in the full version, you won’t be able
to open it in Visual Basic 2005 Express without encountering errors.

06_595733 ch02.qxd 12/1/05 1:35 PM Page 27

Everything Is Optional
Besides the starter kits and wizards, Visual Basic Express has other ways of making your experience in
programming more enjoyable. While the standard settings that are installed with Visual Basic 2005
Express are pretty good, there’s always the chance that they won’t suit your own personal style.
Fortunately, Microsoft has outdone itself in creating ways to customize the interface and your experience
in using the IDE. As mentioned in the last chapter, menus and toolbars are dynamic depending on the
context of your situation. However, if you would like to show (or hide) a particular toolbar that isn’t part
of the default settings, you can choose to show it using the Customize command found in the Tools
menu.

From here, you can select which toolbars should be shown in the current situation, along with which
commands are to be accessible from each toolbar. This level of customization should be familiar to you if
you’ve used other Microsoft products such as Word or Excel. You can create your own toolbars, and add,
delete, or move commands around in the menus to suit your own personal style of working. Moreover,
the IDE can be changed in a number of other ways that will likely be new to you.

Not only can the various windows and panels that are situated around the main editing space be auto-
matically displayed and hidden as described in the last chapter, they can also be moved to a more conve-
nient location. To aid you in the process, as you drag one of these windows around the design surface,
snap and alignment icons will appear.

In Figure 2-6, the Code Definition window is being dragged over the main editor area. The Visual Basic
Express IDE pops up snap buttons to move it automatically to one of the four sides of the editor space,
or to the very edge of the entire window. As it is dragged over another window, the icons change to
enable it to piggyback the space used in a tabbed display.

To customize the IDE further, Visual Basic Express has an extensive Options dialog. To display the
Options window, use the Tools ➪ Options menu command. In here you can affect the view by something
as simple as changing the font to a more legible typeface, showing a grid to more easily align controls
when editing a form in Design view, or changing the style of the core IDE from the tabbed environment
to a more recognizable MDI layout (MDI stands for multiple document interface and is common in
applications such as Microsoft Excel).

Some programmers prefer to use line numbers in their code, and Visual Basic Express allows for that
kind of customizing, too, in the default view of the Options window (see Figure 2-7). However, numer-
ous configurable settings are hidden in the normal view. Clicking the Show All Settings checkbox at the
bottom of the Options dialog window will display these additional settings.

28

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 28

Figure 2-6

Figure 2-7

29

Why Do All That Work?

06_595733 ch02.qxd 12/1/05 1:35 PM Page 29

1 MSDN stands for Microsoft Developer Network and represents a number of things
depending on the context. In this book, MSDN refers to the MSDN library — the docu-
mentation that accompanies Visual Basic Express — unless stated otherwise.

In the next Try It Out, you’ll set a variety of options designed to make your experience with Visual Basic
Express both more efficient and safer from unexpected errors.

Try It Out Customizing the Options
1. Start Visual Basic 2005 Express and bring up the Options dialog by selecting Tools ➪ Options. By

default, you should see the basic view (similar to Figure 2-7).

2. Change the Editor Font from Courier New to Lucida Console (on some systems, this might
already be selected, and on others the default font will be Courier New). Lucida Console is a
more modern font and is usually easier to read on higher-resolution displays. If you think the
size is a little small, you can increase it using the combo box next to the font name list.

3. Expand the Projects and Solutions group and then select VB Defaults to display default settings
for any new projects you create. Turn Option Strict on by checking the box. By default, Option
Explicit is turned on, which means that any variables you use in your code must first be
declared. If they’re not, the program will not compile.

While this is great protection from unexpected results, Option Strict is even better. With Option
Strict, Visual Basic Express will not allow you to set one variable from another variable if they
are different types. This is known as implicit type conversion and is a common source of errors.

4. Check the Show all settings box to display all of the available options. This gives you access to
settings that are otherwise hidden from view.

5. Expand the Projects and Solutions section and first click the General set of options. In this area,
you’ll find options related to creating solutions and what Visual Basic Express will do when you
create and compile them. Set the Visual Studio projects location to a folder that you will be able
to find later. While you can overwrite this as you create each new project, it’s handy to set this to
a default location so you don’t have to keep on browsing to find it.

6. Select the Build and Run set of options. Review the Before Building option and ensure it is set to
one of the Save options. There’s nothing worse than ending your programming session and for-
getting to save the edited files.

7. Click the OK button to save the changes you’ve made to the settings of Visual Basic Express.

Your Visual Basic Express environment is now set up in a way that will ensure you have cleaner pro-
grams (that is, less bugs) and easier code to follow.

It’s All There in the Documentation
The last aid in ensuring that your experience with Visual Basic Express is as enjoyable as possible is the
extensive documentation that comes with the development environment. Not only do you get explana-
tions of every control and every class in the .NET Framework, but also you’re provided with extensive
examples as well.

Visual Basic Express comes with a new form of the MSDN1 library. It incorporates a redesigned search
engine that helps you identify the topics that are best suited to your needs. This contrasts with the old
MSDN search capability, which would often return hundreds of obscure results that hid the one or two
that actually answered your query.

30

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 30

In Figure 2-8, the user has searched for BackgroundImage (the property you changed in the DVD
Collection project) with a filter of Visual Basic. Each result is listed with a brief paragraph and a set of
icons representing the technologies covered by the article. In addition, the search results provide sum-
maries of the articles that can be found on the MSDN website and the Code Wise Community.

Besides the normal table of contents on the left and the much improved search engine, the new docu-
mentation application also comes with a special How Do I section. This area provides quick links to
common programming tasks, separated into intuitive categories. To access this enormous set of help
documentation, simply press F1 anywhere within the Visual Basic Express development environment,
or select from the various menu items in the Help menu.

Figure 2-8

Summary
Although there are hardcore programmers out there who insist on writing every single line of code to
achieve their goals, you can see from this chapter that getting some help from the development environ-
ment can make you a lot more efficient in reaching those same goals. In fact, using a combination of
options and IDE customizations to make the environment suit your own style of programming, coupled
with the use of starter kits, wizards, and the examples found in the documentation, you’ve got the best
head start on creating your own applications than you could ever imagine.

31

Why Do All That Work?

06_595733 ch02.qxd 12/1/05 1:35 PM Page 31

In this chapter you learned to do the following:

❑ Understand the concepts behind object-oriented programming including classes, methods,
properties, and events

❑ Create an entire application simply by using a starter kit

❑ Use the Visual Basic Upgrade Wizard to convert a Visual Basic 6 application

❑ Customize the environment to suit your own personal taste

Exercises
1. Customize the DVD Collection application: Re-open your MyOrganizerMovies project and

change the images for the View DVDs and Search Online buttons. You’ll need to set three prop-
erties for each in the Properties window —NormalImage, HoverImage, PressedImage— and
you will need to edit the code so that the proper Resource objects are used.

2. Look up the documentation for an example of how to use the BackgroundImage property of a
control.

32

Chapter 2

06_595733 ch02.qxd 12/1/05 1:35 PM Page 32

3
Using Databases

One fundamental requirement of most applications is a way to store the information that is pro-
cessed. The program may need to know things before it can do its job. Alternatively, you might
need to keep track of data in between runs. Another possibility is that the program needs to save
the information generated while it was executing so another application can use it.

Regardless of the need, you have several ways of keeping track of the information a program uses.
Database technology has been around for almost as long as computing, and fortunately for Visual
Basic Express users, the language and development environment come with a number of tools that
make it easy to use. In fact, using a database to store information is so straightforward in Visual
Basic Express that you might find yourself using databases instead of alternatives such as the
Windows Registry or normal files that traditionally have been easier to access.

In this chapter, you learn about the following:

❑ The database technologies that Visual Basic Express supports by default

❑ Creating and editing a database

❑ Adding databases to a Visual Basic Express project

SQL Server Express
Microsoft has had a long history with database technology. On the Windows desktop, they have
had at least two different database technologies available for quite a few years now:

❑ Microsoft Access is a permanent part of the Microsoft Office suite that enables you to
build not only some fairly complex database definitions but also forms, queries, and other
components in order to be able to create whole applications that use Access as their driver.

❑ SQL Server is the Windows server database that is used for high-end, robust database
solutions. Previously, SQL Server needed to run on a server operating system, and
because of this, it includes a number of advanced technologies that enable it to run with
a much better fail-safe approach than Access.

07_595733 ch03.qxd 12/1/05 1:36 PM Page 33

A few years ago, Microsoft decided to release a product entitled MSDE for use on desktop systems. MSDE
stands for Microsoft SQL Desktop Edition or Microsoft Database Engine, depending on who you talk to,
but either way it represents the same thing: a scaled-down version of SQL Server to enable developers to
build those same robust and performance-based databound applications for standalone desktops.

One problem with MSDE is that not too many people know about it; and because the name is an acronym,
it isn’t clear what it’s for and how it’s tied to SQL Server. That issue won’t be around for much longer
because MSDE’s replacement, now available, has support built directly into Visual Basic Express — and
this new database product is called SQL Server 2005 Express.

Microsoft worked on the latest version of the full server product, SQL Server 2005, for a very long time
(the last version was SQL Server 2000!) and decided to release its scaled-down version in the Express
range to enable programmers creating applications on the Windows desktop to use the latest database
technology.

SQL Server Express is freely available and is included in the installation of Visual Basic Express (as
shown in Chapter 1). It uses a simplified management environment that borrows from the functionality
found in the main SQL Server 2005 environment, including a Computer Manager for checking the differ-
ent services relating to SQL on the machine, and the Express Manager for maintaining the individual
databases registered in the SQL Server engine.

However, as you’ll see later in this chapter, Visual Basic Express has all the tools you need to create and
maintain the databases for your applications built right into its own development environment. And
SQL Server Express has borrowed a leaf from the Microsoft Access book, storing each database in its
own easily accessible file, which can then be easily deployed as part of your application.

SQL Server 2005 Express uses the same engine as the server-based SQL Server 2005, with ADO.NET sup-
port (the database component of .NET and Visual Basic Express), Transact-SQL (the normal language to
interact with SQL data), and a SQL Native Client. In fact, it has only the following differences when com-
pared to the full version:

❑ Databases can be a maximum of 4GB in size.

❑ The internal buffers can use only 1GB of memory.

❑ It runs on only one CPU (that is, it does not take advantage of dual-processor technology or
spanned computing).

❑ It does not have any of the enterprise features, such as business intelligence.

None of these restrictions prevents SQL Server Express from functioning as a web or database server
engine, and in fact it can be used in either of these scenarios. However, the main purpose for it is exactly
what this book is about — easily creating applications that run on a Windows desktop PC in a stand-
alone environment.

Data to Database
Databases store information in a structured fashion. SQL Server Express is what is known as a relational
database, meaning that each group of information is connected to another group through identified relation-
ships. For example, if you have a group of information about the buildings in a city and another group of
people in the same city, you might have a relationship identifying which people are in which building.

34

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 34

The information in each group must be defined with very precise structures if it is to be used effectively.
People have a name and a birth date, but should the names be split into first and last names? They might
have an address indicating where they live — is it important that the address be split into different com-
ponents — house number, street name, city, postal code, and so on? For each piece of data, the database
needs to know how it should be stored and what kind of information will be kept in it. If it’s a piece of
text, how long will it be? If it’s a number, should it be storing decimal places? If so, how many? After
you answer these questions, you might end up with a grouping of information like that in the following
table:

Information Name Type Length

Person First Name FirstName Text 35 characters

Person Last Name LastName Text 35 characters

Person Date of Birth DateOfBirth Date Not relevant

Person Address Address Text 200 characters

Extra Notes Notes Text As big as it can be

SQL Server Express uses tables to store a group of information. At its simplest, a table has a name and a
collection of pieces of information. These chunks of data are called columns (or fields), and the preceding
table would define the basic structure for a table of five fields.

Tables and their corresponding fields are what structure the information kept within the database. When
actual data is stored in a table, each discrete collection of information is kept in a separate row, the term
SQL Server Express uses for each of the information records. In the preceding example, you have a table
with five fields relating to a person. If the database were to store information about a person named
Trevor Greenstein, then his information would be kept in an individual row. If another person named
Hayley Thomas were also to be stored in the table, her information would be saved in a separate row.

The information can be easily represented in tabular form (which comes in handy in Visual Basic
Express because the editors for viewing the data within a database table use the same kind of format),
so the sample data can be viewed like so.

Table Name: Person
FirstName LastName DateOfBirth Address Notes

Trevor Greenstein 09/23/1955 unknown Likes plants

Hayley Thomas 06/12/1973 123 Rainbow Parade Ex-girlfriend

While you could access the entire table of information and look through the collection for the person’s
details you need, SQL Server Express enables you to define a way of accessing information directly —
using a key. A key is exactly what it sounds like — a component of the table definition that helps find a
particular row within the table’s data.

35

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 35

Each table you create can have a primary key that is unique for that table. In the Person table example, the
primary key might be a combination of first name and last name. However, there is a chance you could
have multiple people with the same name, so SQL Server Express enables you to define special Identifier
fields that are used specifically to create a unique index for each row. The preceding table could be modi-
fied to include such an identifier.

Table Name: Person
ID FirstName LastName DateOfBirth Address Notes

1 Trevor Greenstein 09/23/1955 unknown Likes plants

2 Hayley Thomas 06/12/1973 123 Rainbow Parade Ex-girlfriend

You can also use a special database language known as SQL (yes, this is why the product is called SQL
Server Express), which stands for Structured Query Language. Using SQL, you can find individual rows
of information by specifying the criteria you need to follow. SQL queries can be used to filter the infor-
mation stored in the table and return only the rows that match the criteria; for example, a query could be
written to find all rows that have a value in the Address column of unknown like so:

Select * From Person Where Address = ‘unknown’;

You’ll see more about SQL queries later in this chapter and throughout the rest of this book, but for now,
a quick definition: A SQL query is a type of search mechanism that can be performed against a database.
It can be as simple as “get all the records” or quite complex, including merging several tables of infor-
mation together and filtering out certain excluded search criteria.

Once you have the definition ready to go, you need to create the database and tables to store it. SQL
Server Express has Manager applications that enable you to do this, but Visual Basic Express has its own
components within its development environment so why go elsewhere?

The Project ➪ Add New Item command is used to add a new, empty database to the current project. The
Add New Item dialog box has several templates from which to choose, including SQL Database. The
name field is used to specify the actual filename of the database (see Figure 3-1).

Figure 3-1

36

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 36

Once you have the database file, it can then be used in other applications by pointing them to the disk
file that contains the database.

When you click OK, Visual Basic Express automatically creates an empty SQL Server Database and dis-
plays a Data Source Configuration Wizard to select individual components within the database. Because
this is useful only when the database has definitions within it, you can safely cancel the wizard at this
point (the wizard will be used in later chapters when you connect an existing database to an application).

The empty database file is then added to the Database Explorer. The Database Explorer normally shares
space in the IDE with the Toolbox, but if you cannot find it, you can show it by selecting View ➪

Database Explorer (see Figure 3-2).

When you first add the database, it may appear in the Database Explorer window with a small red X to
indicate it is currently disconnected. Just click the icon and Visual Basic Express will go through the
process of connecting it to SQL Server Express and displaying the contents of the database.

Figure 3-2

To create a new table within the database, right-click the Tables folder and select the Add New Table
menu command. The main part of the IDE will show a specialized editing form for database tables with
three columns of information.

Each field is represented by a row in this editor, with the columns representing the main pieces of infor-
mation that are required — the name of the field, the type of data that is to be stored in it, and whether
the database should allow the field to store nothing, or null, for any given row. In addition to this basic
information, a Properties window is displayed below the field list with more advanced settings that can
be applied to each individual field.

For identifier fields, the Properties window includes an Identity Specification group of properties. The
field that should uniquely identify the rows within the table should have the Is Identity field set to
Yes. This will tell SQL Server Express to keep track of the data stored in this field, making sure each row
stores a unique value. In fact, SQL Server Express will actually automatically increment the Identity
field so you don’t even need to worry about making sure they’re unique.

Creating a primary key is a matter of selecting the fields that make up the key, right-clicking the header
button in the row, and selecting Set Primary Key from the context menu. If you’re using an identifier

37

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 37

field, usually you’ll set the primary key to that data field. Figure 3-3 illustrates how the preceding sam-
ple data definition could be represented in the table editor. Note that the Column Properties area is dis-
playing the information about the selected field —ID— and includes the Is Identity = Yes setting.

Figure 3-3

Once you’re done adding fields and setting the corresponding properties, save the table to the database
by using the File ➪ Save command. At this point, Visual Basic Express will prompt you for the name of
the table and add it to the list in the Database Explorer.

When tables are available in the Database Explorer, you can take a look at the information stored within
the table by right-clicking the list and selecting Show Table Data from the context menu. Visual Basic
Express displays the rows within the table in a fashion very similar to the table you saw earlier in this
chapter (see Figure 3-4).

Figure 3-4

38

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 38

The information returned from the database can be edited directly in this window, including creating
new rows of data and deleting existing ones. To create a new row, select the first editable field in the bot-
tom row of the table that has all NULL values. In this case, because the ID field is an identifier that is
automatically maintained by SQL Server Express, the first field would be FirstName. Type the informa-
tion required and tab to the next field. Repeat this process and then navigate off the row to save the
information.

Delete a row, or rows, by selecting the rows to be removed (by clicking their row header buttons), right-
clicking, and selecting Delete.

Additional tables can be created by repeating this process. As mentioned earlier, SQL Server Express is a
relational database, which means you can tell the database how tables relate to each other. If there were
another table called Pet that stored the information about various pets owned by people, you might
want to show that the two tables are linked. A person might own no, one, or many pets, so you need a
way to connect this information.

To achieve this connection, you can define an additional field in the Pet table that identifies the Person
row that “owns” each Pet row. As you look through the definition for the Person table, the obvious
choice is the ID field because you know this is unique. As a result, the Pet table definition might look
like this:

ID PersonID Name Type Breed

1 1 Amy Dog Silky Terrier

2 1 Muffin Dog Maltese Terrier

3 2 Tiddles Cat Siamese

The PersonID column identifies the person to which the individual Pet rows belong — Trevor owns two
dogs, named Amy and Muffin, while Hayley owns a Siamese cat named Tiddles. You can write SQL
queries to retrieve the information in the Pet table for a specific Person record, but a potential issue exists —
there is no database-defined relationship.

Even though you can look at the database tables and see the connection between the two, SQL Server
Express cannot do the same. This means you could potentially add rows of information in the Pet table
with a PersonID value that doesn’t match any rows in the Person table. To solve this, you need to
explicitly define a relationship between the two tables.

A relationship is defined by specifying a field as a different kind of key — a foreign key. A foreign key
indicates that this field is uniquely identified within a different table. To create a foreign key relation-
ship, click the Relationships button on the Table Designer toolbar. A list of relationships is displayed in
the Foreign Key Relationships dialog box (see Figure 3-5). Click the Add button to add a new relation-
ship and then click the ellipsis button on the Tables and Column Specification property to bring up the
Tables and Columns dialog box.

39

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 39

Figure 3-5

This dialog (see Figure 3-6) enables you to name the relationship and select the tables that should be
linked. One table is designated as the Primary key table, which means the columns you are selecting
define the key in that table that uniquely identifies the row. The other table is the Foreign key table,
which specifies the table that will be linked to the primary table.

Each field specified in the Primary key table must map to a corresponding field in the Foreign key table.
In Figure 3-6, the Person table is defined as the Primary table and the ID field has been selected as the
identifier column. The Foreign key table is the Pet table and the PersonID field is selected to map to the
ID field in the Person table.

Figure 3-6

40

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 40

Once this relationship is saved to the database definition, whenever a row is added to the Pet table, the
PersonID value is checked against the rows of the Person table. If no row in the Person table with a
matching ID value is found, an error is generated and the information is not saved to the database.

Relationship definitions can also include what action to take, if any, when certain events arise. For exam-
ple, if a program deleted a row from the Person table, you can automatically delete any corresponding
rows in the Pet table. In the Foreign Key Relationships dialog box, select the relationship you want to
control and change the Update Rule and Delete Rule properties to tell SQL Server Express what to do to
rows that are connected to the Primary key table row. Cascade will automatically update or delete the
connected rows, while Set Null and Set Default will not delete the rows, but set them to the respec-
tive values of Null or the default value for each type.

Throughout this book, you’ll be creating an application that keeps track of your friends and family
members. It will store and maintain their names, addresses, phone numbers, birthdays, and other infor-
mation to help you remember their likes and dislikes. The following Try It Out walks you through the
creation of the database structure for the information you’ll need for this application.

Try It Out Creating the Database
1. Start Visual Basic Express and create a new project by selecting File ➪ New Project. Select the

Windows Application template from the New Project dialog. Name it Personal Organizer
Database and click OK. Having a separate project for the database design is nice because it
enables you to work on the database structure without having the user interface and code in
the way.

2. Add an empty database by selecting Project ➪ Add New Item. Choose the SQL Database tem-
plate and name the file PO-Data.mdf. Click Add to add the database to the project. Because the
database is empty and this project is going to be used exclusively for editing the database struc-
ture, click the Cancel button in the Data Source Configuration Wizard.

3. The core of the Personal Organizer application is the information about each family member
and friend. For this application, you’ll need to keep track of their names, addresses, e-mail
addresses, birthdays, what things they like, and their phone numbers. (In addition, you will
include fields related to finding gifts for the person, which will be used in Chapter 9.) Breaking
this down into workable chunks, you get the following table.

Information Column Name Type Length

First Name NameFirst Text 35

Last Name NameLast Text 35

Home Phone PhoneHome Text 20

Cell Phone PhoneCell Text 20

Address Address Text 255

Table continued on following page

41

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 41

Information Column Name Type Length

Email Address EmailAddress Text 100

Birthday DateOfBirth Date

Favorites Favorites Text 255

Types of Gifts GiftCategories Integer

Additional Notes Notes Text As big as it can be

You should also include a unique identifier field at the beginning of the table.

4. Open the Database Explorer by selecting View ➪ Database Explorer. By default, it will share
space with the Toolbox on the left-hand side of the IDE, and it can be pinned open so it isn’t
automatically hidden away. Expand the PO-Data.mdf entry in the list to display the different
types of elements that can be kept in the database.

5. Right-click the Tables folder and select Add New Table. In the table editor, select the first empty
field in the Column Name column and enter the information in the following table.

Column Name Data Type Allow Nulls

ID int Unchecked

Scroll through the Column Properties window until you find the Identity Specification group
and change the Is Identity property to Yes so that SQL Server knows to use this field as the
unique identifier that is automatically incremented for new rows in the table.

Right-click the ID column and select Set Primary Key. This tells Visual Basic Express and SQL
Server Express that this is the field to use by default when searching the table.

6. Go to the next row in the table editor and repeat the process for each of the fields defined in the
table in step 3. Text fields can use the nchar() type, with the number of characters allowed
being specified within the parentheses — for example, NameFirst would have a data type of
nchar(35).

The DateOfBirth field should use a data type of datetime. The normal text field type —
nchar— can store only around 4K of information. This might not be enough for the Notes col-
umn, so use the text data type.

The text data type requires more processing by SQL Server and so is not used unless necessary.

7. Save the table and call it Person. The definition and the Person table entry in the Database
Explorer will look like Figure 3-7.

42

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 42

Figure 3-7

8. In later chapters, you’ll restrict the information presented in the Personal Organizer application
to the particular user who is accessing the data. To do this, you’ll need another table in the
database that stores the user’s details. The user information will include the user’s name, a sys-
tem name, a password, a date field to indicate the last time they were logged on and another to
indicate when the account was created, and a log entry to keep track of the number of failed
attempts to log in as the particular user, as shown in the following table.

Information Column Name Type Length

ID ID Integer

System Name Name Text 255

Name DisplayName Text 20

Password Password Text 20

Created Date DateCreated Date

Last Logged In DateLastLogin Date

Login Failures FailedLoginAttempts Integer

43

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 43

9. Add another table to the database by right-clicking the Tables folder in Database Explorer and
choosing Add New Table. Add the preceding columns, remembering to include an identifier
column as well so they can be uniquely identified, and set it to be the primary key. While the
System Name should actually be unique, the database will perform better if there is a numeric
identifier.

Remember to use nchar() as the data type for Text fields, and datetime as the data type for Date fields.

Ensure that the Name and DisplayName columns must have data by unchecking the Allow
Nulls property. Save the table to the database and name it POUser.

10. Now you need to connect the two tables, so return to the Person table by right-clicking it in the
Database Explorer and choosing the Open Table Definition command. You’ll add an additional
column that stores the POUser ID so the information can be filtered later in the application.
Right-click the NameFirst row and select Insert Column from the context menu.

11. Name the column POUserID, make it an int, and uncheck Allow Nulls. Save the table defini-
tion. The tables are now set up, but no explicit relationship is specified. You’ll do that next.

12. Click the Relationships button on the toolbar, or select the Table Designer ➪ Relationships menu
command. When the Foreign Key Relationships dialog is displayed, click the Add button to cre-
ate a new relationship.

13. Click the ellipsis button on the Tables and Columns Specification property to bring up the
Tables and Columns dialog. Select POUser as the Primary key table and notice that the Foreign
key table is already set to Person, as that is the table you were editing when you clicked the
Relationships button.

In the columns area, choose ID from the POUser column and POUserID from the Person col-
umn and click OK to set the foreign key. Click Close to return to the table editing view. Click the
Save button again to save the relationship to the database. Because this affects multiple tables,
Visual Basic Express will display a confirmation dialog, as shown in Figure 3-8. Click Yes to
force it to save the relationship.

Figure 3-8

44

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 44

14. If you try to add a record to the Person table, it will enforce the relationship, not allowing any
rows to be added without a corresponding entry in the POUser table with a matching ID to the
POUserID. Go ahead and try to add a row to the Person table first, by right-clicking the Person
table in the Database Explorer and selecting Show Table Data.

Enter information in all the columns and navigate off the row. Visual Basic Express will display an
error dialog informing you that it was unable to commit the information to the database because it
conflicted with the foreign key definition (see Figure 3-9). Press Escape to cancel the changes.

Figure 3-9

15. Open the POUser table and enter a row there to identify yourself. For now, anything will do, but
later in the book, the System Name will be used to compare to the currently logged on user in
Windows.

When you navigate off the row, SQL Server Express will automatically assign the next available
number to the ID column. Take note of this number, return to the Person table, and re-enter all
the information for a new Person row. This time, enter the number you noted in the POUserID
column. When you save the row, SQL Server Express will accept the change to the database
because the POUserID value matched an existing ID value in the POUser table.

16. Save the project so you can return to it later. The database file will be included in the project loca-
tion, so note where you save the project for future chapter exercises and Try It Out examples.

Connecting Database to a Project
When a database is added to a project, it is not automatically connected to the rest of the project’s com-
ponents. If you take a look at the Data Sources window for a project to which you added a database file,
you’ll see that it is empty except for two things: a message that says the project does not currently have
any data sources associated with it and a link to add a new data source.

45

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 45

The Data Sources window shares space with the Solution Explorer and is accessible through the Data ➪

Show Data Sources menu command.

To add a database to the project, click the Add New Data Source link to start the Data Source Configuration
Wizard. This is the same wizard that you canceled out of when you added the empty database, but this
time it begins with the Data Source Type page. Select the Database option and click Next.

If the database is already in the project, it will be displayed in the existing data connection list. If you
want to use this database or any other existing data connection, select it from the list and click Next.
Alternatively, if the project doesn’t have any data connections, click the New Connection button to add
a connection to the project.

Visual Basic Express defaults to using SQL Server connections, so all you should need to do is specify
the database filename. Click the Browse button to navigate to the location of the database file and click
Open to select it. Again, by default, Visual Basic Express assumes you will use standard Windows
authentication, but if you’ve changed your SQL Server Express setup to require SQL Server authentica-
tion, you’ll need to specify a user name and password here.

Click the Test Connection button to ensure that the database is accessible and then click the OK button to
return to the wizard. The next page of the wizard enables you to optionally save the connection string to
your application settings. This is handy, as you don’t need to remember the often hard to understand
properties required to connect to the database; and once set, you won’t need to worry about it again.

The next page in the wizard will be one you’re familiar with from the previous times the wizard has
been displayed. This time, however, the Tables node will have children entries for each table defined
(and the Views, Stored Procedures, and Functions nodes will, too, if the database has those kinds of
objects). Select the tables you want to include in the data connection and click Finish to finalize the wiz-
ard and add the data source to the project.

The Data Sources window will be populated with the Dataset object, including the tables and the indi-
vidual fields within each table in a tree view. A sample of this can be seen in Figure 3-10. Note that the
POUser table in this example includes a child reference to the Person table because of a defined relation-
ship between the two.

Once the information is available in the Data Sources window, you can use it to bind user interface com-
ponents to database elements, and write code to access the database through the Data Source objects.
One very simple way of presenting the information to the user is by dragging the table directly onto a
form.

Visual Basic Express will automatically add a tabular control known as a DataGridView to the form,
along with a navigation bar with New, Delete, Save, and movement buttons. It will also define the
required data objects for the form (shown in the tray area below the main user interface design).

Chapter 7 goes into a lot more detail about the various controls that you can use to automatically con-
nect to the data sources you have defined in the project. For now, the following Try It Out uses the
Personal Organizer Database project to illustrate how you can quickly view the data in the tables.

46

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 46

Figure 3-10

Try It Out Connecting a Database and Project
1. Return to Visual Basic Express and the Personal Organizer Database project. If you closed the

project at the end of the last Try It Out, you can re-open it by selecting it from the File ➪ Recent
Projects submenu.

2. Show the Data Sources window by selecting its tab next to the Solution Explorer tab. If it is not
visible, select the Data ➪ Show Data Sources menu command. Click the Add New Data Source
link to start the Data Source Configuration Wizard.

3. Select Database and click Next to show the data connection page. By default, the wizard will
detect that a database is defined in the project and populate the existing data connection list
with the name of the database file. Click Next to go to the Save Connection String page.

Because you don’t want to worry about the connection string later, leave the checkbox enabled
so that the connection details are saved to the application configuration file and click Next.

Be aware that when you add the database locally, Visual Basic Express creates a fresh copy of the
database each time the program runs. This means any changes you make to the information in the
database while you’re running the application won’t be there the next time you run it. If you want to
keep the changes between executions, you need to save the database file externally to the project.

4. In the Tables list, select both Person and POUser and click Finish. After a few moments, the
Data Sources window will be populated (similar to the one shown Figure 3-10). Initially, the
tables might not be expanded, so click the expand buttons to show the individual fields.

47

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 47

5. Go to the Form1.vb Design view by selecting its tab along the top of the main editing area.
Drag the POUser table from the Data Sources window and drop it onto the form. Visual Basic
Express will automatically add all the required objects and user interface controls.

6. Run the application by pressing F5 or selecting Debug ➪ Start Debugging. When the application
starts, the form will be shown with the DataGridView control populated with the information
you added to the database in the previous Try It Out (see Figure 3-11).

Figure 3-11

Stop the application by clicking the Close button on the form, and save the project so you can preview
the data later.

Alternatives to SQL Server Express
While SQL Server Express is the normal way of doing database storage in a Visual Basic Express applica-
tion, you have several alternatives available within Visual Basic Express. OLE DB (it stands for Object
Linking and Embedding Database but is almost always simply referred to as the acronym) is Microsoft’s
way of providing a generic database standard. Programs created in development environments such as
Visual Basic Express can use OLE DB to access different database types without needing to know spe-
cific methods to do so.

As long as the manufacturer of the database distributes an OLE DB interface to their database, you can
access it using common commands, classes, and methods. Visual Basic Express defaults to SQL Server as
the data provider, but if you want to use a non-SQL Server database, you’ll need to switch to OLE DB.

Microsoft Access databases can be used via OLE DB, and Visual Basic Express includes the data provider
for Access as one of the starting options. The rest of the settings are the same, and once you add the
database to the project, you can interact with it in a similar fashion to a SQL Server database.

48

Chapter 3

07_595733 ch03.qxd 12/1/05 1:36 PM Page 48

This means you can navigate through the database and table structure in the Data Sources window, and
you can view the tables and preview the data in the Database Explorer (although you cannot edit the
table definitions of an OLE DB-based database within Visual Basic Express). Dragging the table or fields
from the Data Source onto a form will automatically create the user elements needed to access the
database, just as a SQL Server database will.

The differences become apparent when writing code. Whereas SQL Server databases are accessed
through the System.Data.SqlClient set of classes, OLE DB database files are processed using the
System.Data.OleDB classes. This is because the various methods and properties differ for each
database type, and Microsoft has made a concerted effort to fine-tune the performance of SQL Server
databases.

Summary
Storing and accessing information in a database is an essential part of programming. Visual Basic
Express, with the aid of SQL Server Express, makes the process of creating a database straightforward,
and then continues the ease of development by enabling you to add database information to a Visual
Basic application through wizards and simple drag-and-drop functionality. With these tools at your fin-
gertips, you can ensure that your application is synchronized with the data that drives it.

In this chapter, you learned to do the following:

❑ Create and maintain database definitions for an SQL Server Express database

❑ Look at the different types of databases Visual Basic Express can use

❑ Add a data source to a Windows Application project and add a simple data view to a form

In the next chapter, you’ll look at the user interface of an application and how Visual Basic Express helps
you create solid designs that your users will appreciate.

Exercise
1. Create a database that uses the Person and Pet tables defined at the beginning of this chapter.

Make sure they are linked through a foreign key relationship so that each Pet record must be
owned by a Person record.

49

Using Databases

07_595733 ch03.qxd 12/1/05 1:36 PM Page 49

07_595733 ch03.qxd 12/1/05 1:36 PM Page 50

4
What the User Sees

Creating a program can be divided into three discrete parts. First is the data, which is the whole rea-
son for the application. This is normally stored in a database and has tables and queries defined so
that the program code can access the information in a logical manner. You saw how databases work
in Visual Basic Express in Chapter 3. The second component is the program code that operates on
the data and controls what the user can (and cannot) do. This programming logic will be the subject
of the next chapter. This chapter deals with the third section of creating an application — designing
the user interface.

Getting the user interface right is vitally important because if users do not like what they see, or
can’t figure out how to use your program, then it doesn’t matter how good the code is underneath
it, or how meaningful the data.

In this chapter, you learn about the following:

❑ The importance of good user interface design

❑ The common controls used to create user interfaces

❑ Building menus and toolbars

User Interface Basics
When creating an application, many programmers leave the user interface to the last minute,
which results in an ill thought-out layout that hampers the end user’s experience. If the design
isn’t intuitive, the people using your program will have difficulty accessing the functionality and
may decide to use someone else’s program instead, even if the feature list is not as impressive.

This has happened on numerous occasions in the software industry. Companies release a version
of their software with all new bells and whistles but overcomplicate the user interface design. As a
result, their competitors release their own software with a more elegant interface, which helps
their market share.

08_595733 ch04.qxd 12/1/05 1:37 PM Page 51

In some cases, the reverse is true. For example, an application released in Australia was designed for
simplicity with no obvious buttons on the main window. Instead, everything was done using keystrokes;
and for those who tried it, it worked really well. However, the main competition was a piece of software
that more closely resembled other commonly used programs such as Microsoft Excel. Even though the
functionality of this competitive product wasn’t as detailed, customers preferred it because it was some-
thing they were familiar with. It was frustrating for the company that released the first product because
they knew their application was better. Only when they implemented an optional add-on to the product
that enabled users to customize the interface with buttons and commands did their sales pick up, and
now the add-on is installed by default.

Remember: If the users of your program can’t figure out how to use it, they won’t be your users for long.
Documentation in the form of manuals and help files can be useful, but they should assume the role of
supporting information, rather than being a required tool to use your application.

The best thing about good user interface design is that it doesn’t take a lot of thought to actually make it
happen.

User Interface Fundamentals
While whole books could be written (and have been) on the importance of a good user interface and the
methodologies you can use to achieve the best results for your application, if you follow these simple
guidelines (they’re guidelines, not rules because there are always exceptions) your application will look
clean and be user friendly:

❑ Let the user decide. First and foremost, think carefully before changing colors and fonts. By
default, controls in Visual Basic Express incorporate the standard system colors of the operating
system along with the fonts the user has chosen to use. If you leave these settings as is, users
can customize their experience of your application by changing their system setup. Forcing cer-
tain color schemes or fonts on users of your application may be detrimental to the usability of
your program.

❑ Be consistent. Make the design of your objects uniform. If you set the height of the buttons on
your main form to 300 pixels, then make sure you set the height of the buttons on any other
forms you might use to the same. If you use a TextBox control to display information instead of
a label, then do the same for other informational panels you may add.

Failing to use consistent styles and settings when adding and customizing your components
reduces the cleanliness of the interface, making it harder for the user’s eye to find what it’s look-
ing for. Obviously, you’ll come across exceptions to this guideline, but ensure that the excep-
tions are few and not the majority.

❑ Differentiate your objects. When you need to display one particular element differently than
the others, make sure you use enough contrast to distinguish it. If you do not distinguish it well
enough, not only can it be hard to determine whether it is indeed different, but because the dif-
ference is subtle, the user’s eyes can stumble.

Consider the example shown in Figure 4-1; the Bigger button has a slightly larger font — can
you tell? The Italic button is obviously different from the Normal button but because of the
screen it can be hard to read. The Bold button is obviously different from the Normal style and
so is the best option out of these three for contrast.

52

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 52

Figure 4-1

When deciding on contrasting styles, remember that a significant number of people are color-
blind to some degree (with red being the most common). If you choose to use color — which is
certainly acceptable — remember to also alter the style in some other way as well.

When considering the use of color in your application, there is an excellent option that should be
explored. Rather than select specific color values, you can choose system-defined colors such as
ButtonFace and ActiveBorder that are controlled by the user through the Windows Control Panel.
This enables users to select the colors most effective for their own situation and gives your application
the flexibility it requires to cater to different needs.

❑ Align elements clearly. If you don’t position the elements on your form with respect to each
other, your interface is doomed. Even a 1-pixel difference in the left-hand side of two controls
can show up in the final design as being sloppy and unprofessional. Visual Basic Express does
help you with this by providing guidelines and snap-to markers, but you should always take
care to properly align your controls.

❑ Position elements logically. Group those elements that belong together so that users can navi-
gate easily. Note how most applications have menus in which the commands are divided by
function, and toolbars that group like actions together. This helps users find the function they’re
looking for. The same applies to your own design, and this rule extends to the main section of
your form. If you were to create a form with information about a person, you would keep the
first name and last name fields together, rather than split them up, for example.

These guidelines may seem self-evident to you. If so, great! As you create your user interface, keep them
at the forefront of your decision process and you’ll find the layout of your windows is easy.

Adding and Customizing Controls
Visual Basic 2005 Express makes it easy for you to create forms that follow good user interface design
practices. Guidelines help you to position and size each control, and components inherit certain proper-
ties, such as the font, from their parent component. This enables you to change a property in one place
and have the new setting reflected by all of the child components, ensuring that you maintain a clean
consistent design.

Before you take a look at a selection of the controls you can use to create your program’s user interface, it
will be beneficial to review how to add a control to a form and then customize its properties. You’ll find
that almost everything about a component you add to your application’s forms is accessible in Design
view, which lessens the need to write code. In the following Try It Out, you’ll see how the Visual Basic
Express IDE helps you when adding controls to the forms in your projects.

53

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 53

Try It Out Adding a Control to a Form
1. Start Visual Basic 2005 Express and create a new Windows Application project. Name it

MyFirstProgram.

2. From the Toolbox, click and drag the Button control to the form. Notice the help indicators as
you drag the button over the form’s design surface? As this is the first control being added to
the form, the lines will guide you to the preferred distance from the edges of the form. Position
the button so that it is the ideal distance from the top of the form and in the middle horizontally.

3. Now add another Button control to the form in the same way. This time, as you drag the new
object over the form, not only will the indicators show the distances from the edges of the form,
but also the ideal distance from the other controls on the form. In addition, new lines (this time
colored blue), will show when the control is aligned horizontally or vertically with the existing
components. Both the ideal positioning and alignment guidelines can be seen in Figure 4-2.

Another point to note is that as you drag the control around the form, it will snap to these lines
when you get close enough. This takes away the “guess factor” in positioning the controls.
Position the second button directly below the first one.

Figure 4-2

4. Resize the second button by clicking over the bottom boundary and dragging it down so that it
is roughly square. Some controls are not added to the form’s viewable area when you drop
them on it. These controls normally work in the background and will appear in a small tray area
below the form’s design surface. The form shown in Figure 4-2 has had a ToolTip object added
to it.

5. Every control has a number of properties that define its appearance and control how users can
interact with it. Some of these properties, such as Width and Height, can be controlled by the
mouse on the design surface to set the size of the control. However, these properties, along with

54

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 54

most of the others, can be accessed in the Properties window (some controls have properties
that cannot be changed at design time — these need to be set in code). Select the second button
you added to the form and scroll through the properties to see what’s available.

6. Change the Text property to Say Hello. For a button object, this changes the caption that the
user sees on the button. Change the ForeColor property to red and note how the text changes
color to match.

Controls can easily be added to your form by clicking and dragging them to the desired position.
Alternatively, you can double-click the control name in the Toolbox, and a new object will automatically be
added to the form. Once on the form, you can set most of the properties through the Properties window.

The Controls
The following sections describe the various controls that Visual Basic Express provides you with to cre-
ate your program. Every one of these accelerates the development process because you need to write
less code and can do more with simple click-and-drag actions. While this list isn’t exhaustive, it will
introduce you to the major components that make up a program. As you progress through the rest of
this book, you’ll use these controls to build programs as you learn about useful properties and events.

Basic Controls
Ultimately, creating your application comes down to presenting users with information and enabling
them to tell it to perform some functionality. The basic, or fundamental, controls enable you to do just
that. With these half-dozen or so components, you can create just about any interface you can imagine.

Label
The Label control displays read-only information for the user. The text that is displayed can be changed
only by the program and is usually used to convey the purpose of other controls. For example, you may
position a label with text of First Name to the left of a TextBox to inform the user that the information
in the TextBox is to be the name of a person.

Button
The most common method to enable users to tell the program to do something is using a button. Button
controls can be used in many different ways, but the basic button contains a descriptive word or two and
when clicked performs some function.

Button controls can have images as well as, or instead of, the text. A good example of buttons used in
this way is the toolbars in many applications, such as Microsoft Word. You can customize the button so
that it shows only the icon, only the text, or both. In Visual Basic Express, you have control over the posi-
tioning of the text and image and can even set a background image as well as the icon image.

The only event worth looking at for the Button control is the Click event. This is raised whenever the
user clicks the button.

There is another control called the LinkLabel that combines the display style of the Label control
with the clickable nature of the Button control.

55

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 55

TextBox
Most applications require that users be able to enter information at some point, and this is where the
TextBox control steps in. TextBox objects are just that — boxes that contain text. The TextBox can
either contain a single line of information such as a user name or password field or be used to display
many lines at a time, such as you might need in a memo area.

TextBox controls can be customized in many ways — the setting to toggle between a single line and multi-
ple lines is called Multiline. Other useful properties include Alignment, to control where the text should
be positioned, and CharacterCasing, to automatically convert the text to uppercase or lowercase.

The contents of the TextBox can be locked in two ways. The first way is to use the Enabled property,
which is common to all user interface elements. If Enabled is set to False, then the control cannot be
interacted with. A disabled button cannot be clicked, and a disabled text field cannot be changed or
selected. The alternative to this for TextBox controls is to use the ReadOnly property. While this still
prevents users from changing the contents of the field, they can select the text and scroll through the
contents.

MaskedTextBox
The MaskedTextBox is a TextBox control with additional functionality built in. You could actually cre-
ate the same functionality in code, but if you need to create a text field that allows information only in a
set format, then let Visual Basic Express do the work for you and use a MaskedTextBox control. The
additional property used to control how the user can enter the information is the Mask property. You
could set this directly in the Properties window, or choose from a preset number of styles by clicking the
smart tag arrow on the control and selecting the Set Mask link. This will display a dialog box containing
predefined masks, along with the capability to create your own, as shown in Figure 4-3.

Figure 4-3

56

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 56

CheckBox
The CheckBox control is normally used to display options that can be turned on and off. You can change
the label by setting the Text property and control whether it is checked or not using the CheckState
property. The CheckState property has a third possible value —Indeterminate. This is normally used
when the program cannot give a definitive yes or no answer. An example of this might be when the
CheckBox has a number of other fields below it, some of which are checked and some of which are
unchecked (the sample form in Figure 4-4 shows how this can work).

Figure 4-4

RadioButton
RadioButton controls are sometimes known as option buttons. They represent a set of information
whereby only one option can be chosen. Each option is displayed as a separate radio button and users click
one to select it. When one radio button is selected, all other radio buttons are deselected automatically.

Because RadioButton controls are automatically grouped in this fashion, it’s common to keep them in
a layout container control such as a GroupBox or Panel so they don’t affect other options groups. To
achieve the separate color and clothes selections shown in Figure 4-5, two Panel controls were first
placed on the form and then the RadioButton controls were added to the Panels.

Figure 4-5

ComboBox
When you have a large number of options from which to choose, RadioButton controls may get a little
messy. Or, if you have limited space on the form, it may be impossible to position the RadioButton con-
trols so they’re usable. ComboBox controls can be used to avoid both problems. A ComboBox stores a list
of information from which users can choose. To display the list, they click the drop-down button (in the
form of a downward pointing arrow) and once they’ve selected an option, it is displayed in a TextBox.

57

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 57

ListBox
An alternative to the ComboBox for presenting a lot of information is the ListBox. The ListBox can be
sized and positioned so that users can see many lines of data at once.

In the default selection mode of the ListBox, clicking on a line will automatically deselect any other
line. However, using the SelectionMode property, you can control this property to enable users to
select multiple entries in the list.

HScrollBar and VScrollBar
Scrollbar controls can be used to enable users to pan the visible surface of your application or to control
the value of a numeric variable. Visual Basic Express has two types of scrollbar — the HScrollBar for
horizontal scrolling and the VScrollBar for vertical scrolling. Each control has Minimum and Maximum
properties to set the bounds of the scrollable range, while the Value property returns the current value
of the scrollbar’s position.

Layout Controls
While it is possible to place all of the basic controls on the form individually (with the exception of mul-
tiple groups of RadioButton objects), Visual Basic Express provides additional components that make
designing and maintaining the user interface more efficient. Layout controls do just that — control the
layout of the form by grouping and positioning sets of other controls. Most of these controls are known
as container controls because they can contain other controls. You can access the collection of controls
within a container via its Controls property.

One other very important layout capability of Visual Basic Express is docking and anchoring, which is
discussed later in this chapter.

GroupBox
Around for almost as long as the Button and TextBox controls, the GroupBox component is a container
object that has a frame and caption. Its only purpose is to help lay out groups of controls.

Panel
The Panel control is the workhorse of user interface layouts. Panel controls are borderless by default
and inherit the color of the object on which they are being placed. This means you can lay out your form
with many panels controlling the location of the different elements, and rather than having to move each
individual control, you can simply move the panel instead.

There are two customized versions of the Panel that behave in a different manner — the
FlowLayoutPanel and the TableLayoutPanel:

❑ The FlowLayoutPanel works much like a web page does — as each control is added to the
panel’s surface, it is tacked on the end. The layout moves from left to right, top to bottom, as
shown in Figure 4-6.

❑ The TableLayoutPanel splits the panel’s area into columns and rows, with each cell able to
contain a single component. If you need more objects in one of the cells, simply use another
Panel object in the cell and place the multiple controls you require in it.

58

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 58

Figure 4-6 shows examples of all three panel types, with the background colors set to make it easier to
distinguish. The area in the top-left corner is a FlowLayoutPanel where the buttons wrapped around
when the layout ran out of room. The area in the bottom-left corner is a TableLayoutPanel with a but-
ton object in each cell, while the area on the right side of the figure is a standard Panel on which the
buttons can be placed where you need them (notice the button that is partially cut off because it extends
beyond the visible area of the panel itself).

Figure 4-6

SplitContainer
The SplitContainer control is the odd man out in the layout controls group. Rather than being able to
contain other controls, the SplitContainer divides an existing container component into two, either
horizontally or vertically (controlled by the Orientation property). By default, when you drop the
SplitContainer object onto a container component, it will automatically create two Panel objects and
a splitter bar; the Panels will be placed on either side of the splitter bar.

With SplitContainer controls it is possible to create complex, powerful user interfaces that enable
users to change the view to suit their needs. This is because not only does the control split a container
into two discrete parts that can be managed separately, it also handles situations in which the user wants
to resize the areas on either side. A real-world example is the interface of Microsoft Outlook 2003. The
main area is divided into three views — the folder list, the list of e-mail, and the preview pane containing
the currently selected item. Between each of these views is a splitter bar that enables the user to resize
the areas.

Menu and Status Controls
Another handy group of components are those that provide information and quick links to common
commands. Menu bars and toolbars have been around for as long as the Microsoft Windows operating
system, and give the user a set of commands to interact with, usually grouped into categories. Status
bars reside at the bottom of many application forms and provide instant feedback to users about the
state of the program.

59

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 59

MenuStrip
Modern applications often allow users to change the location of a menu, and even allow the menu to be
undocked from the side of the form, leaving it floating over the window. The MenuStrip control is the
newest way of creating menus, and it incorporates these features as well as other recent developments in
menu styles.

You’ll take a look at how to create menu bars and toolbars in detail in Chapter 6.

ToolStrip
Toolbars are now created using the ToolStrip control. Each ToolStrip can be positioned indepen-
dently and can have a number of controls added to it of various types, including text fields, combo box
controls, and the standard button controls that are common to almost every toolbar.

One particularly cool item type is the SplitButton that works as both a button and a drop-down list.
This enables you to emulate things such as the color selection command in Microsoft Word where click-
ing the main part of the button sets the color to the current setting, while clicking on the drop-down
arrow shows a table of colors to choose from.

Like MenuStrips, ToolStrips can be repositioned by the user if you enable it and can have separators
and customized buttons to help the user understand the layout.

StatusStrip
The StatusStrip component provides you with the capability to easily add informational panels to
your form. By default, the StatusStrip will dock itself to the bottom of the form, but you can move it
to another edge or even let it float over the rest of the form’s components.

The StatusStrip has two types of area that can be added to it — panels and progress bars. The latter can
be used to show the user the status of a particularly long operation. The panel areas can contain images,
text, or both, and each StatusStrip can have multiple panel and progress bars to meet your design
requirements.

ContextMenuStrip
When you right-click on an object in a form, often a small menu of commands will appear. This is
known as a context menu, and you can easily create these menus using the ContextMenuStrip control.

Creating a context menu for a control is done in two steps:

1. Add a ContextMenuStrip control to the form by dragging it from the Toolbox. Then customize
the contents of the menu as you would a normal menu control.

2. Once the control is set up, select the object that should have the context menu and locate its
ContextMenu property in the Properties Window. Click the drop-down arrow to see a list of
available menus and select the ContextMenuStrip control you added to the form.

ToolTip
The tool tip provides additional information about an element on a form when the user hovers the mouse
over it. Visual Basic Express provides tool tip functionality with the ToolTip control. When the ToolTip
control is added to the form, it extends all the other controls on the form with an additional property.

60

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 60

This automated extension of a control’s properties enables all controls to have one central location for
the tool tip settings, which is a departure from previous programming environments in which you were
required to create the tool tip style for each component.

HelpProvider
Another control that does most of its work by extending other controls is the HelpProvider. To connect
different parts of your program to a set of documentation, you first create a HelpProvider control and
set its properties. Then, for each control that you want to connect to the documentation, use the four
additional properties that are dynamically inserted by the HelpProvider to specify the parameters for
how to display help.

NotifyIcon
Before Visual Basic Express, programmers were forced to create complicated objects and call obscure
Windows system routines to add an icon to the notification area in the bottom right-hand corner of the
main Windows interface. Now you can do it with the simple addition of the NotifyIcon control on the
form. Used in conjunction with the ContextMenuStrip control, you can provide your users with quick
access to common commands even if your application is not visible.

Dialog Controls
At times, you will need to provide users with functionality that is standard across most Windows appli-
cations. Enabling users to select a color or font, or open or save a file to a location of their choosing, are
common enough that custom built dialog controls have been created and are included in Visual Basic
Express for your use.

Each dialog control has a set of properties you set either at design time or in code. For example, the
ColorDialog lets you set a default color and toggle the full color selection mode on and off. The dialog
controls are not shown by default but instead are shown by writing program code to display them. In
Chapter 12, you’ll use the OpenFileDialog and SaveFileDialog controls to find and process files.

Graphic Controls
Sometimes you need to use graphics to convey information to the user either in the form of an icon on
another control or standalone. Visual Basic Express comes with several controls to make these processes
easy. The two most common are the ImageList and PictureBox controls.

ImageList
The ImageList control is another one of those non-user interface elements that doesn’t display on its
own. Instead, it is used to store a small library of similar images that can then be used by other controls.
The advantage of using ImageList controls is that you can keep the icons for a series of buttons and
other controls in one place; and instead of assigning the image itself to the control, you simply point to
the location of the image.

The Images property provides access to the collection of images stored in the ImageList control. The
images can be in most common image formats and can have different dimensions. The ImageList then
converts them internally to a standard dimension and can even optionally identify transparent areas in
the image.

61

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 61

Controls that can use the ImageList will have an ImageList property that enables you to select from
all ImageList controls on the form, and an ImageIndex property that identifies the location within the
collection of images.

PictureBox
The PictureBox control is used to display an image. With the introduction of Panel controls and the
capability to independently set the background image of most standard controls, PictureBox controls
are not as widely used as they once were.

Images in PictureBox controls can be stretched or zoomed and the control can contain several other
images to show in the event of errors and long loading times. These additional images are handy when
the main image is to be loaded from an external location such as the web.

Other Controls
Many other controls are available for your use, including nonstandard ones that you can purchase or
download from third-party vendors. The following sections describe just some of the other components
that are packaged with Visual Basic Express, ready for your use.

Data Controls
Several controls help bind database tables to the user interface elements. Collectively they’re known as
the data controls and can be found in the main Toolbox or in a separate group called Data for easy access.

You’ll learn how to use these controls in Chapter 7.

Print Controls
One other set of components in the main Toolbox is related to printing. You’ll use several of these in
Chapter 11, but here’s a quick summary of what they do:

❑ PrintDocument— The main workhorse for printing, the PrintDocument control sends infor-
mation to the selected printer according to the formatting and settings you provide.

❑ PrintPreviewControl— As you might have guessed, adding the capability of previewing
your printed documents is as easy as putting one of these controls on your form and passing it
the information. Zooming and pagination is handled automatically.

❑ PrintDialog— This is the standard print dialog, which enables users to choose the printer to
which they want to send documents, along with other options if you have provided the infor-
mation, such as number of copies.

❑ PrintPreviewDialog— Used in conjunction with the PrintPreviewControl, the dialog pro-
vides access to various settings regarding how to preview the information to be printed.

❑ PageSetupDialog— This enables users of your application to customize the way the informa-
tion should be printed.

62

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 62

Miscellaneous Controls
Still many more controls come with Visual Basic Express, along with hundreds of others that are avail-
able for purchase over the web. Some of the more interesting controls include the following:

❑ DateTimePicker— This control enables users to choose a date from a drop-down calendar.
You’ll use one of these in the Try It Out at the end of this chapter.

❑ WebBrowser— A complete web browser all wrapped up and ready to go, the WebBrowser con-
trol gives you the capability to put the Internet inside your application.

❑ SoundPlayer— As its name suggests, this control gives you quick access to playing audio files
as part of your application’s processing.

Anchoring and Docking
As mentioned earlier in this chapter, using layout controls is not the only way of automating the layout
of your user interface design. All Visual Basic Express controls have two additional properties used
specifically for layout —Anchor and Dock. Using these properties will automate the resizing of controls
as the user resizes the form.

Anchoring
The Anchor property tells Visual Basic Express where the control should be situated on the form. By
default, Anchor is set to Top Left, which means the control will always remain the same distance from
the top and left edges of the form. Anchoring can be set to any side of the form and in any combination.

For example, changing the Anchor property of a button control to Top Right means that it will always
stay the same distance from the right-hand border of the form as well as the top. You should be aware of
a couple of tricks, however, that make anchoring even more powerful. If you anchor a control to oppos-
ing sides of a form, such as left and right, or top and bottom, the control will be resized so that it stays
the same distance from both sides. The two side-by-side images in Figure 4-7 show the same form with a
button that has an Anchor property set to Left Right— note how the button always remains the same
distance from both edges of the form.

Figure 4-7

The second handy effect of the Anchor property is when you remove the anchor for two opposite sides.
The result of this action is that the control will position itself proportionately on the form’s surface.
Suppose, for example, a button is placed on the form one-quarter of the way across the form and the
Anchor property is set to Top only. As the form is resized, the control will always be located one-quarter
of the width of the form, as you can see in Figure 4-8.

63

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 63

Figure 4-8

Docking
The Dock property aligns a control to one side of a form. When the Dock property is set, Visual Basic
Express will automatically move the control to the specified side of the form and resize it so that it
moves to the borders. For example, setting Dock to Left will move the control to the left-hand side of
the form and then resize it so that the top edge of the control is aligned with the top edge of the form
and the bottom edge is aligned to the bottom of the form. As the form is resized, the control will auto-
matically resize itself so that the top and bottom edges are always aligned with the form’s borders.

There is an additional Dock value —Fill. Rather than dock the control to one side of the form, the con-
trol is resized to fill the entire form. Usually when designing a user interface, you’ll use a series of Panel
objects to represent different areas of the form, and then dock them to different edges with one panel’s
Dock property set to Fill to take up the remainder of the space.

Remember that both of these properties are based on the container of the control, so if the control is
anchored inside a Panel component, then it will move according to the Panel’s own size and position,
rather than the form’s.

Like many features of Visual Basic Express, you could write code for this kind of situation; and in fact,
previous versions of Visual Basic required many lines of code to resize and reposition controls when a
form’s dimensions were changed. These properties are another great example of how much Visual Basic
Express helps in creating applications without the need for you to write code.

Building the User Interface for the Personal
Organizer

Now that you’re familiar with the kinds of controls that are available to you in Visual Basic Express, it’s
time to design the user interface for the personal organizer application. In the last chapter, you designed
the basic structure of the database, so you know the kind of information you will need to add to the
form to enable users to view and change the data.

In the following Try It Out, you will create the main form of your application, place and customize the
basic elements that will be used to structure it, and create a custom control for information.

Try It Out Creating the Main User Interface
1. Start Visual Basic Express and create a new Windows Application project. In this case, you’re

going to create everything from scratch, rather than use the wizards and starter kits you used in
Chapter 2. Name the project Personal Organizer and click OK.

64

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 64

2. Once the form is displayed, change the following properties so that it is ready to contain the ele-
ments you will need to add:

❑ Name —frmMainForm

❑ Text —Personal Organizer

❑ Size — 460, 440

3. Rename the form to MainForm.vb. This will make it easier to determine what the file is when
you’re reviewing the project. To rename a file, find its entry in the Solution Explorer and right-
click it. Select the Rename command and type the new name. The vb extension tells Visual Basic
Express that this file is a Visual Basic code file, so make sure you retain it.

4. Add a MenuStrip to the form. Notice that the user interface element of the menu automatically
docks to the top of the window. When the MenuStrip is selected in the Design view of the form,
you’ll notice a small arrow on the top right-hand side. This indicator is a smart tag, informing
you that there are additional actions you can perform.

Click this arrow and change the Name to mnuMainMenu. While the Actions dialog window is
still open, select the last command, Insert Standard Items. This will add default commands to
the menu, such as File and Help menus (see Figure 4-9). You’ll add additional menu items in
later chapters as you need them.

Figure 4-9

5. Add a ToolStrip control to the form. Again, click the smart tag indicator to bring up the
Actions pane. Rename the control to tbarMainTools and run the Insert Standard Items com-
mand to add some default buttons to the strip. This will add commands such as New and Print,
which you’ll use in subsequent chapters.

6. Add a StatusStrip control to the form by double-clicking the entry in the Toolbox. Notice that
this time it automatically docks to the bottom of the form. This is what you’re after. The only
property you need to change at this point is the Name, which should be set to sbarStatus. You
can access the Name property in either the Properties window or the Actions dialog that is dis-
played with the smart tag.

65

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 65

7. Now you can add two Panel controls to the remaining area of the form. With the first, set the
following properties:

❑ Name —pnlNavigation

❑ BackColor —MenuBar

❑ Dock —Left

This panel will contain the navigation buttons that users will use to access the various areas of
your application. The BackColor property of MenuBar is found in the System color tab and will
change if users change their systemwide color scheme.

The second panel will fill out the remainder of the form. To do this, set its Dock property to
Fill. To finish the job, change its name to pnlMain. This name will be used when you tell the
program to create and display controls in response to the user’s requests. For example, when
the user clicks the Show List button, this panel will be filled with a PersonList control (which
you will create in a moment).

8. Add two buttons to pnlNavigation by dragging and dropping them over the panel control.
Set their properties as follows:

❑ Button #1 Name —btnShowList

❑ Button #1 Text —Show List

❑ Button #2 Name —btnAddPerson

❑ Button #2 Text —Add Person

9. The main form design is done, so save the project and form by selecting File ➪ Save All.

10. Now create the first custom control. Custom controls are special Visual Basic Express files that
combine a set of other controls for easier management. In Chapter 2 you saw custom controls in
action when you created the starter kit (the ListDetails is a custom control, as is the
SearchOnline component). To create the basic control, select Project ➪ Add User Control. In
the dialog window, name the control PersonalDetails.vb and click OK to add it to the
project.

11. You will see a blank window without borders. Add a Label and a TextBox to the design sur-
face. Make sure you take advantage of the snap-to guidelines to ensure that the controls are
positioned well. A special guideline is shown when moving a Label in proximity to a TextBox
so that you can line up the actual text as opposed to the boundaries of the controls. Change the
Text property of the label to First Name. Change the Name property of the TextBox to
txtFirstName.

12. Add the controls for the other fields in your database table, excluding the GiftCategories
field (that will be added in Chapter 7). Follow the same procedure for Last Name, Home Phone
Number, and Cell Phone Number. Because a person’s address may span multiple lines, change
the Multiline property to True. Do the same for the Notes field.

The only field that requires a different control is the BirthDate— use a DateTimePicker for
this control. Because the standard format includes the day of week, which is inappropriate for a
birth date, set the following properties:

❑ Format —Custom

❑ Name —dtpDateOfBirth

❑ Custom Format —MMMM dd yyyy

66

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 66

Refer to Figure 4-10 for the final layout of the control.

Figure 4-10

The base user interface is now done for your Personal Organizer application. In only a few minutes
you’ve created the shell of a program that you will be able to use to maintain information about your
friends and family, and you’ll extend it in each chapter to provide additional functionality.

Summary
Visual Basic 2005 Express does a lot of work for you, and user interface design is certainly one area that
is made easier. The selection of controls that are available at your fingertips is large, and with the numer-
ous customizations you can perform on each one, you can create almost any kind of interface without
needing to resort to writing any code at all.

In this chapter, you learned to do the following:

❑ Think about your user interface rather than leave it to the last minute

❑ Use the controls that come with Visual Basic Express to create form designs quickly and easily

❑ Create the main form of your personal organizer application

Exercises
1. Anchor fields: Set the Anchor properties on the Address and Notes TextBox controls so that

they resize automatically when the form is resized.

67

What the User Sees

08_595733 ch04.qxd 12/1/05 1:37 PM Page 67

2. Adding the PersonList user control: In the next chapter you’ll need the PersonList user con-
trol to show the list of people in the database. Create a new user control with a ListBox and
two Button controls. Remember to set the Anchor properties so that the fields are resized and
positioned when the form’s dimensions are changed. Use Figure 4-11 as an example.

Figure 4-11

68

Chapter 4

08_595733 ch04.qxd 12/1/05 1:37 PM Page 68

5
How Do You Make

That Happen?

In the last few chapters, you’ve learned about database design, along with how to create well laid
out user interfaces. However, having a database and the user interface is pointless without the
glue in the middle — the actual programming code.

Writing code in Visual Basic Express 2005 is much like writing it in any other programming lan-
guage, with the extra benefits that the development environment gives you, such as code formatting,
automatic completion of programming structures, and a whole lot of IntelliSense to help identify
usable members and functions.

In this chapter, you learn about the following:

❑ Visual Basic Express code and how to write fundamental code structures

❑ The aids that Visual Basic Express provides to help you write code

❑ Hooking code to events

Writing Code
Before you get into the nuts and bolts of connecting the user interface to programming logic and
database tables, the first thing to do is look at how to write Visual Basic Express code. Creating a
program is made a lot easier using Visual Basic Express — the user interface can be designed using
the mouse and entering a few values in the Properties window; the database design can be hooked
into the program automatically using the Database Explorer and then hooked into some user inter-
face components with Data controls (this is covered in Chapter 7); even the creation of code that
hooks the user interface object’s events can be generated by the environment by simply double-
clicking the control.

09_595733 ch05.qxd 12/1/05 1:38 PM Page 69

However, despite all of this, you still need to understand, and be able to write, program code.
Fortunately, the Basic language has always been one of the easiest to follow, and Visual Basic Express
has combined it with solid object-oriented principles to make an incredibly robust but easy-to-use pro-
gramming language.

The Basics of Basic
Variables are objects that store information. A variable in Visual Basic Express can contain something as
simple as a number or as complex as a date or a fully constructed object, such as a user interface compo-
nent. Data types identify the type of object a variable can be. The standard data types available in Visual
Basic Express are as follows:

❑ Boolean — Variables of this type can store either true or false. You can use these as on-off
flags to determine when program logic should be performed.

❑ Byte — This is a number in the range of 0 through 255. The SByte data type can contain signed
integer values from -128 through 127.

❑ Char — Normally used for single characters, Char variables actually store numbers in the range
of 0 through 65,535.

❑ Date —Date variables can store dates and, optionally, time values.

❑ Decimal — Variables declared as decimals are precise numbers that can include a value after the
decimal point (unlike Integer and other whole number types). The range of values is +/-1E-28

through to +/-7.9E28.

❑ Double — The Decimal data types described above are relatively new to the Basic language.
Before their introduction, Double variables were used to store values with fractional components.
The precision of the Double data type is not as accurate as that found in Decimal; however, the
range is much larger — 4.94E-324 through to 1.79E308.

❑ Integer — Integers have always been used in Basic, but in Visual Basic Express they are 32-bit
numbers, which means they can store much greater values than previous versions of Basic.
The range of number values that can be stored in an Integer variable is -2,147,483,648 through
2,147,483,647.

❑ Long — An abbreviation for Long Integer, variables of this data type can store 64-bit numbers —
a range of -9.2E18 through 9.2E18. Again, as the name implies, this data type can handle only
whole numbers.

❑ Short — In previous versions of Basic, an integer was capable of storing only 16-bit values. The
Short data type retains that data type and has a range of -32,768 through 32,767.

❑ Single — Similar to Double, Single data type variables are used to store numbers that have
fractional components. The precision is not as great as either Decimal or Double and the range
is 1.4E-45 through 3.4E38.

❑ String —String variables are used to store text of varying lengths. While previous versions of
Basic may have had a limitation that could be broken, Visual Basic Express strings can store an
amazing 2 billion characters — surely enough for the greediest person.

70

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 70

Besides these core data types, you can create your own structures that can then be used as variable types,
as well as objects of any kind. In addition, for the integer data types —Integer, Long, and Short— there
are unsigned versions that increase the range of positive number values possible by sacrificing the capa-
bility to store negative numbers.

Using Variables
To use a variable in your code, you must first tell Visual Basic Express that you want it. This is known as
declaring the variable. You must tell Visual Basic the name of the variable and the data type you require,
in the form of Dim VariableName As VariableType. For example, to create a variable that is to store
integer values and has a name of MyNumber1, you would use the following line of code:

Dim MyNumber1 As Integer

Dim is a keyword that tells the Visual Basic Express compiler that you are declaring a variable. As is also
a keyword and identifies the location of the data type the variable is to represent.

All variables start out with a default value. Numeric data types such as Integer are initialized to zero,
the Boolean data type has a default value of False, and String variables contain an empty string. Use
an assignment operation to change the value of a variable. Assignment tells the compiler that the variable
on the left-hand side of the operation should store the value on the right-hand side. In Visual Basic
Express, the assignment operator is the equals sign (=), so to tell the compiler that you want the
MyNumber1 integer variable to have a value of 3, you would write the following code:

Dim MyNumber1 As Integer
MyNumber1 = 3

While assigning values to variables can be performed at any point in the program logic, often you need to
initialize the variable to something other than the default value for that data type. Visual Basic Express
provides a neat shortcut for this process of initializing variables by first declaring the variable as a particu-
lar data type, and then assigning its initial value all on one line. Declaring a second Integer variable and
initializing it to a value of 5 could be done like so:

Dim MyNumber1 As Integer
Dim MyNumber2 As Integer = 5
MyNumber1 = 3

Values such as 3 or 5 are known as literal because they represent a literal value that does not change.
Using literal values might be good for initializing variables, but you’ll often need to change the value to
something else. To that end, variables can also be assigned the value of other variables. If, for example,
you wanted to change the value stored in MyNumber2 to the value in MyNumber1, you would use an
assignment operation with MyNumber2 on the left-hand side and MyNumber1 on the right:

MyNumber2 = MyNumber1

Assignment operations can also assign the result of a function or other operation to the variable on the
left-hand side. The standard mathematical operations such as addition (+), subtraction (-) and multipli-
cation (*) are common, but other operations can be performed as well. Changing the preceding line of
code to MyNumber2 = MyNumber1 + 1 informs the compiler that MyNumber2 should save the result of the
operation on the right-hand side. In this case, the compiler would retrieve the value from MyNumber1
(3) and add 1 to it to get a final result of 4, which would then be stored in MyNumber2.

71

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 71

Operations do not have to contain literal values at all. Using the MyNumber1 and MyNumber2 variables
from the preceding example, you could store the product of the values in a third variable like so:

Dim MyNumber1 As Integer
Dim MyNumber2 As Integer = 5
Dim MyResult As Integer
MyNumber1 = 3
MyResult = MyNumber1 * MyNumber2

After this code were executed, MyResult would contain a value of 15 (3 multiplied by 5).

Creating Functions
You often will need to use the same code multiple times in different parts of your program. Rather than
rewrite the code in multiple locations, you can encapsulate it as a subroutine or function and then call
that from the different spots in your code. If the code is standalone and doesn’t need to communicate
back to the code that called it, then it can be created as a subroutine; otherwise, if it needs to return a
value, then it should be defined as a function.

Declaring a subroutine is performed by using the Sub keyword followed by the name of the subroutine to
be created. The name of the subroutine should be followed by a set of parentheses, but if you press the
Enter key without them, Visual Basic Express will automatically add them for you. You also need to tell the
compiler where the end of the subroutine is, which you do by adding a new line with the keywords End
Sub. Visual Basic Express jumps to your aid with this, too, so creating a routine called SayHello could be
done as easily as typing Sub SayHello and pressing Enter. This would generate the following code:

Sub SayHello()

End Sub

Any code that is enclosed between the Sub and End Sub lines is executed whenever the subroutine is
called. Functions are declared in a similar fashion, but like variables, they must also be defined as a spe-
cific type. In addition, instead of Sub (short for Subroutine) the keyword Function is used, so a function
that returns a number might look like this:

Function CalculateAge() As Integer

End Function

When using functions, you need to tell Visual Basic what value should be sent back to the code that
called it. The Return keyword is used to do this, and as soon as it is executed, the code will set the value
associated with the function and return back to the calling routine. This means you can have multiple
places within the function that “return” based on different conditions.

While calling a function or subroutine in isolation may work in some cases, often you will need to tell it
to use particular values. This is done by defining a parameter list between the parentheses in the rou-
tine’s definition. Each parameter needs to be defined in a similar way to a normal variable, but because
the compiler knows that the code between the parentheses is going to be parameter definitions, you do
not need to use the Dim keyword.

When parameters are passed to a function or subroutine, Visual Basic needs to know whether it’s the
whole variable or just the value stored in the variable. The ByVal keyword tells the compiler that it

72

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 72

should use only the value of the variable being passed to the routine. As this is the usual way of using
parameters, Visual Basic Express automatically inserts the keyword if you forget to do it. This looks like
the following:

Function GetMeatStockCount(ByVal IncludeGoat As Boolean) As Integer

End Function

The ByRef keyword identifies objects that should be used in the routine. This means items being passed
in with ByRef can be changed by the code within the routine. The best way to explain this is to illustrate
it with an example:

010 Dim MyNumber1 As Integer = 5
020 Dim MyNumber2 As Integer = 6
030 Dim MyResult As Integer
040 MyResult = SomeFunction(MyNumber1, MyNumber2)
050
060 Function SomeFunction(ByVal FirstNum As Integer, ByRef SecondNum As Integer) _

As Integer
070 FirstNum = FirstNum * 2
080 SecondNum = SecondNum + 5
090 Dim TheResult As Integer = SecondNum + FirstNum
100 Return TheResult
110 End Function

The preceding sample code is presented with code line numbers to better explain what’s going on. By
default, Visual Basic Express does not display line numbers alongside the code, but you can enable this
option in the Options window. You’ll find the option in the Editor options for the Basic language.

The function SomeFunction takes two integers as parameters and performs several calculations against
them, returning the final result to the calling code. As the code is executed, the following table follows
the values of the variables as the code is executed, showing how they change in the function and after it
returns to the main program.

Line MyNumber1 MyNumber2 MyResult FirstNum SecondNum TheResult

010 5 N/A N/A N/A N/A N/A

020 5 6 N/A N/A N/A N/A

030 5 6 0 N/A N/A N/A

040 ➪ 060 5 6 0 5 6 N/A

070 5 6 0 10 6 N/A

080 5 11 0 10 11 N/A

090 5 11 0 10 11 21

100 5 11 0 10 11 21

100 ➪ 040 5 11 0 10 11 21

73

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 73

Did you notice how the value of MyNumber2 changed when SecondNum changed in line 080? This is
because the function definition specified that the second parameter was being passed ByRef, meaning
the whole variable is being worked with as opposed to only the value. As a side note, line 090 shows
how the declaration and initialization of a variable can be combined with an operation.

Visual Basic Express uses two ways of passing parameters to a function. The default is ByVal, which
actually passes a copy of the variable, rather than the variable itself. This means it doesn’t change the
variable contents outside the function. The other option is ByRef, which tells Visual Basic to pass the
actual variable.

To confirm the concepts outlined so far in this chapter, use the following Try It Out to create a simple
program that converts temperatures in Fahrenheit to Celsius.

Try It Out Writing Code #1
1. Start Visual Basic 2005 Express and create a new Windows Application project. Once the Design

view of the form is shown, add a button and a text box to the form with the following properties:

❑ Button Name —btnConvert

❑ Button Text —Convert

❑ TextBox Name —txtDegrees

2. Double-click the button. Visual Basic Express will automatically create a subroutine that will be
executed whenever the user clicks the button. You’ll look at how to do this later in this chapter.

3. In the subroutine, enter the following code:

Dim Result As Decimal

Note that when you leave the line, Visual Basic Express will draw a colored wavy line under-
neath the word Result (as shown in Figure 5-1, without the color). This is one of the many
visual cues Visual Basic Express provides you to make writing code easier. The color indicates
that the variable is not currently being used.

Figure 5-1

4. Immediately after the line where you declared the Result variable, type these two lines:

Result = FahrenheitToCelsius(CType(txtDegrees.Text, Decimal))
txtDegrees.Text = Result.ToString

As you press Enter after the first line, the gray line underneath Result on the declaration line is
removed because the variable is now used. However, now a blue wavy line appears underneath
the function name FahrenheitToCelsius (see Figure 5-2)! Don’t worry — a blue line indicates
that Visual Basic Express has found something that is not declared. You’ll create this function
in the next step, so it’s fine as is.

74

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 74

Figure 5-2

If you ever forget what a particular visual cue means, hover the mouse cursor over the displayed indicator.
Visual Basic Express will show a tool tip explaining what is occurring.

The other thing to note about this line is that the FahrenheitToCelsius function is being
called with a parameter of CType(txtDegrees.Text, Decimal). CType is a built-in function
that enables you to convert one variable type to another. Because txtDegrees.Text returns a
String, you need to convert it to a Decimal value before calling the function. Visual Basic will
first call the CType function with the parameters of txtDegrees.Text and Decimal, and then
call FahrenheitToCelsius with the result that is returned. You can call functions with other
functions as many times as you want — it’s called nesting — but usually one level, as shown in
this example, is enough before it gets a bit confusing to read.

The requirement to convert the variable contents to Decimal is true only if you have Option Strict On,
as suggested in Chapter 2. I recommend this so that you always know what your variables are, but you
can let Visual Basic Express automatically convert between data types it knows how to handle by using
Option Strict Off instead.

The second line of code assigns the result of the call to the function to the Text property of the
text box. Again, to explicitly indicate to the compiler that you know what you’re doing, use the
ToString method to convert the decimal value to a string. All objects have a default ToString
method that returns a visual representation of their contents.

5. Create the Fahrenheit function by typing its definition directly after End Sub. As the previous
code suggests, the function needs to be defined with a single parameter that is a Decimal data
type, and it will return a value that is also a Decimal data type. Remember that you don’t need
to type the ByVal keyword because Visual Basic Express will do it for you:

Private Function FahrenheitToCelsius(ByVal FDegrees As Decimal) As Decimal

End Function

The only word you may not recognize here is Private. This tells Visual Basic Express that this
function is available only in the module in which it was created. This is known as an access modi-
fier. You’ll look at other access modifiers later in the book.

6. In between the Function and End Function lines, type the following code:

Dim CDegrees As Double

CDegrees = (5 / 9) * (FDegrees - 32)
Return CType(CDegrees, Decimal)

75

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 75

While this could also be achieved in a single line, Return (5 / 9) * (FDegrees – 32), it’s
always good practice to do calculations separately from the Return command in case some-
thing goes wrong. First a variable of type Decimal is declared and then the standard algorithm
to convert between Fahrenheit and Celsius is used. The result is then returned to the code that
called the function.

7. Run the program by pressing F5 or selecting the Debug ➪ Start command. Enter a value in the
text box such as 98.6 and click the Convert button. The contents of the text box will change to
the Celsius equivalent, as shown in Figure 5-3.

Figure 5-3

Once you’ve tested the application with a few different values, close it by clicking the red X and return
to the Visual Basic Express IDE. From here, save the project with File ➪ Save All, naming the solution
something that you will remember, such as Temperature Converter. Leave it open because you’ll use it
again later in this chapter.

This application illustrates the use of function calls, variable declarations, and assignment operations,
including mathematical functions.

Want Something More?
Creating variables and performing operations such as mathematical algorithms might be all you need,
but it’s pretty limiting without a few more concepts under your belt. It would be nice to be able to per-
form the code only under certain conditions, or to be able to repeat a block of code multiple times.

Conditional Logic
Conditional logic enables you to customize the way the program runs depending on the value of a vari-
able, operation, or function. In the same way a nightclub might not let you in until you’ve reached the
age of 21, using a decision statement in your code means the code inside the condition block will be per-
formed only if the condition is met. The standard condition keyword in Visual Basic Express is If. This
is followed by the code representing the decision that the program must make and is finished with the
keyword Then. This results in the form If TheConditionIsTrue Then. Representing the nightclub
analogy in code might look like this:

76

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 76

If CheckAge(Customer) > 21 Then

This is then followed by the code that is to be performed if the condition is true. If there is only one
operation to be performed, it can be written on the same line as the If, like so:

If CheckAge(Customer) > 21 Then AllowEntry = True

However, if the condition requires a block of code to be performed, then you enclose the lines between
the If line and an End If line, as shown here:

If CheckAge(Customer) > 21 Then
AllowEntry = True
OpenDoor()

End If

Under some circumstances, you might want to perform code if the condition is not true — a sort of “do
this if it’s true; otherwise, do that” formula. To identify code that should be executed only when the con-
dition is not met, use the Else keyword. Any code between the Else and End If keywords will be per-
formed only if the condition is not true:

If CheckAge(Customer) > 21 Then
AllowEntry = True
OpenDoor()

Else
AllowEntry = False
CloseDoor()

End If

To check out how this works, the following Try It Out customizes the Temperature Converter application
so that you can convert temperatures in both directions.

Try It Out Adding Conditional Code
1. Return to the Design View of the form by clicking on the Form1.vb [Design View] tab in the

IDE. Add a CheckBox control to the form and set the following properties:

❑ Name —chkCelsiusToFahrenheit

❑ Text — Celsius to Fahrenheit?

2. Double-click the Convert button to return to the code view where the Click event is handled. In
the subroutine, you’ll need to add an If condition to determine the state of the CheckBox and
perform the appropriate function depending on its state:

Private Sub btnConvert_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnConvert.Click
Dim Result As Decimal
If chkCelsiusToFahrenheit.CheckState = CheckState.Checked Then

Result = CelsiusToFahrenheit(CType(txtDegrees.Text, Decimal))
Else

Result = FahrenheitToCelsius(CType(txtDegrees.Text, Decimal))
End If

77

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 77

txtDegrees.Text = Result.ToString

End Sub

Now, if the CheckBox is checked, the code will store the results of a new function,
CelsiusToFahrenheit in the Result variable; otherwise, it will perform the function
you already created previously.

3. Create the new function so it reverses the calculation:

Private Function CelsiusToFahrenheit(ByVal CDegrees As Decimal) As Decimal
Dim FDegrees As Double

FDegrees = ((9 / 5) * CDegrees) + 32
Return CType(FDegrees, Decimal)

End Function

4. Run the application, enter 98.6 in the text box, and click the Convert button to confirm that the
original calculation is still performed. Now, check the checkbox and click the Convert button
again. The value will be converted back to the original 98.6.

5. Close the application to return to the design environment. Remember to save it again so you
don’t lose your work.

You can perform almost any kind of conditional logic programming through the use of If-Else-End If
blocks, but Visual Basic Express provides you with a couple of shortcuts to make your code more read-
able (and efficient to create).

First, if you have multiple sets of conditions that are mutually exclusive, the contraction ElseIf can be
used in a chain of conditional blocks. As an example, consider a scenario in which cakes are allocated
shelf space based on their type:

If Cake.Type = “Chocolate” Then
AllocateShelf(Cake, TopShelf)

ElseIf Cake.Type = “Banana” Then
AllocateShelf(Cake, BottomShelf)

Else
AllocateShelf(Cake, MiddleShelf)

End If

The second abbreviation for If condition logic is the IIf command. The IIf command is like a If-
Else-End If block all in one line, useful for assigning different values to a variable based on a condition.
The form of the IIf statement is IIf(Condition, TrueValue, FalseValue). If chocolate cakes were
priced at $2 but all other cakes were only $1, the price of a particular cake could be calculated as follows:

Price = IIf(Cake.Type = “Chocolate”, 1, 2)

There is another decision logic structure that enables multiple conditions to be checked against one vari-
able. The Select Case-End Select statement block enables the code to check a variable’s value with mul-
tiple cases, performing different operations in each instance. Each condition is prefixed with the keyword

78

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 78

Case and the value that should be matched. There is a special case of Else that is met if no other condi-
tions are matched. The multiple conditions in the previous cake example could be rewritten using the
Select Case statement like so (with carrot cake added to the trash):

Select Case Cake.Type
Case “Chocolate”

AllocateShelf(Cake, TopShelf)
Case “Banana”

AllocateShelf(Cake, BottomShelf)
Case “Carrot”

AllocateShelf(Cake, Trash)
Case Else

AllocateShelf(Cake, MiddleShelf)
End Select

Looping Logic
Another fundamental concept in programming languages is being able to repeat a set of commands a set
number of times. This is commonly known as a program loop, and Visual Basic Express provides a variety
of ways to implement this.

The first and most common program loop is the For-Next code block. A variable is defined as a counter
and is used to control how many times the code block should be executed. The general structure is as
follows:

For VariableName = Start To Finish
...code to be repeated

Next

The Start To Finish portion of the For line identifies the starting and ending points of the loop’s
counter, so if Start were a value of 1 and Finish were a value of 10, the code inside the For-Next
block would be executed 10 times.

Start and Finish can be literal values or variables (or even the result of function calls!), while the cur-
rent value of VariableName can be referenced within the code block if necessary. The For statement has
an optional parameter named Step that specifies the number to increment by each time around in the
loop. This is placed after the ending value with the keyword Step, followed by the number:

For VariableName = Start To Finish Step IncrementValue

Previously, the variable for the loop had to be declared in a separate location in the code. Visual Basic
Express does away with needless coding though and enables you to define the variable within the
For statement itself. The variable is declared in much the same way as if it were being declared on a
separate line:

For VariableName As DataType = Start To Finish Step IncrementValue

79

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 79

The following table contains some sample For-Next loops.

Dim Counter As Integer Defines an integer variable named Counter.

For Counter = 1 To 10 Uses the previously declared Counter to loop
10 times.

Next

Dim MaxValue As Long = 1000 Defines a long integer named MaxValue and
initializes it to 1,000.

For Counter As Long = 50 To MaxValue Creates a long integer variable named Counter
and uses it to count from 50 to the value stored in

Next MaxValue (that is, 1,000).

For Counter As Integer = 1 To 30 Step 5 Creates an integer variable named Counter and
uses it to count from 1 to 30 in increments of 5.

Next Note that this will loop 6 times, with the last
iteration having a value of 26.

A variation of the standard For-Next block is for use with collections of objects. For example, you may
need to perform an operation on every record in a database table. To do this, use the For Each statement
that is of the form For Each Object As ObjectType In CollectionName. The database example would
be implemented like this:

For Each CurrentRecord As DataRow In PersonTable
...code to be performed on each record

Next

When using the For Each construct, when the code within the loop is being performed, the
CurrentRecord object is defined as the type specified in the For Each line and is populated with
each object in the collection in turn.

Two other loop constructs can be used in Visual Basic Express. Both follow the same pattern — perform
the code contained within the looping block while a certain condition exists. However, the condition
checking for each construct occurs at a different point. The While statement will iterate through the code
while the condition specified is true, and the Do Until statement performs the code until the condition
specified is met.

The Do Until loop block can be specified in one of two ways, with the difference being when the condi-
tion is checked:

Do Until Condition
...code to be performed

Loop

or

Do
...code to be performed

Loop Until Condition

80

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 80

The following three example loops look like they do the same thing:

While VariableOne < VariableTwo
VariableOne = VariableOne + 1

End While

Do Until VariableOne >= VariableTwo
VariableOne = VariableOne + 1

Loop

Do
VariableOne = VariableOne + 1

Loop Until VariableOne >= VariableTwo

There is a difference in the outcome for the third loop — can you see it? In the first one, the loop will only
be performed if VariableOne is less than VariableTwo when it is first entered. Likewise, the second
loop will be executed only if VariableOne contains a value less than VariableTwo. However, in the
last loop, if VariableOne is already greater than VariableTwo, the loop will still be performed the first
time because the condition is not tested until the end of the loop.

Using all of these fundamental constructs in your code, you can perform complex logic that incorporates
conditional and looping statements that control how the code should be executed.

Events
An event in the real world is an occurrence with significance. It might be the sun rising, or a switch
flicked on, or a car door closing. Regardless of what has occurred, anyone can take notice of it and react
based on what has happened. In Visual Basic Express programming, every object has specific activities
associated with it. These are called events and can be tracked by other objects in the program.

When an object raises an event, it sends a message to the system to notify it that something has occurred.
In Visual Basic Express, code can be written to execute when such an event has been fired. This is called
handling the event, and it is accomplished by creating a subroutine that has the same signature as the
event structure.

Every event has a specific structure that accompanies it. For example, a FireAlarm event may include
a parameter to indicate the building sector in which the fire is occurring. This structure is commonly
known as the event signature, and any subroutine that wishes to handle a particular event must have the
same signature of included parameters or the compiler will reject it.

A subroutine designed to handle an event is written in the same way as a regular subroutine:

Sub RoutineName(ParameterList)
End Sub

For example, handling a button object’s Click event requires a subroutine with two parameters, a
System.Object and an EventArgs object:

Sub MyButtonClickRoutine(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show(“My Button was clicked”)
End Sub

81

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 81

Once the routine has been declared, it then needs to be connected to the event. To connect the two, an
additional clause is added to the end of the subroutine definition. The Handles keyword tells the com-
piler that this subroutine is to intercept events that are named after it. To connect the preceding subrou-
tine with the Click event of a button named Button1, the definition would be altered as follows:

Sub MyButtonClickRoutine(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

MessageBox.Show(“My Button was clicked”)
End Sub

This method of hooking object events with suboutines through a Handles clause enables a program to
handle multiple events with one subroutine and have multiple subroutines all handling the same event.
In the following Try It Out, you’ll create a set of subroutines that handle different events to illustrate this
capability of Visual Basic Express.

Try It Out Writing Event Handlers
1. Create a new Windows Application project in Visual Basic Express. Once the form has been dis-

played in Design view, add two button objects to the form. Set their properties as follows:

❑ First button Name —btnOne

❑ Second button Name —btnTwo

2. Double-click on btnOne to have Visual Basic Express automatically add a subroutine that will
handle the Click event of the button. When the code view is shown, enter the following line
of code:

MessageBox.Show(“First button clicked!”)

3. Return to the Design view and this time double-click btnTwo to generate a default event handler
for the Click event of that button. Enter the following line of code:

MessageBox.Show(“Second button clicked!”)

4. Finally, create your own subroutine directly after the btnTwo_Click routine with this code:

Private Sub ButtonClicked(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOne.Click, btnTwo.Click

MessageBox.Show(“A button was clicked!”)
End Sub

5. When you run this application, clicking on either button will produce two messages. Clicking
the first button will display First button clicked! as well as A button was clicked!, while
clicking the second button will display Second button clicked! along with the A button was
clicked! message. This example illustrates how multiple events can be handled by one routine
(ButtonClicked), and how events can be handled by multiple routines.

When two or more routines are handling the same event, there is no guaranteed order in which they will
receive it. When Visual Basic Express compiles the code, it assembles the event hooks, but it’s up to the
system to send the event notifications when they occur.

82

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 82

Objects: A Special Case
Objects, both those that are part of Visual Basic Express and the ones that you create yourself, are han-
dled slightly differently when you declare them. This is because initially when an object is declared, it
doesn’t actually contain anything. Rather, it is a definition of the object waiting to be filled with some-
thing; put another way, it’s a potential object waiting to happen.

An object is defined in the same way as a data type variable, such as the following:

Dim MyButton As Button

and

Dim APersonRecord As Person

However, before you use it in program logic, it must be initialized, either by assigning it the value of
another object of the same type, or by creating a new instance of the class. This latter method is achieved
using the New method, which needs a class type to identify what type of object should be created:

Dim APersonRecord As Person
APersonRecord = New Person

Like the initialization of data type variables, these two lines can be abbreviated into one:

Dim APersonRecord As Person = New Person

It can be abbreviated even further if the object types are the same:

Dim APersonRecord As New Person

Objects usually have a number of events, methods, and properties. Methods are called in a similar way to
functions and subroutines. Method is the correct name for a function that belongs to an object; in reality,
it is a function. If the Person class used as an example here had a GoToSleep method that accepted a
parameter of NumberOfHours and returned a Boolean flag to indicate whether the Person did indeed
go to sleep, it could be used like so:

DidItWork = APersonRecord.GoToSleep(7.5)

Because of this, object methods can be used anywhere functions can be — as part of conditional logic,
or looping code blocks, assignments, and operational statements. Properties of objects are similar to
variables. In fact, most properties are data type variables. The Person class might have a FirstName
String variable and a BirthDate Date variable, but this is not always the case. A property of an object
can be an entirely new object, which in turn can have properties that are objects, and so on.

Applying the Knowledge
The Personal Organizer application is designed to enable you to keep track of information about your
friends and family members. It stores their names, addresses, phone numbers, and birth dates, along
with a notes area so you can remind yourself about particularly important information. As you progress

83

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 83

through the chapters in this book, you will add more functionality to the application to allow for
reminders and backing up the data.

So far you’ve created the database structure for this section of the application, along with a simple user
interface. The two pieces are disconnected, however, so you’ll need to create some code that will popu-
late the user interface components with the contents of the database.

Before that can be done, the user interface itself needs to have some code written so that the appropriate
parts of the application are displayed when the user clicks the various buttons. The following Try It Out
creates the code to add instances of the user controls you created in Chapter 4 to the main form layout,
and to indicate when the two buttons are clicked. It will demonstrate the use of subroutines that handle
events as well as the creation of objects and conditional logic to remove user controls that are not being
used.

Try It Out Connecting User Interface Elements
1. Open the Personal Organizer project you created in Chapter 4 and go to the Design view of the

MainForm.vb file by right-clicking its entry and selecting View Designer from the menu. Make
sure you include the additions made in the Exercise section of that chapter so that you have
both the PersonList control and the PersonalDetails control.

If you haven’t created the code from Chapter 4, you can find a starting point solution in the
downloaded code for this book in Chapter 5\Personal Organizer Start.

2. You need to show the user controls when the user clicks the buttons, so double-click the Show
List button to have Visual Basic Express automatically generate a subroutine that handles the
Click event. When the user clicks on this button, you will need to show the PersonList con-
trol, but the MainForm object knows nothing about PersonList objects.

3. In the subroutine, declare an object of type PersonList and then initialize it with a new
instance of PersonList:

Private Sub btnShowList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowList.Click

Dim objPersonList As PersonList
objPersonList = New PersonList

End Sub

4. You now have a PersonList object in the main part of your program, but it needs to be added
to the form’s structure so the user can see it. The MainForm user interface has a Panel object
named pnlMain. This was positioned and docked so that it takes up the central area of the
form — perfect for the PersonList object.

Because the Panel control is a container control, you can add controls to it in code by accessing
the Add method of its Controls collection property, like this:

Private Sub btnShowList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowList.Click

Dim objPersonList As PersonList
objPersonList = New PersonList

pnlMain.Controls.Add(objPersonList)
End Sub

84

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 84

5. Run the program by pressing the F5 key or using the Debug ➪ Start menu command, and click
the Show List button. Lo and behold, an instance of the PersonList control is created and then
added to the main panel area.

6. However, the problem with this implementation is that because the PersonList control was
created in the Click event, it’s inaccessible from anywhere else in the code. To change the scope
of the objPersonList variable, stop the program and return to the code view of MainForm.vb.
Remove the definition of the objPersonList from the btnShowList_Click routine, and,
scrolling to the top of the code listing, insert the following definition before the start of the
routine:

Private objPersonList As PersonList

When you define a variable or object outside the subroutine and function definitions, you need
to specify its context. As you want it accessible only within the main form, the Private access
modifier tells the compiler that all code within the MainForm.vb module can access the object
but nothing outside the module can see it at all.

7. Return to the Design view of MainForm.vb, and this time double-click the Add Person button.
In the resulting routine that is generated, add the following code to create a new instance of the
PersonalDetails user control and add it to the pnlMain component:

Private Sub btnAddPerson_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAddPerson.Click

objPersonalDetails = New PersonalDetails

pnlMain.Controls.Add(objPersonalDetails)
End Sub

8. Note that the instances of objPersonalDetails are marked with blue wavy lines, indicating
that the variable has not been declared, so insert the definition of the object directly after the
definition of objPersonList:

Private objPersonList As PersonList
Private objPersonalDetails As PersonalDetails

9. Now run the application again and click the Add Person button to see the instance of the
PersonalDetails user control displayed. There’s a problem, however — if you click the Show
List button, the PersonList control doesn’t seem to be displayed. In fact, it is being displayed,
but it’s hidden by the PersonalDetails control already present in the panel. This is why you
moved the definition of the objects so that they could be accessed from anywhere in the code.

10. Stop the application and return to the code view of the form. If the user clicks the Show List
button, then logically they don’t want to see the Personal Details screen, so you’ll need to write
some code that determines whether this other object exists, and remove it if so.

Unfortunately, this is one condition that Visual Basic is not very good at — checking for the exis-
tence of an object. To determine whether an object does not exist, you can compare it to the spe-
cial keyword Nothing, such as If MyObject Is Nothing Then. Previously, the way to check if
it has been initialized is to reverse this condition with the Not operator:

If Not MyObject Is Nothing Then

85

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 85

In Visual Basic Express, it’s a little better, but not much:

If MyObject IsNot Nothing Then

Once you have determined that the PersonalDetails object exists, first remove it from the
pnlMain’s Controls collection and then reset it so that it no longer contains an object by
assigning Nothing to it. Your code should now look like this:

Private Sub btnShowList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowList.Click

objPersonList = New PersonList

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If
pnlMain.Controls.Add(objPersonList)

End Sub

11. Run the application yet again and click the Add Person button followed by the Show List but-
ton. This time around, you’ll find that the PersonalDetails control is removed from the form,
and the PersonList control can be seen.

12. You’ll need to repeat the process in the btnAddPerson_Click event handler routine. However,
rather than use the clunky IsNot Nothing condition, you can use a method in the panel to deter-
mine whether the other user control currently exists. Because you know that if objPersonList is
an actual object (as opposed to Nothing) it will be part of the pnlMain’s Controls collection,
use the Contains method to determine whether it exists, and if it does, remove it and then set it
to Nothing:

Private Sub btnAddPerson_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAddPerson.Click

objPersonalDetails = New PersonalDetails

If pnlMain.Controls.Contains(objPersonList) Then
pnlMain.Controls.Remove(objPersonList)
objPersonList = Nothing

End If
pnlMain.Controls.Add(objPersonalDetails)

End Sub

13. When you run the application now, the user controls will be created and destroyed correctly
when either button is clicked.

14. The only thing left to do at this point is to tell the objects to fill the whole panel area allocated to
them. This is done by writing code to set the Dock property of each object to Fill, like so:

objPersonList.Dock = DockStyle.Fill

Because the objPersonList and objPersonalDetails objects are reset when the button is
clicked, you will need to set this property each time you create them, so insert the previous
line at the bottom of the btnShowList_Click routine and a similar line setting the
objPersonalDetails.Dock property at the bottom of the btnAddPerson_Click routine.

86

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 86

Run the application and compare it to Figure 5-4. As the user resizes the form, the components
of the user control that is currently being displayed also resize to fill the available area.

Figure 5-4

You’ve now created the code required to show the two main components of the Personal Organizer
application. As you were creating the code, you undoubtedly noticed that the code editor in Visual Basic
Express provided a number of helper features, including the following:

❑ Gray wavy lines to indicate variables that were defined but not used. These won’t stop the
program from compiling and running and will be removed when the object or variable is refer-
enced in the code.

❑ Blue wavy lines that show you where you have program errors. Visual Basic Express will not
compile while you have errors like these and will automatically add them to the Error List win-
dow so you can easily find them all.

❑ Automatic completion of code blocks such as If-End If blocks. Simply type If followed
by the condition and Visual Basic Express will add the Then keyword and a new line containing
the End If statement.

❑ IntelliSense pop-ups for properties and methods. This occurs when you type the name of a
variable or object followed by the period (.) to indicate you want to use a member of that object.
Visual Basic Express will display a list of commonly used methods and properties that you can
scroll through to locate the right one. For example, when you typed pnlMain, you would have
been presented with a list of properties and methods that are part of the pnlMain object. As you
select a member in the list, a tool tip will be displayed giving you information about what it
does (see Figure 5-5).

87

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 87

Figure 5-5

❑ IntelliSense for enumerated types. Enumerated types are variables that can contain only a set
number of values. In the Try It Out, you set the Dock property for the two user control objects to
Fill. When you typed the assignment operator (=), Visual Basic Express presented a list of
valid values, which included DockStyle.Fill, as illustrated in Figure 5-6.

Figure 5-6

❑ Extended tool tip information as you enter parameters for function and method calls. For
example, when you added the objects to the pnlMain’s Controls collection, the Add method
followed by the open parenthesis produced a tool tip with what parameters are expected and
what each one is used for (as shown in Figure 5-7).

Figure 5-7

In Chapter 7, you’ll connect the user control components with the data source and finally have an appli-
cation that displays information from a database in a user interface you have created.

Summary
Writing Visual Basic Express code is straightforward. It follows common programming language constructs;
and with the various aids that the IDE provides you, you’ll find yourself guided to the correct code at almost
every step of the way. Armed with the knowledge found in these first five chapters, you can create applica-
tions with a good user interface design, coupled with code that responds to user-generated events.

88

Chapter 5

09_595733 ch05.qxd 12/1/05 1:38 PM Page 88

In this chapter, you learned to:

❑ Write Visual Basic Express code, including defining and initializing variables and objects,
as well as writing conditional and looping program logic

❑ Use the visual aids that the development environment displays

❑ Handle object events with your own subroutines

In the next chapter, you’ll customize the menu and toolbar items, as well as build your own custom
classes complete with properties, methods, and events.

Exercises
1. Create an application that changes the color of the text in a TextBox control if there are num-

bers present. To do this, you’ll need to write a subroutine to handle the TextChanged event of
a TextBox and set the ForeColor property if the condition is met.

2. Create an application that counts from 1 to 100 in increments specified by the user and displays
the values in a TextBox.

3. Modify the application you created in Exercise 2 so that it ensures the increment is a number
before it performs the loop.

Hint: Use the IsNumeric built-in function to determine if a variable is numeric or not.

89

How Do You Make That Happen?

09_595733 ch05.qxd 12/1/05 1:38 PM Page 89

09_595733 ch05.qxd 12/1/05 1:38 PM Page 90

Part II

Extending Yourself
Is Good

10_595733 pp02.qxd 12/1/05 1:39 PM Page 91

10_595733 pp02.qxd 12/1/05 1:39 PM Page 92

6
Take Control of
Your Program

Up until now, the appearance of the user interface was created at design time, with the underlying
code being used to control the data that was displayed. In addition to this, you will often need to
customize the appearance of the individual controls on your forms while the program is running.
This runtime modification of the user interface is the subject of this chapter.

Along with learning about changing your controls at runtime, the following pages discuss the
creation and extension of custom controls and classes, including building your own properties,
methods, and events.

In this chapter, you learn about the following:

❑ Creating custom classes and controls

❑ Using events and properties to communicate within your programs

❑ Changing controls at runtime

Adding Some Class to Your Program
The programs you created in the first part of this book gave you a fundamental understanding of
how to design an application using Visual Basic Express. By looking at the methods used to achieve
good form design and getting familiar with creating functions with conditional logic and program
loops, you learned how straightforward using this programming language can be.

Now comes the good stuff — classes. Visual Basic Express is an object-oriented language. As such,
it enables you to segregate your application into discrete units that act as self-contained objects
that interact with each other on defined boundaries and only through prescribed means, whether
they are properties, methods, or events. Chapter 2 outlined the definitions of a number of the con-
cepts required to understand class building and offered some tantalizing code snippets suggesting
how you can reference classes in the code of your applications.

11_595733 ch06.qxd 12/1/05 1:40 PM Page 93

When you create an application’s underlying structure you should think about how to break it down.
Consider the following questions:

❑ What’s the best way you can describe the various components of the program, the different
types of data, and the way things interact with each other?

❑ Is there a discrete object or objects that you can distinguish in the overall design?

❑ Can you draw a diagram that shows individual pieces of data and how they communicate?

❑ Is there an object dependent on another, and if so, should it keep tabs on the other object or wait
for the other to inform it of a change?

In Chapter 4 you created the initial user interface of a Personal Organizer application. It contained a
main form with a basic menu and toolbar, a couple of buttons, and a big blank area along with a couple
of custom controls. In the next chapter you added code to add these custom controls to the form and
show them to the user, depending on what button was pressed.

What you may not have realized as you did this was that you were working with special classes in the
form of custom-built Windows Form controls. These controls work just like any other class with proper-
ties, methods, and events, and the way you added them to the form — with the process of creating a new
instance of the control and then adding it to a container — is exactly the same thing you need to do when
you work with normal classes, too.

Consider the purpose of the application covered in Chapter 3 — a program that enables you to keep
track of information about your friends and family members, including their birthday, e-mail addresses,
and other contact information. From a data point of view, you need to keep track of each person; hence,
the Person table you created.

That Person table is an obvious candidate for a custom class that you can use to store information. The
advantage of defining it as a class is that you can use it in your code, disconnected from the database,
and you can include methods and events that belong to that particular person. Conveniently, this class
can be used together with the custom control to give you flexibility in processing each person.

The application itself could be defined as another class, with properties keeping track of various settings
and program states such as who is using the program and what action was performed last. And because
classes can contain other classes as attributes, the PersonList control you created in the exercise section
of Chapter 4 and then hooked in to the main form in Chapter 5 could be defined as yet another class,
complete with a collection of Person classes that detail each individual.

Creating Custom Classes
Creating a custom class involves just a few steps. You first create the class module in the Visual Basic
Express IDE. Then you define its characteristics through the definition of the variables that will store the
data about the class, the functions that will act on the data, and any events to tell the rest of the world
something has occurred within the class.

It should be pointed out that the class module that you create can actually contain multiple class defini-
tions, so when you get down to it, you could just add additional class definitions inside your main form’s
.vb file. However, you are encouraged to separate your classes into individual files. The reason is simple.

94

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 94

Using classes enables you to segregate information and actions into a self-contained unit. This unit can
then be used by anything that has access to it. If you keep each class in a separate class module, you
can then import just the ones you want into each project.

For example, if you wanted to build another application in the future that used the same Person class
as the Personal Organizer application, it wouldn’t be as easy to use if the Person class was defined in
the main form’s file because you would need to include the whole thing. It is usually acceptable to keep
classes that work together in one physical file. This means you could keep the Person class and the
PersonList class in the same file if that fits your own style of organization.

You can even define classes within classes if that makes sense to your application’s design. Internal
classes of this type are normally defined as Private so they can be accessed only within the main class’
functionality.

To add a class file to your project, use the Project ➪ Add Class menu command or right-click the project
in the Solution Explorer and choose Add ➪ Class from the submenu. Either method will present you
with the Add New Item dialog with the empty class template highlighted (see Figure 6-1). Name the
class something appropriate to the kind of object you are defining and click Add to add it to the project.

Figure 6-1

The new class file will be added to the Solution Explorer window, and you’ll be able to access the code
for it through the context menu or by clicking the View Code button at the top of the Solution Explorer.
Selecting the class file will also change the context of the Properties window, where you can set a couple
of properties that control how the class is built and the name of the file if you wanted to change it later.

When you add a class module, by default it adds an empty class with the same name and defines it as
Public, which means any other part of the application can reference and use the class, as well as any
external program that interfaces with your application. The code view of your class will look like this:

Public Class MyClassName

End Class

95

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 95

Properties
An empty class doesn’t do much; you need to add code to specify its attributes. First up are the variables
that store the information. These are usually placed at the top of the class structure and are defined in
the same way as module-level variables are in your form code in a Windows Application project.

Variables within classes can be defined with a variety of access modifiers, including Private and
Public. Private tells Visual Basic Express that the variable is accessible only within this class and will
not be seen outside the class. Public is at the opposite end of the spectrum — a public variable can be
accessed not only by the class and any other part of your application, but also by other programs as well
(assuming they can access the class that the variable is part of).

Other access modifiers include Friend, which enables other parts of your program to access the variable
(but nothing outside of it can see it), and Protected, which is an extension of Private that enables
classes that inherit behavior from other classes to see their variables.

If you put this in action, the class definition would appear similar to the following:

Public Class MyClassName
Private MyString As String
Public MyInteger As Integer

End Class

In this case, the MyString variable would be accessible only from within the class, while other parts of
the application could access and change the contents of MyInteger.

Classes often embody this kind of division of information, where some data is for internal use only,
while other information is provided to the rest of the program. You may be tempted to implement the
publicly available data using Public variables, but that allows other code to have access to the data in
a way you may not want to allow.

These Public variables will be visible in the form of properties on the class, but unlike real properties,
the code accessing the class can assign whatever data it wants to the variable, thus potentially corrupting
your class contents. Real property definitions enable you to control access to the information.

To define a property, you use the Property structure, which has the following syntax:

Property propertyName() As String
Get

Return someValue
End Get
Set(ByVal newValue As String)

Do something with newValue
End Set

End Property

A property must have a name and a type, which specify how it can be accessed from outside the class.
Within the property definition, the code needs to define what is returned if code tries to get the value
from the property (the Get clause), and what action should be taken if another part of the program
attempts to assign a value to the property (the Set clause).

96

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 96

The sample code can be altered to fit this preferred way of defining a public property, by changing the
access modifier on MyInteger to Private and then returning it and assigning it through a Property
definition:

Public Class MyClassName
Private MyString As String
Private MyIntegerValue As Integer
Public Property MyInteger() As Integer

Get
Return MyIntegerValue

End Get
Set(ByVal newValue As Integer)

MyIntegerValue = newValue
End Set

End Property
End Class

Notice in the preceding property definition that it was actually defined with a Public access modifier to
explicitly tell the Visual Basic Express compiler that this property is to be accessible from outside the class.

This sample effectively does almost the same thing as giving external code direct access to the private
variable. However, you can write whatever code you require in the Get and Set clauses to control that
access. For example, if the value stored in MyInteger were allowed to be within a specified range of 1
through 10 only, the Set clause could be modified to ignore values outside that range:

Public Property MyInteger() As Integer
Get

Return MyIntegerValue
End Get
Set(ByVal newValue As Integer)

If newValue >= 1 And newValue <= 10 Then
MyIntegerValue = newValue

End If
End Set

End Property

The Get clause can be similarly modified if need be. In some cases, you may want to allow access to
information to other areas of your program but not allow it to be modified. To disallow write access to a
property, use the ReadOnly modifier on the Property definition:

Public ReadOnly Property MyInteger() As Integer
Get

Return MyIntegerValue
End Get

End Property

Note that the Set clause is not even required (and in fact will cause a compilation error if it does exist)
when the property is defined ReadOnly. Conversely, some information may be modified via external
code, but cannot be retrieved. This may be for security reasons, or just because it’s not needed. In either
case, use the WriteOnly modifier in the place of the ReadOnly modifier and specify the Set clause
instead of the Get clause.

97

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 97

Creating an instance of the custom class and accessing the properties defined within it is done using the
same syntax as accessing the attributes of a control or form:

Dim MySample As New MyClassName
MySample.MyInteger = 6

Methods
If the only thing that the class were capable of was defining, storing, and controlling access to informa-
tion through properties, it would be a powerful feature of programming in Visual Basic Express. But
that’s just the beginning, and like the methods on controls such as Buttons and TextBoxes, a class can
have its own public functions.

Methods can be either subroutines or functions, and they have the same syntax as both of these struc-
tures (covered in Chapter 5). Because methods are part of the internal structure of the class, they can
access the private variables defined within the class. Therefore, the sample class definition could be
extended like so:

Public Class MyClassName
Private MyString As String
Private MyIntegerValue As Integer
Public Property MyInteger() As Integer

Get
Return MyIntegerValue

End Get
Set(ByVal newValue As Integer)

MyIntegerValue = newValue
End Set

End Property
Public Sub MyFunctionName(ByVal ExtraParameter As Integer)

MyIntegerValue += ExtraParameter
End Sub

End Class

Class functions and subroutines are accessed by referencing the object name followed by a period (.) and
then the name of the method. As you can see, this method of identifying members of objects is used
throughout Visual Basic Express code, and this consistent approach of accessing information makes it
easy to read programs. Using the sample property and method, this access is illustrated as follows:

Dim MySample As New MyClassName
MySample.MyInteger = 6
MySample.MyFunctionName(3)
MessageBox.Show(MySample.MyInteger.ToString)

The result of this code would be a message dialog containing a text representation of the value stored in
the MyInteger property of MySample— 9.

Your class structure can also have private functions that are used only internally within the class. These
are usually helper functions that perform very specific tasks that do not serve much purpose outside the
class.

98

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 98

Events
The cherry on top of the pie defining a class is the capability to define custom events. For any significant
occurrence within the class, you can build a notifying action that other code can receive by writing an
event handler routine.

Adding an event to a class is a two-step process. First, you need to define the event and identify what
information will be included in the message when it occurs. Second, you need to tell the class to raise the
event when a particular condition or situation is met.

Event definitions are placed outside any other property or method definition and consist of a single-line
statement beginning with the keyword Event and naming the event followed by its parameter list
enclosed in parentheses. The syntax is Event EventName(EventParameters) and is demonstrated
here by adding an event named MyEvent at the top of the class definition:

Public Class MyClassName
Event MyEvent(ByVal MyBigInteger As Integer)

Private MyString As String
Private MyIntegerValue As Integer
Public Property MyInteger() As Integer

Get
Return MyIntegerValue

End Get
Set(ByVal newValue As Integer)

MyIntegerValue = newValue
End Set

End Property
Public Sub MyFunctionName(ByVal ExtraParameter As Integer)

MyIntegerValue += ExtraParameter
End Sub

End Class

Once the event has been defined, it then needs to be raised at an appropriate time. Events can be
designed and raised for all sorts of reasons. Your class may need to raise an event if an error occurs, or it
might need to inform the application every time a particular function is performed. You may also need
to raise an event every time a particular interval of time has passed.

Telling Visual Basic Express that the event should be fired is done through the RaiseEvent command
and has the syntax RaiseEvent EventName(EventParameters). The subroutine in the sample class
could thus be modified like this:

Public Sub MyFunctionName(ByVal ExtraParameter As Integer)
MyIntegerValue += ExtraParameter
If MyIntegerValue > 10 Then

RaiseEvent MyEvent(MyIntegerValue)
End If

End Sub

99

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 99

The final class definition containing private variables, public properties and methods, and event defini-
tion appears as follows:

Public Class MyClassName
Event MyEvent(ByVal MyBigInteger As Integer)

Private MyString As String
Private MyIntegerValue As Integer
Public Property MyInteger() As Integer

Get
Return MyIntegerValue

End Get
Set(ByVal newValue As Integer)

MyIntegerValue = newValue
End Set

End Property
Public Sub MyFunctionName(ByVal ExtraParameter As Integer)

MyIntegerValue += ExtraParameter
If MyIntegerValue > 10 Then

RaiseEvent MyEvent(MyIntegerValue)
End If

End Sub
End Class

You saw how the event handler routine side of things is implemented in Chapter 5, but to follow the
example all the way through, here is a sample routine that handles the event that is defined and raised
in the previous example:

Private WithEvents MySample As MyClassName
...
Private Function SomeFunction() As Boolean

MySample = New MyClassName
MySample.MyInteger = 6
MySample.MyFunctionName(3)
MySample.MyFunctionName(3)

End Function

Private Sub MyEventHandler(ByVal BigNumber As Integer) Handles MySample.MyEvent
MessageBox.Show(“Number getting big: “ & BigNumber)

End Sub

This code creates an instance of the MyClassName class and assigns an initial value of 6 to the MyInteger
property. It then performs the MyFunctionName method twice, each time effectively incrementing the
MyInteger property by 3, with a result of 9 and then 12.

When the subroutine calculates the value of 12, it raises the event MyEvent, which is being handled by
the MyEventHandler routine, and a message dialog is displayed warning the user that the number is
getting big.

You may have noticed the extra keyword required as part of the definition of the class —WithEvents.
For more information on how WithEvents works, see Chapter 9.

100

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 100

Special Method Actions
As you were typing out code in Chapter 5 and taking notice of the cool IntelliSense features of Visual
Basic Express, you may have noticed that some methods appeared to have multiple ways of being
called, or multiple signatures. This is known as method overloading and is a relatively new addition to the
Visual Basic language.

Method overloading enables you to define several functions with the same name but with different sets
of parameters. Each function can do completely different things, although it’s typical for functions of the
same name to perform the same kind of action but in a different context. For example, you might have
two methods that add an interval to a date variable, where one adds a number of days, while the other
adds a number of days and months. These could be defined as follows:

Public Sub AddToDate(ByVal NumberOfDays As Double)
MyDate.AddDays(NumberOfDays)

End Sub

101

Take Control of Your Program

The With-End With Block
Sometimes you will want to work with a particular object or control extensively.
Rather than type its name each time, you can use a special shortcut Visual Basic
Express provides — the With-End With block.

The With statement identifies a particular variable name to be treated as a shortcut to
the compiler. Wherever a property or method is preceded by a single period (.), the
compiler will automatically insert the variable identified in the With statement. For
example, the function definition in the previous example could be replaced with this
With block:

With MySample
.MyInteger = 6
.MyFunctionName(3)
.MyFunctionName(3)

End With

You can have only one shortcut variable at any one time, although you can embed
With blocks inside other With blocks. This is particularly useful with very complex
objects where you initially work with properties at one level but then need to deal with
attributes further down the hierarchy:

With MyOtherSample
.MyString = “Hello”
With .MyOtherObject
.MyStringTwo = “World”

End With
End With

You’ll find further examples of using With blocks throughout this book as a way of
saving space. It can make your code more readable, so I encourage you to use With in
your own applications.

11_595733 ch06.qxd 12/1/05 1:40 PM Page 101

Public Sub AddToDate(ByVal NumberOfDays As Double, _
ByVal NumberOfMonths As Integer)
MyDate.AddDays(NumberOfDays)
MyDate.AddMonths(NumberOfMonths)

End Sub

You can also define a couple of special methods in your class that will automatically be called when the
objects are first created and when they are being destroyed. Called constructors and destructors, these
methods can be used to initialize variables when the class is being instantiated and to close system
resources and files when the object is being terminated.

Dispose and Finalize are the two methods called during the destruction of the object, but the method
called when a class is created is important enough to be discussed now. The New method is called when-
ever an object is instantiated. The standard New method syntax accepts no parameters and exists by
default in a class until an explicitly defined New method is created; that is, the following two class defini-
tions function in the same way:

Public Class MyClass1
End Class
Public Class MyClass2

Public Sub New()
End Sub

End Class

Both of the preceding class definitions enable you to define and instantiate an object with the New keyword:

Dim MyObject As New MyClass1

However, if the explicitly defined New method accepts parameters, then you must instantiate the object
with the required parameters or the program will not compile:

Public Class MyClass2
Private MyInteger As Integer
Public Sub New(ByVal MyIntegerValue As Integer)

MyInteger = MyIntegerValue
End Sub

End Class
Dim MyObject As New MyClass2(3)

Bringing the capability of method overloading into the equation, however, enables you to define multiple
versions of the New method in your class. The following definition would enable you to define objects and
instantiate them without any parameter or with a single integer value:

Public Class MyClass2
Private MyInteger As Integer
Public Sub New()

MyInteger = 0
End Sub
Public Sub New(ByVal MyIntegerValue As Integer)

MyInteger = MyIntegerValue
End Sub

End Class

102

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 102

One last important point: If your class is based on another class, to create the underlying class you must
call the special method MyBase.New as the first thing in your New method definition so that everything
is instantiated correctly.

The following Try It Out brings all of this information about how to create a class together by creating the
Person class for the Personal Organizer application, complete with multiple New methods to demonstrate
overloading.

Try It Out Creating a Class
1. Start Visual Basic Express and create a new Windows Application project. Add a new class mod-

ule to the project by selecting Project ➪ Add Class. Name the class Person.vb and click Add to
add it to the project.

2. In the class definition, start by defining private variables to store the Person information:

Private mFirstName As String
Private mLastName As String
Private mHomePhone As String
Private mCellPhone As String
Private mAddress As String
Private mBirthDate As Date
Private mEmailAddress As String
Private mFavorites As String
Private mGiftCategories As Integer
Private mNotes As String

3. For each of these variables, create a full property block with Get and Set clauses. For now, simply
translate the property to the private variable. For example:

Public Property FirstName() As String
Get

Return mFirstName
End Get
Set(ByVal value As String)

mFirstName = value
End Set

End Property

4. Revise the code for setting the birth date so that it does not allow dates in the future. You can do
this by comparing the date value passed in against the special date keyword Now, which returns
the current date and time:

Public Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

If value < Now Then
mBirthDate = value

End If
End Set

End Property

103

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 103

5. Create a read-only property called DisplayName that concatenates the first names and last names:

Public ReadOnly Property DisplayName() As String
Get

Return mFirstName + “ “ + mLastName
End Get

End Property

6. Create two New methods to enable the creation of a new Person class with or without the first
and last names:

Public Sub New()
End Sub
Public Sub New(ByVal sFirstName As String, ByVal sLastName As String)

mFirstName = sFirstName
mLastName = sLastName

End Sub

7. Return to Form1.vb in Design view and add a button to the form. Double-click the button to cre-
ate and edit the Click event handler and add the code to create a Person object and populate it:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
Dim pPerson As Person = New Person(“Brett”, “Stott”)
With pPerson

.HomePhone = “(555) 9876 1234”

.CellPhone = “(555) 1234 9876”

.BirthDate = CType(“1965-10-13”, Date)

.Address = “101 Somerset Avenue, North Ridge, VA”
End With
MessageBox.Show(pPerson.DisplayName)

End Sub

8. Run the application and click the button. After a moment you should be presented with a mes-
sage dialog with the text Brett Stott. You’ve created your first class, complete with over-
loaded methods and read-only properties.

Control Freaks Are Cool
In a moment, you’re going to take a look at how to interact with controls by changing their properties
and intercepting their methods, so it’s worth reviewing what can be done at design time to initialize the
attributes of your controls even before you begin to run.

The Properties window (see Figure 6-2) enables you to customize the appearance of each element on the
form, including the form itself. It also can be used to control behavior through attributes related to data
and other nonvisible aspects of the control.

104

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 104

Figure 6-2

Design-time Properties
Rather than set the properties through simple text fields, the variety of methods to set the attributes is rich
with drop-down lists, visual cues, and a hierarchy that groups related properties together. In Figure 6-2,
the Appearance group for a Button control is shown. Out of all the properties in the visible area, only
BorderSize and Size are simple text edits.

The remainder of the properties use a number of different editor types. For example, BackColor and
BorderColor drop down three lists of colors to choose from and provide a sample of the color option
right in the Properties window. The lists include system colors, which give you the capability to set your
controls’ color schemes to match the rest of the Windows system — if users change their system settings,
your application can stay in synch with the rest of the environment (see Figure 6-3).

Figure 6-3

105

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 105

The Font property is actually an object and can be expanded as shown in Figure 6-3 to show the individ-
ual fields, such as Name and Size. While these properties can be set individually, the Font property can
be used to show a general Font dialog window that enables you to set several of these attributes at once.
In addition, the Font Name property offers a visual preview of the font option selected right in the
Properties window so you can verify it’s the correct choice.

The Properties window can be organized to show the properties in either alphabetical order or in cate-
gories, which is the default view. To switch between the two, click the Categorized and Alphabetic but-
tons at the top of the pane.

An interesting addition with Visual Basic Express is the capability to access the events that the selected
control has. Click the Events button, which is a little yellow lightning strike icon, and the properties will
be replaced by a list of events. Any event that has an event handler routine explicitly intercepting it will
have the name of the routine listed here, and you can easily change the routines handling the different
events by clicking the drop-down arrow and choosing them from the list. You’re safe in that only the
subroutines that have the correct signature will be listed.

If you’re not sure what a particular property or event does, the Properties window will give you a brief
description at the bottom of the pane. This tray area also serves another purpose for complex objects
such as data-bound controls and visual components such as menus and toolbars.

Setting the Tab Order
Speaking of navigating through a form by pressing the Tab key raises a valuable point. By default, as
you add controls to the design surface of a form or user control, they have a TabIndex value automati-
cally assigned to them. This TabIndex controls the order in which the components are traversed when
the user presses Tab.

In most applications, you’ll find that this order is, well, orderly and logical, usually flowing from left to
right and top to bottom, much like you would read this page. If you add your controls in an order that
differs from this, or if you realize when running the application that it doesn’t quite make sense for the
navigation flow to work the way you’ve set it up, you’ll need to change the TabIndex property.

These values can be set directly in the Properties window like any other property, or you can use the Tab
Order Wizard, which makes setting them easy. To change to Tab Order mode, use the View ➪ Tab Order
command.

Tab Order view will place the current TabIndex properties over each control on the form (see Figure 6-4).
To change the order, select each control in the order you want the navigation to occur by clicking them. As
each control is selected, its TabIndex number will be set to the next available number (starting with 0),
and the TabIndex marker will change color to indicate it has been set.

Once every element has been set, the TabIndex markers will reset to the original gray color to indicate
you have done them all. At this point you can start again, or exit Tab Order mode through the View menu.

You may notice that this tab order is also followed at design time. This enables you to verify that the tab
order is what you intended, and it gives you a logical way of proceeding through your controls as you
edit their properties and events.

106

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 106

Figure 6-4

Editing Collections of Objects
If an object such as a MenuStrip is selected in Design view, among the properties you’ll find objects that
contain a collection of subordinate items. In the case of MenuStrip, the Items property identifies an
array of MenuItems that belong to the control. Each MenuItem is a control in its own right and can be
accessed by clicking it in the form’s Design view, but a more natural way of editing the properties of the
collection is through a Collection Editor.

It may appear that there are several of these Collection Editors, each specifically targeted at a particular
type of object. In reality, there is one Collection Editor that Visual Basic Express customizes dynamically
to suit the control you are editing.

The Collection Editor for the Items collection of a MenuStrip is shown in Figure 6-5. Each of the objects
belonging to the MenuStrip’s Items collection is shown in the left-hand list, while the right-hand prop-
erties view provides direct access to its properties.

The beauty of this Collection Editor paradigm is that it is recursive. In Figure 6-5, the Edit menu item is
selected and the properties list has been scrolled down to the DropDownItems property. This is another
collection object that in turn can be edited through the Collection Editor (and if an item in that collection
had a collection of sub-items, they could also be edited through this process, and so on).

Items within a collection can be repositioned or removed using the command buttons situated between
the two lists. The Collection Editor is smart enough to know which types of items are valid for inclusion
in the current list type. In the case of a MenuStrip, four kinds of items can be added to the collection —
a standard menu item, a ComboBox, a TextBox, and a separator. To add the required item, choose its
type from the drop-down list and click Add.

In the following Try It Out, you’ll modify the menu and toolbar of the Personal Organizer application
so that it contains only the items that you’ll need. This will demonstrate the advanced aspects of the
Properties window, including the Collections Editor and in-place property editing.

107

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 107

Figure 6-5

Try It Out Modifying the Menu and Toolbar
1. Start Visual Basic Express and open the Personal Organizer solution you worked with in

Chapter 5. If you don’t have this project handy, you can find a copy of it in the Chapter
06\PersonalOrganizer Start folder of the downloaded code that you can get from the Wrox
website (at www.wrox.com), complete with MenuStrip and ToolStrip with standard items.

2. Some of the items that were added through the Insert Standard Items command are unneces-
sary, and some commands you’re going to need later. Therefore, you need to customize the
menus and toolbars. First, change the toolbar so that it contains only what you need.

3. The ToolStrip has seven default items — New, Open, Save, Print, Cut, Copy, and Paste — with
two separator lines dividing the buttons into logical groups. It also has a gripper so that it can
be dragged around. Because it doesn’t apply in this application with only the one ToolStrip,
turn the gripper off by changing the GripStyle property to Hidden.

You can use all of these buttons except for Open, so go ahead and right-click the picture of the
open folder and choose Delete to remove it from the ToolStrip. Do the same for the Help but-
ton as you won’t implement help in this application.

4. Two useful commands that you’ll build the code for later in this book are not present. They are
shortcuts to delete the currently selected person from the list and to enable the user to log off.
Click on the ToolStrip to make it active and show the in-place editor. In the Type Here area,
enter Delete and press Enter to save the new button.

Repeat this action and add a new button with a text label of Logoff.

108

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 108

5. The buttons look a bit bulky at the moment and out of place because they are text buttons (the
others are icons). Select Delete and then bring up the Smart Tag dialog window by clicking
the small arrow on the right.

Change the DisplayStyle to Image and click on the ellipsis button next to the Image property
to import a new image. In the Select Resource dialog, click the Import button to select an image
file on your computer. If you don’t have one handy, browse to the Chapter 06\Images folder
included in the downloaded code for this book and select delete.gif.

When you’ve found the image you want to use, click Open to return to the Select Resource dialog,
make sure it looks right in the Preview pane, and click OK.

6. Repeat the process in step 5 with the Logoff button. The image used in the example shown in
Figure 6-6 can be found in the same folder of the downloaded code and is named user.gif.

Figure 6-6

7. It would be nice to have the Delete command grouped with the New, Save, and Print buttons,
so click and drag the icon to where you want it to be positioned and release it. You can rear-
range the items on any toolstrip or menu like this.

8. Now it’s the MenuStrip’s turn. Rather than use the in-place editor, this time you’ll use the
Collection Editor for the Items property. Select the MenuStrip and locate Items in the
Properties window. Click the ellipsis button to bring up the Collection Editor.

9. Select the File menu’s object — it has a name of fileToolStripMenuItem— and find its
DropDownItems collection and again click the ellipsis button to dive down an extra level in the
Collection Editor.

10. You won’t need the Open or Save As commands, so select each one in the list and click the
Delete button to remove them. The menu looks a bit awkward with a separator between New
and Save now that they’re by themselves, so remove that separator as well.

11. Select ToolStripMenuItem from the item drop-down and click Add. By default, it will be
added to the bottom of the list, so click the Move Up button to move the new item above the
Exit command. Change the new item’s properties as follows:

109

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 109

❑ Name —logoffToolStripMenuItem

❑ Text —&Logoff

❑ Image — The same image you used for the Logoff button in step 6.

When you’re finished, the list of items should look like Figure 6-7. To save all these changes,
click OK to return to the main MenuStrip’s Item Collection Editor.

Figure 6-7

12. Leave all the menu items in place for the Edit menu, but add a new separator and an extra
menu item at the bottom of the list. A ToolStripSeparator item will draw a line in between
other commands to group them for your users. The extra ToolStripMenuItem should have
the following properties set:

❑ Name —deletePersonToolStripMenuItem

❑ Text —&Delete Person

❑ Image — The same image you used for the Delete button in step 5.

13. Save the Edit menu by clicking OK, and then edit the Tools menu by selecting toolsToolStrip
MenuItem in the list and clicking the ellipsis button next to its DropDownItems property.
Remove all of the items that are currently there by selecting each one and clicking the Delete
button. In their place, add two new menu items for Export Data and Import Data. Their settings,
respectively, are as follows:

❑ Name —exportListToolStripMenuItem

❑ Text —&Export Data

and

❑ Name —importListToolStripMenuItem

❑ Text — &Import Data

110

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 110

14. Add a new View menu item with a name of viewToolStripMenuItem. Just like when you
added the Logoff button to the Edit menu, adding the View menu will result in its being added
to the end of the menu list, so move it “up” one position so it will appear before the Help menu.

15. In the View menu’s DropDownItems collection, add two ToolStripMenuItems to give users
easy access to the Person List and the Web Browser (this will be added in Chapter 9). Set the
properties as follows:

❑ Name —personListToolStripMenuItem

❑ Text —&Person List

and

❑ Name —webBrowserToolStripMenuItem

❑ Text —&Web Browser

❑ ShortcutKeys —Ctrl + W

Again, save the changes you’ve made and return to the main menu list. The final menu is Help —
remove all the items except for aboutToolStripMenuItem.

When you’re done, click OK in the main MenuStrip’s Collection Editor to save all of the changes made.
Run the application and compare it to Figure 6-8.

Figure 6-8

Custom Controls — Empower Yourself
When you create a user control, you’re just defining a specialized class that includes visual components.
That means all the information outlined in this chapter also applies to custom-built controls, including
the creation of properties and methods, and the definition and invocation of events.

In Chapter 4, you created two basic user controls, which you then dynamically added to the main form
area when the user clicks the appropriate button. However, you didn’t add any properties, methods, or
events to the user control’s definition, so you may assume that you cannot access any information within
the control.

111

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 111

That’s actually not the case. If you take a look at the drop-down list that Visual Basic Express provides
through IntelliSense for the controls, you’ll find a list of properties and methods that are exposed by the
user control itself, along with Friend scope variables for each of the components you added to the control.

Because they are defined with a scope of Friend, these controls can be accessed from the form that owns
the user control, but using these properties is similar to creating public variables within a class — it
allows the external code full access to the component — possibly more access than you would want.

On top of this, any events that are fired by the individual components within a user control are not
passed on to the owner of the user control. The only events that the owner can access — assuming the
control has been defined WithEvents so that the events can be intercepted — are those belonging to
the user control itself.

Because of both of these reasons, it’s best to explicitly define the members of the user control and in so
doing regain control of what can and cannot be done to the internal elements of the control. Visual Basic
Express keeps the code underneath the user control clean by keeping the objects and properties that you
add to the design surface in a separate module.

By default, this module is hidden from view in the Solution Explorer, but you can access it by clicking
the Show All Files button at the top of the Solution Explorer pane. The module will be named the same
as the form or control with an extra extension of Designer, so the code behind a control named
MyControl would be contained in a file named MyControl.Designer.vb.

What you’ll find in this module is that Visual Basic Express uses the same class constructs you need to
use when creating your own classes. Each control is defined using the WithEvents keyword so their
events can be trapped, and there is a New method defined that initializes the properties of each compo-
nent with the values you’ve set in Design view.

The result of this separation of visual design code and the underlying program logic is that when you
modify the user control’s code, you start with an empty class:

Public Class MyUserControl

End Class

All your own events, methods, and properties are defined within this class in exactly the same way as
any other class you might create. However, because this class is connected to the hidden designer class,
you have access to the components and their members. Each component will be accessible in the Class
drop-down list at the top of the code editor, too, so you can easily find the events that you can intercept
for each control.

To illustrate how you might define your own members for a user control, the following Try It Out walks
through adding properties and methods to the PersonalDetails custom control that is part of the
Personal Organizer application.

Try It Out Adding Properties to Persons
1. Return to the Personal Organizer project that you’ve been working on in this chapter. Add a

new class module by selecting Project ➪ Add Class and name it Person.vb. Follow the steps in
the Try It Out entitled “Creating a Class” earlier in this chapter to define the basic Person class
containing properties, the read-only property DisplayName, and the overloaded New methods.

112

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 112

2. Open the code view for PersonalDetails.vb by right-clicking its entry in the Solution
Explorer and choosing View Code. Add a private module-level variable to store the Person
class associated with the control and add a public property to allow other parts of your applica-
tion to access it:

Private mPerson As Person

Public Property Person() As Person
Get

Return mPerson
End Get
Set(ByVal value As Person)

mPerson = value
End Set

End Property

3. Add code to the Set clause to automatically update the component controls on the user control
whenever the Person property is updated:

Private mPerson As Person

Public Property Person() As Person
Get

Return mPerson
End Get
Set(ByVal value As Person)

mPerson = value

txtFirstName.Text = mPerson.FirstName
txtLastName.Text = mPerson.LastName
txtHomePhone.Text = mPerson.HomePhone
txtCellPhone.Text = mPerson.CellPhone
txtAddress.Text = mPerson.Address
txtEmailAddress.Text = mPerson.EmailAddress
txtFavorites.Text = mPerson.Favorites
txtNotes.Text = mPerson.Notes
dtpBirthdate.Value = mPerson.BirthDate

End Set
End Property

4. When the user clicks the New button on the menu or toolbar or the Add Person button, it would
be handy for the form to tell the control to revert to its default values in case it is currently being
displayed. Add a subroutine called ResetFields, resetting all the controls and the Person
object to empty values:

Public Sub ResetFields()
txtFirstName.Text = vbNullString
txtLastName.Text = vbNullString
txtHomePhone.Text = vbNullString
txtCellPhone.Text = vbNullString
txtAddress.Text = vbNullString
txtEmailAddress.Text = vbNullString
txtFavorites.Text = vbNullString
txtNotes.Text = vbNullString

113

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 113

dtpBirthdate.Value = Now
mPerson = New Person

End Sub

5. To test that these properties are accessible, you can change the code in the Add Person button on
frmMainForm to create a Person object, fill it with information, and then pass it over to the
PersonalDetails control. Ultimately, this will be the process you’ll use in the Show Details
functionality when viewing the Person List, but you haven’t connected the database yet, so this
serves as a test.

First, create a new Person object with the second New method definition to include the first
names and last names. Set some other properties of the object and then assign it to the Person
property exposed by the PersonalDetails control:

Dim objPerson As New Person(“Glenda”, “Brown”)
With objPerson

.BirthDate = “1965-12-02”

.Address = “333 Green Valley Way, Los Angeles, CA”

.HomePhone = “(811) 8888 7777”
End With
objPersonalDetails.Person = objPerson

To illustrate the use of the ReadOnly property, add an additional line to change the title text of
the form to include the DisplayName of the PersonalDetails control. The Me keyword is a
reserved word in Visual Basic Express identifying the form or control containing the code:

Me.Text = “Personal Organizer - Viewing “ + _
objPersonalDetails.Person.DisplayName

The final Add Person Click event handler should look like this:

Private Sub btnAddPerson_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAddPerson.Click
objPersonalDetails = New PersonalDetails

Dim objPerson As New Person(“Glenda”, “Brown”)
With objPerson

.BirthDate = “1965-12-02”

.Address = “333 Green Valley Way, Los Angeles, CA”

.HomePhone = “(811) 888 7777”
End With
objPersonalDetails.Person = objPerson

Me.Text = “Personal Organizer - Viewing “ + _
objPersonalDetails.Person.DisplayName

If pnlMain.Controls.Contains(objPersonList) Then
pnlMain.Controls.Remove(objPersonList)
objPersonList = Nothing

End If

pnlMain.Controls.Add(objPersonalDetails)

objPersonalDetails.Dock = DockStyle.Fill
End Sub

114

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 114

6. Double-click the New button on the toolbar and add code to its Click event handler to reset the
fields if the PersonalDetails control is being displayed:

Private Sub newToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles newToolStripButton.Click
If objPersonalDetails IsNot Nothing Then

objPersonalDetails.ResetFields()
Me.Text = “Personal Organizer”

End If
End Sub

7. Run the application and click the Add Person button. The Personal Details control will be
loaded, assigned the Person class, and then displayed in the main panel area of the form. Note
that the properties that you set in the Person class were transferred over to their respective
fields in the control, and that the title bar of the form has changed to include the DisplayName
value (see Figure 6-9). Click the New button on the toolbar to reset the fields.

Figure 6-9

Go That Extra Mile
While controls can be created at design time, there’s nothing stopping you from adding additional com-
ponents while the program is running. In Chapter 5, this is effectively what you were doing when you
created new instances of the PersonList and PersonalDetails controls and then added them to the
Controls collection of pnlMain.

When you dynamically create a control in code, you must set its container context so that Visual Basic
Express knows how to show it to the user. If you do not add it to another component that can contain it,
it won’t be visible (this may be what you want if you’re keeping track of a control’s properties). The

115

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 115

normal process of adding a control is to first define it as a module-level variable, including the
WithEvents clause if your program needs to handle any events it may raise. Then you create a new
instance of the particular control you’re after and add it to the container control. If the control is to be
placed directly on the form or user control, you can use the Me.Controls collection. Set the properties
of the control — for example, a button might require Name, Text, and positional properties such as Left
and Top as a minimum. If the control has events that are to be intercepted, you can use the Visual Basic
Express code editor to automatically create the event handler routine and hook it to the Click event.

Visual Basic Express enables you to go an extra step in dynamically creating controls. Rather than define
the control as a module-level variable and then instantiate it when you need it during the execution of
the application, you can wait until the control is required.

The process of creating the control, adding it to its container, setting the properties, and so on is the same
as previously discussed, but you’ll find that you cannot connect the event handler routines to the con-
trol’s events. This is because the control isn’t defined at the module level but is created on the fly in a
local subroutine or function and then added to an existing part of the form or user control.

Fortunately, Visual Basic Express enables you to connect event handler routines dynamically with the
AddHandler statement. AddHandler specifies that a particular object’s event should be hooked to a sub-
routine. The subroutine must have the same signature as the object’s event. Rather than connect it up
directly, because this is done while the program is running (and therefore the program is already com-
piled), you need to specify that the event should be hooked to the address of the function. Thus, the
syntax of the AddHandler statement is as follows:

AddHandler ObjectName.EventName, AddressOf EventHandlerName

When the program runs, it creates the object and then connects the specified event to the location in the
compiled code where the event handler routine resides. As a result, whenever the event is fired, Visual
Basic knows what subroutine should be executed.

You may have noticed that the PersonalDetails user control in the Personal Organizer application
doesn’t have any Save or Cancel buttons in its design even though it is currently accessed through the Add
Person button. This is because the control is to be used for multiple purposes. In the next Try It Out, you’ll
dynamically create Save and Cancel buttons, position them at the bottom of the control, and resize the Notes
area to accommodate the new components. Finally, you’ll use the AddHandler method to intercept the
Click events of the buttons and pass the events on to the owner of the user control with your own events.

Try It Out Creating Dynamic Buttons
1. Return to the Personal Organizer project you’ve been working with and open the

PersonalDetails user control in code view. The first step is to create a new variable to keep
track of the view state in which the PersonalDetails control is meant to be shown:

Private mAddMode As Boolean
Public Property AddMode() As Boolean

Get
Return mAddMode

End Get
Set(ByVal value As Boolean)

mAddMode = value
End Set

End Property

116

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 116

2. Add code to set up the buttons if the control is in Add mode and to remove them if not:

Public Property AddMode() As Boolean
Get

Return mAddMode
End Get
Set(ByVal value As Boolean)

mAddMode = value
If mAddMode = True Then

SetUpButtons()
Else

RemoveButtons()
End If

End Set
End Property

3. Each button is created in the SetupButtons subroutine and has the basic properties of Name
and Text set. They are both anchored at the bottom right so they move as the control is resized,
and then their Top and Left properties are calculated so they are positioned at a reasonable
distance from the edge of the control. Note how the Cancel button’s Left property needs to
take the Save button into account for its position. In addition, the Cancel button’s Top property
does not need to be calculated — it can use the same value as the Save button.

Because these buttons are taking up space that was previously consumed by the Notes text box,
you’ll need to resize txtNotes so that it finishes above the Save and Cancel button positions.

Finally, use AddHandler to connect the Click events of the two buttons to an event handler
you’ll create in a moment. The final SetupButtons routine looks like this:

Private Sub SetupButtons()
Dim mSaveButton As New Button
Me.Controls.Add(mSaveButton)

With mSaveButton
.Name = “btnSave”
.Text = “Save”
.Anchor = AnchorStyles.Bottom + AnchorStyles.Right
.Top = Me.Height - (.Height + 5)
.Left = Me.Width - (.Width + 5)

End With

Dim mCancelButton As New Button
Me.Controls.Add(mCancelButton)

With mCancelButton
.Name = “btnCancel”
.Text = “Cancel”
.Anchor = AnchorStyles.Bottom + AnchorStyles.Right
.Top = mSaveButton.Top
.Left = mSaveButton.Left - (.Width + 5)

End With

With txtNotes
.Height = mSaveButton.Top - (.Top + 5)

End With

117

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 117

AddHandler mSaveButton.Click, AddressOf ButtonClickedHandler
AddHandler mCancelButton.Click, AddressOf ButtonClickedHandler

End Sub

4. The RemoveButtons function needs to cycle through the Controls collection of the user control
looking for each of the buttons. When it finds it (which it can do by checking the Name property of
each member of the collection), it then uses the Remove method to delete it from the user control.

To finish the job, you’ll need to reset the height of the Notes text box so that the space previously
taken by the Save and Cancel buttons is used up again:

Public Sub RemoveButtons()
With Me.Controls

For iCounter As Integer = 0 To .Count - 1
If .Item(iCounter).Name = “btnSave” Then

.Remove(.Item(iCounter))
Exit For

End If
Next
For iCounter As Integer = 0 To .Count - 1

If .Item(iCounter).Name = “btnCancel” Then
.Remove(.Item(iCounter))
Exit For

End If
Next

End With
With txtNotes

.Height = Me.Height - (.Top + 5)
End With

End Sub

5. The last piece of code you’ll need to create is the ButtonClickedHandler. This routine is used
for both Click events, so you’ll need to determine which button was clicked. One of the param-
eters of control events is a sender object. By default, it is defined in the parameter list as a
System.Object and as such you cannot access the properties you need.

6. To get at the button properties, you first convert sender to a Button object using CType. Once
you’ve got the object converted to a button, you can interrogate the Name property to determine
which button was clicked:

Private Sub ButtonClickedHandler(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim btnSender As Button = CType(sender, Button)
If btnSender.Name = “btnSave” Then

MessageBox.Show(“Save was clicked”)
ElseIf btnSender.Name = “btnCancel” Then

MessageBox.Show(“Cancel was clicked”)
End If

End Sub

118

Chapter 6

11_595733 ch06.qxd 12/1/05 1:40 PM Page 118

7. Edit the Add Person Click event handler in the main form code to set the AddMode property
to True and run the application. Now whenever the Add Person button is clicked, the
PersonalDetails control will dynamically change to include Save and Cancel buttons, with
an event handler connected to display dialog windows when they themselves are clicked.

Summary
Visual Basic Express provides countless ways of creating and organizing your application. Creating
classes and custom controls is one of the best ways of segregating the information and activities in a
larger program.

In this chapter, you learned to do the following:

❑ Create custom classes and controls to organize your application.

❑ Pass information between sections of your program through events and properties.

❑ Customize controls dynamically while the program is running.

In the next chapter, you’ll learn about the data controls and how to use them to connect databases to
user interface components with minimal coding.

Exercises
1. Create an event handler for the New Person menu item that replicates the code you created for

the New button on the ToolStrip.

2. Create an event in the PersonalDetails control that you can raise when the Save and Cancel
buttons are clicked.

119

Take Control of Your Program

11_595733 ch06.qxd 12/1/05 1:40 PM Page 119

11_595733 ch06.qxd 12/1/05 1:40 PM Page 120

7
Who Do You Call?

In the first section of this book you learned the fundamentals necessary to start creating applications
with Visual Basic Express. With those skills, you can design well-constructed user interfaces, write
Visual Basic Express code, and use many of the aids and helper utilities that Visual Basic Express
provides to make your experience more enjoyable and much easier. Chapter 6 enhanced those skills
by discussing runtime customization of controls and controlling information as events occur.

This chapter continues your journey into the world of programming by extending your knowl-
edge of writing code. Defining, creating, and using functions to access the database and using
code to access database files to populate user interface elements are both discussed, and you will
learn some more powerful components for the user interface design itself that automatically bind
to a data source.

In this chapter, you learn about the following:

❑ Using the Data controls to access databases within your program

❑ Methods that are used to find individual rows and fields of information within a database

❑ Controls that can be data-bound to a data source so you don’t have to write your own code

Using the Database Connection
By the end of Chapter 3 you were able to create a database using the Database Explorer and
then add it to your project. Once you have that connection, you’re able to access the information
in the database in all sorts of ways, the easiest being to use the Visual Basic Express Integrated
Development Environment (IDE) to automatically do most of the work for you.

Visual Basic Express comes with a number of controls that are used exclusively for database
access. Some of these controls are actually invisible components that enable other parts of your
program to get to the database, such as the BindingSource and DataSet controls, but the
DataGridView is a powerhouse when it comes to accessing data.

12_595733 ch07.qxd 12/1/05 1:40 PM Page 121

The DataGridView is a table-like control, with an appearance similar to the data view you get in the
Database Explorer. Each row of information in the database table is represented by a row in the
DataGridView, with each field displayed in a separate column (see Figure 7-1).

Figure 7-1

The default properties of the DataGridView enable users to view the information as well as update it by
adding new rows, deleting existing ones, or updating the information they can see. You might not want
to allow some of these actions, however, so fortunately you have properties that can be used to control
the user’s level of access to the information.

Adding a DataGridView to your project is done in the same way as any other visual control. Locate it
in the Toolbox — it is in the Data category — and either double-click its entry or click and drag it to the
desired location. Either way, Visual Basic Express adds the control to the form and presents you with the
DataGridView Tasks dialog so you can select some of the more common property settings (see Figure 7-2).

Figure 7-2

The obvious first setting you need to update is the Data Source. You could leave this set to (none) and
assign a data source in code. If you follow that method, note that as long as the data source is the correct
object type, the DataGridView will accept it. This means you can use the DataGridView even for infor-
mation that is not stored in a database — just create a temporary data source object and populate it with
the information you want to show and then assign it to the DataGridView control.

122

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 122

Clicking the drop-down button in the Choose Data Source property will display a list of all data sources
currently available for your use (see Figure 7-3). If a data source is already defined in the form, it will
be shown first, and then you will have a list of other places to get the information, including databases
added to the project but not referenced in the current form. Select the table of information you want to
connect to, and Visual Basic Express does the rest.

Figure 7-3

Behind the scenes, Visual Basic Express adds a DataSet object along with the other components it needs
to connect the database to the DataSet, and then the DataSet to the DataGridView. This includes a
DataAdapter, which you’ll see later in this chapter, and a BindingSource component that automates
the binding of data to visual components.

This Tasks window is also where you can disable the database updating functionality — each of the three
update types is represented individually for maximum flexibility. Imagine a scenario in which you
wanted the user to be able to add a new record of information but not be able to edit any of the existing
information. Alternatively, you might want users to be able to edit only existing rows but not add new
information or delete records. These scenarios are possible by selecting the appropriate combination of
checkboxes.

The Edit Columns command gives you the capability to change the settings about each individual field
in the database. You can remove columns completely, reorder them, and change their visual cues in the
Bound Column properties window (see Figure 7-4). For example, you might not want to display the key
field that is automatically maintained by the database. You can either remove it completely or set its
Visible property to False.

Another field might be better served by using a ComboBox instead of a normal text edit so the user
selects only valid values. The ColumnType property can be used to set this. One common task is
to change the heading captions to be more user friendly — you don’t want your users seeing
MyDataUserBankDetailsAccountNumber when it would be much easier for them to see Account No.

Once you have chosen the fields you want to display and have configured the various properties regard-
ing each, you’re done. You could change additional options about the DataGridView, but with only
these few actions you’ve done enough to prepare your program to use the DataGridView with your
own data source.

123

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 123

Figure 7-4

An Alternate Method
While adding a DataGridView to your application really is that straightforward, you might want to
give users some additional visual cues to let them know what actions they can perform on the data.
Visual Basic Express comes to the rescue by automating the process.

To add a DataGridView with associated navigation controls, open the Data Sources tab in the IDE
(located in the same space as the Solution Explorer). Navigate through the list of data sources you can
use and drag the table you want to display onto the form. A BindingNavigator control is added to the
form in addition to the DataGridView itself. The BindingNavigator is automatically docked to the top
of the form and contains buttons for navigating through the rows presented in the DataGridView, as
well as buttons for adding new rows, deleting the selected row, and saving the changes to the database
(see Figure 7-5).

At first glance, you might think that the navigation controls are overkill. Navigating through the
DataGridView is just as easy using the cursor keys, adding a new row to the database is as simple as
typing in the new row area of the control, and deleting is similarly easy. But the BindingNavigator
opens the door to different kinds of data representation. Rather than use a DataGridView that presents
all the information contained in the table in a gridlike fashion, you can present a single row of data at a
time to the user. As users click the navigation buttons, they can show different rows of information from
the database without you having to write a single line of code.

Figure 7-5

If you would rather present the data in this way, click on the drop-down button next to the table’s name
in the Data Sources window and select Details. This tells Visual Basic Express that when you add the
table to the form, it should use individual fields rather than the DataGridView. It uses the same
BindingNavigator control to allow users to access the different actions, but enables you to customize
the appearance to suit your data more appropriately.

124

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 124

By default, Visual Basic Express tries to guess the best control for each data field — so date fields, for
example, will be represented by a DateTimePicker control — and each editor control is paired up with
a Label control to describe it so that it is presented to the user with as much supporting information as
Visual Basic Express can determine automatically (see Figure 7-6).

Figure 7-6

You can add the data to the form in an even more detailed fashion by selecting individual fields in the
Data Sources window and dragging them to the form design. This enables you to select different editor
types for specific fields. Click the drop-down button next to the field’s name and select the type of editor
that should be used. When you’re happy with the type, just drag the field to the form and let Visual
Basic Express do the rest. If you already have the connection to the database set up from a previous field
or table being added to the form, Visual Basic Express uses the same connection for the new fields.

What about Existing Controls?
Of course, there’s also the situation in which you have defined your user interface and now want to con-
nect it to a database so it is automatically populated. The creators of Visual Basic Express didn’t overlook
this common scenario, and you’ll be pleasantly surprised with how easy it is to do.

Open your form’s design and locate the control you want to connect to the database. Then, go to the
Data Sources window and select the database field that should be used to populate the control. Click
and drag it over to the form. When you position the mouse cursor over a valid control, the cursor
changes to indicate that it can be bound. Release the mouse button. Visual Basic Express kicks into gear
by connecting the field to the control. Again, if you have no existing data components on the form, it
will do all that for you, too.

The great thing about this method is that you have total control over your form design, and you can
use almost any control you want to represent information from your database, including ListBox,
ComboBox, and Labels.

125

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 125

In the next Try It Out, you’ll see this capability in action when you connect the database to the Personal
Organizer application you’ve been building, and bind the ListBox control in the PersonList user con-
trol to the Person table.

Try It Out Adding a Database to Personal Organizer
1. Open the Personal Organizer project you’ve been building in previous chapters. Up to this

point, you have defined the database in one project. In addition, you also created a user inter-
face including several user controls that display a list of Person records and give the end user
the capability to add a person. (Well, it’s a simulated add process because you haven’t actually
done the database code yet — that’s what the Try It Outs in this chapter will achieve.) Now it’s
time to combine the two.

If you haven’t followed along up to this point, the Chapter 07\Personal Organizer Start
folder in the downloaded code from www.wrox.com contains a starting point for this Try It Out.

2. Add the database file you created in Chapter 3 by selecting Data ➪ Add Data Source. The Data
Source Configuration Wizard is displayed. Select Database and click Next to continue.

3. Click the New Connection button and browse to the database file. When you find it, click the
OK button to return to the wizard and click Next to proceed to the next step of the wizard.

If you’re prompted to add the database to your project, you can choose to do so at this point. If
you add it to the project, then each time you build the application, Visual Basic Express copies
the database file to the build directory from the original database file. This means each time you
run it, you get a clean set of data.

If you answer No to this prompt, it leaves the database file where it is and the Connection
String value points directly to the file. This option is good if you want to continue to work on
the same set of data between builds of the application.

4. Save the Connection String as PO_DataConnectionString and click Next to display the
database information. Select both the Person table and the POUser table and set the DataSet
name to _PO_DataDataSet (this should be the default if you’ve been following along through
this book) and click the Finish button to add the data source to your project.

5. Open the PersonList user control in Design view. When it is displayed, click on the Data
Sources tab (it shares space with the Solution Explorer) to bring it to the fore. Click and drag the
Person table over to the Design view of PersonList. When the mouse cursor is positioned
over the lstPersons ListBox control, release the mouse button.

Visual Basic Express automatically changes the ListBox properties so that it is bound to the
Person table. By default, it sets the Value Member property to ID because it detects that as the
unique identifier for the Person table. It also sets the DisplayMember property to the first field
that is not a key of some kind. In this case it’s the NameFirst column (see Figure 7-7).

6. Run the application and click the Show List button to create a new instance of the PersonList
control. Visual Basic Express automatically populates the underlying Data controls with the
information in the database and then populates the content of the ListBox from those controls.

126

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 126

Figure 7-7

Database Programming
While adding data-bound controls is really that easy, usually you’ll want a bit more control over what is
displayed. The data-bound elements can be customized a little further than this click-and-drag method-
ology, but it’s far more powerful creating your database access in code.

You will use three main objects in all your database programming —DataTable, DataAdapter, and
DataView. With these objects, you can do just about anything with your database. Each serves a differ-
ent purpose:

❑ DataTable — The main object containing the information about a database table and all of the
rows contained within it. The DataTable is used to store the actual data and doesn’t connect
directly to a database itself, relying instead on other objects to populate and extract its information.

❑ DataAdapter — This is the component used to connect to the database. It contains the connection
settings necessary to find the specific database file and has methods to retrieve information from
the database and to post data back.

❑ DataView — This object is used as a “do it all” component for accessing the data within a
DataTable object. While a lot of the actions that a DataView exposes can be performed directly
from the DataTable class, it’s better to separate the actions from the data to help identify what
you’re doing (in terms of functionality).

To connect to the database using these objects, you first create a connection to the database. This can be
done by adding the connection through the Data Sources window or selecting the Data ➪ Add New Data
Source command.

127

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 127

This adds a new entry to the Solution Explorer representing the database and customized versions of the
DataAdapter and DataTable objects for use in your code (the same ones Visual Basic Express uses for
the automated user interface components discussed earlier in this chapter). As an example, consider the
case of adding a database called MyDB.mdf that contains a table called MyTable. An entry of MyDB.mdf
with a database icon would be added to the Solution Explorer.

More importantly, however, when writing code, you could create an instance of the DataAdapter class
that was generated by Visual Basic Express, like so:

Dim MyAdapter As New MyDBDataAdapters.MyTableAdapter

Similarly, creating a DataTable object for the table can be achieved using another customized object:

Dim MyTable As New MyDBDataSet.MyTableTable

Note that you do not have to add the database to your project at all. Instead, you can use the default
DataAdapter and DataTable classes — for SQL they are called Data.SqlClient.SqlDataAdapter
and Data.SqlClient.SqlDataTable, respectively — but you need to establish the connection in code
as well.

To connect to a SQL database, you would use the Data.SqlClient.SqlClient class and specify the
full connection string, including the database type, the physical location of the data, and any additional
parameters needed to log on, such as user name and password.

The problem with using these generic objects is that you don’t get all the customized properties and
methods to manipulate your data, and you have to access individual fields through a general Items col-
lection. It is far easier to let Visual Basic generate the appropriate objects, as you’ll see in the Try It Out at
the end of this discussion.

Once you have created the DataTable object, it starts out empty. To populate it with the data from the
database, you call the Fill method of the DataAdapter, passing in the DataTable as a parameter:

MyAdapter.Fill(MyTable)

If you perform updates on the data in the table and need to send them back to the database, you must
use the DataAdapter to pass the new data back to the database via the Update method:

MyAdapter.Update(MyTable)

Actions You Can Perform
Once you have the data in your DataTable, you can perform four types of action — select, insert,
update, and delete. These should be fairly self-explanatory but here’s a brief summary:

❑ Select — This is an informational action only. It is the mainstay of the DataTable and enables
you to filter out only the rows of information you need. The default action for Select is to
return all of the information in the DataTable in an array of DataRow objects, one for each
record in the database, but you can include parameters to select only records that have fields
that match certain criteria, to sort the data in different ways, and even to select records that are

128

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 128

in a particular database state, such as newly added, deleted (records that are deleted are marked
for deletion but are not actually removed from the database until you call the Update method
and pass the information back to the database), and modified.

❑ Insert — To insert an additional row into the database, you would normally call the Insert
command in SQL. The Visual Basic Express way is to call AddRow and pass the new row infor-
mation into the newly added row. It goes one step better than that, however, when you connect
to the database as recommended in this chapter. Keeping with the previous example, to add a
new row to the MyTable table, you’ll find two versions of AddMyTableRow available. One
accepts a MyTableRow object and the other enables you to specify the information about each
field right there in the function call without having to create a temporary object.

❑ Update — Editing existing information is done with two commands —BeginEdit and EndEdit.
These methods are available on the individual DataRow object and signify the beginning and end
of the edit process, respectively. Once you have called BeginEdit, you can update the contents
of the fields in the same way you would any property in a normal class — for example,
MyTable.FirstName = “NewName”. If you begin the update but need to cancel it, use the
CancelEdit method to discard the changes that have been made.

❑ Delete — Removing rows from the table is performed on the row itself. First find the row you
need to remove and then call the Delete method, like so: MyRow.Delete.

Remember that updates to database tables are not saved to the database until you call the Update method
in the DataAdapter. If you don’t do this, all of the changes you’ve made in the DataTable will be lost.

The following Try It Out walks through the creation of three database-related functions to access and
update Person details in the Personal Organizer application you’ve been building throughout the book.
The code in the application is then modified to call these functions when needed. In addition, the
PersonList control is updated to automatically populate the ListBox control and delete Person rows
from the database table to show how database access code can be written anywhere in your application.

Try It Out Accessing the Database through Code
1. Return to the Personal Organizer project you’ve been working on in this chapter. Because you’re

going to do everything in code, open the PersonList.vb user control in Design view and
select the lstPersons component. Locate the DataSource property and change it to None so
that it no longer uses the BindingSource object to retrieve information from the database.

2. To allow the ListBox to be populated from different places in the code, you’ll create a
single subroutine that can be called by different functions. The subroutine should define a
PersonTableAdapter to connect to the database and a PersonDataTable to process the
data stored in the database:

Private Sub LoadListBox()
Dim PersonListAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim PersonListTable As New _PO_DataDataSet.PersonDataTable

End Sub

This is the fundamental system outlined earlier — create a DataAdapter to connect the program
to the database using a connection string. Then use a DataTable object to store the information.
This is populated via the DataAdapter’s Fill method:

129

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 129

Private Sub LoadListBox()
Dim PersonListAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim PersonListTable As New _PO_DataDataSet.PersonDataTable
PersonListAdapter.Fill(PersonListTable)

End Sub

Note that because you added the tables to the project via the Add Data Source command, you
can use special classes that expose properties specific to the particular table to which they
belong. Instead of declaring PersonListAdapter as a DataAdapter, you can reference the
PersonTableAdapter instead and access the fields that belong to the table directly.

3. Clear the Items collection of the ListBox to prepare it for the database information:

With lstPersons
.Items.Clear()
... database population code goes here

End With

4. The ListBox control enables you to add almost any kind of object to its Items collection as
long as you also specify an accessible property that can be used for the DisplayMember prop-
erty. This means you can use the Person class you created in previous chapters. However, the
Person class doesn’t contain a fundamental property that uniquely identifies a corresponding
Person row in the database. To remedy this, edit the Person.vb class, adding a module-level
variable and a public property for the ID field:

Private mID As Integer
Public Property ID() As Integer

Get
Return mID

End Get
Set(ByVal value As Integer)

mID = value
End Set

End Property

5. Return to the LoadListBox subroutine and loop through the PersonRow objects that were
returned by the Fill command in the PersonListTable. For each row found, create a new
Person class containing the information you need — first names and last names as well as
the ID — and add it to the Items collection:

With lstPersons
.Items.Clear()
.DisplayMember = “DisplayName”
For Each CurrentRow As _PO_DataDataSet.PersonRow In PersonListTable.Rows

Dim CurrentPerson As New Person(CurrentRow.NameFirst, CurrentRow.NameLast)
CurrentPerson.ID = CurrentRow.ID
.Items.Add(CurrentPerson)

Next
End With

130

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 130

6. Add an event handler routine for the user control’s Load event and call the LoadListBox sub-
routine you just created:

Private Sub PersonList_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

LoadListBox()
End Sub

7. Run the application and click the Show List button to display the PersonList control. This
time, the ListBox is being populated through code, and you can customize its appearance by
using the DisplayName property of your Person class to show information that might be a bit
more meaningful to the user (see Figure 7-8).

Figure 7-8

8. You’ll create code for the two buttons on the PersonList form next. The Delete Selected button
needs to ensure that at least one row is selected in the ListBox. Add an event handler routine
for its Click event:

Private Sub btnDeleteSelected_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDeleteSelected.Click
If lstPersons.SelectedItems.Count > 0 Then

... code to delete selected people goes here
Else

MessageBox.Show(“You have not selected any people to remove”)
End If

End Sub

9. Just as you did in step 2, first define a PersonTableAdapter and a PersonDataTable and
populate the contents of the PersonDataTable object:

Dim DeletePersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim DeletePersonTable As New _PO_DataDataSet.PersonDataTable
DeletePersonAdapter.Fill(DeletePersonTable)

131

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 131

10. You now have two collections of data — the contents of the SelectedItems property of the
ListBox and the PersonRow collection from the database table. Create a loop to iterate through
the database rows. For each one, check its ID value against the ID values in the SelectedItems
collection. If there is a match, remove the record using the Delete command:

For Each CurrentPersonRow As _PO_DataDataSet.PersonRow In DeletePersonTable.Rows
For Each objPerson As Person In lstPersons.SelectedItems

If CurrentPersonRow.ID = objPerson.ID Then
CurrentPersonRow.Delete()
Exit For

End If
Next

Next

11. While this process has deleted the rows in the DataTable, you still need to transfer those
changes back to the database itself. Use the Update method of the DataAdapter, passing in the
table that contains the deleted rows. When you’re done, you can call the LoadListBox method
to reload the contents of the ListBox:

DeletePersonAdapter.Update(DeletePersonTable)
LoadListBox()

12. Run the application and show the Person List again. This time, select a couple of person entries
and then click the Delete Selected button. The code will first delete them from the database and
then repopulate the list without the selected people.

13. The other button in the PersonList control is Show Details. This is intended to swap the view
over to the individual person details by showing the PersonalDetails control and then popu-
lating it with the Person information from the database. To do this, you need a new function
that retrieves a specific Person row from the database.

14. Add a new module to the project via the Project ➪ New Module menu command and name it
GeneralFunctions.vb. Visual Basic Express enables you to short-cut object definitions through
the use of the Imports statement. You place this statement at the top of the module file and spec-
ify a namespace that you’re going to use. Because this module ultimately contains many database-
related functions, it would be nice to be able to refer to the object types without having to
continually type the whole path, so add an Imports statement for the System.Data namespace:

Imports System.Data
Module GeneralFunctions
End Module

15. Create a new function called GetPerson that accepts an Integer parameter containing the ID
of the Person row to retrieve and returns a Person object. Add a PersonTableAdapter and a
PersonDataTable and populate the table with the adapter’s Fill method (starting to see a
pattern?):

Imports System.Data
Module GeneralFunctions

Public Function GetPerson(ByVal PersonID As Integer) As Person
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)

End Function
End Module

132

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 132

16. To demonstrate how strongly typed datasets can work in conjunction with the more generic
Data objects, you now create a DataView that filters the GetPersonTable object so that it con-
tains only the row that matches the ID:

Public Function GetPerson(ByVal PersonID As Integer) As Person
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)
Dim PersonDataView As DataView = GetPersonTable.DefaultView
PersonDataView.RowFilter = “ID = “ + PersonID.ToString

End Function

You can now check the DataView to determine whether there are any matches. If there are more
than zero, then you know that there is only one (because the ID field is unique). Create a new
Person class and populate the properties with the corresponding fields from the database. You
should also return Nothing if a matching record was not found:

Public Function GetPerson(ByVal PersonID As Integer) As Person
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)
Dim PersonDataView As DataView = GetPersonTable.DefaultView
PersonDataView.RowFilter = “ID = “ + PersonID.ToString
With PersonDataView

If .Count > 0 Then
Dim objPerson As New Person
With .Item(0)

objPerson.ID = CType(.Item(“ID”), Integer)
objPerson.FirstName = .Item(“NameFirst”).ToString.Trim
objPerson.LastName = .Item(“NameLast”).ToString.Trim
objPerson.HomePhone = .Item(“PhoneHome”).ToString.Trim
objPerson.CellPhone = .Item(“PhoneCell”).ToString.Trim
objPerson.Address = .Item(“Address”).ToString.Trim
objPerson.BirthDate = CType(.Item(“DateOfBirth”), Date)
objPerson.EmailAddress = .Item(“EmailAddress”).ToString.Trim
objPerson.Favorites = .Item(“Favorites”).ToString.Trim
objPerson.GiftCategories = CType(.Item(“GiftCategories”), Integer)
objPerson.Notes = .Item(“Notes”).ToString.Trim

End With
Return objPerson

Else
Return Nothing

End If
End With

End Function

17. Now that you have the database function prepared, return to the PersonList control in code
view. Add an event at the top of the class to tell the owner of the user control that a request was
made to show a person’s details:

Public Event ShowPersonDetails(ByVal PersonID As Integer)

133

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 133

18. Create an event handler subroutine for the Click event of the Show Details button. First, check
whether the SelectedItems count is 1. If the user has selected one entry in the list, then
retrieve the Person class from the SelectedItems object and raise the event with the corre-
sponding ID value. If the count is not 1, then you should display a message informing users
that they can show the details of only one person at a time:

Private Sub btnShowDetails_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowDetails.Click
If lstPersons.SelectedItems.Count = 1 Then

Dim SelectedPerson As Person = CType(lstPersons.SelectedItems.Item(0), _
Person)

RaiseEvent ShowPersonDetails(SelectedPerson.ID)
Else

If lstPersons.SelectedItems.Count = 0 Then
MessageBox.Show(“You must select an entry to display the details”)

Else
MessageBox.Show(“You have too many people selected. Select one only”)

End If
End If

End Sub

19. To intercept the event from the PersonList, you need to modify the module-level variable
objPersonList so that it includes the WithEvents keyword. Then you can add an event handler
routine for the ShowPersonDetails event. It contains code similar to the Click event handler for
the Add Person button, but in this case you need to retrieve the information from the database first
and pass it over as a Person object:

Private Sub objPersonList_ShowPersonDetails(ByVal PersonID As Integer) _
Handles objPersonList.ShowPersonDetails
objPersonalDetails = New PersonalDetails

Dim objPerson As Person = GetPerson(PersonID)
objPersonalDetails.Person = objPerson
objPersonalDetails.AddMode = False

Me.Text = “Personal Organizer - Viewing “ & _
objPersonalDetails.Person.DisplayName

If pnlMain.Controls.Contains(objPersonList) Then
pnlMain.Controls.Remove(objPersonList)
objPersonList = Nothing

End If
pnlMain.Controls.Add(objPersonalDetails)
objPersonalDetails.Dock = DockStyle.Fill

End Sub

20. Run the application again. This time, when you show the list and select a person, you can click
the Show Details button, and the information is retrieved from the database and passed to the
PersonalDetails control, as shown in Figure 7-9.

134

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 134

Figure 7-9

21. At this point, you can modify the Click event handler routine for the Add Person button. Remove
the initialization code you used in Chapter 6 to populate the fields in the PersonalDetails con-
trol. This will allow the user control to be initialized with default values when the user clicks the
Add Person button, and paves the way for writing code to handle the Save and Cancel buttons
that are dynamically created on the user control.

At the end of Chapter 6, you added an event handler in the MainForm.vb code to intercept the
Save and Cancel buttons’ Click events. First remove the MessageBox line of code. If the user
clicks the Cancel button, you should close the PersonalDetails user control without doing
anything:

Private Sub objPersonalDetails_ButtonClicked(ByVal iButtonType As Integer) _
Handles objPersonalDetails.ButtonClicked
Select Case iButtonType

Case 2
If objPersonalDetails IsNot Nothing Then

pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If
End Select

End Sub

22. If the Save button is clicked, it’s a whole different scenario. You need to add the person to the
database and, if successful, return to the PersonList where it will be populated with the new
information. You’ll write an AddPerson function in a moment, so add the code to call it and then
create the PersonList object in a similar way to how the Show List button’s Click event handler
does (change the 1 in the AddPerson call to an ID value that is present in your POUser table):

135

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 135

Private Sub objPersonalDetails_ButtonClicked(ByVal iButtonType As Integer) _
Handles objPersonalDetails.ButtonClicked
Select Case iButtonType

Case 1
If AddPerson(1, objPersonalDetails.Person) Then

objPersonList = New PersonList

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If

pnlMain.Controls.Add(objPersonList)
objPersonList.Dock = DockStyle.Fill

Else
MessageBox.Show(“Person was not added successfully”)

End If
Case 2

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If
End Select

End Sub

23. To add the new information to the database, you use the AddPersonRow method of the
PersonDataTable object. This is inherited from the AddRow method of the generic DataTable
object by Visual Basic Express and includes functions to accept Visual Basic Express data types
as parameters. This is handy for fields such as dates that SQL stores in a different way than
Visual Basic Express.

The only other thing to be aware of is that because the Person table has a foreign key into the
POUser table, you need to assign a POUserID to each Person row you add. In the next chapter,
you’ll modify the call to AddPerson so that it includes the currently logged on user’s ID, but for
now, you’ll just use an ID of any record that exists in the database. Define the AddPerson func-
tion in the GeneralFunctions.vb module and create the standard initialization code to create
the DataAdapter and DataTable:

Public Function AddPerson(ByVal UserID As Integer, ByVal NewPerson As Person) As _
Boolean
Dim AddPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim AddPersonTable As New _PO_DataDataSet.PersonDataTable
AddPersonAdapter.Fill(AddPersonTable)
... adding code goes here.
Return True

End Function

24. Create another set of data objects, this time for the POUser table. These are used to retrieve the
POUserRow that matches the UserID passed into the function:

Dim GetUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim GetUserTable As New _PO_DataDataSet.POUserDataTable
GetUserAdapter.Fill(GetUserTable)

136

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 136

25. The POUserDataTable class exposes the Select method, which accepts filter criteria. Create
an array of POUserRows and assign it as the return value for the Select method, like so:

Dim MyRows() As _PO_DataDataSet.POUserRow = CType(GetUserTable.Select(“ID = “ & _
UserID.ToString), _PO_DataDataSet.POUserRow())

26. If the array contains data, then you can use the first element in MyRows to reference the POUser
row. Call the AddPersonRow method of the DataTable object mentioned earlier to add a new
row to the table. To save it to the database, use the data adapter’s Update method:

If MyRows.Length > 0 Then
With NewPerson

AddPersonTable.AddPersonRow(MyRows(0), .FirstName, .LastName, .HomePhone, _
.CellPhone, .Address, .EmailAddress, .BirthDate, .Favorites, _
.GiftCategories, .Notes)

End With
AddPersonAdapter.Update(AddPersonTable)

Else
Return False

End If

27. If you run the application as is, you’ll get a database failure. This is because the Person object
in the PersonalDetails control is not populated with the information from the user interface
components, so before you run the project, add the following code to the Get clause of the
Person object in that control just before you return the mPerson object:

With mPerson
.FirstName = txtFirstName.Text
.LastName = txtLastName.Text
.HomePhone = txtHomePhone.Text
.CellPhone = txtCellPhone.Text
.Address = txtAddress.Text
.EmailAddress = txtEmailAddress.Text
.Favorites = txtFavorites.Text
.Notes = txtNotes.Text
.BirthDate = dtpDateOfBirth.Value

End With

28. You now have AddPerson and GetPerson functions defined in the project — the only additional
function you need at this point is the UpdatePerson function for when the user is modifying an
existing Person and clicks the Save button on the toolbar.

29. In the case of an update, you first have to find the row that needs updating. When you find it,
you call BeginEdit to tell the DataTable you’re going to change values, change all of the val-
ues, and then use EndEdit to mark the changes complete. Remember to use the Update method
of the DataAdapter to return the changes to the database itself. Everything else in this function
has been discussed in either GetPerson or AddPerson:

Public Function UpdatePerson(ByVal UserID As Integer, ByVal UpdatedPerson As _
Person) As Boolean
Dim UpdatePersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim UpdatePersonTable As New _PO_DataDataSet.PersonDataTable
UpdatePersonAdapter.Fill(UpdatePersonTable)

137

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 137

Dim MyRows() As _PO_DataDataSet.PersonRow = _
CType(UpdatePersonTable.Select(“ID = “ + UpdatedPerson.ID.ToString), _
_PO_DataDataSet.PersonRow())

If MyRows.Length > 0 Then
With MyRows(0)

.BeginEdit()

.NameFirst = UpdatedPerson.FirstName

.NameLast = UpdatedPerson.LastName

.PhoneHome = UpdatedPerson.HomePhone

.PhoneCell = UpdatedPerson.CellPhone

.Address = UpdatedPerson.Address

.EmailAddress = UpdatedPerson.EmailAddress

.DateOfBirth = UpdatedPerson.BirthDate

.Favorites = UpdatedPerson.Favorites

.GiftCategories = UpdatedPerson.GiftCategories

.Notes = UpdatedPerson.Notes

.EndEdit()
End With
UpdatePersonAdapter.Update(UpdatePersonTable)

End If

Return True
End Function

30. When the user clicks the Save button on the main form, you should first determine whether the
PersonalDetails control is showing. If it is and the AddMode property is True, then you
should call the AddPerson function to add the new information to the database. If the
PersonalDetails control is visible but the AddMode property is set to False, then the user
must be updating an existing record, so you should call the UpdatePerson function:

Private Sub saveToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles saveToolStripButton.Click
If objPersonalDetails IsNot Nothing Then

If objPersonalDetails.AddMode = True Then
If AddPerson(1, objPersonalDetails.Person) Then

MessageBox.Show(“Person was added successfully”)
objPersonList = New PersonList

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If

pnlMain.Controls.Add(objPersonList)
objPersonList.Dock = DockStyle.Fill

Else
MessageBox.Show(“Person was not added successfully”)

End If
Else

If UpdatePerson(1, objPersonalDetails.Person) Then
MessageBox.Show(“Person WAS updated successfully”)

Else
MessageBox.Show(“Person was not updated successfully”)

End If

138

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 138

End If
End If

End Sub

31. As an additional feature, you should also place the Gift Categories onto the PersonalDetails
user control. Add six CheckBox controls to the user control design surface. You need to move
the Notes area down to make room. Set their Text properties so that they match the ones shown
in Figure 7-10 and name them accordingly — that is, the Books CheckBox should be named
chkBooks, and so on.

Figure 7-10

32. Open the PersonalDetails control in code view and add the following code to the
ResetFields routine so that the CheckBoxes are returned to their default state:

chkApparel.Checked = False
chkBooks.Checked = False
chkToys.Checked = False
chkVideos.Checked = False
chkVideoGames.Checked = False
chkMusic.Checked = False

33. Because all of the gift category flags are stored in a single integer in the database, you need
some way to translate between them. Visual Basic Express enables you to do what’s known as
bitwise comparisons, comparing individual bits of a number. This is possible because all numbers
are represented in binary form. For example, the number 2 is represented by the binary number
10, while the number 9 is represented by the binary value 1001, where the first 1 represents 8,
the last 1 represents 1, and the middle two zeros represent 4 and 2.

When you compare two numbers using Or and And, Visual Basic Express automatically trans-
lates this for you, so if you define each of your categories using a different position in the binary
stream, you can uniquely identify whether they are set.

139

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 139

34. Create a private Enum at the top of the PersonalDetails code to define the numbers that iden-
tify each gift category:

Private Enum CategoryValues
Books = 1
Videos = 2
Music = 4
Toys = 8
VideoGames = 16
Apparel = 32

End Enum

None of these numbers overlap, so if a Person had the Music and Toys categories set, then the
GiftCategories value would be 4 + 8 = 12.

35. Modify the Set clause of the Person property to set the CheckBox values if the corresponding
bit in the GiftCategories property is set. The following code compares the GiftCategories
value against each Enum value and, if there is a match, sets the corresponding CheckBox:

chkBooks.Checked = (mPerson.GiftCategories And CategoryValues.Books) <> 0
chkVideos.Checked = (mPerson.GiftCategories And CategoryValues.Videos) <> 0
chkMusic.Checked = (mPerson.GiftCategories And CategoryValues.Music) <> 0
chkToys.Checked = (mPerson.GiftCategories And CategoryValues.Toys) <> 0
chkVideoGames.Checked = (mPerson.GiftCategories And CategoryValues.VideoGames) <> 0
chkApparel.Checked = (mPerson.GiftCategories And CategoryValues.Apparel) <> 0

36. Now modify the Get clause to calculate a new GiftCategories value based on the states of
the CheckBoxes. This is done by effectively reversing the preceding code:

Dim GiftCategorySetting As Integer = 0
If chkBooks.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.Books
If chkVideos.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.Videos
If chkMusic.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.Music
If chkToys.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.Toys
If chkVideoGames.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.VideoGames
If chkApparel.Checked Then GiftCategorySetting = GiftCategorySetting Or _

CategoryValues.Apparel
.GiftCategories = GiftCategorySetting

Now you can go ahead and run your application. When you edit or create a person, you’ll see the six
CheckBox controls in the PersonalDetails control. When you select different values and then save
them to the database, the code combines the values to form a single integer that can be stored in the
database. When it reads them back out, your code converts them back to individual flags for the
CheckBox controls.

140

Chapter 7

12_595733 ch07.qxd 12/1/05 1:41 PM Page 140

Summary
Accessing the database once was a difficult process, but Visual Basic Express provides you with several
methods for doing so that without exception are easy to implement. Whether you build your data access
with the DataGridView or by binding simple components such as TextBox and ComboBox controls to a
data source, you can present information to the user without writing a single line of code.

In addition, even when you need to build code, the functions to do so are simplified by Visual Basic
Express’s capability to create customized versions of the DataTable and DataAdapter classes that
expose just the right number of properties and functions that you need to get the job done.

In this chapter, you learned to do the following:

❑ Create simple database access functionality through the Data controls

❑ Use controls that have the ability to be bound to data sources so you don’t have to write your
own code

❑ Build program functions that can be used to select information programmatically from within a
database

In Chapter 8, you’ll return to the coding side of Visual Basic Express, where you’ll learn about the special
My namespace Microsoft has built just for Visual Basic programmers, along with how collections can be
used to store data that is alike.

Exercise
1. Add four more routines to the GeneralFunctions.vb module to perform the following

functions:

a. Determine whether a specified user exists.

b. Determine whether a user’s password matches a given string.

c. Create a new user record.

d. Update a user record’s Last Logged In value.

These functions are needed for the next chapter, so make sure you do them all!

141

Who Do You Call?

12_595733 ch07.qxd 12/1/05 1:41 PM Page 141

12_595733 ch07.qxd 12/1/05 1:41 PM Page 142

8
It’s My World — Isn’t It?

Visual Basic Express is one of those programming environments that just keeps on giving. If the
visual aids, constant feedback cues, ease of design, and simple programming model aren’t enough
for you, this chapter will reveal even more features that make Visual Basic Express the language of
choice for developers, from beginners to professionals.

The My namespace is a new section of .NET designed specifically for Visual Basic programmers.
It serves to simplify many complex areas of Windows into a series of basic objects and methods.
This collection of classes and other more advanced features of Visual Basic Express, such as gener-
ics and partial classes, are the subject of the next few pages.

In this chapter, you learn about the following:

❑ Using My classes to simplify complex tasks

❑ Creating classes in pieces and building collections generically

❑ Extending the Personal Organizer for multiple users

They’re My Classes
The .NET Framework is a robust and rich collection of classes organized into a hierarchy of cate-
gories known as namespaces. These classes are automatically exposed to Visual Basic Express,
which means you can use any of them in your applications. In fact, the various objects you’ve been
working with are actually part of that Framework. While the .NET Framework is not the subject of
this book, knowing how it works can be handy. Appendix B runs through the fundamentals of the
Framework, with a focus on some of the more interesting sets of classes.

The new My namespace is a special case. Most of the operating system is accessible through the
main .NET Framework classes. Sounds, graphics, files, and hardware settings can be retrieved
and used by manipulating information through the classes exposed by the .NET Framework. The
challenge lies in the complexity of retrieving the bits and pieces required to do any one action.

13_595733 ch08.qxd 12/1/05 1:41 PM Page 143

For example, in previous versions of the Visual Basic language, sending data to the default printer in the
system required a couple of lines of code — one to send the information to a printer queue and another
to tell the printer to print.

In .NET all of that changed, which required the creation and monitoring of a printer object. It was up to
the printer object to raise an event when it was ready to print, and then you would pass in the next page
of information for printing. Then this process would be repeated until you finished.

As another, simpler example, reading a file using standard .NET classes would require at least three lines
of code, and that’s using a concatenated definition and instantiation. The main class involved was also
sometimes hard to remember:

Dim MyFileReader As New IO.StreamReader(“C:\PersonalDetails.txt”)
Dim sPersonalDetails As String = MyFileReader.ReadToEnd
MyFileReader.Close()

Because programmers using previous versions of Visual Basic with .NET experienced this increased
level of difficulty in accessing fairly commonplace functionality, Microsoft introduced a whole new
namespace called My, and Visual Basic Express users are the first to be able to take advantage of it.

Think of the members you find in My classes as shortcuts to other parts of the .NET Framework. They
give Visual Basic Express programmers the edge in accessing tasks that are performed often in Windows
applications, such as printing and file processing, while also simplifying other system-related tasks that
were difficult in all previous versions of Visual Basic.

Of the two examples mentioned, the printing classes found in My return to the simplicity of referencing
the printer and sending the information directly to it. All the complexity of the internal printer object
raising events when it has completed printing each page and waiting for the next chunk of data is hid-
den away, and all you need to do is tell it to print. And the file example — don’t you think the following
line of code is easier to understand?

Dim sPersonalDetails As String = _
My.Computer.FileSystem.ReadAllText(“C:\PersonalDetails.txt”)

It’s All about the Computer
The majority of objects within the My namespace deal with the computer system. From the simple but
still extremely useful methods giving you access to the system clock and clipboard to the much more
complex structures that enable you to access and manipulate files and hardware devices such as any
printers connected to the computer, My.Computer makes it a straightforward process.

The main My.Computer object serves as a launching pad for the subordinate classes that divide the sys-
tem into a number of discrete components (those children classes are the subject of the next sections in
this chapter). The only other property of note is the name of the computer, aptly called Name. You can
use this property as you would any other class property:

txtComputerName.Text = My.Computer.Name

144

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 144

My.Computer.Clipboard
My.Computer.Clipboard gives your program the capability to control the contents of the system clip-
board. As the clipboard can contain several different types of data, applications interrogate the content
to determine whether they can use it or not. For example, if a user selected several files in Windows
Explorer and used the Copy command, applications such as Notepad would not be able to use the clip-
board’s contents. In fact, Notepad’s Paste command is disabled because it determines that the type of
data stored in the clipboard is unusable.

Applications can handle multiple types of data. Microsoft Word, for example, can access text and images,
placing them directly into the current document, while also accepting other data types by inserting cus-
tom objects referencing the information.

The Clipboard class enables you to place different types of data into the clipboard and retrieve the
information and use it if it’s appropriate. Each data type has a set of three methods associated with it:
a Contains property that returns True if the clipboard has that kind of data; a Get method to retrieve
the content; and a Set method to store new information within the clipboard object.

In addition to the standard data types, the clipboard can store custom formats. This enables you to use
the clipboard within your application without other applications accidentally overwriting it. Finally, the
Clear method is used to reset the clipboard. In the next Try It Out, you will write a simple application
to use the Clipboard object to set the values of a TextBox and a PictureBox control.

Try It Out Using the Clipboard
1. Start Visual Basic Express and create a new Windows Application project. Place a Button, a

TextBox, and a PictureBox control on the form, and create a handler routine for the Click
event of the Button.

2. When the button is clicked, you will set the TextBox’s Text property if the clipboard contains
text, and the PictureBox’s Image property if the clipboard is an image:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
If My.Computer.Clipboard.ContainsText Then

TextBox1.Text = My.Computer.Clipboard.GetText
ElseIf My.Computer.Clipboard.ContainsImage Then

PictureBox1.Image = My.Computer.Clipboard.GetImage
End If

End Sub

3. Run the application. While it is running, run Notepad. Type some text into Notepad, select it,
and then switch over to your application and click the button to see how the text is pasted into
the text box.

4. Now run Paint and open an image file. Select part of the image and copy it to the clipboard.
Switch back to your application and click the button again. This time the PictureBox will be
set to the image selection you copied (see Figure 8-1).

145

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 145

Figure 8-1

Using custom data is almost as easy. The only difference is that you need to pass the name of the data
format you are using. Unless you’re trying to use the same data format as another application, you can
make up any name you desire:

My.Computer.Clipboard.SetData(“MyFormat”,MyObject)
If My.Computer.Clipboard.ContainsData(“MyFormat”) Then

MyObject = My.Computer.Clipboard.GetData(“MyFormat”)
End If

My.Computer.Clock
The My.Computer.Clock object contains properties for getting the current system time and date in both
local time and GMT (Greenwich Mean Time), also known as UTC. The Clock object cannot be used to
change the system time, but as that is rarely a need for a Visual Basic application, you shouldn’t find
yourself too disappointed by that.

Both LocalTime and GmtTime return full Date variables, which can then be used in any kind of
date manipulation that you use for other dates. LocalTime is equivalent to the special Visual Basic
keyword Now.

My.Computer.Info
If your application needs to know anything about the state of the computer, or wants to report this infor-
mation back to the user, the My.Computer.Info class will be immensely useful. With Info, you have
access to the computer’s name, the operating system name and version, current memory usage, and the
selected culture of the system.

With this information, you can make decisions about what to do with your application. For example, if
you determine that the system culture is not U.S. English, you might want to display a message to the
user in multiple other languages. The InstalledUICulture object contains many properties that return
this system-specific information, including the kind of calendar the user is using and formats of date,
time, and money.

146

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 146

The next Try It Out uses My.Computer.Info to display information about the computer on which the
application is running, including memory and the calendar and date and time formats that are set.

Try It Out Accessing System Information
1. Start a new Windows Application project and place a button and three labels on the form.

Create an event handler routine for the button’s Click.

2. In the Click event handler, set the label’s Text property to the amount of memory currently
available:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
With My.Computer.Info

Label1.Text = “Memory (Available/Total): “ & _
.AvailablePhysicalMemory.ToString & “/” & _
.TotalPhysicalMemory

End With
End Sub

3. The other labels are to contain information about the culture — the calendar being used and the
short date format:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
With My.Computer.Info

Label1.Text = “Memory (Available/Total): “ & _
.AvailablePhysicalMemory.ToString & “/” & _
.TotalPhysicalMemory

Label2.Text = .InstalledUICulture.Calendar.ToString
Label3.Text = .InstalledUICulture.DateTimeFormat.ShortDatePattern.ToString

End With
End Sub

4. If you run the application the way it is, you’ll find that the memory values are displayed in
bytes and are not formatted for easy reading. Change that part of the Click event routine so
that the memory is displayed in megabytes by dividing the values by 1,024 to get kilobytes,
and again to get megabytes.

Modify the ToString methods to include a format string. This will display the final numbers
with thousand separators:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
With My.Computer.Info

Dim AvailableMemory As Double = .AvailablePhysicalMemory / (1024 * 1024)
Dim TotalMemory As Double = .TotalPhysicalMemory / (1024 * 1024)
Label1.Text = “Memory (Available/Total): “ & _

AvailableMemory.ToString(“#,###”) & “/” & _
TotalMemory.ToString(“#,###”) & “Mb”

End With
End Sub

Run the application to observe the results. Your date format may differ from the one shown in
Figure 8-2 — this is a system setting that a lot of people change to suit their own styles.

147

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 147

Figure 8-2

My.Computer.Screen
The My.Computer.Screen object provides a shortcut to the PrimaryScreen property in the
System.Windows.Forms.Screens namespace. It returns information about the user’s current
monitor settings, including screen resolution and bit depth.

One particularly useful property is the WorkingArea object, which is returned as a Rectangle.
Rectangle objects contain a number of values defining the area that is enclosed, and they are used exten-
sively by Windows to define windows, forms, and control sizes and positions. In this case, the Rectangle
variables of interest are Height and Width. The values stored in these properties specify the total working
area of the screen — that is, the part of the screen not taken up by the Windows system tray, taskbars, and
any other system-controlled component that takes away screen real estate from your application.

My.Computer.Audio
My.Computer.Audio provides a series of methods to play audio in your application. The main Play
method is overloaded to enable your application to play audio wave files from different sources — a nor-
mal file, an IO stream, and a Byte array.

In addition, the Play method enables you to control how the sound should be played. The application
can either wait for the sound to finish playing before it continues or continue executing while the sound
plays in the background. If the background option is chosen, it can be set to continuously loop until the
application explicitly stops it with the Stop method.

A simple example for this kind of use would be playing music while a particularly long process was tak-
ing place:

My.Computer.Audio.Play(MyWaveFileName, AudioPlayMode.BackgroundLoop)
MyReturnValue = SomeVeryLongFunction()
My.Computer.Audio.Stop

My.Computer.Mouse
The My.Computer.Mouse object enables your application to get the status of several mouse properties.
Whether the computer detected a mouse at all and, if so, whether the mouse has a scroll wheel are
returned in the Boolean properties Exists and WheelExists. WheelScrollLines returns the user set-
ting specifying how many lines are supposed to be scrolled for every notch the mouse wheel is turned.
Finally, ButtonsSwapped helps determine whether the user is left-handed and has swapped the right
and left button functionality.

148

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 148

My.Computer.Keyboard
Getting information about the state of the keyboard is even more useful than information about the
mouse. My.Computer.Keyboard is an object that provides such status information, such as whether
the Caps Lock key is on, or whether the user is currently pressing the Shift or Alt keys. In addition to the
status monitors, Keyboard has a SendKeys method to programmatically emulate the pressing of keys
on the keyboard.

The following Try It Out uses the My.Computer.Keyboard object along with My.Computer.Mouse and
My.Computer.Clipboard to programmatically copy text from one TextBox and paste it into another.
It illustrates how the various My.Computer objects can work together to easily perform functions that
might otherwise take many lines of code to perform.

Try It Out Sending Keystrokes with SendKeys
1. Create a new Windows Application project and add a Button and two TextBox controls to the

form. Make sure you resize TextBox2 so that it will have room for multiple lines of text.

2. Add an event handler for the Button’s Click event and first set the Text property of
TextBox1 depending on whether the Alt key is being held down or not:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
If My.Computer.Keyboard.AltKeyDown = True Then

TextBox1.Text = “The cat slept.”
Else

TextBox1.Text = “The dog jumped.”
End If

End Sub

3. If the Caps Lock is on, the program should copy the animal name from TextBox1 to the system
clipboard as text so you can paste in the other TextBox:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
If My.Computer.Keyboard.AltKeyDown = True Then

TextBox1.Text = “The cat slept.”
Else

TextBox1.Text = “The dog jumped.”
End If
If My.Computer.Keyboard.CapsLock = False Then

With TextBox1
.SelectionStart = 4
.SelectionLength = 3
My.Computer.Clipboard.SetText(.SelectedText)

End With
End If

End Sub

4. You’re going to use SendKeys to programmatically emulate keystrokes in TextBox2, so first
put the cursor on that control using its Focus method. Then create a loop that will run for a
number of times equal to the WheelScrollLines property of the Mouse object. In the loop,
you’ll paste the clipboard text by emulating Ctrl+V followed by the Enter key to force a new
line between each paste operation.

149

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 149

The code will then Shift+Tab back to TextBox1, delete the selected text, and replace it with the
word mouse. The final subroutine appears as follows:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
If My.Computer.Keyboard.AltKeyDown = True Then

TextBox1.Text = “The cat slept.”
Else

TextBox1.Text = “The dog jumped.”
End If
If My.Computer.Keyboard.CapsLock = False Then

With TextBox1
.SelectionStart = 4
.SelectionLength = 3
My.Computer.Clipboard.SetText(.SelectedText)

End With
With TextBox2

.Focus()
For iCounter As Integer = 1 To My.Computer.Mouse.WheelScrollLines

My.Computer.Keyboard.SendKeys(“^V~”)
Next

End With
My.Computer.Keyboard.SendKeys(“+{TAB}{DEL}mouse”)

End If
End Sub

The strings in the SendKeys methods may be a little unusual but once you’re familiar with the
various control symbols it should be straightforward. The control keys are signified with the fol-
lowing replacements:

Key Symbol to Use

Shift +

Control ^

Alt %

Enter ~ (or can be specified as {ENTER}

After running the application and clicking the button, the result should look like Figure 8-3.

Figure 8-3

150

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 150

My.Computer.Registry
Traditionally, while the Windows Registry is used to store immense amounts of information about appli-
cations and Windows settings, it has been hard to work with by Visual Basic programmers. .NET made it
a little easier, but accessing Registry settings was still an awkward task that should have been easy.

My.Computer.Registry revolutionized all that and Visual Basic Express can take full advantage of this
new object. The main properties of this object offer direct access to the root folders within the Registry
such as Local Machine. Each of these properties is returned as a RegistryKey object, which is rich
with methods to manipulate the data found within each node of the Registry.

For example, retrieving the version number of the installed copy of Internet Explorer could be done in
two lines:

Dim RK As RegistryKey = My.Computer.Registry.LocalMachine.OpenSubKey(_
“SOFTWARE\Microsoft\Internet Explorer”)

Dim IEVers As String = RK.GetValue(“Version”, “Internet Explorer not installed”)

The important thing to remember when working with the Registry is that you should treat it the same
way as you would a file. That is, if you open a part of the Registry for processing, then you should also
close it when you’re done. If you do not follow this kind of procedure, you could end up corrupting the
Registry data, which in turn can cause problems in the system, possibly as severe as preventing
Windows from starting.

The methods you will most likely use to retrieve information are as follows:

❑ OpenSubKey — Opens the location within the specified root node in the Registry and returns a
RegistryKey object.

❑ GetValue — Returns the value found for the specified name and optionally includes a default
value if the name is not found.

❑ Close — Cleanly closes the location within the Registry.

In addition to these three methods, you can also create folders of information, set individual values, and
delete both:

❑ CreateSubKey — Creates a folder within the Registry within the current RegistryKey context.
For example, to create a folder called MySettings within the CurrentUser root node, you
would use My.Computer.Registry.CurrentUser.CreateSubKey(“MySettings”).

❑ SetValue — Assigns a new value to the specified name within the current RegistryKey.

❑ DeleteValue — Removes the specified name from within the current location.

❑ DeleteSubKey — Deletes an entire folder from the RegistryKey specified. If the folder contains
other folders, you must either delete those first or use the DeleteSubKeyTree method instead.

My.Computer.Network
When the computer is connected to a network, the My.Computer.Network object can be used to trans-
fer files between the local machine and a remote computer. The cool thing about this is that a “network”
includes being connected to the Internet, so downloading a file from a remote location (assuming you
have permission) can be implemented with a single line of code, as shown here:

151

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 151

My.Computer.Network.DownloadFile(“http://www.myurl.com/thefile.txt”, _
“C:\Downloaded Files”)

Uploading a file is similarly straightforward, and the only thing you should make sure you do before
performing either action is check whether the network is available. This is also made easy for you —
the My.Computer.Network.IsAvailable variable returns True or False depending on the network’s
status.

My.User
If you need to write code based on the current user, the My.User object will be a tool of choice. With this
object, you can interrogate the system to determine whether a valid user is currently logged on, and if
so, what his or her official system name is. You can also use this object to determine whether the user
belongs to a particular user group and potentially change the permissions on your own application
based on their membership.

Consider the following snippet of code that could be included as part of the startup of a program. It
checks the current user, changes the title bar text of the form to include the name, and then hides the
View Options button if the user is not defined as an Administrator:

With My.User
If .IsAuthenticated Then

Me.Text = “Personal Organizer - logged in as “ &.Name
If .IsInRole(“BUILTIN\Administrators”) Then

btnViewOptions.Visible = True
Else

btnViewOptions.Visible = False
End If

End If
End With

My.Computer.Printers and My.Computer.FileSystem
With all of those objects out of the way, you are left with the two big guns —FileSystem and Printers.
The Printers object enables you to access each printer defined in the system and send data to them to be
printed. The objects also return information about the capabilities of each printer, including the printable
area and printer resolution. In Chapter 11, you’ll learn how to send information to a printer using the
printer classes Visual Basic Express provides.

My.Computer.FileSystem represents a number of functions that can be performed on the files and
folders of the computer system. While reading a file into a string such as the one shown in the example
at the beginning of this chapter might be one function you need to perform in your application, the
FileSystem object enables you to manipulate the file system, performing such actions as copy, rename,
and delete on files and folders. The following list presents some commonplace tasks that you can per-
form using the FileSystem methods:

❑ Copy a file — Use the CopyFile method, specifying the source and destination filenames.
Optionally, you can indicate whether any existing file should be replaced, whether the
Windows-defined animation should be displayed while the file operation is being performed,
and even a new name if it differs from the original.

152

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 152

❑ Copy an entire folder — The CopyDirectory method can be used to copy an entire directory
structure to another location on the computer. It has the same set of options as CopyFile.

❑ Rename a file — Use RenameFile to change the name of an existing file. RenameDirectory
performs the same action but on a folder.

❑ Delete a file — Call the DeleteFile method to delete a file. Optionally, you can display the
Windows defined animation while the file is being deleted and send the file to the Recycle Bin
instead of permanently deleting it. Unsurprisingly, there is a DeleteDirectory method to
remove a directory of information with similar options. It has an additional option to recur-
sively delete subdirectories as well.

❑ Get a list of subfolders — The GetDirectories method returns an array of string values, each
containing the name of a subdirectory belonging to the folder specified.

❑ Determine whether a file or folder exists —DirectoryExists and FileExists return Boolean
values to indicate whether the specified element exists or not.

❑ Get the current directory — Use CurrentDirectory to retrieve the name of the current location
in the file system.

In addition to these basic methods, the FileSystem object also enables you to retrieve the current loca-
tions of the Windows Special Folders, such as My Music and Temp. These folders are represented by
the SpecialDirectories collection and all return a string containing the absolute path to the particular
folder.

The GetRelativePath and CombinePath methods can be used to work with relative paths within the file
system. A relative path is one that indicates the location of a folder or file based on the current location,
whereas an absolute path includes the information to get to the file regardless of the current location.
Consider the following scenarios to access a file named temp.txt in the Windows System folder.

Current Location Absolute Path Relative Path

C:\Windows C:\Windows\System\temp.txt System\temp.txt

C:\Windows\Drivers As above ..\System\temp.txt

C:\Program Files As above ..\Windows\System\temp.txt

Getting to the App
The other group of classes within the My namespace deal with different parts of your application. These
objects are used to process the settings and components that define the program. My.Application
returns such information as the command-line arguments with which the program was started. It also
has properties that return application-specific versions of My.Computer values, such as Culture.

My.Application also has an OpenForms collection that you can use to iterate through the current forms
belonging to your application that are open. This can be useful if you want to reuse a form for different
purposes and need to know whether it exists already. The ApplicationContext.MainForm and
SplashScreen properties identify the forms that the application uses to start with and refer to the same
values that are accessible in the My Project page in the Solution Explorer (refer to the sidebar “My
Project” for more information).

153

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 153

The next Try It Out creates an application with two forms, marks one of them as the splash screen, and
then displays several settings from the My.Application and My.Computer objects in a TextBox.

Try It Out Using My Project and My.Application
1. Create a new Windows Application project. With the form that is added by default, set the fol-

lowing properties:

❑ FormBorderStyle —None

❑ BackColor —255, 255, 192 (a pale yellow)

❑ Cursor —AppStarting

❑ StartPosition —CenterScreen

154

Chapter 8

My Project
Used alongside the application-related My classes, the My Project page in the Solution
Explorer provides design-time access to a myriad of settings related to the project as a
whole, including the form that should be used as the startup object and the splash screen.

Six categories of options can be accessed in My Project:

Application — Here you can specify the namespace that identifies your program,
which form to use at startup, and the icon associated with the application. In addition
to these values, the Application category enables you to specify a form that will act as a
splash screen for your program. This form will be shown while the application starts
and initializes any settings. Once the program is ready to show the main form, it will
automatically hide the splash screen form for you.

References — A list of all references made in the project. These can be system references
to parts of the .NET Framework so you can use the associated classes; COM references
to external objects; and web services (covered in Chapter 9).

Debug — The Debug category enables you to include command-line arguments with
which you can test the application, as well as specify a starting working directory. This
latter option is useful if you have commonly used files that you would like to use in
place, rather than having to navigate from the default debug folder in the solution.

Compile — You can control the way the program is built by Visual Basic Express with
this page of options. You won’t normally need to change any of these settings at all.

Resources — Briefly mentioned in Chapter 2, the Resources page contains lists of all
resources associated with your application. This is where you can manage any images
and audio files you’ve imported into the project. You can also add strings of text and
even whole files in the Resources page, which can be useful for storing commonly used
pieces of information.

Settings — Used to store custom information, the individual settings can be defined for
an individual user or for the application as a whole.

13_595733 ch08.qxd 12/1/05 1:41 PM Page 154

2. Add a new Form with the Project ➪ Add Windows Form menu command. In this second form,
add a TextBox and resize it so that it fills most of the form.

3. Double-click a part of the form not taken up by the TextBox to automatically create an event
handler for the Load event of the form. Add the following code:

Private Sub Form2_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
With My.Application

TextBox1.Text = “Splash screen = “ + .SplashScreen.Name
TextBox1.Text += vbCrLf + “Start up form = “ + _

.ApplicationContext.MainForm.Name
TextBox1.Text += vbCrLf + “Current Directory = “ + _

My.Computer.FileSystem.CurrentDirectory
End With

End Sub

4. Double-click the My Project entry in the Solution Explorer and change the options to set the
Startup object to Form2 and the Splash screen to Form1. Also change the Working directory in
the Debug section to C:\Temp. If the directory you specify doesn’t exist, you get an error when
you try to run the application.

5. Run the application. Initially, the form you set to pale yellow will be displayed for a moment
while the rest of the application is created and prepared for execution. Then this form is removed
and the second form is displayed, with text identifying values that are part of My.Application
(see Figure 8-4).

Figure 8-4

The remaining My classes provide access to the other parts of your application not covered by
My.Application. The My.Forms collection enables you to programmatically process each form that
you have defined in the project. This includes the capability to navigate right to the controls housed on
the form, either directly through their names or through the form’s Controls collection.

My.Resources, My.Settings, and My.WebServices all reference different parts of the My Project
page. Each resource or setting is dynamically exposed as a property of its respective type, while
My.WebServices enables you to call the web service methods referenced in the application.

The My objects that come with Visual Basic Express definitely make system-related tasks easier to accom-
plish. Whether it’s file manipulation or printing, retrieving the date and time, or determining user roles,
My helps you write code that is easy to manage and track.

155

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 155

You Can Use It Again and Again . . .
and Again

Sometimes you’ll need some code that you already know you’re going to reuse repeatedly. Or you might
be in a bit of a dilemma about the best way to achieve something. Enter another Visual Basic Express fea-
ture designed to make your life easier — code snippets.

Code snippets are small (well, sometimes not so small) pieces of code stored in a library and organized
into categories. Whenever you’re in the code view and need to write code for a common task, you can
often use the code snippet library provided by Microsoft to write it for you.

The way it works is simple: You browse the category hierarchy until you find the task you’re trying to
perform and select it from the list. Visual Basic Express inserts the code at the cursor location and marks
any parts that need to be replaced with your own code, including variable names and literal values.
Change the marked areas and you’re done — a complete section of code ready to use in your program.

The code snippet library is contextual. This means that you’ll get a different set of snippets if you open
the library with the cursor inside a subroutine or function than if the cursor were in the class itself and
outside of any routines. It makes sense to divide the snippets in this way — you’re unlikely to want to
create a whole new routine inside another, and if you insert code without enclosing it in a function defi-
nition it won’t even compile.

To bring up the code snippet library, place the cursor where you want to insert the code and right-click.
From the context menu, select Insert Snippet.... A smart IntelliSense-like dialog will appear, displaying
the main list of categories from which you can choose. As you choose each category of items, it will be
inserted onto the form as a hyperlink, and the next list will be displayed. If you realize you have made
a mistake, you can double-click these hyperlinks to return to a previous category of items.

When you find the particular snippet that meets your needs, click it, and the IntelliSense and hyperlinks
will be replaced with the actual snippet. Code that should be replaced by your own values is highlighted
in yellow (this color can be changed in the Options page for fonts). In some cases, the code will compile
as is and can provide functions or subroutines that can be called without modification. Mostly, however,
you will want to change either the literal values or the controls to which the code refers.

In the next Try It Out, you’ll create an application with vertically drawn text. Rather than create the rou-
tine that will draw text vertically from scratch, you’ll use the code snippet library to automatically create
a base definition that you can then modify.

Try It Out Using Code Snippets
1. Create a new Windows Application project in Visual Basic Express, add a Button and a

TextBox to the form, and create a Click event handler routine for the button.

2. Above the Click event handler, right-click and select Insert Snippet.... Because the code snippet
is actually an entire subroutine, you’ll add it outside any other routines. From the Insert Snippet
list, select Creating Windows Forms Applications ➪ Drawing ➪ Draw Vertical Text on a Windows
Form.

156

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 156

Visual Basic Express will automatically insert the following code:

Public Sub DrawVerticalString()
Dim drawString As String = “hello”
Dim x As Single = 150.0
Dim y As Single = 50.0
Dim drawFormat As New StringFormat()

Using formGraphics As Graphics = Me.CreateGraphics(), _
drawFont As New System.Drawing.Font(“Arial”, 16), _
drawBrush As New SolidBrush(Color.Red)

drawFormat.FormatFlags = StringFormatFlags.DirectionVertical
formGraphics.DrawString(drawString, drawFont, drawBrush, _

x, y, drawFormat)
End Using

End Sub

The routine gets the graphics object it needs to draw on, creates the system objects needed to
draw text —Font and Brush— and draws the specified string using a format flag to indicate
vertical direction. It then cleans up after itself.

3. Because you want to pass in your own text, add a parameter in the definition of the Sub and
change the drawString definition to use this parameter instead of the literal:

Public Sub DrawVerticalString(ByVal StringToDraw As String)
Dim drawString As String = StringToDraw

...

4. Return to the Click event handler you created and add a call to the DrawVerticalString
method, passing in the Text property of the TextBox:

DrawVerticalString(TextBox1.Text)

5. Run the application, enter some text in the TextBox, and click the button. You’ve created an
application that draws text directly on the form in a vertical orientation, without having to
remember the objects you needed (see Figure 8-5).

Figure 8-5

157

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 157

Reusing Code Properly
Two relatively recent advances in programming languages are generics and partial classes. While code snip-
pets enable you to reuse common blocks of code, it’s far more likely that you’ll need to use code repeat-
edly but in slightly different contexts. Both partial classes and generics enable you to do that easily.

Partial Classes
Partial classes are a new way of creating classes from multiple files. This feature of Visual Basic Express
enables you to build a single class in your application from multiple definitions, effectively building
them all together into one cohesive class.

As a simple example, consider the following two class definitions:

Partial Public Class MyClass
Private mMyString As String

End Class

Partial Public Class MyClass
Public Property MyString() As String

Get
Return mMyString

End Get
Set(ByVal value As String)

mMyString = value
End Set

End Property
End Class

Both classes have the same name and would normally cause a compilation error just because of that
alone. The other problem is that the top class has a private variable, while the bottom class has a public
property that references a variable that doesn’t exist within that class definition.

However, because they are both marked as Partial, Visual Basic Express will bring them together,
treating them as a single class:

Partial Public Class MyClass
Private mMyString As String

Public Property MyString() As String
Get

Return mMyString
End Get
Set(ByVal value As String)

mMyString = value
End Set

End Property
End Class

158

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 158

Visual Basic Express also understands partial classes at design time, so you won’t get any of those visual
indicators that something is wrong with your code because of a missing definition.

While partial classes may not seem very useful, they can be extremely valuable under certain conditions.
What they enable you to do is create one part of a class that is used by multiple applications, and then
enhance that partial class with application-specific classes to tailor the code to fit the requirements.

To illustrate this process, consider the following main class, saved as MyClassHeader.vb. It contains all
the code necessary to store and maintain three properties related to an employee:

Partial Public Class MyClass
Private sFirstName As String
Private sLastName As String
Private dSalary As Decimal

Public Property FirstName() As String
Get

Return sFirstName
End Get
Set(ByVal value As String)

sFirstName = value
End Set

End Property
Public Property LastName() As String

Get
Return sLastName

End Get
Set(ByVal value As String)

sLastName = value
End Set

End Property
Public Property Salary() As Decimal

Get
Return dSalary

End Get
Set(ByVal value As Decimal)

dSalary = value
End Set

End Property
End Class

Two applications are created, both adding the MyClassHeader.vb file to their projects. The first one
also adds MyClassFinancial.vb, while the second application adds MyClassPersonal.vb. These
partial classes are shown in the following table.

159

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 159

MyClassFinancial.vb MyClassPersonal.vb

Partial Public Class MyClass
Public Sub AddSalary(ByVal IncAmount _
As Decimal)
dSalary += IncAmount

End Sub
End Class Partial Public Class MyClass
Public ReadOnly Property _
DisplayName() As String
Get
Return sFirstName + sLastName

End Get
End Property

End Class

When the code is created for the first application, it will have access to the three properties, along with
the AddSalary method, but not the DisplayName read-only property. The second application, however,
can use the DisplayName property along with the three main properties, but it doesn’t know a thing
about the AddSalary method.

Generics
Generics are a way of defining a single class that can be defined for multiple types. You create a class def-
inition that can contain any normal class members — private variables, properties, methods, and so on.
When you define an object of that class, you pass over what type it should be, and the internal class
structure will work as if it were originally defined as that type.

While it may sound a little complicated, it’s one of those concepts that becomes clear once you’ve seen it
in action. Consider the following class:

Public Class MyClass
Private mItemValue As String
Public Property ItemValue() As String

Get
Return mItemValue

End Get
Set(ByVal value As String)

mItemValue = value
End Set

End Property
End Class

Now, suppose you needed a similar class but the ItemValue property were an Integer. You could cre-
ate a whole new class, repeating all the code within the MyClass and replacing all instances of String
with Integer. Or you could use generics.

160

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 160

To create a generic class, you define it exactly the same way, but add an extra clause at the top of the
class definition, Of. The Of keyword is followed by the name you will use to identify the type that the
class will become whenever it’s instantiated. Taking the previous class example, you could convert it to
a generic like so:

Public Class MyClass(Of MyType)
Private mItemValue As MyType
Public Property ItemValue() As MyType

Get
Return mItemValue

End Get
Set(ByVal value As MyType)

mItemValue = value
End Set

End Property
End Class

Whenever you define an object of type MyClass, you need to specify the type that it should be treated
as, using the same Of clause:

Dim MyStringClass As MyClass(Of String)
Dim MyIntegerClass As MyClass(Of Integer)

While the preceding example is simple, generic classes can be used to create complex reusable objects,
and they are perfect for building custom array and collection type objects. The main requirement you
need to remember is that every statement within the class definition must work with every type that is
used with it. It wouldn’t be possible, for example, to include mathematical functions in the Set clause in
the preceding example because one of the objects defines it with a String type.

Visual Basic Express comes with several built-in generic classes, all in the generic namespace. These
classes emulate existing object types, such as collections and other list types, but because the definition
of an object with a generic class requires you to define the particular type that will be used, you can con-
strain the items that will exist in the class without having to write code to do it. The following two
Collection classes look similar, but while the first one will run without a problem, the second will
throw an exception when the string is passed to the Add method:

Dim MyCollection2 As New Collection
MyCollection2.Add(5)
MyCollection2.Add(“test”)

Dim MyCollection As New Generic.Collection(Of Integer)
MyCollection.Add(5)
MyCollection.Add(“test”)

To finish the chapter and consolidate the things you’ve learned, the next Try It Out adds a splash screen
and login form to the Personal Organizer application.

161

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 161

Try It Out Adding the Login Form
1. Start Visual Basic Express and open the Personal Organizer application you’ve been working

on. If you don’t have the project up to date to this point, you’ll find a version of the files in the
Chapter 08\Personal Organizer Start folder of the code downloaded from www.wrox.com
for this book.

2. Add a new form by selecting Project ➪ Add Windows Form. Name the form SplashScreen.vb.
Set the following properties:

❑ Size —300, 300

❑ Start Position —CenterScreen

❑ FormBorderStyle —None

3. In the Chapter 08 folder of the downloaded code, you’ll find an image named splash.bmp.
Set the BackgroundImage property of the form to this image by clicking the ellipsis button and
then importing the image as described previously.

4. Add a label to the form and position it in the bottom right-hand corner of the form. This will
contain the version number of your application so users know what version they’re using.
Change the Anchor property to Bottom, Right so that it will automatically align to the right
when the text is changed programmatically. In addition, set its BackgroundColor property to
Transparent (which you’ll find in the list of web colors).

5. Double-click the form to create a Form Load event handler and set the text of the label to the
version number of the application:

Label1.Text = My.Application.Info.Version.ToString

6. Open the My Project page by double-clicking the entry in the Solution Explorer and select the
SplashScreen form for the Splash Screen setting. You’re done with the splash screen now, so you
can move to the login form.

7. Add another form to the project by selecting Project ➪ Add Windows Form. Name this form
Login.vb and click OK to add it.

8. Add three Labels, two TextBoxes, and two Buttons to the form and position them as shown in
Figure 8-6. Name the buttons btnOK and btnCancel and set their Text properties appropriately.

Figure 8-6

9. Set the following properties for the form so that it will emulate a proper login screen. The
AcceptButton property enables users to press Enter, which will emulate the Click event for
the selected button. CancelButton does the same but for the Escape key.

162

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 162

❑ StartPosition —CenterScreen

❑ FormBorderStyle —FixedSingle

❑ AcceptButton —btnOK

❑ CancelButton —btnCancel

10. Set the following properties on the first TextBox:

❑ Name —txtUser

❑ ReadOnly —True

Set the following properties on the second TextBox:

❑ Name —txtPassword

❑ UseSystemPasswordChar —True

11. Add an event handler for the form’s Load event. Add the following code:

Private Sub Login_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
If My.User.IsAuthenticated Then

txtUser.Text = My.User.Name
If UserExists(My.User.Name) Then

txtPassword.Focus()
Else

mNewUser = True
MessageBox.Show(“You are new to the system. Please enter your “ + _

“password and it will be saved in the database for future use.”)
End If

Else
MessageBox.Show(“Sorry, you are not authenticated and cannot use “ + _

“this program.”)
End

End If
End Sub

This ensures that the user is authenticated in Windows and, if so, sets the Text property to the
user’s name. It then calls the UserExists function you created in Chapter 7 to determine
whether the user exists in the database. You’ll need to define the module-level variable mNewUser
as a Boolean at the top of the form class. This will be used in the Click event for the OK button
to determine whether it should create the user and password entry or check the password.

12. Because you need to keep track of the ID value for the user who is currently logged in, create a
new function in GeneralFunctions.vb that returns the ID for a given Name. This uses the
same logic as the database functions discussed in Chapter 7, so review the process there if
you’re not sure of what’s going on here:

Public Function GetUserID(ByVal UserName As String) As Integer
Dim CheckUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CheckUserTable As New _PO_DataDataSet.POUserDataTable

CheckUserAdapter.Fill(CheckUserTable)
Dim CheckUserDataView As DataView = CheckUserTable.DefaultView
CheckUserDataView.RowFilter = “Name = ‘“ + UserName + “‘“

163

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 163

With CheckUserDataView
If .Count > 0 Then

Return CType(.Item(0).Item(“ID”), Integer)
Else

Return -1
End If

End With

End Function

13. Add an event handler for the OK button’s Click event and add this code:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
Dim bOKToContinue As Boolean = False
If mNewUser Then

CreateUser(txtUser.Text, txtPassword.Text)
bOKToContinue = True

Else
If UserPasswordMatches(txtUser.Text, txtPassword.Text) Then

bOKToContinue = True
Else

MessageBox.Show(“Password doesn’t match. Re-enter the password”)
txtPassword.Text = vbNullString
txtPassword.Focus()

End If
End If

If bOKToContinue = True Then
Dim MainFormObject As New frmMainForm
MainFormObject.CurrentUserID = GetUserID(txtUser.Text)
MainFormObject.Show()
Me.Dispose()

End If

End Sub

At this point, you’ll get an error indicator line underneath the MainFormObject.CurrentUserID
property. You’ll add this property in step 16.

If the code determines that this is a new user, it calls the CreateUser function (created in
Chapter 7) and sets the OK flag. If the user already exists in the database, it checks the password
against the one stored in the database. If they do not match, it rejects the login attempt and
returns the focus to the Password TextBox. If they match, then it sets the same OK flag.

Finally, it checks the OK flag; if it is set to true, it shows the main form and closes the login form.

14. The Cancel button’s Click event handler should halt the program by using the End statement.
This statement will end the program immediately and should be used only if no resources are
open, as is the case here.

15. Return to the My Project page and change the Startup object to Login, and the Shutdown mode
to When last form closes. This will ensure that the application stays active until the user
closes the main form.

164

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 164

16. Open MainForm.vb in code view to add the variable and property definition to keep track of
the user ID. At the top of the class module, add the following code:

Private mCurrentUserID As Integer
Public Property CurrentUserID() As Integer

Get
Return mCurrentUserID

End Get
Set(ByVal value As Integer)

mCurrentUserID = value
End Set

End Property

17. In Chapter 7, you created routines to handle the saving and updating of Person data. In
those routines you used a hardcoded UserID value of 1. Now that the MainForm keeps track
of the current user, you can change those routines to include the ID. The saveToolS
tripButton_Click routine is shown here, but you should also make a similar change in
objPersonalDetails_ButtonClicked:

Private Sub saveToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles saveToolStripButton.Click
If objPersonalDetails IsNot Nothing Then

If objPersonalDetails.AddMode = True Then
If AddPerson(mCurrentUserID, objPersonalDetails.Person) Then

MessageBox.Show(“Person was added successfully”)
objPersonList = New PersonList

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If

pnlMain.Controls.Add(objPersonList)
objPersonList.Dock = DockStyle.Fill

Else
MessageBox.Show(“Person was not added successfully”)

End If
Else

If UpdatePerson(mCurrentUserID, objPersonalDetails.Person) Then
MessageBox.Show(“Person WAS updated successfully”)

Else
MessageBox.Show(“Person was not updated successfully”)

End If
End If

End If
End Sub

18. The last thing to do — now that you can determine which user is using the Personal Organizer
application — is to control which Person records are shown in the PersonList control. Open
that control in code view and add a property at the top of the class:

Private mUserID As Integer
Public Property UserID() As Integer

Get

165

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 165

Return mUserID
End Get
Set(ByVal value As Integer)

mUserID = value
End Set

End Property

Locate the LoadListBox routine at the bottom of the class code and add an additional check for
the UserID value before adding each set of Person information to the ListBox:

Private Sub LoadListBox()
Dim PersonListAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim PersonListTable As New _PO_DataDataSet.PersonDataTable

PersonListAdapter.Fill(PersonListTable)

With lstPersons
.Items.Clear()
For Each CurrentRow As _PO_DataDataSet.PersonRow In PersonListTable.Rows

If CurrentRow.POUserID = mUserID Then
Dim CurrentPerson As New Person(CurrentRow.NameFirst, _

CurrentRow.NameLast)
CurrentPerson.ID = CurrentRow.ID
.Items.Add(CurrentPerson)
.DisplayMember = “DisplayName”

End If
Next

End With
End Sub

19. Return to MainForm.vb and locate the btnShowList_Click routine that controls when the
PersonList control is shown. Immediately after you create the PersonList object, set the
UserID property to the module-level variable in MainForm that is keeping track of the current
user:

Private Sub btnShowList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowList.Click
objPersonList = New PersonList
objPersonList.UserID = mCurrentUserID

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If

pnlMain.Controls.Add(objPersonList)
objPersonList.Dock = DockStyle.Fill

End Sub

20. You can run the application now and observe the results. First, the splash screen form will be
shown for a moment as the application prepares the login form. In the bottom-right corner will
be the current version of the application, retrieved from the My.Application object.

After a moment, the login form will be displayed, complete with the user name already popu-
lated. If this is the first time through, the program will display a message indicating that you

166

Chapter 8

13_595733 ch08.qxd 12/1/05 1:41 PM Page 166

should enter a new password; otherwise, you’ll need to enter the password you created the
first time.

If the passwords don’t match, you’ll be presented with an error message, as shown in Figure 8-7,
and returned to the login screen. Otherwise, the login screen will close and the main form will be
displayed.

Once the form is displayed, you can show the Person list; and it displays only records associ-
ated with the user who is currently logged on.

Figure 8-7

Summary
Visual Basic Express is a development tool that gives you more than you could ever imagine to make
creating programs easy. The My namespace, a part of .NET developed exclusively for Visual Basic pro-
grammers, adds to the already impressive number of classes and commands included for your use.

And if that isn’t enough, the capability to use code snippets, partial classes, and generics fills the toolkit
almost to bursting. With these programming enhancements, you can create applications that serve com-
plex and convoluted purposes easily and without fuss.

In this chapter, you learned to do the following:

❑ Access hard-to-get-to pieces of the system using My

❑ Build partial classes for maximum flexibility in reusing code

❑ Create a splash screen and login form for an application

Exercises
1. Use the code snippet library to draw a pie chart on a form. The pie chart snippet can be found

by selecting Creating Windows Forms Applications ➪ Drawing.

2. Create a class from two partial classes whereby one defines two variables and the other com-
bines them together.

167

It’s My World — Isn’t It?

13_595733 ch08.qxd 12/1/05 1:41 PM Page 167

13_595733 ch08.qxd 12/1/05 1:41 PM Page 168

9
Getting into the World

Perhaps the most obvious difference between Visual Basic Express and its professional counterpart,
Visual Basic 2005, is the capability it affords you to create applications for the web. In Visual Basic
2005, programmers have the capability to create websites that use Visual Basic code to control how
they appear and what actions are performed when the individual pages should be displayed.

In addition, web services — special web applications designed to be used by other programs — can
also be implemented using Visual Basic 2005. Visual Basic Express does not allow you to do that.
Instead, it has been designed to enable you to make programs that run in a normal Windows envi-
ronment only.

However, this doesn’t mean you can’t take advantage of the Internet in your applications — far
from it. Visual Basic Express provides numerous ways of accessing the web, and by combining
Visual Web Developer Express with the information about the Visual Basic language you’ve
learned in this book, you can design web applications, too.

In this chapter, you learn about the following:

❑ The WebBrowser control and how to use it effectively

❑ Implementing web services in your applications to retrieve information from the Internet

❑ Using Visual Web Developer Express to create web applications

Creating a Web Browser
The WebBrowser control is like having a scaled-back version of Internet Explorer packaged up and
ready for you to use anywhere you would like in your own applications. In Chapter 1 of this book,
you created an application that contained a WebBrowser control with a simple navigation system.

The advantage of having the WebBrowser control is that you can embed Internet pages into your
program, rather than have users access the web via their normal web browser. You can customize
the control’s appearance and control the functionality used, and you can keep track of what users
do in the web browser by tracking the various events that are raised when they browse the web.

14_595733 ch09.qxd 12/1/05 1:42 PM Page 169

In the first chapter, you placed a WebBrowser control on a form and enabled it to navigate to specified
URLs. This is obviously the main function of using the web browser, but there are several other proper-
ties and methods that are worth taking a look at.

WebBrowser Properties
When you embed a web browser in your own program, you may want to restrict users from being able
to perform certain actions. For example, Internet Explorer provides a rich right-click menu that enables
users to view the source of the page, print it, and even open new browser windows. This functionality
could enable your users to do things that you don’t want them to do. The WebBrowser control enables
you to disable this menu with a single property —IsWebBrowserContextMenuEnabled. Set this prop-
erty to False, either at design time or while the program is running, and the right-click menu will not
display.

Two other properties that can control how users interact with the web browser also toggle features:

❑ AllowWebBrowserDrop controls whether the web browser control will accept drag and drop
actions by the user. An example might be dragging a hyperlink to the browser window. Again, as
this allows users to perform actions that may be outside the scope you intend for your program,
you can disable it easily by setting the property to False.

❑ The WebBrowserShortcutsEnabled property enables you to disable keyboard shortcuts
that could be used to invoke various commands exposed by Internet Explorer through the
WebBrowser control, such as Ctrl+N to create a new window and Ctrl+P to print the current
page. Again, simply set this property to False to disable this functionality.

Several properties are provided to give you feedback about the current state of the internal browser
object. IsOffline returns a value of True if the user is browsing the web in Offline mode, a special
mode of Internet Explorer that can display locally cached pages only. CanGoBack and CanGoForward
let your program know whether there are web page locations in the backward or forward history lists.
These properties are used in conjunction with the GoBack and GoForward methods, which are covered
in a moment.

When looking at a typical Internet Explorer window, you’ll notice common areas of the interface that
provide information to the user. In Figure 9-1, the Internet Explorer window has four areas marked and
labeled:

❑ Area 1 — The title bar of Internet Explorer contains the heading information about the web page
that is currently being displayed. This text is accessible through the DocumentTitle property of
the WebBrowser control, which enables you to display the contents somewhere appropriate in
your own application.

❑ Area 2 — The address bar at the top of the Internet Explorer window shows the current URL
that is being shown, and enables users to change the web page by entering a new web site
address. The Url property of the WebBrowser emulates both of these features — it returns the
currently loaded URL of the WebBrowser control and, if changed programmatically, will auto-
matically attempt to navigate to the new location.

170

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 170

❑ Area 3 — Internet Explorer displays the actual content of the web page in this area. You can
retrieve this information in your program through the Document and DocumentText properties.
DocumentText is a String property that returns the entire web page as a string of text, includ-
ing the HTML tags and attributes. It’s useful for storing the HTML for later use. Document
returns an HTMLDocument object that is then used to process the content of the web page itself.

Figure 9-1

❑ Area 4 — One valuable aspect of browsing the web with a browser such as Internet Explorer is
the feedback you are provided as the page loads. The status bar is constantly updated with
information about the page being loaded and displayed. StatusText is a String property in
the WebBrowser control that enables your program to retrieve that information and display it
yourself.

WebBrowser Methods
The methods exposed by the WebBrowser control give you programmatic access to the common actions
that can be performed in Internet Explorer. In Chapter 1 you used the Navigate method to tell the web
browser object to load a particular URL. The Navigate method is actually overloaded, which means
that there is more than one way of calling it. In this case, Navigate provides three different functions:

Area 1Area 2

Area 3

Area 4

171

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 171

❑ Navigate(URL)— Tells the WebBrowser control to load the page located at the specified URL.

❑ Navigate(URL, TargetFrame)— Does the same as the default Navigate method but specifies
a section of the currently loaded page to contain the results of the navigation. This can be useful
if you know how the HTML document is structured internally and you want to populate only
certain sections of the page with the new information.

❑ Navigate(URL, NewWindow)— This version of Navigate is likely to be the least used. It starts
up a new instance of Internet Explorer and loads the page in that instead of your own applica-
tion’s web browser object.

The other methods of the WebBrowser you’ve used already are the GoHome and GoBack functions in the
exercises at the end of Chapter 1. GoHome tells the browser object to navigate to the default home URL
for Internet Explorer, while GoBack navigates back one page to the previous page the user was viewing.

Coupled with these two methods are GoForward and GoSearch. GoForward will navigate forward
through cached pages in the forward history list. GoSearch will open the default search page as speci-
fied in the options for Internet Explorer.

Besides these navigation controls, three main functions are commonly required: Refresh, Stop, and
Print. These are all self-explanatory and emulate their corresponding Internet Explorer toolbar buttons.
Because these methods are available, you can easily build a functional web browser into your applica-
tion with very little code required.

Other methods worthy of a mention are the Show...Dialog functions. These five methods each show a
commonly used dialog window within Internet Explorer, giving you the capability to show the dialogs
in your own program:

❑ ShowPageSetupDialog— Brings up the Page Setup dialog, enabling the user to customize how
a page should be printed.

❑ ShowPrintDialog— If you invoke the Print method, it will send the currently loaded web
page to the default printer using the default settings. Using the Print Dialog, the user can cus-
tomize where and how the page should be printed and specify how many copies are wanted.

❑ ShowPrintPreviewDialog— Yes, you can provide full print preview functionality of the web
page simply by calling this method. Be aware, however, that users will be able to run any of the
commands in the Preview dialog, such as Page Setup and Print.

❑ ShowPropertiesDialog— This method brings up the Properties dialog that provides informa-
tion about the currently loaded page.

❑ ShowSaveAsDialog— This gives users the capability to save the web page with one simple
method call.

WebBrowser Events
The WebBrowser control also raises several events that your application can intercept and handle. This
capability to determine when things have occurred within the browser object, along with the methods
and properties that the control gives you, provides enormous scope to control how the web browser is
displayed within your application and how the rest of your program reacts based on its content.

172

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 172

While many events could be handled, a handful are important enough to be covered here. First and fore-
most are the Navigating and Navigated events. Navigated is fired when a page is found and begins
to be loaded into the browser object. At this point, you can start using the Document properties dis-
cussed earlier to interrogate the content of the new page.

The Navigating event is raised by the WebBrowser control when the browser object is about to load a
new page. You can use this event to cancel unwanted page loads, and it is often used to restrict web
browser functionality to only a set of allowable pages and URLs.

While Navigated indicates that the Document properties now refer to the newly loaded page, it’s not
until the DocumentCompleted event is raised that you can be confident that the entire contents have
been downloaded. The following table illustrates the normal order of these three events as they occur
when the user clicks a link within the browser.

WebBrowser Actions Program Impact

Navigating event is fired. Program can cancel the navigation.

WebBrowser attempts to locate and Document properties can be used to
begin to load the page. If successful, determine the state of the page load.
Navigated is fired.

Once the page is finished loading, the Document properties now contain the fully
DocumentCompleted event is fired. loaded HTML page.

Besides these main events, you may also want to handle several events that inform your application
when information has been altered. The StatusTextChanged event is raised whenever the internal
browser object has a different status. This is the event that Internet Explorer uses to determine when to
update its status bar, and you can do the same thing in your own application.

The DocumentTitleChanged event is used for a similar purpose — this time it’s the text to be displayed
in the title bar area of Internet Explorer that has changed, with the DocumentTitle property interro-
gated to determine the new value.

ProgressChanged is an event that can be useful for your application’s handling of the web browser’s
loading state. The event includes an estimate of the loading document’s total number of bytes, along
with how many bytes have been downloaded so far. This enables your program to include some sort of
progress indicator to inform users about how much of the page loading process has been completed.

The Personal Organizer application you’ve been building throughout this book currently does not
have any Internet capabilities. Later in this chapter you’ll use web services to gather information from
Amazon.com, but what would make another nice feature in the program is the capability to browse cer-
tain web sites from within the program itself.

In the next Try It Out, you’ll create a new user control that encapsulates the WebBrowser control, along
with a select number of buttons, and add code to the MainForm.vb file of the Personal Organizer appli-
cation to show this control when the user requests it.

173

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 173

Try It Out Creating a Custom Web Browser Control
1. Start Visual Basic Express and open the Personal Organizer solution you’ve been working with.

If you have not completed the previous chapter’s exercises, you will find an up-to-date solution
in the Chapter 09\Personal Organizer Start folder of the code download you can get on
www.wrox.com.

2. Create a new user control by selecting Project ➪ Add User Control. Name the control
POWebBrowser.vb and click OK to add it to your solution.

3. Open the new control in Design view and first add a ToolStrip control, followed by a
WebBrowser control to the design surface. Adding them in this order will automatically dock
the ToolStrip to the top of the control’s area and fill the remaining space with the
WebBrowser.

Set the following properties for the WebBrowser control:

❑ Name—MyWebBrowser

❑ IsWebBrowserContextMenuEnabled—False

❑ AllowWebBrowserDrop—False

❑ Url—C:\PersonalFavorites.html

❑ WebBrowserShortcutsEnabled—False

Set the GripStyle property of the ToolStrip to Hidden, and add six buttons to the strip with
the following Text properties (you can use the Items collection editor to set the Text properties):

❑ &Back

❑ &Forward

❑ &Home

❑ &Stop

❑ &Refresh

❑ &Close

The ampersand (&) symbol will be automatically translated into a keyboard menu shortcut.
Therefore, when the user holds down the Alt key and presses B, the program will emulate the
Back button being clicked. It will also display a line underneath the letter that identifies the
shortcut so the user is aware of the keyboard shortcut. The user interface of the User Control
should appear similar to Figure 9-2.

Figure 9-2

174

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 174

4. Now you’ll implement the basic navigation functionality of your web browser. Add the follow-
ing line of code to the Click event of the Back button (remember to double-click the button in
Design view and Visual Basic Express will automatically create a subroutine that will handle the
Click event for you):

Private Sub BackToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles BackToolStripButton.Click
MyWebBrowser.GoBack()

End Sub

It’s always a good idea to check whether a function can be performed, so the CanGoBack prop-
erty is checked first to determine whether there are pages in the back history. Because it’s a
Boolean, you can omit the = True, which results in code that reads almost like regular English.
If there are pages in the history, then the GoBack method of the WebBrowser control is called:

Private Sub BackToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles BackToolStripButton.Click
If MyWebBrowser.CanGoBack Then MyWebBrowser.GoBack()

End Sub

5. Repeat this process for the Forward, Stop, and Refresh buttons (you don’t need to do the checks
for Stop and Refresh):

Private Sub ForwardToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ForwardToolStripButton.Click
If MyWebBrowser.CanGoForward Then MyWebBrowser.GoForward()

End Sub

Private Sub StopToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles StopToolStripButton.Click
MyWebBrowser.Stop()

End Sub

Private Sub RefreshToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RefreshToolStripButton.Click
MyWebBrowser.Refresh()

End Sub

6. The Home button is the first of two special cases. If you simply implemented the GoHome
method, users would go to their default home page found in the options of Internet Explorer.
Because you want to retain control over what is displayed in your program, use the Navigate
method instead to load your default page:

Private Sub HomeToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles HomeToolStripButton.Click
MyWebBrowser.Navigate(“C:\PersonalFavorites.html”)

End Sub

You’ll notice that the location both in the Url property of the WebBrowser and in the Navigate
method here is specified as C:\PersonalFavorites.html. This is a very simple web page cre-
ated for this application that contains several commonly used websites. The HTML page can be
found in the Chapter 09 folder of the code download for this book. If you choose to keep this
page in a different location, make sure you change it in both places.

175

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 175

7. The last button —Close— will be used to tell the application that the user would like to close
the web browser window. To achieve this, you first need to create an event for the user control.
As explained in Chapter 6, adding events to your own controls is achieved by first defining the
signature of the event at the top of your user control code, and then by telling Visual Basic to
raise the event through the RaiseEvent command. Define the event at the top of your code as
the first line within the class definition:

Public Event CloseRequested()

Then, in the Close button click, raise the event like so:

Private Sub CloseToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles CloseToolStripButton.Click
RaiseEvent CloseRequested()

End Sub

8. Save and build your entire application to confirm that everything compiles. This will also com-
pile the user control so that it can be used by the main form.

9. Return to the Design view of MainForm.vb and add a new button underneath the other two
already there. Set the button’s properties as follows:

❑ Name—btnWeb

❑ Text—Web

At this point, your main form’s interface should now look like the one shown in Figure 9-3.

Figure 9-3

176

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 176

10. Double-click the button to create the Click event handler routine. At this point, you need to
implement code similar to that in Chapter 5 for the other two user controls. This time, however,
you need to check for the existence of two, rather than just one:

Private Sub btnWeb_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnWeb.Click

objPOWebBrowser = New POWebBrowser

If objPersonalDetails IsNot Nothing Then
pnlMain.Controls.Remove(objPersonalDetails)
objPersonalDetails = Nothing

End If
If objPersonList IsNot Nothing Then

pnlMain.Controls.Remove(objPersonList)
objPersonList = Nothing

End If

pnlMain.Controls.Add(objPOWebBrowser)

objPOWebBrowser.Dock = DockStyle.Fill

End Sub

11. Now define the objPOWebBrowser variable at the top of the MainForm code, directly under-
neath the definition of the other two user control objects:

Private objPersonList As PersonList
Private objPersonalDetails As PersonalDetails
Private objPOWebBrowser As POWebBrowser

12. To clean up the other code, you should also check for the existence of the POWebBrowser control
before showing the PersonalDetails or PersonList controls. Add the following code in the
btnShowList_Click and btnAddPerson_Click routines immediately before you add the con-
trol to the Panel:

If objPOWebBrowser IsNot Nothing Then
pnlMain.Controls.Remove(objPOWebBrowser)
objPOWebBrowser = Nothing

End If

13. Run the application and click the Web button to show the web browser user control. Note how
it behaves in a similar way to your other controls, filling the available area. Try out the links in
the loaded page, as well as the various buttons. The only one that is not working at this point is
the Close button. This is because even though you are correctly raising the event, the main form
is not handling it. Terminate the application and return to the code view of MainForm.vb.

14. At this point, even though the POWebBrowser object has been defined and does have events, the
MainForm code cannot intercept the events themselves. This is because the definition of the user
control object did not specify that events are associated with the control. To confirm that this is
the case, open the Class Name drop-down list at the top of the code window. Scrolling through
the list, you’ll notice that objPOWebBrowser is not present.

177

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 177

The WithEvents keyword is used to tell Visual Basic Express that the object will have events that
the application needs to be able to handle. If you do not include this keyword, your program will
not be able to receive any of the events, even though they might be raised by the object. You’ll
also notice that the IntelliSense of Visual Basic Express will display only objects that have events.
Change the definition of objPOWebBrowser to include the WithEvents keyword:

Private WithEvents objPOWebBrowser As POWebBrowser

15. Now you want to intercept the event you created earlier —CloseRequested. In the Class
Name drop-down list, find and select objPOWebBrowser. Then, in the Method Name drop-
down, scroll down to CloseRequested and select it from the list. Visual Basic Express will
automatically create an event handler subroutine to handle the CloseRequested event. You can
copy and paste the code used to determine whether the web browser control exists, and, if so,
destroy it. Your final subroutine should look like this:

Private Sub objPOWebBrowser_CloseRequested() Handles _
objPOWebBrowser.CloseRequested
If objPOWebBrowser IsNot Nothing Then

pnlMain.Controls.Remove(objPOWebBrowser)
objPOWebBrowser = Nothing

End If
End Sub

16. Another thing you may have noticed when you ran the application in step 13 is that the Back
and Forward buttons are always enabled. It would be nice to disable these buttons when they
cannot be used, similar to the way Internet Explorer does with its own Back and Forward but-
tons. Return to the code view of the POWebBrowser control. Add an event handler routine for
the Navigated event of the MyWebBrowser object (refer to step 14 for finding the event). In the
subroutine, add the following code:

Private Sub MyWebBrowser_Navigated(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
MyWebBrowser.Navigated
BackToolStripButton.Enabled = MyWebBrowser.CanGoBack
ForwardToolStripButton.Enabled = MyWebBrowser.CanGoForward

End Sub

Now whenever the WebBrowser control navigates to a new page, the code will check the
CanGoBack and CanGoForward properties. Because they are both Boolean properties, like the
Back and Forward buttons’ Enabled properties, you can simply assign one to the other. As a
result, if the CanGoBack property returns True, then the Back button will be enabled. If
CanGoBack is False, then the Back button will be grayed out and users cannot click it. The
same is true for the Forward button and CanGoForward.

17. Run the application again; click the Web button to bring up the web browser. Navigate through
the pages and note how the Back and Forward buttons are enabled only when there are pages in
the back and forward history lists (see Figure 9-4). When you’re ready, click the Close button
and note how the main form now handles the event and closes the browser.

You’ve now created a robust web browser in your Personal Organizer application. Customize the
PersonalFavorites.html file to contain your own commonly visited sites so you can browse them
without having to open up Internet Explorer.

178

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 178

Figure 9-4

Web Services
A web service is a specialized kind of program that is designed to run on the Internet with other applica-
tions calling its functions. You can think of a web service as a kind of remote object complete with pub-
licly available methods that other applications can call to retrieve information or invoke specific actions.

Visual Basic Express provides support for web services based on the open standard protocols of Extensible
Markup Language (XML) and Simple Object Access Protocol (SOAP). In Chapter 12, you’ll learn all about
XML and how it can be used to store and format data, but for now all you need to know is that XML is
used to format information that is passed to a web service, and to define the structure of the data returned
to the calling application.

SOAP is a communications protocol that can wrap a message into a standard structure that can then
be passed over the Internet to the web service. The web service can then unwrap the XML defining the
particular request, process it internally, and generate XML for a response. This response object is then
returned, again via SOAP, to the calling program. This request and response system is a fundamental com-
munications method used in many different Internet communications systems.

179

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 179

Many other languages can use XML web services but they often must use other communications proto-
cols to call them, such as HTTP POST or REST. These methods involves constructing a URL from the
web service location, adding the required parameters using standard URL addressing constructors, and
then invoking the final URL.

Visual Basic Express makes using web services (called consuming web services) a much more straightfor-
ward process by giving you the capability to add the location of the web service in the IDE and then cre-
ate an object representation of the web service methods for use in your program. Once the web service
location has been added to your project, you can create and use objects based on it in much the same
way as any other objects.

Visual Basic Express does not allow you to create your own web services. Instead, you need to use
Visual Studio 2005 or Visual Web Developer Express to create customized web services. However, that
shouldn’t stop you, as several websites provide directories of publicly available web services.

These directories also follow a specific standard — UDDI. UDDI, which stands for Universal Description,
Discovery, and Integration, enables businesses to register their web services in a central location, often cat-
egorized into groups of similar services. Other businesses and individuals can browse through these
directories looking for a service that meets their needs.

Many UDDI libraries are available, although some share information, so you can usually find the same
web service listed in multiple directories. Microsoft (uddi.microsoft.com) and IBM (uddi.ibm.com)
both provide detailed lists of web services that can be used by your Visual Basic Express programs, but
smaller, specialized web directories can sometimes provide an easier navigation system to find what you
need. For example, Microsoft’s UDDI library first requires you to choose a categorization scheme, none
of them very clear, to browse the directory listings.

Conversely, a website such as BindingPoint (www.bindingpoint.com) takes you directly to a simple
category listing which is straightforward to navigate to find the web service that best suits your needs.

To add a web service to your Visual Basic Express program, you use the Project ➪ Add Web Reference
menu command, or right-click on the project in the Solution Explorer and choose Add Web Reference.
Both will present you with the Add Web Reference Wizard, as shown in Figure 9-5.

If you know the location of the web service, you can enter it directly in the URL text field; if you have
not located one yet, you can use the various browsing options provided. Once you have located the web
service you would like to add to your project, the display pane in the wizard will show you the list of
methods that are available in the web service. Click the Add Reference button to add the web service
definition to the project.

You can set the name of the web reference at this point, but you can also change it later through the
Properties window.

As mentioned, using a web service in your code is similar to using any other class. You must first define
an instance of the web service class you would like to use, and then you set the properties and invoke
the methods that you need. Usage of a simple web service might look like this:

Dim myWebServiceFunction As New WSName.WSClass
myWebServiceFunction.SomeMethod

180

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 180

Figure 9-5

In the following Try It Out, you’ll create a simple application that uses a web service to calculate the dif-
ference between two dates. While the method output is simple, it illustrates the way a web service can
be used to extend your application’s functionality.

Try It Out Consuming a Web Service
1. Rather than browse through the often confusing UDDI that Microsoft has provided, you’ll

search through a specialized web service directory to find the appropriate web service. Start
your web browser and navigate to www.bindingpoint.com. In the Categories listing, locate
the Calendar group and click the link.

2. Lucky for you! The first web method (functions exposed by a web service are called web meth-
ods, or methods for short) in the Calendar category is called Date Difference and is described as a
method for calculating the difference between two dates — perfect for our purposes. Click on
the title to get the technical information about the web service and locate the Access Point URL.

The Access Point URL is where the web service itself resides. In this case, it’s www.vinsurance
.com/datedifference/datedifference.asmx.

3. Start Visual Basic Express and create a new Windows Application project. Name it
TestWebService.

4. Use the Project ➪ Add Web Reference menu command to bring up the Add Web Reference
Wizard. In the URL field, enter the Access Point URL you found in step 3 and click the Go button
to instruct the wizard to download the web service information.

After a moment, the main description pane will be populated with a list of methods available in
this web service. As you can see in Figure 9-6, there is one method, DateDifference. Change
the Web Reference name to WSDateDiff and click Add Reference to add it to your project.

181

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 181

5. Open the form in Design view and add a Button, a TextBox and two DateTimePicker con-
trols. Change the Text property of the Button to Calculate Difference and double-click it
to have Visual Basic Express automatically create the event handler routine for you.

6. In the Click event handler, you want to create an instance of the web service, pass the values of
the two DateTimePicker controls to the DateDifference method, and assign the return value
to the Text property of the TextBox so users can see the answer:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
Dim myDateDiff As New WSDateDiff.DateDifferenceService
TextBox1.Text = myDateDiff.DateDifference(DateTimePicker1.Value, _

DateTimePicker2.Value)
End Sub

Figure 9-6

As you can see from this simple example, creating the web service object is the same as any
other object. You define a variable as the web service type and then instantiate it as a new object.
Using the IntelliSense provided by Visual Basic Express, when you add the period of the name
of your web service object, you’ll be presented with a list of available methods. The only one
you need worry about is the DateDifference method. Likewise, IntelliSense will tell you what
parameters the method is expecting — much easier than trying to create a URL with the cor-
rectly formatted information.

7. Amazingly, that’s all you need to do. Run the application, choose two different dates, and click
the Calculate Difference button. After a few moments, the text box will be populated with a
value representing the number of days between the two dates you chose. It takes a few seconds
because Visual Basic needs to access the Internet, find the web service, pass the information
over in a SOAP-formatted envelope containing an XML representation of the data, wait for the
response, and then process the results into a string ready for the text box to use.

182

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 182

Commercial Web Services
Web services are not restricted to simple calculations. Companies use web services to provide functions to
their clients or employees so that their data can be processed. Many companies use web services in con-
junction with the data driving their web sites to dynamically update the content of the site’s pages. Other
corporations offer strictly regulated services to business partners to pass financial data back and forth.

With web services growing in popularity, many organizations are starting to provide complex web ser-
vices so that developers can easily incorporate the information into their own applications. Government
organizations can provide complex functionality, such as registering and retrieving company registration
information, or simple functionality, such as returning the locations included in a specified postal code.

Large service-oriented companies are also providing their information as a service (or many services).
Websites such as Amazon, Google, and eBay all provide developers with access to their data through
web services, and often allow the application to interact with the processes found on their website. For
example, eBay’s developer kit allows not only the retrieval of auction descriptions, but also the capabil-
ity to add and modify listings to be published on their site. Amazon’s web service provides the capabil-
ity to add items to a user’s cart as well as return all kinds of search results.

To control the usage of their web services, companies like these require each developer to register in a
development program and pass unique identifying keys with each call to their web service methods.
However, once that registration process has been performed, often their web services can be used just
like any other publicly available web service. In the following Try It Out, you’ll register for Amazon’s
web service program so that you can use their web services in the Personal Organizer application you’ve
been creating throughout this book.

Try It Out Web Service Registration
1. Open your web browser and navigate to the main Amazon web page —www.amazon.com.

2. Scroll down the page. On the left-hand side, you should find a Make Money box with a link
labeled Web Services (see Figure 9-7). Clicking this link will take you to the main Web Services
area of the Amazon website. While you can download the various samples and the documenta-
tion to help you create applications with the Amazon web service, you won’t be able to use
them until you complete your registration and receive your Subscription ID.

3. Click on the Register for AWS link at the top-left corner of this main page and you will be
prompted to sign in to your Amazon account. You’ll need to register as an Amazon member if
you have not previously done so, but if you regularly use Amazon to purchase items online,
you can use your existing membership. Once you’ve successfully logged in, you’ll be presented
with a simple form to fill out that is used to identify you, along with the license agreement you
must accept to be able to use Amazon web services. Click the Continue button to confirm the
registration.

You should review the limitations you will be under if you accept the license agreement, although they
are very generous considering it’s a free service.

4. After a moment you will be presented with a confirmation screen, and you will receive an
e-mail message containing the Subscription ID you will need to use the web service.

In every Amazon web service function call that you write in your code, you will need to include
this Subscription ID value to identify yourself to Amazon. Apart from that, you’re done.

183

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 183

Figure 9-7

The Amazon web service is much more complicated than the Date Difference web service described ear-
lier in this chapter. It comes with many methods and custom-built complex class structures that provide
you with the information returned from a call to the web service itself.

It is beyond the scope of this book to detail the many functions you can perform using the Amazon web
service, but I encourage you to read through the documentation that is included as part of the program
to familiarize yourself with the various methods and objects you can use. For this chapter, you only need
to understand the ItemSearch method and how it can be used to find items within a particular search
index that meet a simple set of criteria.

For more in-depth information about this topic, check out Denise Gosnell’s good treatment of the subject
in Professional Web APIs: Google, eBay, Amazon.com, MapPoint, FedEx (Wrox 2005).

Amazon’s ItemSearch
Using ItemSearch, you can search through Amazon’s many different databases looking for items that
meet various criteria. This could be author names, musical group details, manufacturer information, or
a more generic set of keywords.

You’ll find detailed information about ItemSearch in the online documentation. At the main Web
Services page on Amazon’s site, find the link to the left that is labeled Documentation. From the
Documentation page, you’ll find links to currently supported versions of their web services. At this
point, the documentation can be read online or downloaded in Adobe Acrobat format (PDF).

184

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 184

The details about ItemSearch can be found in the Operations section of the API Reference. The docu-
mentation contains samples as well as detailed descriptions about each parameter required for the call.
Reviewing this list shows that the only required fields are the Operation and the SearchIndex param-
eters. The first one, Operation, simply identifies this particular method to the application program
interface (API), and, as you’ll see in a moment, is embedded in the call to the web service, so the only
field you need to populate in code to make the ItemSearch method call successful is the SearchIndex
to tell the web service which database to look in.

In Visual Basic Express, the way in which the web service is called differs from the way the documentation
describes it. Rather than the ItemSearch method simply accepting one request containing SearchIndex
and any other optional parameters to refine the query, it takes an ItemSearch object that can contain a col-
lection of these requests, conveniently called Request.

For each request you want to make of the web service, you create an ItemSearchRequest object, popu-
late it with the required parameters, and add it to the ItemSearch’s Request property. Once you have
set up the requests, you then need to invoke the AWSECommerceService’s ItemSearch method, passing
in the ItemSearch object and assigning the response from the web service to an ItemSearchResponse
object. Putting all of this together, the program might flow like this:

1. Create an AWSECommerceService object.

2. Create an ItemSearch object.

3. Create a collection of ItemSearchRequest objects and populate each one with parameters,
including the required SearchIndex.

4. Call the ItemSearch method of the AWSECommerceService object, passing the ItemSearch
object created in step 2.

5. Assign the return of the web service method call to an ItemSearchResponse object.

6. Process the contents of the ItemSearchResponse object to determine the results of the search
attempt.

The main component of the ItemSearchResponse object is a collection of items that met the search cri-
teria (assuming the search worked). You could process this collection as is, or build a dataset from the
results and populate databound controls with the dataset contents.

In the following Try It Out, you’ll create a method to retrieve suggested gift ideas for a person in your
Personal Organizer database based on their likes and the category you’ve chosen. This will demonstrate
how easy it is to use even the most complex web services in Visual Basic Express.

Try It Out Adding “Suggested Gift Ideas”
1. Open the Personal Organizer solution you have been working on. If you have not completed the

previous Try It Out in this chapter and would like to continue from where it ended, in the down-
loaded code for this book (available at www.wrox.com) you’ll find a project in the Chapter
09\Personal Organizer Gift Idea Start folder that contains everything up to this point.

2. You’re going to create a new form that will retrieve information based on the categories and
favorite things information that you added to the Person database table in Chapter 3. This form
will be accessible from the PersonDetails control and should send back information to the
control about selected items.

185

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 185

3. Add a new form to the project with the Project ➪ Add Windows Form menu command and call
it GetGiftIdeas.vb. To this form you’ll need to add a number of items that will control how
the Amazon web service will be called. The PersonDetails control will pass to the form the
value contained in the Favorites text field, along with the six category Boolean flags. Add a
TextBox and six RadioButton controls to the form. To make the user interface a bit cleaner,
you can use a GroupBox control to contain the RadioButtons. You may also want to add a
descriptive label next to the TextBox so users can determine what it contains.

Finally, add three Buttons for the various actions that will be available, and a CheckedListBox
in which the results can be displayed.

4. Set the properties of the controls you added in the previous step as follows:

❑ TextBox Name—txtFavorites

❑ TextBox ReadOnly—True

❑ TextBox Anchor—Top, Right, Left

❑ Button1 Name—btnSearch

❑ Button1 Text—Search

❑ Button1 Anchor—Bottom, Left

❑ Button2 Name—btnCancel

❑ Button2 Text—Cancel

❑ Button2 Anchor—Bottom, Right

❑ Button3 Name—btnSave

❑ Button3 Text—Save

❑ Button3 Anchor—Bottom, Right

❑ CheckedListBox Name—clbResults

❑ CheckedListBox Anchor—Top, Bottom, Left, Right

❑ RadioButton1 Name—radBooks

❑ RadioButton1 Text—Books

❑ RadioButton2 Name—radVideos

❑ RadioButton2 Text—Videos

❑ RadioButton3 Name—radMusic

❑ RadioButton3 Text—Music

❑ RadioButton4 Name—radToys

❑ RadioButton4 Text—Toys

❑ RadioButton5 Name—radVideoGames

❑ RadioButton5 Text—Video Games

❑ RadioButton6 Name—radApparel

❑ RadioButton6 Text—Apparel

186

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 186

When you’re done, the form’s layout should look similar to what is shown in Figure 9-8. Note that
the RadioButtons have been grouped in a GroupBox control with a title of Type of search.

Figure 9-8

5. When the PersonDetails control shows this new form, it will need to pass the information
about the selected Person to it. To do that, you’ll need to create several properties that will be
accessible from outside the form, and when the form loads, populate and set the various form
components from this data.

Go to the code view of the GetGiftIdeas.vb form and add properties for a String variable to
store the Favorites, another String to keep track of who the gifts are for, and six Boolean flags
to indicate the preferred categories of the person being processed. Note that creating a property
for a form is done the same way as creating properties for other classes and user controls, as
described in Chapter 6.

6. Define the module-level variables that will store the data:

Private msDisplayName As String
Private msFavorites As String
Private mbCategoryBooks As Boolean
Private mbCategoryVideos As Boolean
Private mbCategoryMusic As Boolean
Private mbCategoryToys As Boolean
Private mbCategoryVideoGames As Boolean
Private mbCategoryApparel As Boolean

7. Create a write-only property for each one. Write-only properties do not need to be passed back
to the part of the program that is using the object, and they are useful for initializing informa-
tion in the object, such as what you’re going to do. Each property definition will look like this:

Public WriteOnly Property DisplayName() As String
Set(ByVal value As String)

msDisplayName = value
End Set

End Property

187

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 187

8. To customize the form with the information passed over, add code to the form’s Load event. The
title bar of the form should be set to include the name to be displayed, while the TextBox will
have the msFavorites variable assigned to its Text property:

Private Sub GetGiftIdeas_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Me.Text = “Get gift ideas for “ & msDisplayName

txtFavorites.Text = msFavorites
End Sub

To highlight the preferred categories for the selected person’s details, you’ll change the text
color of the RadioButtons that correspond with their categories to red, and you will set the
first preferred category RadioButton’s Checked property so that it is selected by default. To do
this, add a conditional logic block that checks the module-level Boolean, as shown here:

If mbCategoryBooks = True Then
radBooks.ForeColor = Color.Red
radBooks.Checked = True

End If

Repeat this block of code for each category, making sure you put them in reverse order. This
will enable the Checked property of the RadioButtons to be set properly. Because only one
RadioButton in a group can be selected at any one time, setting the Checked property of any
one button to True resets all of the others to False. The final subroutine should look like this:

Private Sub GetGiftIdeas_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Me.Text = “Get gift ideas for “ & msDisplayName

txtFavorites.Text = msFavorites

If mbCategoryApparel = True Then
radApparel.ForeColor = Color.Red
radApparel.Checked = True

End If
If mbCategoryVideoGames = True Then

radVideoGames.ForeColor = Color.Red
radVideoGames.Checked = True

End If
If mbCategoryToys = True Then

radToys.ForeColor = Color.Red
radToys.Checked = True

End If
If mbCategoryMusic = True Then

radMusic.ForeColor = Color.Red
radMusic.Checked = True

End If
If mbCategoryVideos = True Then

radVideos.ForeColor = Color.Red
radVideos.Checked = True

End If
If mbCategoryBooks = True Then

radBooks.ForeColor = Color.Red
radBooks.Checked = True

End If
End Sub

Chapter 9

188

14_595733 ch09.qxd 12/1/05 1:42 PM Page 188

9. To confirm that this works as expected, you will add a button to the PersonDetails control
that will create an instance of this new form, populate the properties with information, and then
show the form. Open the PersonDetails control in Design view and add a Button control
next to the Category checkboxes. Set its name to btnGetGiftIdeas and its text to Get Gift
Ideas so it looks like what is shown in Figure 9-9.

Figure 9-9

10. Double-click the button to create an event handler routine for its Click event and open the code
view. You’ll need to create an instance of the form just as you would for any other object:

Private Sub btnGetGiftIdeas_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGetGiftIdeas.Click
Dim frmGetGiftIdeas As New GetGiftIdeas

End Sub

Then, using a With block to shortcut the setting of multiple properties (as outlined in Chapter 6),
set the public properties of the GetGiftIdeas form with the values of the PersonalDetails
control components:

Private Sub btnGetGiftIdeas_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGetGiftIdeas.Click
Dim frmGetGiftIdeas As New GetGiftIdeas
With frmGetGiftIdeas

.DisplayName = txtFirstName.Text + “ “ + txtLastName.Text

.Favorites = txtFavorites.Text

.CategoryBooks = chkBooks.Checked

.CategoryVideos = chkVideos.Checked

.CategoryMusic = chkMusic.Checked

.CategoryToys = chkToys.Checked

.CategoryVideoGames = chkVideoGames.Checked

.CategoryApparel = chkApparel.Checked
End With

End Sub

189

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 189

The final requirement is to display the form. Because the GetGiftIdeas form should be closed
properly without returning to the main part of the program, use the ShowDialog method to
force it to always be on top. The final subroutine should appear as follows:

Private Sub btnGetGiftIdeas_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGetGiftIdeas.Click
Dim frmGetGiftIdeas As New GetGiftIdeas
With frmGetGiftIdeas

.DisplayName = txtFirstName.Text + “ “ + txtLastName.Text

.Favorites = txtFavorites.Text

.CategoryBooks = chkBooks.Checked

.CategoryVideos = chkVideos.Checked

.CategoryMusic = chkMusic.Checked

.CategoryToys = chkToys.Checked

.CategoryVideoGames = chkVideoGames.Checked

.CategoryApparel = chkApparel.Checked
End With
frmGetGiftIdeas.ShowDialog()

End Sub

11. Run the application, select a person from the list, and view his or her details. Once the
PersonDetails control is displayed and populated with the person’s information, click the
Get Gift Ideas button to load the form with the details. Figure 9-10 shows an example of what
this might look like.

Figure 9-10

190

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 190

12. Now it’s time to add the reference to the Amazon web service and use it when the Search button
is clicked. When the user invokes the search, the Amazon web service should be called with the
person’s favorite things as keywords and the SearchIndex set to the type of search selected.
Then the results should be displayed in the CheckedListBox.

Add the web service reference by using the Project ➪ Add Web Reference menu command. In
the URL text field, enter the full location of the Amazon web service —http://webservices
.amazon.com/AWSECommerceService/AWSECommerceService.wsdl— and click the Go but-
ton to let the wizard resolve the reference and display the available functions. Rename the Web
reference to AmazonWS and click the Add Reference button.

13. Double-click the Search button in the Design view of GetGiftIdeas.vb to generate the button’s
Click event handler routine. You first need to create an instance of the AWSECommerceService
class. This is the class that provides access to the various web service methods you can call. In
addition, you need an instance of the ItemSearch class to build the actual web service request:

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim awsAWSE As New AmazonWS.AWSECommerceService
Dim awsItemSearch As New AmazonWS.ItemSearch

End Sub

As discussed earlier in the chapter, you always need to include your own assigned Subscription
ID to every function call, so do that next (replace the fictitious value used here with your own
SubsriptionID):

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim awsAWSE As New AmazonWS.AWSECommerceService
Dim awsItemSearch As New AmazonWS.ItemSearch

With awsItemSearch
.SubscriptionId = “PutYourValueHere”

End With
End Sub

14. The next thing that needs to be initialized before calling the web service is an ItemSearchRequest
collection that is assigned to the Request property of awsItemSearch. As you will perform only
one search at a time, you can do this by creating an array of one object:

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim awsAWSE As New AmazonWS.AWSECommerceService
Dim awsItemSearch As New AmazonWS.ItemSearch

With awsItemSearch
.SubscriptionId = “PutYourValueHere”
Dim awsItemSearchRequest(0) As AmazonWS.ItemSearchRequest
awsItemSearchRequest(0) = New AmazonWS.ItemSearchRequest

End With
End Sub

191

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 191

The ItemSearchRequest collection needs to be filled out with the information needed to per-
form the search successfully. The Keywords property should be set to the SelectedText prop-
erty of txtFavorites. You use the SelectedText property so that the user can select only part
of the person’s favorite list for the search. The only other thing to do is set the SearchIndex
property (remember that this parameter is required so that the ItemSearch knows which
database to search). There are numerous database options in Amazon (33 to date), but you only
need to deal with six. Build an If-Then-ElseIf conditional block so that SearchIndex is set
with the appropriate value.

The ItemSearchRequest collection is then assigned to the ItemSearch Request object:

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim awsAWSE As New AmazonWS.AWSECommerceService
Dim awsItemSearch As New AmazonWS.ItemSearch

With awsItemSearch
.SubscriptionId = “PutYourValueHere”
Dim awsItemSearchRequest(0) As AmazonWS.ItemSearchRequest
awsItemSearchRequest(0) = New AmazonWS.ItemSearchRequest
awsItemSearchRequest(0).Keywords = txtFavorites.SelectedText

If radBooks.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Books”

ElseIf radVideos.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Video”

ElseIf radMusic.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Music”

ElseIf radToys.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Toys”

ElseIf radVideoGames.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “VideoGames”

Else
awsItemSearchRequest(0).SearchIndex = “Apparel”

End If

.Request = awsItemSearchRequest
End With

End Sub

15. You are now ready to call the web service. The return value from the ItemSearch method call is
an ItemSearchResponse object, so you’ll need to define one to store the response. This can be
done on the same line as the actual call. Insert the following line immediately below the End
With statement:

Dim awsItemSearchResponse As AmazonWS.ItemSearchResponse = _
awsAWSE.ItemSearch(awsItemSearch)

16. To process the response object, you first need to determine whether any results were returned.
There could be many reasons for the failure to find any results, so you should inform the user
by displaying the error message that Amazon returned:

192

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 192

With awsItemSearchResponse
If .Items(0).TotalResults = 0 Then

MessageBox.Show(.Items(0).Request.Errors(0).Message)
End If

End With

17. In the event that Amazon did actually return a set of results, you want to populate the
CheckedListBox with the names of the items found. By default, the ItemSearch will return the
first ten search results, which is enough for this application. First, clear the CheckedListBox con-
tents and then add each item by writing a loop that will run as many times as there are items,
adding each Title attribute to the CheckedListBox. Use the Add method, which enables you to
set the value of the checkbox to True so that by default all results are marked. The final subroutine
will look like this:

Private Sub btnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

Dim awsAWSE As New AmazonWS.AWSECommerceService
Dim awsItemSearch As New AmazonWS.ItemSearch

With awsItemSearch
.SubscriptionId = “PutYourValueHere”
Dim awsItemSearchRequest(0) As AmazonWS.ItemSearchRequest
awsItemSearchRequest(0) = New AmazonWS.ItemSearchRequest
awsItemSearchRequest(0).Keywords = txtFavorites.SelectedText

If radBooks.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Books”

ElseIf radVideos.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Video”

ElseIf radMusic.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Music”

ElseIf radToys.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “Toys”

ElseIf radVideoGames.Checked = True Then
awsItemSearchRequest(0).SearchIndex = “VideoGames”

Else
awsItemSearchRequest(0).SearchIndex = “Apparel”

End If

.Request = awsItemSearchRequest
End With
Dim awsItemSearchResponse As AmazonWS.ItemSearchResponse = _

awsAWSE.ItemSearch(awsItemSearch)

With awsItemSearchResponse
If .Items(0).TotalResults = 0 Then

MessageBox.Show(.Items(0).Request.Errors(0).Message)
Else

clbResults.Items.Clear()
For iCounter As Integer = 0 To .Items(0).Item.Length - 1

clbResults.Items.Add(.Items(0).Item(iCounter).ItemAttributes.Title, _
True)

Next

193

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 193

End If
End With

End Sub

18. At this point, you can run the application, select a person, click the Get Gift Ideas button, and
then choose which type of search to run. Clicking the Search button will invoke the Amazon
web service, which, if successful, will then populate the CheckedListBox with the results, as
illustrated in Figure 9-11.

Figure 9-11

19. The Cancel button should close the form without doing anything, so go ahead and add a Click
event handler to tell the GetGiftIdeas form to close, which will return control to the main
application. Because the main application needs to know whether the form was canceled or the
list was saved, create a module-level variable called mbCancelled and a public read-only prop-
erty that returns the value at the top of the form’s code:

Private mbCancelled As Boolean
Public ReadOnly Property Cancelled() As Boolean

Get
Return mbCancelled

End Get
End Property

The Cancel button’s Click event handler can be written like this:

Private Sub btnCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancel.Click
mbCancelled = True
Me.Hide()

End Sub

194

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 194

20. The Save button’s Click event will also set the mbCancelled variable, this time to False, and
call the Hide method to return control to the main part of the application. First, however, it needs
to build a list of the items in the CheckedListBox control that have been marked for saving into
a string that can be passed back to the calling part of the program. Create a module-level variable
called msGiftSuggestions and again create a read-only property that will let other parts of the
code retrieve the value:

Private msGiftSuggestions As String
Public ReadOnly Property GiftSuggestions() As String

Get
Return msGiftSuggestions

End Get
End Property

Create a looping piece of code that concatenates the marked titles into a readable string and
then assign the result to msGiftSuggestions. The CheckedListBox has a collection called
CheckedItems that contains only those items in the list that have their checkbox marked, so
you can easily iterate through the list. The Save button’s Click event handler should look
like this:

Private Sub btnSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSave.Click
Dim sGiftIdeasList As String = “Suggested gift ideas: “

For iCounter As Integer = 0 To clbResults.CheckedItems.Count - 1
If iCounter > 0 Then sGiftIdeasList += “, “
sGiftIdeasList += clbResults.CheckedItems(iCounter).ToString

Next

msGiftSuggestions = sGiftIdeasList
mbCancelled = False
Me.Hide()

End Sub

21. The last step is to return to the PersonalDetails control and handle when the GetGiftIdeas
form is closed. After the ShowDialog method, you should first check the Cancelled property;
and if the form was not cancelled, then add the value in the GiftSuggestions property to the
Notes field of the person:

If frmGetGiftIdeas.Cancelled = False Then
txtNotes.Text += frmGetGiftIdeas.GiftSuggestions

End If

You’re done. Run the application and go through the process of searching for items that match
one of the Person records’ favorites. Mark several of the results and click the Save button to add
the results to the Notes area. The final result will look similar to what is shown in Figure 9-12.

195

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 195

Figure 9-12

Visual Web Developer 2005 Express
As mentioned earlier in this chapter, while Visual Basic Express cannot create web applications,
Microsoft has another product in the Express range that can — Visual Web Developer 2005 Express.
The beauty of Visual Web Developer Express is that you can use your knowledge of Visual Basic code
to write the code underneath any web application you may choose to create.

To show you how similar the process is, the following Try It Out will walk you through the process of
creating a simple web service. In fact, it will create a web service that does the same thing as the first
example you created in this chapter — calculate the difference between two dates as a number of days.

Try It Out Using Web Developer Express
1. Start Visual Web Developer 2005 Express Edition (if you haven’t installed it, the instructions on

how to do so can be found in the Exercises section at the end of Chapter 1).

2. Select the File ➪ New File menu command, and when the New File dialog is displayed, expand
the Web list so you can see Visual Basic. From the Visual Basic templates, choose Web Service
and click Open.

3. By default, Web Developer Express creates all the necessary code you will need except for the
actual web service method definition. However, it even provides a sample of how to create this
with the standard Hello World function.

196

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 196

The WebMethod() attribute preceding the function definition tells the underlying Visual Basic
compiler that the associated function is a web service method that should be published for con-
sumption. To add additional methods to your web service, you would create additional func-
tions with this WebMethod() attribute.

The DateDifference method should take two dates as parameters and then calculate the dif-
ference using the built-in DateDiff function. The function then returns the result to the calling
application or website:

<WebMethod()> _
Public Function DateDifference(ByVal dtFirstDate As Date, _

ByVal dtSecondDate As Date) As String

Dim lResult As Long = DateDiff(DateInterval.Day, dtFirstDate, dtSecondDate)
Return CType(lResult, String)

End Function

4. Click the View in Browser button on the toolbar, and after a moment, your default web browser
will start up and navigate to the web service you just created. Select DateDifference from the
list, enter two dates, and click the Invoke button.

The result will be shown in formatted XML, as shown in Figure 9-13. As you can see, creating
web applications, even web services, can be achieved using Web Developer Express and Visual
Basic code.

Figure 9-13

197

Getting into the World

14_595733 ch09.qxd 12/1/05 1:42 PM Page 197

Summary
Even though Visual Basic Express does not offer the capability to write applications for the web, you can
still harness the power of the Internet in your applications. Whether it is through embedding a web
browser right into your application or by consuming web services available all over the Internet, the
programs you create can be accessed online.

In this chapter, you learned to do the following:

❑ Implement the WebBrowser control in your own applications

❑ Consume web services to retrieve information from the web

❑ Use Web Developer Express to create a web service with Visual Basic Express code

Exercise
1. In the Try It Out that added the Amazon web service to your Personal Organizer application,

the PersonalDetails control can save the search results only when the GetGiftIdea form is
closed. Change the program so that the GetGiftIdea form raises an event when the Save but-
ton is clicked, which the PersonalDetails control should handle and add the message to the
Notes field. The Save button should also not close the GetGiftIdea form, so the user can per-
form multiple searches.

198

Chapter 9

14_595733 ch09.qxd 12/1/05 1:42 PM Page 198

10
When Things Go Wrong

While Visual Basic Express automates a great deal of the process of creating a program, there’s
always the chance that something can go wrong. With the user interface elements being placed on
forms with simple drag-and-drop actions, and code being syntactically checked while you type it,
you might think you’re safe from problems that often plague other developers’ programs.

Unfortunately, that assumption is incorrect. Typographical errors, ignoring warnings by the Visual
Basic Express environment, and unexpected external influences can all cause problems. The errors
that are caught by the compiler are obvious to find, and hopefully to fix. However, the implicit
issues that do not cause compilation errors are the ones you need to watch for.

The creators of Visual Basic Express understood that these kinds of problems often crop up and
have built a number of features into the environment to help you solve them. From writing code
defensively so that you catch and handle errors when they occur to breaking into the program
while it’s running and being able to examine the various components and their data, Visual Basic
Express even makes fixing your broken application as efficient as possible.

In this chapter, you learn about the following:

❑ The importance of handling errors

❑ Debugging the code as it runs to find problem areas

❑ The Edit and Continue feature of Visual Basic Express

Protecting Your Code
First and foremost, the best offense against bugs in your code is a good defense. Therefore, rather
than write your program without protection, you should use the code structures that Visual Basic
Express offers you to detect when an error occurs and deal with it appropriately.

15_595733 ch10.qxd 12/1/05 1:43 PM Page 199

Try, Try, and Try Again
If you’re concerned about your code potentially breaking while a user is running it — and you probably
should be if it does anything more than add two numbers together — Visual Basic Express gives you a
program logic block to intercept errors as they occur and to deal with whatever the problem may be.
This structure also enables your program to continue to function even when an error does occur. Here
are some examples of things that could go wrong:

❑ Your program tries to divide a number by zero

❑ Part of your application tries to create a file that already exists

❑ A database function cannot find the database to connect to

❑ A call to another program crashes

❑ An object you created has not been initialized before being used

There are hundreds of potential situations like these in which your program could end unexpectedly, but
the Try block enables you to write code to handle them all. Try blocks tell the Visual Basic compiler that
the code found within the Try and End Try statements is potentially unsafe, and that if an error occurs,
rather than leave it up to Visual Basic, you intend to handle it yourself.

To intercept the error, you need to specify what errors you want to know about and tell the compiler
what code to execute if an error did indeed occur. This is done with a Catch clause within the Try block,
with the code on the Catch line identifying the error type it handles along with an object to store infor-
mation about the error. The syntax of the Try block thus looks like this:

Try
Code for normal execution goes here

Catch errObject As Exception
Code in the event of an error goes here

End Try

An exception is the most general type of error. It serves as a catchall container that intercepts all errors.
However, if you want to execute different code based on different error types, you just code multiple
Catch statements, with each one having a different Exception object:

Try
Code for normal execution goes here

Catch errDBZObject As DivideByZeroException
Code in the event of a divide by zero error goes here

Catch errNRObject As NullReferenceException
Code in the event of a null reference error goes here

End Try

Other .NET languages have the Try block in one form or another, but Visual Basic Express goes an extra
step further by enabling the Catch sections to be executed conditionally. By using a When clause, you
can break down the error handling even further, shunting off any errors that have occurred to different
processing:

Try
Code for normal execution goes here

200

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 200

Catch errDBZObject As DivideByZeroException When MyNumber = 0
Code in the event of a divide by zero error goes here if MyNumber = 0

Catch errNRObject As DivideByZeroException
Code in the event of a divide by zero error goes here if MyNumber is not 0

End Try

The last piece of the Try block’s structure is a clause that enables you to tell the Visual Basic compiler to
execute a section of code whether an error has occurred or not —Finally. Anything in the Finally
clause will be executed either after all of the normal code has been executed or, in the event of an error,
after the normal code up to the point of the error and then the code within the appropriate Catch block
has been executed. One handy use of the Finally clause might be to close a file you’ve been processing.
This would enable you to ensure that the file is closed even if an error occurred. The placement of the
Finally clause is after all the Catch clauses:

Try
Code for normal execution goes here

Catch errObject As Exception
Code in the event of an error goes here

Finally
Code to be executed every time

End Try

To show how this code works, the following simple Try It Out project walks through creating an applica-
tion with a piece of code that will produce an exception.

Try It Out Using Try and Catch
1. Start Visual Basic Express and create a new Windows Application project. Place a button on the

form and double-click it to create the Click event handler routine.

2. Add the following code to the routine:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim MyFirstNumber As Integer = 1
Dim MySecondNumber As Integer = 0

Try
MyFirstNumber = CType(MyFirstNumber / MySecondNumber, Integer)
MessageBox.Show(“We got past the divide by zero”)

Catch ex As Exception
MessageBox.Show(“An error has occurred”)

Finally
MessageBox.Show(“This message will always be displayed”)

End Try
End Sub

When you run the application and click the button, the integer variables will be defined and
initialized with their values of 1 and 0. Then, within the Try block, a divide by zero calculation
will be attempted. Because this is not allowed, the code will then jump to the Catch block and
the error message will be displayed, followed by the message in the Finally block.

201

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 201

Knowing information about the error can be extremely helpful, which is why the Catch clause always
specifies an Exception object. This object contains useful data relating to the error, including a stack
trace, which indicates what code was executed immediately prior to the error occurring; and if the error
was actually caused by another exception elsewhere in the code, an InnerException object is provided
that contains that information.

The two members of the Exception object that you are most likely to use, however, are the Message
property and the ToString method. The Message property returns a human-readable description of the
error. It’s useful because it can tell the user what happened.

The ToString method is used to generate a full description of the error that has occurred. Just as in
many other objects, the ToString method concatenates important information — including the Message
property — and is quite handy for determining where the error has occurred. To illustrate the differences,
consider Figure 10-1, which shows the error that occurs when you run the code in the previous Try It
Out activity. The top line is the Message property, while the rest of the text is the result of the ToString
method.

Figure 10-1

While the Message property does actually inform the user of what went wrong, the ToString method’s
return value provides much more information, including the type of Exception that occurred and
exactly where the error happened. This enables you to go straight to the point at which the error
occurred — the last piece of information indicates that the error occurred on line 8, which is the actual
divide-by-zero line.

If an error occurs outside a Try-Catch block, Visual Basic Express still tries to help out. When it encoun-
ters an unhandled exception, it will pause the execution of the program on the line with the problem and
pop up a detailed smart dialog window about the error, as illustrated in Figure 10-2.

Each of the lines in the Troubleshooting Tips section is a hyperlink to a location in the documentation that
provides you with advice about what you can do to avoid this kind of error in the future, while the Actions
section gives you access to things that may fix the problem that occurred. For example, in Figure 10-2,
Visual Basic Express can temporarily create an appropriate Security Permission to allow the program to get
past the Security Exception that has occurred.

202

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 202

Figure 10-2

Let the Others Know!
When an error does occur, sometimes you can’t do too much about it in the location where it has hap-
pened. This is particularly true if you divide your program into many functions and classes and the
exception is raised in some low-level routine.

This routine may be able to intercept the error and inform the user, but you might need to perform dif-
ferent actions depending on when it has occurred. For example, if you have a file access routine that is
shared when you first start the application and at regular intervals in the background of your program’s
execution, you might want to display an error message at startup time, but allow the background pro-
cessing to continue, effectively ignoring the error.

You could write detailed logic processing in the Catch block of the low-level function, but you might
miss something that way, and it will usually require additional data to be stored so you know the cur-
rent state of the application.

Visual Basic Express provides you with the Err object, which has a method perfectly suited to the task —
Raise. The Raise method will cause the function or subroutine that is currently executing to return an
error to the section of code that called it. This calling code can then have its own Try-Catch block to

203

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 203

handle any errors. In the example of the file access routine, it could raise the error back to the startup rou-
tine, which in turn would display an error, or to the background processing, which could ignore it.

The syntax of the Raise method has a number of parameters, but the only one that is required is an
error number identifying the type of error. You have the option of just passing up the error number that
occurred or setting your own number.

If you want to create your own error, Microsoft encourages you to use a special number range for
custom exceptions. Add your desired error number to the special Visual Basic Express constant
vbObjectError. This ensures that it doesn’t get confused with any of the system-generated errors
that can occur.

An alternative to the Err.Raise method is to use the Throw statement. Throw specifies an exception
object to the calling code and can be trapped by a higher-level Try-Catch block.

In the following Try It Out exercise, you’ll create an application that has a low-level function with an
error that is then trapped by the calling routines and processed.

Try It Out Throwing Exceptions Around
1. Create a new Windows Application project and add two buttons to the form. Both buttons will

call the same function that contains the error.

2. Create event handler routines for each button’s Click event and add the following code:

Try
CauseError()

Catch ex As Exception
MessageBox.Show(ex.ToString)

End Try

3. Below the Click event handlers, create a new subroutine called CauseError that will generate
an error and pass it back to the calling routine:

Private Sub CauseError()
Dim MyFirstNumber As Integer = 1
Dim MySecondNumber As Integer = 0

Try
MyFirstNumber = CType(MyFirstNumber / MySecondNumber, Integer)

Catch ex As Exception
Err.Raise(vbObjectError + 312)

End Try
End Sub

The code first tries to divide a number by zero. When the exception occurs, the execution will
fall into the Catch block, where the Err.Raise method is invoked to return to the calling code
with a user-specified error.

4. Run the application and click either button. The error that is generated will look like the one
shown in Figure 10-3. The ToString method has returned a decent amount of information,
including where the error occurred in the CauseError subroutine, as well as what routine
ultimately handled the error.

204

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 204

Figure 10-3

5. Stop the program and change the Err.Raise line to use the Throw statement instead. When
using Throw, you must specify an Exception object that exists. In this case, you can either use
the Exception object that was created when the divide by zero error occurred or you can create
a new one. In the first Try It Out, you may have noticed that the Exception was a general arith-
metic error, so be more specific by generating a DivideByZeroException instead:

Private Sub CauseError()
Dim MyFirstNumber As Integer = 1
Dim MySecondNumber As Integer = 0

Try
MyFirstNumber = MyFirstNumber / MySecondNumber

Catch ex As Exception
Throw New DivideByZeroException

End Try
End Sub

6. Rerun the application and click one of the buttons. This time you’ll get information about the
divide-by-zero operation, but again you’ll see a similar description about where the error
occurred and what routine is handling it.

Troubleshooting Your Code
Sometimes your code isn’t crashing but nor is it producing the results you want. A calculation may be
incorrect, you might not be receiving events from an object you created, or one of many other potential
problems may be occurring that enable the program to continue executing normally, although you know
something is wrong.

Telling the Program to Stop
You can mark locations in the code where you want to stop the program and take a look at what’s going
on. These marks are known as breakpoints. Adding a breakpoint is straightforward — position the cursor
on the line you want to halt at and press the F9 key. Pressing the F9 key again will remove the break-
point. Alternatively, you can right-click the line and choose Insert Breakpoint from the Breakpoint sub-
menu. Clicking in the area at the left-hand side of the code window will also toggle the breakpoint.

205

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 205

As the program runs and Visual Basic Express encounters a line of code with a breakpoint mark on it,
the execution of the code is paused, and you will be presented with the code listing and the cursor posi-
tioned at the breakpoint line. At this point, you can check the content of variables and objects, and even
modify them if need be. You can even change the code itself, which you’ll see later in this chapter.

Once you’ve paused the program with a breakpoint, you can tell Visual Basic Express to continue by
pressing the run key — F5 — or choosing Debug ➪ Continue. The application will resume running from
where it left off, with any changes you’ve made to the contents of variables or the code folded into the
existing data.

In some cases, you may want to track through the program line by line as it progresses. For example, if
you’re trying to find which line of code changes a variable to an unexpected value, you could check the
variable’s content after each line is executed until you find it. To process the code in this way, Visual
Basic Express provides two functions — Step Into (with a shortcut of F8) and Step Over (its shortcut is
Shift+F8). Both of these commands can be found in the Debug menu.

Step Into will follow the execution of the program as far as it can. If the code encounters a subroutine
call, Step Into will debug the subroutine as well. Step Over treats subroutine and function calls as a
single line.

Figure 10-4 shows two functions, with a breakpoint marked in the first one (at line 7).

Figure 10-4

When the program is executed and encounters this breakpoint, it will halt processing at line 7. The fol-
lowing table illustrates how the Step Into and Step Over functions would follow this code.

Step Into Step Over

Line 7 Line 7

Line 8 Line 8

Line 13 Line 9

Line 14

Line 8

Line 9

206

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 206

Step Over is handy when you know that the result of the function or subroutine is safe and you are con-
centrating on the current function. Note that it still executes the code within the called function; it just
doesn’t break into it like Step Into does.

Figure 10-4 shows the default highlighting of breakpoints and the current statement marker. The lightly
colored highlighted line indicates the current position of the code processing. In this screenshot, the
breakpoint at line 7 was encountered and then the Step Into key was pressed to advance one line.

If you don’t want to perform a section of code, you can jump over it by resetting the next statement. This
is achieved by right-clicking the line of code you want Visual Basic Express to execute next and selecting
the Set Next Statement command. For example, if you wanted to jump over line 8 in the example and
instead execute line 9, you would right-click line 9 and select Set Next Statement.

Keeping Track of Variables
If all you could do were watch the code execute line by line or reset the execution point, it wouldn’t be
terribly useful. Fortunately, the Visual Basic Express environment gives you extensive access to the vari-
ables and objects that are available to the current line of code.

When the code execution is paused, you can position the mouse cursor over any variable you are inter-
ested in. A smart pop-up window will show the value contained in the field (see Figure 10-5).

Figure 10-5

If the object is more complex, the pop-up window will include a plus sign (+) that can expand the prop-
erties of that object, enabling you to view each level of detail in turn. Figure 10-6 shows the Request
object of the Amazon web service call created in Chapter 9. The Request object is shown as having a
length of 1, which indicates that it has one member in its collection. This is then broken down and is
identified as an ItemSearchRequest object, which in turn is broken down into its composite fields.

Using the Watch Windows
Although the method described in the preceding section can be performed on most fields and objects,
occasionally an object cannot be viewed via this way, or you may want to be able to see multiple fields at
the same time. Visual Basic Express gives you the capability to monitor fields by watching them. Several
Watch windows are available to you while you’re debugging your application.

207

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 207

Figure 10-6

By default, the Watch windows are docked to the bottom of the IDE while you’re running the applica-
tion, sharing space with the Immediate window. You can view three main lists of variables: Locals,
Autos, and Watch 1:

❑ The Locals Watch window contains every variable that has been defined in the local scope.
Normally, this is the most useful list because it deals with the variables that are being processed
at the time of the breakpoint. However, if the code references variables outside the scope of the
local routine — for example, a module-level variable — you’ll need to use one of the other two
windows to keep tabs on them.

❑ The Autos Watch window adds temporary watches on every field that is in close proximity to
the line currently being executed. This means that the entries in the Autos window can include
variables defined outside the current routine, but that the list will change as you step to the next
line, and then change again when the code continues to the next, and so on.

❑ The final Watch window — Watch 1 (sometimes simply called Watch) — is where any manually
added watches are added. You can add watches for any variable or object to this list. The benefit
to using this list is that it contains watches only for the variables you’re interested in, and you
can define a list of local and global variables that doesn’t change as you debug from one line to
the next.

If a particular variable is not currently in scope, it will be marked as not being defined (as
shown in Figure 10-7). In this screenshot, the last two variables — a Request object and a
String variable — are not available from the current line of code.

To add variables to this watch list, locate the variable you want to monitor in the code, right-
click it, and select Add Watch. To delete a variable when it’s no longer needed, right-click its
entry in the Watch window and select Delete Watch.

If the Watch window you’re after is not visible in the IDE, you can activate it through the Debug ➪

Windows submenu.

208

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 208

Figure 10-7

One great advantage of the Watch windows is that not only can you view the values of the variables
and objects, but you can also change them. When you assign a different value to a variable and allow
the program to continue to execute, it will use the new value instead of the old one, thereby enabling
you to change the way the program executes.

In the example shown in Figure 10-7 the SubscriptionId field has a value of SubscriptionIDHere,
which will cause the web service method call to fail. You could put a breakpoint directly before the
web service is called and replace that value with your valid SubscriptionID and then let the program
continue.

At times you may want the best of both worlds — the structured formatting of the Watch window and
the capability to change the contents of the variables, along with the temporary nature of hovering the
mouse cursor over the field. This is where the Quick Watch feature comes into play. Right-clicking a field
in which you are interested, you can select the Quick Watch command to display a dialog window (simi-
lar to the one shown in Figure 10-8).

This window enables you to navigate through the various properties of the object you’re looking at,
changing them if needed, without adding the watched variable permanently to your Watch windows.

Using the Immediate Window
Visual Basic Express also gives you the capability to keep tabs on your application without pausing it at
every line. The Debug object has a number of properties and methods that can be used to display infor-
mation about your program in the Immediate window.

The most useful method of the Debug object is WriteLine. This function writes the string you specify to
the Immediate window and has the default syntax of Debug.WriteLine(YourMessageHere). Because
the parameter can be any string, you can build a message much like you would for a dialog window or
error display, like so:

Debug.WriteLine(“Successfully processed file: “ + MyFileName)

209

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 209

Figure 10-8

When this line is executed, a line will be added to the Immediate window, containing the success mes-
sage along with the value of MyFileName. The Debug object has a number of other properties that can
control how the information is displayed in the Immediate window. Indent and Unindent will move
the information over to provide simple formatting. The WriteLineIf method will display the message
only if the specified condition is met, and the Write and WriteIf methods will display the information
without adding a new line.

The following Try It Out puts all of these actions together to produce some simple formatted output in
the Immediate window.

Try It Out Using the Debug Object
1. Create a new Windows Application project and add a button to the form.

2. Create a Click event handler routine for the button and add the following code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
For iCounter1 As Integer = 1 To 4

If iCounter1 = 2 Then
Debug.Indent()

ElseIf iCounter1 = 4 Then
Debug.Unindent()

End If
For iCounter2 As Integer = 1 To 3

Debug.WriteLine(“Loop Counter 1 = “ + iCounter1.ToString _
+ “, Counter 2 = “ + iCounter2.ToString)

Debug.WriteLineIf(iCounter2 = 2, “Special condition met”)
Next

Next
End Sub

210

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 210

This code will perform two sets of loops, one inside the other, and display a number of mes-
sages in the Immediate window, identifying the value of the loop counters.

3. Place a breakpoint on the End Sub line by right-clicking the line and selecting Insert Breakpoint
from the Breakpoint submenu, and run the program. You added the breakpoint so that you
could see the output in the Immediate window right after it has been executed.

Figure 10-9 shows the output of this code. Every time iCounter2 has a value of 2, the extra line is
printed to the Immediate window, while the loops when iCounter1 has a value of 2 and 3 are indented
to the right.

Figure 10-9

Gone Too Far and Don’t Want to Stop?
If often happens that you are running your application and all of a sudden the code breaks into debug
mode because of an unforeseen error. If this happens right near the beginning of the run, you can just
end the program, fix the error, and restart. That’s what you have to do in most programming languages.
Visual Basic Express gives you an alternative: Edit and Continue.

Edit and Continue enables you to break into the code while the application is still running, change a
piece of the logic, and then continue the program’s execution. This powerful feature is particularly
handy if the program has run through a large number of operations and you don’t want to go through
the entire process again, particularly because you can easily see the problem when it has been presented
to you by Visual Basic Express.

Obviously, this capability is not intended for you to make wholesale changes in your code, but for those
situations when you discover a minor bug that will cause your application to function in an unexpected
way. For example, suppose your program is crashing but you don’t know why. You add a breakpoint to
the beginning of the function where the exception is being raised and start stepping through the code
line by line using Step Into.

211

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 211

After a few moments of tracking the code, you realize that a calculation is using an incorrect variable as
part of the equation. Rather than stop the program, change the code and then restart, you can change the
equation so that it uses the correct variable.

The following Try It Out takes a Visual Basic Express project that is experiencing a problem and walks
through the process of debugging it and correcting the problem while in break mode.

Try It Out Using Edit and Continue
1. Locate the project solution Problem Child.sln in the Chapter 10\Problem Child folder from

the code download you can find at www.wrox.com and open it in Visual Basic Express.

2. Run the application, enter the name of a child and a problem, and click the Process button. The
Results textbox should display a message according to the following table.

Condition Message

A girl with a phobia of some kind She’s scared of something

A boy with a phobia of some kind He’s scared of something

Either a boy or a girl with a Sounds like <name> might have a serious problem
different problem

However, a quick test will prove that the results are all mixed up. You’ll have to fix the program.

3. Stop running the application and add a breakpoint to the first line in the button’s Click event
handler, and restart the program. Click the button again to process the child’s problem, and
Visual Basic Express will break into the program.

4. Use Step Into to trace through the program until you enter the ProcessProblems function in
the Child class. The first problem is that the InStr function returns a value of 0 if the search
string is not found — the exact opposite to what’s intended. While you’re still in debug mode,
change the equals sign (=) to a greater than sign (>) and press F5 to resume normal processing.

Now the problem processing is working a lot better. It’s detecting phobias correctly, but you
may notice that it always refers to a child as a he regardless of which sex you chose.

5. Breaking into the button’s Click event, you might realize that the Sex property of the Child
object is never set. Immediately before the call to the ProcessProblems method, insert the fol-
lowing code:

If radBoy.Checked = True Then
myChild.ChildSex = Child.ChildSexes.Boy

Else
myChild.ChildSex = Child.ChildSexes.Girl

End If

6. Resume the program again and check whether girls with phobias now display correctly.

Edit and Continue is a powerful feature that enables you to change the code while it’s still running. The
change can be as minor as altering a variable name or operation in an equation or as complex as replac-
ing a whole block of logic or adding a new set of code, as illustrated in the preceding Try It Out.

212

Chapter 10

15_595733 ch10.qxd 12/1/05 1:43 PM Page 212

Summary
Even though you can still have problems when writing programs in Visual Basic Express, it gives you
many troubleshooting tools to facilitate tracking down the issues and fixing them. Being able to view the
content of any objects that are being processed is extremely valuable when determining what is going
wrong. The capability to change the code on the fly and have the program continue with the new logic
makes it even better.

In this chapter, you learned to do the following:

❑ Handle errors in your code so your application doesn’t crash

❑ Harness the variety of debugging features Visual Basic Express gives you to find out the status
of your program’s objects and variables

❑ Use Edit and Continue to make changes to your program without having to stop it

In the next chapter, you’ll begin to learn more advanced topics such as time-based logic and event pro-
cessing that is contingent on other information. You will start to bring together all of the information
you’ve learned throughout this book.

Exercise
1. Open the Personal Organizer project you worked on in Chapter 9 and debug through the call to

the Amazon web service. Try to determine how many items are returned from the call by looking
at the ItemSearchResponse object in the Quick Watch window before the CheckedListBox is
populated.

213

When Things Go Wrong

15_595733 ch10.qxd 12/1/05 1:43 PM Page 213

15_595733 ch10.qxd 12/1/05 1:43 PM Page 214

Part III

Making It Hum

16_595733 pp03.qxd 12/1/05 1:43 PM Page 215

16_595733 pp03.qxd 12/1/05 1:43 PM Page 216

11
It’s Printing Time!

Over the course of the first two parts of this book, you have been introduced to a wide variety of
features available in Visual Basic Express. The last few chapters serve to round out your knowl-
edge of how to get the most out of this great development tool. First you’ll learn how to print
information from your programs and harness various system components such as timers and help
and error providers — that’s the subject of this chapter. After that, you’ll learn about XML and how
useful it is in Visual Basic Express, and delve into security and deployment of your applications.

In this chapter, you learn about the following:

❑ Using the Timer class to perform actions periodically

❑ The different Print controls and how to print documents

❑ Various system components that will add the finishing touches to your application

Timing Is Everything — Well, Almost
Most of the code you’ve written up to this point is reactive, based on what users are doing. If they
click a button, the button’s Click event is raised and your event handler routine kicks into gear. If
they change the contents of a TextBox, the TextChanged event fires and again your code takes
over and processes the change.

That’s all good, but sometimes you’re going to want to perform a function based on a regular
schedule, independent of whether the user is doing something or not. That’s where the Timer
class comes in. You have two Timer objects available for use in Visual Basic Express, but both do
the same thing. The System.Timers.Timer class is a more general class that can be used in any
program and does not require a form in order for it to execute. Objects of this type can be created
in code as follows:

Private WithEvents MyTimer As System.Timers.Timer

The System.Windows.Forms.Timer component is specifically designed for use on Windows
Forms and will run properly only if defined within the context of a form. To add one of these

17_595733 ch11.qxd 12/1/05 1:44 PM Page 217

Timer controls to your form, locate the Components category in the Toolbox and drag a Timer object to
the form. As it doesn’t have any visible aspect, it will be added to the tray area below the form’s design
surface.

Alternatively, you can create one using code, in the same way as the generic Timer object:

Private WithEvents MyTimer As Timer

Regardless of which Timer object you use, you use two main properties to control the functionality of
the timing mechanism:

❑ The Interval property contains the number of milliseconds the timer is to wait before firing its
Tick event. This means if you want the timer to wait one second, you need to set the Interval
property’s value to 1,000, and an hour would be 1,000 × 60 × 60, or 3,600,000.

❑ The Enabled property determines whether the timer is currently running. If True, then the timer
is keeping track of the number of milliseconds since it was first started, or the last time the Tick
event was raised. If disabled, then the timer sits there doing nothing.

The only event worth looking at is the one already mentioned —Tick. When the specified interval has
elapsed, the timer object raises the Tick event so your program can do its scheduled processing. The
Tick event of the Windows Forms timer uses the same event signature as most other control events:

Private Sub MyTimer_Tick(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyTimer.Tick

To tell Visual Basic Express to begin timing the interval on a timer object, you can either set the Enabled
property to True or call the Start method. Similarly, to halt the timing process, set Enabled to False
or call the Stop method. If you ever need to change the Interval period, you should always stop the
timer first so that it doesn’t get confused about what kind of interval it is supposed to track:

MyTimer.Stop
MyTimer.Interval = 5000
MyTimer.Start

The Timer control will continue to raise the Tick event after every interval. This means that if you want
the timer to time only one period, you must explicitly stop the Timer. In addition, and this can be a prob-
lem if a lot of processing is involved whenever the timer raises the Tick event, if you’re in the event han-
dler of the timer and the interval elapses again, yet another Tick event will be fired. To avoid this, always
explicitly stop the timer when the Tick event is fired and then restart it when you’re finished processing.

Interestingly, the generic Timer class has an additional property to avoid this kind of problem —
AutoReset. Setting this property to False ensures that the timer fires only once and then stops process-
ing time intervals.

A Use for Timers
One handy use for the Timer is to keep track of the state of information and then act accordingly. For
example, it might be the case that whenever the date changes, you want your application to update a

218

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 218

label displaying today’s date. Alternatively, it could be used to periodically check whether a file exists,
and, if so, read the file to process the contents.

Visual Basic Express has another control that can be added to a form called the NotifyIcon. This ele-
ment enables you to add an icon to the notification area in the bottom-right corner of your Windows
desktop. From here you can provide your users with quick access to common commands for your appli-
cation, and display important information as it occurs.

The NotifyIcon control is found in the Common Controls section of the Toolbox, and the two main
properties you should set are the Icon (what appears in the notification area) and the Text (this is
displayed when users hovers their mouse cursor over the icon). In addition to this, you can assign a
ContextMenuStrip to the NotifyIcon. This context menu is displayed when the user right-clicks on
the icon.

One additional handy feature of the NotifyIcon control is to use it to inform the user of important
events in your application even if the application is not active. The BalloonTip properties and method
are used to assign the settings of a customized tool tip and then display it for a specified number of sec-
onds. The four associated elements are as follows:

❑ BalloonTipTitle — Contains the bold title text of the tool tip.

❑ BalloonTipText — Contains the main text of the tool tip when it appears.

❑ BalloonTipIcon — One of four icons to optionally display along with the message. These icons
use the system-defined images so that your application is integrated with the rest of the operat-
ing system.

❑ ShowBalloonTip — This method tells the NotifyIcon to display the tool tip using the settings
you’ve assigned. The default version contains one parameter, which specifies the number of
seconds to display the tool tip before hiding it again. An additional version enables you to set all
of these properties at once, which is handy for displaying temporary messages. The following
two sets of code would display the same BalloonTip:

MyNotifyIcon.BalloonTipIcon = ToolTipIcon.Error
MyNotifyIcon.BalloonTipText = “There is a problem in your database!”
MyNotifyIcon.BalloonTipTitle = “Database Problem”
MyNotifyIcon.ShowBalloonTip(4)

MyNotifyIcon.ShowBalloonTip(4, “Database Problem “, _
“There is a problem in your database!”, ToolTipIcon.Error)

The NotifyIcon class enables you to react to the user’s actions with several events. Whenever the
BalloonTip is displayed, your program can intercept the BalloonTipShown, BalloonTipClosed, and
BalloonTipClicked. This last event is useful to enable users to perform an action when they see the
notification tool tip.

To see how Timers and NotifyIcons can work together, the next Try It Out adds a reminder system to
your Personal Organizer application. Whenever someone’s birthday is less than seven days away, the
application pops up a message to remind the user about it. If a person’s birthday already occurred in the
last seven days, a different message warns users that they might have forgotten the day.

219

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 219

Try It Out Using the Timer Effectively
1. Start Visual Basic Express and open the Personal Organizer application project you’ve been

working on throughout the book. If you don’t have the project up to date, you will find a ver-
sion of the project in the Code\Chapter 11\Personal Organizer Start folder of the code
download from www.wrox.com. This project contains everything done up to the beginning of
Chapter 11.

2. Open the Main Form in Design view and add a Timer by clicking and dragging it from the
Components category in the Toolbox to the design surface of the form. Name it tmrReminders.
Add a NotifyIcon to the form in the same way — this time it will be found in the Common
Controls category — and name it niReminders.

For the NotifyIcon to be displayed in the notification area, you’ll need to set its Icon property.
The Code\Chapter 11 folder contains a sample icon you can use for this purpose. You should
also set the Text property to the name of the application or purpose — in this case, set it to
Personal Organizer Reminders.

3. Create an event handler routine for the form’s Load event and add the following code:

Private Sub frmMainForm_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

With tmrReminders
.Interval = 1000 * 60 * 60 * 6
.Enabled = True

End With
End Sub

This sets the interval to every six hours. For testing, you might like to reduce the interval to
something more frequent, such as 10 seconds. Remember that you can also start the timer with
the Start method.

4. Whenever the specified interval elapses, the timer raises its Tick event, so create an event han-
dler routine for that event. The first thing to do is stop the timer and the last thing should be to
restart it so that it keeps track of the interval again:

Private Sub tmrReminders_Tick(ByVal sndr As Object, ByVal e As System.EventArgs) _
Handles tmrReminders.Tick
With tmrReminders

.Enabled = False

.Enabled = True
End With

End Sub

5. To determine whether any people with birthdays fit into the date range, you’ll need to retrieve
the Person rows from the table that belongs to the currently logged on user. This is done using
the same database code that you’ve been working with since Chapter 7:

Private Sub tmrReminders_Tick(ByVal sndr As Object, ByVal e As System.EventArgs) _
Handles tmrReminders.Tick
With tmrReminders

.Enabled = False
Dim BirthdayPersonAdapter As New

_PO_DataDataSetTableAdapters.PersonTableAdapter
Dim BirthdayPersonTable As New _PO_DataDataSet.PersonDataTable

220

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 220

BirthdayPersonAdapter.Fill(BirthdayPersonTable)

Dim BirthdayDataView As DataView = BirthdayPersonTable.DefaultView
BirthdayDataView.RowFilter = “POUserID = “ + mCurrentUserID.ToString
With BirthdayPersonDataView

If .Count > 0 Then
... process birthdates here

End If
End With
.Enabled = True

End With
End Sub

6. You need to check each person’s birth date in turn, and, if you find even one, set a flag so you
can show the NotifyIcon object’s BalloonTip. Create and initialize a Boolean flag to keep
track of birthdays and a string variable to store all of the birthdays that occur in the next seven
days. Do the same for birthdays that have occurred in the last seven days:

Dim bFoundBirthdaysToRemember As Boolean = False
Dim sBirthdayReminders As String = vbNullString
Dim bFoundBirthdaysForgotten As Boolean = False
Dim sBirthdaysForgotten As String = vbNullString

7. Loop through the BirthdayDataView and get each person’s birthday:

For BirthdayCheckCounter As Integer = 0 To .Count - 1
With .Item(BirthdayCheckCounter)

Dim PersonBirthday As Date = CType(.Item(“DateOfBirth”), Date)
End With

End For

The problem with this date is that it contains the person’s birth year as well. As you are inter-
ested only in the day and month of the person’s birthday, you can compare these to the current
day and month by creating a temporary date variable to store the current birthday date:

Dim PersonBirthdate As Date = CType(PersonBirthday.Month & “/” & _
PersonBirthday.Day & “/” & Now.Year, Date)

8. You can now calculate the number of days between the birthday date and today’s date. Use the
DateDiff method that Visual Basic Express provides and specify the interval as Day:

Dim NumberOfDays As Long = DateDiff(DateInterval.Day, Now, PersonBirthdate) + 1

9. You can now check whether the interval is less than seven days. If the birthday has occurred
in the past, this calculation will contain a negative number, so check for a value range of –7
through to 0 for birthdays that have occurred in the last seven days, and a value range of greater
than –1 for birthdays yet to occur:

If NumberOfDays < 7 Then
If NumberOfDays > -7 And NumberOfDays < 0 Then

... keep track of forgotten birthday here
ElseIf NumberOfDays > -1 Then

... keep track of upcoming birthday here
End If

End If

221

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 221

10. The two sets of code for the different conditions are quite similar. First you need to set the
appropriate flag to keep track of birthdays that fit the criteria. Then you need to append the
birthday information to the String variable you defined for that purpose.

To keep each person’s birthday separate, include a newline character between each one. You
don’t need to do this for the first one, so check whether the string contains text already; if so,
add the line feed. To ensure that the message is grammatically correct, you can use the IIf
method to determine whether the period is a single day or multiple days. The only other thing
you should do is ensure that you multiply the number of days by –1 if the number is negative:

If NumberOfDays < 7 Then
If NumberOfDays > -7 And NumberOfDays < 0 Then

bFoundBirthdaysForgotten = True
If sBirthdaysForgotten <> vbNullString Then sBirthdayReminders &= vbCrLf
Dim DayString As String = IIf(NumberOfDays = -1, “ day”, “ days”).ToString
sBirthdaysForgotten &= .Item(“NameFirst”).ToString.Trim & “ “ & _

.Item(“NameLast”).ToString.Trim & “‘s birthday “ & _
(NumberOfDays * -1).ToString & DayString & “ ago!”

ElseIf NumberOfDays > -1 Then
bFoundBirthdaysToRemember = True
If sBirthdayReminders <> vbNullString Then sBirthdayReminders &= vbCrLf
Dim DayString As String = IIf(NumberOfDays = 1, “ day”, “ days”).ToString
sBirthdayReminders &= .Item(“NameFirst”).ToString.Trim & “ “ & _

.Item(“NameLast”).ToString.Trim & “‘s birthday in “ & _
NumberOfDays.ToString & DayString

End If
End If

11. Once you’ve calculated the message strings and have determined that you have birthdays to
remind the user about, you can then use the NotifyIcon to display the information. Set the
BalloonTip properties as discussed earlier in this chapter and then call the ShowBalloonTip
method. Note that the following code shows only one message at a time:

If bFoundBirthdaysToRemember Or bFoundBirthdaysForgotten Then
With niReminders

.Visible = True
If bFoundBirthdaysToRemember Then

.BalloonTipIcon = ToolTipIcon.Info

.BalloonTipText = sBirthdayReminders

.BalloonTipTitle = “Birthday Reminders”
Else

.BalloonTipIcon = ToolTipIcon.Warning

.BalloonTipText = sBirthdaysForgotten

.BalloonTipTitle = “Have you forgotten these dates?”
End If
.ShowBalloonTip(5)

End With
End If

12. Run the application and wait for the interval you specified in the Form’s Load event handler.
After that time, if you have any people with birth dates falling within the next seven days or the
last seven days, you’ll be notified, as shown in Figure 11-1. The final Tick event handler routine
looks like this:

222

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 222

Private Sub tmrReminders_Tick(ByVal sndr As Object, ByVal e As System.EventArgs) _
Handles tmrReminders.Tick
With tmrReminders

.Enabled = False
Dim BirthdayPersonAdapter As New

_PO_DataDataSetTableAdapters.PersonTableAdapter
Dim BirthdayPersonTable As New _PO_DataDataSet.PersonDataTable
BirthdayPersonAdapter.Fill(BirthdayPersonTable)

Dim BirthdayDataView As DataView = BirthdayPersonTable.DefaultView
BirthdayDataView.RowFilter = “POUserID = “ + mCurrentUserID.ToString
With BirthdayPersonDataView

If .Count > 0 Then
Dim bFoundBirthdaysToRemember As Boolean = False
Dim sBirthdayReminders As String = vbNullString
Dim bFoundBirthdaysForgotten As Boolean = False
Dim sBirthdaysForgotten As String = vbNullString
For BirthdayCheckCounter As Integer = 0 To .Count - 1

With .Item(BirthdayCheckCounter)
Dim PersonBirthday As Date = CType(.Item(“DateOfBirth”), Date)
Dim PersonBirthdate As Date = CType(PersonBirthday.Month & “/” & _

PersonBirthday.Day & “/” & Now.Year, Date)
Dim NumberOfDays As Long = DateDiff(DateInterval.Day, Now, _

PersonBirthdate) + 1
If NumberOfDays < 7 Then

If NumberOfDays > -7 And NumberOfDays < 0 Then
bFoundBirthdaysForgotten = True
If sBirthdaysForgotten <> vbNullString Then _

sBirthdayReminders &= vbCrLf
Dim DayString As String = IIf(NumberOfDays = -1, “ day”, _

“ days”).ToString
sBirthdaysForgotten &= .Item(“NameFirst”).ToString.Trim & “ “ & _

.Item(“NameLast”).ToString.Trim & “‘s birthday “ & _
(NumberOfDays * -1).ToString & DayString & “ ago!”

ElseIf NumberOfDays > -1 Then
bFoundBirthdaysToRemember = True

If sBirthdayReminders <> vbNullString Then _
sBirthdayReminders &= vbCrLf
Dim DayString As String = IIf(NumberOfDays = 1, “ day”, _

“ days”).ToString
sBirthdayReminders &= .Item(“NameFirst”).ToString.Trim & “ “ & _

.Item(“NameLast”).ToString.Trim & “‘s birthday in “ & _
NumberOfDays.ToString & DayString

End If
End If

End With
End For
If bFoundBirthdaysToRemember Or bFoundBirthdaysForgotten Then

With niReminders
.Visible = True
If bFoundBirthdaysToRemember Then

.BalloonTipIcon = ToolTipIcon.Info

.BalloonTipText = sBirthdayReminders

.BalloonTipTitle = “Birthday Reminders”
Else

223

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 223

.BalloonTipIcon = ToolTipIcon.Warning

.BalloonTipText = sBirthdaysForgotten

.BalloonTipTitle = “Have you forgotten these dates?”
End If
.ShowBalloonTip(5)

End With
End If

End If
End With
.Enabled = True

End With
End Sub

Figure 11-1

Printing
Visual Basic Express gives you five printing components that work together to provide a robust solution
for implementing reporting capabilities into your application. Three of the controls give you direct
access to the system dialogs for printing:

❑ PageSetupDialog — Enables your users to select various print page settings, such as paper size,
margins and orientation, and access to a select printer.

224

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 224

❑ PrintDialog — Rather than print directly to the printer, you can use this dialog to give users sev-
eral options before they print the document. Not only can they select the printer to do the print-
ing, you can also optionally include the Page Range box to select specific pages, the Print to file
option, and whether it is selected by default (see Figure 11-2).

Figure 11-2

❑ PrintPreviewDialog — This dialog component gives your program the capability to display a
preview page with a toolbar containing basic functionality to navigate through the previewed
document.

The PrintPreviewControl is a component that you can use to embed preview capabilities right into one
of your existing forms or controls. Rather than being presented as a separate window, as is the case with
the PrintPreviewDialog, the PrintPreviewControl is dockable within your form and does not have
any toolbars or other elements besides the actual previewed document. This means you need to implement
any code that you require to enable users to navigate around or zoom in and out of the document.

Finally, all of these components revolve around the PrintDocument object. This class encapsulates
the printing process, raising events when it is ready to print a page and taking commands about how
and what to print and where on each page. The Print and Print Preview sets of functionality both use
PrintDocument components to generate their output, and you can use the same PrintDocument object
for both, thus ensuring that the previewed output is identical to the printed output.

The PrintDocument class works by raising a PrintPage event whenever the printer is ready to print a
page. You can invoke the printing process by either having one of the Print...Dialog controls point to
the PrintDocument and then call the ShowDialog method or manually, by calling the PrintDocument’s
Print method.

225

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 225

Either way, the PrintPage event is where the main printing process takes place. The PrintPage event
comes with two parameters. The first is the standard sender object that contains the control that causes
the event to be raised in the first place. The second is a PrintPageEventArgs object, which is where
you do all the work.

The PrintPageEventArgs object has a Graphics object that is used to control the printing of text and
graphics. This Graphics object can also return the current printable area and enables you to measure the
space taken up by an element you want to print.

The other property of interest is the HasMorePages Boolean flag. After you process your printing code
in the PrintPage event, you should set the HasMorePages flag if there is more to print. If this is the last
page to print, set HasMorePages to False, and the PrintDocument object finalizes the printing process.
These two properties of the PrintPageEventArgs are used to formulate the logic you use in any print-
ing process:

1. Start the print process.

2. The PrintPage event is raised.

3. For each element you want to print, first measure it to determine whether it will fit in the avail-
able space left and, if so, then draw it.

4. If you find that an element does not fit into the printable region, set the HasMorePages flag to
True and remember where you are in the print process.

5. Once the PrintDocument object has finished processing the print requests you made in the
PrintPage event, it fires another PrintPage if the HasMorePages was set to True; otherwise,
it ends.

The following Try It Out walks you through the process of printing a report of the people registered in
the Personal Organizer database. Working through it is the best way to understand how the Print con-
trols work together to give you an effective printing system in your code. It uses the PrintDialog and
PrintPreviewDialog controls in conjunction with the PrintDocument control to create a report to the
printer the user chooses.

Try It Out Printing
1. Return to Visual Basic Express and the Personal Organizer application project. To print a

report, you’ll first need to create the text for the report, so create a new function in the
GeneralFunctions.vb module and call it GenerateReport. If you didn’t complete the pre-
ceding Try It Out activity, you can find a copy of the project in the Chapter 11\Personal
Organizer Printing Start folder of the downloaded code for this book. It’s complete up to
the start of this walkthrough.

Define the function so that it accepts a UserID to restrict the reporting to a particular POUser
and returns a string containing the report information. Use the same technique used in the other
database functions to get a list of PersonRows that belong to the specified user:

Public Function GenerateReport(ByVal UserID As Integer) As String
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)

226

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 226

Dim ReportString As String = vbNullString
For Each MyRow As _PO_DataDataSet.PersonRow In _

GetPersonTable.Select(“POUserID = “ & UserID.ToString)
With MyRow

... report generation goes here
End With

Next
Return ReportString

End Function

2. Create the contents of ReportString by concatenating the details about each user. Note that
the first line includes a special set of characters, $HDG, that are used in the printing process to
find the heading lines and format them differently on the page:

Public Function GenerateReport(ByVal UserID As Integer) As String
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)

Dim ReportString As String = vbNullString
For Each MyRow As _PO_DataDataSet.PersonRow In _

GetPersonTable.Select(“POUserID = “ & UserID.ToString)
With MyRow

ReportString &= “$HDG” & .NameFirst.Trim & “ “ & .NameLast.Trim & vbCrLf
ReportString &= “Home Phone: “ & .PhoneHome.Trim & vbCrLf
ReportString &= “Email: “ & .EmailAddress.Trim & vbCrLf
ReportString &= “Birthday: “ & .DateOfBirth.ToShortDateString & vbCrLf

End With
Next
Return ReportString

End Function

3. Open MainForm in Design view and add a PrintPreviewDialog (named prnprvDialog), a
PrintDialog (named prnDialog), and a PrintDocument (named POPrintDoc).

4. Define a module-level variable named ReportString to the code of MainForm and then add an
event handler for the Click event of the File ➪ Print menu item. Add the Click event of the
Print toolbar icon as well so both are intercepted by the same event.

5. In the routine, first initialize the ReportString to be empty in case it has been used previously
and then call the function to extract the information from the database. If the ReportString
that is returned has data, then assign the POPrintDoc to the Document property of the
PrintDialog object and show the dialog itself. Finally, if the user clicks the OK button on the
dialog window, start the printing process by using the POPrintDoc’s Print method:

Private Sub printToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles printToolStripMenuItem.Click, _
printToolStripButton.Click
ReportString = vbNullString
ReportString = GenerateReport(mCurrentUserID)

If ReportString <> vbNullString Then
With prnDialog

.Document = POPrintDoc

227

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 227

If .ShowDialog() = Windows.Forms.DialogResult.OK Then
POPrintDoc.Print()

End If
End With

End If
End Sub

6. Do a similar thing for the File ➪ Print Preview menu item, but this time use the
PrintPreviewDialog object you added instead:

Private Sub printPreviewToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles printPreviewToolStripMenuItem.Click
ReportString = vbNullString
ReportString = GenerateReport(mCurrentUserID)

If ReportString <> vbNullString Then
With prnprvDialog

.Document = POPrintDoc

.ShowDialog()
End With

End If
End Sub

7. The only thing left to do now is create an event handler routine for the PrintPage event. This
enables you to do the printing that is required. If you were certain that everything could fit on
one page, you could just draw each line of the report to the printer regardless of how big it is.
Unfortunately, you don’t have that luxury because the report of the people in the database
could be quite lengthy.

This means you’ll need to calculate the size of each line as you go; and if it won’t fit, stop the
printing at that point and set the HasMorePages property to True so that another PrintPage
event is raised. You need to keep track of what line you’re up to in the report, so define a
Static integer variable to store the CurrentLinePosition. Static is a special variable con-
text that keeps the variable’s value between function calls, so if you set it to 5 at the end of one
PrintPage event process, the next time PrintPage is called the value will still be 5:

Private Sub POPrintDoc_PrintPage(ByVal sender As Object, ByVal e As _
System.Drawing.Printing.PrintPageEventArgs) Handles POPrintDoc.PrintPage
Static CurrentLinePosition As Integer

End Sub

8. Retrieve the current page settings so you know what the printable area is. The PrintDocument
class has a property that stores this information —DefaultPageSettings. This object has the
total size of the paper itself, as well as the settings for each of the margins, so the printable area
is the total size minus the margins. You need this information stored in a special object structure
called a RectangleF to pass into the graphic methods used by the PrintDocument object:

Dim PrintAreaHeight As Integer
Dim PrintAreaWidth As Integer
Dim LeftMargin As Integer
Dim TopMargin As Integer
With POPrintDoc.DefaultPageSettings

PrintAreaHeight = .PaperSize.Height - .Margins.Top - .Margins.Bottom

228

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 228

PrintAreaWidth = .PaperSize.Width - .Margins.Left - .Margins.Right
LeftMargin = .Margins.Left
TopMargin = .Margins.Top

End With
Dim PrintingArea As New RectangleF(LeftMargin, TopMargin, PrintAreaWidth, _

PrintAreaHeight)

9. You also need to create a StringFormat object so that when you call the Measure and Draw
functions, they know what action to take for the string. In this case, set it to LineLimit, which
restricts the printing process to draw only whole lines. If a line can be only partially drawn, it is
excluded from the function:

Dim PrintingFormat As New StringFormat(StringFormatFlags.LineLimit)

10. Next, you need to split the contents of ReportString into an array of Strings representing
each line of the report. You also need some local variables to store the number of lines and char-
acters printed:

Dim NumberOfLinesFilled As Integer
Dim NumberOfLinesPrinted As Integer
Dim NumberOfCharactersToPrint As Integer
Dim ReportLines() As String = Split(ReportString, vbCrLf)

11. Loop through the array of strings. The idea now is that your code processes each element of the
array until it cannot fit one into the printable area that’s left. At that point, it needs to exit the
loop and determine whether more lines remain to be printed:

For ReportCounter As Integer = CurrentLinePosition To ReportLines.GetUpperBound(0)
... determine the number of lines to be printed for this entry in the array
If NumberOfLinesFilled > 0 Then

... the actual printing goes here
Else

Exit For
End If

Next

CurrentLinePosition += NumberOfLinesPrinted
If CurrentLinePosition < ReportLines.GetUpperBound(0) Then

e.HasMorePages = True
Else

e.HasMorePages = False
CurrentLinePosition = 0

End If

Notice that you need to reset the CurrentLinePosition to zero if you’ve reached the end of
the printing process for this document.

12. You have two types of report lines in this report: normal detail lines and heading lines. They dif-
fer in their font settings, so you need to find the different types and create different font objects
for each. The heading lines are prefixed with a special code, $HDG, which you created in the
GenerateReport function. Look at each report line for that string, and if the prefix is found,
strip it off using Substring and create a heading style font of Tahoma, 18-point Bold. If the
report line is a detail line, create a detail style font of Times New Roman, 12-point Normal:

229

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 229

Dim PrintFont As Font

If ReportLines(ReportCounter).Length > 4 AndAlso _
ReportLines(ReportCounter).Substring(0, 4) = “$HDG” Then
ReportLines(ReportCounter) = ReportLines(ReportCounter).Substring(4)
PrintFont = New Font(“Tahoma”, 18, FontStyle.Bold)

Else
PrintFont = New Font(“Times New Roman”, 12)

End If

13. Now that you have the font and other settings, you can determine whether the line will fit in the
printable area that’s left. Call the MeasureString method of the Graphics object. This method
accepts a number of parameters:

❑ Text — The actual string to measure

❑ Font — The font style that will be used to draw the font

❑ LayoutArea — A defined rectangle of area to which the text is restricted

❑ Format — The formatting rules to use when determining what fits

❑ Characters — The number of characters that fit into the area

❑ Lines — The number of lines that fit into the area.

It also returns a SizeF structure that defines the exact rectangle of space used by the text, given
the parameters that were passed to the method:

Dim SizeNeeded As SizeF = e.Graphics.MeasureString(ReportLines(ReportCounter), _
PrintFont, New SizeF(PrintAreaWidth, PrintAreaHeight), PrintingFormat, _
NumberOfCharactersToPrint, NumberOfLinesFilled)

14. If MeasureString returns a NumberOfLinesFilled value of more than zero, then you know
that the report line can be printed. Use a very similar function called DrawString to do the
actual printing of the text:

e.Graphics.DrawString(ReportLines(ReportCounter), PrintFont, _
Brushes.Black, PrintingArea, PrintingFormat)

15. Once you’ve printed the current line, you need to change the printable area for the next element in
the ReportLines array. This uses the SizeNeeded Height property from the MeasureString
method. To complete the logic, you need to increment the NumberOfLinesPrinted variable so
that you know how many lines have been printed in this event:

PrintAreaHeight -= CType(SizeNeeded.Height, Integer)
TopMargin += CType(SizeNeeded.Height, Integer)
PrintingArea = New RectangleF(LeftMargin, TopMargin, PrintAreaWidth, _

PrintAreaHeight)
NumberOfLinesPrinted += 1

16. Save your progress and run the application. Select the Print Preview command from the File
menu to display the report. A sample is shown in Figure 11-3.

230

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 230

Figure 11-3

System Components
Many other components and features in Visual Basic Express help round out the application. Many of
these components do not have a visible aspect to them, or if they do, rather than have a separate view-
able control that is sited on the form, they display information in relation to another control.

Rather than go through each of these components in great theoretical detail, the following provides a
short list of the top four components (besides the ones you’ve already learned about, of course) that you
might find useful in your applications:

❑ ErrorProvider — The ErrorProvider control sits invisibly in your system tray until you tell it
to give feedback to the user about a particular control on the form that is in error. You specify
the text that is to be displayed in a tool tip and the kind of icon that should be displayed next to
the control.

In addition, you can specify how fast and long the icon should blink to attract the user’s attention
and where it should be positioned in relation to the control.

❑ FileSystemWatcher — This clever component enables you to monitor a folder or individual file
for changes. When a change has occurred, it raises an event that you can then trap with an event
handler routine. It distinguishes between additions, deletions, and updates to files.

231

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 231

❑ HelpProvider — The HelpProvider extends other controls, adding additional properties to
each control on the form or user control design surface. At design time, you can access these
properties through the Properties window.

The properties identify how the application should respond to a request for help when the par-
ticular fields are being displayed. You can link to a compiled help file or a Web page, or simply
display a tool tip containing the help information.

❑ ImageList — If your application uses many icons or images, you might benefit from compiling
them all into a single ImageList. Once they’re loaded into this control, you can retrieve each
image as needed from the Images collection.

This control is also used for many other controls that use a series of images, such as the TreeView.

In addition to these are a number of system-related components not normally used in most basic appli-
cations. Items such as the Windows system message queues, performance counters, and Active Directory
entries can all be accessed via components available to you in Visual Basic Express.

You should also keep an eye out for additional properties on the standard controls that make your appli-
cation function better. For example, the TextBox control enables you to specify some AutoComplete
options to help your users enter the information you’re after.

Finally, the .NET Framework is full of classes that help you implement functionality into your applica-
tion without you needing to worry about how it’s being done beneath the hood. For example, the
System.Net.Mail namespace has a number of classes and methods that enable you to send e-mail
messages from your program. For a longer discussion on the types of classes and objects that are avail-
able to Visual Basic Express, refer to Appendix B, which covers the .NET Framework.

In the next Try It Out, you’ll use several of these components and see how the AutoComplete properties
work in the TextBox control to add some helpful functionality to the PersonalDetails control in your
Personal Organizer application. You’ll also create a function to send e-mail messages to selected people
in the PersonList control so you can see how the System.Net.Mail namespace works.

Try It Out Using System Components
1. Return to Visual Basic Express and your Personal Organizer project. The first thing to do is add

some help and validation to the PersonalDetails control so users know what is expected of
them, so open PersonalDetails.vb in DesignvView.

2. Add a HelperProvider component to the form and name it helpPersonalDetails. This
extends each visible component in the control with additional properties that are accessible
through the Properties window (see Figure 11-4).

3. Select txtFirstName and scroll to the new properties. Set the following properties:

❑ HelpString — Enter the first name of the person here

❑ ShowHelp —True

4. Set the same properties on each control so that when the user has focus on that particular con-
trol and presses F1, a helpful tool tip will be displayed. You can even include help information
on buttons.

232

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 232

Figure 11-4

5. Add an ErrorProvider component to the form and name it errorPersonalDetails. If you
like, you can change the icon to something you prefer over the default red exclamation mark,
but for this Try It Out, it is left as the default. To allow space for the error icon for the last name
(you’re going to make it a required field), reduce the width of txtLastName slightly. To keep
the design consistent, you should also reduce the width of the other fields so they all align along
the right-hand side.

6. Add an event handler routine for the Validating event for the txtFirstName control. First
you need to set up the error icon alignment and padding so that Visual Basic Express can posi-
tion the icon correctly. After that, check the Text property of the TextBox, and if it’s empty, call
the SetError method, passing in the control that is in error (txtFirstName) and the error text.
Note that you’ll have to reset the error text to empty if you want the error to be cleared:

Private Sub txtFirstName_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles txtFirstName.Validating
With errorPersonalDetails

.SetIconAlignment(Me.txtFirstName, ErrorIconAlignment.MiddleRight)

.SetIconPadding(Me.txtFirstName, 2)
If txtFirstName.Text = vbNullString Then

.SetError(Me.txtFirstName, “First Name is required.”)
Else

.SetError(Me.txtFirstName, “”)
End If

End With
End Sub

Repeat this process for txtLastName, making sure you’re referencing the correct object in the
SetError methods:

Private Sub txtLastName_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles txtLastName.Validating
With errorPersonalDetails

.SetIconAlignment(Me.txtLastName, ErrorIconAlignment.MiddleRight)

.SetIconPadding(Me.txtLastName, 2)
If txtLastName.Text = vbNullString Then

.SetError(Me.txtLastName, “Last Name is required.”)

233

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 233

Else
.SetError(Me.txtLastName, “”)

End If
End With

End Sub

7. Because you have made both the first and last names required fields with the ErrorProvider,
you should also check to make sure they’re valid before the intended functionality in the Save
button’s Click event routine executes. Locate the ButtonClickedHandler routine you created
previously and change the code for the Save button so it validates the fields first, and only if the
fields are valid does it continue.

If the fields are found to be invalid, then it displays a message and positions the cursor on the
first field that is in error:

Private Sub ButtonClickedHandler(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim btnSender As Button = CType(sender, Button)
If btnSender.Name = “btnSave” Then

If Me.ValidateChildren() = True Then
RaiseEvent ButtonClicked(1)

Else
MessageBox.Show(“Please enter the first and last names”)
If txtFirstName.Text = vbNullString Then

txtFirstName.Focus()
Else

txtLastName.Focus()
End If

End If
ElseIf btnSender.Name = “btnCancel” Then

RaiseEvent ButtonClicked(2)
End If

End Sub

8. The other helpful feature you’ll implement is a selected items list for the Favorites TextBox.
Rather than let users guess what they should enter in this field, you can set the AutoComplete
properties so that users get some visual cues as they enter information into this field. In Design
view, set the AutoCompleteSource property to CustomSource and the AutoCompleteMode
property to SuggestAppend.

9. This will tell Visual Basic Express to look for an associated custom-built list of text items to
suggest to users as they type. It will display the list (Suggest) and append the first item that
matches what the user has typed so far in the TextBox (Append). Click the ellipsis button on the
AutoCompleteCustomSource property and create a list of strings that Visual Basic Express can
use as suggestions (see Figure 11-5).

10. Run the application and add a new person. Notice how the errors are indicated by the
ErrorProvider when the text fields do not match what’s required; in addition, note that
the Favorites TextBox contains suggested items as you type (see Figure 11-6).

234

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 234

Figure 11-5

11. To finish the Personal Organizer project for this chapter, you’ll add e-mail capabilities to the
PersonList form. Stop the application and add a new Windows Form to the project via the
Project ➪ Add Windows Form menu command. Name the new form POMessage and set the fol-
lowing properties:

❑ FormBorderStyle —FixedDialog

❑ Text — Send Email

Figure 11-6

12. Add four Labels and four TextBoxes to the form along with two Buttons and lay them out as
shown in Figure 11-7. Name the TextBoxes according to the content they will have and set the
ReadOnly property of the From and To TextBoxes to True, as this information will be popu-
lated from the PersonList form.

235

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 235

Figure 11-7

13. Switch to code view and, because you’ll be using a lot of classes within the System.Net.Mail
namespace, add an Imports statement at the top of the class to shortcut the e-mail–related
objects:

Imports System.Net.Mail

14. Create two properties for the sender e-mail address and the recipient e-mail list. Note that
because you can send an e-mail message to multiple people, you must use the
MailAddressCollection object to store the list of addresses. In the Set clause for each of the
properties, set the Text property of the corresponding TextBox so the user knows what infor-
mation is being used:

Private mFromAddress As MailAddress
Private mToAddresses As MailAddressCollection
Public Property FromAddress() As MailAddress

Get
Return mFromAddress

End Get
Set(ByVal value As MailAddress)

mFromAddress = value
txtFrom.Text = mFromAddress.DisplayName & “ (“ & mFromAddress.Address & “)”

End Set
End Property
Public Property ToAddresses() As MailAddressCollection

Get
Return mToAddresses

End Get
Set(ByVal value As MailAddressCollection)

mToAddresses = value
For Each ToAddress As MailAddress In mToAddresses

txtTo.Text &= ToAddress.DisplayName & “ (“ & ToAddress.Address & “), “
Next

236

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 236

txtTo.Text = txtTo.Text.Remove(txtTo.Text.Length - 2, 2)
End Set

End Property

15. Add an event handler routine for the Cancel button’s Click event to close the form (use
Me.Close), and then create another event handler routine for the Send button’s Click event.
You’ll need to create a new MailMessage object and then populate its properties. Setting the
IsBodyHtml property to True enables the message to include formatted HTML if the user desires.

Once the e-mail message has been created, complete with From, To, Subject, and Body proper-
ties all set, you must create a new instance of the SmtpClient object that is used to send e-mail
via the Simple Mail Transfer Protocol (SMTP), which almost all Internet providers use for e-mail
services. The only property you usually need to set is the Host property. Make this the same
as what you use in your regular e-mail program; and once it is set, you simply call the Send
method to send the e-mail message you created:

Private Sub btnSend_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSend.Click
Dim POMessage As New Net.Mail.MailMessage()
With POMessage

.From = mFromAddress

.To.Clear()
For Each ToAddress As MailAddress In mToAddresses

.To.Add(ToAddress)
Next
.Subject = txtSubject.Text
.Body = txtMessageBody.Text
.IsBodyHtml = True

End With

Dim MyMailServer As New SmtpClient()
With MyMailServer

.Host = “smtp.yourhost.here.com”

.Send(POMessage)
End With
MessageBox.Show(“Message sent”)
Me.Close()

End Sub

Please note that if you are going to give this program to someone else, they might not have access to the
same mail server as you, so you might need to allow the Host property to be configured, as opposed to
hardcoding it as shown in this Try It Out.

16. The Email Form is now ready; all you need to do is show it with the e-mail addresses of the
people selected in the PersonList control. Open the PersonList control in Design view and
add a third button underneath the other two. Name it btnSendEmail and change its Text
property to Send Email.

17. Double-click the new button to automatically create a Click event handler routine. First check
whether the SelectedItems collection of the Listbox contains any items. If it does, then you
should create a new MailAddress object containing the e-mail information about the sender
(again, this is hardcoded in this Try It Out, but you could make this configurable in your appli-
cation if you’re giving it to other people) and create a new MailAddressCollection to store
each of the people selected:

237

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 237

Private Sub btnSendEmail_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSendEmail.Click
If lstPersons.SelectedItems.Count > 0 Then

Dim FromAddress As New System.Net.Mail.MailAddress(“MyEmail@email.com”, _
“This is me”)

Dim ToAddresses As New System.Net.Mail.MailAddressCollection
End If

End Sub

18. Retrieve the contents of the Person table from the database and compare each row to the
SelectedItems collection, much like you did for the Delete Selected button. This time, instead
of deleting the record when you find a match, create a new MailAddress object with the
EmailAddress from the database and the DisplayName from the Person object and then add
it to the MailAddressCollection:

Dim PersonListAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim PersonListTable As New _PO_DataDataSet.PersonDataTable
PersonListAdapter.Fill(PersonListTable)

For Each CurrentPersonRow As _PO_DataDataSet.PersonRow In PersonListTable.Rows
For Each objPerson As Person In lstPersons.SelectedItems

If CurrentPersonRow.ID = objPerson.ID Then
If CurrentPersonRow.EmailAddress.Trim <> vbNullString Then

Dim ToAddress As New System.Net.Mail.MailAddress(_
CurrentPersonRow.EmailAddress, objPerson.DisplayName)

ToAddresses.Add(ToAddress)
End If
Exit For

End If
Next

Next

If the ToAddresses collection has any e-mail address objects, then create a new instance of the
POMessage form, set the FromAddress and ToAddresses properties, and then show it. The
POMessage form does the rest of the work:

If ToAddresses.Count > 0 Then
Dim frmSendEmail As New POMessage
With frmSendEmail

.FromAddress = FromAddress

.ToAddresses = ToAddresses

.ShowDialog()
End With

End If

19. Go ahead and run the application and display the person list. Select a couple of the entries and
then click the Send Email button to display the POMessage form. Enter a subject line and some
text in the body and click Send. If you enter HTML tags as part of the text, the e-mail message
will be correctly formatted when the recipients receive it (see Figure 11-8).

238

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 238

Figure 11-8

Summary
Using the techniques discussed in this chapter, you can begin to add the finishing touches to your appli-
cations. When you are building a program, the basics of a good user interface and efficient coding to
access database information might be enough to get the job done, but it’s the little things that separate
the amateur from the professional.

The little things begin with making sure you provide information to the user as much as possible with-
out stopping them from working — status bars, error messages, and help information all assist with this.
Notification icons can convey information to the user without your application needing to have focus,
and the printing capabilities of Visual Basic Express are detailed enough that you can produce pretty
much anything you need.

In this chapter, you learned to do the following:

❑ Use timers and notification icons to send information to the user

❑ Print information either to paper or to a print preview dialog

❑ Display contextual error indicators and help information.

239

It’s Printing Time!

17_595733 ch11.qxd 12/1/05 1:44 PM Page 239

Exercises
1. Customize the printing code so that it prints the list of people only if the Person List control is

showing. Add another report to display information about the currently selected person if indi-
vidual details are shown.

2. Add two elements to the StatusStrip at the bottom of the PersonalOrganizer’s main form,
a StatusLabel and a ProgressBar. Keep the StatusLabel up to date with the number of
people currently in the database for the current user and use the progress bar to indicate how
much of the report has been generated when it is processing the person list.

240

Chapter 11

17_595733 ch11.qxd 12/1/05 1:44 PM Page 240

12
Using XML

When Microsoft first designed .NET, they realized that they needed to use as many open standards
for the different components as possible. As a result, even when they created a new language, C#,
they put it through the standards process to have it certified. However, the most important aspects
of their program to follow the open standard were the bits that could interface with other applica-
tions and environments.

For those, Microsoft turned to a technology called Extensible Markup Language, or XML. XML is
used to format the communication documents created to talk to other programs. Web services like
those you accessed in Chapter 9 use XML to format the request sent to the web service and to store
the response. SQL databases can be easily exported to XML, and numerous other parts of .NET
also use XML to format the data. Because Visual Basic Express is based on .NET, it has the capabil-
ity to use all of these XML components, as you’ll see over the next several pages.

In this chapter, you learn about the following:

❑ What XML is and how you can use it in your programs

❑ How databases can export and import their data via XML

❑ The XML objects available in Visual Basic Express

So What Is XML?
As stated in the introduction, XML stands for Extensible Markup Language (some people write
this as eXtensible Markup Language to highlight where the X came from). A markup language is a
way to format data so that it contains information that describes what the data is for and how it
should be used. Each part of the document is marked with tags that contain attributes identifying
specific properties about the data enclosed in the tags.

XML is not the only markup language that you might encounter. In fact, the entire web is based on
another markup language — Hypertext Markup Language (HTML), which looks very similar to
XML. Consider the following two files:

18_595733 ch12.qxd 12/1/05 1:44 PM Page 241

<HTML>
<HEAD>
<TITLE>My Web Page</TITLE>
</HEAD>
<BODY>
<H1>A Heading</H1>
<P>This is normal text.</P>
My link
</BODY>
</HTML>

<config version=”1.0” time=”12.20”>
<Values>
<Setting>Value</Setting>
<Setting>123</Setting>
</Values>
<State>
<User Login=”true”>Andrew</User>
</State>
</config>

242

Chapter 12

The one on the left is a simple web page written in HTML, including the title, a heading, a paragraph,
and a hyperlink. The file on the right is an XML file containing a number of properties for a log file. Both
contain a series of values enclosed in matching tags to identify the type of data that is represented. The
big difference between the two is that HTML is a highly specialized markup language aimed at a partic-
ular purpose — to describe the format of a web page. XML, on the other hand, is a generic language
designed to describe any kind of data.

XML has no predefined tags like those in HTML. Instead, most XML files are defined by a definition
document of some kind. There are two kinds of definition files: Document Type Definition (DTD) and
XML Schema Documents (XSDs). To keep this discussion brief, the focus here will be on XSD definitions
because they are usually used when using XML in .NET.

Your XML file does not require an XSD to accompany it, but if it contains more than a couple of values
and you’re depending on the XML contents following a set structure so that you can read it in your
application, you are better off using an XSD to keep the data in order.

This is because most XML processing systems, including the one that comes with Visual Basic Express,
can validate the XML data against the XSD and produce errors that you can check if the data is not valid.

The makeup of an XML file is straightforward. Each matching pair of tags is called an element or a node.
Therefore, in the earlier sample XML file, you have a config node, which contains a Values node and
a State node. The Values node in turn contains two Setting nodes. The information between the
opening and closing tag is known as the value. The two Setting nodes have the values Value and 123,
respectively. Finally, within the opening tag of an element can be a number of properties that belong to
the node; these are known as attributes. The User node has an attribute of Login with a value of True.
The whole thing is called an XML document.

Besides this simple structure, you have to follow some basic rules when creating an XML file. When you
are using the classes and methods in Visual Basic Express, it does most of the work for you, but you can
still produce invalid XML data if you don’t follow these guidelines.

First, you must have only one root element that contains the rest of the XML document within its opening
and closing tags. While you could define multiple nodes at the top level and read them using custom-
built programming logic, the XML standard specifies that there be only one.

18_595733 ch12.qxd 12/1/05 1:44 PM Page 242

You must include the closing tag in the pair. HTML and other markup languages sometimes allow you to
omit the closing tag, and implicitly assume them, but XML is stricter than that. If the XML node doesn’t
contain any data, you can shortcut the opening and closing tag by closing the node off in the first tag with
a single slash (/). For example, the following two lines are considered identical by an XML processor:

<myNode></myNode>
<myNode />

Unlike Visual Basic Express variables and class names, XML tags are case sensitive. Therefore, if your open-
ing tag is called <MyTaGrUlEs>, you must close the pair with exactly the same case —<mytagrules>
won’t cut it.

When attributes are defined within a XML tag, the values must be enclosed in quotation marks, even
when the values are numeric or single words. HTML allows you to omit the quotation marks in these
simple-value cases.

Extensible Means Just That
One great advantage of XML is that you can extend the data definition without breaking your applica-
tion. This is because the application can still find the nodes it used prior to the data change. For example,
the original XML definition used by your application is as follows:

<config version=”1.0” time=”12.20”>
<Values>

<Setting>Value</Setting>
<Setting>123</Setting>

</Values>
<State>

<User Login=”true”>Andrew</User>
</State>

</config>

Your program uses the Setting nodes and the User node to display some information on a form. Now,
the other program that created the XML file is extended and includes additional information:

<config version=”1.0” time=”12.20”>
<Values>

<Setting>Value</Setting>
<Setting>123</Setting>

</Values>
<State>

<User Login=”true”>Andrew</User>
<File Overwrite=”true”>C:\Temp\MyLog.txt</File>

</State>
</config>

Your code would still be able to access the Setting nodes and the User node without needing to know
anything about the new data being stored in the file. The same thing applies to additional attributes in
a node.

243

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 243

When referring to nodes, XML uses a family-oriented nomenclature. This enables you to easily deter-
mine how nodes relate to each other. The node that owns another is known as the parent element of the
other node, while the one that is owned is the child element of the first. Nodes that are on the same level
within a single parent element are called siblings, or sometimes sister elements.

To illustrate this, in the case of the sample XML that you’ve been looking at, the Setting nodes are child
elements of the Values node, and the State node is the parent element of the User and File nodes.
User and File are siblings of each other but are not siblings of the Setting nodes.

XML Attributes
Each XML element can have its own attributes. Again, these attributes can be controlled by a definition
file so that only allowed property names and values can be included, but because you usually own the
definition file as well, you can dictate which attributes you want to have defined.

The first line of the sample XML file defines the root element. It has a name of config and two attributes —
version and time. As mentioned earlier, every attribute value must be enclosed in quotation marks. XML
allows you to use either single or double quotes, so both version=”1.0” and version=’1.0’ are
deemed acceptable.

Usually attributes are used by the program to determine what to do with the data stored within the XML
element. The User node has a value of Andrew and an attribute of Login with a value of true. The
application could use this information to determine that the user involved in the process was named
Andrew, and that he was logged into the system at the time. The Login attribute wasn’t necessary to
identify the User, but provided additional information that the program could use.

There is no hard-and-fast rule about when to store information in an attribute, when to use a child ele-
ment, or when to include the data in the value component of the element. The User node could be
rewritten as follows:

<User>
<Login>true</Login>
<Name>Andrew</Name>

</User>

It could even have been defined with what is known as mixed content (whereby the element has a value
and child elements) like so:

<User>Andrew
<Login>true</Login>

</User>

Validating Data
An XML Schema Document, known as a XSD, is a definition file used to determine whether the XML
data is valid. You can have an XML file that is well formed, a term used to indicate that all nodes have
their opening and closing tags, attributes are properly defined, and so on, that is still not valid. A valid
XML document is one that conforms to a data definition — either a DTD or an XSD.

244

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 244

Each element within the XML must be defined in the schema; otherwise, the XML document is consid-
ered invalid. The XML file that’s been used as an example could be defined with the following XSD:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified” attributeFormDefault=”unqualified”>

<xs:element name=”config” type=”configType”/>
<xs:complexType name=”configType”>

<xs:sequence>
<xs:element name=”Values” type=”ValuesType” maxOccurs=”1”/>
<xs:element name=”State” type=”StateType” maxOccurs=”1”/>

</xs:sequence>
<xs:attribute name=”version” type=”xs:string” use=”required”/>
<xs:attribute name=”time” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”ValuesType”>
<xs:sequence>

<xs:element name=”Setting” type=”xs:string” maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=”StateType” mixed=”true”>
<xs:sequence>

<xs:element name=”User” type=”xs:string” />
</xs:sequence>
<xs:attribute name=”Login” type=”xs:boolean” use=”optional”/>

</xs:complexType>
</xs:schema>

You might have noticed that the XSD itself looks like XML, and that’s because it is. XSD files must con-
form to their own data definition layout specified in the standard for XML schema. In fact, this sample
XSD file contains the location of the namespace that defines its own structure —http://www.w3.org/
2001/XMLSchema.

When you look through this schema, each element can be seen as an xs:element node that has attributes
describing its use and type. For example, the config node has a type of configType, which is then
defined in the following lines in the file.

While this book isn’t aimed at teaching you XML, the previous discussion should serve to help you get a
basic understanding of how it works so you can look at the way Visual Basic Express uses XML and
takes advantage of it. If you need to know more, you can find plenty of resources for writing XML and
XSDs, including Beginning XML, 3rd Edition, by David Hunter et al. (Wiley, 2004).

Databases and XML
One feature of Visual Basic Express is its capability to export information stored in a SQL Server
database to an XML file. This can then be accessed by other applications that do not have access to
your database. You can also populate a database table from XML files, too.

245

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 245

Before you look at the main XML objects found in Visual Basic Express, these capabilities to convert SQL
Server data to and from XML should help you understand how an XML file might be used in your own
applications.

The DataTable class has two methods —ReadXml and WriteXml— both with multiple definitions:

❑ ReadXml is the simplest because it just needs to know where to get the data from and then
works out the rest. The different definitions of ReadXml simply take different parameters to
indicate the data source.

The syntax of ReadXml is MyTable.ReadXml(DataSource), where DataSource can be a file-
name, an IOStream, an XMLReader or a TextReader. The filename is the most basic and easiest
to use. If you try to read XML data that does not meet the DataTable’s own definition, an
exception is raised. Otherwise, the DataTable contents are replaced with the information
stored in the XML file.

❑ The WriteXml method of the DataTable object has an overwhelming number of overloaded def-
initions. Overwhelming, that is, until you realize they are just variations on a theme. In fact, you
have only a few options, but each can be used in conjunction with a different set of other parame-
ters. The first parameter defines the type of output object that will be written to. This is similar to
the parameter of ReadXml—IOStream, TextWriter, XMLWriter, or filename. In addition to
this are two optional parameters, a Hierarchy Boolean value and a WriteMode value.

The Hierarchy flag dictates whether the WriteXml command includes all child tables or just
the main table that the DataTable object contains. This could be useful if you have a single
DataTable object with a collection of tables stored within it.

The WriteMode tells the WriteXml what information to include with the actual data of the
table. When Visual Basic Express creates the XML file, it can include the data as is — this is, the
default behavior. However, you can also specify that it should include an XSD along with the
data so that any application reading the XML knows how to validate it and what each element
is supposed to contain.

Finally, you can specify a WriteMode of DiffGram. This tells WriteXml to write only the parts of
each row in the table that have changed. This can be useful for logging database changes because
it excludes any records of information that have not changed since the last database update.

To confirm the information just discussed, the following Try It Out adds export and import functionality
to the Personal Organizer application using XML data files.

Try It Out Exporting and Importing XML
1. Start Visual Basic Express and open the Personal Organizer application project you’ve been

working on. If you don’t have an up-to-date version of the project, you can find one in the
Code\Chapter 12\Personal Organizer Start folder of the code you downloaded from
www.wrox.com.

You have two functions to implement: exporting the data from the database into an XML file
and importing an XML file back into the database. The first feature is quite straightforward to
implement, with only one gotcha to be aware of, but importing has a number of other issues
that you’ll see in a moment.

246

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 246

2. Open the GeneralFunctions.vb module and create a new function called ExportPOData that
returns a Boolean to indicate success or failure. Give it parameters of a UserID Integer and
ExportDataLocation as a String. Add a statement to return True at the end of the function:

Public Function ExportPOData(ByVal UserID As Integer, _
ByVal ExportDataLocation As String) As Boolean

Return True
End Function

3. The function accepts only one filename — the location for storing the Person data — but you
want to store the POUser table as well. Therefore, create an additional filename from the param-
eter by changing the file extension:

Public Function ExportPOData(ByVal UserID As Integer, _
ByVal ExportDataLocation As String) As Boolean
Dim POUserLocation As String
POUserLocation = ExportDataLocation.Remove(ExportDataLocation.Length - 3, 3) &

“pou”
Return True

End Function

4. Before you can do the export, you should determine whether the files exist already, and, if so,
delete them. The My.Computer.FileSystem object works well here:

With My.Computer.FileSystem
If .FileExists(ExportDataLocation) Then .DeleteFile(ExportDataLocation)
If .FileExists(POUserLocation) Then .DeleteFile(POUserLocation)

End With

5. Now you’re ready for the export functionality. To get the data ready, you need to create a
DataAdapter and a DataTable and then use the Fill method to populate the DataTable. You
learned how to do this in Chapter 7. Once the table contains data, the only additional command
required is the WriteXml method on the DataTable object. Therefore, to export the contents of
the Person table, you could write the following code:

Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)
GetPersonTable.WriteXml(ExportDataLocation)

This version of the WriteXml method has a flaw, however. Because it doesn’t include any defi-
nition information about the data stored in the XML file, any fields in the table that do not con-
tain values will not be included in the XML. This might be okay if you want to send the file to
some other application, but because you want to be able to import it directly into the database
tables in your own application, you’ll get errors about missing fields.

WriteXml has a number of different versions that enable you to include additional information —
including the schema definition of the database table. This is the XSD structure you saw earlier in
this chapter. To include the schema, alter the WriteXml call to include an additional parameter of
XmlWriteMode.WriteSchema. When you’ve done this for both the Person and POUser tables,
your ExportPOData function is complete:

247

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 247

Public Function ExportPOData(ByVal UserID As Integer, _
ByVal ExportDataLocation As String) As Boolean
Dim POUserLocation As String
POUserLocation = ExportDataLocation.Remove(ExportDataLocation.Length - 3, 3) &

“pou”
With My.Computer.FileSystem

If .FileExists(ExportDataLocation) Then .DeleteFile(ExportDataLocation)
If .FileExists(POUserLocation) Then .DeleteFile(POUserLocation)

End With
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)
GetPersonTable.WriteXml(ExportDataLocation, XmlWriteMode.WriteSchema)

Dim GetUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim GetUserTable As New _PO_DataDataSet.POUserDataTable
GetUserAdapter.Fill(GetUserTable)
GetUserTable.WriteXml(POUserLocation, XmlWriteMode.WriteSchema)
Return True

End Function

6. To enable users to run this function, open the MainForm in Design view. Add a SaveFileDialog
to the form and name it ExportDataLocationDialog. Change the FileName property to
POData.per so it defaults to an appropriate name for the Person table.

7. Add an event handler routine to the Tools ➪ Export Data menu item by double-clicking it and
add the following code:

Private Sub exportToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles exportToolStripMenuItem.Click
With ExportDataLocationDialog

If .ShowDialog = Windows.Forms.DialogResult.OK Then
If ExportPOData(mCurrentUserID, .FileName) = False Then

MessageBox.Show(“Export Failed!”)
End If

End If
End With

End Sub

This will show the File Save dialog, and if the user correctly selects a filename and clicks Save,
will call the ExportPOData function you just created. Go ahead and run the application. Select
Tools ➪ Export Data and choose a location for the files to be stored. After it has been completed,
locate the files that were created and take a look at the contents. Figure 12-1 shows some sample
output. Note how the schema defining what fields belong to a record is defined at the beginning
of the file and is then followed by POUser nodes for each POUser row in the table.

8. Creating an import function is actually significantly more difficult because there are two
database tables with a relationship defined between them. The Person table stores the unique
ID for the POUser with which it is associated. However, when importing the data for the tables,
it’s necessary to delete what’s currently in the table and create an entire set of new rows. This
results in the POUser rows all having new ID values. If the Person table is then imported, it
fails because the POUser rows the XML is referencing no longer exist.

248

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 248

Figure 12-1

Instead, you need to first read the POUser XML import file and store the original POUser details
in a collection. Then you can delete the contents of the current POUser table in the database and
create new rows from the XML file. When this has updated the database, you then read through
the new table and extract the new ID values and store them in the collection, too.

This enables you to create the Person rows — as you read each Person row, extract the old
POUserID value and find it in the collection you built. Then you can access the new POUser row
by the corresponding new POUserID value in the collection.

One last thing you’ll need to do is reassign the CurrentUserID, because deleting and recreating
the tables causes a new ID to be assigned to the currently logged on user.

9. Create the ImportPOData function, but this time define the return value as an Integer:

Public Function ImportPOData(ByVal UserID As Integer, _
ByVal ImportDataLocation As String) As Integer

End Function

249

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 249

10. You need to retrieve the Name property of the currently logged on user so you can find that per-
son again after the data has been recreated. To do this, create a new function that reverses the
order of the GetUserID function you created and used in Chapter 8:

Public Function GetUserName(ByVal ID As Integer) As String
Dim CheckUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CheckUserTable As New _PO_DataDataSet.POUserDataTable

CheckUserAdapter.Fill(CheckUserTable)
Dim CheckUserDataView As DataView = CheckUserTable.DefaultView
CheckUserDataView.RowFilter = “ID = “ + ID.ToString

With CheckUserDataView
If .Count > 0 Then

Return .Item(0).Item(“Name”).ToString
Else

Return vbNullString
End If

End With
End Function

11. Return to the ImportPOData function and store the name by calling the new function:

Public Function ImportPOData(ByVal UserID As Integer, _
ByVal ImportDataLocation As String) As Integer
Dim CurrentUserName As String = GetUserName(UserID)

End Function

12. Just as with the ExportPOData function, you need to create the POUser XML filename. At this
point, you should make sure both files exist; if they don’t, then return –1 to indicate there was a
problem in the function:

Public Function ImportPOData(ByVal UserID As Integer, _
ByVal ImportDataLocation As String) As Integer
Dim CurrentUserName As String = GetUserName(UserID)
Dim POUserLocation As String
POUserLocation = ImportDataLocation.Remove(ImportDataLocation.Length - 3, _

3) & “pou”
With My.Computer.FileSystem

If .FileExists(ImportDataLocation) = False Then Return -1
If .FileExists(POUserLocation) = False Then Return -1

End With
End Function

13. As outlined in step 8, you need to first build a collection that stores the original ID values for
each POUser row. Create a small private class at the bottom of the GeneralFunctions.vb
module to use in the collection:

Private Class ImportDataUserInfo
Public OriginalID As Integer
Public NewID As Integer
Public Name As String

End Class

250

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 250

14. Reading the XML file is actually quite easy: Create a new DataTable object and use the
ReadXml method to bring the data into the table. Because the XML you exported contains the
schema, the ReadXml method understands how to translate the data to the database table:

Dim UserTable As New _PO_DataDataSet.POUserDataTable
UserTable.ReadXml(POUserLocation)

15. Iterate through each POUserRow and store the ID and Name column values in a Collection:

Dim UserCollection As New Collection
For Each MyRow As _PO_DataDataSet.POUserRow In UserTable.Select()

Dim CurrentUserInfo As New ImportDataUserInfo
CurrentUserInfo.OriginalID = MyRow.ID
CurrentUserInfo.Name = MyRow.Name
UserCollection.Add(CurrentUserInfo)

Next

16. Now you can delete the data from the two tables. First fill the DataTable from the database
and then delete each row one by one. When they’re gone, call the Update method of the
DataAdapter object to update the database:

Dim PersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim PersonTable As New _PO_DataDataSet.PersonDataTable
PersonAdapter.Fill(PersonTable)
For Each MyRow As _PO_DataDataSet.PersonRow In PersonTable.Select()

MyRow.Delete()
Next
PersonAdapter.Update(PersonTable)

Dim UserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
UserAdapter.Fill(UserTable)
For Each MyRow As _PO_DataDataSet.POUserRow In UserTable.Select()

MyRow.Delete()
Next
UserAdapter.Update(UserTable)

17. When the two tables have been cleared out, the POUser table can be created directly from the
XML file:

UserTable.ReadXml(POUserLocation)
UserAdapter.Update(UserTable)

18. The UserCollection array now needs to be updated with the new ID values that were created
by the previous two statements. Iterate through all the rows of the table and find each one in the
UserCollection array. When found, update the NewId property:

For Each MyRow As _PO_DataDataSet.POUserRow In UserTable.Select()
For Each CurrentUserInfo As ImportDataUserInfo In UserCollection

If CurrentUserInfo.Name = MyRow.Name Then
CurrentUserInfo.NewID = MyRow.ID
Exit For

End If
Next

Next

251

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 251

19. Importing the Person table is done differently. Like the AddPerson function, you need to include
the POUser row to which the Person row belongs. First read the XML file into a separate table so
you can process the information before adding it to the database:

Dim ImportPersonTable As New _PO_DataDataSet.PersonDataTable
ImportPersonTable.ReadXml(ImportDataLocation)

20. Iterate through the rows of this table, and for each one, look through the UserCollection array
for a matching OriginalID value. Once this is found, store the NewID value in a temporary vari-
able and exit the loop:

For Each MyRow As _PO_DataDataSet.PersonRow In ImportPersonTable.Select()
With MyRow

Dim NewPOUserID As Integer
For Each CurrentUserInfo As ImportDataUserInfo In UserCollection

If .POUserID = CurrentUserInfo.OriginalID Then
NewPOUserID = CurrentUserInfo.NewID
Exit For

End If
Next
... add the row here.

End With
Next

21. With the new ID, you can retrieve the correct row from the POUser table by using the Select
method. Use this POUser row as a parameter in the AddPersonRow method of the PersonTable,
along with the fields in the imported Row object. Once you’ve finished processing all the rows
that have been read from the XML file, call the Update method of the Adapter to send the
changes to the database:

For Each MyRow As _PO_DataDataSet.PersonRow In ImportPersonTable.Select()
With MyRow

Dim NewPOUserID As Integer
For Each CurrentUserInfo As ImportDataUserInfo In UserCollection

If .POUserID = CurrentUserInfo.OriginalID Then
NewPOUserID = CurrentUserInfo.NewID
Exit For

End If
Next
Dim POUserRows() As _PO_DataDataSet.POUserRow = CType(UserTable.Select(_

“ID = “ + NewPOUserID.ToString), _PO_DataDataSet.POUserRow())

PersonTable.AddPersonRow(POUserRows(0), .NameFirst, .NameLast, _
.PhoneHome, .PhoneCell, .Address, .EmailAddress, .DateOfBirth, _
.Favorites, .GiftCategories, .Notes)

End With
Next
PersonAdapter.Update(PersonTable)

22. The final step is to find the new ID for the currently logged on user. You can do this by iterating
through the UserCollection array looking for the CurrentUserName you saved at the begin-
ning of the function. When you find it, simply return the NewID value:

252

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 252

For Each CurrentUserInfo As ImportDataUserInfo In UserCollection
If CurrentUserInfo.Name = CurrentUserName Then

Return CurrentUserInfo.NewID
End If

Next
Return -1

23. Return to the MainForm Design view, add an OpenFileDialog, and name it
ImportDataLocationDialog. Add the following code to the Tools ➪ Import Data menu item’s
Click event handler:

Private Sub importToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles importToolStripMenuItem.Click
With ImportDataLocationDialog

If .ShowDialog = Windows.Forms.DialogResult.OK Then
Dim TempUserID As Integer = ImportPOData(mCurrentUserID, .FileName)
If TempUserID = -1 Then

MessageBox.Show(“Could not find the current user in the new “ & _
“data. Program ending!”)

End
Else

mCurrentUserID = TempUserID
End If

End If
End With
End Sub

24. This will show the Open File dialog window, enabling users to select the Person data file to be
imported. Once they click Open, the ImportPOData function is called; if successful, it will
return the new ID value for the currently logged on user, which then updates the module-level
variable for future functions. Run the application and change some data in your Person tables,
and then import the data you exported in step 7.

The System.Xml Namespace
Now that you have a handle on how XML can be used in your application with only a few simple func-
tion calls, it’s time to take a look at how extensive the XML support is in .NET. Most XML classes can be
found in the System.Xml namespace. By default, your Visual Basic Express projects do not have access
to this set of classes, so you need to add a reference to it first.

The core object you will most likely use in your applications is the XmlDocument class. This class repre-
sents an entire XML file. As discussed earlier in this chapter, each XML file has a single root element that
contains the entire information set — the XmlDocument object represents that root element.

To create a new XmlDocument, you use the following command:

Dim myXmlDocument As New System.Xml.XmlDocument()

253

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 253

Once you have an XmlDocument object, you can begin to process the individual elements within the XML.
If you want to read XML from a location, you need to load it into the XmlDocument object using either
Load or LoadXml. The Load method takes three different types of input streams: an IOStream, a
TextReader, or a filename. The LoadXml method accepts a string variable that it expects to contain XML:

Dim myXml As String = “<config> “ & _
“ <Values>” & _
“ <Setting>Value</Setting>” & _
“ <Setting>123</Setting>” & _
“ </Values>” & _
“ <State>” & _
“ <User Login=’true’>Andrew</User>” & _
“ </State>” & _
“</config>”

myXmlDocument.LoadXml(myXml)

Once you have the XML in the XmlDocument object, you can retrieve a string representation at any time
using the ToString method. This can then be used to write back to a file using any of the methods you
prefer. Alternatively, you can use the WriteTo and WriteContentTo functions to write the contents of
the XmlDocument elements to an XmlWriter object.

Each element within the XML file is represented by an XmlNode object. The main XmlDocument object
has a property called ChildNodes that returns the root node. This node has its own ChildNodes collec-
tion that returns the child elements belonging to it, and so on down the hierarchy. The simplest way to
get to the User node in the sample would be the following line of code:

Dim myUserNode as XmlNode = myXmlDocument.ChildNodes(0).ChildNodes(1).ChildNodes(0)

The first ChildNodes object returns the config node, the second returns the State node, and the third
returns the User node. Once you have the element you need, you can access its attributes through an
Attributes collection, and the value stored between the opening and closing tags via the InnerText
property.

Attributes can be retrieved by their name if you know them or accessed via their index in the collection.
The following line of code displays the name of the node, the text within the opening and closing tags,
and the Login attribute:

MessageBox.Show(“Node = “ & myUserNode.Name & “, Value = “ & _
myUserNode.InnerText & “, Login Attribute = “ & _
myUserNode.Attributes(“Login”).ToString)

If you need a specific child element of a node you’re working with, you can use the SelectSingleNode
method. If more than one node matches the criteria, Visual Basic Express throws an exception that you
must trap. Otherwise, the SelectSingleNode method returns either Nothing (indicating the node wasn’t
present) or an XmlNode object with the child node:

Dim myValuesNode As XmlNode = myXmlDocument. SelectSingleNode(“config/Values”)

254

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 254

Alternatively, if you are trying to retrieve a collection of nodes that are all of the same type, you can use
the SelectNodes function. Rather than return an XmlNode object, this function returns an XmlNodeList
collection that contains all of the nodes that met the criteria. To retrieve the Setting nodes from the
Values element and display the value for each, you could use this code:

Dim mySettings As XmlNodeList = myValuesNode.SelectNodes(“Setting”)
For Each mySettingNode As XmlNode In mySettings

MessageBox.Show(mySettingNode.InnerText)
Next

Inserting XmlNodes into an existing XmlDocument can be done through the CreateElement method
exposed by the XmlDocument object and the AppendChild method of the XmlNode class. First you need
to create the new XmlNode object using CreateElement:

Dim myNewSetting As XmlNode = myXmlDocument.CreateElement(“Setting”)

Once you have the node, you can set its attributes through the Attributes collection, and the value
with the InnerText property. Then you add it to the node that should be its parent:

myNewSetting.InnerText = “NewData”
myValuesNode.AppendChild(myNewSetting)

You can also use the InsertBefore and InsertAfter methods to insert the new node into the
ChildNodes collection in a specific location.

Alternatively, creating XmlNodes within a document can be done using an XmlWriter. If the node is at the
bottom of the hierarchy and does not contain any other elements, use the WriteElementString function.
If the element contains other nodes, you need to use the WriteStartElement and WriteEndElement
methods to create the opening and closing tags. The following code snippet writes out the first half of the
sample XML config file:

Dim MyNavigator As XPath.XPathNavigator = myXmlDocument.CreateNavigator()
Dim MyWriter As XmlWriter = MyNavigator.PrependChild()
MyWriter.WriteStartElement(“config”)
MyWriter.WriteStartElement(“Values”)
MyWriter.WriteElementString(“Setting”,”Value”)
MyWriter.WriteElementString(“Setting”,”123”)
MyWriter.WriteEndElement()
MyWriter.WriteEndElement()

Speaking of code snippets, Visual Basic Express comes with a number of useful
snippets relating to XML. From reading an XML file using an XmlReader to insert-
ing XmlNode objects into an existing XmlDocument to finding an individual node,
the code snippet library is an excellent resource for those situations when you just
can’t think of what you need. It even has an excellent serialization example to auto-
matically convert a class into XML form and write it out to a file.

255

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 255

The next Try It Out ties together a lot of the concepts you’ve learned up to this point to create a wizard
form that you can add to any application that needs its own custom-built step-by-step wizard. The wizard
takes an XML configuration file and builds the pages dynamically, including images, controls, and text.
When the user clicks the Finish button, it then compiles the values chosen into an XML document and
returns it to the calling program. The types of functionality found in this Try It Out include the following:

❑ Adding controls to a form, docking them into place, using auto alignment, and setting proper-
ties of the form itself

❑ Defining regions within your code to organize it into logical areas that are easy to manage

❑ Using Imports to shortcut variable definitions

❑ Using XML to read and create documents and to search for individual nodes

❑ Dynamically altering the properties of controls at runtime, including the form

❑ Creating internal structures (Class and Enum) to support the rest of the code

❑ Creating controls dynamically, adding them to the form, and then deleting them when
they’re done

Try It Out Creating a Wizard Form
1. Start Visual Basic Express and create a new Windows Application project. This project will be

used as a testing ground for your wizard form, as well as where you design the wizard itself.
Call the application WizardControl.

2. Most wizards follow the same pattern — a series of pages, or steps, that users navigate through
until they arrive at the last one and click the Finish button. Normally, you have several buttons
at the bottom of the form for navigation, a picture on the left-hand side, and information
describing the current page.

Rather than hardcode each of the pages for a specific wizard, your form is going to dynamically
build the page for each step as needed, creating the controls and placing them on the form as
well as setting all the text and visual clues. The information regarding what goes where will be
controlled through an XML file.

How It Works — The User Interface
Add a new form to the project, naming it WizardBase.vb, and set the following properties:

❑ Name —WizardBase

❑ FormBorderStyle —FixedDialog

❑ Size —426,300

Setting the form to a fixed size enables you to control how each wizard that uses the form appears.

3. Add to the form three Panel objects that you’ll use to control the layout of the form. The first
Panel will contain the navigation buttons. Dock it to the bottom of the form and set the Height
to 30 pixels to provide just enough room for the buttons.

The second Panel should have its Dock property set to Left and its name changed to
pnlGraphic. This area will be used to store the image associated with the wizard’s steps.
To provide a logical size for the graphic images, set its Width property to 120. In addition, set

256

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 256

the BackgroundImageLayout property to Stretch so that any images loaded stretch to the
available area. The last panel should have its Dock property set to Fill to take up the remain-
ing space in the form.

4. Add five buttons to the bottom panel and evenly space them out. Use the built-in visual align-
ment cues that Visual Basic Express provides so the buttons all line up and are at the optimum
distance from the edges of the form.

Set the Text property of the buttons to Cancel, Start, < Previous, Next >, and Finish.
Change the names of the button controls to correspond to these captions.

5. Believe it or not, you’re almost done creating the user interface. The only thing left to do is add
three elements to the main area to contain the current step information. Add a Label, a TextBox,
and another Panel control to the panel taking up the main area of the form.

6. The Label will be used to display the heading of the current step. Change its Font properties so
it’s a lot larger and bolder than normal text. Set its Name property to lblHeading so you can
change it in code later.

7. The TextBox will contain the detailed description of what the user should do in the current
step. Because this could be lengthy, a TextBox is used to display a few lines at a time. It should
also be blended in the form so it doesn’t draw away attention from the actual settings that the
user is supposed to be changing. Set the following properties:

❑ BorderStyle —None

❑ ScrollBars —Vertical

❑ Multiline —True

❑ ReadOnly —True

❑ Name —txtDescription

8. The Panel control should be resized so it takes up the remaining space in the form and named
pnlControls so that the program knows where to add the controls at runtime. Because you
don’t know if the space will be enough for any given page in a wizard, set the AutoScroll
property to True. If the wizard dynamically adds more controls than can fit in the visible area,
scrollbars will automatically be added to the panel so the user can get to them all. When you’re
done, the user interface should look like the one shown in Figure 12-2. Save the project so you
don’t lose the changes to your user interface.

Figure 12-2

257

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 257

How It Works — The Data Definition
9. Before you can write the code, you need to understand how the data is presented to the form.

Whenever an application needs a wizard, it will pass over a string containing XML-formatted
information. The WizardBase form can process this XML to determine what the wizard is
called, how many pages it has, and what information should be stored on a page.

Breaking the information down, a wizard typically needs the following information:

❑ Name — To identify the wizard internally

❑ Title — Displayed at the top of the form to inform users about the wizard’s purpose

❑ Graphic — An image that can be displayed in the left-hand pane of the wizard

❑ Finish flag — A Boolean value that indicates whether users must navigate through all
the pages before the Finish button is enabled or whether they can click Finish at any time

Within the wizard are a number of pages, or steps. Each step needs its own information:

❑ Name — To identify the step internally

❑ Heading — The text to be displayed in lblHeading

❑ Description — The information text to be displayed in txtDescription

❑ Graphic — An optional image that can be used to override the main wizard graphic for
individual steps

A step has components with which users interact. As some steps might be informational only,
the collection of components might not exist for a particular step, but each component that is
defined needs a certain amount of information:

❑ Name — To identify the component internally

❑ Caption — Displayed next to the control so users knows the particular component’s
purpose

❑ Value — The value for the component

❑ Control Type — An identifier telling WizardBase what kind of control should be
employed for this component

Rather than allow any kind of component in the wizard and potentially have a nightmare on
your hands trying to manage the myriad of options in the code, you can restrict it to only a few.
Generally, wizards need one of only four different types of component:

❑ A CheckBox to indicate a Boolean value — use a value of CB

❑ A TextBox to allow text settings — use a value of TB

❑ A collection of RadioButtons to select from a small number of options — use a value of RB

❑ A ComboBox to enable users to select from multiple options without taking up space
on the form — use a value of CM

Except for the ComboBox control, all of the preceding elements can be controlled by the previ-
ously mentioned settings. That control needs a list of allowable values that is used to populate
its list. The allowable values need only the display value and an indicator of which one is to be
selected by default.

258

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 258

How It Works — Translating to XML
10. Using this information, you can create a sample XML file that defines the various values and

attributes for each component, as shown here:

<Wizard Name=”W” Title=”T” GlobalGraphic=”FN” AllowFinishBeforeLastStep=”False”>
<Step Name=”Intro”>

<Heading>Introduction</Heading>
<Description>Description goes here</Description>
<Graphic>Filename</Graphic>
<Component Name=”Name1” ControlType=”CB” Caption=”MyCap1”>Value</Component>
<Component Name=”Name2” ControlType=”CM” Caption=”MyCap2”>

<AllowedValue Name=”Value1” Selected=”True”>Value1</AllowedValue>
<AllowedValue Name=”Value2”>Value2</AllowedValue>

</Component>
</Step>

</Wizard>

How It Works — Defining Supporting Structures
11. Now that you know the contents of the XML that specifies how the wizard is to be displayed,

return to your project and open the WizardBase form in code view. Before you begin creating
the logic, it makes sense to build some supporting structures to make dealing with individual
steps and components more logical. Create a Region in the code called Supporting
Structures to contain the classes and types you will write:

#Region “Supporting Structures”

#End Region

12. The first thing to do is create an Enum that contains only the allowed control types for the
components:

#Region “Supporting Structures”
Private Enum AllowedControlTypes As Integer

CheckBox = 1
ComboBox = 2
RadioButton = 3
TextArea = 4

End Enum
#End Region

If you want to support other object types, you will need to add them to this Enum.

13. To store the information about a particular step, create a private WizardStep class within the
WizardBase code. Making it private hides it from public use and enables you to do things that
you would normally not do. Because you are in control of when this class is used, rather than
define complete Property Get and Set statements for each attribute of a step, you can just
define public variables:

Private Class WizardStep
Public Number As Integer
Public Name As String
Public Heading As String
Public Description As String

259

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 259

Public Graphic As Image
Public Components() As WizardComponent

End Class

You might note that these variables all equate to the different components of a step that was
identified earlier. The Components object is defined as an array of WizardComponent classes,
which you create next.

14. Create another private class for each component of a step. The ControlType can be defined with
a type of AllowedControlTypes, the Enum you created in step 12. The AllowedValues array
stores the information for ComboBox controls and is set to Nothing for the other control types:

Private Class WizardComponent
Public ComponentControlType As AllowedControlTypes
Public ComponentName As String
Public ComponentCaption As String
Public ComponentValue As String
Public ComponentAllowedValues() As String

End Class

15. While you could create yet another class for the wizard itself, only a few properties are required,
and because the WizardBase form handles only one wizard at a time, you can just store these as
module-level variables:

#Region “Properties”
Private mFinishBeforeLastStepAllowed As Boolean = True
Private mWizardFormTitle As String
Private mGlobalGraphic As Boolean
Private mGlobalGraphicFileName As String
Private mGlobalGraphicImage As Image

#End Region

Notice that the GlobalGraphic property has three objects associated with it — a string to store
the file location of the image to use, an Image object to store the actual image, and a Boolean
flag to indicate whether a global graphic image is defined in the wizard.

16. You need to expose two properties: a Definition string that the application can use to pass over
the wizard definition in XML, and a SettingValues string that is used by the WizardBase to
return the values the user has chosen. The SettingValues property can be read-only:

#Region “Properties”
Private mFinishBeforeLastStepAllowed As Boolean = True
Private mWizardFormTitle As String
Private mGlobalGraphic As Boolean
Private mGlobalGraphicFileName As String
Private mGlobalGraphicImage As Image

Private mWizardDefinition As String
Private mWizardSettings As String
Public Property WizardDefinition() As String

Get
Return mWizardDefinition

End Get
Set(ByVal value As String)

260

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 260

mWizardDefinition = value
End Set

End Property
Public ReadOnly Property WizardSettingValues() As String

Get
Return mWizardSettings

End Get
End Property

#End Region

17. You need a few more properties and module-level variables. A read-only Cancelled property
helps the application determine whether the user canceled the wizard instead of finishing it
properly. In addition, because the controls are to be added dynamically in each step, keeping
track of a standard control height is handy. Do it once when the form is loaded and then keep
track of the value. This could easily be a constant, but to cater to different user systems that
have a variety of control settings in their system setup, you should calculate the height.

Finally, several variables to keep track of the steps in the wizard will be needed. You need to
know how many steps there are and what step is currently being displayed, and you need to
define an array of WizardStep objects to store all the step information for the wizard. Add all
of this to the Properties region:

Private mControlHeight As Integer
Private mNumberOfSteps As Integer
Private mCurrentStep As Integer
Private mSteps() As WizardStep
Private mCancelled As Boolean = False
Public ReadOnly Property Cancelled() As Boolean

Get
Return mCancelled

End Get
End Property

How It Works — Object Initialization
18. Now that the stage is set, you can start writing the code that drives the wizard. The first thing to

do is write any setup or initialization code that is required when the form first loads. Create an
event handler routine for the form’s Load event and add the following code:

Private Sub WizardBase_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim tempTB As New TextBox
mControlHeight = tempTB.Height + 5

ImportDefinition()

mCurrentStep = 1
Me.Text = mWizardFormTitle + “ - Step “ + mCurrentStep.ToString + “ of “ + _

mNumberOfSteps.ToString
SetForm(mCurrentStep)

End Sub

261

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 261

The first two lines create a TextBox control to determine the default height. The height of the
control (plus a buffer so the dynamically created controls aren’t right up against each other) is
stored in the module-level variable you created earlier.

The next line calls the ImportDefinition subroutine that you’ll define next. This routine
extracts all the information WizardBase needs from the XML that was passed over to it.

The CurrentStep variable is set to the first step, and the text of the form itself is set to the wizard
title, followed by the progress the user has made through the wizard. You could also encapsulate
all of this programming logic into a separate subroutine called InitializeWizardSettings.
This would enable the code to be called from multiple locations — not just when the form loads.

19. The ImportDefinition is where the XML data is first processed. To take advantage of the
XML namespace available within Visual Basic Express, you need to first convert the string con-
taining the XML to an actual XML document object:

Private Sub ImportDefinition()
Dim xmlWizard As New XmlDocument()
xmlWizard.LoadXml(mWizardDefinition)

End Sub

If you get errors while defining the XmlDocument, you need to first add a reference to System.Xml
and then use the Imports statement at the top of the module to import that namespace. As dis-
cussed in Chapter 11, this enables you to create objects without needing to fully define their name
(the alternative would be to define xmlWizard as a System.Xml.XmlDocument object).

20. You can use the SelectSingleNode method of the XmlDocument class to extract the Wizard
node and its children (as discussed earlier in this chapter). This is useful if the XML string
passed to the WizardBase form contains other information that’s not relevant:

Private Sub ImportDefinition()
Dim xmlWizard As New XmlDocument()
xmlWizard.LoadXml(mWizardDefinition)

Dim WizardXML As Xml.XmlNode
WizardXML = xmlWizard.SelectSingleNode(“Wizard”)

End Sub

21. All of the information about the wizard can be found in the Attributes collection, so write the
following loop to iterate through the list and extract the information you want for each of the
Wizard variables:

Private Sub ImportDefinition()
Dim xmlWizard As New XmlDocument()
xmlWizard.LoadXml(mWizardDefinition)

Dim WizardXML As Xml.XmlNode
WizardXML = xmlWizard.SelectSingleNode(“Wizard”)

For Each WizardAttribute As XmlAttribute In WizardXML.Attributes
Select Case WizardAttribute.Name

Case “Title”
mWizardFormTitle = WizardAttribute.Value

Case “GlobalGraphic”

262

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 262

mGlobalGraphicFileName = WizardAttribute.Value
mGlobalGraphicImage = Image.FromFile(mGlobalGraphicFileName)
pnlGraphic.BackgroundImage = mGlobalGraphicImage
mGlobalGraphic = True

Case “AllowFinishBeforeLastStep”
If WizardAttribute.Value.ToLower = “true” Then

mFinishBeforeLastStepAllowed = True
Else

mFinishBeforeLastStepAllowed = False
End If

End Select
Next

End Sub

22. Notice that the GlobalGraphic attribute is used to set all three module-level variables — if the
GlobalGraphic attribute is never found, then the mGlobalGraphic Boolean variable defaults
to False. To finish this routine, you need to create the Steps array. You’ll write a new function
in a moment that extracts Step information, so call that at the end of the ImportDefinition
routine and assign the returned object to the module-level array of WizardSteps:

mSteps = GetSteps(WizardXML)

23. As mentioned in the last step, you now need to create a function that extracts the information
about the steps in a wizard from the XML. First define the function and accept an XmlNode
object as a parameter. Make the return value an array of WizardStep objects:

Private Function GetSteps(ByVal WizardXml As Xml.XmlNode) As WizardStep()

End Function

24. Establish just how many steps there are for this wizard definition. To do that, you can use the
SelectNodes method of the XmlNode class. This works just like the SelectNodes method for
the XmlDocument class and returns a special collection object called an XmlNodeList, contain-
ing all nodes that met the particular search criteria. Because the function accepts the Wizard
node as a parameter, the criteria to pass to the SelectNodes function is simply the name of the
child node —Step— like so:

Private Function GetSteps(ByVal WizardXml As Xml.XmlNode) As WizardStep()

Dim StepsList As Xml.XmlNodeList
StepsList = WizardXml.SelectNodes(“Step”)

End Function

25. Once you have this collection of nodes, you can determine the number of steps and create an
array of WizardStep objects to populate. This array is then returned after you process each
Step node:

Private Function GetSteps(ByVal WizardXml As Xml.XmlNode) As WizardStep()

Dim StepsList As Xml.XmlNodeList
StepsList = WizardXml.SelectNodes(“Step”)

263

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 263

mNumberOfSteps = StepsList.Count
Dim StepArray(mNumberOfSteps) As WizardStep

... processing the nodes will go here

Return StepArray
End Function

26. You can use the For Each loop to process each XmlNode object in the StepsList collection you
just created. As you process each new node, increment a local variable by 1 to keep track of the
current step you are processing, define the array element as a new WizardStep object, and set
the Number property to the local variable:

Private Function GetSteps(ByVal WizardXml As Xml.XmlNode) As WizardStep()

Dim StepsList As Xml.XmlNodeList
StepsList = WizardXml.SelectNodes(“Step”)
mNumberOfSteps = StepsList.Count

Dim StepArray(mNumberOfSteps) As WizardStep

Dim CurrentStep As Integer = 0
For Each StepXml As Xml.XmlNode In StepsList

CurrentStep += 1
StepArray(CurrentStep) = New WizardStep
StepArray(CurrentStep).Number = CurrentStep

Next
Return StepArray

End Function

27. The information for the WizardStep class is in two parts. The first is the name of the step and is
found as an Attribute of the node. Because you’re interested in only one attribute and you
know its name, you can refer to it directly in the Attributes collection like so:

StepArray(CurrentStep).Name = StepXml.Attributes(“Name”).Value

28. The Heading and Description properties are found in individual children nodes of the Step.
Again, you can use the SelectSingleNode method to retrieve them directly. Even better,
because you’re interested only in the content of the node, you don’t even need to create an
XmlNode object — extract the information using the InnerText property:

StepArray(CurrentStep).Heading = StepXml.SelectSingleNode(“Heading”).InnerText
StepArray(CurrentStep).Description = _

StepXml.SelectSingleNode(“Description”).InnerText

29. The Graphic property of a step is optional. You first need to try to find it, and only if it’s found
can you then load the image:

Dim GraphicNode As XmlNode = StepXml.SelectSingleNode(“Graphic”)
If GraphicNode IsNot Nothing Then

StepArray(CurrentStep).Graphic = Image.FromFile(GraphicNode.InnerText)
End If

264

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 264

30. The final property of the WizardStep object is the Components array. Much like the GetSteps
function, you’ll create a separate function called GetComponents that returns an array of
WizardComponent objects, so assign the return value of that function to the Components prop-
erty. The final GetSteps function should look like this:

Private Function GetSteps(ByVal WizardXml As Xml.XmlNode) As WizardStep()

Dim StepsList As Xml.XmlNodeList
StepsList = WizardXml.SelectNodes(“Step”)
mNumberOfSteps = StepsList.Count

Dim StepArray(mNumberOfSteps) As WizardStep

Dim CurrentStep As Integer = 0
For Each StepXml As Xml.XmlNode In StepsList

CurrentStep += 1
StepArray(CurrentStep) = New WizardStep
StepArray(CurrentStep).Number = CurrentStep
StepArray(CurrentStep).Name = StepXml.Attributes(“Name”).Value
StepArray(CurrentStep).Heading = _

StepXml.SelectSingleNode(“Heading”).InnerText
StepArray(CurrentStep).Description = _

StepXml.SelectSingleNode(“Description”).InnerText
Dim GraphicNode As XmlNode = StepXml.SelectSingleNode(“Graphic”)
If GraphicNode IsNot Nothing Then

StepArray(CurrentStep).Graphic = Image.FromFile(GraphicNode.InnerText)
End If
StepArray(CurrentStep).Components = GetComponents(StepXml)

Next
Return StepArray

End Function

31. The last routine that processes the XML is the GetComponents function. This accepts an
XmlNode object as a parameter and returns an array of WizardComponent objects. You extract
the Component nodes in the same way you did the Step nodes in the GetSteps function; using
the SelectNodes method. Because a step can have no Components, you first need to check
whether the SelectNodes method returned a list of nodes. If not, then simply return Nothing.

32. If there is a list of nodes, then declare an array of WizardComponent objects and return that
array after processing the list:

Private Function GetComponents(ByVal StepXml As Xml.XmlNode) As WizardComponent()
Dim ComponentsList As Xml.XmlNodeList
ComponentsList = StepXml.SelectNodes(“Component”)
If ComponentsList Is Nothing Then

Return Nothing
Else

Dim CurrentComponents(ComponentsList.Count) As WizardComponent

... process the Component nodes here

Return CurrentComponents
End If

End Function

265

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 265

33. Define a local variable to keep track of which component you are processing and use For Each
to loop through the ComponentsList collection. At the beginning of each iteration of the loop,
increment the local variable and create a new WizardComponent object:

Dim CurrentComponentCounter As Integer = 0
For Each ComponentXml As Xml.XmlNode In ComponentsList

CurrentComponentCounter += 1
CurrentComponents(CurrentComponentCounter) = New WizardComponent

Next

34. Set three main properties in the WizardComponent class: ControlType, Name, and Caption.
All four component types use these attributes, so iterate through the Attributes collection of
each Component node to extract this information. The ControlType attribute needs to be trans-
lated to the internal Enum that the ComponentControlType property uses:

Dim CurrentComponentCounter As Integer = 0
For Each ComponentXml As Xml.XmlNode In ComponentsList

CurrentComponentCounter += 1
CurrentComponents(CurrentComponentCounter) = New WizardComponent
With CurrentComponents(CurrentComponentCounter)

For Each ComponentAttribute As XmlAttribute In ComponentXml.Attributes
Select Case ComponentAttribute.Name

Case “ControlType”
Select Case ComponentAttribute.Value

Case “RB”
.ComponentControlType = AllowedControlTypes.RadioButton

Case “TB”
.ComponentControlType = AllowedControlTypes.TextArea

Case “CB”
.ComponentControlType = AllowedControlTypes.CheckBox

Case “CM”
.ComponentControlType = AllowedControlTypes.ComboBox

End Select
Case “Name”

.ComponentName = ComponentAttribute.Value
Case “Caption”

.ComponentCaption = ComponentAttribute.Value
End Select

Next
End With

Next

35. The ComboBox components have additional information and use a different technique to deter-
mine the selected (or displayed) value. After extracting the information from the Attributes
collection, you’ll know what ComponentControlType the item is, so check whether it’s a
ComboBox. If it’s not a ComboBox, you can simply set the ComponentValue property to the
InnerText property of the Component node:

If .ComponentControlType = AllowedControlTypes.ComboBox Then
... process AllowedValues here

Else
.ComponentValue = ComponentXml.InnerText

End If

266

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 266

Component nodes that are defined as a ComboBox have a collection of AllowedValue nodes.
You can use the same SelectNodes method to grab the list of AllowedValues nodes to work
on. If the SelectNodes method returns a collection, loop through each node in the list extract-
ing the InnerText property for the value to be used in the ComboBox list:

If .ComponentControlType = AllowedControlTypes.ComboBox Then
Dim AllowedValuesList As Xml.XmlNodeList
AllowedValuesList = ComponentXml.SelectNodes(“AllowedValue”)
If AllowedValuesList IsNot Nothing Then

Dim sValues(AllowedValuesList.Count) As String
Dim AllowedCounter As Integer = 0
For Each AllowedValueXml As Xml.XmlNode In AllowedValuesList

AllowedCounter += 1
sValues(AllowedCounter) = AllowedValueXml.InnerText

Next
.ComponentAllowedValues = sValues

End If
Else

.ComponentValue = ComponentXml.InnerText
End If

You also need to determine which entry in the AllowedValues list is selected by default. Add
the following lines of code to find the Selected attribute; if it’s found, check for a value of
True:

If .ComponentControlType = AllowedControlTypes.ComboBox Then
Dim AllowedValuesList As Xml.XmlNodeList
AllowedValuesList = ComponentXml.SelectNodes(“AllowedValue”)
If AllowedValuesList IsNot Nothing Then

Dim sValues(AllowedValuesList.Count) As String
Dim AllowedCounter As Integer = 0
For Each AllowedValueXml As Xml.XmlNode In AllowedValuesList

AllowedCounter += 1
sValues(AllowedCounter) = AllowedValueXml.InnerText
Dim AllowAtt As XmlAttribute = AllowedValueXml.Attributes(“Selected”)
If AllowAtt IsNot Nothing Then

If AllowAtt.Value.ToLower = “true” Then
.ComponentValue = AllowedValueXml.InnerText

End If
End If

Next
.ComponentAllowedValues = sValues

End If
Else

.ComponentValue = ComponentXml.InnerText
End If

When checking the Selected attribute, you’ll have to compare a string representation of a
Boolean value. In this case, you’re looking for True, but because the XML file could contain any
variation of capitalization (for example, TRUE, True, true, or even TrUE), you first have to convert
it to some sort of common denominator. Fortunately, String variables have a built-in function
called ToLower that converts all the text to lowercase; you can use that in this situation. For the
record, they also have a ToUpper function that converts the string to all uppercase characters.

267

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 267

How It Works — Runtime Form Customization
36. The next task for this application is to create the routines that customize the form for each step.

You saw the SetForm routine being called in the form’s Load event handler in step 18. That sub-
routine enables and disables the navigation buttons depending on what step the user is up to in
the wizard. It also sets the Heading and Description areas, the form’s title bar text, and loads the
image for the step if there is one. The final and most important part of SetForm is to dynami-
cally create the components for the step so the user can interact with the wizard.

Define the SetForm subroutine so that it accepts a single parameter that indicates what step it
should use. You could just interrogate the module-level variable that is keeping track of the cur-
rent step, but doing it this way enables you to create a subroutine that can be called indepen-
dently of that value:

Private Sub SetForm(ByVal CurrentStep As Integer)
End Sub

When the wizard is on step 1, it doesn’t make sense to have the Start and Previous buttons
enabled, so disable them. If the wizard has only one step, the Next button should also be disabled
and the Finish button should be enabled because the first step is also the last step:

Private Sub SetForm(ByVal CurrentStep As Integer)
If CurrentStep = 1 Then

btnStart.Enabled = False
btnPrevious.Enabled = False
If mNumberOfSteps > 1 Then

btnNext.Enabled = True
btnFinish.Enabled = mFinishBeforeLastStepAllowed

Else
btnNext.Enabled = False
btnFinish.Enabled = True

End If
End If

End Sub

If the current step is the last step, then disable the Next button and enable the Finish button; and
if the wizard has more than one step, enable the Previous and Start buttons. Finally, if the step is
neither the first step nor the last step, enable all of the buttons, remembering to allow the Finish
button to be enabled only if the flag is set to allow the user to finish the wizard before navigat-
ing to the final step:

Private Sub SetForm(ByVal CurrentStep As Integer)
If CurrentStep = 1 Then

btnStart.Enabled = False
btnPrevious.Enabled = False
If mNumberOfSteps > 1 Then

btnNext.Enabled = True
btnFinish.Enabled = mFinishBeforeLastStepAllowed

Else
btnNext.Enabled = False
btnFinish.Enabled = True

End If
ElseIf CurrentStep = mNumberOfSteps Then

btnNext.Enabled = False
btnFinish.Enabled = True

268

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 268

If mNumberOfSteps > 1 Then
btnPrevious.Enabled = True
btnStart.Enabled = True

End If
Else

btnNext.Enabled = True
btnPrevious.Enabled = True
btnStart.Enabled = True
btnFinish.Enabled = mFinishBeforeLastStepAllowed

End If
End Sub

37. You need to set the text shown in the form’s title bar and assign the appropriate values to the
Heading label and the Description text box. Add these lines directly after the button state logic:

Me.Text = mWizardFormTitle + “ - Step “ + mCurrentStep.ToString + “ of “ + _
mNumberOfSteps.ToString

lblHeading.Text = mSteps(CurrentStep).Heading
txtDescription.Text = mSteps(CurrentStep).Description

38. The only other part of the form that needs customizing besides the dynamically created compo-
nents is the graphic on the left. Check whether the current step’s Graphic object has an image
loaded into it. If so, set the BackgroundImage property of the pnlGraphic control to that image.
Otherwise, set it to the global graphic. Note that if no global graphic is defined, this simply resets
the background image of the panel to blank:

If mSteps(CurrentStep).Graphic Is Nothing Then
pnlGraphic.BackgroundImage = mGlobalGraphicImage

Else
pnlGraphic.BackgroundImage = mSteps(CurrentStep).Graphic

End If

39. The last part of the form that is customized based on the step being shown are the controls that
are dynamically created and added to the pnlControls object you added to the main part of
the form. Rather than do all the individual control work in the SetForm subroutine, you create
four additional subroutines for the four control types — AddCheckBox, AddRadioButton,
AddTextArea, and AddComboBox.

This means you need to iterate only through the Components array for the current WizardStep
object and call the appropriate routine for each component. To cater to steps that do not have
any Components, such as an introductory page, ensure that the Components object actually
refers to something first:

If mSteps(CurrentStep).Components IsNot Nothing Then
With mSteps(CurrentStep)

For MyCounter As Integer = 1 To .Components.GetUpperBound(0)
Dim ThisControlTop = mControlHeight * (MyCounter - 1)
Select Case .Components(MyCounter).ComponentControlType

Case AllowedControlTypes.CheckBox
AddCheckBox(.Components(MyCounter), ThisControlTop)

Case AllowedControlTypes.ComboBox
AddComboBox(.Components(MyCounter), ThisControlTop)

Case AllowedControlTypes.RadioButton
AddRadioButton(.Components(MyCounter), ThisControlTop)

269

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 269

Case AllowedControlTypes.TextArea
AddTextArea(.Components(MyCounter), ThisControlTop)

End Select
Next

End With
End If

Each of the four Add subroutines accept two parameters: a WizardComponent object that con-
tains all of the properties necessary to customize the control, and a value to set the top position
of the control. The Top value is calculated based on the module-level variable you set in step 18
and is multiplied by the control’s position in the array.

40. All of the Add routines follow a similar pattern, but because each control type is different, there
are some variations as to how to set values or what controls are needed. The easiest one to cre-
ate is the CheckBox. You set its Name, Text, and Checked properties from values found in the
WizardComponent object and some position and size properties so that it is in the correct spot
on the form.

41. The Name of each CheckBox is prefixed with a CB so that it’s easy to determine each control’s
type when you’re saving the values entered by the user. You could use a special piece of func-
tionality called reflection to look at the object and determine its type, but it’s just as easy to do it
this way. When you’ve set all of the required properties, you add it to the Controls collection
of the pnlControls object. The AddCheckBox routine appears as follows:

Private Sub AddCheckBox(ByVal ThisWizardComponent As WizardComponent, _
ByVal ThisControlTop As Integer)
Dim newCB As New CheckBox
With newCB

.Name = “CB” + ThisWizardComponent.ComponentName

.Text = ThisWizardComponent.ComponentCaption
If ThisWizardComponent.ComponentValue = “True” Then

.Checked = True
Else

.Checked = False
End If
.Left = 0
.Top = ThisControlTop
.Width = pnlControls.Width

End With
pnlControls.Controls.Add(newCB)

End Sub

42. Adding RadioButton controls is almost exactly the same. The only difference is that you use
a RadioButton control instead of a CheckBox, and you set only the Checked property if the
ComponentValue is Selected. Otherwise, repeat the same code as previously shown.

43. A TextBox control is slightly different, which is why the subroutine is called AddTextArea.
This is because you actually need two controls: a Label and a TextBox. The former is to tell
the user what the latter is for.

You should note a couple of extra things in the following code. First, the label is prefixed with
LTB to differentiate it from the other controls. Second, the size of the text shown in the label is
calculated using the MeasureString method. This enables you to accurately position the
TextBox so that it lines up against the Label. Finally, the Label control needs its Top value set

270

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 270

slightly lower than the TextBox so that the text in both aligns vertically. The final result is as
follows:

Private Sub AddTextArea(ByVal ThisWizardComponent As WizardComponent, _
ByVal ThisControlTop As Integer)
Dim newLTB As New Label
Dim newLTBTextSize As New System.Drawing.SizeF
With newLTB

.AutoSize = True

.Name = “LTB” + ThisWizardComponent.ComponentName

.Text = ThisWizardComponent.ComponentCaption

.Left = 0

.Top = ThisControlTop + 3
newLTBTextSize = Me.CreateGraphics.MeasureString(.Text, .Font)

End With
Dim newTB As New TextBox
With newTB

.Name = “TB” + ThisWizardComponent.ComponentName

.Text = ThisWizardComponent.ComponentValue

.Left = newLTBTextSize.Width

.Width = pnlControls.Width - .Left

.Top = ThisControlTop
End With
pnlControls.Controls.Add(newLTB)
pnlControls.Controls.Add(newTB)

End Sub

44. The last control type is the most complex — the ComboBox. Like the TextBox, it also requires a
Label, but you also need to populate its Items collection with the AllowedValues you
extracted from the XML definition.

Add the associated Label control as you did for the TextBox shown previously. The only addi-
tional code you need to add relates to the items in the ComboBox itself — you need to create a
collection of items and set the SelectedItem property:

Private Sub AddComboBox(ByVal ThisWizardComponent As WizardComponent, _
ByVal ThisControlTop As Integer)
...add a label similar to the TextBox one
Dim newCM As New ComboBox
With newCM

.Name = “CM” + ThisWizardComponent.ComponentName
.Text = ThisWizardComponent.ComponentValue
If ThisWizardComponent.ComponentAllowedValues IsNot Nothing Then

For ValueCounter As Integer = 1 To
ThisWizardComponent.ComponentAllowedValues.GetUpperBound(0)

.Items.Add(ThisWizardComponent.ComponentAllowedValues(ValueCounter))
Next

End If
.SelectedItem = .Text
.Left = newLCMTextSize.Width
.Width = pnlControls.Width - .Left
.Top = ThisControlTop

End With
pnlControls.Controls.Add(newLCM)
pnlControls.Controls.Add(newCM)

End Sub

271

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 271

How It Works — Control Event Handlers
45. You’re just about done — believe me. The only parts of the WizardBase left to write code for are

the event handler routines for the button clicks and several routines to store the values the user
enters after completing a particular step.

The three navigation buttons — Next, Previous, and Start — all do the same thing but set the
WizardBase to a different step in the sequence. The best way to approach this is to create a sub-
routine that accepts the step number to navigate to and have all of the three event handlers call
it in turn.

Whenever users navigate from one step to another, you must first store the values they’ve
entered in the current step. Once they’ve been saved, you can then clear the Controls collec-
tion of the pnlControls component to be ready for the next step, set the module-level variable
to the requested step, and call the SetForm routine to set up the next step settings. The values
are saved through the StoreNewValues subroutine you’ll create in step 50. The following code
defines this routine:

Private Sub NavigateToStep(StepNumber)
StoreNewValues()
pnlControls.Controls.Clear()
mCurrentStep = StepNumber
SetForm(mCurrentStep)

End Sub

Once you have this subroutine defined, the three Click event handlers are easy to create:

Private Sub btnNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNext.Click
NavigateToStep(mCurrentStep + 1)

End Sub
Private Sub btnPrevious_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnPrevious.Click
NavigateToStep(mCurrentStep - 1)

End Sub
Private Sub btnStart_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnStart.Click
NavigateToStep(1)

End Sub

46. There are two remaining buttons — Cancel and Finish. In Cancel’s Click event, you should ask
users if they’re sure about canceling the wizard; and if they answer yes, set the Cancelled flag
and close the form:

Private Sub btnCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancel.Click
If MessageBox.Show(“Are you sure you want to cancel the wizard?”, _

“Confirm Cancel”, MessageBoxButtons.YesNo, MessageBoxIcon.Question) = _
Windows.Forms.DialogResult.Yes Then
mCancelled = True
Me.Close()

End If
End Sub

272

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 272

47. The Finish button returns to the topic of this chapter — XML. Before closing the form and return-
ing control to the application that called WizardBase, you need to create an XmlDocument, pop-
ulate it with the values set by the user for every component in each step, and then save a String
representation of it to return to the application.

First create the event handler routine and create a new XmlDocument object to do all your XML
processing on. When the processing is finished, you need to assign the InnerXml value (a string
representation of the XML in the XmlDocument) to the module-level mWizardSettings string
that the application can retrieve through the read-only property, WizardSettingValues.
Finally, close the form:

Private Sub btnFinish_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFinish.Click
Dim myXmlDocument As New XmlDocument

mWizardSettings = myXmlDocument.InnerXml
Me.Close()

End Sub

48. The System.Xml namespace comes with a whole raft of classes and associated methods
designed to process XML easily, including the XPath.XPathNavigator object. Previous ver-
sions of .NET had limited functionality in this object, but the version of .NET that comes with
Visual Basic Express has everything you need to add XML nodes to an XmlDocument object. To
actually do the writing of the child nodes, you’ll need an XmlWriter that is initialized with a
new child node added by the XPathNavigator:

Private Sub btnFinish_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFinish.Click
Dim myXmlDocument As New XmlDocument
Dim MyNavigator As XPath.XPathNavigator = myXmlDocument.CreateNavigator()
Using MyWriter As XmlWriter = MyNavigator.PrependChild()

End Using
mWizardSettings = myXmlDocument.InnerXml
Me.Close()

End Sub

Note the use of the Using statement. This tells Visual Basic Express to create the object tem-
porarily and then dispose of it when the End Using statement is encountered. It’s like combin-
ing the definition of an object and the use of a With statement, but with an added bonus that the
object is destroyed when you’re finished with it.

49. Write a loop to iterate through each WizardStep object in the mSteps array and then a subordi-
nate loop to iterate through the individual components. Use the WriteStartElement,
WriteElementString, and WriteEndElement methods of the XmlWriter object to add the
values to the XmlDocument object, as shown here:

Private Sub btnFinish_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnFinish.Click
Dim myXmlDocument As New XmlDocument
Dim MyNavigator As XPath.XPathNavigator = myXmlDocument.CreateNavigator()
Using MyWriter As XmlWriter = MyNavigator.PrependChild()

273

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 273

MyWriter.WriteStartElement(“WizardValues”)
For iStepCounter As Integer = 1 To mSteps.GetUpperBound(0)

With mSteps(iStepCounter)
If .Components IsNot Nothing Then

MyWriter.WriteStartElement(.Name)
For iComponentCounter As Integer = 1 To .Components.GetUpperBound(0)

MyWriter.WriteElementString(.Components(iComponentCounter). _
ComponentName, .Components(iComponentCounter).ComponentValue)

Next
MyWriter.WriteEndElement()

End If
End With

Next
MyWriter.WriteEndElement()

End Using
mWizardSettings = myXmlDocument.InnerXml
Me.Close()

End Sub

How It Works — The Final Pieces
50. There are two subroutines left, both related to the storing of values as the user navigates away

from a step. The first subroutine is called StoreNewValues and iterates through the Controls
collection of the pnlControls component. For each control, the code finds the associated
WizardComponent object by extracting the name from the Control’s name. It uses the
FindComponent subroutine to do this:

Private Sub StoreNewValues()
For Each CurrentControl As Control In pnlControls.Controls

Dim myWizardComponentEntry As Integer = _
FindComponent(CurrentControl.Name.Substring(2))

Next
End Sub

51. If the corresponding WizardComponent is found (label controls won’t be found, for example),
then the CurrentControl object needs to be converted to the particular type of control that it
is. Once the specific typed object has been created, then the most appropriate property is used to
set the ComponentValue property in the WizardComponent, with the final code for this routine
appearing as follows:

Private Sub StoreNewValues()
For Each CurrentControl As Control In pnlControls.Controls

Dim myWizardComponentEntry As Integer = _
FindComponent(CurrentControl.Name.Substring(2))

If myWizardComponentEntry > 0 Then
With mSteps(mCurrentStep)

Select Case CurrentControl.Name.Substring(0, 2)
Case “CB”

Dim myCB As CheckBox = CType(CurrentControl, CheckBox)
.Components(myWizardComponentEntry).ComponentValue = _

myCB.Checked.ToString.ToLower
Case “CM”

Dim myCM As ComboBox = CType(CurrentControl, ComboBox)
If myCM.SelectedItem Is Nothing Then

274

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 274

.Components(myWizardComponentEntry).ComponentValue = myCM.Text
Else

.Components(myWizardComponentEntry).ComponentValue = _
myCM.SelectedItem.ToString

End If

Case “RB”
Dim myRB As RadioButton = CType(CurrentControl, RadioButton)
If myRB.Checked = True Then

.Components(myWizardComponentEntry).ComponentValue = “Selected”
Else

.Components(myWizardComponentEntry).ComponentValue = “NotSelected”
End If

Case “TB”
Dim myTB As TextBox = CType(CurrentControl, TextBox)
.Components(myWizardComponentEntry).ComponentValue = myTB.Text

End Select
End With

End If
Next

End Sub

52. The last subroutine is a simple one —FindComponent. All it does is iterate through the
WizardComponent array for the current WizardStep object, looking for a Component whose
names matches the parameter passed in. If it finds one, it returns the array position:

Private Function FindComponent(ByVal ComponentName As String) As Integer
With mSteps(mCurrentStep)

For ComponentCounter As Integer = 1 To .Components.GetUpperBound(0)
If .Components(ComponentCounter).ComponentName = ComponentName Then

Return ComponentCounter
End If

Next
End With
Return 0

End Function

53. Yes, you’re done! Now all you need to do is test it. Open Form1.vb in Design view and add a
Button to the form. In the Click event of the button, create an instance of the WizardBase
form, set the WizardDefinition property, and show the form. Upon the return (that is, when
the WizardBase form is closed), display a message box containing the values the user set in the
wizard:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim frmMyExportWizard As New WizardBase
Dim sUserExportSettings As String
Dim sWizardDefinition As String = _

My.Computer.FileSystem.ReadAllText(“C:\MyWizard\WizardDefs.xml”)
With frmMyExportWizard

.WizardDefinition = sWizardDefinition

.ShowDialog()

275

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 275

If Not .Cancelled Then sUserExportSettings = .WizardSettingValues
End With
frmMyExportWizard = Nothing
MsgBox(sUserExportSettings)

End Sub

54. As a sample file for the Wizard Definition, use the following XML. This XML defines a wizard
you could use to customize the experience of the Export functionality you built into the
Personal Organizer earlier in this chapter. The wizard has four steps with varying numbers of
controls, and the last step specifies a custom image. This XML file (WizardDefs.xml) and asso-
ciated images are available in the download for this book at www.wrox.com. If you don’t have
the images, create your own, or simply remove the graphic elements from the XML:

<Wizard Name=”MyExportWizard” Title=”Export Settings”
GlobalGraphic=”C:\MyWizard\MyWizard.bmp” AllowFinishBeforeLastStep=”True”>

<Step Name=”Introduction”>
<Heading>Introduction</Heading>
<Description>Welcome to the Export Settings Wizard</Description>

</Step>
<Step Name=”ExportSettings1”>

<Heading>Export File Settings</Heading>
<Description>Please choose the settings that best suit your

needs.</Description>
<Component ControlType=”TB” Name=”Filename”

Caption=”Filename:”>C:\Temp\ExportData.xml</Component>
<Component ControlType=”CB” Name=”OverwriteExisting” Caption=”Overwrite

existing file?”>False</Component>
</Step>
<Step Name=”ExportSettings2”>

<Heading>Included Data</Heading>
<Description>Select which kind of export you want to perform.</Description>
<Component ControlType=”RB” Name=”Complete” Caption=”All

information”>Selected</Component>
<Component ControlType=”RB” Name=”NamesOnly” Caption=”Names

only”>NotSelected</Component>
<Component ControlType=”RB” Name=”NamesAndAddresses” Caption=”Names and

addresses only”>NotSelected</Component>
<Component ControlType=”CM” Name=”DateFormat” Caption=”Format of dates”>

<AllowedValue Name=”YYYYMMDD” Selected=”True”>YYYY/MM/DD</AllowedValue>
<AllowedValue Name=”DDMMYYYY”>DD/MM/YYYY</AllowedValue>
<AllowedValue Name=”MMDDYYYY”>MM/DD/YYYY</AllowedValue>

</Component>
</Step>
<Step Name=”Completed”>

<Heading>Completed</Heading>
<Description>The Export Settings Wizard is now completed. Click Finish to

close the wizard and have your data exported to the location
specified.</Description>

<Graphic>C:\MyWizard\Completed.bmp</Graphic>
<Component ControlType=”CB” Name=”SaveSettingsForFuture” Caption=”Save

these settings for next time?”>True</Component>
</Step>

</Wizard>

276

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 276

55. Run the application and click the button on Form1. After a moment, during which the
WizardBase form initializes all the classes based on the XML, it presents the wizard. You can
change the settings and navigate through the wizard to your heart’s content. Figure 12-3 shows
how it looks in action.

Figure 12-3

This WizardBase control can be used for all kinds of wizards. All you need to do is write an XML defini-
tion specifying the number of steps and what components should be shown in each step. The exercises
at the end of this chapter will give you some additional ideas about what to do with it, but even they are
just the tip of the iceberg.

Summary
XML is a powerful file format you can use to store pretty much anything. When it is used in conjunction
with XSD, you can force data to comply with your own informational structure so that it won’t hurt the
internals of your application. Using the System.Xml namespace, you can create XmlDocuments, navi-
gate them using XPath, and find specific parts of an XML file with SelectSingleNode and
SelectNodes.

In this chapter, you learned to do the following:

❑ Harness the power of XML in different parts of your applications

❑ Transfer information to and from databases using the XML file format

❑ Use the System.Xml objects to build XML dynamically

In the next chapter, you will learn about security and encryption, two topics that work together to pro-
tect your application and its data from unwanted attacks.

277

Using XML

18_595733 ch12.qxd 12/1/05 1:44 PM Page 277

Exercises
1. Add events to the Wizard form so the calling application knows when the user navigates

between steps.

2. Add an optional attribute to the TextArea component in the Wizard form that enables you to
insert a Browse for File dialog.

3. Create an XML Schema Document (XSD) to enforce the structure of the Wizard Definition XML
file created in the last Try It Out.

278

Chapter 12

18_595733 ch12.qxd 12/1/05 1:44 PM Page 278

13
Securing Your Program

While running your program on a local computer might work fine because you know what you’re
doing, an increasing number of applications can be executed over a network or even across the
Internet. You’ll see how you can deploy your own programs in the next chapter, but you first must
understand the ramifications of the network boundaries your application must cross in order to be
able to run successfully.

In this chapter, you learn about the following:

❑ Program security from both role and code viewpoints

❑ Encryption methods that can be used to protect your data

Program Security
Applications can be executed through a variety of means, some intentional, some not. If your pro-
gram is something simple, such as a calculator, you might not care who runs it or what they do
with it — after all, the functionality is generic and nonthreatening. However, if the application
stores sensitive information, or calculates and updates important data, it might be a lot more
important to control who has access to the information and functionality.

The decision about who can execute what can be considered from two different perspectives. First,
you could decide that someone with a particular position, or role, has the authority to access the
activities that your application can perform. The alternative is that the actual function itself, the
code, is what drives access to the system and data.

These two different approaches to controlling access to the functionality and data in any given
programming solution are both represented in the .NET Framework, and as a Visual Basic pro-
grammer you’re able to harness both. Because security is actually quite a complex topic, this chap-
ter introduces the concepts on which most programming security concerns are based and presents
the theory behind the approaches with some small examples of how they work in code. For more
advanced coverage of security for programs based on the .NET Framework (as Visual Basic
Express applications are), take a look at the Visual Basic .NET Code Security Handbook by Eric
Lippert (Wrox, 2002).

19_595733 ch13.qxd 12/1/05 1:45 PM Page 279

Role-Based Security
As mentioned earlier, sometimes you might want to control who has access to an application, or parts
of its functionality, based on the role of the user. A manager might have the capability to approve a pay
increase, but the secretary doesn’t have that same capability. However, a secretary could be approved to
order office supplies, whereas a tech support person could only check their status.

Using role-based security in your Visual Basic Express program enables you to specify these multiple
levels of approval within your application’s functionality. You could even allow different users access
to the same functionality but with different limits based on their role — for example, the manager could
withdraw $500 petty cash, the secretary could take $100, and the tech support person only $10.

To use role-based security, your application needs access to the information that Windows makes avail-
able about the current user. In fact, Windows allows an individual to access different applications under
different user accounts, so it returns the information about the user account that is being used for the
current application’s process.

This information concerns what is known as an identity. An identity is usually based on a Windows
account but it doesn’t have to be — as long as Windows knows how to interrogate it and the authority it
has, it can be represented as an identity.

The .NET Framework, on which Visual Basic Express is based, gives you access to the identity through a
Principal object. This object is what you can use to determine a particular identity’s access privileges.
This is done by determining the roles to which the Principal object belongs.

Each role is a defined group of access privileges. For example, you might have a role of “CanPrint,”
which allows printing functionality, and another role of “CanWithdraw,” which allows access to the
petty cash account. When an identity is created, it is assigned certain roles, so a user who is a manager
might have both the CanPrint and CanWithdraw roles, while the tech support person has access to only
the CanPrint role (see Figure 13-1). Your program can check whether the Principal object associated
with the current user running your application belongs to the specific role you need before continuing to
allow access to the functionality.

Role-based security in the .NET Framework is performed through permissions in conjunction with the
Principal, specifically PrincipalPermission, objects that can do the authorization checking for you.
However, you can abbreviate the whole process of retrieving the Principal object and the roles to which
it belongs by using Visual Basic Express and the My namespace. In Chapter 8, you saw a very limited
example of this kind of checking of roles with the following example:

With My.User
If .IsAuthenticated Then

Me.Text = “Personal Organizer - logged in as “ & .Name
If .IsInRole(“BUILTIN\Administrators”) Then

btnViewOptions.Visible = True
Else

btnViewOptions.Visible = False
End If

End If
End With

280

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 280

Figure 13-1

This code is using the shortcuts provided through the My namespace to directly access the current user.
Because you most likely won’t ever need to access the credentials about any other user during the execu-
tion of your application, this shortcut is immensely useful.

Breaking down the code reveals the following actions:

❑ My.User returns the Principal object related to the currently logged on user.

❑ IsAuthenticated is a Boolean flag that indicates whether the Principal is properly logged on or
whether it needs authentication.

❑ IsInRole is another Boolean flag, but this one tells you whether the current Principal belongs to
a specified role.

In this example, the IsInRole method explicitly states the role name. This is particularly useful for your
own custom-built roles, but the built-in roles that Windows creates can be accessed through an enumera-
tion of BuiltInRole:

❑ AccountOperator — Has responsibility for creating and maintaining user accounts

❑ Administrator — Complete and unrestricted access to the computer

❑ BackupOperator — Members of this role can perform backup operations.

❑ Guest — The most limited role group; guests can perform only a small group of actions

❑ PowerUser — Someone who has more responsibility than a regular user but not complete
access, such as an Administrator

❑ PrintOperator — Allows control over printers

❑ Replicator — For network domain replication

CanPrint

CanWithdraw

TechSupportGuy

Manager

281

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 281

❑ SystemOperator — Can operate the current computer

❑ User — The role to which normal users are assigned

A Closer Look at Identity and Principal
It’s helpful to understand the differences between Identity and Principal objects so that when you write
your programs, you can use the correct one. At their core, Identity objects represent individual users,
and roles are the groups to which those identities can belong. A Principal object incorporates both of
these concepts to return both the identity and role in which your application is interested.

Identity objects have a name and authentication type. As you will normally be creating standard Windows
applications, you’ll be most interested in the WindowsIdentity object, which represents an identity
from a Windows authentication context. You’ll be able to retrieve the identity’s name and whether that
user is authenticated when your application looks at the object.

When your code is actually executing, there is always a Principal object that identifies the security context
under which it is running. The main class to use, if you’re not going to use the shortcuts provided through
the My namespace, is the WindowsPrincipal class, found in the System.Security.Principal
namespace.

Using this class, you’ll find that it has a property called Identity that returns the current identity object
associated with this principal, and an IsInRole function that helps you identify the roles to which the
identity belongs.

To illustrate how you can use roles in your code, the following Try It Out enables the state of buttons
based on the roles to which the current user belongs.

Try It Out Using Role-Based Security
1. Start Visual Basic Express and create a new Windows Forms application. Add two buttons to the

form and label them Print and Withdraw.

2. Create an event handler routine for the Load event of the Form by double-clicking anywhere in
the form. Add the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
With My.User

If .IsInRole(ApplicationServices.BuiltInRole.User) Then
Button1.Enabled = True

Else
Button1.Enabled = False

End If
If .IsInRole(ApplicationServices.BuiltInRole.BackupOperator) Then

Button2.Enabled = True
Else

Button2.Enabled = False
End If

End With
End Sub

282

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 282

3. Run the program. If the user belongs to the User role, the Print button will be enabled, and if the
user belongs to the Administrator role, the Withdraw button will be enabled. Figure 13-2 shows
the result if the user doesn’t belong to the Administrator role.

Figure 13-2

Code-Based Security
Visual Basic Express programs have an alternative to limiting their functionality based on the role groups
to which the user belongs — code-based security, sometimes called code access security. Because programs
can be executed from almost anywhere, computer systems are often locked down so tightly against
viruses and worms that normal applications have little hope of having the access to the system they
need to do their work.

At the other end of the scale, if a user has membership in one or more of the more powerful roles such as
the Administrator group, there’s little stopping them from running any kind of program they want, which
could indeed lead to unexpected activities that could destroy important information on the computer.

Besides the intentional malicious code found in programs like viruses, there’s always the chance of an
unintended bug in the code that could damage the computer system in some way. Windows by itself
usually allows programs of any kind to run if they’ve been installed locally and blocks access to system
functionality only if the application is running over the Internet via web scripts.

The .NET Framework comes with code access security procedures built right into the bodywork of the
system. Every bit of code is signed with a particular category of access that it expects to have, so you can
have total control over what you expect from each program. If you know your application doesn’t ever
access the file system, then you can set up the code access protocols for it to exclude that security require-
ment. Then, if a user is running your application and it has been compromised by a virus or worm that
tries to access the file system, the attempt is foiled because the application doesn’t have access.

This also benefits you as the designer of the application by protecting against unwanted results due to
bugs in your code.

Having control over your program’s access in this way enables system administrators to create a corre-
sponding security policy that can associate the correct permissions with the code. They can even gather
applications that require the same functionality into what’s known as a code group and change the access
on everything at once.

When the code executes, it can ask for the permission it needs and, if rejected, handle the exception
gracefully. This enables you to write your program so that it performs certain functionality only when it
has the right set of permissions, or ends completely if the necessary permission sets are not allowed.

283

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 283

You’ll see more about code access security in Chapter 14 when dealing with deployment. As you’ll see,
when you configure your ClickOnce deployment project, you can specify what access your application
expects to have and build the required code access permissions right into the installer.

Cryptography and Encryption
While application security provides control over who can access what functionality in your program, it
doesn’t necessarily protect your data from unauthorized access. Instead, you need to protect your infor-
mation in some other way, which is where the science of cryptography comes in. Cryptography is the pro-
cess used to secure data so that it cannot be changed or retrieved without the other person knowing how
to extract the information.

This enables you to transfer your data over an insecure path such as the Internet and it can also be stored
in a computer file so that anyone with access to your computer doesn’t automatically have access to the
information on it. Using cryptographic processes, you can encrypt data at one end, transfer it to the desti-
nation, and decrypt it at the other. Anyone looking at the data between the encryption and decryption
phases is not be able to read it easily, if at all, without having the key to unlock the algorithms used to
scramble the information.

You have a number of ways to encrypt data, and the option you choose is usually dependent on how
the encrypted data is going to be used. If you’re using it internally, then you don’t need to publish a key
to the data, and you can store the decryption routines within your program; however, if you need to
send the data to someone else, then you need to give them the information they need to unscramble the
contents.

All encryption processes fall into four broad categories, called cryptographic primitives. You must decide
which of these primitives, or a combination of them, to use for your particular requirements. In order of
usage, they are as follows:

❑ Secret Key Encryption — Also known as symmetric cryptography, secret key encryption involves
the use of a single key that is used to both encrypt and decrypt the data. This key is used to
transform the data itself and is normally kept private, hence the name.

❑ Public Key Encryption — An increasing number of applications need to transfer their data to
another application that is only partially trusted. The sending program doesn’t want to expose
the information used to encrypt its data and so it uses a set of two keys — a private key for
encrypting the data and a public key for decrypting the information. This is known as asymmet-
ric cryptography.

❑ Signing — Rather than encrypt the data itself, you can choose to use a signing process that gen-
erates a unique digital signature for the information and the sender. It can be used as a verifica-
tion process to ensure that it really was the expected person who sent the data.

❑ Hashing — Hashing data is a process that has been around for a very long time. It transforms
the data into a fixed-length byte array that is unique and can be unhashed without the data
being changed in any way.

Of these four categories, everything ultimately boils down to either secret or public key encryption, so
these two methods of cryptography are worthy of a closer look.

284

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 284

Secret Key Cryptography
Probably the most common way of protecting sensitive data is to use secret key encryption. A single
secret key value is used to both encrypt and decrypt the information. This means that anyone with the
secret key value can extract the information, so it’s important that you carefully consider where to store
the secret key in this situation.

Using a secret key, a symmetric cryptographic provider such as Rijndael, TripleDES, or RC2 encrypts the
data one block at a time. Doing this enables them to run extremely fast, as the blocks used are typically
quite small — usually less than 32 bytes each.

As each block is encrypted, it uses a special process called cipher block chaining (CBC) to chain the
data together. The CBC uses the secret key in combination with another special value called the
Initialization Vector (usually abbreviated to IV) to do the actual transformation of the data to and
from the encrypted form.

The Initialization Vector is used to ensure that duplicate blocks are encrypted into different forms, thus
confusing the output even further. If the same IV value were used for every block being encrypted, the
original content of two identical blocks would be encrypted into the same form. An unauthorized appli-
cation could use this as a basis for determining common characteristics about your encrypted data and
potentially determine the secret key’s value.

The IV is used by the cipher block chaining process to link the information in a previous block into the
encryption of the next block, thus producing different outputs for text that was originally the same. The
IV is also used to perform a similar process on the first block, so depending on the rest of the data, even
common first block content will be different.

Visual Basic Express can use any of the secret key encryption algorithms that the .NET Framework
provides, of which there are four: DESCryptoServiceProvider, RC2CryptoServiceProvider,
RijndaelManaged, and TripleDESCryptoServiceProvider. You’ll use this last encryption method
in the Try It Out at the end of this section to encrypt and decrypt the password string in the Personal
Organizer application.

The problem with secret key encryption is that the two sides of the cryptographic equation must have
the same key and IV. If the two processes are in separate applications, and have to communicate these
values to each other somehow, there is a chance that the secret key values can be intercepted. That’s why
there is an alternative — public key encryption.

Public Key Cryptography
Public key encryption uses two keys to do the cryptographic transformations. The two keys work hand
in hand to encrypt and decrypt data. You have a private key that is known only to yourself and other
authorized users, but the public key can be made public so that anyone can access it.

The public key is related to the private key through mathematical equations — what the equations are
depends on the particular encryption provider you use — and data that is encrypted with the public key
can be decrypted only with the private key, while data transformed by the private key can be used only
by those who have the public key in their possession.

285

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 285

Typically, you would use public key encryption if you were dealing with another party that is not part of
your internal organization. In this case, too many factors in communicating the private key to the other
party could be broken down, so the public key alternative is much better — only you can create the data
using the private key, so when the other application tries to decrypt it using your public key, it is suc-
cessful only if it was sent by you. However, that’s not the best way to use this kind of cryptography.

The trick to public key encryption is that both parties have their own pair of private and public keys.
Therefore, Person A gives Person B his public key, while Person B gives Person A her public key. When
they want to send information to each other, they use the other person’s public key, knowing that it can
be decrypted only by the private key held by that person (see Figure 13-3).

Figure 13-3

Visual Basic Express has access to two types of public key encryption through the DSACryptoService
Provider class and the RSACryptoServiceProvider class.

Because encryption is quite complex to understand, the following Try It Out walks you through the pro-
cess of creating encryption and decryption routines for the Personal Organizer application. You’ll use
these to encrypt the password of the user when it’s stored in the database, but the general techniques
discussed here can be applied to most other situations that warrant encryption.

Try It Out Encrypting a Password
1. Start Visual Basic Express and open the Personal Organizer application you’ve been working on

throughout the book. If you haven’t completed all of the exercises, you can find an up-to-date
version of the project in the Code\Chapter 13\Personal Organizer Start folder of the
downloaded code you can find at www.wrox.com.

2. Open the GeneralFunctions.vb module. This is where you’ll create the EncryptString
and DecryptString functions. Normally, you would store the keys that define the encryption

Person A owns:

Person A encrypts message with Public Key B
 Person B decrypts message with Private Key B

Person A decrypts message with Private Key A
 Person B encrypts message with Public Key A

Private Key A
Public Key A

Public Key B

and knows:

Person B owns:

Private Key A
Public Key A

Public Key B

and knows:

286

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 286

elsewhere so they cannot be decompiled out of your program, but for this sample, store the
Initialization Vector and the secret key values in the application itself so it’s easier to see what’s
going on.

3. Because you are using several IO- and Security-related functions, add two new Imports state-
ments at the top of the code module. In addition, define the Initialization Vector at this point
as an array of Bytes. These values can be any kind of hexadecimal values — the sample here
works fine if you don’t want to create your own:

Imports System.Data
Imports System.IO
Imports System.Security.Cryptography

Module GeneralFunctions
Private myDESIV() As Byte = {&H12, &H34, &H66, &H79, &H91, &HAB, &HCD, &HEF}

4. Create a new function called EncryptString. Have it accept two string parameters for the text
to be encrypted and the encryption key to use and a return value of a string that contains the
encrypted text. Because encryption can sometimes cause errors if everything isn’t just right,
wrap the entire process in a Try block:

Public Function EncryptString(ByVal PlainTextString As String, _
ByVal EncryptionKey As String) As String
Try

Catch exCryptoError As Exception
Return exCryptoError.Message

End Try
End Function

When you initially create this function, Visual Basic Express displays a warning indicator underneath
the End Function statement. This is because it has recognized that under some conditions, the function
does not return a string value to the calling code, which could potentially cause errors. This warning will
be displayed until all possible paths through the code return a value.

5. Check the encryption key parameter. Because you are going to use TripleDES as the encryption
algorithm, you need a key of 24 bytes, so if the string is anything less than that, exit the function
with an error. Otherwise, convert the string to an array of Bytes to use in the cryptography
functions:

Public Function EncryptString(ByVal PlainTextString As String, _
ByVal EncryptionKey As String) As String
Try

Dim DESKey() As Byte = {}
If EncryptionKey.Length = 0 Then

Return “Error - Key must be supplied”
Else

DESKey = System.Text.Encoding.UTF8.GetBytes(EncryptionKey.Substring(0, 24))
End If
... the code to perform the encryption will go here

Catch exCryptoError As Exception
Return exCryptoError.Message

End Try
End Function

287

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 287

You’ll notice that the conversion of the string to a Byte array uses the System.Text.Encoding
namespace to convert the string contents. This Try It Out uses UTF8 as the text format, but you
could use Unicode instead. Either way, the aim is convert the string to a fixed array of byte val-
ues, and you need to use the GetBytes function to do this.

6. This encryption function is going to use the TripleDES encryption algorithm. TripleDES stands
for Triple Data Encryption Standard, a common encryption standard. To use the encryption,
you first must define an instance of the appropriate Provider object, which you pass into a
CryptoStream object to perform the actual encryption. Define the TripleDES provider directly
after the End If and before the Catch statement:

Dim CSPSym As New TripleDESCryptoServiceProvider

7. You also need to convert the text that is to be encrypted into another array of byte values,
because all encryption methods use byte arrays to do the processing. You can use the same
GetBytes method immediately after the declaration of CSPSym:

Dim inputByteArray() As Byte = _
System.Text.Encoding.UTF8.GetBytes(PlainTextString)

8. When you pass the bytes to be encrypted into the cryptography functionality, you need some-
thing to store the output. You can use any kind of Stream object for this purpose, and if you
were going to be writing a significant amount of data, you could write it to a file, or even an
XML document. However, because you’re going to encrypt only the password, and do every-
thing internally within the program, you can use a simple MemoryStream to keep the output.

A MemoryStream object is, as you might guess, an object that stores the information in memory
and knows nothing about file structures or writing to disk. It can be found in the System.IO
namespace but because you used an Imports statement for that namespace, you can define it
like so:

Dim EncryptMemoryStream As New MemoryStream

9. To complete the setup, you need to create a CryptoStream that does the encryption transforma-
tion. The CryptoStream object needs a stream that contains the data to be encrypted (and after
the encryption has occurred, the output), the type of cryptography function to be performed on
the stream, and the mode, to indicate whether you are encrypting the data (Write mode) or
decrypting the data (Read mode):

Dim EncryptCryptoStream As New CryptoStream(EncryptMemoryStream, _
CSPSym.CreateEncryptor(DESKey, myDESIV), CryptoStreamMode.Write)

The second parameter of this object’s instantiation is created by calling the CreateEncryptor
method of the TripleDESCryptoServiceProvider object you defined earlier, passing in the
secret key and initialization vector information. This is the core of the encryption process.
Without a correct key or vector, the encryption does not work as expected.

10. You can now use the CryptoStream object in much the same way as you would any other
stream object. Call the Write method to pass in the plaintext. Because you’re encrypting a sim-
ple string, you can do this in one pass, specifying the entire length of the byte array to be writ-
ten all at once. Because you’re writing this to memory, you’ll need to tell Visual Basic Express
that you’ve finished writing to the CryptoStream by calling FlushFinalBlock:

EncryptCryptoStream.Write(inputByteArray, 0, inputByteArray.Length)
EncryptCryptoStream.FlushFinalBlock()

288

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 288

11. Your original plaintext has now been encrypted, and you can return it to the calling code.
However, because the string could contain unprintable characters and you might choose to store
this encrypted string in a file that might not accept extended character sets, you should first con-
vert it to base 64. This is particularly useful if the ultimate endpoint for the encrypted string is
an XML file.

Return Convert.ToBase64String(EncryptMemoryStream.ToArray())

The final function should look like this:

Public Function EncryptString(ByVal PlainTextString As String, _
ByVal EncryptionKey As String) As String
Try

Dim DESKey() As Byte = {}
If EncryptionKey.Length = 0 Then

Return “Error - Key must be supplied”
Else

DESKey = System.Text.Encoding.UTF8.GetBytes(EncryptionKey.Substring(0, 24))
End If

Dim CSPSym As New TripleDESCryptoServiceProvider
Dim inputByteArray() As Byte = _

System.Text.Encoding.UTF8.GetBytes(PlainTextString)

Dim EncryptMemoryStream As New MemoryStream
Dim EncryptCryptoStream As New CryptoStream(EncryptMemoryStream, _

CSPSym.CreateEncryptor(DESKey, myDESIV), CryptoStreamMode.Write)
EncryptCryptoStream.Write(inputByteArray, 0, inputByteArray.Length)
EncryptCryptoStream.FlushFinalBlock()

Return Convert.ToBase64String(EncryptMemoryStream.ToArray())

Catch exCryptoError As Exception
Return exCryptoError.Message

End Try
End Function

12. You can now create the DecryptString function that takes the encrypted string and processes
it back into plaintext. The function is almost identical to EncryptString except that it first con-
verts from a base-64 string into a byte array and to return a readable UTF8 string upon return.
The only other difference is in the creation of the CryptoStream object, where you need to call
the CreateDecryptor method to specify what kind of transformation should be performed.
The full function appears as follows (with the lines that differ highlighted):

Public Function DecryptString(ByVal EncryptedString As String, _
ByVal EncryptionKey As String) As String
Try

Dim DESKey() As Byte = {}
Dim inputByteArray(EncryptedString.Length) As Byte

If EncryptionKey.Length = 0 Then
Return “Error - Key must be supplied”

Else
DESKey = System.Text.Encoding.UTF8.GetBytes(EncryptionKey.Substring(0, 24))

End If

289

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 289

Dim CSPSym As New TripleDESCryptoServiceProvider

inputByteArray = Convert.FromBase64String(EncryptedString)

Dim DecryptMemoryStream As New MemoryStream
Dim DecryptCryptoStream As New CryptoStream(DecryptMemoryStream, _

CSPSym.CreateDecryptor(DESKey, myDESIV), CryptoStreamMode.Write)

DecryptCryptoStream.Write(inputByteArray, 0, inputByteArray.Length)
DecryptCryptoStream.FlushFinalBlock()

Return System.Text.Encoding.UTF8.GetString(DecryptMemoryStream.ToArray())

Catch exCryptoError As Exception
Return exCryptoError.Message

End Try
End Function

13. For this Try It Out, you change the UserPasswordMatches and CreateUser functions to call
the EncryptString or DecryptString methods to get the appropriately formatted string. As
mentioned earlier, you would normally keep the secret key elsewhere in the code, but for this
example, you keep it in the functions themselves.

14. Locate the UserPasswordMatches function in GeneralFunctions.vb. Previously, you simply
compared the Password field in the database to the password the user entered, but now you
use the DecryptString function to first convert the database password to plaintext. Locate the
line where the comparison is performed. It will look like this:

If .Item(0).Item(“Password”).ToString.Trim = Password Then

Replace this code with a call to DecryptString. You first need to define a string variable that
contains a 24-character secret key. You should then check the return value of the function
against the password value the user entered:

Dim SecretKey As String = “785&*(%HUYFteu27^5452ewe”
Dim DecryptedPassword As String = DecryptString(_

.Item(0).Item(“Password”).ToString.Trim, SecretKey)
If DecryptedPassword = Password Then

15. Edit the CreateUser function so that it encrypts the password before storing it in the database.
Locate the line of code that adds the new record to the POUser table (the AddPOUserRow func-
tion). Change it so that it passes over the encrypted password string instead. You need to define
the same secret key (otherwise, the decryption in UserPasswordMatches won’t work!) and call
EncryptString to perform the transformation:

Dim SecretKey As String = “785&*(%HUYFteu27^5452ewe”
Dim EncryptedPassword As String = EncryptString(Password, SecretKey)

CreateUserTable.AddPOUserRow(UserName, UserName, EncryptedPassword, Now, Now, 0)

16. You can now run the program, but you’ll most likely find that you cannot get past the login
screen. This is because the UserPasswordMatches function is expecting the password fields
in the database to be already encrypted, but you’ve got plaintext passwords in there.

290

Chapter 13

19_595733 ch13.qxd 12/1/05 1:45 PM Page 290

To get past this, add the database to the Database Explorer and remove the row that contains
your user information. Next time you start the program, it prompts you to create a password as
a new user and subsequently encrypts the password into the database.

Summary
Securing your program and data is essential in today’s computing environment. You need to tell your
users what kind of access your application needs so that it can execute correctly, and you also need to
protect your data from external factors that could retrieve it for unwanted uses. With careful application
of role- and code-based security mechanisms, you can ensure that your program runs with the required
permissions and that unauthorized users are not able to access it. Encryption algorithms exposed by the
.NET Framework can be used in Visual Basic Express to scramble your data.

In this chapter, you learned to do the following:

❑ Analyze your program for appropriate security mechanisms and choose role- or code-based
security for any given application

❑ Encrypt your sensitive data so that it cannot be retrieved by unwanted parties

Exercise
1. Although decrypting the password from the database might work for comparing it to

the string the user has entered, it’s not as secure as it could be. Change the logic so that the
UserPasswordMatches function encrypts the entered string and compares it to the already
encrypted database field to ensure that the fields match.

291

Securing Your Program

19_595733 ch13.qxd 12/1/05 1:45 PM Page 291

19_595733 ch13.qxd 12/1/05 1:45 PM Page 292

14
Getting It Out There

All of the information you’ve learned so far has helped you create some great applications, but
there’s a slight problem — they’re all still sitting on your own computer. If you want someone else
to be able to run the program, you need to be able to get it to them.

Deployment of Visual Basic Express programs is very straightforward. In fact, you could simply
copy the application file to another computer and chances are good it will run without a problem
if the computer keeps current with the latest Windows Updates. But Visual Basic Express comes
with additional tools to build a proper installation program for your projects, including ClickOnce
deployment.

In this chapter, you learn about the following:

❑ Installing your programs to another computer

❑ Using ClickOnce to deploy your application via the web

❑ Creating additional settings to enable your applications to automatically update

Installing the “Hard” Way
Visual Basic Express programs are ready to be run as soon as you’ve built them. When Visual Basic
Express compiles the project, it creates an application file along with the necessary configuration
files (if needed at all) in either the Debug or Release subfolders of the project’s bin directory. (This
is dependent on your project settings and the main options page in Visual Basic Express.) The
options for building the project can be found by selecting Projects and Solutions ➪ Build and Run
from the Options dialog of Visual Basic Express, which is visible only when you have the Show All
Settings option checked.

To enable it to run on another computer, all you need to do is copy these files to a location on the
destination computer and run the main executable. If you have an application that is more compli-
cated and requires additional files, you just need to include these extra files when you do the copy
process.

20_595733 ch14.qxd 12/1/05 1:46 PM Page 293

Visual Basic Express programs depend on the .NET Framework version 2.0. However, if you try to run an
application on a computer system that does not have the correct version of the Framework installed, it will
end cleanly with a simple message informing the user that the appropriate version must be installed. Also
included with the message is the version information so the user can find and install it properly.

If you don’t believe it’s this simple, create a standard Windows Forms application, put a button on it,
and use the MessageBox command to display “Hello World.” Build the project and run the application
to ensure that it works as you expect. Then, locate the .exe file in the bin\Debug folder in the project
directory, copy it to another computer via disk or network, and run the application on the destination
computer.

If the computer has the correct version of the .NET Framework installed, you will be able to run the
application without error (see Figure 14-1), and clicking the button will produce the expected message
dialog box. Otherwise, you’ll get an error message telling you to install the proper version of the .NET
Framework. You can even e-mail the application to someone and they can run it immediately.

Figure 14-1

The problem with this method is that for more complex projects, you run the risk of missing an impor-
tant file, and if you use more advanced techniques such as web services or database access, you might
not even realize that the file you need is not present. Fortunately, Microsoft anticipated this and included
a new deployment technology with Visual Basic Express to ease the process of installation — ClickOnce.

Just ClickOnce
While copying the files you need using normal Windows methods might sound straightforward,
ClickOnce deployment makes it even easier. Using ClickOnce, you can create a setup package, complete
with web page, that enables people to download and run your application over the network or Internet.
You can even have the application accessible only from the website on which you store it, so if the user is
not logged on, they won’t be able to run it at all.

ClickOnce does all the hard work for you, including monitoring for updates, ensuring that the user has
the correct version of the software, and automatically updating it if need be. In addition, ClickOnce ensures
that each application is self-contained and therefore not affected by another application’s installation.

Previous installation options used another technology known as Windows Installer. Windows Installer
did indeed help automate the deployment process but it had some issues that tended to make the end
user experience more cumbersome than it should have been. The top two problems with Windows
Installer were the updating process and security concerns:

294

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 294

❑ When Windows Installer applications were installed, any time an update was applied, the
application had to be completely reinstalled. The best option was to ship a new update installer
that applied changes right across the application so that the new files were integrated with the
old files. ClickOnce can apply any changes to the application automatically; and by default,
only updated parts of the program will be reinstalled through the process.

❑ To install an application using Windows Installer, the user had to be an administrator or have
administrator privileges, even if the application itself didn’t need them. Using ClickOnce, you
can specify the level of security access the application requires, thus enabling users without
administrator privileges to control the installation.

ClickOnce capitalizes on previous advances made in technology that enabled applications to run over
the network or web, and optionally enables you to deploy your program in such a way that it doesn’t
require any files at all to be installed on the user’s computer. Doing this requires that the user have a
constant connection to the server that hosts the application files, but it means that any updates to the
project are automatically flowed through to the end users the next time they run the application, without
any installation process being required at all.

Alternatively, publishing your ClickOnce application to a CD or normal file location enables you to dis-
tribute the program in more traditional ways to the users. In this situation, you can include an autorun
file so that the CD automatically starts the setup procedure when inserted into the user’s CD drive.

To illustrate the simplicity of deploying your application using ClickOnce, the next Try It Out walks
through the creation of a simple application and the deployment of the application to a website. It shows
you how easy it is to install, run, and uninstall your Visual Basic Express applications.

Try It Out Using ClickOnce
1. Start Visual Basic Express and create a new Windows Application project. Name it

ClickOnceTestApp so you can find it later. Make sure you save the project as well.

2. Open the My Project page and click the Publish tab to view the ClickOnce deployment options.
Click the Updates button to display the update options for this project. Make sure the checkbox
for “The application should check for updates” is selected, as shown in Figure 14-2, and click
OK to save the setting.

3. Publish the application without making any changes to it. To use ClickOnce deployment, you
can either right-click the project in the Solution Explorer and choose Publish, or run the Build ➪

Publish ClickOnceTestApp menu command.

4. After a moment, the Publish Wizard starts. First you must choose the location for the installa-
tion files. By default, Visual Basic Express chooses a local web server location, but you can over-
ride this to send the installation directly to a remote FTP site or network location, or even to the
normal file structure of your computer.

If you choose to create the installation on the local file system, the wizard will also prompt you
to specify how users will ultimately install the application so it knows what supporting files it
needs to include. If you choose anything else, such as the default web server location, it will
assume the appropriate setup (in this case, a web setup).

295

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 295

Figure 14-2

Leave the installation location as the default and click Next. At this point, you need to choose
whether the application runs over the network or Internet or whether it is installed on the local
machine so the user can run it without being connected. This latter option is the default, so click
Next to continue.

5. A summary page is displayed reminding you of your options and what happens next. Click
Finish to close the Publish Wizard and commence the building process. Visual Basic Express
first recompiles the application project and then assembles all the necessary files into a
setup.exe ready for installation.

6. Once it’s done, it copies that file, along with all the required files to enable the setup process to
work, to the specified location. When this copy process is complete, it shows the default installa-
tion page ready for installation (see Figure 14-3). By default, it creates the page content based on
your system and Visual Basic Express settings, but you can override these settings manually
(you’ll see how to do that later in this chapter).

7. Install the application by clicking the Install button. The ClickOnce deployment process first
verifies that it has all the necessary application files (see Figure 14-4) and then launches the
installation. The verification process is particularly important for subsequent installations
because it is this process that can also check for updates.

Once the solution has been installed, the program is automatically started, and you see the
blank form you created at the beginning of this Try It Out. A shortcut is also added to the Start
menu so that the program can be run at a later date.

8. The application doesn’t do much yet — in fact, it just sits there — so the next few steps show you
how easy it is to update the application to do something. Stop the application from running and
return to Visual Basic Express.

296

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 296

Figure 14-3

Figure 14-4

9. Add a button to the form and create an event handler for the button’s Click event. Add a com-
mand to show users a message box when they click the button:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
MessageBox.Show(“Hello World”)

End Sub

10. Save the project and publish it again using the same default options. This time, when the instal-
lation web page is displayed, you should see that the version number has been incremented to
indicate that there is a new version to install.

11. Rather than click the Install button to explicitly do the update, run the ClickOnceTestApp short-
cut you find in the Start menu to run the application in the same way a user normally would.
Because of the Updates setting you selected in step 2, when the application starts, it checks for
any updates first (see Figure 14-5).

297

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 297

Figure 14-5

If you click Skip, the old version of the application without the button is executed, so click OK
instead to update the application with the changes you made. ClickOnce automatically copies
the changed files to the installation folder on the computer and runs the new version of the
application.

12. Uninstalling a ClickOnce application is just as easy. Bring up the Add or Remove Programs dia-
log you find in the Control Panel and scroll through the list of installed programs until you find
ClickOnceTestApp.

13. Select the entry and click the Change/Remove button. A simple installation dialog is displayed
by your ClickOnce solution, enabling you to restore the application to a previous installation, or
to remove the application entirely (see Figure 14-6).

14. Select “Restore the application to its previous state” and click OK. The installation process
undoes the last set of changes to the application; and if you run the program again, you are pre-
sented with the form without a button.

15. Return to the Add or Remove Programs dialog and this time remove the application completely
(the Restore option should no longer be available because no more updates are installed).

Figure 14-6

298

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 298

ClickOnce Options
Now that you’ve seen how easy it is to incorporate ClickOnce deployment into your solution, it’s time
to look at how to configure the installation settings to suit your own requirements. ClickOnce is so much
a part of the Visual Basic Express development experience that it warrants three pages in the My Project
settings form — general publishing settings, along with security and digital signing configuration
options.

The main Publish tab is where the majority of the work is done (see Figure 14-7). You should first set the
location for where the application is to be published. You’ll find that the default setting sends it to a local
website URL that includes the project’s name. The ellipsis button enables you to change this location by
browsing through the local file system (including any network drives or folders you’re connected to) or
the local web server.

Figure 14-7

The other two options you can choose from are a remote FTP site and a remote website. The FTP option
requires that you specify the FTP address and the settings needed to log onto the FTP server. Publishing
directly to a remote website is possible only if the website has FrontPage Extensions installed, so if your
site doesn’t have FrontPage, you need to create the installation locally and then copy it using some other
mechanism.

If you do choose to publish it locally, but intend for it to be then copied to another location — for exam-
ple, on a remote website — you should then specify the Installation URL. This is used by the installation
process to verify files and configuration options, so you need to include this if you are not going to be
installing from the original publish location.

By default, your application is made available offline as well as online. This is the normal behavior for a
Windows application because it enables the user to run the application without being connected to the
Internet, but if you require total control over the version of software your users are running, then setting
the application to be online only tells the deployment solution not to copy any of the application files to
the local machine and instead to retrieve them as needed from the published location.

299

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 299

Visual Basic Express does a pretty good job of analyzing what files are required for a successful deploy-
ment, and you can double-check the file list by clicking the Application Files button. Each file defined in
the application will be listed. Some project files may be hidden in the list if Visual Basic Express decided
that they’re not required, but you can check the Show All Files checkbox to display them.

The Application files dialog also enables you to include any files that are not part of the core application
executable and define different download installation groups for them. This would enable your users to
optionally install these additional components if they want them.

The Prerequisites dialog gives you the capability to control how system prerequisites are installed for your
application (see Figure 14-8). As noted previously, all Visual Basic Express applications require the .NET
Framework 2.0 to be installed on the computer first, so the prerequisite for that component is checked by
default, but other components such as SQL Server Express are included only if you need them.

Once you’ve selected the components you want to include as part of your deployment process, you need
to indicate the source from which users should retrieve the component installation packages. The default
option is to use the component vendor’s website — which in this case is Microsoft itself. Leaving this
option selected means that if the user installs your application and the deployment determines that
.NET Framework 2.0 (and any other marked prerequisites) is not installed, it downloads it from
Microsoft’s website.

Figure 14-8

If you prefer, you can choose to include the setup packages for the prerequisites in your own deploy-
ment solution, or you can enter a different location where the installation can find the files.

You saw the Updates page in the previous Try It Out (refer to Figure 14-2), but the details weren’t
explained at that point. Previously, including the capability to automatically update your application
once a user installed it on his or her system was a time-consuming and often costly process that included

300

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 300

subscription fees with specialized companies. These organizations (such as InstallShield) monitored your
applications and, whenever an end user checked for updates, handled the updating process for you.

With Visual Basic Express, taking care of the update process is a matter of a couple of clicks to indicate
that you are going to be doing updates and how the application should handle them. The obvious first
option is to indicate that the application should check for updates. Without this checked, once the pro-
gram is installed, it continues to run without checking for any changes that might have been made since
the deployment.

If you need to ensure that the program is always run with the latest updates, select the “Before the appli-
cation starts” option for update checking. Whenever the user runs the application, it checks the publish
or update location for any updates made. If it finds an update, it is applied before the user can run the
application. As you saw in the previous Try It Out, if the installation is available in offline mode, the user
can choose to skip the update process.

Alternatively, the application can always start up with its current set of files and then check for updates
once the application is running. This allows the update process to be performed in the background so it
doesn’t affect the startup sequence for the program. If updates were found, they are applied automati-
cally the next time the user starts the application. You can control how often the update checking should
be performed, from every time the application runs to a specified number of hours, days, or weeks.

If you have changed the application significantly, old versions might not be able to be updated automati-
cally. Or you might decide that the old version should be left unchanged and only people with more
recent builds installed are entitled to the latest update. You can specify a minimum required version for
the application so that only more recent builds can find and accept this update, whereas old versions
continue to run without the changes being installed.

The last set of options in the main Publish section of My Project deals with the installation itself (Figure
14-9). You can specify an installation language if it’s different from the default that Visual Basic Express
is using, along with the publisher’s name (that’s you!), and the product name. The product name setting
is handy if you’ve used an unusual name for your project but want the program to be known as some-
thing else.

At this point, you can also specify a URL for users to go to for product support and the name of the web
page that is built as part of a web deployment setup. Because this page is HTML, and you most likely
will have modified it after the initial publishing process so it fits in with the style of your website, includ-
ing additional links or information, you don’t want the file to be generated every time the publish pro-
cess takes place. You can disable this file generation by unchecking “Automatically generate deployment
web page after every publish.”

The other options found in this page can usually be left with their default values. If you don’t want the
application to automatically start after a successful installation, you can remove the check. CD installa-
tions can include the autorun.inf file, to automatically start the setup process when they’re inserted
into a CD drive; and when files are copied to a remote web server, you can tell Visual Basic Express to
verify that the copy process was successful.

301

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 301

Figure 14-9

ClickOnce Has Security and Signing, Too
While all of these settings are enough for most application installations, you might find that you need
additional options to enable your application to run correctly, and that’s where the Security and Signing
pages of My Project come into play.

When your application runs, it can perform only actions that it has been allowed to perform. If the pro-
gram is installed locally on the normal file system, this means it can do pretty much anything; but if it’s
running over a network or from a website, it won’t have access to many parts of the operating system.

The Security page (shown in Figure 14-10) allows you to enable ClickOnce Security options and specify
how much security access the application needs to run. By default, ClickOnce security is not enabled,
which means you must have full rights to run and install the application. Check the Enable ClickOnce
Security Settings checkbox to gain access to the other settings.

You can specify that the application is a full trust program. This means the user must have installed it
using administrator privileges and that it is running in a local context that allows it full access to the
operating system.

However, if your program doesn’t need access to everything, you can mark it as a partial trust applica-
tion and then choose the permissions that you require. You should first choose the security zone from
which the program is installed. By default, Visual Basic Express enables you to select Local Intranet
(your normal home or office network), Internet (for website deployments), and Custom (which starts out
with a blank slate of no permissions).

302

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 302

You should then scroll through the permission list and mark each one you require for inclusion if it differs
from the Zone defaults. You can also exclude unnecessary permissions that belong to the selected zone.

Figure 14-10

Every permission set has additional properties as well, enabling you to fine-tune exactly what your
application needs to be able to do when it executes. For example, the FileDialogPermission set can
be filtered so that only open or save dialogs can be shown, while the SqlClientPermission set can be
customized to allow access only to SQL Servers using ADO.NET, and even to restrict access to applica-
tions that use blank passwords.

Using a digital signature, you can enable your application to be successfully deployed over the Internet
without it being blocked as being unsecure. Visual Basic Express enables you to create temporary local
digital signatures directly from the Signing page of My Project (see Figure 14-11).

If you have a real digital certificate, you can select it from the Certificate Store on your computer or
from a physical file. Once you have selected the certificate you want to use, you can click the More
Details button and get a window similar to what users see when they are examining the certificate
upon download.

If you sign the assembly itself, you can protect it from hacking attempts, and Visual Basic Express can
generate the strong name key file for you if you don’t already have one. Whether you use the strong
name in the certificate or create a new one, you can also password-protect the key file as well as add
additional security to the signing process.

The default certificate Visual Basic Express creates for your application is not password protected, so this
is an important consideration when you’re creating your deployment solution.

303

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 303

In this last Try It Out, you will create the deployment project for the Personal Organizer application
you’ve been building over the course of the book. You’ll set the update options and select prerequisites
and other settings so that the application can be successfully installed on another computer.

Figure 14-11

Try It Out Advanced Settings in ClickOnce
1. Start Visual Basic Express and return to the Personal Organizer application that you’ve been

working on. If you haven’t completed all the exercises up to this point, you’ll find an up-to-date
project in the Code\Chapter 14\Personal Organizer Start folder, which you can use as a
launching point for this Try It Out.

2. You can leave most of the settings for publishing to their default values, particularly in the
Signing and Security pages, but you’ll want to specify a couple of configuration options in the
main Publish page. Open the My Project form and select the Publish page. Make sure the appli-
cation can be run in offline mode so your users don’t have to be connected to the installation
server in order to be able to run the application.

In addition, make sure the automatic increment of the publish version is checked so that each
subsequent build of the deployment solution is identified with a new version number.

3. Click the Prerequisites button. When you connected the database to the project back in Chapter
7, you had the option to include it as a local file in the project. If you selected this option, you
will find that the SQL Server 2005 Express prerequisite is already checked; otherwise, you need
to select it to tell ClickOnce to include that requirement. Once you’ve verified that the prerequi-
sites are selected, click OK to return to the main Publish options.

A side effect of including the database as a local file is that it will also be installed and listed in the
Application Files list. If your intention is that the database reside in a central location and the different
installations all point to that file, then you can exclude it from the installation list.

304

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 304

4. Click the Updates button and ensure that the application checks for updates (and that it does so
before every execution). This way, users always have the option to download and install the lat-
est version if you update the product later.

5. The last thing to do is to set the text that will appear in the installation page. Click the Options
button and change the publisher to Wrox’s Starter Kit and the product name to My Personal
Organizer. Leave all the other settings as is and click OK to save the changes.

6. Publish the project by selecting Build ➪ Publish Personal Organizer. Because you’ve already
selected all of the options you want, you don’t have to go through all the steps of the wizard.
Just click Finish to start the publish process.

7. Once the publishing has been completed, you are presented with a web page that should look
like the one shown in Figure 14-12. Run the application via either the Install button or the
Launch hyperlink (because you already have both .NET Framework 2.0 and SQL Server 2005
Express installed); and after ClickOnce has verified that you have all of the correct files, you
should be presented with the familiar splash screen and login form you’ve been working with
all along.

8. Congratulations! You’ve successfully deployed the Personal Organizer application.

Figure 14-12

305

Getting It Out There

20_595733 ch14.qxd 12/1/05 1:46 PM Page 305

Summary
ClickOnce deployment makes the process of getting your program into the hands of your users incredi-
bly easy. Without having to think about it, your project can be built into an installer, copied to a web
location, and automatically publish updates so that end users always have the latest version, whether
they’re on a local PC or working on the program over the web.

In this chapter, you learned to do the following:

❑ Create an installer for your project to give it to other people

❑ Use the web to install and update your applications

❑ Create accompanying web pages so users know how to install your application

You’ve made it to the end of the book. By now you’re familiar with the way Visual Basic Express works.
You should have a solid understanding of the language, the user interface design mechanics and compo-
nents, and the process of how to create and use databases. You also now know how to secure your appli-
cation and get it out to your users.

Along the way, Visual Basic Express makes it easy for you at every step with wizards, aids, and help.
You’re now set to go ahead and make your own applications, easily but still including advanced tech-
niques that professional developers will envy. Congratulations.

Exercise
1. Update the Personal Organizer application to verify that updates work through the ClickOnce

publishing process.

306

Chapter 14

20_595733 ch14.qxd 12/1/05 1:46 PM Page 306

A
Need More? What’s on

the CD and Website

This book contains all of the information you need to get started with Visual Basic Express. From
beginning to end, you can walk through the creation of a full-blown application that uses every-
thing from simple text boxes and buttons to database connectivity, XML processing, web access,
and more.

But having the information and theory isn’t enough — you need Visual Basic Express itself if
you want to put into practice any of the techniques you’ve learned throughout the pages of this
book. Fortunately, Visual Basic Express is bundled with the book on the accompanying CD, along
with SQL Server Express and a number of other development tools that might come in handy as
you create your own applications. Here’s a quick overview of the main applications you’ll find
on the CD:

❑ Visual Basic 2005 Express Edition — The main topic of this book, Visual Basic Express is
a complete development environment that uses Visual Basic as the underlying language
and couples it with the latest Integrated Development Environment produced by Microsoft.
It is powered by the .NET Framework 2.0, which means it is completely up-to-date, with
all of the new additions and enhancements made for programmers.

❑ SQL Server Express — SQL Server Express is a free version of SQL Server 2005 and can
be installed on single PCs for database programming. It offers all of the performance of
its bigger brother without the complexity of the enterprise features that SQL Server 2005
boasts.

❑ MSDN Library — An essential tool, the MSDN Library contains all of the documentation
for Visual Basic Express. This includes a large section of “How Do I . . . ?” questions that
answer commonly asked queries by walking you through examples in much the same
way as this book does with its Try It Out sections. If you like this book’s style, you’ll feel
immediately at home with this section of MSDN.

In addition, the MSDN Library comes with complete notes on the .NET Framework 2.0
and all of its classes and members.

21_595733 appa.qxd 12/1/05 1:46 PM Page 307

❑ Visual Web Developer 2005 Express Edition — To do any kind of web development, you need
Web Developer Express. This tool enables you to use the same Visual Basic code you’ve learned
to use in this book to support applications that can run over the Internet.

There’s more, too. The CD also contains other Microsoft-supplied utilities and development tools if
you’re still hungry for more information and aids.

On the Web, Too
In addition to the resources found on the CD, you’ll find the complete code listings for all of the
sample projects and exercises found in this book (assembled together into a downloadable package) at
www.wrox.com.

All of the code is broken down into subfolders for each chapter, and then subfolders within the chapters
for each exercise and Try It Out programming project. For the larger projects, you’ll find multiple start-
ing points so it’s easier for you to get started on the exact project you’re looking for. Whenever a chapter
references the Personal Organizer application that is used as a basis for most of the book, you’ll find at
least two versions of the associated project — a starting version for which none of the chapter’s code has
been implemented and a complete version containing everything covered in that chapter.

Because the accompanying SQL Server database also grows as you progress through each chapter, you’ll
find an instance of it within each chapter’s folder in a subfolder named Personal Organizer Database. In
addition, every exercise has a separate project so you can examine the solution in detail.

Go to www.wrox.com and locate the page for this book by searching for the title or author name or go
through the category listing. When you display the details page for Wrox’s Visual Basic 2005 Express
Edition Starter Kit by Andrew Parsons, you’ll find a link labeled Download Code.

This link will take you to the download page, where you will find links for getting the complete code
that accompanies this book, with options for HTTP and FTP downloads.

308

Appendix A

21_595733 appa.qxd 12/1/05 1:46 PM Page 308

B
.NET — The Foundation

Visual Basic Express uses a technology known as .NET to give it the power and flexibility it exhibits
during the development process. If you’re unfamiliar with .NET in general and the .NET Framework
in particular, this appendix should serve to introduce you to the main concepts of the technology.

The best place to start with Visual Basic Express is to actually examine just what Microsoft
has done in the development arena and what all of the excitement concerning .NET is about.
Understanding these two basic concepts will help immensely in your understanding of the total
package that is Visual Basic Express.

Microsoft Visual Studio
Microsoft first released their development tools quite a few years ago. For example, MS-BASIC
was first released for DOS. One glaring problem with their initial few releases was the lack of inte-
gration. BASIC programmers wrote in BASIC and called other BASIC modules, C programmers
kept to themselves, and so on.

When Windows was released, there was a recognizable need to provide several development tools
in one package. Visual Studio was created to do just that. Initially, Visual Studio was more of a
marketing term than anything else. Each language still had its own Integrated Development
Environment (IDE) with benefits and disadvantages.

Some languages (such as Visual Basic) were even quite inferior in the way they compiled code,
and limited access to the more powerful parts of the Windows operating system in such a way as
to render them toylike.

As each iteration of Visual Studio was released, the languages got closer in terms of performance,
functionality, and ease of development. The different tools were also growing closer together to
provide a more cohesive whole, but even the last version before .NET, Visual Studio 6.0, had com-
pletely different IDEs for the two primary languages, Visual Basic and Visual C++.

Therefore, to recap, the goal of Visual Studio was to provide developers with a cohesive set of tools
with a variety of languages so that programmers could use their preferred language while using a
common environment and set of functionality. This would result in the different programs being able
to interact more fluidly and with a lot less headache compared to previous offerings for developers.

22_595733 appb.qxd 12/1/05 1:47 PM Page 309

One of the problems with providing a tight, flawless coupling of the different languages and their IDEs
was that the languages didn’t lend themselves to being merged in such a fashion. Visual Basic didn’t
support full object-oriented practices, Visual C++ had a myriad of ways of defining an element for the
graphical user interface (GUI), and the list went on.

Obviously, to achieve a true Visual Studio, where all languages are supported equally, with the same IDE
and same set of functionality, drastic measures would need to be taken. In stepped .NET.

Microsoft .NET
Microsoft listened to the users of their development tools and went back to the drawing board. Their
goal was to design the next generation not only for developers but also for the underlying structure and
services that would provide a comprehensive whole for all users, without requiring anyone to learn
multiple methods of achieving solutions.

One overriding force in their design was the Internet, and so it’s no surprise that web standards and pro-
tocols were used in the basic design for this next set of technologies, all fitting under the banner of .NET.

It doesn’t stop there, however. The huge growth of the Internet fostered increasingly demanding needs
for proper distributed computing. When the last set of technologies were created, they were really devel-
oped for single PCs, or PCs on a local area network that was tightly controlled by specialized technicians
such as network administrators.

With the Internet playing an increasingly large part in our computing lives, programmers found them-
selves with a requirement to provide solutions for users who weren’t under the control of network admin-
istrators; and in fact, in the last couple of years, there are now more computers “out of control,” so to
speak, than there are those that are “in control.”

Because of this, the state of a user’s computer system is very hard to determine and really drives home
the requirement of having standard communications protocols coupled with heavy-duty distributed
technologies in place. The standard protocols have been introduced with the popularization of the
Internet, with HTTP being the most easily identified one.

However, more recent standards, namely Extensible Markup Language (XML) and Simple Object Access
Protocol (SOAP), have provided the way for the latest tools by giving developers a standard way of
defining data and a standard method for transferring that data. This enables us to develop true web
applications as opposed to web “presentations” that are available through the use of HTML and other
similar presentation-level technologies.

As a brief aside, Microsoft is so committed to following standards in order to open their development
platform as much as possible that they submitted the .NET Framework to the European Computer
Manufacturers Association (ECMA) board and had it ratified as a standard in its own right. As a
result, other platforms besides Windows, such as the Mono project for Unix, now have a version of the
Framework available.

In addition to this move, Microsoft also saw the need to improve the underlying componentization of
software. Before .NET, much of the integration of software components was done with a technology
called COM (the Component Object Model). When it was first introduced, COM promised the world to
programmers, and it almost delivered.

310

Appendix B

22_595733 appb.qxd 12/1/05 1:47 PM Page 310

It was intended to provide a watertight interconnection model between the different software compo-
nents installed in Windows. Unfortunately, it turned out to be cumbersome, and rather than being rock-
solid, it could be quite fragile at times. Due to the nature of registering the individual components into
the Windows Registry, changing even one simple function could render the component incompatible
with any other programs or components that relied on it.

In addition to this, COM based its usage of components on reference counting and so would only remove
objects from memory when they were no longer referenced. A state called DLL-Hell was quickly coined
by COM programmers, which refers to two objects connecting to each other but not being used anymore.
Windows would not release their memory usage because it assumed they were still being referenced,
when in reality the program that was using them could have been terminated long ago.

Because of this fragility, and the huge source of memory leaks that was DLL-Hell, something major
needed to be done to the underlying method of creating and using components and the cleaning up of
said components. This requirement went into the mix that was becoming the .NET Framework.

Many other factors were considered, but one last one that is worth mentioning here is the requirement to
provide more robust enterprise-level servers. Security, transactional management, pooling of resources,
and threads were all previously very hard to implement and fraught with dangers at every turn. .NET
promised to change all that.

The result of all this planning and development was the holistic approach that became .NET. As David
Lazar, the Microsoft Group Product Manager for Developer Tools says, “You only get the chance to hit
the reset button once every 10 years or so,” and .NET has certainly reset everyone’s expectations.

The Microsoft .NET platform is made up of four main parts on top of the operating system itself. The cen-
tral component is the .NET Framework, which provides the component infrastructure, language integra-
tion, and more that you’ll see in a moment. Alongside this is the suite of .NET Enterprise Servers such as
SQL Server, BizTalk Server, and others that fully integrate with the new .NET way of doing things.

The third part to the .NET platform, which goes hand-in-hand with these two, are the various .NET
“building-block” services that Microsoft provides to make things even easier in this new world of .NET.
The first and currently foremost service is Microsoft Passport, a now ubiquitous model of user identifica-
tion and authentication that can be used by any developer.

On top of all of this lies the developer tools — first of which was Visual Studio .NET, a comprehensive
set of developer tools that harnesses the power and ease-of-use found within the new .NET Framework
and partner components. Visual Basic Express sits alongside Visual Studio 2005 in the grand scheme of
.NET. All of these major components together form Microsoft .NET (see Figure B-1).

Besides the developer tools component, the other major part to this whole .NET conglomerate is the
.NET Framework mentioned previously. When Microsoft began the process of creating the .NET vision,
at its core was a new (and obviously better) way of supporting components and integrating the various
programming languages. Why should it be completely different to code something in Visual Basic as
compared to doing the same thing in C++?

Coupled with these desires came a need for easier development for more recent technologies, better
security, and one thing that’s long been a bane for programmers: a much easier deployment (or installa-
tion) model. Along came the .NET Framework, a collection of system-defined classes and objects that
promised to do all of this and more.

311

.NET — The Foundation

22_595733 appb.qxd 12/1/05 1:47 PM Page 311

Figure B-1

Component Support
With the technology available before .NET came along, the only “proper” way of defining components
was to use COM. However, as discussed previously, COM also introduced DLL-Hell, and a fragility that
had almost every Windows developer cursing at least one time in their careers.

With the .NET Framework, it is now possible to produce components that can interrelate without these
problems, and have side-by-side existence of multiple versions of a particular component. This in con-
junction with garbage collection also means that DLL-Hell should be a thing of the past.

Language Integration
Until now, languages have been independent of each other. Create components in one, and you wouldn’t
be able to extend them in another. This, too, has been dealt with in .NET. All programs compile down to
a common intermediate language, so it’s irrelevant what language they were originally designed in. This
common language is known as the MSIL — Microsoft Intermediate Language.

In fact, Microsoft provides disassemblers that anyone can use to look at the CIL code of a program. You
can write the same program in two different languages and compare the CIL to prove that they do in fact
end up being the same code.

This initially begs the question of why multiple languages should be supported, but it doesn’t take too
much analysis to understand. Sure, if you’re just starting to develop, with .NET as your first environ-
ment, it wouldn’t make much difference if you had support for one language or the more than 20 sup-
ported in Visual Studio 2005. Or if you’re using the Express developer tools, you find little to distinguish
between Visual Basic Express and Visual C# Express beyond personal preference.

However, if you’re already a programmer, your livelihood depends on your existing knowledge. With
the .NET Framework defined in such a way that it enables any language to be supported as long as it
compiles down to CIL, your skills are still valuable.

Visual Studio
2005

.NET
Framework

.NET
Web

Services

Servers
supporting

.NET,
for example,

SQL,
BizTalk, etc

Visual Basic
2005 Express

312

Appendix B

22_595733 appb.qxd 12/1/05 1:47 PM Page 312

This language integration goes further, including making common the types of variables that are usable
across the languages — a 32-bit integer is now the same in Visual Basic as it is in C# or C++.

Coupled with this Common Type System (CTS) and the Common Intermediate Language (CIL) is the
Common Language Runtime (CLR) and the Common Language Infrastructure (CLI). The CLR is kind of
like the old Visual Basic Runtime (a closer analogy is probably the Java Virtual Machine). It is the beast
that interprets and executes the CIL code generated by the .NET language compilers.

The CLI is a standardized part of the CLR (ratified by ECMA, the European standards body), aimed at pro-
viding a way for other platforms to provide their own CLRs and so have a truly cross-platform capability.
As you can see, the .NET vision really aimed high — cross-platform and cross-language compatibilities are
a dream for a lot of developers and to have both remotely possible at one go is mind-boggling.

Along with the CLR, the .NET Framework comes with a whole set of framework base classes (see Fig-
ure B-2). These classes define everything from Windows forms GUI objects and web controls to security,
and everything in between. The .NET Framework aims to eliminate the need for directly using the
Windows API by encapsulating everything in a framework base class and extending them to be more
consistent with the way Microsoft wants you to code your solutions at the same time.

Figure B-2

Windows
Apps

Web
Apps

.NET Solution

.NET Framework Classes

Web
Services

Common Language Runtime

Microsoft Windows

313

.NET — The Foundation

22_595733 appb.qxd 12/1/05 1:47 PM Page 313

Developer Tools
Once Microsoft had developed the underlying framework that would be common to all languages, they
then turned to changing the languages themselves in subtle and (in the case of Visual Basic) some not so
subtle ways.

In fact, there was some fairly major work done to provide languages that would work side-by-side without
a problem and lend themselves to using the same IDE. Microsoft even went to the extreme of creating
a new language, C# (pronounced “C-sharp”), which is now recognized as a fully standards-compliant
language.

The Microsoft development team then went on to completely revolutionize the IDE, first for Visual
Studio, and then for individual languages such as Visual Basic Express. They analyzed all the existing
IDEs, from Visual Basic, InterDev, FoxPro, C++, and so on, and took the best parts of each as a basis.
Added to the mix was an extra requirement for additional functionality that makes creating an applica-
tion even easier for a developer.

As a result of all of this, Visual Basic Express provides a comprehensive toolset for the developer. It
shares a common IDE with Visual Studio .NET, which ships with C#, Visual Basic, and Visual C++, but
actually more than 20 languages can be “plugged” into the Visual Studio 2005 environment. Languages
such as Perl, COBOL, RPG, and Java, and even less frequently used languages such as Eiffel, can all be
integrated into the one IDE of Visual Studio 2005 and so can interoperate with Visual Basic Express.

The .NET Framework
The .NET Framework is a huge collection of classes complete with methods, properties, and events, like
any of the classes you can create yourself. They serve many purposes, from being able to store informa-
tion in collections or even simple data like string variables to encryption of data and encapsulation of
web service methods.

The main part of the Framework is accessible through a central namespace called System. A secondary
core namespace called Microsoft is used to expose Microsoft Windows–specific functionality, such as
specific features of the Visual Basic language or Windows system calls and structures, but the discussion
that follows deals with the System namespace.

Within System are many subordinate namespaces, which in turn have their own child namespaces, and
so on, forming a great hierarchical tree that encapsulates all of the base functionality you need to create
your Visual Basic Express applications. Each namespace has its own set of classes and structures, along
with interfaces, delegates, and enumeration sets. For example, to convert an Object to a DateTime
structure, you need the following members of System:

❑ Convert — A class used to convert a base data type to another data type

❑ Object — The generic class used as a base for all other class types

❑ DateTime — A structure that can contain an instant in time

❑ DateTimeKind — An enumeration that lists the way the date and time information can be
stored in the structure

314

Appendix B

22_595733 appb.qxd 12/1/05 1:47 PM Page 314

While the absolute fundamental classes and structures can be found in System, the majority of the .NET
Framework can be found in the subordinate namespaces. You’ve actually used quite a few of these
throughout the course of this book, in the Try It Outs and Exercises. Here are some of the more common
second-tier namespaces that you might use in your programming:

❑ System.Collections — A series of classes that enable you to store arrays of like objects. The main
Collection object is supported by specific classes that solve particular solutions, such as the
BitArray collection that you could use in place of the bitwise operations in Chapter 7, and the
SortedList that automatically sorts the entries you add by their key value.

❑ System.Data — You should already be familiar with this namespace as it contains all the classes
necessary to process database information. System.Data has three main subcomponents:
System.Data.SqlClient for SQL Server–based processing and System.Data.OleDb and
System.Data.Odbc for other database types.

❑ System.Drawing — All graphical functionality can be sourced from this namespace, either
directly when you use the Graphics object or indirectly when you set various properties on a
user interface component.

❑ System.IO —System.IO contains the classes and methods needed to read and write all kinds
of files. From flat files to memory streams, System.IO contains the functionality you require.
It even has a subnamespace for the serial ports on a computer so you can write directly to
the port.

❑ System.Net — You used System.Net in Chapter 11 to create and send e-mail to people in a list.
System.Net also contains classes you can use to call out to a website and process the content of
a web page (System.Web.WebRequest and System.Web.WebResponse) and to process infor-
mation across a network.

❑ System.Security — In Chapter 13, you created additional functionality in your Personal Organizer
application that encrypted the password string. This used the System.Security.Cryptography
namespace, one of the subnamespaces of System.Security. System.Security also provides
you with functionality to process security permission sets and authentication protocols.

❑ System.Text — Used to encode and decode from a variety of data formats, System.Text also
contains the extremely valuable subnamespace RegularExpressions, which can be used to
extract and find information in a string using regular expression technology.

❑ System.Timers — Relatively simple compared to the other namespaces, System.Timers
nonetheless performs an important function by giving you the capability to create timers in
your application for scheduled events.

❑ System.Windows —System.Windows is unusable by itself, but if you delve into its child name-
space System.Windows.Forms, you can access all of the user interface controls and the form
functionality. By default, your projects normally have a reference to System.Windows.Forms
implicitly defined, so you won’t see the full definition. However, if you ever use a line such as
Dim MyButton As Button, you’re referencing a class within this namespace.

❑ System.Xml — This namespace encapsulates all of the classes needed to process XML docu-
ments as discussed in Chapter 12. From reading and writing XML to processing individual
nodes and their attributes, everything you need to deal with XML can be found here.

315

.NET — The Foundation

22_595733 appb.qxd 12/1/05 1:47 PM Page 315

Most of these main namespaces are further subdivided. As an example, consider the System.Drawing
namespace. It is used to do all kinds of graphical drawing, whether it is on a form or for printing purposes.
Everything revolves around a base Graphics object, fully defined as System.Drawing.Graphics, but
there are subordinate namespaces for specific actions.

Drawing2D enables you to control simple geometric shapes, Imaging provides a multitude of classes
for advanced graphic techniques such as alpha blending or image encoding, Printing exposes the func-
tionality you need to send information to a printer, and Text gives you the capability to “paint” text into
a form or other graphics object without the need for a control to host the text.

As you can see, the .NET Framework forms an essential component of the Visual Basic Express develop-
ment environment. Without the many classes and namespaces it provides, creating applications would
be an incredibly difficult experience. If you’re ever wondering how to do something, make sure you
look through the .NET Framework classes first before you create your own — you might be pleasantly
surprised.

316

Appendix B

22_595733 appb.qxd 12/1/05 1:47 PM Page 316

C
Answers to Exercises

Chapter 1

Exercises

1. Installing Visual Web Developer 2005 Express Edition: To create applications that run
on the Internet, you can still use Visual Basic 2005 as a language, but you will need to
install Visual Web Developer 2005 Express Edition. The method for installing Web
Developer Express is exactly the same as what has been outlined here, but it will install
Web Developer instead of Visual Basic. If you have already installed Visual Basic Express,
you’ll find that the Web Developer installation process does not include options for
MSDN or SQL Server, as it automatically detects that they are already present on your
system.

2. Customizing the Browser Application: Extend your web browser program so you can
both return to the previous web page you visited and navigate to the default home page
of Internet Explorer. You’ll need to use two more methods of the WebBrowser control —
GoHome and GoBack.

Exercise 1 Solution

Installing Visual Web Developer 2005 Express Edition is performed in much the same way as
Visual Basic 2005 Express. Locate the installation package on the CD that accompanies this book
and start the setup.exe application.

If you have previously completed the installation of Visual Basic 2005 Express or any other prod-
uct in the Visual Studio 2005 line, the installation automatically detects the presence of common
components such as MSDN Library and SQL Server Express. Otherwise, these components are
presented as optional components during the setup process.

Exercise 2 Solution

Add a new Button control to the form, next to Button1. Change the Text property to Back.
Double-click on Button2 and insert the following code:

23_595733 appc.qxd 12/1/05 1:47 PM Page 317

WebBrowser1.GoBack

Add another Button control to the form, next to the Button you inserted previously. Change the Text
property to Home. Double-click on Button3 and insert the following code:

WebBrowser1.GoHome

Run the program again and browse to a website. Test your new buttons by navigating back pages and
returning to the home page of the current user.

Chapter 2

Exercises

1. Customize the DVD Collection application: Re-open your MyOrganizerMovies project and
change the images for the View DVDs and Search Online buttons. You’ll need to set three prop-
erties for each in the Properties window —NormalImage, HoverImage, PressedImage— and
you will need to edit the code so that the proper Resource objects are used.

2. Look up the documentation for an example of how to use the BackgroundImage property of a
control.

Exercise 1 Solution

1. Open the MainForm.vb form in Design view. Select the View DVDs button and go to the
Properties window.

2. Select the NormalImage property and click the ellipsis button to bring up the Select Resource
dialog window. Choose DVD-normal and click OK.

3. Do the same for HoverImage and PressedImage but choose the DVD-hover and DVD-down
resources, respectively.

4. Select the Search Online button and repeat steps 2 and 3.

5. Change to code view by right-clicking on the form and selecting View Code.

6. Find all occurrences of My.Resources and replace the current resource image with DVD_normal.

7. Build and run the application.

Exercise 2 Solution

1. Start the MSDN documentation by pressing F1.

2. Click the Search tab at the top of the window to show the Search dialog.

3. Type backgroundimage and click the Search button.

4. Select the Control.BackGroundImage search result (it’s normally the first result) by clicking
on the blue heading text.

5. Scroll down until you find the example in Visual Basic code.

318

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 318

Chapter 3

Exercise

1. Create a database that uses the Person and Pet tables defined at the beginning of this chapter.
Make sure they are linked through a foreign key relationship so that each Pet record must be
owned by a Person record.

Exercise 1 Solution

1. Start Visual Basic Express and create a new Windows Application project. Add a new SQL
Database by selecting Project ➪ Add New Item, selecting SQL Database from the Add New Item
dialog and clicking OK.

2. Add a new table via the Database Explorer and add the following columns:

Column Name Data Type Allow Nulls

ID int Unchecked

FirstName nchar(35) Unchecked

LastName nchar(35) Unchecked

DateofBirth datetime Checked

Address nchar(255) Checked

Notes text Checked

Set the ID column as the primary key by right-clicking and selecting Set Primary Key, and set
the Is Identity property to Yes.

3. Save the table as Person. Add another table via the Database Explorer and add the following
columns:

Column Name Data Type Allow Nulls

ID int Unchecked

PersonID int Unchecked

Name nchar(20) Unchecked

Type nchar(50) Checked

Breed nchar(50) Checked

Set the ID column as the primary key by right-clicking and selecting Set Primary Key, and set
the Is Identity property to Yes.

4. Save this table as Pet. Click the Relationships button on the toolbar to bring up the Foreign Key
Relationships window. Click Add to add a new foreign key and then click the ellipsis button
next to the Tables and Columns Specification property.

319

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 319

Select the Person table for the Primary Key table and then select the ID column. In the Foreign
Key table list, choose the PersonID column to bind the two together. Click OK to save the set-
tings and then click Close to return to the table editing view.

5. Right-click on the Person table in the Database Explorer and select Show Table Data. Enter the
details about a person and note the ID value that is assigned to it.

6. Right-click on the Pet table in the Database Explorer and select Show Table Data. Enter the
details of a pet and ensure that the PersonID matches the value you jotted down in step 5. You
will now be able to save the information. If you entered a value that was different from the ID
automatically created in step 5, you will receive an error when you try to save the data.

Chapter 4

Exercises

1. Anchor fields: Set the Anchor properties on the Address and Notes TextBox controls so that
they resize automatically when the form is resized.

2. Adding the PersonList user control: In the next chapter you’ll need the PersonList user con-
trol to show the list of people in the database. Create a new user control with a ListBox and
two Button controls. Remember to set the Anchor properties so that the fields are resized and
positioned when the form’s dimensions are changed (see Figure C-1).

Figure C-1

Exercise 1 Solution

1. Select the Address TextBox and change its Anchor property to Top, Left, Right. This will
ensure that the Address area is resized to the right as the form gets wider.

2. Select the Notes TextBox and change the Anchor property to Top, Bottom, Left, Right.
Doing this will ensure that the Notes area takes up the remaining area of the control regardless
of how big it is.

Exercise 2 Solution

1. Add a new user control by running the Project ➪ Add User Control command. Name the control
PersonList.vb and click OK.

320

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 320

2. Add a ListBox control to the form and set the following properties:

❑ Name —lstPersons

❑ ScrollAlwaysVisible —True

❑ SelectionMode —MultiSimple

❑ Anchor —Top, Bottom, Left Right

3. Add two Button controls to the form and change their Anchor properties to Top, Right so
they will always be aligned to the right-hand side of the control. Set the following properties:

❑ Button #1 Name —btnShowDetails

❑ Button #1 Text —Show Details

❑ Button #2 Name —btnDeleteSelected

❑ Button #2 Text —Delete Selected

4. Save the project.

Chapter 5

Exercises

1. Create an application that changes the color of the text in a TextBox control if numbers are
present. To do this, you’ll need to write a subroutine to handle the TextChanged event of a
TextBox and set the ForeColor property if the condition is met.

2. Create an application that counts from 1 to 100 in increments specified by the user and displays
the values in a TextBox.

3. Modify the application you created in Exercise 2 so that it ensures the increment is a number
before it performs the loop.

Hint: Use the IsNumeric built-in function to determine if a variable is numeric or not.

Exercise 1 Solution

1. Create a new Windows Application project and add a TextBox to the form.

2. Double-click the TextBox to have a subroutine automatically generated for the TextChanged
event, and add the following code:

Private Sub TextBox1_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TextBox1.TextChanged

If TextBox1.Text.Contains(“1”) Then
TextBox1.ForeColor = Color.Red

ElseIf TextBox1.Text.Contains(“2”) Then
TextBox1.ForeColor = Color.Blue

ElseIf TextBox1.Text.Contains(“3”) Then
TextBox1.ForeColor = Color.Green

ElseIf TextBox1.Text.Contains(“4”) Then
TextBox1.ForeColor = Color.Yellow

ElseIf TextBox1.Text.Contains(“5”) Then
TextBox1.ForeColor = Color.Khaki

321

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 321

ElseIf TextBox1.Text.Contains(“6”) Then
TextBox1.ForeColor = Color.DarkGreen

ElseIf TextBox1.Text.Contains(“7”) Then
TextBox1.ForeColor = Color.Chocolate

ElseIf TextBox1.Text.Contains(“8”) Then
TextBox1.ForeColor = Color.Crimson

ElseIf TextBox1.Text.Contains(“9”) Then
TextBox1.ForeColor = Color.DarkGoldenrod

ElseIf TextBox1.Text.Contains(“0”) Then
TextBox1.ForeColor = Color.HotPink

Else
TextBox1.ForeColor = Color.Black

End If
End Sub

3. Run the application and enter a mix of characters and numbers and observe the color of the text
change as it detects the numbers.

Exercise 2 Solution

1. Create a new Windows Application project. Add two TextBox controls and one button to the
form. Set the following properties:

❑ Button Name —btnGo

❑ Button Text —Go

❑ TextBox #1 Name —txtIncrement

❑ TextBox #2 Name —txtResults

❑ TextBox #2 MultiLine —True

❑ TextBox #2 Scrollbars —Vertical

2. Double-click the button to generate code for the Click event and enter the following code:

txtResults.Text = vbNullString

For Counter As Integer = 1 To 100 Step CType(txtIncrement.Text, Integer)
txtResults.Text &= vbCrLf & Counter.ToString

Next

The first line resets the second TextBox to contain an empty string. Then a loop is defined that
counts from 1 to 100 in increments of the value found in txtIncrement. Note that it’s convert-
ing the value found in the Text property to an Integer so the compiler knows that the code is
intentional.

The line inside the For loop concatenates each subsequent value to the existing contents of
the Text property. The &= assignment operator is a shorthand form of saying Variable1 =
Variable1 & Variable2. vbCrLf is a special constant that puts the following text on a new line.

Exercise 3 Solution

1. Return to the code for the Click event and add a condition to use the IsNumeric function so
that the routine now looks like this:

322

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 322

Private Sub btnGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGo.Click

If IsNumeric(txtIncrement.Text) Then
txtResults.Text = vbNullString

For Counter As Integer = 1 To 100 Step CType(txtIncrement.Text, Integer)
txtResults.Text &= vbCrLf & Counter.ToString

Next
Else

MessageBox.Show(“Sorry, the increment you entered is not valid.”)
End If

End Sub

2. Run the application, enter alphabetic characters in the Increment text box, and click the Go button.

Chapter 6

Exercises

1. Create an event handler for the New Person menu item that replicates the code you created for
the New button on the ToolStrip.

2. Create an event in the PersonalDetails control that you can raise when the Save and Cancel
buttons are clicked.

Exercise 1 Solution

1. Because the event signatures are the same for the ToolStrip New button and the New Person
MenuItem, you can just change the Handles clause of the existing subroutine:

Private Sub newToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles newToolStripButton.Click, _
newToolStripMenuItem.Click

If objPersonalDetails IsNot Nothing Then
objPersonalDetails.ResetFields()
Me.Text = “Personal Organizer”

End If
End Sub

Exercise 2 Solution

1. Define the event at the top of the PersonalDetails.vb code:

Public Event ButtonClicked(ByVal iButtonType As Integer)

2. Replace the MessageBox lines in the ButtonClickHandler routine to raise the event instead,
including an identifier that tells the event handler routine which button was clicked:

Private Sub ButtonClickedHandler(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

323

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 323

Dim btnSender As Button = CType(sender, Button)
If btnSender.Name = “btnSave” Then

RaiseEvent ButtonClicked(1)
ElseIf btnSender.Name = “btnCancel” Then

RaiseEvent ButtonClicked(2)
End If

End Sub

3. Change the definition of objPersonalDetails in the main form to include the WithEvents
keyword:

Private WithEvents objPersonalDetails As PersonalDetails

4. Create an event handler to intercept the event you created:

Private Sub objPersonalDetails_ButtonClicked(ByVal iButtonType As Integer) _
Handles objPersonalDetails.ButtonClicked
MessageBox.Show(“A button was clicked: “ + iButtonType.ToString)

End Sub

5. Run the application and click the Save and Cancel buttons to test the process.

Chapter 7

Exercise

1. Add four more routines to the GeneralFunctions.vb module to perform the following
functions:

a. Determine whether a specified user exists.

b. Determine whether a user’s password matches a given string.

c. Create a new user record.

d. Update a user record’s Last Logged In value.

These functions are needed for the next chapter, so make sure you do them all!

Exercise 1 Solution

1. To determine whether a user exists, first retrieve the POUser table and then apply a RowFilter
to a DataView copy of the table. If the RowFilter returns a row for the specified UserName,
then return a True value to let the calling application know that it was found:

Public Function UserExists(ByVal UserName As String) As Boolean
Dim CheckUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CheckUserTable As New _PO_DataDataSet.POUserDataTable

CheckUserAdapter.Fill(CheckUserTable)
Dim CheckUserDataView As DataView = CheckUserTable.DefaultView
CheckUserDataView.RowFilter = “Name = ‘“ + UserName + “‘“

With CheckUserDataView
If .Count > 0 Then

324

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 324

Return True
Else

Return False
End If

End With
End Function

2. This is a variation on the previous function, but this time it first finds the row in the POUser
table and then, when found, compares the Password fields. If they match, it returns True; in all
other cases, it returns False:

Public Function UserPasswordMatches(ByVal UserName As String, ByVal Password As
String) As Boolean

Dim CheckUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CheckUserTable As New _PO_DataDataSet.POUserDataTable

CheckUserAdapter.Fill(CheckUserTable)

Dim CheckUserDataView As DataView = CheckUserTable.DefaultView
CheckUserDataView.RowFilter = “Name = ‘“ + UserName + “‘“
With CheckUserDataView

If .Count > 0 Then
If .Table.Rows(0).Item(“Password”).ToString.Trim = Password Then

Return True
Else

Return False
End If

Else
Return False

End If
End With

End Function

3. Creating a new POUser record is straightforward because it does not require any foreign keys to
be set up:

Public Function CreateUser(ByVal UserName As String, ByVal Password As String) As
Boolean

If UserExists(UserName) Then Return False

Dim CreateUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CreateUserTable As New _PO_DataDataSet.POUserDataTable

CreateUserAdapter.Fill(CreateUserTable)

CreateUserTable.AddPOUserRow(UserName, UserName, Password, Now, Now, 0)
CreateUserAdapter.Update(CreateUserTable)

End Function

4. Find the specified user first; then, in the DataView, you can edit the DateLastLogin field
directly and then update the database through the DataAdapter:

325

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 325

Public Sub UpdateLastLogin(ByVal UserName As String)
Dim UpdateUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim UpdateUserTable As New _PO_DataDataSet.POUserDataTable

UpdateUserAdapter.Fill(UpdateUserTable)
Dim UpdateUserDataView As DataView = UpdateUserTable.DefaultView
UpdateUserDataView.RowFilter = “Name = ‘“ + UserName + “‘“
With UpdateUserDataView

If .Count > 0 Then
.Table.Rows(0).Item(“DateLastLogin”) = Now

End If
End With
UpdateUserAdapter.Update(UpdateUserTable)

End Sub

Chapter 8

Exercises

1. Use the code snippet library to draw a pie chart on a form. The pie chart snippet can be found
by selecting Creating Windows Forms Applications ➪ Drawing.

2. Create a class from two partial classes whereby one defines two variables and the other com-
bines them together.

Exercise 1 Solution

1. Create a new Windows Forms application and add a button to the form.

2. In code view, right-click in the class and select the Insert Snippet command. Choose the
Creating Windows Forms ➪ Drawing category and then select Draw a Pie Chart to insert
the routine. It requires a number of parameters that you will need to define variables for
before calling it. Fortunately, the snippet command also includes an additional function called
DrawPieChartHelper that provides a basis for these required values.

3. Add a Click event handler routine for the button and add the following code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

DrawPieChartHelper()
End Sub

4. Modify the values in the DrawPieChartHelper so that you can display it in the normal
form’s size:

Public Sub DrawPieChartHelper()
Dim percents() As Integer = {10, 20, 70}
Dim colors() As Color = {Color.Red, Color.CadetBlue, Color.Khaki}
Dim graphics As Graphics = Me.CreateGraphics
Dim location As Point = New Point(70, 70)
Dim size As Size = New Size(200, 200)
DrawPieChart(percents, colors, graphics, location, size)

End Sub

326

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 326

5. Run the application and click the button to have a pie chart drawn on the form, as shown in
Figure C-2.

Figure C-2

Exercise 2 Solution

1. Create a new Windows Forms application and add a button to the form.

2. Add two class files to the application using Project ➪ Add Class. In the first class file, change the
class name to MyTest, mark it as Partial, and insert the following code:

Partial Public Class MyTest
Private mFirstNumber As Integer
Private mSecondNumber As Integer

Public Property FirstNumber() As Integer
Get

Return mFirstNumber
End Get
Set(ByVal value As Integer)

mFirstNumber = value
End Set

End Property
Public Property SecondNumber() As Integer

Get
Return mSecondNumber

End Get
Set(ByVal value As Integer)

mSecondNumber = value
End Set

End Property
End Class

3. In the second class, change its name to MyTest, too, mark it as Partial, and insert the follow-
ing code:

327

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 327

Partial Public Class MyTest
Public Function AddNumbers() As Integer

Return (mFirstNumber + mSecondNumber)
End Function

End Class

4. In the button’s Click event handler, add the following code and run the application:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click
Dim MyObject As New MyTest
With MyObject

.FirstNumber = 10

.SecondNumber = 23
MessageBox.Show(.AddNumbers.ToString)

End With
End Sub

Chapter 9

Exercise

1. In the Try It Out that added the Amazon web service to your Personal Organizer application,
the PersonalDetails control can save the search results only when the GetGiftIdea form is
closed. Change the program so that the GetGiftIdea form raises an event when the Save but-
ton is clicked, which the PersonalDetails control should handle and add the message to the
Notes field. The Save button should also not close the GetGiftIdea form, so the user can per-
form multiple searches.

Exercise 1 Solution

1. Because you will need to receive events from the GetGiftIdea form, you will need to change
the definition of the frmGetGiftIdeas object so that it is accessible throughout the form’s code.
This means that you will need to declare it as a module-level variable. The WithEvents key-
word is used to identify the object as one that can raise events that you wish to intercept:

Private WithEvents frmGetGiftIdeas As GetGiftIdeas

Remember to also change the Get Gift Ideas button’s Click event so that the object is instantiated:

frmGetGiftIdeas = New GetGiftIdeas

2. Open the GetGiftIdea.vb file in code view and modify the Save button’s Click event handler
as follows:

Private Sub btnSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSave.Click
Dim sGiftIdeasList As String = “Suggested gift ideas: “

For iCounter As Integer = 0 To clbResults.CheckedItems.Count - 1
If iCounter > 0 Then sGiftIdeasList += “, “
sGiftIdeasList += clbResults.CheckedItems(iCounter).ToString

328

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 328

Next

RaiseEvent GiftIdeasSaveRequest(sGiftIdeasList)
End Sub

3. Define the event at the top of the form’s code:

Public Event GiftIdeasSaveRequest(ByVal GiftIdeasList As String)

4. Return to the PersonalDetails control and add a routine to handle the
GiftIdeasSaveRequest event that adds the text included in the event to the Notes field:

Private Sub frmGetGiftIdeas_GiftIdeasSaveRequest(ByVal GiftIdeasList As String) _
Handles frmGetGiftIdeas.GiftIdeasSaveRequest
txtNotes.Text += GiftIdeasList

End Sub

5. Run the application to confirm that you can add multiple sets of search results to the Notes field
without closing the form.

Chapter 10

Exercise

1. Open the Personal Organizer project you worked on in Chapter 9 and debug through the call to
the Amazon web service. Try to determine how many items are returned from the call by looking
at the ItemSearchResponse object in the Quick Watch window before the CheckedListBox is
populated.

Exercise 1 Solution

1. Place a breakpoint on the first line of the event handler routine for the Search button’s Click
event and run the application.

2. Step through the code by using either Step Into (F8) or Step Over (Shift+F8) actions until you
reach the With awsItemSearchResponse line.

3. Right-click awsItemSearchResponse and select Quick Watch. Expand the Items property to
examine the number of items returned.

Chapter 11

Exercises

1. Customize the printing code so that it prints the list of people only if the Person List control is
showing. Add another report to display information about the currently selected person if indi-
vidual details are shown.

2. Add two elements to the StatusStrip at the bottom of the PersonalOrganizer’s main form,
a StatusLabel and a ProgressBar. Keep the StatusLabel up to date with the number of
people currently in the database for the current user and use the progress bar to indicate how
much of the report has been generated when it is processing the person list.

329

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 329

Exercise 1 Solution

1. Create an additional GenerateReport function in the GeneralFunctions.vb module. This
time, you need to include the ID of the person the user has selected. Use the following code for
the routine:

Public Function GenerateReport(ByVal PersonID As Integer, _
ByVal PersonID As Interger) As String
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)

Dim ReportString As String = vbNullString
For Each MyRow As _PO_DataDataSet.PersonRow In _

GetPersonTable.Select(“ID = “ & PersonID.ToString)
With MyRow

ReportString &= “$HDG” & .NameFirst.Trim & “ “ & .NameLast.Trim & vbCrLf
ReportString &= “$HD2Contact Details” & vbCrLf
ReportString &= “Home Phone: “ & .PhoneHome.Trim & vbCrLf
ReportString &= “Cell Phone: “ & .PhoneCell.Trim & vbCrLf
ReportString &= “Address: “ & .Address.Trim & vbCrLf
ReportString &= “Email: “ & .EmailAddress.Trim & vbCrLf
ReportString &= “$HD2Other Details” & vbCrLf
ReportString &= “Birthday: “ & .DateOfBirth.ToShortDateString & vbCrLf
ReportString &= “Favorites: “ & .Favorites & vbCrLf
ReportString &= “Preferred Gift Categories: “
Dim GiftString As String = vbNullString
If (.GiftCategories And 1) <> 0 Then GiftString &= “Books, “
If (.GiftCategories And 2) <> 0 Then GiftString &= “Videos, “
If (.GiftCategories And 4) <> 0 Then GiftString &= “Music, “
If (.GiftCategories And 8) <> 0 Then GiftString &= “Toys, “
If (.GiftCategories And 16) <> 0 Then GiftString &= “Video Games, “
If (.GiftCategories And 32) <> 0 Then GiftString &= “Apparel, “
If GiftString.Length > 0 Then GiftString = _

GiftString.Remove(GiftString.Length - 2, 2)
ReportString &= GiftString & vbCrLf
ReportString &= “$HD2Notes” & vbCrLf
ReportString &= .Notes & vbCrLf

End With
Next
Return ReportString

End Function

2. This routine introduces another flag to indicate a different formatting option —$HD2 for sub-
headings. This needs to be replaced in the printing process with the correct formatting options.

Edit the POPrintDoc_PrintPage routine to cater to the new type of formatting:

If ReportLines(ReportCounter).Length > 4 AndAlso
ReportLines(ReportCounter).Substring(0, 4) = “$HDG” Then

ReportLines(ReportCounter) = ReportLines(ReportCounter).Substring(4)
PrintFont = New Font(“Tahoma”, 18, FontStyle.Bold)

ElseIf ReportLines(ReportCounter).Length > 4 AndAlso
ReportLines(ReportCounter).Substring(0, 4) = “$HD2” Then

ReportLines(ReportCounter) = ReportLines(ReportCounter).Substring(4)
PrintFont = New Font(“Tahoma”, 14, FontStyle.Bold Or FontStyle.Italic)

330

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 330

Else
PrintFont = New Font(“Times New Roman”, 12)

End If

3. Change the Print and PrintPreview menu item event handler routines so they call the appro-
priate GenerateReport function to create the contents of ReportString. Change the
PrintPreview routine to the following:

Private Sub printPreviewToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles printPreviewToolStripMenuItem.Click
ReportString = vbNullString
If objPersonalDetails IsNot Nothing Then

ReportString = GenerateReport(mCurrentUserID, objPersonalDetails.Person.ID)
ElseIf objPersonList IsNot Nothing Then

ReportString = GenerateReport(mCurrentUserID)
End If
If ReportString <> vbNullString Then

Try
With prnprvDialog

.Document = POPrintDoc

.ShowDialog()
End With

Catch PrintPreviewException As Exception
End Try

End If
End Sub

4. Change the Print menu item’s routine to use the same logic as the preceding code and run the
application.

Exercise 2 Solution

1. Add a StatusLabel to the StatusStrip and name it tsPeopleCount. Set its Text property to
0 people so it is initialized.

2. Add a ProgressBar to the StatusStrip and name it tsProgress. Set its Visible property to
False so that it is not shown by default.

3. Create a new function in GeneralFunctions and name it GetPeopleCount. Add the following
code to return the number of Person rows stored with the current user ID:

Public Function GetPeopleCount(ByVal UserID As Integer) As Integer
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)
Return GetPersonTable.Select(“POUserID = “ & UserID.ToString).Length

End Function

4. Add the following line of code to the Form_Load event of the main form:

tsPeopleCount.Text = GetPeopleCount(mCurrentUserID).ToString & “ people”

Add the same line of code to the objPersonalDetails_ButtonClicked event handler if the
person is successfully added to the database. In addition, repeat this line of code in the Save
button’s event handler.

331

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 331

5. Change the GenerateReport function for the list of people so that it accepts an additional
parameter of a ProgressBar control. This enables you to reference it as you process each row
in the table and increment the Value property on the ProgressBar control for each row:

Public Function GenerateReport(ByVal UserID As Integer, _
ByVal pnlProgress As ToolStripProgressBar) As String
Dim GetPersonAdapter As New _PO_DataDataSetTableAdapters.PersonTableAdapter
Dim GetPersonTable As New _PO_DataDataSet.PersonDataTable
GetPersonAdapter.Fill(GetPersonTable)

Dim ReportString As String = vbNullString
For Each MyRow As _PO_DataDataSet.PersonRow In _

GetPersonTable.Select(“POUserID = “ & UserID.ToString)
pnlProgress.Value += 1
With MyRow

ReportString &= “$HDG” & .NameFirst.Trim & “ “ & .NameLast.Trim & vbCrLf
ReportString &= “Home Phone: “ & .PhoneHome.Trim & vbCrLf
ReportString &= “Email: “ & .EmailAddress.Trim & vbCrLf
ReportString &= “Birthday: “ & .DateOfBirth.ToShortDateString & vbCrLf

End With
Next
Return ReportString

End Function

6. Set up the properties of the progress bar in both the Print and PrintPreview functions and
modify the call to the GenerateReport function for the person list. Set the
tsProgress.Visible property to False once the process has been completed. Here’s the
PrintPreview function as an example:

Private Sub printPreviewToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles printPreviewToolStripMenuItem.Click
With tsProgress

.Minimum = 0

.Maximum = GetPeopleCount(mCurrentUserID)

.Value = 0

.Visible = True
End With

ReportString = vbNullString
If objPersonalDetails IsNot Nothing Then

ReportString = GenerateReport(mCurrentUserID, objPersonalDetails.Person.ID)
ElseIf objPersonList IsNot Nothing Then

ReportString = GenerateReport(mCurrentUserID, tsProgress)
End If
If ReportString <> vbNullString Then

Try
With prnprvDialog

.Document = POPrintDoc

.ShowDialog()
End With

Catch PrintPreviewException As Exception
End Try

End If
tsProgress.Visible = False

End Sub

332

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 332

Chapter 12

Exercises

1. Add events to the Wizard form so the calling application knows when the user navigates
between steps.

2. Add an optional attribute to the Text Area component in the Wizard form that enables you to
insert a Browse for File dialog.

3. Create an XML Schema Document (XSD) to enforce the structure of the Wizard Definition XML
file created in the last Try It Out.

Exercise 1 Solution

1. Define an event at the top of the WizardBase.vb code that includes the old and new step
numbers:

Public Event StepChanged(ByVal OldStep As Integer, ByVal NewStep As Integer)

2. Change the NavigateToStep subroutine so that it raises the event to the calling application:

Private Sub NavigateToStep(ByVal StepNumber)
StoreNewValues()
RaiseEvent StepChanged(mCurrentStep, StepNumber)
pnlControls.Controls.Clear()
mCurrentStep = StepNumber
SetForm(mCurrentStep)

End Sub

3. Create a ReadOnly property called StepValues that returns the values for a specified step. This
enables the calling code to retrieve values for a step when it receives the event:

Public ReadOnly Property StepValues(ByVal StepNumber As Integer) As String
Get

Dim myXmlDocument As New XmlDocument
Dim MyNavigator As XPath.XPathNavigator = myXmlDocument.CreateNavigator()
Using MyWriter As XmlWriter = MyNavigator.PrependChild()

MyWriter.WriteStartElement(“StepValues”)
With mSteps(StepNumber)

If .Components IsNot Nothing Then
MyWriter.WriteStartElement(.Name)
For iComponentCounter As Integer = 1 To _

.Components.GetUpperBound(0)
MyWriter.WriteElementString(_

.Components(iComponentCounter).ComponentName, _

.Components(iComponentCounter).ComponentValue)
Next
MyWriter.WriteEndElement()

End If
End With
MyWriter.WriteEndElement()

End Using
Return myXmlDocument.InnerXml

End Get
End Property

333

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 333

4. Open Form1.vb in code view and move the definition of the frmMyExportWizard object to the
top of the class. Declare the frmMyExportWizard object WithEvents so the program can inter-
cept the new event. Remember to instantiate the form when the button is clicked:

Private WithEvents frmMyExportWizard As WizardBase
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click
frmMyExportWizard = New WizardBase
Dim sUserExportSettings As String

Dim sWizardDefinition As String = _
My.Computer.FileSystem.ReadAllText(“TheFile.xml”)

With frmMyExportWizard
.WizardDefinition = sWizardDefinition
.ShowDialog()
If Not .Cancelled Then

sUserExportSettings = .WizardSettingValues
End If

End With
frmMyExportWizard = Nothing
MsgBox(sUserExportSettings)

End Sub

5. Add an event handler routine for the StepChanged event and display the values from the old
step in a message box to confirm that it is retrieving the data correctly:

Private Sub frmMyExportWizard_StepChanged(ByVal OldStep As Integer, ByVal
NewStep As Integer) Handles frmMyExportWizard.StepChanged

MsgBox(frmMyExportWizard.StepValues(OldStep))
End Sub

6. Run the application and test the new features.

Exercise 2 Solution

1. Create a new Enum to specify the types of dialogs that are allowed — Open and Save:

Private Enum AllowedBrowseButtonTypes As Integer
SaveDialog = 1
OpenDialog = 2

End Enum

2. Add two new properties to the WizardComponent class. One is a Boolean property that indi-
cates whether a Browse button should be shown, and the other stores what type of browse but-
ton it is:

Private Class WizardComponent
Public ComponentControlType As AllowedControlTypes
Public ComponentName As String
Public ComponentCaption As String
Public ComponentValue As String

334

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 334

Public ComponentAllowedValues() As String
Public ComponentBrowseButton As Boolean
Public ComponentBrowseButtonType As AllowedBrowseButtonTypes

End Class

3. Edit the GetComponents routine so that it extracts the information from two new attributes in
the XML for a given component —BrowseButton and BrowseType. These go in the Select
Case ComponentAttribute.Name block:

Select Case ComponentAttribute.Name
Case “ControlType”

Select Case ComponentAttribute.Value
Case “RB”

.ComponentControlType = AllowedControlTypes.RadioButton
Case “TB”

.ComponentControlType = AllowedControlTypes.TextArea
Case “CB”

.ComponentControlType = AllowedControlTypes.CheckBox
Case “CM”

.ComponentControlType = AllowedControlTypes.ComboBox
End Select

Case “Name”
.ComponentName = ComponentAttribute.Value

Case “Caption”
.ComponentCaption = ComponentAttribute.Value

Case “BrowseButton”
.ComponentBrowseButton = True

Case “BrowseType”
If ComponentAttribute.Value.ToLower = “save” Then

.ComponentBrowseButtonType = AllowedBrowseButtonTypes.SaveDialog
ElseIf ComponentAttribute.Value.ToLower = “open” Then

.ComponentBrowseButtonType = AllowedBrowseButtonTypes.OpenDialog
End If

End Select

4. Add the Browse button if there is a Text Area that has the BrowseButton attribute set. Do this
in the AddTextArea subroutine by modifying the code that adds the TextBox as follows. You
add the code here so you can modify the Width property of the TextBox itself to make room for
the Browse button:

With newTB
.Name = “TB” + ThisWizardComponent.ComponentName
.Text = ThisWizardComponent.ComponentValue
.Left = newLTBTextSize.Width
If ThisWizardComponent.ComponentBrowseButton = True Then

Dim newBRBrowseButton As New Button
With newBRBrowseButton

.Name = “BR” & ThisWizardComponent.ComponentName

.Text = “...”

.Top = ThisControlTop

.Width = 20

.Height = newTB.Height

335

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 335

.Left = pnlControls.Width - (.Width + 5)

.Tag = ThisWizardComponent.ComponentBrowseButtonType
AddHandler newBRBrowseButton.Click, AddressOf BrowseButtonClick

End With
pnlControls.Controls.Add(newBRBrowseButton)
.Width = newBRBrowseButton.Left - (.Left + 5)

Else
.Width = pnlControls.Width - .Left

End If
.Top = ThisControlTop

End With

5. You’ll need two Dialog controls added to your form. Switch to the Design view of
WizardBase.vb and add a SaveFileDialog control named BrowseSaveDialog and an
OpenFileDialog control named BrowseOpenDialog.

6. Return to code view and add the BrowseButtonClick routine that is used to handle the button
clicks:

Private Sub BrowseButtonClick(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
Dim CurrentButton As Button = CType(sender, Button)
‘ get the current text
Dim TBName As String = “TB” & CurrentButton.Name.Substring(2)
Dim CurrentTB As TextBox = pnlControls.Controls(TBName)

If CurrentButton.Tag = AllowedBrowseButtonTypes.SaveDialog Then
With BrowseSaveDialog

.FileName = CurrentTB.Text
If .ShowDialog = Windows.Forms.DialogResult.OK Then

CurrentTB.Text = .FileName
End If

End With
ElseIf CurrentButton.Tag = AllowedBrowseButtonTypes.OpenDialog Then

With BrowseOpenDialog
.FileName = CurrentTB.Text
If .ShowDialog = Windows.Forms.DialogResult.OK Then

CurrentTB.Text = .FileName
End If

End With
End If

End Sub

7. The code is now finished. To test it, edit the WizardDefs.xml file to enable users to browse for
a file in the Filename component and run the application (see Figure C-3):

<Component ControlType=”TB” Name=”Filename” Caption=”Filename:” BrowseButton=”true”
BrowseType=”save”>C:\Temp\ExportData.xml</Component>

336

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 336

Figure C-3

Exercise 3 Solution

1. A sample XSD for the Wizard Definition file is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified” attributeFormDefault=”unqualified”>

<xs:element name=”Wizard” type=”WizardType”/>

<xs:complexType name=”WizardType”>
<xs:sequence>

<xs:element name=”Step” type=”StepType” maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”Name” type=”NameType” use=”required”/>
<xs:attribute name=”Title” type=”xs:string” use=”required”/>
<xs:attribute name=”GlobalGraphic” type=”xs:anyURI” use=”optional”/>
<xs:attribute name=”AllowFinish” type=”xs:boolean” use=”optional”/>

</xs:complexType>

<xs:complexType name=”StepType”>
<xs:sequence>

<xs:element name=”Heading” type=”HeadingType”/>
<xs:element name=”Description” type=”DescriptionType”/>
<xs:element name=”Graphic” type=”GraphicType” minOccurs=”0”/>
<xs:element name=”Component” type=”ComponentType” minOccurs=”0”

maxOccurs=”unbounded”/>
</xs:sequence>

337

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 337

<xs:attribute name=”Name” type=”NameType” use=”required”/>
</xs:complexType>

<xs:complexType name=”ComponentType” mixed=”true”>
<xs:sequence>

<xs:element name=”AllowedValue” type=”AllowedValueType” minOccurs=”0”
maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”Name” type=”NameType” use=”required”/>
<xs:attribute name=”ControlType” type=”ControlTypeType” use=”required”/>
<xs:attribute name=”Caption” type=”xs:string” use=”required”/>

</xs:complexType>

<xs:complexType name=”AllowedValueType” mixed=”true”>
<xs:attribute name=”Name” type=”NameType” use=”required”/>
<xs:attribute name=”Selected” type=”xs:boolean” use=”optional”/>

</xs:complexType>

<xs:simpleType name=”NameType”>
<xs:restriction base=”xs:string”>

<xs:pattern value=”([A-Za-z][^]*)”/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”HeadingType”>
<xs:restriction base=”xs:string”/>

</xs:simpleType>

<xs:simpleType name=”DescriptionType”>
<xs:restriction base=”xs:string”/>

</xs:simpleType>

<xs:simpleType name=”GraphicType”>
<xs:restriction base=”xs:string”/>

</xs:simpleType>

<xs:simpleType name=”ControlTypeType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”CB”/>
<xs:enumeration value=”CM”/>
<xs:enumeration value=”RB”/>
<xs:enumeration value=”TB”/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Chapter 13

Exercise

1. While decrypting the password from the database might work for comparing it to the
string the user has entered, it’s not as secure as it could be. Change the logic so that the
UserPasswordMatches function encrypts the entered string and compares it to the already
encrypted database field to ensure that the fields match.

338

Appendix C

23_595733 appc.qxd 12/1/05 1:47 PM Page 338

Exercise 1 Solution

1. Change the UserPasswordMatches function so it uses EncryptString on the password text
the user entered and compares that to the encrypted string in the database:

Public Function UserPasswordMatches(ByVal UserName As String, _
ByVal Password As String) As Boolean
Dim CheckUserAdapter As New _PO_DataDataSetTableAdapters.POUserTableAdapter
Dim CheckUserTable As New _PO_DataDataSet.POUserDataTable

CheckUserAdapter.Fill(CheckUserTable)

Dim CheckUserDataView As DataView = CheckUserTable.DefaultView
CheckUserDataView.RowFilter = “Name = ‘“ + UserName + “‘“
With CheckUserDataView

If .Count > 0 Then
Dim SecretKey As String = “785&*(%HUYFteu27^5452ewe”
If .Item(0).Item(“Password”).ToString.Trim <> vbNullString Then

Dim EncryptedPassword As String = EncryptString(Password, SecretKey)
If .Item(0).Item(“Password”).ToString.Trim = EncryptedPassword Then

Return True
Else

Return False
End If

Else
If Password = vbNullString Then

Return True
End If

End If
Else

Return False
End If

End With
End Function

Chapter 14

Exercise

1. Update the Personal Organizer application to verify that updates work through the ClickOnce
publishing process.

Exercise 1 Solution

1. Make any kind of change to the Personal Organizer application. It would be best if it were
something that you can easily determine had been changed or not, such as the background color
of a form or the wording on a button or dialog box.

2. Publish the solution via Build ➪ Publish Personal Organizer.

3. When the publish is complete, run the application from the Wrox’s Starter Kit ➪ My Personal
Organizer Start menu item. After a moment, the ClickOnce background checking will inform
you of a change to the application and prompt you for an update.

4. Click the OK button to update the application and confirm that your changes have been applied.

339

Answers to Exercises

23_595733 appc.qxd 12/1/05 1:47 PM Page 339

23_595733 appc.qxd 12/1/05 1:47 PM Page 340

In
de

x

Index

SYMBOLS
& (ampersand) ToolStrip control text property

prefix, 174
* (asterisk) multiplication operator, 71
^ (caret) SendKeys method replacement

character, 150
= (equals sign) assignment operator, 71
- (minus sign) subtraction operator, 71
{ } (parentheses)

event parameter delimiters, 99
subroutine delimiters, 72

% (percent sign) SendKeys method replacement
character, 150

. (period)
method prefix, 101
object suffix, 98
property prefix, 18, 101

+ (plus sign)
addition operator, 71
SendKeys method replacement character, 150

“ ” (quotation marks) XML attribute delimiters, 243
/ (slash) XML closing tag prefix, 243
~ (tilde) SendKeys method replacement

character, 150

A
AcceptButton property, 162
Access Point URL, 181
Access, software program, 33
Actions dialog box, 65
Add ➪ Class, 95
Add method, 88, 193
Add New Item dialog box, 36, 95
Add New Table menu (SQL Server), 37
Add Web Reference Wizard, 180, 181
AddHandler statement, 116, 117
AddMode property, 138
AddPerson function, 136, 138
AddPersonRow method, 136, 252

AddPOUserRow function, 290
AddRow method, 129
AddSalary method, 160
alignment

control, 13, 53, 54, 257
text, 56, 162

Allow Nulls property, 44
AllowWebBrowserDrop property, 170, 174
Amazon web service
AWSECommerceService object, 185
Documentation page, 184–185
function, calling, 191
license agreement, 183
Personal Organizer Database application,

integrating with
btnGetGiftIdeas_Click subroutine, 189–190
btnSearch_Click subroutine, 191, 192, 193
calling web service, 192
Cancel button, 194
Cancelled property, 195
CheckedListBox control, 186, 191,

193, 194, 195
debugging, 213
GetGiftIdeas.vb file, 186
GiftSuggestions property, 195
ItemSearch method, 184–185, 191, 192
ItemSearchResponse object, 185, 192–193, 213
mbCancelled variable, 194–195
msFavorites variable, 188
msGiftSuggestions variable, 195
PersonDetails control setup, 185–186, 187, 189
RadioButton control setup, 186–187, 188
referencing web service, 191
Save button, 195, 198
SelectedText property, 192
title, concatenating into string, 195

registration, 183
starter kit, building application access using, 20–23
Subscription ID, 183, 191

24_595733 index.qxd 12/1/05 1:48 PM Page 341

ampersand (&) ToolStrip control text property
prefix, 174

Anchor property, 67
Application files dialog box, 300
Application object, 153–155
arithmetic, 71
asterisk (*) multiplication operator, 71
Audio object, 148
authentication

SQL Server, 46
status, testing, 163, 280–281

AutoCompleteCustomSource property, 234
AutoCompleteSource property, 234
AWSECommerceService object, 185

B
BackColor property, 105
BackgroundColor property, 162
BackgroundImage property, 162, 269
BackgroundImageLayout property, 257
BalloonTip properties, 219, 221
BeginEdit command, 129, 137
Beginning XML, 3rd Edition (Hunter et al.), 245
BindingNavigator control, 124
BindingPoint website, 180, 181
BindingSource component, 123
bitwise comparison, 139–140
BorderColor property, 105
Bound Column properties window, 123
breakpoint, 205–207, 212
Build ➪ Publish Personal Organizer, 305
BuiltInRole website, 281
Button control. See also RadioButton control; Split-

Button control
aligning, 13, 54, 257
anchoring, 63
color, 55
contrast, visual, 52–53
creating, 11
dynamic, 116–119
event handling, 81, 82, 85, 118–119, 272–274
form, adding to, 54–55
image, 55, 109
positioning, 55
sizing, 54
subroutine, assigning, 74
text, 11, 55

ButtonsSwapped property, 148
ByRef keyword, 73, 74
ByVal keyword, 72–73, 74

C
calendar type of local system, returning, 147
CancelButton property, 162
Cancelled property, 195, 261
CanGoBack property, 170, 175, 178
CanGoForward property, 170, 178
caret (^) SendKeys method replacement

character, 150
Catch keyword, 200–202, 203–204
CBC (cipher block chaining), 285
CD-ROM with this book, 307–308
CelsiusToFahrenheit function, 78
CheckBox control, 57, 77–78, 139–140, 269–270
CheckedListBox control, 186, 191, 193, 194, 195
ChildNodes property, 254
CIL (Common Intermediate Language), 312, 313
cipher block chaining (CBC), 285
class

creating, 18, 94–101, 103–104, 158
defined, 18
event, adding, 99
generic, 160–161
instance, 19, 83, 98
object

creating from class, 83
relation to class, 18

partial, 158–160, 167
project, adding to, 95
property, adding, 112–113
public, 95
variable, place in class structure, 96
web service, 180

Clear method, 145
CLI (Common Language Infrastructure), 313
Click event, 55, 81, 82, 85, 118–119
ClickOnce application deployment

Application files dialog box, 300
CD, from, 295, 302
component, selecting for, 300
database, including as local file, 304
Internet-based application, 296
location for installation files, specifying, 295, 299
.NET Framework prerequisite, 300
network-based application, 296
Prerequisites dialog box, 300
Publish Wizard, 295–296
restoring application to previous state, 298
security, 302–304
server, from, 295
signature, digital, 303

342

ampersand (&) ToolStrip control text property prefix

24_595733 index.qxd 12/1/05 1:48 PM Page 342

SQL Server 2005 Express prerequisite, 304
Start menu item, 297
uninstalling ClickOnce application, 298
update, automatic, 295, 297–298, 300–301, 304, 306
web page

displaying, 297, 305
product support web page, offering, 302

Clipboard class, 145–146, 149
Clock object, 146
Close method, 151
CloseRequested class, 176, 178
CLR (Common Language Runtime), 5, 313
code

breakpoint, inserting, 205–207, 212
displaying, 12
editing

design-time, at, 28
execution, while paused, 211–212

event, hooking to, 69, 82
font, changing, 30
group, 283
line number display, 73
looping execution, 79–81
message, displaying when specific line executed,

209–210, 211
reusing, 156–161
security, code-based, 283–284
snippet library, 156–157, 167, 255
stepping into/over, 206–207, 212
troubleshooting, 205–211

Code Definition window, 28, 29
Collection Editor feature, 107
color

background, 105, 162
border, 105
Button control, 55
dialog control, customizing using, 61
menu, 66
property, defining, 105
system-defined, 53
text, 55, 89
transparency, 162
user interface, 52, 53

ColorDialog control, 61
ColumnType property, 123
COM (Component Object Model), 310–311
CombinePath method, 153
ComboBox control, 57, 266–267, 271
command-line interpreter, 4
Common Intermediate Language (CIL), 312, 313

Common Language Infrastructure (CLI), 313
Common Language Runtime (CLR), 5, 313
comparison

bitwise, 139–140
number, 139–140
text, 141

compilation, 4, 101, 154, 293
Component Object Model (COM), 310–311
ComponentControlType property, 266
Components object, 260
Computer Manager feature, 34
Computer object, 144–153
computer, returning information about, 146–147
conditional logic, 76–79
constructor method, 102
Contains method, 145
ContextMenuStrip control, 60
control. See also specific control

aligning, 13, 53, 54, 257
anchoring, 63–64, 67
container, 58, 115
creating

application, while running, 115–119
design time, at, 111–112, 174

data control, 62
database, associating with, 66, 124–126
defined, 19
dialog control, 61
docking, 64, 66, 174
dynamic, 115–119
enabling/disabling, 56
error, displaying, 231
events, listing associated, 106
form, adding to, 54–55, 258, 259
graphic control, 32, 55, 61–62, 109
grouping, 58
layout control, 58–59
menu control, 59–60
naming, 65
print control overview, 62
project, adding to, 174
property

assigning, 54–55
updating control automatically upon change, 113

resetting, 113, 115
sizing, 13, 54, 67
smart tag, 65, 109
starter kit, adding using, 22
status control, 59–61

343

control

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 343

ControlType

class, 260
property, 266

Convert class, 314
CopyDirectory method, 153
CopyFile method, 152
CreateDecryptor method, 289
CreateElement method, 255
CreateSubKey method, 151
CreateUser function, 164, 290
cryptography, 284–291
CryptoStream object, 288
CType function, 75
culture of system, returning, 146, 147
CurrentControl object, 274
CurrentDirectory method, 153

D
Data ➪ Add New Data Source, 127
Data ➪ Show Data Sources, 46
Data Source Configuration Wizard, 37, 46, 47
Data Sources window, 45–46
data type

converting, 30, 75, 314–315
enumerated, 88
function, assigning to, 72
overview of standard types, 70
variable, assigning to, 71

DataAdapter class, 127–128, 129–130,
137, 247, 251

database. See also SQL Server
ClickOnce application deployment, including database

as local file in, 304
column, 35, 44, 45, 123
connection

adding, 127–128
project connection setup, 46, 47–48
SQL database, 128

control, associating with, 66, 124–126
copying, 47
creating, 36–37, 39, 41
field

adding, 44
column, relation to, 35
control, associating with, 66, 124–126
deleting, 123
hiding, 123
identifier, 36, 37, 42
order, changing, 123

record, selecting by field criterion, 128–129
text field, 42, 56
watching, 207–209

key
described, 35
foreign, 39–40, 136
Personal Organizer Database application key

setup, 44
primary, 36, 37–38, 40

password, verifying against, 163–164, 167, 290, 291
project

adding to, 36–37, 41
connection setup, 46, 47–48

query, 36, 128–129, 133
record

adding, 39, 45
deleting, 129
row, relation to, 35
selecting by field criterion, 128–129

relational, 34, 39–41
row

adding, 39, 45, 122, 129, 135–136
deleting, 39, 41, 122, 129
record, relation to, 35
updating, 137–138

saving, 47
SQL, 36, 128–129
table

creating, 37
displaying in Database Explorer, 38
displaying in DataGridView control, 46, 48,

121–122, 124
filling with data, 128
introduced, 35
naming, 38
relationship, 39–41
saving, 38
updating, 128, 129, 137–138

XML
exporting data to XML file from database, 246,

247–248, 276
importing XML file into database, 246, 248–253
Personal Organizer Database application XML

import/export, 246–253, 262–267, 276
Database Explorer feature, 37, 38
DataGridView control, 46, 48, 121–122, 124
DataRow object, 128
DataSet object, 46, 123
DataSource property, 129

344

ControlType

24_595733 index.qxd 12/1/05 1:48 PM Page 344

DataTable class, 127–128, 246, 247, 251
DataView class, 127, 133
date

calendar type of local system, returning, 147
current, returning, 103, 218–219
difference between two dates, calculating, 181–182,

196–197, 221–222
label date display, updating automatically, 218–219
range, determining if date contained in, 220–221
reminder application, 220–224

DateDiff

function, 197
method, 221

DateDifference method, 181–182, 197
DateOfBirth field, 42
DateTime class, 314
DateTimeKind class, 314
DateTimePicker control, 63, 66, 182
Debug ➪ Continue, 206
Debug object, 209, 210–211
Debug ➪ Start, 20
Debug ➪ Step Into, 206
Debug ➪ Step Over, 206–207
debugging

breakpoint, using, 205–207, 212
editing code while execution paused, 211–212
field, watching, 207–209
message, displaying when specific code line executed,

209–210, 211
Personal Organizer Database application Amazon web

service, 213
Solution Explorer, adding debug argument using, 154
stepping into/over code, 206–207, 212
variable value, tracking, 207, 208–209, 212

decision statement, 76
DecryptString function, 286, 289–290
DefaultPageSettings property, 228
Delete

method, 129
SQL command, 129

DeleteFile method, 153
DeleteSubKey method, 151
DeleteValue method, 151
Description property, 264
destructor method, 102
Dim keyword, 71, 83
DirectoryExists method, 153
DisplayMember property, 130
DisplayName property, 104, 114

DisplayStyle property, 109
Dispose method, 102
DivideByZeroException object, 205
Do Until statement, 80–81
Dock property, 256
Document property, 171
Document Type Definition (DTD), 242. See also XML

(Extensible Markup Language)
DocumentCompleted event, 173
DocumentText property, 171
DocumentTitle property, 170, 173
DocumentTitleChanged event, 173
Draw function, 229
DrawString function, 230
DrawVerticalString method, 157
DropDownItems property, 110
DTD (Document Type Definition), 242. See also XML

(Extensible Markup Language)
DVD Movie Collection application, 20–25, 32

E
ECMA (European Computer Manufacturers Associa-

tion), 310, 313
Edit and Continue feature, 211–212
Else keyword, 78, 79
ElseIf keyword, 78
e-mail functionality, 232, 235–238
Enabled property, 218
encryption, 284–291
EncryptString function, 286, 287, 289
equals sign (=) assignment operator, 71
Err object, 203–204
error

displaying, 10, 87, 202, 231
divide by zero error, 205
handling

encryption error, 287
function error, returning to code responsible for call,

203–204
subroutine error, returning to code responsible for

call, 203–204
throwing exception, 204–205
Try block, using, 200–202, 203–204, 287
validation, in, 233–234
XML error, 262

ignoring, 203
number identifying error type, 204
pausing execution upon, 202
string, returning error message as, 202

345

error

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 345

Error List feature, 10
ErrorProvider control, 231, 233, 234
European Computer Manufacturers Association

(ECMA), 310, 313
event. See also specific event

class, adding to, 99
control events, listing, 106
defining, 99–100
described, 19
handling
Button control, 81, 82, 85, 118–119, 272–274
dynamic, 116–119
function, using, 18
print operation, 225–226, 228
subroutine, using, 81–82, 100, 116–119
WebBrowser control, 172–173, 176, 177–178
wizard form, 272–274, 278

hooking code to, 69, 82
information about, returning, 106
naming, 99
raising, 99
signature, 81

Event keyword, 99
EventArgs object, 81–82
Exception object, 200, 202
exception, throwing, 204–205
ExportDataLocationDialog object, 248
ExportPOData function, 247–248
Extensible Markup Language. See XML (Extensible

Markup Language)

F
Fahrenheit function, 75
FahrenheitToCelsius function, 74–75
file. See also specific file

application file, 293
change, monitoring for, 231
class, creating from multiple files, 158
configuration file, 293
copying, 152
deleting, 153
existence, determining, 153
naming, 65, 153
Open File dialog box, creating, 253
path, 153
printing to, 225
Resource library, adding to, 24

File ➪ New File (Visual Web Developer 2005
Express), 196

File ➪ New Project, 11
File ➪ Open Project, 26
File ➪ Print, 227
File ➪ Print Preview, 228
File ➪ Recent Projects, 47
File ➪ Save, 38
File ➪ Save All, 25
File ➪ Save Selected Items, 24
FileExists method, 153
FileName property, 248
FileSystem object, 152–153
FileSystemWatcher component, 231
fileToolStripMenuItem object, 109
Fill method, 128, 129–130
Finalize method, 102
Finally keyword, 201
FlowLayoutPanel control, 58–59
FlushFinalBlock method, 288
folder

change, monitoring for, 231
copying, 153
current, returning, 153
existence, determining, 153
listing all folders, 153
location, returning, 153
path, 153

font. See also text
code font, changing, 30
previewing, 106
printing, setup for, 229–230
property, assigning, 106
user interface, 52

Font dialog box, 106
Font Name property, 106
Font property, 106
For statement, 80
Foreign Key Relationships dialog box, 39–40, 41
form. See also wizard form, creating

application version number, displaying in, 162
caption, 23–24, 25
control, adding, 54–55, 258
creating, 7, 11
image, background, 24–25, 162, 256–257, 269
login form, 162–167
project, adding to, 155
sizing, 13, 256

FormBorderStyle property, 162
Form1.vb file, 48
Forms object, 155

346

Error List feature

24_595733 index.qxd 12/1/05 1:48 PM Page 346

Friend keyword, 96
FromAddress property, 238
function. See also specific function

access modifier, 75
built-in, 75
calling, 72, 191
creating, 72–74
data type, assigning, 72
defined, 19
error, returning to code responsible for call, 203–204
event handling using, 18
internal, 18
method, relation to, 83, 98
nesting, 75
parameter, passing to, 72–74
private, 75, 98
public, 98
subroutine versus, 72

Function keyword, 72

G
GeneralFunctions.vb file, 132
GenerateReport function, 226–227
Get

keyword, 96–97, 103
method, 145

GetBytes method, 288
GetComponents function, 265–266
GetDirectories method, 153
GetGiftIdeas.vb file, 186
GetPerson function, 132, 133, 137
GetPersonTable object, 133
GetRelativePath method, 153
GetSteps function, 263–264, 265
GetUserID function, 163, 250
GetValue method, 151
GiftSuggestions property, 195
GlobalGraphic property, 260, 263
GmtTime method, 146
GoBack method, 15, 172, 175
GoForward method, 172
GoHome method, 15, 172, 175
GoSearch method, 172
Graphic property, 264
Graphics object, 226, 230
GripStyle property, 108, 174
GroupBox control, 58, 186

H
Handles keyword, 82
hashing, 284
HasMorePages property, 226, 228
Heading property, 264
Hello World application, 11–12
HelpProvider control, 61, 232–233
history of Visual Basic, 3–5
Host property, 237
HScrollBar control, 58
HTML (Hypertext Markup Language)

e-mail, sending HTML-formatted, 237, 238
XML, relation to, 241–243

HTMLDocument object, 171
Hunter, David (Beginning XML, 3rd Edition), 245

I
IBM website, 180
Icon property, 219
IDE (Integrated Development Environment), 7
identity, user, 280, 282
If statement, 76–78, 87
IIf statement, 78, 222
image

control, graphic, 32, 55, 61–62, 109
encoding, 316
form, displaying in

background image, 24–25, 162, 256–257, 269
wizard form, 256–257, 258, 260, 263, 269

icon image, 55, 61
printing, 226
sizing, 25
transparency, 61

Image property, 109, 145
ImageList control, 61–62, 232
Images collection, 232
Immediate window, 209–210, 211
ImportDataLocationDialog object, 253
ImportDataUserInfo class, 250
ImportPOData function, 249, 250
Imports statement, 132, 236, 288
Indent property, 210
Info class, 146–147
Initialization Vector (IV), 285
InnerException object, 202
InnerText property, 254, 267
Insert SQL command, 129
InsertAfter method, 255

347

InsertAfter method

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 347

InsertBefore method, 255
InstalledUICulture object, 146
installing custom application. See also ClickOnce appli-

cation deployment
copying application to destination computer, via,

293–294
Windows Installer, using, 294–295

installing SQL Server, 6
installing template, 22
installing Visual Basic 2005 Express, 6–7, 15
Integrated Development Environment (IDE), 7
IntelliSense feature, 87–88
Internet Explorer, 151, 170, 171
interpreter, command-line, 4
Is Identity property, 42
IsBodyHtml property, 237
IsInRole method, 281
IsOffline property, 170
IsWebBrowserContextMenuEnabled property,

170, 174
Items property, 107
ItemSearch method, 184–185, 191, 192
ItemSearchResponse object, 185, 192–193, 213
ItemValue property, 160
IV (Initialization Vector), 285

K
Keyboard object, 149–150
keyboard shortcut, disabling in WebBrowser

control, 170

L
Label control, 55, 66, 218–219
license agreement, 6
LinkLabel control, 55
Lippert, Eric (Visual Basic .NET Code Security

Handbook), 279
ListBox control, 58, 68, 126, 129–130
ListDetails.vb file, 22
Load

event, 131
method, 254

LoadXml method, 254
LocalTime method, 146
login form, 162–167
looping code execution, 79–81

M
MailAddress object, 238
MailAddressCollection object, 236, 237–238
MailMessage object, 237
MainForm property, 153
MainForm.vb file, 22, 65, 84–85
markup language, 241
MaskedTextBox control, 56
math, 71
Measure function, 229
MeasureString method, 230
memory available, returning, 147
MemoryStream object, 288
menu

color, 66
command set, adding default, 65
control overview, 59–60
item

adding, 65
collection, 107, 109–110
drop-down, 107, 109, 110–111

Personal Organizer Database application menu system,
108–111, 119

separator, 107, 109, 110
WebBrowser control context menu, 170

MenuStrip control, 60, 65, 107
Message property, 202
method. See also specific method

calling, 18
constructor, 102
creating, 98
defined, 19
destructor, 102
external, 18
function, relation to, 83, 98
object, relation to, 18, 83
overloading, 101–102
subroutine, relation to, 98
web method, 181
web service, listing methods available to, 181

Microsoft Access software, 33
Microsoft Database Engine (MSDE), 34
Microsoft Developer Network (MSDN), 6, 30–31, 307
Microsoft Intermediate Language (MSIL), 312
Microsoft Passport, 311
Microsoft SQL Desktop Edition (MSDE), 34

348

InsertBefore method

24_595733 index.qxd 12/1/05 1:48 PM Page 348

Microsoft website
MSDN, 6, 30–31
.NET Framework download, 300
starter kit download, 22
UDDI resources, 180, 181

minus sign (-) subtraction operator, 71
module, 132
Mouse object, 148
MSDE (Microsoft Database Engine), 34
MSDE (Microsoft SQL Desktop Edition), 34
MSDN (Microsoft Developer Network), 6, 30–31, 307
MSIL (Microsoft Intermediate Language), 312
My Movie Collection Starter Kit template, 20
My namespace
Application object, 153–155
Computer object, 144–153
Forms object, 155
.NET Framework, integration with, 143–144
Project object, 153–155
Resources object, 155
Settings object, 155
User object, 152
WebServices object, 155

My Project window, 154, 295, 299

N
namespace. See also specific namespace

module, 132
.NET Framework, 143–144, 232, 236, 314–316

Navigate method, 14, 171–172
Navigated event, 173
Navigating event, 173
.NET Framework

COM, 310–311
component support, 312
development history, 310–311
downloading, 300
ECMA ratification, 310
encryption, 285
language integration, 312–313
Microsoft Passport, 311
namespace, 143–144, 232, 236, 314–316
prerequisite for Visual Basic application, 294, 300
printing, 144
security, 280, 285
SQL Server ADO.NET support, 34

Network object, 151–152

New

keyword, 102
method, 83, 102, 104

New Project dialog box, 7
NewId property, 251
Next keyword, 79–80
Not operator, 85–86
NotifyIcon control, 61, 219, 220–221
Now keyword, 103
number

comparison, 139–140
formatting, 147

Number property, 264
NumberOfLinesFilled property, 230

O
object

class
creating object from, 83
relation to object, 18

collection, editing, 107
creating, 18, 83, 102
defined, 19
destroying, 102
existence, determining, 85–86, 141
initializing, 83
instantiating, 102
method, relation to, 18, 83
property, relation to, 18
type, determining using reflection functionality, 270

Object class, 314
objPersonalDetails object, 86
Of keyword, 161
OLE DB (Object Linking and Embedding Database),

48–49
OOP (Object-Oriented Programming), 17–19
Open File dialog box, creating, 253
Open Project dialog box, 26
OpenSubKey method, 151
Operation property, 185
Options window, 28–29, 30

P
PageSetupDialog control, 62, 224
Panel control, 57, 58–59, 66, 84, 256–257
parentheses ({ })

event parameter delimiters, 99
subroutine delimiters, 72

349

parentheses

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 349

Partial keyword, 158–160, 167
Passport, Microsoft, 311
password

database, verifying against, 163–164, 167, 290, 291
encrypting, 286–291
string, comparing against, 141
TextBox control for entering, 162–163

path, 153
pausing application execution, 202, 211–212
percent sign (%) SendKeys method replacement

character, 150
period (.)

method prefix, 101
object suffix, 98
property prefix, 18, 101

permission, 280, 283, 303
Person

class, 83, 95, 103, 112–113, 114
property, 113, 114
table, 42–43, 49, 238, 252

Personal Organizer Database application
AcceptButton property, 162
Add Person Click subroutine, 114
AddCheckBox subroutine, 269, 270
AddComboBox subroutine, 271
AddPerson function, 136, 138
AddPersonRow method, 136, 252
AddPOUserRow function, 290
AddRadioButton subroutine, 270
AddTextArea subroutine, 270, 271, 278
Allow Nulls property, 44
Amazon web service, integrating with
btnGetGiftIdeas_Click subroutine, 189–190
btnSearch_Click subroutine, 191, 192, 193
calling web service, 192
Cancel button, 194
Cancelled property, 195
CheckedListBox control, 186, 191, 193, 194, 195
debugging, 213
GetGiftIdeas.vb file, 186
GiftSuggestions property, 195
ItemSearch method, 184–185, 191, 192
ItemSearchResponse object, 185, 192–193, 213
mbCancelled variable, 194–195
msFavorites variable, 188
msGiftSuggestions variable, 195
PersonDetails control setup, 185–186, 187, 189
RadioButton control setup, 186–187, 188
referencing web service, 191

Save button, 195, 198
SelectedText property, 192
title, concatenating into string, 195

AutoCompleteCustomSource property, 234
AutoCompleteSource property, 234
BirthDate field, 66
btnAddPerson_Click subroutine, 86, 177
btnCancel_Click subroutine, 272
btnFinish_Click subroutine, 273–274
btnGetGiftIdeas_Click subroutine, 189–190
btnSearch_Click subroutine, 191, 192, 193
btnSend_Click subroutine, 237
btnShowList_Click subroutine, 84, 85, 166, 177
btnWeb_Click subroutine, 177
ButtonClickedHandler subroutine, 118, 234
Button1_Click subroutine, 275–276
CancelButton property, 162
Cancelled property, 195, 261
CheckedListBox control, 186, 191, 193, 194, 195
CloseRequested class, 176, 178
ComponentControlType property, 266
Components object, 260
ControlType

class, 260
property, 266

CreateUser function, 164, 290
creating database, 41
CurrentControl object, 274
CurrentStep variable, 262
data source setup, 47–48, 126
DataSource property, 129
DateOfBirth field, 42
DecryptString function, 286, 289–290
Description property, 264
DisplayMember property, 130
DisplayName

column, 44
property, 104, 114

Draw function, 229
e-mail functionality, 235–238
EncryptString function, 286, 287, 289
errorPersonalDetails component, 233
ExportDataLocationDialog object, 248
ExportPOData function, 247–248
exportToolStripMenuItem_Click subroutine, 248
FileName property, 248
fileToolStripMenuItem object, 109
FindComponent subroutine, 275
FromAddress property, 238

350

Partial keyword

24_595733 index.qxd 12/1/05 1:48 PM Page 350

GeneralFunctions.vb file, 132
GenerateReport function, 226–227
GetComponents function, 265–266
GetGiftIdeas.vb file, 186
GetPerson function, 132, 133, 137
GetPersonTable object, 133
GetSteps function, 263–264, 265
GetUserID function, 163, 250
GiftSuggestions property, 195
GlobalGraphic property, 260, 263
Graphic property, 264
Heading property, 264
help functionality, 232–233
identifier field, 42
ImportDataLocationDialog object, 253
ImportDataUserInfo class, 250
ImportDefinition subroutine, 262–263
ImportPOData function, 249, 250
importToolStripMenuItem_Click subroutine, 253
InitializeWizardSettings subroutine, 262
InnerText property, 254, 267
Is Identity property, 42
ItemSearch method, 184–185, 191, 192
ItemSearchResponse object, 185, 192–193, 213
key setup, 44
LoadListBox subroutine, 130, 131, 166
login form, 162–167
MailAddress object, 238
MailAddressCollection object, 236, 237–238
MailMessage object, 237
MainForm.vb file, 22, 65, 84–85
mbCancelled variable, 194–195
Measure function, 229
menu system, 108–111, 119
msFavorites variable, 188
msGiftSuggestions variable, 195
Name column, 44
NameFirst row, 44
NavigateToStep subroutine, 272
navigation bar, 46
New method, 104
NewId property, 251
Number property, 264
NumberOfLinesPrinted variable, 230
objPersonalDetails object, 86
objPersonalDetails_ButtonClicked

subroutine, 165
objPersonList variable, 85, 86, 134
objPOWebBrowser variable, 177

objPOWebBrowser_CloseRequested subroutine, 178
password encryption, 286–291
Person

class, 83, 95, 103, 112–113, 114
property, 113, 114
table, 42–43, 49, 238, 252

PersonalDetails control
Cancel button, 116–119, 135
CheckBox control group, placing in, 139–140
creating, 66, 85
existence, determining, 85–86
filling with data, 134–135
Gift Categories area, 139–140
helpPersonalDetails component, 232
Person class, associating with, 113
PersonList control, removing from screen when dis-

playing, 85–86
resetting, 115, 139
Save button, 116–119, 135–136
validation, 233–234

PersonDataTable object, 132, 136
PersonDetails control, 185–186, 187, 189
PersonList control

creating, 68
data source, 126
Delete Selected button, 131
initializing, 84
ListBox control, updating from, 126, 129–130
objPersonList variable, 85, 86, 134
PersonalDetails control, removing from screen

when displaying, 85–86
printing, allowing only when displayed, 240
record display, 165–166
Send Email button, 237
Show Details button, 132

PersonTableAdapter object, 132
Pet table, 39, 49
pnlControls object, 269, 272, 274
POMessage form, 235
POUser table, 44, 45, 126, 136, 247–249
POUserDataTable class, 137
POUserID column, 44
POWebBrowser control, 174, 177, 178
printing, 226–231
ProgressBar control, 240
RemoveButtons function, 118
ReportString variable, 227, 229
ResetFields subroutine, 113, 139
running, 48

351

Personal Organizer Database application

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 351

saveToolStripButton_Click subroutine, 165
SelectedItems object, 134, 237, 238
SelectedText property, 192
SetForm subroutine, 261, 268–269
SettingValues property, 260
SetupButtons subroutine, 117–118
splash screen, 161–162
StatusLabel control, 240
StatusStrip control, 240
StoreNewValues subroutine, 274–275
StringFormat object, 229
ToAddresses collection, 238
toolbar, 108–109
ToolStripMenuItem object, 109
txtFirstName control, 233
txtFirstName_Validating subroutine, 233
txtLastName_Validating subroutine, 233–234
UpdatePerson function, 137–138
user interface, 64–67, 84–88
UserPasswordMatches function, 290, 291
WebBrowser control, 173–179
WizardBase_Load subroutine, 261–262
WizardComponent class, 265–266, 270, 274
WizardDefinition property, 275
WizardSettingValues property, 273
WizardStep class, 259–260, 263–265, 273, 275
XML, import/export, 246–253, 262–267, 276

PersonalDetails control
Cancel button, 116–119, 135
CheckBox control group, placing in, 139–140
creating, 66, 85
existence, determining, 85–86
filling with data, 134–135
Gift Categories area, 139–140
helpPersonalDetails component, 232
Person class, associating with, 113
PersonList control, removing from screen when dis-

playing, 85–86
resetting, 115, 139
Save button, 116–119, 135–136
validation, 233–234

PersonDataTable object, 132, 136
PersonDetails control, 185–186, 187, 189
PersonList control

creating, 68
data source, 126
Delete Selected button, 131
initializing, 84
ListBox control, updating from, 126, 129–130

objPersonList variable, 85, 86, 134
PersonalDetails control, removing from screen when

displaying, 85–86
printing, allowing only when displayed, 240
record display, 165–166
Send Email button, 237
Show Details button, 132

PersonTableAdapter object, 132
PictureBox control, 62, 145–146
Play method, 148
plus sign (+)

addition operator, 71
SendKeys method replacement character, 150

pnlControls object, 269, 272, 274
PO-Data.mdf file, 41
POUserDataTable class, 137
POWebBrowser control, 174, 177, 178
Prerequisites dialog box, 300
PrimaryScreen property, 148
primitive, cryptographic, 284
Principal object, 280–281, 282
PrincipalPermission object, 280
Print

function, 172
method, 225

PrintDialog control, 62, 224
PrintDocument

class, 225, 226, 228
control, 62

Printers object, 152
printing

control overview, 62
event handling, 225–226, 228
file, to, 225
font setup, 229–230
image, 226
line limit, specifying, 229
.NET Framework, 144
page

flagging last, 226, 228
margin, 224
orientation, 224
printable area, determining, 228
range, 225

paper size, 224
Personal Organizer Database application, 226–231
PersonList control, allowing only when displayed, 240
preview, 62, 172, 224, 227
security, 280, 281

352

PersonalDetails control

24_595733 index.qxd 12/1/05 1:48 PM Page 352

selecting printer, 224
text, 226, 229–230
user interface, 224–225, 227–228
WebBrowser control, from, 170, 172

PrintPage event, 225–226, 228
PrintPageEventArgs object, 226
PrintPreviewControl control, 62, 225
PrintPreviewDialog control, 62, 224, 227
Private keyword, 75, 96, 97
product support web page, offering, 302
progress bar display, 60, 240
ProgressChanged event, 173
project

class, adding, 95
control, adding, 174
creating, 7, 11, 20
database

adding, 36–37, 41
connection setup, 46, 47–48

form, adding, 155
location, 30
module, adding, 132
naming, 20
opening, 26, 47
option default, changing, 30
reference

listing all references, 154
web reference, adding, 180

saving, 25, 30
starter kit, 20–25
updating project created in previous version, 26–27

Project ➪ Add Class, 95
Project ➪ Add New Item, 36
Project ➪ Add User Control, 174
Project ➪ Add Web Reference, 180
Project ➪ Add Windows Form, 155
Project ➪ New Module, 132
Project object, 153–155
Project1.vbp file, 26
Properties window, 10, 106
property. See also specific property

access modifier, 97
class, adding to, 112–113
color, 105
control

assigning property to, 54–55
updating automatically upon property change, 113

defining, 96, 105–107
described, 19
font, 106

information about, returning, 106
listing all properties, 106
object, relation to, 18
private, 97
public, 97
read-only, 97
value, getting/setting, 96–97
write-only, 97, 187
XML attribute, 244

Property structure, 96
Protected keyword, 96
Provider object, 288
Public keyword, 96, 97
Publish Wizard, 295–296

Q
Quick Watch feature, 209
quotation marks (“ ”) XML attribute delimiters, 243

R
RadioButton control, 57, 186–187, 188, 270
Raise method, 203–204
RaiseEvent command, 99, 176
RC2 encryption, 285
ReadOnly keyword, 97, 114
ReadXml method, 246, 251
reflection functionality, determining object type

using, 270
Refresh function, 172
Registry object, 151
RemoveButtons function, 118
RenameFile method, 153
Request property, 185
Resource library, 24
Resources object, 155
Return keyword, 72
Rijndael encryption, 285
role, security, 279, 280–283
running application, 12, 20

S
Screen object, 148
scrollbar, 58
SearchIndex property, 185, 191, 192
security

ClickOnce application deployment, 302–304
code-based, 283–284

353

security

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 353

encryption, 284–291
form, 282–283
hashing, 284
identity, 280, 282
.NET Framework, 280, 285
permission, 280, 283, 303
printing, 280, 281
role-based, 279, 280–283
signature, digital, 284, 303
Windows Installer, 294–295

Select

method, 137
SQL command, 128–129

Select Case statement, 78–79
SelectedItems object, 134, 237, 238
SelectedText property, 192
SelectNodes

function, 255
method, 263, 265, 267

SelectSingleNode method, 254, 262, 264
Send method, 237
SendKeys method, 149–150
Set

keyword, 96–97, 103
method, 145

SetError method, 233
Settings object, 155
SettingValues property, 260
SetValue method, 151
ShowDialog method, 195, 225
ShowPageSetupDialog method, 172
ShowPersonDetails event, 134
ShowPrintDialog method, 172
ShowPrintPreviewDialog method, 172
ShowPropertiesDialog method, 172
ShowSaveAsDialog method, 172
signature

digital, 284, 303
event, 81

Simple Mail Transfer Protocol (SMTP), 237
Simple Object Access Protocol (SOAP), 179
SizeF structure, 230
SizeNeededHeight property, 230
slash (/) XML closing tag prefix, 243
smart tag, 65, 109
SMTP (Simple Mail Transfer Protocol), 237
SmtpClient object, 237
SOAP (Simple Object Access Protocol), 179
Solution Explorer feature, 7, 10, 22, 24, 154
SoundPlayer control, 63

splash screen, 153, 161–162
SplitButton control, 60
SplitContainer control, 59
SQL Native Client, 34
SQL Server. See also database

Add New Table menu, 37
ADO.NET support, 34
authentication, 46
buffer, 34
ClickOnce application deployment prerequisite, 304
Computer Manager feature, 34
connecting to database, 128
creating database, 36–37, 39
engine, 34
Express version (on the CD), 307
installing, 6
MSDE, relation to, 34
reliability, 33
size of database supported, 34
SQL Native Client support, 34
Table Designer toolbar, 39
Transact-SQL support, 34

SQL (Structured Query Language), 36, 128–129. See
also database; SQL Server

SqlDataAdapter class, 128
SqlDataTable class, 128
Start method, 218
Start Position property, 162
starter kit, 20–25
starting

application, 12
Visual Basic, 7

Static variable, 228
StatusLabel control, 240
StatusStrip control, 60, 65, 240
StatusText property, 171
StatusTextChanged event, 173
Stop

function, 172
method, 148

Stream object, 288
StringFormat object, 229
Structured Query Language (SQL), 36, 128–129. See

also database; SQL Server
Sub keyword, 72
subroutine
Button control, assigning to, 74
calling, 72
error, returning to code responsible for call, 203–204
event handling using, 81–82, 100, 116–119

354

Select

24_595733 index.qxd 12/1/05 1:48 PM Page 354

function versus, 72
method, relation to, 98
parameter, passing to, 72–73
signature, 81
syntax, 72

system information, returning, 146–147
System namespace
Collections subordinate namespace, 315
Data subordinate namespace, 49, 132, 315
Drawing subordinate namespace, 315, 316
Drawing2D subordinate namespace, 316
IO subordinate namespace, 315
.NET Framework, 232, 236, 314–316
Printing subordinate namespace, 316
Security subordinate namespace, 282, 315
Text subordinate namespace, 315
Timers subordinate namespace, 315
Windows subordinate namespace, 148, 315
Xml subordinate namespace, 253–256, 273, 315

T
tab order, setting, 106–107
Table Designer ➪ Relationships, 44
Table Designer toolbar (SQL Server), 39
TableLayoutPanel control, 58–59
Tables and Columns dialog box, 39
tag, smart, 65, 109
Task List feature, 10
Tasks window, 123
template, 11, 20, 22
TestWebService application, 181
text

aligning, 56, 162
Button control, 11, 55
case

converting, 56, 267
XML case sensitivity, 243

color, 55, 89
comparing strings, 141
concatenating, 195, 227
data type, 70
database column caption, 123
error message, returning as string, 202
field, 42, 56
font

code font, changing, 30
previewing, 106
printing, setup for, 229–230

property, assigning, 106
user interface, 52

form caption, 23–24, 25
layout area, 230
printing, 226, 229–230
validating, 233–234
WebBrowser control

title bar text, customizing, 170
web page displayed in, returning as text, 171

wizard form caption, 258
XML document, converting to string, 254

Text property, 157, 182, 236
TextBox control

alignment, 56
anchoring, 67, 186
AutoComplete functionality, 232
case conversion, 56
change, monitoring for, 217
clipboard, filling from, 145, 149
color, 89
described, 56
Multiline, 56
naming, 74
password entry, for, 162–163
read-only, 56, 186

Then keyword, 87
Throw statement, 204
Tick event, 218, 220, 222–224
tilde (~) SendKeys method replacement character, 150
time
Clock object, 146
current time, returning, 103, 146

Timer control, 217–223
title bar

Internet Explorer, 170
WebBrowser control, 170
wizard form, 258, 269

ToAddresses collection, 238
ToLower function, 267
toolbar of application, customizing, 108–109
Toolbox window, 7–8, 9–10, 219
Tools ➪ Export Data, 248
Tools ➪ Import Data, 253
Tools ➪ Options, 28
ToolStrip control, 60, 65, 108, 119, 174
ToolStripMenuItem object, 109
ToolTip control, 60–61, 219
ToString method, 75, 147, 202, 254
ToUpper function, 267

355

ToUpper function

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 355

Transact-SQL language, 34
transparency

color, 162
image, 61

TripleDES (Triple Data Encryption Standard), 285,
287–290

Try statement, 200–202, 203–204, 287
txtFirstName control, 233

U
UDDI (Universal Description Discovery, and Integra-

tion), 180, 181
Uniform Resource Locator. See URL (Uniform Resource

Locator)
Unindent property, 210
Update

method, 128, 129, 137, 251, 252
SQL command, 129

UpdatePerson function, 137–138
updating

application, updating automatically via ClickOnce
deployment, 295, 297–298, 300–301, 304, 306

control, updating automatically upon property
change, 113

project, 26–27
Visual Basic, 27

Url property, 170, 174, 175
URL (Uniform Resource Locator)

web service
Access Point URL, 181
constructing URL from, 180

WebBrowser control
loading URL into, 13–14, 171–172
returning current URL, 170

User

object, 152
XML node, 243, 244, 254

user identity, 280, 282
user interface. See also control; form

color, 52, 53
consistency, 52
contrast, visual, 52–53
enabling user interface element, 56
font, 52
grouping elements, 53, 57, 58
Personal Organizer Database application, 64–67,

84–88
print dialog, 224–225, 227–228
simplicity, 51–52
wizard form, custom, 256–257

UserExists function, 163
UserID property, 166
UserPasswordMatches function, 290, 291
Using statement, 273

V
validation

text, 233–234
XML, 242, 244–245

variable
access modifier, 96
class structure, place in, 96
compiler shortcut variable, 101
data type, assigning, 71
declaring, 30, 71–72
defined, 19
Friend scope, 96
function, passing to, 74
loop counter, 79
Option Strict option, 30, 75
private, 96
Protected scope, 96
public, 96
status display, 74, 87
value

assigning manually while application running, 209
tracking, 207, 208–209, 212

vb files, 65
vbObjectError constant, 204
version

application
displaying version number in form, 162
updating automatically using ClickOnce deployment,

295, 297–298, 300–301, 304, 306
Internet Explorer version, returning, 151
project created in previous version, updating, 26–27
Visual Basic, updating, 27

View ➪ Database Explorer, 37
View ➪ Tab Order, 106
Visual Basic .NET Code Security Handbook (Lippert),

279
Visual Basic Upgrade Wizard, 26–27
Visual Studio development environment, 309–310
Visual Web Developer 2005 Express (on the CD), 180,

196–197, 308
VScrollBar control, 58
.vsi files, 22

356

Transact-SQL language

24_595733 index.qxd 12/1/05 1:48 PM Page 356

W
Watch windows, 207–208
web method, 181
web service. See also Amazon web service

calling, 192
class, 180
consuming, 180, 181–182
creating, 180
date difference, calculating using, 181–182, 196–197
described, 179
instance, creating, 182
locating, 180
methods available, listing, 181
referencing, 180, 191
SOAP, role in, 179
UDDI library, 180, 181
URL

Access Point URL, 181
constructing from web service, 180

Visual Basic 2005 versus Visual Basic Express, 180
Visual Web Developer 2005 Express, developing web

service application using, 180, 196–197
XML, role in, 179, 180

WebBrowser control
address bar, customizing, 170
AllowWebBrowserDrop property, 170, 174
CanGoBack property, 170, 175, 178
CanGoForward property, 170, 178
closing, 176
Document property, 171
DocumentCompleted event, 173
DocumentText property, 171
DocumentTitle property, 170, 173
DocumentTitleChanged event, 173
event handling, 172–173, 176, 177–178
GoBack method, 15, 172, 175
GoForward method, 172
GoHome method, 15, 172, 175
GoSearch method, 172
IsOffline property, 170
IsWebBrowserContextMenuEnabled property,

170, 174
Navigate method, 14, 171–172
Navigated event, 173
Navigating event, 173
Personal Organizer Database application implementa-

tion, 173–179
printing from, 170, 172
ProgressChanged event, 173

Refresh function, 172
ShowPageSetupDialog method, 172
ShowPrintDialog method, 172
ShowPrintPreviewDialog method, 172
ShowPropertiesDialog method, 172
ShowSaveAsDialog method, 172
StatusText property, 171
StatusTextChanged event, 173
Stop function, 172
text

title bar text, customizing, 170
web page displayed in, returning as, 171

URL
loading specified, 13–14, 171–172, 175
returning, 170

WebBrowserShortcutsEnabled property, 170
WebServices object, 155
WheelExists property, 148
WheelScrollLines property, 148, 149
While statement, 80, 81
widget, 4
Windows Installer, 294–295
WindowsPrincipal class, 282
With statement, 101
WithEvents keyword, 100, 116, 134, 178
wizard form, creating

cancel functionality, 261, 272
caption, 258
ComboBox component, 266–267, 271
control

adding, 258, 259
event handling, 272–274

data definition, 258
description text box, 257, 258, 269
event handling, 272–274, 278
Finish

button, 268, 273
flag, 258

heading, 258, 269
image display, 256–257, 258, 260, 263, 269
initializing, 261–262
loading, 261–262, 268
Next button, 268, 272
Previous button, 268, 272
runtime, customizing during, 268–271
sizing, 256
Start button, 268, 272
storing value set by user, 274–275
title bar, 258, 269
user interface, 256–257

357

wizard form, creating

In
de

x

24_595733 index.qxd 12/1/05 1:48 PM Page 357

XML
component attribute, defining, 259
document, filling, 273–274
error handling, 262
importing data from XML file, 262–267
schema, 278

wizard, using built-in, 25–27. See also specific wizard
WizardComponent class, 265–266, 270, 274
WizardDefinition property, 275
WizardSettingValues property, 273
WizardStep class, 259–260, 263–265, 273, 275
WorkingArea object, 148
WriteContentTo function, 254
WriteElementString

function, 255
method, 273

WriteEndElement method, 255, 273
WriteLine method, 209
WriteLineIf method, 210
WriteOnly keyword, 97
WriteStartElement method, 255, 273
WriteTo function, 254
WriteXml method, 246, 247
Wrox website, 308

X
XML (Extensible Markup Language)

attribute
content, mixed, 244
element, assigning to, 244
introduced, 242
property, 244
returning, 254
syntax, 243
wizard form component attribute, defining, 259

case sensitivity, 243
database

exporting data to XML file from, 246, 247–248, 276
importing XML file into, 246, 248–253
Personal Organizer Database application XML

import/export, 246–253, 262–267, 276
described, 241–243
document, 252, 253–254
DTD, 242
element

attribute, assigning, 244
child, 244, 254
introduced, 242
parent, 244

root, 243, 244, 254
sibling, 244
sister, 244

error handling, 262
HTML, relation to, 241–242
namespace, 253–256, 273, 315
node

collection, returning, 255
creating, 255
document, inserting in, 255
selecting, 254–255, 263, 265, 267

schema, 242, 244–245, 247, 278
tag

defining, 242
syntax, 243
value, 242

validation, 242, 244–245
web service, role in, 179, 180
well formed, 244
wizard form

component attribute, defining, 259
document, filling, 273–274
error handling, 262
importing data from XML file, 262–267
schema, 278

XmlDocument class, 253–254, 255, 262
XmlNode object, 254, 263, 264
XmlReader object, 255
XmlWriter object, 254, 255, 273
XPathNavigator object, 273
XSD (XML Schema Document), 242, 244–245,

247, 278

358

wizard, using built-in

24_595733 index.qxd 12/1/05 1:48 PM Page 358

25_595733 lic.qxd 12/1/05 1:56 PM Page 365

This program was reproduced by Wiley Publishing, Inc. under a special arrangement with Microsoft
Corporation. For this reason, Wiley Publishing, Inc. is responsible for the product warranty. If your
diskette is defective, please return it to Wiley Publishing, Inc., who will arrange for its replacement.
PLEASE DO NOT RETURN IT TO OR CONTACT MICROSOFT CORPORATION FOR SOFTWARE
SUPPORT. This product is provided for free, and no support is provided for by Wiley Publishing, Inc. or
Microsoft Corporation. To the extent of any inconsistencies between this statement and the end user
license agreement which accompanies the program, this statement shall govern.

25_595733 lic.qxd 12/1/05 1:56 PM Page 366

	Cover
	Wrox’s Visual Basic ® 2005 Express Edition Starter Kit
	Credits
	About the Author
	Contents
	Acknowledgments
	Introduction
	Part I Getting Familiar
	Chapter 1 Basic Installation
	Chapter 2 Why Do All That Work?
	Chapter 3 Using Databases
	Chapter 4 What the User Sees
	Chapter 5 How Do You Make That Happen?

	Part II Extending Yourself Is Good
	Chapter 6 Take Control of Your Program
	Chapter 7 Who Do You Call?
	Chapter 8 It's My World Isnt It?
	Chapter 9 Getting into the World
	Chapter 10 When Things Go Wrong

	Part III Making It Hum
	Chapter 11 Its Printing Time!
	Chapter 12 Using XML
	Chapter 13 Securing Your Program
	Chapter 14 Getting It Out There

	Appendix A Need More? Whats on the CD and Website
	Appendix B .NET The Foundation
	Appendix C Answers to Exercises
	Index

